WO2019065147A1 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
WO2019065147A1
WO2019065147A1 PCT/JP2018/033053 JP2018033053W WO2019065147A1 WO 2019065147 A1 WO2019065147 A1 WO 2019065147A1 JP 2018033053 W JP2018033053 W JP 2018033053W WO 2019065147 A1 WO2019065147 A1 WO 2019065147A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
resin
thin film
inorganic thin
Prior art date
Application number
PCT/JP2018/033053
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 敦史
小林 正典
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018557158A priority Critical patent/JP7218577B2/en
Publication of WO2019065147A1 publication Critical patent/WO2019065147A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to a laminated film used in the field of packaging of food, pharmaceuticals, industrial products and the like. Specifically, it is a laminated film provided with a base film, a covering layer, an inorganic thin film layer, and a protective layer, and capable of expressing good gas barrier properties and water adhesion (lamination strength) even in a high temperature and high humidity environment. About.
  • Packaging materials used for food, medicines, etc. have the property of blocking gas such as oxygen and water vapor, that is, gas barrier property, for suppressing oxidation of protein and oil, maintaining taste and freshness of medicine, maintaining efficacy of medicine. It has been demanded. In addition, it is also important that the barrier performance and adhesion performance do not deteriorate during long distance transportation or storage under high temperature and high humidity environment due to the recent domestic climate change (temperature rise and heavy rain) and the expansion of demand at home and abroad. It has become.
  • an inorganic oxide of inorganic oxide such as silicon oxide or aluminum oxide, etc. on the surface of a substrate film of plastic A gas barrier laminate in which a thin film is formed is generally used.
  • those having a thin film (inorganic thin film layer) of an inorganic oxide such as silicon oxide, aluminum oxide, or a mixture thereof are widely used because they are transparent and the contents can be confirmed.
  • the substrate may be damaged, or decomposition or degassing may occur in a low molecular weight portion or a portion of an additive such as a plasticizer. Due to this, defects, pinholes and the like may be generated in the inorganic thin film layer, and the gas barrier properties may be lowered. Furthermore, there is also a problem that the inorganic thin film layer is cracked and cracks occur during post-processing of the packaging material such as printing, laminating, bag-making, and the gas barrier property is lowered.
  • a protective layer having gas barrier properties on the inorganic thin film layer as a method of improving the defects of the gas barrier laminate having the inorganic thin film layer formed thereon.
  • a method of laminating a gas barrier resin composition composed of an ethylene-vinyl alcohol copolymer, an inorganic layered compound and an additive for example, Patent Document 1.
  • Patent Document 1 a method of laminating a gas barrier resin composition composed of an ethylene-vinyl alcohol copolymer, an inorganic layered compound and an additive
  • interlayer adhesion is reduced due to the lack of water resistance of the protective layer.
  • the film with reduced interlayer adhesion has a problem that peeling occurs due to bending load and the content of the liquid, the barrier property is deteriorated, and the content leaks out.
  • this method in addition to excellent barrier properties, it also exhibits excellent properties with respect to water resistance, but the stability of the liquid to be provided for coating is low, so the start and end times of coating (for example, industrial distribution)
  • the characteristics differ between the roll outer peripheral portion and the inner peripheral portion), or the characteristics differ due to slight differences in drying and heat treatment in the film width direction, and the quality differs according to the production environment Had a big problem.
  • the film coated by the sol-gel method is poor in flexibility, it is pointed out that pinholes and cracks are easily generated when bending or impact is applied to the film, and the gas barrier properties may be lowered. .
  • a resin layer can be formed on an inorganic thin film layer by a coating method that does not involve a sol-gel reaction or the like, that is, a coating method that mainly includes a resin and involves a crosslinking reaction at the time of coating.
  • a gas barrier laminate having such an improvement a gas barrier laminate (for example, Patent Document 3) in which a barrier resin containing a silane coupling agent is coated on an inorganic thin film (for example, Patent Document 3), and a metaxylylene group-containing polyurethane on an inorganic thin film Coated laminate ( For example, Patent Document 4) can be mentioned.
  • the substrate when the substrate is a polyamide film, the substrate absorbs moisture and the film stretches when exposed to a high temperature and high humidity environment, so the substrate and the covering layer, the inorganic thin film layer or the barrier A shear stress acts on the interface of the protective layer, which causes a decrease in barrier performance and a decrease in adhesion.
  • Patent No. 5434341 gazette JP 2000-43182 A Patent No. 3441594 Patent No. 4524463
  • An object of the present invention is to provide a gas barrier film comprising a polyamide base film which is excellent in production stability and economy at the time of production and has good barrier properties and water-resistant adhesion even in a high temperature and high humidity environment. is there.
  • the present inventors have found that by providing a specific coating layer, an inorganic thin film layer and a protective layer on at least one side of a substrate film, good barrier property and water-resistant adhesion And found a laminated film having sufficient performance even in a high temperature and high humidity environment, and completed the present invention.
  • the laminated film of the present invention which solves the above-mentioned subject has the following modes.
  • a coating layer is provided on at least one surface of the polyamide base film, and the coating layer is made of a resin composition for a coating layer containing a polyester resin as a component, and an inorganic thin film layer is provided on the coating layer
  • the laminated film provided with the coating layer, the inorganic thin film layer and the protective layer of the present invention has gas barrier properties and excellent water-resistant adhesion, so peeling does not occur even by bending load and aqueous contents, and barrier properties are obtained. There is no problem of deterioration or leakage of contents.
  • the laminated film of the present invention is designed as a protective layer of surface hardness which can follow the expansion and contraction of the polyamide base film in a high temperature and high humidity environment, the inorganic layer by the shear stress accompanying the expansion and contraction of the base material It is possible to prevent damage to the surface and reduction in adhesion strength due to delamination.
  • the laminated film of the present invention since the laminated film of the present invention has few processing steps and can be easily manufactured, it is excellent in both economical efficiency and production stability, and a gas barrier film of homogeneous characteristics can be provided.
  • the laminated film of the present invention has a coating layer on at least one surface of a polyamide base film, and the coating layer is made of a resin composition for a coating layer containing a polyester resin as a component, and an inorganic thin film layer is formed on the coating layer. And a protective layer containing a urethane resin on the inorganic thin film layer, and the surface hardness of the protective layer of the laminated film is 220 to 310 N / mm 2 .
  • a polyamide substrate film (hereinafter sometimes referred to as “substrate film”) represented by nylon 4 • 6, nylon 6, nylon 6 • 6, nylon 12 etc. is used .
  • the polyamide substrate film is superior to other resin substrate films in terms of the resistance to bag-proofing and pinholes.
  • the polyamide resin used in the present invention include nylon 6 whose main raw material is ⁇ -caprolactam.
  • Other polyamide resins include polyamide resins obtained by polycondensation of a three-membered or more ring lactam, an ⁇ -amino acid, a dibasic acid and a diamine or the like.
  • lactams in addition to ⁇ -caprolactam shown above, enanthlactam, capryl lactam, lauryl lactam, as ⁇ -amino acids, 6-amino caproic acid, 7-amino heptanoic acid, 9- Aminononanoic acid and 1,1-aminoundecanoic acid can be mentioned.
  • adipic acid glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecadioic acid, hexadecadioic acid, eicosandioic acid, eicosadiene dioic acid, 2 And 2,4-trimethyladipic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and xylylenedicarboxylic acid.
  • diamines ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, pentamethylenediamine, undecamethylenediamine, 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, cyclohexane Diamine, bis- (4,4'-aminocyclohexyl) methane, metaxylylene diamine and the like can be mentioned.
  • polymers obtained by polycondensing these or copolymers thereof such as nylon 6, 7, 11, 12, 6.6, 6.9, 6.11, 6.12, 6T, 6I, MXD 6 (Meta-xylene dipanamide 6), 6 / 6.6, 6/12, 6/6 T, 6/6 I, 6 / MXD6, etc. can be used.
  • the above-described polyamide resins can be used alone or in combination of two or more.
  • any film thickness can be used depending on the desired purpose and application such as mechanical strength and transparency, and the film thickness is not particularly limited, but usually 5 to 100 ⁇ m. Is recommended, and when used as a packaging material, 8 to 60 ⁇ m is desirable.
  • the transparency of the substrate film is not particularly limited, but when it is used as a packaging material for which transparency is required, one having a light transmittance of 50% or more is desirable.
  • the polyamide substrate film is preferably a stretched film stretched in at least one direction of the longitudinal direction or the transverse direction from the viewpoint of imparting mechanical strength, and biaxially stretched in the two directions of the longitudinal direction and the transverse direction It is more preferable that it is a stretched film.
  • a stretching method of the biaxially stretched film any stretching method such as simultaneous biaxial stretching or sequential biaxial stretching can be adopted.
  • the unstretched film is longitudinally stretched at a stretching ratio of 3.0 times to 4.5 times in the longitudinal direction at a temperature of 70 ° C. to 90 ° C. by a roll stretching machine.
  • the base film may be a single layer type film made of a polyamide resin, or may be a laminated type film in which a polyamide resin layer and another plastic film (which may be two or more types) are laminated. .
  • the polyamide resin layer is present, the number of laminations, the lamination method, etc. are not particularly limited as long as there is a polyamide resin layer, and can be arbitrarily selected from known methods according to the purpose.
  • a desired surface treatment layer in order to improve the interlayer adhesion between the inorganic thin film layer and the polyamide substrate, a desired surface treatment layer can be provided in advance, if necessary.
  • a desired surface treatment layer for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas etc., glow discharge treatment, oxidation treatment to be treated using chemical chemicals etc., etc.
  • Pretreatment such as, for example, can be optionally performed to form, for example, a corona treatment layer, an ozone treatment layer, a plasma treatment layer, an oxidation treatment layer, and the like.
  • the above surface pretreatment is carried out as a method for improving the tight adhesion and the like between various resin films and a vapor deposited film of a metal oxide, but as a method for improving the tight adhesion as described above, other methods are also available.
  • a primer coating layer, an undercoat layer, an anchor coating layer, an adhesive layer, a vapor deposition anchor coating layer, etc. are optionally formed in advance on the surfaces of various resin films, and then coated. It can also be a layer.
  • the laminated film of the present invention has a covering layer on at least one side of the polyamide base film.
  • a polyester resin is preferable in terms of cost and hygiene.
  • Such polyester resins can be obtained by polycondensation of dicarboxylic acids or tricarboxylic acids with glycols.
  • components used for the polycondensation include acid components such as terephthalic acid, isophthalic acid, adipic acid and trimellitic acid, and glycol components such as ethylene glycol, neopentyl glycol, butanediol and ethylene glycol modified bisphenol A.
  • an acrylic graft polyester resin obtained by graft copolymerization of an acrylic monomer as the polyester resin, and from the point that curing of the film proceeds and cohesion can be improved.
  • the adhesion amount of the coating layer is preferably 0.010 to 0.200 g / m 2 .
  • the covering layer can be uniformly controlled, and as a result, the inorganic thin film layer can be densely deposited.
  • the cohesion of the inside of the coating layer is improved, and the adhesion between the base film, the coating layer and the inorganic thin film layer is also enhanced, whereby the water-resistant adhesion of the coating layer can be enhanced.
  • Adhesion amount of the coating layer is preferably 0.015 g / m @ 2 or more, more preferably 0.020 g / m 2 or more, more preferably 0.025 g / m 2 or more, preferably 0.190 g / m 2 or less, More preferably, it is 0.180 g / m 2 or less, more preferably 0.170 g / m 2 or less.
  • the adhesion amount of the coating layer exceeds 0.200 g / m 2 , the cohesion of the inside of the coating layer may be insufficient, and good adhesion may not be exhibited.
  • the uniformity of the coating layer is also reduced, defects may occur in the inorganic thin film layer, and the gas barrier properties may be reduced.
  • the manufacturing cost is high and it is economically disadvantageous.
  • the film thickness of the coating layer is less than 0.010 g / m 2 , the substrate can not be sufficiently coated, and sufficient gas barrier properties and interlayer adhesion may not be obtained.
  • the resin composition for a coating layer may contain various known inorganic and organic additives such as an antistatic agent, a sliding agent, and an antiblocking agent, as long as the present invention is not impaired. It is also good.
  • the formation method of a coating layer is not specifically limited, For example, conventionally well-known methods, such as a coating method, are employable. Among the coating methods, the off-line coating method and the in-line coating method can be mentioned as preferable methods.
  • the conditions for drying and heat treatment at the time of coating depend on the thickness of the coating and the conditions of the apparatus, It is preferable to dry in the preheating zone or stretching zone of the process, and in such a case, it is preferable to set the temperature to about 50 to 250 ° C. in general.
  • the inorganic thin film layer is a thin film made of an inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be made into a thin film, but from the viewpoint of gas barrier properties, silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide (complex oxide Etc. are preferably mentioned.
  • a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both the flexibility and the compactness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% of Al by mass ratio of metal components.
  • the barrier property may be lowered, while if it exceeds 70%, the inorganic thin film layer tends to be hard, and the film is broken during secondary processing such as printing and laminating. As a result, the barrier properties may be reduced. Furthermore, the film can not follow the expansion and contraction of the base film under high temperature and high humidity, and the film may be broken to lower the barrier property.
  • silicon oxide refers to various silicon oxides such as SiO and SiO 2 or a mixture thereof
  • aluminum oxide refers to various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
  • the thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may not be obtained in some cases. On the other hand, even if it exceeds 100 nm and is excessively thick, the corresponding improvement effect of gas barrier properties is obtained It is rather disadvantageous in terms of bending resistance and manufacturing cost.
  • vapor deposition such as a physical vapor deposition method (PVD method), such as a vacuum evaporation method, sputtering method, ion plating method, or a chemical vapor deposition method (CVD method)
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • a typical method of forming an inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide based thin film as an example.
  • a vacuum evaporation method a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as an evaporation raw material.
  • the size of each particle is preferably such that the pressure at the time of vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
  • a method such as resistance heating, high frequency induction heating, electron beam heating, or laser heating can be adopted.
  • reactive vapor deposition using means such as introduction of oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reaction gas, or addition of ozone or ion assist may be employed.
  • film forming conditions can be arbitrarily changed, such as applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target.
  • Such vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed also in the case of employing a sputtering method or a CVD method.
  • the laminated film of the present invention has a protective layer on the inorganic thin film layer.
  • the inorganic thin film layer laminated on the plastic film is not a completely dense film, but small defects are scattered.
  • the resin in the protective layer resin composition penetrates into the defect portion of the inorganic thin film layer, and as a result, The effect of stabilizing the gas barrier properties can be obtained.
  • the gas barrier performance of the laminated film is also greatly improved by using a material having gas barrier properties for the protective layer itself.
  • the surface hardness of the protective layer of the laminated film is preferably 220 to 310 N / mm 2 . This makes it possible to have the hardness necessary for the development of adhesion and to maintain the performance even when the polyamide base film is expanded and contracted in a high temperature and high humidity environment.
  • Surface hardness preferably 225N / mm 2 or more, more preferably 230N / mm 2 or more, more preferably 235N / mm 2 or more, preferably 305N / mm 2 or less, more preferably 300N / mm 2 or less, further Preferably it is 295 N / mm ⁇ 2 > or less.
  • the surface hardness of the laminated film exceeds 310 N / mm 2 , the surface becomes too hard, so that the adhesive does not penetrate during printing or laminating, and the adhesion is reduced. Moreover, it can not follow expansion and contraction of a base film, and there exists a possibility that the adhesion fall under high temperature and high humidity may fall.
  • the surface hardness is less than 220 N / mm 2 , the cohesion of the protective layer is weak, the protection of the inorganic thin film layer and the complementation of the defective portion become insufficient, and the barrier performance may be deteriorated. Furthermore, the pigment in the ink may be buried to deteriorate the ink transferability (printing appearance).
  • the urethane resin described later In order to bring the protective layer into the above range of surface hardness, it is preferable to blend the urethane resin described later and, if necessary, a crosslinking agent, etc., and make the adhesion amount within the predetermined range by the method of forming the protective layer described later. .
  • the adhesion amount of the protective layer is preferably 0.10 to 0.60 g / m 2 .
  • Deposition amount of the protective layer is preferably from 0.13 g / m 2 or more, more preferably 0.16 g / m 2 or more, further preferably 0.19 g / m 2 or more, preferably 0.57 g / m 2 or less , more preferably 0.54 g / m 2, more preferably not more than 0.51 g / m 2. If the adhesion amount of the protective layer exceeds 0.600 g / m 2 , the gas barrier properties will be improved, but the cohesion of the inside of the protective layer will be insufficient, and the uniformity of the protective layer will also be reduced. In some cases, defects may occur, or gas barrier properties and adhesion may not be sufficiently exhibited. On the other hand, if the film thickness of the protective layer is less than 0.10 g / m 2 , sufficient gas barrier properties and interlayer adhesion may not be obtained.
  • the laminated film of the present invention contains a urethane resin having a metaxylylene group in the protective layer.
  • the urethane resin has good adhesion to the inorganic thin film layer due to the presence of the urethane bond portion having polarity, and the resin easily penetrates into the defect portion.
  • stable gas barrier performance can be obtained.
  • a highly flexible amorphous portion is also present at the same time, the surface hardness can be made within the predetermined range by controlling the ratio of the amorphous portion to the crystalline portion.
  • the urethane resin is preferably an aqueous dispersion having high polarity and good wettability to the inorganic thin film layer. Moreover, as a hardening type of resin, a thermosetting resin is desirable from a viewpoint of production stability.
  • the urethane resin (A) is obtained by reacting the following polyisocyanate component (B) with the following polyol component (C) by a usual method. Furthermore, the chain is extended by reacting a low molecular weight compound having two or more active hydrogens such as a diol compound (for example, 1,6-hexanediol etc.) or a diamine compound (for example hexamethylene diamine etc.) as a chain extender. Is also possible.
  • a diol compound for example, 1,6-hexanediol etc.
  • a diamine compound for example hexamethylene diamine etc.
  • the polyisocyanate component (B) which can be used for the synthesis of the urethane resin (A) includes aromatic polyisocyanate, alicyclic polyisocyanate, aliphatic polyisocyanate and the like.
  • a polyisocyanate compound a diisocyanate compound is usually used.
  • aromatic diisocyanates include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI) And 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenylether diisocyanate and the like.
  • TDI tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof)
  • NDI 1,5-naphthalene diisocyanate
  • MDI diphenylmethane diis
  • aromatic aliphatic diisocyanate for example, xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethylene)
  • XDI xylylene diisocyanate
  • TXDI xylylene diisocyanate or a mixture thereof
  • ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene and the like.
  • alicyclic diisocyanates examples include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (iso Holodiisocyanate, IPDI), methylenebis (cyclohexylisocyanate) (4,4'-, 2,4'- or 2,2'-methylenebis (cyclohexylisocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2,4-) Cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), bis (isocyanatomethyl) cyclohexane (1,3- or 1,4-bis (i) Cyanate methyl) cyclohexane
  • aliphatic diisocyanates examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene Diisocyanate, pendamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methyl carbonate etc. can be mentioned.
  • (C) Polyol component As the polyol component (especially diol component), although low molecular weight glycol to oligomer can be used, from the viewpoint of gas barrier property, usually alkylene glycol (for example, ethylene glycol, propylene glycol, trimethylene glycol , Linear or branched C2-10 alkylene glycols such as 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentyl glycol, heptanediol, octanediol, etc., (poly) oxy Low molecular weight glycols such as C2-4 alkylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol etc) are used.
  • alkylene glycol for example, ethylene glycol, propylene glycol, trimethylene glycol , Linear or branched C2
  • the preferred glycol component is a C2-8 polyol component [eg, C2-6 alkylene glycol (especially ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol) and the like], di- or trioxy C2-3 alkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol etc.), particularly preferred diol component is C2-8 alkylene glycol (especially C2) -6 alkylene glycol).
  • C2-8 polyol component eg, C2-6 alkylene glycol (especially ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol) and the like
  • di- or trioxy C2-3 alkylene glycol diethylene glycol, triethylene glycol
  • diol components can be used alone or in combination of two or more.
  • aromatic diols eg, bisphenol A, bishydroxyl terephthalate, catechol, resorcinol, hydroquinone, 1,3- or 1,4-xylylene diol or mixtures thereof, etc.
  • alicyclic diols eg, low molecular weight diol components such as hydrogenated bisphenol A, xylylene diol, cyclohexanediol, cyclohexanedimethanol and the like may be used in combination.
  • a polyol component having three or more functions for example, a polyol component such as glycerin, trimethylolethane, trimethylolpropane and the like can be used in combination.
  • the polyol component preferably comprises at least a C2-8 polyol component, in particular a C2-6 alkylene glycol.
  • the proportion of C2-8 polyol component (in particular, C2-6 alkylene glycol) in 100 mass% of the polyol component can be selected from the range of about 50 to 100 mass%, and usually 70 mass% to 100 mass% is preferable, More preferably, it is 80 mass% or more and 100 mass% or less, still more preferably 90 mass% or more and 100 mass% or less.
  • a urethane resin containing an aromatic or araliphatic diisocyanate component as a main component from the viewpoint of gas barrier property improvement by formation of a crystal part derived from a urethane bond.
  • the proportion of metaxylylene diisocyanate in the urethane resin is preferably in the range of 30 mol% or more (30 to 100 mol%) in 100 mol% of the polyisocyanate component (E).
  • the proportion of the total amount of aromatic or araliphatic diisocyanates is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, and still more preferably 60 to 100 mol%.
  • "Takelac (registered trademark)" series commercially available from Mitsui Chemicals, Inc. can be suitably used. If the proportion of the total amount of metaxylylene diisocyanate is less than 30 mol%, good gas barrier properties may not be obtained.
  • the said urethane resin has a carboxylic acid group (carboxyl group) from a viewpoint of affinity improvement with an inorganic thin film layer.
  • a carboxylic acid (salt) group for example, a polyol compound having a carboxylic acid group such as dimethylol propionic acid or dimethylol butanoic acid may be introduced as a copolymerization component as a polyol component.
  • the urethane resin of a water dispersion can be obtained.
  • the salt forming agent include ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, trialkylamines such as tri-n-butylamine, N-methylmorpholine, N-ethylmorpholine, etc.
  • N-dialkylalkanolamines such as -alkyl morpholines, N-dimethyl ethanolamine, N-diethyl ethanolamine and the like. These may be used alone or in combination of two or more.
  • the acid value of the urethane resin is preferably in the range of 10 to 60 mg KOH / g. More preferably, it is in the range of 15 to 55 mg KOH / g, further preferably in the range of 20 to 50 mg KOH / g.
  • the acid value of the urethane resin is in the above range, the liquid stability is improved when the aqueous dispersion is prepared, and the protective layer can be uniformly deposited on the highly polar inorganic thin film layer, so the coat appearance is It becomes good.
  • the urethane resin of the present invention preferably has a glass transition temperature (Tg) of 100 ° C. or more, more preferably 110 ° C. or more, and still more preferably 120 ° C. or more, from the viewpoint of barrier property improvement due to cohesion.
  • Tg glass transition temperature
  • a soft resin having a Tg of 100 ° C. or less, which is excellent in flexibility, may be mixed and used in order to obtain a surface hardness that develops adhesion.
  • the addition ratio of the soft resin is preferably in the range of 0 to 80%. More preferably, it is in the range of 10 to 70%, further preferably in the range of 20 to 60%. Cohesive force and flexibility can be made to be compatible as an addition ratio is in the said range, and barrier property and adhesiveness become favorable. If the addition ratio exceeds 80%, the film becomes too soft and the barrier performance may be lowered.
  • various crosslinking agents may be blended in the range not to impair the gas barrier properties for the purpose of improving the cohesion of the film and the water-resistant adhesiveness.
  • a crosslinking agent a silicon type crosslinking agent, an oxazoline compound, a carbodiimide compound, an epoxy compound etc. can be illustrated, for example.
  • silicon-based crosslinking agents are particularly preferable from the viewpoint of the improvement of water-resistant adhesion to the inorganic thin film layer.
  • a silane coupling agent is preferable from the viewpoint of crosslinking of an inorganic substance and an organic substance.
  • a silane coupling agent a hydrolyzable alkoxysilane compound, for example, a halogen-containing alkoxysilane (2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrimethylsilane) Chloro C 2-4 alkyl tri C 1-4 alkoxysilane such as ethoxysilane), alkoxysilane having an epoxy group [2-glycidyl oxyethyl trimethoxysilane, 2-glycidyl oxyethyl triethoxysilane, 3-glycidyloxy propyl trimethoxy Glycidyl oxy C2-4 alkyl tri C 1-4 alkoxy silane such as
  • Amino di C 2-4 alkyl di C 1 such as 3-aminopropylmethyl dimethoxysilane, 3-aminopropylmethyl diethoxysilane -4 alkoxy silane, 2- [ -(2-Aminoethyl) amino] ethyltrimethoxysilane, 3- [N- (2-aminoethyl) amino] propyltrimethoxysilane, 3- [N- (2-aminoethyl) amino] propyltriethoxysilane, etc.
  • the silane coupling agent is preferably added in an amount of 0.25 to 3.00% by mass, more preferably 0.5 to 2.75% by mass, and still more preferably 0.75 to 2.50% by mass in the protective layer. It is. When the addition amount exceeds 3.00% by mass, curing of the film proceeds and cohesion is improved, but a partially unreacted portion is also generated, and the adhesion between layers may be reduced. On the other hand, when the addition amount is less than 0.25% by mass, sufficient cohesion may not be obtained.
  • the coating liquid which consists of said polyurethane resin, ion-exchange water, and a water-soluble organic solvent may be prepared, and it may apply and dry on a substrate film.
  • a water-soluble organic solvent single or mixed solvents selected from alcohols such as ethanol and isopropyl alcohol (IPA), ketones such as acetone and methyl ethyl ketone can be used, and from the viewpoint of coating film processing and odor Is preferably IPA.
  • the coating method of the resin composition for protective layers is not particularly limited as long as it is a method of coating on the film surface to form a layer.
  • usual coating methods such as gravure coating, reverse roll coating, wire bar coating, die coating and the like can be employed.
  • the drying temperature at that time is preferably 110 to 190 ° C., more preferably 130 to 190 ° C., further preferably Is 150-190 ° C. If the drying temperature is less than 110 ° C., insufficient drying may occur in the protective layer, or the film formation of the protective layer may not proceed, and the cohesion and water-resistant adhesion may be reduced, resulting in a decrease in hand cutability. On the other hand, if the drying temperature exceeds 190 ° C., heat may be applied to the film to make the film brittle or shrink and the processability may be deteriorated. In particular, by drying at 150 ° C.
  • the film formation of the protective layer effectively proceeds, and the adhesion area between the resin of the protective layer and the inorganic thin film layer becomes larger, thereby improving water-resistant adhesion. can do.
  • additional heat treatment for example, 150 to 190 ° C. may be more effective in promoting the film formation of the protective layer.
  • the laminated film of the present invention is used as a packaging material, it is necessary to include a heat sealable resin layer called a sealant.
  • the heat-sealable resin layer is usually provided on the inorganic thin film side, ie, the protective layer side, but may be provided on the outer side of the substrate film (the side opposite to the surface on which the cover layer is formed).
  • the formation of the heat sealable resin layer is usually carried out by an extrusion laminating method or a dry laminating method.
  • the thermoplastic polymer forming the heat-sealable resin layer may be any one that can exhibit sufficient sealant adhesiveness, polyethylene resins such as HDPE, LDPE, LLDPE, polypropylene resin, ethylene-vinyl acetate copolymer Ethylene- ⁇ -olefin random copolymer, ionomer resin, etc. can be used.
  • the thickness of the heat sealable resin layer is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, still more preferably 30 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 75 ⁇ m or less, still more preferably 70 ⁇ m or less.
  • Productivity falls that thickness is 20 micrometers or less. On the other hand, if it is 80 ⁇ m or more, the cost increases and the transparency also deteriorates.
  • At least one or more layers of a printing layer or another plastic substrate and / or a paper substrate are laminated between or outside the inorganic thin film layer or substrate film and the heat sealable resin layer. It may be
  • resin-containing printing ink of water-based and solvent system can be used preferably.
  • resin used for printing ink acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and a mixture thereof are exemplified.
  • antistatic agents light blocking agents, ultraviolet light absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, blocking agents, antioxidants, etc. Additives may be included.
  • a printing method for providing a printing layer it does not specifically limit as a printing method for providing a printing layer.
  • Well-known printing methods such as an offset printing method, a gravure printing method, the screen-printing method, can be used.
  • known drying methods such as hot air drying, hot roll drying, infrared drying and the like can be used.
  • paper, polyester resin, biodegradable resin and the like are preferably used as other plastic substrates and paper substrates.
  • stretched films such as a biaxially stretched polyester film, are preferable.
  • the laminated film of the present invention preferably has an oxygen permeability of 7 ml / m 2 ⁇ d ⁇ MPa or less after storage under a high temperature and high humidity environment, and exhibits good gas barrier properties by being in this range. Furthermore, by controlling the above-mentioned protective layer component and adhesion amount, it is preferably 6 ml / m 2 ⁇ d ⁇ MPa or less, more preferably 5 ml / m 2 ⁇ d ⁇ MPa or less. If the oxygen permeability is 7 ml / m 2 ⁇ d ⁇ MPa or more, it will be difficult to cope with applications requiring high gas barrier properties.
  • the laminated film of the present invention preferably has a wet lamination strength of 1.5 N / 15 mm or more after storage under high temperature and high humidity environment, more preferably 2.0 N / 15 mm or more, still more preferably 2.5 N / 15 mm or more It is. If the laminate strength is 1.5 N / 15 mm or less, peeling may occur due to bending load or the contents of the liquid, and the barrier properties may be degraded or the contents may leak out. Furthermore, there is also a possibility that the hand cuttability may deteriorate.
  • laminated laminate for evaluation On the protective layer surface of the laminated film obtained in Examples and Comparative Examples, the thickness after drying treatment of a polyurethane adhesive (TM569 manufactured by Toyo Moreton Co., Ltd.) at 80 ° C. becomes 3 ⁇ m After coating, a low density linear polyethylene film (L4102 manufactured by Toyobo; thickness 40 ⁇ m; LL) is dry laminated on a metal roll heated to 60 ° C. and aged at 40 ° C. for 4 days, A laminated gas barrier laminate (hereinafter sometimes referred to as "laminated laminate A") for evaluation was obtained.
  • laminated laminate A laminated gas barrier laminate
  • the laminate laminate A prepared above is cut into a width of 15 mm and a length of 200 mm in the width direction (TD direction) and the length direction (MD direction) of the base film to form a test piece, temperature 23 ° C., relative humidity
  • the laminate strength was measured under a condition of 65% using a Tensilon universal material tester (“Tensilon UMT-II-500” manufactured by Toyo Boldwin Co., Ltd.).
  • a tensile speed was 200 mm / min
  • water was applied between the laminated film layers obtained in the examples and comparative examples and the heat sealable resin layer, and peeling was performed at a peeling angle of 90 degrees.
  • the strength of the time was measured.
  • wet heat treatment at 80 ° C. ⁇ 80% RH ⁇ 6 h is performed on the laminate laminate A prepared in (1), and immediately after the obtained retort-treated laminate laminate in the same manner as described above The laminate was cut out and the laminate strength (after wet heat treatment) was measured in the same manner as described above.
  • the surface hardness of the film was measured using a dynamic ultra-microhardness tester (“DUH-211” manufactured by Shimadzu Corporation). Specifically, a hardness measurement test is carried out by a load unloading test using an interval between angles of 115 ° with a diamond triangle indenter (Berkobitch type) on the protective layer side of a single laminated film fixed and held on a glass plate with an adhesive. The obtained Martens hardness was taken as the value of surface hardness.
  • the test conditions were a test force of 0.1 mN, a loading speed of 0.02 mN / s, and a holding time of 2 seconds.
  • Each material used for formation of a coating layer and a protective layer in each example and comparative example was prepared as follows.
  • polyester resin (A) As a polyester resin, "AGN 201" (solid content 25%) manufactured by Takemoto Yushi Co., Ltd., which is a water-dispersible acrylic graft polyester resin containing self-crosslinkable maleic anhydride as a graft chain, was prepared.
  • urethane resin (B) As a urethane resin, a dispersion of a commercially available metaxylylene group-containing urethane resin ("Takelac (registered trademark) WPB 341" manufactured by Mitsui Chemicals, Inc .; solid content: 30%) was prepared. The acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. Further, the proportion of aromatic or araliphatic diisocyanate to the entire polyisocyanate component measured by 1 H-NMR was 85 mol%.
  • Silane coupling agent (C) A commercially available Shin-Etsu Chemical "(registered trademark) KBM 903; solid content 100%) was prepared as a silane coupling agent.
  • urethane resin (D) As a urethane resin, commercially available dispersion of polyester urethane resin ("Takelac (registered trademark) WS6021" manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 40.degree.
  • polyester urethane resin dispersion (“Hydran (registered trademark) AP-201" manufactured by DIC; solid content 23%) was prepared as the urethane resin.
  • the acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 10 ° C.
  • ⁇ Preparation of Inorganic Layered Compound Dispersion> Add 4 parts of montmorillonite (trade name: Kunipia (registered trademark) F, manufactured by Kunimin Kogyo Co., Ltd.), which is an inorganic layered compound, in 96 parts of purified water while stirring, and fully set at a pressure of 50 MPa with a high pressure dispersing device. Dispersed. Thereafter, the mixture was kept at 40 ° C.
  • montmorillonite trade name: Kunipia (registered trademark) F, manufactured by Kunimin Kogyo Co., Ltd.
  • cation exchange resin Three parts of cation exchange resin are added to 100 parts of the mixed solution, and stirring is performed for 1 hour at a stirring speed at which crushing of the ion exchange resin does not occur to remove cations, and then cation exchange is performed. Only the resin was filtered out with a strainer.
  • the mixed solution obtained from the above operation is further dispersed in a high pressure dispersing apparatus under the setting of a pressure of 50 MPa, and then 0.75 part of zirconium chloride with respect to 97 parts of the dispersed mixture, and mixed solvent A2. 25 parts were added and mixed and stirred, and the mixture was filtered through a filter of 255 mesh to obtain a coating liquid 3 for a protective layer having a solid content of 5%.
  • Example 1 (1) Preparation of Coating Composition 1 Used for Coating Layer The following coating agents were mixed to prepare Coating Composition 1.
  • the mass ratio in terms of solid content of the polyester resin (A) is as shown in Table 1.
  • Coating Composition 2 Used for Protective Layer
  • the following coating agents were mixed to prepare Coating Composition 2.
  • the mass ratio in terms of solid content of the urethane resin (B) is as shown in Table 1.
  • a complex oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the surface of the film obtained in (3) above by an electron beam evaporation method.
  • deposition sources particulate SiO 2 (purity 99.9%) and Al 2 O 3 (purity 99.9%) of about 3 mm to 5 mm were used.
  • the film thickness of the inorganic thin film layer (SiO 2 / Al 2 O 3 composite oxide layer) in the film (inorganic thin film layer / coating layer-containing film) thus obtained was 13 nm.
  • a vapor deposition film provided with the coating layer and the inorganic thin film layer was obtained.
  • Coating of coating liquid 2 on deposited film (lamination of protective layer)
  • the coating liquid 2 prepared in the above (2) was applied onto the inorganic thin film layer of the vapor-deposited film obtained in (4) by the gravure roll coating method, and dried at 170 ° C. to obtain a protective layer.
  • the applied amount after drying was 0.33 g / m 2 (Dry).
  • a laminated film provided with a coating layer / inorganic thin film layer / protective layer on a base film was produced.
  • the surface hardness, oxygen permeability, and laminate strength were evaluated for the obtained laminated film as described above. The results are shown in Table 1.
  • Example 1 In preparing a coating liquid for forming a protective layer, a laminated film is produced in the same manner as in Example 1 except that the compounding amount, adhesion amount and type of resin are changed as shown in Table 1, The surface hardness, oxygen permeability, and laminate strength were evaluated. The results are shown in Table 1.
  • the gas barrier laminated film provided with the coating layer, the inorganic thin film layer, and the protective layer of this invention is excellent in gas barrier property and water-resistant adhesiveness. As a result, peeling does not occur even with the bending load or the contents of the water system, and there is no problem that the barrier property is deteriorated or the contents leak out.
  • the laminated film of the present invention is designed as a protective layer of surface hardness which can follow the expansion and contraction of the nylon base film in a high temperature and high humidity environment, damage to the inorganic layer by shear stress, It is possible to prevent a decrease in adhesion strength due to delamination.
  • the laminated film of the present invention has few processing steps and can be easily manufactured, it is excellent in both economical efficiency and production stability, and a gas barrier film of homogeneous characteristics can be provided.

Abstract

[Problem] The present invention addresses the problem of providing a multilayer film which is formed of a polyamide base film that has good barrier properties and good water-resistant adhesiveness even in a high-temperature high-humidity environment, and which is easily producible, while having excellent economic efficiency. [Solution] A multilayer film which has a cover layer on at least one surface of a polyamide base film, and wherein: the cover layer is formed from a resin composition for cover layers, which contains a polyester resin as a constituent; an inorganic thin film layer is arranged on the cover layer; and a protective layer that contains a urethane resin having a meta-xylylene group is arranged on the inorganic thin film layer. This multilayer film is characterized in that the protective layer of this multilayer film has a surface hardness of from 220 N/mm2 to 310 N/mm2.

Description

積層フィルムLaminated film
 本発明は、食品、医薬品、工業製品等の包装分野に用いられる積層フィルムに関する。詳しくは、基材フィルム、被覆層、無機薄膜層、及び保護層を備えた積層フィルムであって、高温高湿環境下でも良好なガスバリア性と耐水密着性(ラミネート強度)を発現させうる積層フィルムに関する。 The present invention relates to a laminated film used in the field of packaging of food, pharmaceuticals, industrial products and the like. Specifically, it is a laminated film provided with a base film, a covering layer, an inorganic thin film layer, and a protective layer, and capable of expressing good gas barrier properties and water adhesion (lamination strength) even in a high temperature and high humidity environment. About.
 食品、医薬品等に用いられる包装材料は、蛋白質、油脂の酸化抑制、味、鮮度の保持、医薬品の効能維持のために、酸素や水蒸気などのガスを遮断する性質、すなわちガスバリア性を備えることが求められている。また、近年の国内の気候変動(気温上昇や豪雨)や国内外での需要拡大に伴い、高温高湿環境下での長距離輸送や保管中にもバリア性能や接着性能が低下しないことも重要となっている。 Packaging materials used for food, medicines, etc. have the property of blocking gas such as oxygen and water vapor, that is, gas barrier property, for suppressing oxidation of protein and oil, maintaining taste and freshness of medicine, maintaining efficacy of medicine. It has been demanded. In addition, it is also important that the barrier performance and adhesion performance do not deteriorate during long distance transportation or storage under high temperature and high humidity environment due to the recent domestic climate change (temperature rise and heavy rain) and the expansion of demand at home and abroad. It has become.
 従来、水蒸気や酸素などの各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルムの表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層体が、一般的に用いられている。中でも、酸化ケイ素や酸化アルミニウム、これらの混合物などの無機酸化物の薄膜(無機薄膜層)を形成したものは、透明であり内容物の確認が可能であることから、広く使用されている。 Conventionally, in food applications that require blocking of various gases such as water vapor and oxygen, a metal thin film of aluminum or the like, an inorganic oxide of inorganic oxide such as silicon oxide or aluminum oxide, etc. on the surface of a substrate film of plastic A gas barrier laminate in which a thin film is formed is generally used. Among them, those having a thin film (inorganic thin film layer) of an inorganic oxide such as silicon oxide, aluminum oxide, or a mixture thereof are widely used because they are transparent and the contents can be confirmed.
 しかしながら、上記のガスバリア性積層体は、形成工程において局部的に高温となりやすいため、基材に損傷が生じたり、低分子量の部分あるいは可塑剤などの添加剤の部分で分解や脱ガスなどが起こり、それに起因して無機薄膜層中に欠陥やピンホール等が発生し、ガスバリア性が低下したりする場合がある。さらに、印刷、ラミネート、製袋など包装材料の後加工の際に無機薄膜層がひび割れてクラックが発生し、ガスバリア性が低下するといった問題もあった。 However, since the above-mentioned gas barrier laminate is likely to be locally heated to a high temperature in the forming step, the substrate may be damaged, or decomposition or degassing may occur in a low molecular weight portion or a portion of an additive such as a plasticizer. Due to this, defects, pinholes and the like may be generated in the inorganic thin film layer, and the gas barrier properties may be lowered. Furthermore, there is also a problem that the inorganic thin film layer is cracked and cracks occur during post-processing of the packaging material such as printing, laminating, bag-making, and the gas barrier property is lowered.
 無機薄膜層を形成したガスバリア性積層体の欠点を改善する方法として、無機薄膜層の上にさらにガスバリア性を有する保護層を設ける試みがなされている。例えば、エチレンービニルアルコール系共重合体からなるガスバリア性樹脂と無機層状化合物と添加剤とからなるガスバリア性樹脂組成物を積層する方法がある(たとえば特許文献1)。この方法では、無機薄膜層の欠点やガスバリア性が大きく改善される。 Attempts have been made to further provide a protective layer having gas barrier properties on the inorganic thin film layer as a method of improving the defects of the gas barrier laminate having the inorganic thin film layer formed thereon. For example, there is a method of laminating a gas barrier resin composition composed of an ethylene-vinyl alcohol copolymer, an inorganic layered compound and an additive (for example, Patent Document 1). In this method, the defects and the gas barrier properties of the inorganic thin film layer are greatly improved.
 しかしながら、上記方法では、保護層に耐水性がないことに起因して、層間接着性が低下する。層間接着性が低下したフィルムは、屈曲負荷や液体の内容物によって剥離が生じ、バリア性が劣化したり、内容物が漏れ出たりする問題があった。 However, in the above method, interlayer adhesion is reduced due to the lack of water resistance of the protective layer. The film with reduced interlayer adhesion has a problem that peeling occurs due to bending load and the content of the liquid, the barrier property is deteriorated, and the content leaks out.
これらの問題に対し、無機薄膜層上に、水溶性高分子と無機層状化合物および金属アルコキシドあるいはその加水分解物をコートして、ゾルゲル法により無機薄膜層上に無機層状化合物を含有する無機物と水溶性高分子との複合体を形成させる方法が提案されている(たとえば特許文献2)。この方法によれば、優れたバリア性に加えて、耐水性に関しても優れた特性を示すが、コートに供する液の安定性が低いため、コートの開始時と終了時(例えば、工業的に流通するロールフィルムとした場合であればロール外周部分と内周部分)で特性が異なったり、フィルム幅方向における乾燥や熱処理の僅かな温度の違いにより特性が異なったり、製造時の環境により品質の違いが大きく生じる、といった問題を抱えていた。さらには、ゾルゲル法によりコートされた膜は柔軟性に乏しいため、フィルムに折り曲げや衝撃が加わると、ピンホールやクラックが発生しやすく、ガスバリア性が低下することがあるといった問題も指摘されている。 To solve these problems, a water-soluble polymer and an inorganic layered compound and a metal alkoxide or a hydrolyzate thereof are coated on the inorganic thin film layer, and the inorganic layer compound containing the inorganic layered compound on the inorganic thin film layer and the water A method of forming a complex with a sex polymer has been proposed (for example, Patent Document 2). According to this method, in addition to excellent barrier properties, it also exhibits excellent properties with respect to water resistance, but the stability of the liquid to be provided for coating is low, so the start and end times of coating (for example, industrial distribution) In the case of a roll film, the characteristics differ between the roll outer peripheral portion and the inner peripheral portion), or the characteristics differ due to slight differences in drying and heat treatment in the film width direction, and the quality differs according to the production environment Had a big problem. Furthermore, since the film coated by the sol-gel method is poor in flexibility, it is pointed out that pinholes and cracks are easily generated when bending or impact is applied to the film, and the gas barrier properties may be lowered. .
 このような背景のもと、ゾルゲル反応などを伴わないコート法、すなわち樹脂を主体としコート時には架橋反応を伴う程度のコート法で、無機薄膜層上に樹脂層を形成させうる改良が望まれていた。このような改良がなされたガスバリア性積層体としては、無機薄膜上にシランカップリング剤を含むバリア性樹脂をコートしたガスバリア性積層体(たとえ
ば特許文献3)、無機薄膜上にメタキシリレン基含有ポリウレタンをコートした積層体(
たとえば特許文献4)が挙げられる。
Under such background, there is a demand for improvement in which a resin layer can be formed on an inorganic thin film layer by a coating method that does not involve a sol-gel reaction or the like, that is, a coating method that mainly includes a resin and involves a crosslinking reaction at the time of coating. The As a gas barrier laminate having such an improvement, a gas barrier laminate (for example, Patent Document 3) in which a barrier resin containing a silane coupling agent is coated on an inorganic thin film (for example, Patent Document 3), and a metaxylylene group-containing polyurethane on an inorganic thin film Coated laminate (
For example, Patent Document 4) can be mentioned.
 しかしながら、上記した方法でも、基材がポリアミドフィルムである場合、高温高湿環境下に晒された際には基材が吸湿しフィルムが伸縮するため、基材と被覆層、無機薄膜層またはバリア保護層の界面にずり応力が働き、バリア性能の低下や密着低下の要因となっていた。 However, even in the method described above, when the substrate is a polyamide film, the substrate absorbs moisture and the film stretches when exposed to a high temperature and high humidity environment, so the substrate and the covering layer, the inorganic thin film layer or the barrier A shear stress acts on the interface of the protective layer, which causes a decrease in barrier performance and a decrease in adhesion.
 上記特許文献3では、手揉み前後のバリア性の向上について検討されており、良好な結果が得られているが、湿熱環境下での性能については検討されていなかった。また特許文献4では、酸素透過度の湿度依存性について検討されており、それぞれ良好な値を示したが、同じく湿熱環境下での性能については検討されていなかった。 In the above-mentioned patent documents 3, although improvement in barrier property before and after manual massage is examined and good results are obtained, examination about performance under wet heat environment was not examined. Moreover, in patent document 4, although the humidity dependence of oxygen permeability was examined and each showed a favorable value, it was not similarly examined about the performance under wet heat environment.
特許第5434341号公報Patent No. 5434341 gazette 特開2000-43182号公報JP 2000-43182 A 特許第3441594号公報Patent No. 3441594 特許第4524463号公報Patent No. 4524463
 上述したいずれの方法でも、製造時の生産安定性および経済性に優れ、高温高湿環境下でも良好なバリア性・耐水接着性を有するポリアミド基材フィルムから成るガスバリアフィルムは得られていないのが現状であった。本発明は、製造時の生産安定性および経済性に優れ、高温高湿環境下でも良好なバリア性および耐水接着性を有するポリアミド基材フィルムから成るガスバリアフィルムを提供することを課題とするものである。 Even with any of the above-mentioned methods, a gas barrier film comprising a polyamide base film which is excellent in production stability and economy at the time of production and has excellent barrier properties and water-resistant adhesion even in a high temperature and high humidity environment has not been obtained. It was the present condition. An object of the present invention is to provide a gas barrier film comprising a polyamide base film which is excellent in production stability and economy at the time of production and has good barrier properties and water-resistant adhesion even in a high temperature and high humidity environment. is there.
 本発明者は、上記課題を解決するため鋭意検討を行った結果、基材フィルムの少なくとも片面に、特定の被覆層、無機薄膜層および保護層を設けることにより、良好なバリア性・耐水接着性を有し、かつ高温高湿環境下においても十分な性能を有する積層フィルムを見出し、本発明を完成した。 As a result of intensive investigations to solve the above problems, the present inventors have found that by providing a specific coating layer, an inorganic thin film layer and a protective layer on at least one side of a substrate film, good barrier property and water-resistant adhesion And found a laminated film having sufficient performance even in a high temperature and high humidity environment, and completed the present invention.
 前記課題を解決してなる本発明の積層フィルムは、以下の態様を有する。 The laminated film of the present invention which solves the above-mentioned subject has the following modes.
(1)ポリアミド基材フィルムの少なくとも片面に被覆層を有し、前記被覆層はポリエステル樹脂を構成成分として含有する被覆層用樹脂組成物からなり、前記被覆層上に無機薄膜層を有すると共に、該無機薄膜層上にメタキシリレン基を有するウレタン樹脂を含有する保護層を有する積層フィルムで、前記積層フィルムの前記保護層の表面硬度が220~310N/mmであることを特徴とする積層フィルム。 (1) A coating layer is provided on at least one surface of the polyamide base film, and the coating layer is made of a resin composition for a coating layer containing a polyester resin as a component, and an inorganic thin film layer is provided on the coating layer A laminated film having a protective layer containing a urethane resin having a metaxylylene group on the inorganic thin film layer, wherein the surface hardness of the protective layer of the laminated film is 220 to 310 N / mm 2 .
(2)前記被覆層に含有されるポリエステル樹脂がアクリルグラフトポリエステル樹脂であることを特徴とする前記(1)に記載の積層フィルム。 (2) The laminated film according to (1), wherein the polyester resin contained in the covering layer is an acrylic graft polyester resin.
 (3)前記無機薄膜層が、酸化ケイ素と酸化アルミニウムとの複合酸化物からなる層である前記(1)または(2)のいずれかに記載の積層フィルム。 (3) The laminated film according to any one of (1) and (2), wherein the inorganic thin film layer is a layer composed of a composite oxide of silicon oxide and aluminum oxide.
 本発明の被覆層、無機薄膜層および保護層を備えた積層フィルムは、ガスバリア性を有するとともに優れた耐水接着性を有するため、屈曲負荷や水系の内容物によっても剥離が生じず、バリア性が劣化したり、内容物が漏れ出たりする問題がない。また、本発明の積層フィルムは、高温高湿環境下でのポリアミド基材フィルムの伸縮にも追随できるような表面硬度の保護層に設計しているため、基材伸縮に伴うずり応力による無機層へのダメージや、層間剥離による密着強度の低下を防ぐことができる。しかも、本発明の積層フィルムは加工工程が少なくかつ容易に製造できるので、経済性と生産安定性の両方に優れており、均質な特性のガスバリア性フィルムを提供することができる。 The laminated film provided with the coating layer, the inorganic thin film layer and the protective layer of the present invention has gas barrier properties and excellent water-resistant adhesion, so peeling does not occur even by bending load and aqueous contents, and barrier properties are obtained. There is no problem of deterioration or leakage of contents. In addition, since the laminated film of the present invention is designed as a protective layer of surface hardness which can follow the expansion and contraction of the polyamide base film in a high temperature and high humidity environment, the inorganic layer by the shear stress accompanying the expansion and contraction of the base material It is possible to prevent damage to the surface and reduction in adhesion strength due to delamination. Moreover, since the laminated film of the present invention has few processing steps and can be easily manufactured, it is excellent in both economical efficiency and production stability, and a gas barrier film of homogeneous characteristics can be provided.
本発明の積層フィルムは、ポリアミド基材フィルムの少なくとも片面に被覆層を有し、前記被覆層はポリエステル樹脂を構成成分として含有する被覆層用樹脂組成物からなり、前記被覆層上に無機薄膜層を有すると共に、該無機薄膜層上にウレタン樹脂を含有する保護層を有し、前記積層フィルムの前記保護層の表面硬度が220~310N/mmであることを特徴とする積層フィルムである。 The laminated film of the present invention has a coating layer on at least one surface of a polyamide base film, and the coating layer is made of a resin composition for a coating layer containing a polyester resin as a component, and an inorganic thin film layer is formed on the coating layer. And a protective layer containing a urethane resin on the inorganic thin film layer, and the surface hardness of the protective layer of the laminated film is 220 to 310 N / mm 2 .
以下、基材フィルムおよびこれに積層する各層について順に説明する。 Hereinafter, a base film and each layer laminated | stacked on this are demonstrated in order.
[基材フィルム]
 本発明で用いる基材フィルムとしては、ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12等に代表されるポリアミド基材フィルム(以下「基材フィルム」と称することがある)を使用する。ポリアミド基材フィルムは、耐破袋性、耐ピンホール性の点で他の樹脂基材フィルムよりも優れている。本発明において使用されるポリアミド樹脂としては、たとえば、ε-カプロラクタムを主原料としたナイロン6を挙げることができる。また、その他のポリアミド樹脂としては、3員環以上のラクタム、ω-アミノ酸、二塩基酸とジアミン等の重縮合によって得られるポリアミド樹脂を挙げることができる。具体的には、ラクタム類としては、先に示したε-カプロラクタムの他に、エナントラクタム、カプリルラクタム、ラウリルラクタム、ω-アミノ酸類としては、6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、1,1-アミノウンデカン酸を挙げることができる。また、二塩基酸類としては、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカジオン酸、ヘキサデカジオン酸、エイコサンジオン酸、エイコサジエンジオン酸、2,2,4-トリメチルアジピン酸、テレフタル酸、イソフタル酸、2 ,6-ナフタレンジカルボン酸、キシリレンジカルボン酸を挙げることができる。さらに、ジアミン類としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ペンタメチレンジアミン、ウンデカメチレンジアミン、2,2,4(または2,4,4)-トリメチルヘキサメチレンジアミン、シクロヘキサンジアミン、ビス-(4,4’-アミノシクロヘキシル) メタン、メタキシリレンジアミン等を挙げることができる。そして、これらを重縮合して得られる重合体またはこれらの共重合体、たとえばナイロン6、7、11、12、6.6、6.9、6.11、6.12、6T、6I、MXD6(メタキシレンジパンアミド6)、6/6.6、6/12、6/6 T、6/6I、6/MXD6等を用いることができる。上記したポリアミド樹脂を単独で、あるいは、2種以上を混合して用いることができる。
[Base film]
As a substrate film used in the present invention, a polyamide substrate film (hereinafter sometimes referred to as “substrate film”) represented by nylon 4 • 6, nylon 6, nylon 6 • 6, nylon 12 etc. is used . The polyamide substrate film is superior to other resin substrate films in terms of the resistance to bag-proofing and pinholes. Examples of the polyamide resin used in the present invention include nylon 6 whose main raw material is ε-caprolactam. Other polyamide resins include polyamide resins obtained by polycondensation of a three-membered or more ring lactam, an ω-amino acid, a dibasic acid and a diamine or the like. Specifically, as lactams, in addition to ε-caprolactam shown above, enanthlactam, capryl lactam, lauryl lactam, as ω-amino acids, 6-amino caproic acid, 7-amino heptanoic acid, 9- Aminononanoic acid and 1,1-aminoundecanoic acid can be mentioned. Also, as dibasic acids, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecadioic acid, hexadecadioic acid, eicosandioic acid, eicosadiene dioic acid, 2 And 2,4-trimethyladipic acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and xylylenedicarboxylic acid. Furthermore, as diamines, ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, pentamethylenediamine, undecamethylenediamine, 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, cyclohexane Diamine, bis- (4,4'-aminocyclohexyl) methane, metaxylylene diamine and the like can be mentioned. And polymers obtained by polycondensing these or copolymers thereof, such as nylon 6, 7, 11, 12, 6.6, 6.9, 6.11, 6.12, 6T, 6I, MXD 6 (Meta-xylene dipanamide 6), 6 / 6.6, 6/12, 6/6 T, 6/6 I, 6 / MXD6, etc. can be used. The above-described polyamide resins can be used alone or in combination of two or more.
 基材フィルムとしては、機械強度、透明性など所望の目的や用途に応じて任意の膜厚のものを使用することができ、その膜厚は特に限定されないが、通常は5~100μmであることが推奨され、包装材料として用いる場合は8~60μmであることが望ましい。基材フィルムの透明度は、特に限定されるものではないが、透明性が求められる包装材料として使用する場合には、50%以上の光線透過率をもつものが望ましい。 As the substrate film, any film thickness can be used depending on the desired purpose and application such as mechanical strength and transparency, and the film thickness is not particularly limited, but usually 5 to 100 μm. Is recommended, and when used as a packaging material, 8 to 60 μm is desirable. The transparency of the substrate film is not particularly limited, but when it is used as a packaging material for which transparency is required, one having a light transmittance of 50% or more is desirable.
 ポリアミド基材フィルムは、機械的強度を付与する観点より、縦方向あるいは横方向の少なくとも1方向に延伸された延伸フィルムであることが好ましく、縦方向および横方向の2方向に延伸された2軸延伸フィルムであることがより好ましい。2軸延伸フィルムの延伸方式は、同時2軸延伸や逐次2軸延伸等の任意の延伸方式を採用することができる。逐次2軸延伸における延伸方法の好ましい一様態として、未延伸フィルムをロール式延伸機により70℃~90℃の温度下で縦方向に3.0倍から4.5倍の延伸倍率で縦方向に延伸し、次いでテンター式延伸機により110℃~140℃の温度下で3.5倍から5.5倍の延伸倍率で延伸し、延伸後に180℃~230℃の温度で熱処理を施す方法を挙げることができる。また、後述の被覆層を形成する工程としてインラインコート法を採用する場合には、前記の逐次2軸延伸の工程において、縦方向に延伸後のフィルムに被覆層をコートして、次いで連続的にテンター式延伸機にフィルムを導いて横方向の延伸および熱処理を施すことができる。 The polyamide substrate film is preferably a stretched film stretched in at least one direction of the longitudinal direction or the transverse direction from the viewpoint of imparting mechanical strength, and biaxially stretched in the two directions of the longitudinal direction and the transverse direction It is more preferable that it is a stretched film. As a stretching method of the biaxially stretched film, any stretching method such as simultaneous biaxial stretching or sequential biaxial stretching can be adopted. As a preferable mode of the stretching method in the sequential biaxial stretching, the unstretched film is longitudinally stretched at a stretching ratio of 3.0 times to 4.5 times in the longitudinal direction at a temperature of 70 ° C. to 90 ° C. by a roll stretching machine. It is drawn and then drawn at a draw ratio of 3.5 times to 5.5 times at a temperature of 110 ° C. to 140 ° C. by a tenter-type drawing machine, and a method of heat treatment at a temperature of 180 ° C. to 230 ° C. after drawing is mentioned be able to. When the in-line coating method is employed as a step of forming a coating layer described later, the film after being stretched in the longitudinal direction is coated with the coating layer in the step of the sequential biaxial stretching described above, and then continuously. The film can be directed to a tenter-type stretcher for lateral stretching and heat treatment.
 基材フィルムは、ポリアミド樹脂からなる単層型フィルムであってもよいし、ポリアミド樹脂層と他のプラスチックフィルム(2種以上であってもよい)が積層された積層型フィルムであってもよい。積層型フィルムとする場合の積層体の種類はポリアミド樹脂層がある限り、積層数、積層方法等は特に限定されず、目的に応じて公知の方法から任意に選択することができる。 The base film may be a single layer type film made of a polyamide resin, or may be a laminated type film in which a polyamide resin layer and another plastic film (which may be two or more types) are laminated. . As long as the polyamide resin layer is present, the number of laminations, the lamination method, etc. are not particularly limited as long as there is a polyamide resin layer, and can be arbitrarily selected from known methods according to the purpose.
 また本発明において、無機薄膜層とポリアミド基材との層間密着性を改善するために、必要に応じて、予め、所望の表面処理層を設けることができるものである。
 本発明において、上記の表面処理層としては、例えば、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、科学薬品等を用いて処理する酸化処理、その他等の前処理を任意に施し、例えば、コロナ処理層、オゾン処理層、プラズマ処理層、酸化処理層、その他等を形成して設けることができる。上記の表面前処理は、各種の樹脂フィルムと金属酸化物の蒸着膜との密接着性等を改善するための方法として実施するものであるが、上記の密接着性を改善する方法として、その他、例えば、各種の樹脂フィルムの表面に、予め、プライマーコート剤層、アンダーコート剤層、アンカーコート剤層、接着剤層、あるいは、蒸着アンカーコート剤層、その他等を任意に形成して、被覆層とすることもできる。
Further, in the present invention, in order to improve the interlayer adhesion between the inorganic thin film layer and the polyamide substrate, a desired surface treatment layer can be provided in advance, if necessary.
In the present invention, as the above-mentioned surface treatment layer, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas etc., glow discharge treatment, oxidation treatment to be treated using chemical chemicals etc., etc. Pretreatment such as, for example, can be optionally performed to form, for example, a corona treatment layer, an ozone treatment layer, a plasma treatment layer, an oxidation treatment layer, and the like. The above surface pretreatment is carried out as a method for improving the tight adhesion and the like between various resin films and a vapor deposited film of a metal oxide, but as a method for improving the tight adhesion as described above, other methods are also available. For example, a primer coating layer, an undercoat layer, an anchor coating layer, an adhesive layer, a vapor deposition anchor coating layer, etc. are optionally formed in advance on the surfaces of various resin films, and then coated. It can also be a layer.
[被覆層]
 本発明の積層フィルムは、前記ポリアミド基材フィルムの少なくとも片面に被覆層を有する。被覆層の形成による基材層と無機薄膜層との密着強度の向上には、コスト、衛生性の点からポリエステル樹脂の使用が好ましい。この様なポリエステル系樹脂は、ジカルボン酸またはトリカルボン酸とグリコール類を重縮合することによって得られる。該重縮合に用いられる成分としては、テレフタル酸、イソフタル酸、アジピン酸、トリメリット酸等の酸成分、及びエチレングリコール、ネオペンチルグリコール、ブタンジオール、エチレングリコール変性ビスフェノールA等のグリコール成分が挙げられるが、勿論これらに限られるものではない。またこのポリエステル系樹脂として、アクリル系モノマーをグラフト共重合したアクリルグラフトポリエステル樹脂を使用すること、膜の硬化が進み、凝集力を向上させることができる点で好ましい。
[Covering layer]
The laminated film of the present invention has a covering layer on at least one side of the polyamide base film. In order to improve the adhesion strength between the base material layer and the inorganic thin film layer by the formation of the covering layer, the use of a polyester resin is preferable in terms of cost and hygiene. Such polyester resins can be obtained by polycondensation of dicarboxylic acids or tricarboxylic acids with glycols. Examples of components used for the polycondensation include acid components such as terephthalic acid, isophthalic acid, adipic acid and trimellitic acid, and glycol components such as ethylene glycol, neopentyl glycol, butanediol and ethylene glycol modified bisphenol A. However, of course, it is not limited to these. Further, it is preferable to use an acrylic graft polyester resin obtained by graft copolymerization of an acrylic monomer as the polyester resin, and from the point that curing of the film proceeds and cohesion can be improved.
 本発明においては、被覆層の付着量を0.010~0.200g/mとすることが好ましい。これにより、被覆層を均一に制御することができるため、結果として無機薄膜層を緻密に堆積させることが可能になる。また、被覆層内部の凝集力が向上し、基材フィルム-被覆層-無機薄膜層の各層間の密着性も高くなるため、被覆層の耐水接着性を高めることができる。被覆層の付着量は、好ましくは0.015g/m2以上、より好ましくは0.020g/m以上、さらに好ましくは0.025g/m以上であり、好ましくは0.190g/m以下、より好ましくは0.180g/m以下、さらに好ましくは0.170g/m以下である。被覆層の付着量が0.200g/mを超えると、被覆層内部の凝集力が不充分となり、良好な密着性を発現できない場合がある。また、被覆層の均一性も低下するため、無機薄膜層に欠陥が生じて、ガスバリア性が低下するおそれがある。しかも、製造コストが高くなり経済的に不利になる。一方、被覆層の膜厚が0.010g/m未満であると、基材を十分に被覆することが出来ず、充分なガスバリア性および層間密着性が得られないおそれがある。 In the present invention, the adhesion amount of the coating layer is preferably 0.010 to 0.200 g / m 2 . As a result, the covering layer can be uniformly controlled, and as a result, the inorganic thin film layer can be densely deposited. In addition, the cohesion of the inside of the coating layer is improved, and the adhesion between the base film, the coating layer and the inorganic thin film layer is also enhanced, whereby the water-resistant adhesion of the coating layer can be enhanced. Adhesion amount of the coating layer is preferably 0.015 g / m @ 2 or more, more preferably 0.020 g / m 2 or more, more preferably 0.025 g / m 2 or more, preferably 0.190 g / m 2 or less, More preferably, it is 0.180 g / m 2 or less, more preferably 0.170 g / m 2 or less. When the adhesion amount of the coating layer exceeds 0.200 g / m 2 , the cohesion of the inside of the coating layer may be insufficient, and good adhesion may not be exhibited. In addition, since the uniformity of the coating layer is also reduced, defects may occur in the inorganic thin film layer, and the gas barrier properties may be reduced. Moreover, the manufacturing cost is high and it is economically disadvantageous. On the other hand, if the film thickness of the coating layer is less than 0.010 g / m 2 , the substrate can not be sufficiently coated, and sufficient gas barrier properties and interlayer adhesion may not be obtained.
 なお、被覆層用樹脂組成物には、必要に応じて、本発明を損なわない範囲で、静電防止剤、滑り剤、アンチブロッキング剤等の公知の無機、有機の各種添加剤を含有させてもよい。 If necessary, the resin composition for a coating layer may contain various known inorganic and organic additives such as an antistatic agent, a sliding agent, and an antiblocking agent, as long as the present invention is not impaired. It is also good.
 被覆層の形成方法は、特に限定されるものではなく、例えばコート法等従来公知の方法を採用することができる。コート法の中でも好適な方法としては、オフラインコート法、インラインコート法を挙げることができる。例えば基材フィルムを製造する工程で行うインラインコート法の場合、コート時の乾燥や熱処理の条件は、コート厚みや装置の条件にもよるが、コート後直ちに直角方向の延伸工程に送入し延伸工程の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましく、そのような場合には通常50~250℃程度の温度とすることが好ましい。 The formation method of a coating layer is not specifically limited, For example, conventionally well-known methods, such as a coating method, are employable. Among the coating methods, the off-line coating method and the in-line coating method can be mentioned as preferable methods. For example, in the case of the in-line coating method performed in the step of producing the base film, the conditions for drying and heat treatment at the time of coating depend on the thickness of the coating and the conditions of the apparatus, It is preferable to dry in the preheating zone or stretching zone of the process, and in such a case, it is preferable to set the temperature to about 50 to 250 ° C. in general.
[無機薄膜層]
 本発明の積層フィルムは、前記被覆層の上方に無機薄膜層が積層されている。無機薄膜層は無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点から、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物(複合酸化物)等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は、金属分の質量比でAlが20~70%の範囲であることが好ましい。Al濃度が20%未満であると、バリア性が低くなる場合があり、一方、70%を超えると、無機薄膜層が硬くなる傾向があり、印刷やラミネートといった二次加工の際に膜が破壊されてバリア性が低下する虞がある。さらに、高温高湿下での基材フィルムの伸縮に追随できず、膜が割れてバリア性が低下する虞もある。なお、ここでいう酸化ケイ素とはSiOやSiO2等の各種珪素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAl23等の各種アルミニウム酸化物又はそれらの混合物である。
[Inorganic thin film layer]
In the laminated film of the present invention, an inorganic thin film layer is laminated above the covering layer. The inorganic thin film layer is a thin film made of an inorganic oxide. The material for forming the inorganic thin film layer is not particularly limited as long as it can be made into a thin film, but from the viewpoint of gas barrier properties, silicon oxide (silica), aluminum oxide (alumina), a mixture of silicon oxide and aluminum oxide (complex oxide Etc. are preferably mentioned. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both the flexibility and the compactness of the thin film layer. In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% of Al by mass ratio of metal components. If the Al concentration is less than 20%, the barrier property may be lowered, while if it exceeds 70%, the inorganic thin film layer tends to be hard, and the film is broken during secondary processing such as printing and laminating. As a result, the barrier properties may be reduced. Furthermore, the film can not follow the expansion and contraction of the base film under high temperature and high humidity, and the film may be broken to lower the barrier property. Here, silicon oxide refers to various silicon oxides such as SiO and SiO 2 or a mixture thereof, and aluminum oxide refers to various aluminum oxides such as AlO and Al 2 O 3 or a mixture thereof.
 無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。 The thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. If the film thickness of the inorganic thin film layer is less than 1 nm, satisfactory gas barrier properties may not be obtained in some cases. On the other hand, even if it exceeds 100 nm and is excessively thick, the corresponding improvement effect of gas barrier properties is obtained It is rather disadvantageous in terms of bending resistance and manufacturing cost.
 無機薄膜層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法などの物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)など、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiO2とAl23の混合物、あるいはSiO2とAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却などは、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。 There is no restriction | limiting in particular as a method to form an inorganic thin film layer, For example, well-known vapor deposition, such as a physical vapor deposition method (PVD method), such as a vacuum evaporation method, sputtering method, ion plating method, or a chemical vapor deposition method (CVD method) The law may be adopted as appropriate. Hereinafter, a typical method of forming an inorganic thin film layer will be described by taking a silicon oxide / aluminum oxide based thin film as an example. For example, when using a vacuum evaporation method, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as an evaporation raw material. Usually, particles are used as the vapor deposition raw material. At this time, the size of each particle is preferably such that the pressure at the time of vapor deposition does not change, and the preferred particle diameter is 1 mm to 5 mm. For heating, a method such as resistance heating, high frequency induction heating, electron beam heating, or laser heating can be adopted. In addition, reactive vapor deposition using means such as introduction of oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor or the like as a reaction gas, or addition of ozone or ion assist may be employed. Furthermore, film forming conditions can be arbitrarily changed, such as applying a bias to the deposition target (laminated film to be deposited) or heating or cooling the deposition target. Such vapor deposition material, reaction gas, bias of the deposition target, heating / cooling, and the like can be similarly changed also in the case of employing a sputtering method or a CVD method.
[保護層]
 本発明の積層フィルムは、前記無機薄膜層の上に保護層を有する。プラスチックフィルム上に積層した無機薄膜層は完全に密な膜ではなく、微小な欠損部分が点在している。無機薄膜層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、無機薄膜層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
[Protective layer]
The laminated film of the present invention has a protective layer on the inorganic thin film layer. The inorganic thin film layer laminated on the plastic film is not a completely dense film, but small defects are scattered. By coating a specific protective layer resin composition to be described later on the inorganic thin film layer to form a protective layer, the resin in the protective layer resin composition penetrates into the defect portion of the inorganic thin film layer, and as a result, The effect of stabilizing the gas barrier properties can be obtained. In addition, the gas barrier performance of the laminated film is also greatly improved by using a material having gas barrier properties for the protective layer itself.
 本発明では、積層フィルムの保護層の表面硬度が220~310N/mmであることが好ましい。これにより、密着力の発現に必要な硬さを有し、かつ高温高湿環境下でポリアミド基材フィルムが伸縮した際もその性能を維持することが可能となる。表面硬度は、好ましくは225N/mm以上、より好ましくは230N/mm以上、さらに好ましくは235N/mm以上であり、好ましくは305N/mm以下、より好ましくは300N/mm以下、さらに好ましくは295N/mm以下である。積層フィルムの表面硬度が310N/mmを超えると、表面が硬くなりすぎ印刷やラミネート時の接着剤が浸透せず、密着が低下する。また、基材フィルムの伸縮に追随できず、高温高湿下での密着低下のおそれがある。一方、表面硬度が220N/mm未満であると、保護層の凝集力が弱く、無機薄膜層の保護および欠損部の補完が不十分となり、バリア性能が低下する虞がある。さらにはインキ中の顔料が埋没してインキ転移性(印刷外観)が悪化するおそれがある。保護層を前記の表面硬度の範囲とするには、後述のウレタン樹脂および、必要に応じて架橋剤等を配合して後述の保護層の形成方法により所定範囲内の付着量とすることが好ましい。 In the present invention, the surface hardness of the protective layer of the laminated film is preferably 220 to 310 N / mm 2 . This makes it possible to have the hardness necessary for the development of adhesion and to maintain the performance even when the polyamide base film is expanded and contracted in a high temperature and high humidity environment. Surface hardness, preferably 225N / mm 2 or more, more preferably 230N / mm 2 or more, more preferably 235N / mm 2 or more, preferably 305N / mm 2 or less, more preferably 300N / mm 2 or less, further Preferably it is 295 N / mm < 2 > or less. When the surface hardness of the laminated film exceeds 310 N / mm 2 , the surface becomes too hard, so that the adhesive does not penetrate during printing or laminating, and the adhesion is reduced. Moreover, it can not follow expansion and contraction of a base film, and there exists a possibility that the adhesion fall under high temperature and high humidity may fall. On the other hand, if the surface hardness is less than 220 N / mm 2 , the cohesion of the protective layer is weak, the protection of the inorganic thin film layer and the complementation of the defective portion become insufficient, and the barrier performance may be deteriorated. Furthermore, the pigment in the ink may be buried to deteriorate the ink transferability (printing appearance). In order to bring the protective layer into the above range of surface hardness, it is preferable to blend the urethane resin described later and, if necessary, a crosslinking agent, etc., and make the adhesion amount within the predetermined range by the method of forming the protective layer described later. .
 本発明においては、保護層の付着量を0.10~0.60g/mとすることが好ましい。これにより、塗工において保護層を均一に制御することができるため、結果としてコートムラや欠陥の少ない膜となる。また保護層自体の凝集力が向上し、無機薄膜層-保護層間の密着性も強固になる。保護層の付着量は、好ましくは0.13g/m以上、より好ましくは0.16g/m以上、さらに好ましくは0.19g/m以上であり、好ましくは0.57g/m以下、より好ましくは0.54g/m以下、さらに好ましくは0.51g/m以下である。保護層の付着量が0.600g/mを超えると、ガスバリア性は向上するが、保護層内部の凝集力が不充分となり、また保護層の均一性も低下するため、コート外観にムラや欠陥が生じたり、ガスバリア性・接着性を充分に発現できない場合がある。一方、保護層の膜厚が0.10g/m未満であると、充分なガスバリア性および層間密着性が得られないおそれがある。 In the present invention, the adhesion amount of the protective layer is preferably 0.10 to 0.60 g / m 2 . Thereby, since a protective layer can be uniformly controlled in coating, it becomes a film with few coat nonuniformity and defects as a result. In addition, the cohesion of the protective layer itself is improved, and the adhesion between the inorganic thin film layer and the protective layer is also strengthened. Deposition amount of the protective layer is preferably from 0.13 g / m 2 or more, more preferably 0.16 g / m 2 or more, further preferably 0.19 g / m 2 or more, preferably 0.57 g / m 2 or less , more preferably 0.54 g / m 2, more preferably not more than 0.51 g / m 2. If the adhesion amount of the protective layer exceeds 0.600 g / m 2 , the gas barrier properties will be improved, but the cohesion of the inside of the protective layer will be insufficient, and the uniformity of the protective layer will also be reduced. In some cases, defects may occur, or gas barrier properties and adhesion may not be sufficiently exhibited. On the other hand, if the film thickness of the protective layer is less than 0.10 g / m 2 , sufficient gas barrier properties and interlayer adhesion may not be obtained.
 本発明の積層フィルムは、保護層にメタキシリレン基を有するウレタン樹脂を含有する。ウレタン樹脂は、極性を有するウレタン結合部分が存在することで、無機薄膜層との密着が良好であり、欠損部分に樹脂が浸透しやすい。また、ウレタン結合同士の水素結合による凝集力が高い結晶部が存在するため、安定したガスバリア性能が得られる。さらに、柔軟性の高い非晶部も同時に存在するため、非晶部と結晶部の比率を制御することで、表面硬さを前記所定範囲内とすることができる。ウレタン樹脂としては、極性が高く無機薄膜層に対する濡れ性が良好である水分散系のものが好ましい。また、樹脂の硬化型としては、熱硬化樹脂が、生産安定性の観点から望ましい。 The laminated film of the present invention contains a urethane resin having a metaxylylene group in the protective layer. The urethane resin has good adhesion to the inorganic thin film layer due to the presence of the urethane bond portion having polarity, and the resin easily penetrates into the defect portion. In addition, since there is a crystal part having high cohesion due to hydrogen bond between urethane bonds, stable gas barrier performance can be obtained. Furthermore, since a highly flexible amorphous portion is also present at the same time, the surface hardness can be made within the predetermined range by controlling the ratio of the amorphous portion to the crystalline portion. The urethane resin is preferably an aqueous dispersion having high polarity and good wettability to the inorganic thin film layer. Moreover, as a hardening type of resin, a thermosetting resin is desirable from a viewpoint of production stability.
(ウレタン樹脂(A))
 ウレタン樹脂(A)は、下記ポリイソシアネート成分(B)に下記ポリオール成分(C)を、通常の方法により反応させることにより得られる。さらに、ジオール化合物(例えば1,6-ヘキサンジオール等)やジアミン化合物(例えばヘキサメチレンジアミン等)等の2個以上の活性水素を有する低分子化合物を鎖延長剤として反応させることにより鎖延長することも可能である。
(Urethane resin (A))
The urethane resin (A) is obtained by reacting the following polyisocyanate component (B) with the following polyol component (C) by a usual method. Furthermore, the chain is extended by reacting a low molecular weight compound having two or more active hydrogens such as a diol compound (for example, 1,6-hexanediol etc.) or a diamine compound (for example hexamethylene diamine etc.) as a chain extender. Is also possible.
(B)ポリイソシアネート成分
 ウレタン樹脂(A)の合成に用いることのできるポリイソシアネート成分(B)としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が含まれる。ポリイソシアネート化合物としては、通常、ジイソシアネート化合物が使用される。
(B) Polyisocyanate Component The polyisocyanate component (B) which can be used for the synthesis of the urethane resin (A) includes aromatic polyisocyanate, alicyclic polyisocyanate, aliphatic polyisocyanate and the like. As a polyisocyanate compound, a diisocyanate compound is usually used.
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4'-ジフェニルシイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4'-、2,4'-、または2,2'-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4'-トルイジンジイソシアネート(TODI)、4,4'-ジフェニルエーテルシイソシアネート等が例示できる。芳香脂肪族ジイソシアネートとしては、例えば、キシリレンジイソシアネート(1,3-または1,4-キシリレンジイソシアネートもしくはその混合物)(XDI)、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω'-ジイソシアネート-1,4-ジエチルベンゼン等が例示できる。 Examples of aromatic diisocyanates include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4 '-Diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or mixtures thereof) (MDI) And 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenylether diisocyanate and the like. As the aromatic aliphatic diisocyanate, for example, xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethylene) Examples include xylylene diisocyanate or a mixture thereof) (TMXDI), ω, ω′-diisocyanate-1,4-diethylbenzene and the like.
 脂環族ジイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロジイソシアネート、IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4'-、2,4'-または2,2’-メチレンビス(シクロヘキシルイソシアネート))(水添MDI)、メチルシクロヘキサンジイソシアネート(メチルー2,4-シクロヘキサンジイソシアネート、メチルー2,6-シクロヘキサンジイソシアネート)、ビス(イソシアネートメチル)シクロヘキサン(1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサンもしくはその混合物)(水添XDI)等を挙げることができる。 Examples of alicyclic diisocyanates include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (iso Holodiisocyanate, IPDI), methylenebis (cyclohexylisocyanate) (4,4'-, 2,4'- or 2,2'-methylenebis (cyclohexylisocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2,4-) Cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate), bis (isocyanatomethyl) cyclohexane (1,3- or 1,4-bis (i) Cyanate methyl) cyclohexane or a mixture thereof) (it may be mentioned hydrogenated XDI) and the like.
 脂肪族ジイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート、ペンダメチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカフェート等を挙げることができる Examples of aliphatic diisocyanates include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene Diisocyanate, pendamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methyl carbonate etc. can be mentioned.
(C)ポリオール成分
 ポリオール成分(特にジオール成分)としては、低分子量のグリコールからオリゴマーまで用いることはできるが、ガスバリア性の観点から、通常、アルキレングリコール(例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ヘプタンジオール、オクタンジオール等の直鎖状または分岐鎖状C2-10アルキレングリコール)、(ポリ)オキシC2-4アルキレングリコール(ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等)等の低分子量グリコールが使用される。好ましいグリコール成分は、C2-8ポリオール成分[例えば、C2-6アルキレングリコール(特に、エチレングリコール、1,2-または1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール)等]、ジまたはトリオキシC2-3アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等)であり、特に好ましいジオール成分はC2-8アルキレングリコール(特にC2-6アルキレングリコール)である。
(C) Polyol component As the polyol component (especially diol component), although low molecular weight glycol to oligomer can be used, from the viewpoint of gas barrier property, usually alkylene glycol (for example, ethylene glycol, propylene glycol, trimethylene glycol , Linear or branched C2-10 alkylene glycols such as 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentyl glycol, heptanediol, octanediol, etc., (poly) oxy Low molecular weight glycols such as C2-4 alkylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol etc) are used. The preferred glycol component is a C2-8 polyol component [eg, C2-6 alkylene glycol (especially ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol) and the like], di- or trioxy C2-3 alkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol etc.), particularly preferred diol component is C2-8 alkylene glycol (especially C2) -6 alkylene glycol).
 これらのジオール成分は単独でまたは2種以上組み合わせて使用できる。さらに必要に応じて、芳香族ジオール(例えば、ビスフェノールA、ビスヒドロキシェチルテレフタレート、カテコール、レゾルシン、ハイドロキノン、1,3-または1,4-キシリレンジオールもしくはその混合物等)、脂環族ジオール(例えば、水添ビスフェノールA、キシリレンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール等)等の低分子量ジオール成分を併用してもよい。さらに、必要により、3官能以上のポリオール成分、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン等のポリオール成分を併用することもできる。ポリオール成分は、少なくともC2-8ポリオール成分(特に、C2-6アルキレングリコール)を含むのが好ましい。ポリオール成分100質量%中のC2-8ポリオール成分(特に、C2-6アルキレングリコール)の割合は、50~100質量%程度の範囲から選択でき、通常、70質量%以上100質量%以下が好ましく、より好ましくは80質量%以上100質量%以下、さらに好ましくは90質量%以上100質量%以下である。 These diol components can be used alone or in combination of two or more. Furthermore, if necessary, aromatic diols (eg, bisphenol A, bishydroxyl terephthalate, catechol, resorcinol, hydroquinone, 1,3- or 1,4-xylylene diol or mixtures thereof, etc.), alicyclic diols (eg, For example, low molecular weight diol components such as hydrogenated bisphenol A, xylylene diol, cyclohexanediol, cyclohexanedimethanol and the like may be used in combination. Furthermore, if necessary, a polyol component having three or more functions, for example, a polyol component such as glycerin, trimethylolethane, trimethylolpropane and the like can be used in combination. The polyol component preferably comprises at least a C2-8 polyol component, in particular a C2-6 alkylene glycol. The proportion of C2-8 polyol component (in particular, C2-6 alkylene glycol) in 100 mass% of the polyol component can be selected from the range of about 50 to 100 mass%, and usually 70 mass% to 100 mass% is preferable, More preferably, it is 80 mass% or more and 100 mass% or less, still more preferably 90 mass% or more and 100 mass% or less.
 本発明においては、ウレタン結合由来の結晶部形成によるガスバリア性向上の面から、芳香族または芳香脂肪族ジイソシアネート成分を主な構成成分として含有するウレタン樹脂を用いることがより好ましい。その中でも、メタキシリレンジイソシアネート成分を含有することが特に好ましい。上記樹脂を用いることで、芳香環同士のスタッキング効果によりウレタン結合の凝集力を一層高めることができ、結果として良好なガスバリア性が得られる。ウレタン樹脂中のメタキシリレンジイソシアネートの割合を、ポリイソシアネート成分(E)100モル%中、30モル%以上(30~100モル%)の範囲とすることが好ましい。芳香族または芳香脂肪族ジイソシアネートの合計量の割合は、40~100モル%が好ましく、より好ましくは50~100モル%、さらに好ましくは60~100モル%である。このような樹脂として、三井化学社から市販されている「タケラック(登録商標)」シリーズは好適に用いることが出来る。メタキシリレンジイソシアネートの合計量の割合が30モル%未満であると、良好なガスバリア性が得られない可能性がある。 In the present invention, it is more preferable to use a urethane resin containing an aromatic or araliphatic diisocyanate component as a main component from the viewpoint of gas barrier property improvement by formation of a crystal part derived from a urethane bond. Among these, it is particularly preferable to contain a metaxylylene diisocyanate component. By using the above-mentioned resin, the cohesive force of the urethane bond can be further enhanced by the stacking effect between the aromatic rings, and as a result, good gas barrier properties can be obtained. The proportion of metaxylylene diisocyanate in the urethane resin is preferably in the range of 30 mol% or more (30 to 100 mol%) in 100 mol% of the polyisocyanate component (E). The proportion of the total amount of aromatic or araliphatic diisocyanates is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, and still more preferably 60 to 100 mol%. As such a resin, "Takelac (registered trademark)" series commercially available from Mitsui Chemicals, Inc. can be suitably used. If the proportion of the total amount of metaxylylene diisocyanate is less than 30 mol%, good gas barrier properties may not be obtained.
 前記ウレタン樹脂は、無機薄膜層との親和性向上の観点から、カルボン酸基(カルボキシル基)を有することが好ましい。ウレタン樹脂にカルボン酸(塩)基を導入するためには、例えば、ポリオール成分として、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボン酸基を有するポリオール化合物を共重合成分として導入すればよい。また、カルボン酸基含有ウレタン樹脂を合成後、塩形成剤により中和すれば、水分散体のウレタン樹脂を得ることができる。塩形成剤の具体例としては、アンモニア、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン等のトリアルキルアミン類、N-メチルモルホリン、N-エチルモルホリン等のN-アルキルモルホリン類、N-ジメチルエタノールアミン、N-ジエチルエタノールアミン等のN-ジアルキルアルカノールアミン類等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。 It is preferable that the said urethane resin has a carboxylic acid group (carboxyl group) from a viewpoint of affinity improvement with an inorganic thin film layer. In order to introduce a carboxylic acid (salt) group into a urethane resin, for example, a polyol compound having a carboxylic acid group such as dimethylol propionic acid or dimethylol butanoic acid may be introduced as a copolymerization component as a polyol component. Moreover, after synthesize | combining a carboxylic acid group containing urethane resin, if it neutralizes with a salt formation agent, the urethane resin of a water dispersion can be obtained. Specific examples of the salt forming agent include ammonia, trimethylamine, triethylamine, triisopropylamine, tri-n-propylamine, trialkylamines such as tri-n-butylamine, N-methylmorpholine, N-ethylmorpholine, etc. And N-dialkylalkanolamines such as -alkyl morpholines, N-dimethyl ethanolamine, N-diethyl ethanolamine and the like. These may be used alone or in combination of two or more.
(ウレタン樹脂の特性)
 ウレタン樹脂の酸価は10~60mgKOH/gの範囲内であるのが好ましい。より好ましくは15~55mgKOH/gの範囲内、さらに好ましくは20~50mgKOH/gの範囲内である。ウレタン樹脂の酸価が前記範囲であると、水分散液とした際に液安定性が向上し、また保護層は高極性の無機薄膜層上に均一に堆積することができるため、コート外観が良好となる。
(Characteristics of urethane resin)
The acid value of the urethane resin is preferably in the range of 10 to 60 mg KOH / g. More preferably, it is in the range of 15 to 55 mg KOH / g, further preferably in the range of 20 to 50 mg KOH / g. When the acid value of the urethane resin is in the above range, the liquid stability is improved when the aqueous dispersion is prepared, and the protective layer can be uniformly deposited on the highly polar inorganic thin film layer, so the coat appearance is It becomes good.
 本発明のウレタン樹脂は、凝集力によるバリア性向上の観点から、ガラス転移温度(Tg)が100℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上である。ただし、密着力を発現させる表面硬さとするために、柔軟性に優れるTg100℃以下の柔軟樹脂を混合して用いてもよい。その場合、前記柔軟樹脂の添加比率は0~80%の範囲内であるのが好ましい。より好ましくは10~70%の範囲内、さらに好ましくは20~60%の範囲内である。添加比率が上記範囲内であると、凝集力と柔軟性を両立させることができ、バリア性と密着性が良好となる。なお、添加比率が80%を超えると、膜が柔らかくなりすぎ、バリア性能の低下を招くがある。 The urethane resin of the present invention preferably has a glass transition temperature (Tg) of 100 ° C. or more, more preferably 110 ° C. or more, and still more preferably 120 ° C. or more, from the viewpoint of barrier property improvement due to cohesion. However, a soft resin having a Tg of 100 ° C. or less, which is excellent in flexibility, may be mixed and used in order to obtain a surface hardness that develops adhesion. In that case, the addition ratio of the soft resin is preferably in the range of 0 to 80%. More preferably, it is in the range of 10 to 70%, further preferably in the range of 20 to 60%. Cohesive force and flexibility can be made to be compatible as an addition ratio is in the said range, and barrier property and adhesiveness become favorable. If the addition ratio exceeds 80%, the film becomes too soft and the barrier performance may be lowered.
本発明のウレタン樹脂には、膜の凝集力向上および耐水接着性を向上させる目的で、ガスバリア性を損なわない範囲で、各種の架橋剤を配合してもよい。架橋剤としては、例えば、ケイ素系架橋剤、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物等が例示できる。その中でも、無機薄膜層との耐水接着性の向上の観点から、ケイ素系架橋剤が特に好ましい。 In the urethane resin of the present invention, various crosslinking agents may be blended in the range not to impair the gas barrier properties for the purpose of improving the cohesion of the film and the water-resistant adhesiveness. As a crosslinking agent, a silicon type crosslinking agent, an oxazoline compound, a carbodiimide compound, an epoxy compound etc. can be illustrated, for example. Among them, silicon-based crosslinking agents are particularly preferable from the viewpoint of the improvement of water-resistant adhesion to the inorganic thin film layer.
 ケイ素系架橋剤としては、無機物と有機物との架橋という観点から、シランカップリング剤が好ましい。シランカップリング剤としては、加水分解性アルコキシシラン化合物、例えば、ハロゲン含有アルコキシシラン(2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロC2-4アルキルトリC1-4アルコキシシランなど)、エポキシ基を有するアルコキシシラン[2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン等のグリシジルオキシC2-4アルキルトリC1-4アルコキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン等のグリシジルオキシジC2-4アルキルジC1-4アルコキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン等の(エポキシシクロアルキル)C2-4アルキルトリC1-4アルコキシシラン等]、アミノ基を有するアルコキシシラン[2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノC2-4アルキルトリC1-4アルコキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等のアミノジC2-4アルキルジC1-4アルコシシラン、2-[N-(2-アミノエチル)アミノ]エチルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリエトキシシラン等の(2-アミノC2-4アルキル)アミノC2-4アルキルトリC1-4アルコキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジエトキシシラン等の(アミノC2-4アルキル)アミノジC2-4アルキルジC1-4アルコキシシラン等]、メルカプト基を有するアルコキシシラン(2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトC2-4アルキルトリC1-4アルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のメルカプトジC2-4アルキルジC1-4アルコキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリC1-4アルコキシシラン等)、エチレン性不飽和結合基を有するアルコキシシラン[2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシC2-4アルキルトリC1-4アルコキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロキシジC2-4アルキルジC1-4アルコキシシラン等)等が例示できる。これらのシランカップリング剤は、単独で又は二種以上組み合わせて使用できる。これらのシランカップリング剤のうち、アミノ基を有するシランカップリング剤が好ましい。 As the silicon-based crosslinking agent, a silane coupling agent is preferable from the viewpoint of crosslinking of an inorganic substance and an organic substance. As a silane coupling agent, a hydrolyzable alkoxysilane compound, for example, a halogen-containing alkoxysilane (2-chloroethyltrimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrimethylsilane) Chloro C 2-4 alkyl tri C 1-4 alkoxysilane such as ethoxysilane), alkoxysilane having an epoxy group [2-glycidyl oxyethyl trimethoxysilane, 2-glycidyl oxyethyl triethoxysilane, 3-glycidyloxy propyl trimethoxy Glycidyl oxy C2-4 alkyl tri C 1-4 alkoxy silane such as silane, 3-glycidyloxy propyl triethoxysilane, 3-glycidyloxy propyl methyl dimethoxysilane, 3-glycidyloxy propyl methyl Glycidyl oxy di C 2-4 alkyl di C 1-4 alkoxy silane such as diethoxy silane, 2- (3,4- epoxy cyclohexyl) ethyl trimethoxy silane, 2- (3,4- epoxy cyclohexyl) ethyl triethoxy silane, 3- (Epoxycycloalkyl) C2-4 alkyltri C1-4 alkoxysilane such as (3,4-epoxycyclohexyl) propyltrimethoxysilane], alkoxysilane having an amino group [2-aminoethyltrimethoxysilane, 3-amino] Amino C 2-4 alkyl tri C 1-4 alkoxysilane such as propyltrimethoxysilane, 3-aminopropyl triethoxysilane, etc. Amino di C 2-4 alkyl di C 1 such as 3-aminopropylmethyl dimethoxysilane, 3-aminopropylmethyl diethoxysilane -4 alkoxy silane, 2- [ -(2-Aminoethyl) amino] ethyltrimethoxysilane, 3- [N- (2-aminoethyl) amino] propyltrimethoxysilane, 3- [N- (2-aminoethyl) amino] propyltriethoxysilane, etc. (2-Amino C2-4 alkyl) amino C2-4 alkyltri C1-4 alkoxysilane, 3- [N- (2-aminoethyl) amino] propylmethyldimethoxysilane, 3- [N- (2-aminoethyl) ) Amino] propylmethyldiethoxysilane, etc. (Amino C2-4 alkyl) aminodi C2-4 alkyldi C1-4 alkoxysilane, etc.], Alkoxysilanes having a mercapto group (2-mercaptoethyltrimethoxysilane, 3-mercaptopropyltrityl) Mercapto C2-4 alkyl tri C 1-4 such as methoxysilane, 3-mercaptopropyl triethoxysilane Alkoxysilane, 3-mercaptopropylmethyldimethoxysilane, mercaptodiC2-4alkyldiC1-4alkoxysilane such as 3-mercaptopropylmethyldiethoxysilane, etc., alkoxysilane having vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane) Etc.), alkoxysilanes having an ethylenically unsaturated bond group [2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltriethoxysilane, 3- (meth) 3) (Meth) acryloxy C2-4 alkyltri C1-4 alkoxysilane such as acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, 3- (Meta Acryloxy propyl and methyl diethoxy silane (meth) Akurirokishiji C2-4 alkyl di C1-4 alkoxy silane) or the like. These silane coupling agents can be used alone or in combination of two or more. Among these silane coupling agents, silane coupling agents having an amino group are preferred.
 シランカップリング剤は保護層中に、0.25~3.00質量%添加することが好ましく、より好ましくは0.5~2.75質量%、さらに好ましくは0.75~2.50質量%である。添加量が3.00質量%を超えると、膜の硬化が進み凝集力が向上するが、一部未反応部分も生じ、層間の接着性は低下するおそれがある。一方、添加量が0.25質量%未満であると、十分な凝集力が得られないおそれがある。 The silane coupling agent is preferably added in an amount of 0.25 to 3.00% by mass, more preferably 0.5 to 2.75% by mass, and still more preferably 0.75 to 2.50% by mass in the protective layer. It is. When the addition amount exceeds 3.00% by mass, curing of the film proceeds and cohesion is improved, but a partially unreacted portion is also generated, and the adhesion between layers may be reduced. On the other hand, when the addition amount is less than 0.25% by mass, sufficient cohesion may not be obtained.
 保護層用樹脂組成物により保護層を形成する場合、前記ポリウレタン樹脂及びイオン交換水、水溶性有機溶剤からなる塗工液(塗布液)を用意し、基材フィルムに塗布、乾燥すればよい。水溶性有機溶剤としては、エタノール、イソプロピルアルコール(IPA)などのアルコール類、アセトン、メチルエチルケトンなどのケトン類等から選択される単独または混合溶剤を使用することができ、塗膜加工および臭気の観点からはIPAが好ましい。 When forming a protective layer with the resin composition for protective layers, the coating liquid (coating liquid) which consists of said polyurethane resin, ion-exchange water, and a water-soluble organic solvent may be prepared, and it may apply and dry on a substrate film. As the water-soluble organic solvent, single or mixed solvents selected from alcohols such as ethanol and isopropyl alcohol (IPA), ketones such as acetone and methyl ethyl ketone can be used, and from the viewpoint of coating film processing and odor Is preferably IPA.
 保護層用樹脂組成物の塗工方式は、フィルム表面に塗工して層を形成させる方法であれば特に限定されるものではない。例えば、グラビアコーティング、リバースロールコーティング、ワイヤーバーコーティング、ダイコーティング等の通常のコーティング方法を採用することができる。 The coating method of the resin composition for protective layers is not particularly limited as long as it is a method of coating on the film surface to form a layer. For example, usual coating methods such as gravure coating, reverse roll coating, wire bar coating, die coating and the like can be employed.
 保護層を形成する際には、保護層用樹脂組成物を塗布した後、加熱乾燥することが好ましく、その際の乾燥温度は110~190℃が好ましく、より好ましくは130~190℃、さらに好ましくは150~190℃である。乾燥温度が110℃未満であると、保護層に乾燥不足が生じたり、保護層の造膜が進行せず凝集力および耐水接着性が低下し、結果として手切れ性が低下するおそれがある。一方、乾燥温度が190℃を超えると、フィルムに熱がかかりすぎてしまいフィルムが脆くなったり、収縮して加工性が悪くなったりする虞がある。特に、150℃以上好ましくは160℃以上で乾燥することにより、保護層の造膜が効果的に進行し、保護層の樹脂と無機薄膜層における接着面積がより大きくなるために耐水接着性を向上することができる。また、乾燥とは別に、追加の熱処理(例えば、150~190℃)を加えることも、保護層の造膜を進行させるうえで、さらに効果的である。 When forming the protective layer, it is preferable to heat and dry after applying the resin composition for the protective layer, and the drying temperature at that time is preferably 110 to 190 ° C., more preferably 130 to 190 ° C., further preferably Is 150-190 ° C. If the drying temperature is less than 110 ° C., insufficient drying may occur in the protective layer, or the film formation of the protective layer may not proceed, and the cohesion and water-resistant adhesion may be reduced, resulting in a decrease in hand cutability. On the other hand, if the drying temperature exceeds 190 ° C., heat may be applied to the film to make the film brittle or shrink and the processability may be deteriorated. In particular, by drying at 150 ° C. or higher, preferably 160 ° C. or higher, the film formation of the protective layer effectively proceeds, and the adhesion area between the resin of the protective layer and the inorganic thin film layer becomes larger, thereby improving water-resistant adhesion. can do. In addition to the drying, additional heat treatment (for example, 150 to 190 ° C.) may be more effective in promoting the film formation of the protective layer.
[ヒートシール性樹脂層との積層]
 本発明の積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール性樹脂層を含むことが必要となる。ヒートシール性樹脂層は通常、無機薄膜層側すなわち保護層面に設けられるが、基材フィルムの外側(被覆層形成面の反対側の面)に設けることもある。ヒートシール性樹脂層の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が十分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。ヒートシール性樹脂層の厚みは、好ましくは20μm以上、より好ましくは25μm以上、さらに好ましくは30μm以上であり、好ましくは80μm以下、より好ましくは75μm以下、さらに好ましくは70μm以下である。厚みが20μm以下であると、生産性が悪くなる。一方、80μm以上であると、コストアップになり、また透明性も悪くなる。
[Lamination with heat sealable resin layer]
When the laminated film of the present invention is used as a packaging material, it is necessary to include a heat sealable resin layer called a sealant. The heat-sealable resin layer is usually provided on the inorganic thin film side, ie, the protective layer side, but may be provided on the outer side of the substrate film (the side opposite to the surface on which the cover layer is formed). The formation of the heat sealable resin layer is usually carried out by an extrusion laminating method or a dry laminating method. The thermoplastic polymer forming the heat-sealable resin layer may be any one that can exhibit sufficient sealant adhesiveness, polyethylene resins such as HDPE, LDPE, LLDPE, polypropylene resin, ethylene-vinyl acetate copolymer Ethylene-α-olefin random copolymer, ionomer resin, etc. can be used. The thickness of the heat sealable resin layer is preferably 20 μm or more, more preferably 25 μm or more, still more preferably 30 μm or more, preferably 80 μm or less, more preferably 75 μm or less, still more preferably 70 μm or less. Productivity falls that thickness is 20 micrometers or less. On the other hand, if it is 80 μm or more, the cost increases and the transparency also deteriorates.
[その他の層]
 本発明の積層フィルムには、無機薄膜層または基材フィルムとヒートシール性樹脂層との間またはその外側に、印刷層や他のプラスチック基材および/または紙基材を少なくとも1層以上積層していてもよい。
[Other layer]
In the laminated film of the present invention, at least one or more layers of a printing layer or another plastic substrate and / or a paper substrate are laminated between or outside the inorganic thin film layer or substrate film and the heat sealable resin layer. It may be
 印刷層を形成する印刷インキとしては、水性および溶媒系の樹脂含有印刷インキが好ましく使用できる。ここで印刷インキに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インキには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤などの公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法などの公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥など公知の乾燥方法が使用できる。 As a printing ink which forms a printing layer, resin-containing printing ink of water-based and solvent system can be used preferably. Here, as a resin used for printing ink, acrylic resin, urethane resin, polyester resin, vinyl chloride resin, vinyl acetate copolymer resin, and a mixture thereof are exemplified. For printing inks, known are antistatic agents, light blocking agents, ultraviolet light absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, crosslinking agents, blocking agents, antioxidants, etc. Additives may be included. It does not specifically limit as a printing method for providing a printing layer, Well-known printing methods, such as an offset printing method, a gravure printing method, the screen-printing method, can be used. For drying of the solvent after printing, known drying methods such as hot air drying, hot roll drying, infrared drying and the like can be used.
 他方、他のプラスチック基材や紙基材としては、充分な積層体の剛性および強度を得る観点から、紙、ポリエステル樹脂および生分解性樹脂等が好ましく用いられる。また、機械的強度の優れたフィルムとする上では、二軸延伸ポリエステルフィルムなどの延伸フィルムが好ましい。 On the other hand, from the viewpoint of obtaining sufficient rigidity and strength of the laminate, paper, polyester resin, biodegradable resin and the like are preferably used as other plastic substrates and paper substrates. Moreover, in order to set it as the film excellent in mechanical strength, stretched films, such as a biaxially stretched polyester film, are preferable.
 本発明の積層フィルムは高温高湿環境保管後の酸素透過度が7ml/m・d・MPa以下であることが好ましく、該範囲内とすることにより良好なガスバリア性を発現する。さらに、前述の保護層成分・付着量を制御することで、好ましくは6ml/m・d・MPa以下、より好ましくは5ml/m・d・MPa以下とすることができる。酸素透過度が7ml/m・d・MPa以上であると、高いガスバリア性が要求される用途に対応することが難しくなる。 The laminated film of the present invention preferably has an oxygen permeability of 7 ml / m 2 · d · MPa or less after storage under a high temperature and high humidity environment, and exhibits good gas barrier properties by being in this range. Furthermore, by controlling the above-mentioned protective layer component and adhesion amount, it is preferably 6 ml / m 2 · d · MPa or less, more preferably 5 ml / m 2 · d · MPa or less. If the oxygen permeability is 7 ml / m 2 · d · MPa or more, it will be difficult to cope with applications requiring high gas barrier properties.
 本発明の積層フィルムは、高温高湿環境保管後の水付けラミネート強度が1.5N/15mm以上であることが好ましく、より好ましくは2.0N/15mm以上、さらに好ましくは2.5N/15mm以上である。ラミネート強度が1.5N/15mm以下であると、屈曲負荷や液体の内容物によって剥離が生じ、バリア性が劣化したり、内容物が漏れ出たりするおそれがある。さらに、手切れ性が悪化するおそれもある。 The laminated film of the present invention preferably has a wet lamination strength of 1.5 N / 15 mm or more after storage under high temperature and high humidity environment, more preferably 2.0 N / 15 mm or more, still more preferably 2.5 N / 15 mm or more It is. If the laminate strength is 1.5 N / 15 mm or less, peeling may occur due to bending load or the contents of the liquid, and the barrier properties may be degraded or the contents may leak out. Furthermore, there is also a possibility that the hand cuttability may deteriorate.
 次に、実施例および比較例を用いて本発明を詳細に説明するが、本発明は当然以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」は「質量%」を意味し、「部」は「質量部」を意味する。
 本発明で用いた評価方法は以下の通りである。
EXAMPLES The present invention will next be described in detail by way of examples and comparative examples, but the present invention is of course not limited to the following examples. In addition, unless there is particular notice, "%" means "mass%" and "part" means a "mass part."
The evaluation method used in the present invention is as follows.
(1)評価用ラミネート積層体の作製
 実施例、比較例で得られた積層フィルムの保護層面に、ポリウレタン系接着剤(東洋モートン株式会社製TM569)を80℃乾燥処理後の厚みが3μmになるよう塗布した後、直鎖状低密度ポリエチレンフィルム(東洋紡製L4102;厚み40μm;LLとする)を60℃に加熱した金属ロール上でドライラミネートし、40℃にて4日間エージングを施すことにより、評価用のラミネートガスバリア性積層体(以下「ラミネート積層体A」と称することもある)を得た。
(1) Preparation of laminated laminate for evaluation On the protective layer surface of the laminated film obtained in Examples and Comparative Examples, the thickness after drying treatment of a polyurethane adhesive (TM569 manufactured by Toyo Moreton Co., Ltd.) at 80 ° C. becomes 3 μm After coating, a low density linear polyethylene film (L4102 manufactured by Toyobo; thickness 40 μm; LL) is dry laminated on a metal roll heated to 60 ° C. and aged at 40 ° C. for 4 days, A laminated gas barrier laminate (hereinafter sometimes referred to as "laminated laminate A") for evaluation was obtained.
(2)酸素透過度の評価方法
 上記(1)で作製したラミネート積層体Aについて、JIS-K7126 B法に準じて、酸素透過度測定装置(MOCON社製「OX-TRAN(登録商標)1/50」)を用い、温度23℃、湿度65%RHの雰囲気下で、常態の酸素透過度を測定した。なお、酸素透過度の測定は、ラミネート積層体の基材フィルム側からヒートシール性樹脂層側に酸素が透過する方向で行った。
(2) Evaluation Method of Oxygen Permeability Regarding the laminate A prepared in the above (1), according to JIS-K7126 B method, an oxygen permeability measurement apparatus ("OX-TRAN (registered trademark) 1/1 manufactured by MOCON Co., Ltd.) The normal oxygen permeability was measured under an atmosphere of temperature 23.degree. C. and humidity 65% RH using the above 50 "). The oxygen permeability was measured in the direction in which oxygen permeates from the base film side of the laminate to the heat sealable resin layer side.
(3)ラミネート強度の評価方法 
 上記で作製したラミネート積層体Aを基材フィルムの幅方向(TD方向)と長さ方向(MD方向)に対してそれぞれ幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、テンシロン万能材料試験機(東洋ボールドウイン社製「テンシロンUMT-II-500型」)を用いてラミネート強度を測定した。なお、ラミネート強度の測定は、引張速度を200mm/分とし、実施例および比較例で得られた積層フィルム層とヒートシール性樹脂層との層間に水をつけて剥離角度90度で剥離させたときの強度を測定した。他方、 (1)で作製したラミネート積層体Aに対して80℃×80%RH×6hの湿熱処理を行い、直ちに、得られたレトルト処理後のラミネート積層体から上記と同様にして試験片を切り出し、上記と同様にしてラミネート強度(湿熱処理後)を測定した。
(3) Evaluation method of laminate strength
The laminate laminate A prepared above is cut into a width of 15 mm and a length of 200 mm in the width direction (TD direction) and the length direction (MD direction) of the base film to form a test piece, temperature 23 ° C., relative humidity The laminate strength was measured under a condition of 65% using a Tensilon universal material tester (“Tensilon UMT-II-500” manufactured by Toyo Boldwin Co., Ltd.). In the measurement of laminate strength, a tensile speed was 200 mm / min, water was applied between the laminated film layers obtained in the examples and comparative examples and the heat sealable resin layer, and peeling was performed at a peeling angle of 90 degrees. The strength of the time was measured. On the other hand, wet heat treatment at 80 ° C. × 80% RH × 6 h is performed on the laminate laminate A prepared in (1), and immediately after the obtained retort-treated laminate laminate in the same manner as described above The laminate was cut out and the laminate strength (after wet heat treatment) was measured in the same manner as described above.
(4) フィルムの表面硬度の測定方法
 フィルムの表面硬度の測定は、ダイナミック超微小硬度計(株式会社島津製作所製「DUH-211」)を使用して実施した。詳しくは、ガラスプレートに接着剤で固定保持した積層フィルム単体の保護層面に対して、稜間角115°ダイヤモンド三角すい圧子(バーコビッチ型)を用い、負荷除荷試験にて硬さ測定試験を行い、得られたマルテンス硬さを表面硬度の値とした。試験条件は、試験力0.1mN、負荷速度0.02mN/秒、保持時間2秒で行った。
(4) Method of Measuring Surface Hardness of Film The surface hardness of the film was measured using a dynamic ultra-microhardness tester (“DUH-211” manufactured by Shimadzu Corporation). Specifically, a hardness measurement test is carried out by a load unloading test using an interval between angles of 115 ° with a diamond triangle indenter (Berkobitch type) on the protective layer side of a single laminated film fixed and held on a glass plate with an adhesive. The obtained Martens hardness was taken as the value of surface hardness. The test conditions were a test force of 0.1 mN, a loading speed of 0.02 mN / s, and a holding time of 2 seconds.
 各実施例、比較例において被覆層、保護層の形成に用いた各材料は以下のようにして調製した。 Each material used for formation of a coating layer and a protective layer in each example and comparative example was prepared as follows.
<被覆層または保護層形成に用いた各材料の調製>
[ポリエステル樹脂(A)]
 ポリエステル樹脂として、自己架橋性無水マレイン酸をグラフト鎖として含有する水分散性アクリルグラフトポリエステル樹脂である、竹本油脂社製「AGN201」(固形分25%)を用意した。
<Preparation of each material used for coating layer or protective layer formation>
[Polyester resin (A)]
As a polyester resin, "AGN 201" (solid content 25%) manufactured by Takemoto Yushi Co., Ltd., which is a water-dispersible acrylic graft polyester resin containing self-crosslinkable maleic anhydride as a graft chain, was prepared.
[ウレタン樹脂(B)]
 ウレタン樹脂として、市販のメタキシリレン基含有ウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WPB341」;固形分30%)を用意した。このウレタン樹脂の酸価は25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は130℃であった。また、1H-NMRにより測定したポリイソシアネート成分全体に対する芳香族または芳香脂肪族ジイソシアネートの割合は、85モル%であった。
[Urethane resin (B)]
As a urethane resin, a dispersion of a commercially available metaxylylene group-containing urethane resin ("Takelac (registered trademark) WPB 341" manufactured by Mitsui Chemicals, Inc .; solid content: 30%) was prepared. The acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 130 ° C. Further, the proportion of aromatic or araliphatic diisocyanate to the entire polyisocyanate component measured by 1 H-NMR was 85 mol%.
[シランカップリング剤(C)]
 シランカップリング剤として、市販の信越化学社製「(登録商標)KBM903」;固形分100%)を用意した。
[Silane coupling agent (C)]
A commercially available Shin-Etsu Chemical "(registered trademark) KBM 903; solid content 100%) was prepared as a silane coupling agent.
[ウレタン樹脂(D)]
 ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(三井化学社製「タケラック(登録商標)WS6021」;固形分30%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は40℃であった。
[Urethane resin (D)]
As a urethane resin, commercially available dispersion of polyester urethane resin ("Takelac (registered trademark) WS6021" manufactured by Mitsui Chemicals, Inc .; solid content 30%) was prepared. The acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 40.degree.
[ウレタン樹脂(E)]
 ウレタン樹脂として、市販のポリエステルウレタン樹脂のディスパージョン(DIC社製「ハイドラン(登録商標)AP-201」;固形分23%)を用意した。このウレタン樹脂の酸価25mgKOH/gであり、DSCで測定したガラス転移温度(Tg)は10℃であった。
[Urethane resin (E)]
A commercially available polyester urethane resin dispersion ("Hydran (registered trademark) AP-201" manufactured by DIC; solid content 23%) was prepared as the urethane resin. The acid value of this urethane resin was 25 mg KOH / g, and the glass transition temperature (Tg) measured by DSC was 10 ° C.
[ガスバリア性エチレン-ビニルアルコール系樹脂組成物塗工液(F)]
 <エチレン-ビニルアルコール系共重合体溶液の調製>
 精製水20.996部とn-プロピルアルコール(NPA)51部の混合溶媒に、エチレン-ビニルアルコール共重合体(商品名:ソアノール(登録商標)V2603、日本合成化学社製、エチレン-酢酸ビニル共重合体をケン化して得られた重合体、エチレン比率26モル%、酢酸ビニル成分のケン化度約100%、以下、EVOHと略記)15部を加え、更に濃度が30%の過酸化水素水13部とFeSO4の0.004部を添加して攪拌下で80℃に加温し、約2時間反応させた。その後冷却してカタラーゼを3000ppmになるように添加し、残存過酸化水素を除去し、これにより固形分15%のほぼ透明なエチレン-ビニルアルコール共重合体溶液(EVOH溶液)を得た。
 <無機層状化合物分散液の調製>
 無機層状化合物であるモンモリロナイト(商品名:クニピア(登録商標)F、クニミネ工業社製)4部を精製水96部中に攪拌しながら添加し、高圧分散装置にて圧力50MPaの設定にて充分に分散した。その後、40℃にて1日間保温し固形分4%の無機層状化合物分散液を得た。
 <添加剤>
 塩酸化ジルコニウム(第一稀元素化学工業社製、商品名;ジルコゾール(登録商標)ZC-20、固形分20%)
 <塗工液(F)の調製>
 混合溶剤A(精製水40%とn-プロピルアルコール60%からなる溶剤)62.30部に、EVOH溶液を31.75部添加し、充分に攪拌混合した。更にこの溶液に、高速攪拌を行いながら無機層状化合物分散液5.95部を添加した。この混合液100部に対して、3部の陽イオン交換樹脂を添加しイオン交換樹脂の破砕が起きない程度の攪拌速度で1時間攪拌して、陽イオンの除去を行った後、陽イオン交換樹脂のみをストレーナで濾別した。以上の操作から得られた混合液を、更に高圧分散装置にて圧力50MPaの設定で分散処理した後、分散処理した混合液97部に対して塩酸化ジルコニウム0.75部と、混合溶剤A2.25部とを添加し混合攪拌を行い、それを255メッシュのフィルターにて濾過し、固形分5%の保護層用塗工液3を得た。
[Gas barrier ethylene-vinyl alcohol resin composition coating liquid (F)]
Preparation of Ethylene-Vinyl Alcohol Copolymer Solution
An ethylene-vinyl alcohol copolymer (trade name: SOANOL (registered trademark) V2603, manufactured by Japan Synthetic Chemical Co., Ltd., ethylene-vinyl acetate copolymer, in a mixed solvent of 20.996 parts of purified water and 51 parts of n-propyl alcohol (NPA) A polymer obtained by saponifying a polymer, an ethylene ratio of 26 mol%, a saponification degree of about 100% of a vinyl acetate component, and 15 parts of EVOH hereinafter added, and a hydrogen peroxide solution having a concentration of 30% 13 parts and 0.004 parts of FeSO 4 were added and heated to 80 ° C. with stirring, and reacted for about 2 hours. After cooling, catalase was added to 3000 ppm to remove residual hydrogen peroxide, thereby obtaining an almost clear ethylene-vinyl alcohol copolymer solution (EVOH solution) with a solid content of 15%.
<Preparation of Inorganic Layered Compound Dispersion>
Add 4 parts of montmorillonite (trade name: Kunipia (registered trademark) F, manufactured by Kunimin Kogyo Co., Ltd.), which is an inorganic layered compound, in 96 parts of purified water while stirring, and fully set at a pressure of 50 MPa with a high pressure dispersing device. Dispersed. Thereafter, the mixture was kept at 40 ° C. for 1 day to obtain an inorganic layered compound dispersion having a solid content of 4%.
<Additives>
Zirconium Hydrochloride (Daiichi Rare Element Chemical Co., Ltd., trade name; Zircozole (registered trademark) ZC-20, solid content 20%)
<Preparation of Coating Liquid (F)>
31.75 parts of the EVOH solution was added to 62.30 parts of mixed solvent A (a solvent consisting of 40% purified water and 60% n-propyl alcohol), and the mixture was sufficiently stirred and mixed. Further, 5.95 parts of an inorganic layered compound dispersion liquid was added to this solution while performing high-speed stirring. Three parts of cation exchange resin are added to 100 parts of the mixed solution, and stirring is performed for 1 hour at a stirring speed at which crushing of the ion exchange resin does not occur to remove cations, and then cation exchange is performed. Only the resin was filtered out with a strainer. The mixed solution obtained from the above operation is further dispersed in a high pressure dispersing apparatus under the setting of a pressure of 50 MPa, and then 0.75 part of zirconium chloride with respect to 97 parts of the dispersed mixture, and mixed solvent A2. 25 parts were added and mixed and stirred, and the mixture was filtered through a filter of 255 mesh to obtain a coating liquid 3 for a protective layer having a solid content of 5%.
 実施例1
(1)被覆層に用いる塗工液1の調製
 下記の塗剤を混合し、塗工液1を作成した。ここでポリエステル樹脂(A)の固形分換算の質量比は表1に示す通りである。

水                     33%
イソプロパノール               7%
ポリエステル樹脂(A)           60%
Example 1
(1) Preparation of Coating Composition 1 Used for Coating Layer The following coating agents were mixed to prepare Coating Composition 1. Here, the mass ratio in terms of solid content of the polyester resin (A) is as shown in Table 1.

Water 33%
Isopropanol 7%
Polyester resin (A) 60%
(2)保護層に用いる塗工液2の調製
  下記の塗剤を混合し、塗工液2を作成した。ここでウレタン樹脂(B)の固形分換算の質量比は表1に示す通りである。

水                    41.61%
イソプロパノール             40.00%
ウレタン樹脂(B)            18.15%
シランカップリング剤(C)         0.24%
(2) Preparation of Coating Composition 2 Used for Protective Layer The following coating agents were mixed to prepare Coating Composition 2. Here, the mass ratio in terms of solid content of the urethane resin (B) is as shown in Table 1.

Water 41.61%
Isopropanol 40.00%
Urethane resin (B) 18.15%
Silane coupling agent (C) 0.24%
(3)ポリアミド基材フィルムの製造および塗工液1のコート(被覆層の積層)
 ポリカプロアミドをスクリュー式押出し機で260℃に加熱溶融し、Tダイよりシート状に押出し、次いで、この未延伸シートを加熱ロールと冷却ロールの間で、80℃で3.3倍縦延伸した。そして、得られた一軸延伸フィルムの片面に,上記塗布液1をファウンテンバーコート法により塗布した。次にテンターに導き、120℃で4.0倍横方向に延伸後、215℃で熱固定を行い、厚さ15μmの二軸延伸ポリアミドフィルムに0.075g/m2の被覆層が形成された積層フィルムを得た。
(3) Production of polyamide base film and coating of coating liquid 1 (lamination of coating layer)
Polycaproamide was heated and melted at 260 ° C with a screw extruder, extruded from a T-die into a sheet, and then this unstretched sheet was longitudinally stretched 3.3 times at 80 ° C between a heating roll and a cooling roll . And the said coating liquid 1 was apply | coated by the fountain-bar coat method on the single side | surface of the obtained uniaxially stretched film. Next, it was introduced into a tenter, stretched in the transverse direction 4.0 times at 120 ° C., and heat-set at 215 ° C. to form a coating layer of 0.075 g / m 2 on a 15 μm thick biaxially stretched polyamide film A laminated film was obtained.
(4)無機薄膜層の形成
 上記(3)で得られたフィルムの被覆層形成面に、無機薄膜層として二酸化ケイ素と酸化アルミニウムの複合酸化物層を、電子ビーム蒸着法により形成した。蒸着源としては、3mm~5mm程度の粒子状のSiO2(純度99.9%)およびAl23(純度99.9%)を用いた。ここで複合酸化物層の組成は、SiO/Al23(質量比)=70/30であった。またこのようにして得られたフィルム(無機薄膜層/被覆層含有フィルム)における無機薄膜層(SiO/Al複合酸化物層)の膜厚は13nmであった。このようにして被覆層および無機薄膜層を備えた蒸着フィルムを得た。
(4) Formation of Inorganic Thin Film Layer A complex oxide layer of silicon dioxide and aluminum oxide was formed as an inorganic thin film layer on the surface of the film obtained in (3) above by an electron beam evaporation method. As deposition sources, particulate SiO 2 (purity 99.9%) and Al 2 O 3 (purity 99.9%) of about 3 mm to 5 mm were used. Here, the composition of the composite oxide layer was SiO 2 / Al 2 O 3 (mass ratio) = 70/30. The film thickness of the inorganic thin film layer (SiO 2 / Al 2 O 3 composite oxide layer) in the film (inorganic thin film layer / coating layer-containing film) thus obtained was 13 nm. Thus, a vapor deposition film provided with the coating layer and the inorganic thin film layer was obtained.
(5)蒸着フィルムへの塗工液2のコート(保護層の積層)
 上記(2)で調製した塗工液2をグラビアロールコート法によって(4)で得られた蒸着フィルムの無機薄膜層上に塗布し、170℃で乾燥させ、保護層を得た。乾燥後の塗布量は0.33g/m2(Dry)であった。
 以上のようにして、基材フィルムの上に被覆層/無機薄膜層/保護層を備えた積層フィルムを作製した。得られた積層フィルムについて、上記の通り、表面硬度、酸素透過度、ラミネート強度を評価した。結果を表1に示す。
(5) Coating of coating liquid 2 on deposited film (lamination of protective layer)
The coating liquid 2 prepared in the above (2) was applied onto the inorganic thin film layer of the vapor-deposited film obtained in (4) by the gravure roll coating method, and dried at 170 ° C. to obtain a protective layer. The applied amount after drying was 0.33 g / m 2 (Dry).
As described above, a laminated film provided with a coating layer / inorganic thin film layer / protective layer on a base film was produced. The surface hardness, oxygen permeability, and laminate strength were evaluated for the obtained laminated film as described above. The results are shown in Table 1.
(実施例2~5、比較例1~3)
 保護層形成用の塗工液を調製するにあたり、樹脂の配合量、付着量および種類を表1に示す通りとなるよう変更したこと以外は、実施例1と同様にして積層フィルムを作製し、表面硬度、酸素透過度、ラミネート強度を評価した。結果を表1に示す。
(Examples 2 to 5, Comparative Examples 1 to 3)
In preparing a coating liquid for forming a protective layer, a laminated film is produced in the same manner as in Example 1 except that the compounding amount, adhesion amount and type of resin are changed as shown in Table 1, The surface hardness, oxygen permeability, and laminate strength were evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の、被覆層、無機薄膜層および保護層を備えたガスバリア性積層フィルムは、ガスバリア性および耐水接着性に優れることがわかった。これにより、屈曲負荷や水系の内容物によっても剥離が生じず、バリア性が劣化したり、内容物が漏れ出たりする問題がない。また、本発明の積層フィルムは、高温高湿環境下でのナイロン基材フィルムの伸縮にも追随できるような表面硬度の保護層に設計しているため、ずり応力による無機層へのダメージや、層間の剥離による密着強度の低下を防ぐことができる。しかも、本発明の積層フィルムは加工工程が少なくかつ容易に製造できるので、経済性と生産安定性の両方に優れており、均質な特性のガスバリア性フィルムを提供することができる。 It turned out that the gas barrier laminated film provided with the coating layer, the inorganic thin film layer, and the protective layer of this invention is excellent in gas barrier property and water-resistant adhesiveness. As a result, peeling does not occur even with the bending load or the contents of the water system, and there is no problem that the barrier property is deteriorated or the contents leak out. In addition, since the laminated film of the present invention is designed as a protective layer of surface hardness which can follow the expansion and contraction of the nylon base film in a high temperature and high humidity environment, damage to the inorganic layer by shear stress, It is possible to prevent a decrease in adhesion strength due to delamination. Moreover, since the laminated film of the present invention has few processing steps and can be easily manufactured, it is excellent in both economical efficiency and production stability, and a gas barrier film of homogeneous characteristics can be provided.

Claims (3)

  1.  ポリアミド基材フィルムの少なくとも片面に被覆層を有し、前記被覆層はポリエステル樹脂を構成成分として含有する被覆層用樹脂組成物からなり、前記被覆層上に無機薄膜層を有すると共に、該無機薄膜層上にメタキシリレン基を有するウレタン樹脂を含有する保護層を有する積層フィルムで、前記積層フィルムの前記保護層の表面硬度が220~310N/mmであることを特徴とする積層フィルム。 A coating layer is provided on at least one side of a polyamide base film, and the coating layer is made of a resin composition for a coating layer containing a polyester resin as a component, and an inorganic thin film layer is provided on the coating layer. A laminated film having a protective layer containing a urethane resin having a metaxylylene group on a layer, wherein the surface hardness of the protective layer of the laminated film is 220 to 310 N / mm 2 .
  2.  前記被覆層に含有されるポリエステル樹脂がアクリルグラフトポリエステル樹脂であることを特徴とする請求項1に記載の積層フィルム。 The polyester film contained in the said coating layer is acrylic graft polyester resin, The laminated film of Claim 1 characterized by the above-mentioned.
  3.  前記無機薄膜層が、酸化ケイ素と酸化アルミニウムとの複合酸化物からなる層である請求項1または2のいずれかに記載の積層フィルム。 The laminated film according to claim 1, wherein the inorganic thin film layer is a layer formed of a composite oxide of silicon oxide and aluminum oxide.
PCT/JP2018/033053 2017-09-29 2018-09-06 Multilayer film WO2019065147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018557158A JP7218577B2 (en) 2017-09-29 2018-09-06 laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190248 2017-09-29
JP2017-190248 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065147A1 true WO2019065147A1 (en) 2019-04-04

Family

ID=65903626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033053 WO2019065147A1 (en) 2017-09-29 2018-09-06 Multilayer film

Country Status (3)

Country Link
JP (1) JP7218577B2 (en)
TW (1) TWI782095B (en)
WO (1) WO2019065147A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323934A (en) * 1989-06-20 1991-01-31 Toyobo Co Ltd Transparent barrier film and its manufacture
JPH09174777A (en) * 1995-12-27 1997-07-08 Toyobo Co Ltd Laminated polyamide film
JP2006068967A (en) * 2004-08-31 2006-03-16 Mitsubishi Plastics Ind Ltd Gas barrier laminate
JP4524463B2 (en) * 1999-07-27 2010-08-18 三井化学株式会社 Gas barrier polyurethane resin and gas barrier film containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090278A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Gas barrier film and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323934A (en) * 1989-06-20 1991-01-31 Toyobo Co Ltd Transparent barrier film and its manufacture
JPH09174777A (en) * 1995-12-27 1997-07-08 Toyobo Co Ltd Laminated polyamide film
JP4524463B2 (en) * 1999-07-27 2010-08-18 三井化学株式会社 Gas barrier polyurethane resin and gas barrier film containing the same
JP2006068967A (en) * 2004-08-31 2006-03-16 Mitsubishi Plastics Ind Ltd Gas barrier laminate

Also Published As

Publication number Publication date
TWI782095B (en) 2022-11-01
JPWO2019065147A1 (en) 2020-09-03
TW201917019A (en) 2019-05-01
JP7218577B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
EP1941993B1 (en) Gas barrier multilayer film
JP6606165B2 (en) Laminated film
TWI767901B (en) Laminated film
JP6962364B2 (en) Laminated film
JP6631098B2 (en) Laminated film
JP7138851B2 (en) laminated film
JP6927336B2 (en) Gas barrier laminated film and its manufacturing method
JP7359235B2 (en) laminate laminate
JP7231004B2 (en) laminate laminate
JP6816376B2 (en) Laminated film
JP2001058383A (en) Resin coated polyester film and production thereof
JP7218577B2 (en) laminated film
JP7355019B2 (en) laminated film
JP7000694B2 (en) Laminated film
JP6911988B2 (en) Laminated film
JP7468747B2 (en) Laminated film, laminate and packaging material
JP7238938B1 (en) Laminated films and packaging materials
WO2024058167A1 (en) Packaging material
WO2023074508A1 (en) Multilayer film, multilayer body and packaging material
WO2023219021A1 (en) Multilayer packaging material
WO2022176630A1 (en) Layered film
WO2024075588A1 (en) Multilayered film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557158

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861733

Country of ref document: EP

Kind code of ref document: A1