WO2019065096A1 - Inverter unit - Google Patents

Inverter unit Download PDF

Info

Publication number
WO2019065096A1
WO2019065096A1 PCT/JP2018/032560 JP2018032560W WO2019065096A1 WO 2019065096 A1 WO2019065096 A1 WO 2019065096A1 JP 2018032560 W JP2018032560 W JP 2018032560W WO 2019065096 A1 WO2019065096 A1 WO 2019065096A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
module
capacitor module
height
disposed
Prior art date
Application number
PCT/JP2018/032560
Other languages
French (fr)
Japanese (ja)
Inventor
安井誠二
堀田豊
鈴木丈元
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2019065096A1 publication Critical patent/WO2019065096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter unit.
  • An inverter device is used to convert power between direct current and alternating current of multiple phases.
  • the inverter device may be configured to include an inverter unit in which an inverter module having a switching element and a capacitor module having a capacitor element are unitized.
  • An example of such an inverter unit is disclosed, for example, in Japanese Patent Laid-Open No. 2013-176297 (Patent Document 1).
  • the inverter module is mounted on a rectangular parallelepiped capacitor module (see, for example, FIG. 33 (C) of Patent Document 1).
  • a rectangular parallelepiped capacitor module see, for example, FIG. 33 (C) of Patent Document 1.
  • the first inverter unit is An inverter unit comprising: an inverter module having a switching element; and a capacitor module having a capacitor element,
  • the capacitor module is disposed at a first portion at a first height and at both sides of the first portion at a height from a reference surface, and has a second height higher than the first height from the reference surface.
  • the inverter module overlaps the second portion in a direction of arrangement along the direction of arrangement of the first portion and the two second portions of the capacitor module, and the height along the height direction orthogonal to the reference plane It is disposed so as to overlap with the first portion in the longitudinal direction.
  • the inverter module can be arranged by effectively utilizing the space formed by the difference in height between the first portion of the capacitor module and the second portion on both sides thereof. Therefore, as compared with the configuration in which the inverter module does not overlap with the second portion of the capacitor module in the array direction view or the configuration without overlapping with the first portion of the capacitor module in the height direction view, downsizing of the inverter unit as a whole is facilitated Can be
  • the second inverter unit is An inverter unit comprising: an inverter module having a switching element; a capacitor module having a capacitor element; and a capacitor case that accommodates the capacitor module and has a refrigerant flow path through which a refrigerant flows.
  • the capacitor module includes a plurality of the capacitor elements arranged along a reference plane, and the plurality of capacitor elements are each formed in a rectangular parallelepiped shape.
  • the direction perpendicular to the reference plane is the height direction
  • the direction in which the plurality of capacitor elements are arranged along the reference plane is the arrangement direction
  • the direction orthogonal to both the height direction and the arrangement direction is the width direction
  • a part of the plurality of capacitor elements is disposed in a first posture in which the longest side is along the width direction to form a first part of the capacitor module
  • the remaining ones of the plurality of capacitor elements are arranged in a second posture in which the longest side extends along the height direction to form a second portion of the capacitor module
  • the refrigerant flow path is formed by a hollow space formed by the difference in length in the width direction between the first portion and the second portion, and by a difference in height between the first portion and the second portion It is arranged in the concave space.
  • the number of parts can be reduced, and two portions (the first portion A second part can be provided. And effectively utilizing the hollow space formed by the difference in length in the width direction between the first part and the second part of the capacitor module and the concave space formed by the difference in height between the first part and the second part. Then, the refrigerant flow path provided in the capacitor case can be disposed. Therefore, compared with the structure arrange
  • Circuit block diagram of an inverter unit according to an embodiment Perspective view of inverter unit An exploded perspective view of the inverter unit An exploded perspective view of the inverter module Top view of the inverter module Side view of inverter module Perspective view of the capacitor module Top view of the inverter unit Front view of inverter unit Side view of the inverter unit XI-XI sectional view in FIG. 9 XII-XII cross section in FIG. 9 XIII-XIII sectional view in FIG. 9 XIV-XIV sectional view in FIG. 8 Top view of another embodiment of the inverter module Top view of another embodiment of the inverter module Top view of another embodiment of the inverter module Side view of another embodiment of the inverter module
  • Embodiments of an inverter module and an inverter unit including the inverter module will be described with reference to the drawings.
  • the inverter unit 1 and the inverter module 10 of the present embodiment are incorporated in, for example, a rotary electric machine control system that controls the rotary electric machine 5 working as a driving force source of a vehicle (wheel) in an electric car or a hybrid car.
  • the rotary electric machine 5 of the present embodiment is an AC rotary electric machine which uses a DC power supply 2 as an electric power source and is driven by AC of a plurality of phases (three phases consisting of U phase, V phase and W phase as an example).
  • an inverter circuit 4 is provided between the DC power supply 2 and the rotating electrical machine 5.
  • the inverter circuit 4 converts power between direct current and alternating current of multiple phases.
  • the inverter circuit 4 is configured with a plurality of switching elements 11 as a core.
  • a capacitor 3 is provided between the DC power supply 2 and the inverter circuit 4. The capacitor 3 smoothes the voltage on the DC side of the inverter circuit 4.
  • the plurality of switching elements 11 include an upper stage switching element 11 U connected to the positive electrode of the DC power supply 2 and a lower stage switching element 11 L connected to the negative electrode of the DC power supply 2.
  • upper stage side switching element 11U and lower stage side switching element 11L are connected in series to constitute one arm, and the middle point of each arm is a rotating electric machine It is connected to the stator coil of each phase of 5.
  • the upper stage switching element 11U for U phase is denoted by a symbol “11Uu”
  • the upper stage switching element 11U for V phase is denoted by a symbol “11Uv”
  • the upper stage side switching element 11U for W phase is represented by a code "11 Uw”.
  • the lower phase side switching element 11L for U phase is represented by a symbol “11Lu”
  • the lower side switching element 11L for V phase is represented by a symbol "11Lv”
  • the lower stage side switching element 11L for W phase is represented by a symbol "11Lw It may be expressed as ".
  • a power semiconductor element capable of operating at high frequency can be suitably used.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • SiC-MOSFETs Silicon Carbide-Metal Oxide Semiconductor FETs
  • SiC-SITs SiC-Static Induction Transistors
  • GaN-MOSFETs GaN-MOSFETs
  • FIG. 1 illustrates an embodiment in which an IGBT is used as the switching element 11.
  • a rectifying diode 12 is connected in parallel to each switching element 11.
  • the switching elements 11 (11Uu, 11Uv, 11Uw, 11Lu, 11Lv, 11Lw) are each configured by a chip type element incorporating a diode 12.
  • the chip type element including the switching element 11 and the diode 12 is formed in a rectangular shape having a shape close to a square (for example, an aspect ratio of about 0.8 to 1.2).
  • a control terminal 13 (for example, a gate terminal of an IGBT) of each switching element 11 constituting the inverter circuit 4 is connected to an inverter control device 8 (INV-CTRL) via a drive circuit 7 (DRV-CCT).
  • the inverter control device 8 performs current feedback control using a vector control method based on, for example, the target torque of the rotating electrical machine 5 provided by the higher-order vehicle control device 9 (VHL-CTRL).
  • the actual current flowing through the stator coil of each phase of the rotary electric machine 5 is detected by the current sensor Se1, and the magnetic pole position at each time of the rotor of the rotary electric machine 5 is detected by the rotation sensor Se2.
  • the inverter control device 8 executes current feedback control using the detection results of the current sensor Se1 and the rotation sensor Se2, and performs switching control of each switching element 11 individually.
  • the inverter unit 1 includes an inverter module 10, a capacitor module 20, a capacitor case 30, and a control board 40, which are integrated.
  • the inverter unit 1 is configured as an integrated unit formed in a compact rectangular parallelepiped shape as a whole.
  • the inverter module 10 is a module having a plurality of switching elements 11 constituting the inverter circuit 4.
  • the switching element 11 is configured by a chip type element including the diode 12, and in the following, when the “switching element 11” is referred to with respect to the inverter module 10, “chip type element It includes the meaning of ''.
  • the inverter module 10 includes a positive bus bar 14, a negative bus bar 15, and a plurality of output bus bars in addition to the plurality of switching elements 11.
  • the first output bus bar 16, the second output bus bar 17, and the third output bus bar 18 are provided as a plurality of output bus bars.
  • the first output bus bar 16 may correspond to the U phase
  • the second output bus bar 17 may correspond to the V phase
  • the third output bus bar 18 may correspond to the W phase.
  • One positive bus bar 14 and one negative bus bar 15 are provided.
  • FIG. 4 is an exploded perspective view showing the switching element 11, the control terminal 13, the positive electrode bus bar 14, the negative electrode bus bar 15, and the output bus bars 16, 17, 18 inside the main body 19. As shown in FIG.
  • the upper stage switching elements 11U and the lower stage switching elements 11L of the respective phases are arranged side by side in the first direction D1.
  • the upper stage side switching element 11Uu and the lower stage side switching element 11Lu for U phase are arranged side by side in the first direction D1
  • the upper stage side switching element 11Uv and the lower stage side switching element 11Lv for V phase are arranged in the first direction D1.
  • the upper stage side switching element 11Uw and the lower stage side switching element 11Lw for the W phase are arranged in the first direction D1.
  • the upper stage switching elements 11U and the lower stage switching elements 11L of the respective phases are disposed side by side in a second direction D2 intersecting the first direction D1.
  • the upper stage switching elements 11U of each phase are arranged on the same plane.
  • the lower stage switching elements 11L of each phase are arranged on the same plane. That is, the upper stage switching element 11Uu for U phase, the upper stage switching element 11Uv for V phase, and the upper stage switching element 11Uw for W phase are arranged side by side in the second direction D2 on the same plane. It is done.
  • the lower switching element 11Lu for U phase, the lower switching element 11Lv for V phase, and the lower switching element 11Lw for W phase are in the second direction D2 on the same plane. They are arranged side by side.
  • the upper stage switching element 11U and the lower stage switching element 11L of each phase are disposed on the same plane.
  • all (six in this example) switching elements 11 constituting the inverter circuit 4 are arranged in the form of a 2 ⁇ 3 matrix on the same plane.
  • the intersection angle between the first direction D1 and the second direction D2 is set to 90 °. That is, the first direction D1 and the second direction D2 are orthogonal to each other.
  • a direction orthogonal to both the first direction D1 and the second direction D2 is defined as a "third direction D3" and used in the following description.
  • the control substrate 40 side in the third direction D3 may be referred to as “upper” and the opposite side may be referred to as “lower”, but these are necessarily “upper” or “lower” in the vertical direction. It does not match.
  • the positive bus bar 14, the negative bus bar 15, and the output bus bars 16, 17, 18 are arranged in the following manner with respect to the six switching elements 11 arranged in alignment in two rows and three in a single plane. .
  • the positive electrode bus bar 14 is disposed along the second direction D2 in a state of being in contact with the lower surfaces of the plurality of upper stage side switching elements 11U.
  • the lower surface of each upper stage switching element 11U corresponds to the “first surface” of the upper stage switching element 11U.
  • a plurality of positive electrode joint surfaces 14S, which are contacts with the lower surface (first surface) of each upper stage switching element 11U in the positive electrode bus bar 14, are arranged on the same plane by having a common flat surface. There is.
  • Both end portions of the positive electrode bus bar 14 in the second direction D2 are arranged to protrude outward in the second direction D2 in a state of being offset in the third direction D3 with respect to the positive electrode bonding surface portion 14S at the center portion. It has become.
  • the negative bus bar 15 is disposed along the second direction D2 in a state of being in contact with the upper surfaces of the plurality of lower stage switching elements 11L.
  • the upper surface of each lower switching element 11L corresponds to the “second surface” of the lower switching element 11L.
  • a plurality of negative electrode joint surface portions 15S which are contacts with the upper surfaces (second surfaces) of the lower stage side switching elements 11L in the negative electrode bus bar 15, are connected via the uneven connection portions on the same plane. It is arranged. And it joins in the state which the upper surface of each lower stage side switching element 11L touches on the lower surface of the negative electrode joint surface part 15S.
  • Both end portions of the negative electrode bus bar 15 in the second direction D2 are arranged to protrude outward in the second direction D2 in a state of being offset in the third direction D3 with respect to the negative electrode bonding surface portion 15S at the central portion. It has become.
  • the positive electrode bus bar 14 and the negative electrode bus bar 15 respectively have the terminal portions 14T and 15T on both sides in the second direction D2.
  • the positive electrode bus bar 14 and the negative electrode bus bar 15 are connected to the capacitor 3 (capacitor element 23 described later) at each end via the terminal portions 14T and 15T on both sides in the second direction D2.
  • the plurality of output bus bars 16, 17, 18 are in contact with the upper surface of the upper stage switching element 11U of the corresponding phase, and in contact with the lower surface of the lower stage switching element 11L of the corresponding phase, along the first direction D1. It is arranged.
  • the upper surface of each upper-stage switching element 11U corresponds to the “second surface” of the upper-stage switching element 11U.
  • the lower surface of each lower switching element 11L corresponds to the "first surface" of the upper switching element 11U.
  • the third output bus bar 18 is bent at a position between the lower stage switching element 11Lw for the W phase and the upper stage switching element 11Uw in the first direction D1 which is the extending direction thereof.
  • the third output bus bar 18 has a lower output joint surface portion 18L and an upper output joint surface portion 18U on both sides of the bent portion 18B in the first direction D1.
  • the lower output joint surface portion 18L is a portion which is a contact point with the lower surface (first surface) of the lower stage switching element 11Lw for W phase
  • the upper output joint surface section 18U is an upper surface of the upper stage switching element 11Uw for W phase. This part is a contact point with the (second surface).
  • the lower output joint surface portion 18L and the upper output joint surface portion 18U are parallel to each other, and the upper output joint surface portion 18U is disposed at a position offset upward with respect to the lower output joint surface portion 18L.
  • the third output bus bar 18 is formed in a crank shape as viewed in the second direction D2.
  • the offset amount between the upper output joint surface portion 18U and the lower output joint surface portion 18L is set equal to the sum of the thickness of the switching element 11 and the thickness of the positive electrode bus bar 14 (and the negative electrode bus bar 15).
  • the upper output joint surface portion 18U of the third output bus bar 18 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative bus bar 15. Furthermore, the lower output joint surface portion 18L of the third output bus bar 18 is disposed on the same plane as the positive electrode joint surface portion 14S of the positive electrode bus bar 14.
  • the first output bus bar 16 has a bent portion 16B, a lower output joint surface portion 16L, and an upper output joint surface portion 16U, and is formed in a crank shape in the second direction D2.
  • the upper output joint surface portion 16U of the first output bus bar 16 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative electrode bus bar 15, and the lower output joint surface portion 16L of the first output bus bar 16 is the same as the positive electrode joint surface portion 14S of the positive electrode bus bar 14. It is arranged on a plane.
  • the second output bus bar 17 has a bent portion 17B, a lower output joint surface portion 17L, and an upper output joint surface portion 17U, and is formed in a crank shape in the second direction D2.
  • the upper output joint surface portion 17U of the second output bus bar 17 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative electrode bus bar 15, and the lower output joint surface portion 17L of the second output bus bar 17 is the same as the positive electrode joint surface portion 14S of the positive electrode bus bar 14. It is arranged on a plane.
  • the ends of the plurality of output bus bars 16, 17, 18 opposite to the lower output joint surface portions 16L, 17L, 18L in the first direction D1 are bent upward, and the corresponding portions are terminal portions 16T, 17T, 18T, and the like. It has become.
  • the terminal portions 16T, 17T, and 18T are terminals to which the rotary electric machine connection bus bars 90 extending from the stator coils of the respective phases of the rotary electric machine 5 are connected.
  • the terminal portions 16T, 17T, and 18T are disposed on the side opposite to the lower switching element 11L with respect to the upper switching element 11U in the first direction D1. Accordingly, the terminal portions 16T, 17T, and 18T are disposed on the side of the positive electrode bus bar 14 opposite to the negative electrode bus bar 15 in the first direction D1.
  • the control terminal 13 of the lower switching element 11L is a negative electrode at a position overlapping the output bus bar 16, 17, 18 connected to the lower switching element 11L in the third direction. It is arranged at a position adjacent to the bus bar 15 in the first direction D1.
  • overlap in a certain direction regarding the arrangement of two members means that two virtual straight lines are two members when the virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line. It means that the area which intersects both sides exists in at least one part.
  • the control terminal 13 of the lower switching element 11L is disposed at a position adjacent to the negative bus bar 15 on the opposite side of the positive bus bar 14 and the terminal portions 16T, 17T, 18T in the first direction D1.
  • the control terminal 13 of the lower switching element 11L is disposed to extend upward along the third direction D3 with a predetermined distance from the side surface of the negative electrode bus bar 15. Furthermore, the control terminals 13 of the lower stage side switching elements 11Lu, 11Lv, and 11Lw for each phase are aligned and arranged in a straight line along the second direction D2 as a whole.
  • the second direction with respect to the output bus bar 16, 17, 18 connected to the upper stage switching element 11U is arranged at a position adjacent to D2.
  • At least one of the control terminals 13 of the plurality of upper stage side switching elements 11U includes the first output bus bar 16 and the second output bus bar 17 adjacent to each other Or between the second output bus bar 17 and the third output bus bar 18 adjacent to each other.
  • the control terminal 13 of the upper stage switching element 11U is arranged to extend upward along the third direction D3 with a predetermined distance from the side surface of the corresponding output bus bar 16, 17, 18 There is. Furthermore, the control terminals 13 of the upper stage side switching elements 11Uu, 11Uv, 11Uw for each phase are arranged in parallel with each other in a state of being aligned along the first direction D1.
  • the capacitor module 20 is a module having a plurality of capacitor elements 23 constituting the capacitor 3. As shown in FIG. 7, the capacitor module 20 has a first portion 21 of a first height H1 and a second portion 22 of a second height H2. The second height H2 is higher than the first height H1.
  • the first height H1 and the second height H2 are heights along the third direction D3 from the reference surface R, and in the present embodiment, the reference surface R is a support plate 28 described later (see FIG. 14). It is considered as a supporting surface of In the present embodiment, the first portion 21 is provided in one place, whereas the second portion 22 is provided in two places. The two second portions 22 are disposed on both sides of the second direction D2 with respect to the first portion 21.
  • the second direction D2 corresponds to the “arrangement direction”
  • the third direction D3 corresponds to the “height direction”.
  • the first direction D1 orthogonal to both the second direction D2 and the third direction D3 corresponds to the "width direction”.
  • the third direction D3 (height direction) is a direction orthogonal to the reference surface R, and does not necessarily coincide with the vertical direction.
  • the plurality of capacitor elements 23 constituting the capacitor module 20 are each formed in a rectangular parallelepiped shape.
  • Capacitor element 23 has a longest side 23L having the longest length along the side, a shortest side having the shortest length along the side, and an intermediate side 23M having a length along the side longer than the shortest side and shorter than the longest side 23L.
  • the lengths of three sides extending from the top of one vertex are formed in mutually different rectangular shapes.
  • the plurality of capacitor elements 23 are formed in the same shape.
  • the capacitor element 23 can be, for example, one (film capacitor) configured by winding a plastic film such as polyethylene terephthalate (PET). However, without being limited to such a configuration, a multilayer capacitor element 23 or another type of capacitor element 23 may be used.
  • the plurality of capacitor elements 23 are arranged along the reference surface R while being supported by the support plate 28 (see FIG. 14).
  • the capacitor module 20 is configured to include five capacitor elements 23. All (five in the present example) capacitor elements 23 are arranged in a posture in which the shortest side is along the second direction D2 in which the plurality of capacitor elements 23 are arranged.
  • the first portion 21 of the capacitor module 20 is configured by a part (three capacitor elements 23 in this example) of the plurality of capacitor elements 23 in which the longest side 23L is disposed in the first posture along the first direction D1. ing.
  • the first height H 1 of the first portion 21 of the capacitor module 20 is equal to the length of the middle side 23 M of the capacitor element 23.
  • the length (depth) along the first direction D1 of the first portion 21 of the capacitor module 20 is equal to the length of the longest side 23L of the capacitor element 23.
  • the second portion 22 of the capacitor module 20 a part of the plurality of capacitor elements 23 (the remaining two capacitor elements in this example) having the longest side 23L arranged in the second posture along the third direction D3.
  • the second height H 2 of the second portion 22 of the capacitor module 20 is equal to the length of the longest side 23 L of the capacitor element 23.
  • the length (depth) of the second portion 22 of the capacitor module 20 along the first direction D1 is equal to the length of the middle side 23M of the capacitor element 23.
  • the concave space S1 is a space formed by the difference in height between the first portion 21 and the second portion 22 (difference in length in the third direction D3).
  • the concave space S1 is formed above the capacitor element 23 in the first posture, and is formed as a space sandwiched in the second direction D2 by the two capacitor elements 23 opposed in the second posture.
  • the recess space S2 is a space formed by the difference in depth between the first portion 21 and the second portion 22 (difference in length in the first direction D1).
  • the recess space S2 is adjacent to the capacitor element 23 in the first attitude in the second direction D2 and adjacent to the capacitor element 23 in the second attitude in the first direction D1, and generally along the third direction D3. It is formed as an extending space.
  • the inverter module 10 is disposed using the concave space S1 (see FIG. 14). That is, the inverter module 10 is disposed in the concave space S1 formed by the difference in height between the first portion 21 and the second portion 22 of the capacitor module 20.
  • the inverter module 10 overlaps the second portion 22 (the capacitor element 23 of the second posture) of the capacitor module 20 in the second direction, and the first portion 21 of the capacitor module 20 (the capacitor in the first posture) in the third direction It is arranged to overlap with the element 23). This point will be described later in connection with the structure of the capacitor case 30.
  • a negative electrode 25 is provided.
  • the positive electrode 24 is provided on one of both side surfaces of the capacitor element 23 in the second posture in the first direction D1, and the negative electrode 25 is provided on the other.
  • the positive electrode terminal 26 of the capacitor module 20 is formed so as to be separated from the positive electrode 24 at a position not overlapping with the first portion 21 (the capacitor element 23 in the first posture) in the second direction in the second portion 22.
  • both the positive electrode terminal 26 and the negative electrode terminal 27 are from the positive electrode 24 or the negative electrode 25 at the upper end portion (projecting end portion from the first portion 21) of the second portion 22. It is formed to leave.
  • the positive electrode terminal 26 and the negative electrode terminal 27 are disposed adjacent to the first direction D1 at the same position in the second direction D2.
  • the positive electrode terminal portion 14T of the positive electrode bus bar 14 of the inverter module 10 is connected to the positive electrode terminal 26 of the capacitor module 20 through the opening formed in the ceiling portion 35 of the capacitor case 30.
  • the negative electrode terminal portion 15T of the negative electrode bus bar 15 of the inverter module 10 is connected to the negative electrode terminal 27 of the capacitor module 20 via the opening formed in the ceiling portion 35 of the capacitor case 30.
  • the capacitor case 30 is a case for housing the capacitor module 20. As shown in FIGS. 3 and 11 to 13 and the like, the capacitor case 30 includes a first side wall 31, a second side wall 32, a third side wall 33, and a fourth side wall 34 surrounding four sides of the capacitor module 20; 20 is formed in a box shape having a ceiling 35 covering the upper side.
  • the capacitor case 30 of the present embodiment further includes a refrigerant flow path 36 for circulating the refrigerant.
  • the refrigerant flow channel 36 is a flow channel (cooling water channel) through which a refrigerant (for example, cooling water) for mainly cooling the switching element 11 included in the inverter module 10 flows, and is formed inside the capacitor case 30.
  • the capacitor case 30 is formed of, for example, a material having a high thermal conductivity (for example, copper, aluminum, etc.) so as to function as a heat sink and also function as a cooling device.
  • the refrigerant channel 36 includes an inflow channel 36I, a cooling channel 36C, and a discharge channel 36O.
  • the inflow passage 36I is formed in the second side wall 32 so as to extend along the third direction D3.
  • the discharge flow path 36O is formed in the first side wall 31 so as to extend along the third direction D3.
  • the cooling passage 36C communicates with the downstream side of the inflow passage 36I and communicates with the upstream side of the discharging passage 36O, and extends in a planar manner along both the first direction D1 and the second direction D2. It is formed in the part 35.
  • a plurality of columnar (long and thin cylindrical in the illustrated example) fins 37 are provided in the cooling flow path 36C.
  • the plurality of fins 37 are provided substantially in the entire area of the cooling flow passage 36C, and are arranged regularly (in the example of the illustrated example in the form of a hexagonal grid) with a gap slightly between them.
  • the refrigerant flow path 36 is disposed utilizing the concave space S1 and the hollow space S2. That is, the concave space S1 formed by the difference in height between the first portion 21 and the second portion 22 of the capacitor module 20, and the depth of the first portion 21 and the second portion 22 of the capacitor module 20 And a depression space S2 formed by the difference between
  • the inflow passage 36I constituting the refrigerant passage 36 is disposed along the hollow space S2 in one of the two hollow spaces S2.
  • the inflow passage 36I is disposed so as to overlap with the second portion 22 of the capacitor module 20 in a first direction view and to overlap with the second portion 22 of the capacitor module 20 in a second direction view.
  • a cooling flow passage 36C that constitutes the refrigerant flow passage 36 is disposed in the concave space S1.
  • the cooling flow passage 36C is disposed so as to overlap with the second portion 22 of the capacitor module 20 in the second direction view and overlap with the first portion 21 of the capacitor module 20 in the third direction view.
  • the cooling passage 36C is disposed between the first portion 21 of the capacitor module 20 and the inverter module 10 in the concave space S1.
  • the upper surface of the cooling channel 36C is formed to be a flat surface, and is fixed in a state in which the lower surface of the inverter module 10 is in contact with the entire surface.
  • the attachment portion 31M is provided at the lower end portion of the boundary portion between the third side wall 33 and the fourth side wall 34 in the first side wall 31
  • An attachment portion 32 ⁇ / b> M is provided at the lower end portion of the boundary portion between the third side wall 33 and the fourth side wall 34 in the side wall 32.
  • the attachment portions 31M and 32M are portions for attaching the capacitor module 20 in a state of being accommodated in the capacitor case 30 to other members.
  • the bottom cover 38 (see FIG. 14) fixed to the lower part of the capacitor case 30 may be the “other member”.
  • a part of the vehicle may be the “other member”, and in this case, the part of the vehicle, the bottom cover 38 and the capacitor case 30 are further tightened. In this case, a portion of the vehicle and the bottom cover 38 may be "other components”.
  • the attachment portion 32M of the second side wall 32 is in the recess space S2 formed by the difference in depth between the first portion 21 and the second portion 22 of the capacitor module 20. It is arranged.
  • the discharge flow path 36O constituting the refrigerant flow path 36 and the mounting portion 31M of the first side wall 31 are not disposed in the depression space S2.
  • the discharge flow path 36O and the attachment portion 31M are disposed adjacent to the outer side of the side surface of the capacitor module 20 disposed on the same plane on one side (the lower side in FIG. 12) of the first direction D1. ing.
  • the three rotary electric machine connection bus bars 90 extending from the stator coils of each phase of the rotary electric machine 5 extend along the first side wall 31 in the second direction D2. Are arranged in a row along the.
  • the control substrate 40 is a substrate on which functional units constituting the drive circuit 7 and the inverter control device 8 are mounted.
  • the control board 40 is fixed to the capacitor case 30 so as to cover the inverter module 10 from above.
  • the configuration in which the positive electrode bus bar 14 and the negative electrode bus bar 15 respectively have the terminal portions 14T and 15T on both sides in the second direction D2 has been described as an example.
  • the positive electrode bus bar 14 and the negative electrode bus bar 15 each have terminal portions 14T and 15T only on one side in the second direction D2. It is good.
  • the positive electrode terminal portion 14T may be disposed on one side in the second direction D2
  • the negative electrode terminal portion 15T may be disposed on the other side in the second direction D2.
  • the positive electrode terminal portion 14T and the negative electrode terminal portion 15T may be disposed on the same side in the second direction D2.
  • control terminal 13 of the upper stage switching element 11U of each phase is arranged on the same side in the second direction D2 with respect to the corresponding output bus bar 16, 17, 18 As described.
  • a part of the control terminals 13 of the upper stage switching element 11U of each phase is a corresponding output bus bar in the second direction D2. It may be arranged on the opposite side to the other control terminal 13 with respect to 16, 17, and 18.
  • the upper switching element 11U is disposed at a position closer to the terminal portions 16T, 17T, 18T of the output bus bars 16, 17, 18 in the first direction D1 than the lower switching element 11L.
  • the configuration has been described as an example.
  • the lower switching element 11L may be disposed closer to the terminal portions 16T, 17T, and 18T than the upper switching element 11U.
  • the control terminal 13 of the upper stage switching element 11U and the control terminal 13 of the lower stage switching element 11L respectively have a first direction with respect to the positive electrode bus bar 14 or the negative electrode bus bar 15. It is preferable to be disposed at a position adjacent to D1.
  • control terminal 13 of the upper stage switching element 11U and the control terminal 13 of the lower stage switching element 11L are parallel to each other and on opposite sides of the positive bus bar 14 and the negative bus bar 15 in the first direction D1. It may be arranged.
  • control terminal 13 of the upper stage switching element 11U is disposed at a position adjacent to the positive electrode bus bar 14 in the first direction D1
  • control terminal 13 of the lower stage switching element 11L is connected to the lower stage switching element 11L. It may be disposed at a position adjacent to the output bus bars 16, 17, 18 in the second direction D2.
  • the configuration in which the upper stage switching element 11U and the lower stage switching element 11L of each phase are disposed on the same plane has been described as an example.
  • the upper stage switching element 11U and the lower stage switching element 11L of each phase may be arranged in a staggered manner at mutually different positions in the third direction D3.
  • the output bus bars 16, 17, 18 may be formed flat in a second direction without having the bent portions 16B, 17B, 18B.
  • the output bus bars 16, 17 and 18 can be secondly adjusted by adjusting the shape of the control terminal 13. You may form in flat form by direction view.
  • the switching element 11 is a chip type element incorporating the diode 12
  • the switching element 11 and the diode 12 may be configured by separate elements independent of each other.
  • first direction D1 as the “width direction” and the second direction D2 as the “arrangement direction” are orthogonal to each other.
  • first direction D1 and the second direction D2 may intersect diagonally.
  • a part of the capacitor elements 23 having the same shape is disposed in the first attitude, and another part is disposed in the second attitude, so that the capacitor modules 20 have different heights.
  • the configuration having the portion 21 and the second portion 22 has been described as an example. However, without being limited to such a configuration, for example, by using capacitor elements 23 of two sizes different only in height, the capacitor module 20 has the first portion 21 and the second portion 22. You may configure. As described above, the first portion 21 and the second portion 22 of the capacitor module 20 may be set to have the same depth along the first direction D1.
  • the configuration in which the capacitor module 20 is disposed in the same plane on one side in the first direction D1 and the two hollow spaces S2 are provided on the other side in the first direction D1 has been described as an example.
  • the capacitor element 23 in the second attitude is disposed in the middle portion of the capacitor element 23 in the first attitude, and the recess space S2 is provided at the four corners of the capacitor module 20 Also good.
  • the exhaust flow path 36O constituting the refrigerant flow path 36 and the attachment portion 31M of the first side wall 31 may be disposed in the depression space S2.
  • the configuration in which the positive electrode terminal 26 and the negative electrode terminal 27 of the capacitor module 20 are formed away from the positive electrode 24 or the negative electrode 25 at the upper end of the second portion 22 is described as an example did.
  • the positive electrode terminal 26 and the negative electrode terminal 27 may be formed so as to be separated from the positive electrode 24 or the negative electrode 25 at a position above the first portion 21 and below the upper end of the second portion 22.
  • the positive electrode terminal 26 and the negative electrode terminal 27 are formed apart from the positive electrode 24 or the negative electrode 25 at a position not overlapping the first portion 21 in the second direction 22 (view in the arrangement direction) in the second portion 22 good.
  • the positive electrode terminal 26 and the negative electrode terminal 27 may be formed apart from the positive electrode 24 or the negative electrode 25 at a position overlapping the first portion 21 in the second direction (arrangement direction).
  • the refrigerant channel 36 is disposed in the concave space S1 and the recess space S2, and the inverter module 10 is disposed in the concave space S1 together with the cooling channel 36C that constitutes the refrigerant channel 36.
  • the above configuration has been described as an example. However, without being limited to such a configuration, for example, if the inverter module 10 is disposed at least in the concave space S1, the refrigerant channel 36 is not necessarily disposed in both the concave space S1 and the concave space S2. Also good.
  • the inverter unit according to the present disclosure preferably includes the following configurations.
  • An inverter unit (1) comprising: an inverter module (10) having a switching element (11); and a capacitor module (20) having a capacitor element (23),
  • the capacitor module (20) is disposed on both sides of the first portion (21) of the first height (H1) at a height from the reference surface (R) and the first portion (21), the reference surface (R) And a second portion (22) of a second height (H2), the height of which is higher than said first height (H1),
  • the second portion (22) is viewed in the arrangement direction along the arrangement direction (D2) of the first portion (21) of the capacitor module (20) and the two second portions (22) of the inverter module (10).
  • the first portion (21) as viewed in the height direction along the height direction (D3) orthogonal to the reference surface (R).
  • the space formed by the difference in height between the first portion (21) of the capacitor module (20) and the second portion (22) on both sides thereof is effectively used to make the inverter module (10) It can be arranged. Therefore, the inverter module (10) does not overlap with the second portion (22) of the capacitor module (20) in array direction view, or does not overlap with the first part (21) of capacitor module (20) in height direction Compared to the configuration, the overall downsizing of the inverter unit (1) can be easily achieved.
  • An inverter module (10) having a switching element (11), a capacitor module (20) having a capacitor element (23), and a refrigerant flow path (36) for accommodating the capacitor module (20) and allowing the refrigerant to flow
  • An inverter unit (1) comprising a capacitor case (30);
  • the capacitor module (20) includes a plurality of the capacitor elements (23) arranged along the reference surface (R), and the plurality of capacitor elements (23) are formed in a rectangular parallelepiped shape, respectively.
  • the direction orthogonal to the reference plane (R) is the height direction (D3)
  • the direction in which the plurality of capacitor elements (23) are arranged along the reference plane (R) is the arrangement direction (D2)
  • the direction orthogonal to both the direction (D3) and the arrangement direction (D2) is taken as the width direction (D1).
  • a part of the plurality of capacitor elements (23) is disposed in a first posture in which the longest side (23L) is along the width direction (D1) to form the first part (21) of the capacitor module (20).
  • the rest of the plurality of capacitor elements (23) is disposed in a second posture in which the longest side (23L) is along the height direction (D3), and the second portion (22) of the capacitor module (20)
  • the height of the capacitor module (20) is different while the number of component types is reduced.
  • Two parts a first part (21) and a second part (22)
  • the refrigerant flow path (36) provided in the capacitor case (30) can be disposed by effectively utilizing the concave space (S1) formed by the difference in height with the two portions (22). Therefore, the overall size of the inverter unit (1) can be easily reduced as compared with a configuration in which the entire refrigerant flow path (36) is disposed so as to protrude outside the capacitor module (20).
  • the capacitor module (20) includes a plurality of the capacitor elements (23) arranged along the reference surface (R), and the plurality of capacitor elements (23) are formed in a rectangular parallelepiped shape, respectively.
  • a direction orthogonal to both the height direction (D3) and the arrangement direction (D2) is taken as a width direction (D1).
  • the longest side (23L) is disposed in a first posture along the width direction (D1) to form the first portion (21).
  • the rest of the plurality of capacitor elements (23) is arranged in a second posture in which the longest side (23L) is along the height direction (D3) to constitute the second portion (22) Is preferred.
  • the overall size of the inverter unit (1) can be reduced as compared to a configuration in which the entire refrigerant flow path (36) is disposed to protrude outside the capacitor module (20).
  • the positive electrode (24) and the negative electrode (25) of the capacitor module (20) are provided on the surface of the second portion (22) of the capacitor module (20) along the height direction (D3),
  • the positive electrode terminal (26) of the capacitor module (20) is formed to be separated from the positive electrode (24) at a position not overlapping the first portion (21) in the arrangement direction in the second portion (22) ,
  • the negative electrode terminal (27) of the capacitor module (20) is formed to be separated from the negative electrode (25) at a position not overlapping the first portion (21) in the arrangement direction in the second portion (22) Is preferred.
  • the positive electrode (24) is disposed at a position where the positive electrode terminal (26) and the negative electrode terminal (27) of the capacitor module (20) overlap the first part (21) in the arrangement direction in the second part (22).
  • the effective wiring length between the inverter module (10) and the capacitor module (20) can be shortened and the inductance can be reduced, as compared with the configuration in which the negative electrode (25) is apart. Therefore, it is possible to keep the switching loss in the inverter module (10) small.
  • It further comprises a mounting portion (32M) for mounting the capacitor module (20) to another member,
  • the mounting portion (32M) is disposed in a hollow space (S2) formed by a difference in length of the first portion (21) and the second portion (22) in the width direction (D1). Is preferred.
  • the entire inverter unit (1) including the capacitor module (20) can be fixed to the other member via the mounting portion (32M).
  • the overall size of the inverter unit (1) can be reduced as compared to a configuration in which the entire mounting portion (32M) is disposed so as to protrude to the outside of the capacitor module (20).
  • the inverter module (10) is disposed on the side of the refrigerant flow path (36) opposite to the first portion (21) in the concave space (S1).
  • the concave space (S1) formed by the difference in height between the first portion (21) and the second portion (22) of the capacitor module (20) is effectively used to further
  • the inverter unit (1) can be further miniaturized by arranging the inverter unit (1). Further, by arranging the refrigerant flow path (36) between the inverter module (10) and the first portion (21) of the capacitor module (20), both the switching element (11) and the capacitor can be efficiently cooled. Becomes easy.
  • the inverter unit according to the present disclosure only needs to be able to exhibit at least one of the above-described effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter unit (1) is provided with an inverter module (10) and a capacitor module (20). The capacitor module (20) has: a first portion (21) having a first height (H1); and second portions (22), which are disposed on both sides of the first portion (21), and which have a second height (H2) that is higher than the first height (H1). The inverter module (10) is disposed such that the inverter module overlaps the second portions (22) in an array direction view in array direction (D2) in which the first potion (21) and the second portions (22) are arrayed, and overlaps the first portion (21) in a height direction view in height direction (D3).

Description

インバータユニットInverter unit
 本発明は、インバータユニットに関する。 The present invention relates to an inverter unit.
 直流と複数相の交流との間で電力を変換するために、インバータ装置が用いられている。インバータ装置は、スイッチング素子を有するインバータモジュールとコンデンサ素子を有するコンデンサモジュールとがユニット化されたインバータユニットを含んで構成される場合がある。このようなインバータユニットの一例が、例えば特開2013-176297号公報(特許文献1)に開示されている。 An inverter device is used to convert power between direct current and alternating current of multiple phases. The inverter device may be configured to include an inverter unit in which an inverter module having a switching element and a capacitor module having a capacitor element are unitized. An example of such an inverter unit is disclosed, for example, in Japanese Patent Laid-Open No. 2013-176297 (Patent Document 1).
 特許文献1のインバータユニットでは、直方体状のコンデンサモジュールの上にインバータモジュールが載置されている(特許文献1の図33(C)等を参照)。このような構成では、導体どうしの接合部等においてデッドスペースが多く、全体としてのサイズが大きくなりやすいという欠点があった。 In the inverter unit of Patent Document 1, the inverter module is mounted on a rectangular parallelepiped capacitor module (see, for example, FIG. 33 (C) of Patent Document 1). In such a configuration, there are many dead spaces at the junctions between conductors, etc., and the size as a whole tends to be large.
特開2013-176297号公報JP, 2013-176297, A
 全体としての小型化を図りやすいインバータユニットの実現が望まれる。 It is desirable to realize an inverter unit that can be easily miniaturized as a whole.
 本開示に係る第1のインバータユニットは、
 スイッチング素子を有するインバータモジュールと、コンデンサ素子を有するコンデンサモジュールと、を備えるインバータユニットであって、
 前記コンデンサモジュールは、基準面からの高さが第一高さの第一部分と、前記第一部分の両側に配置され、前記基準面からの高さが前記第一高さよりも高い第二高さの第二部分と、を有し、
 前記インバータモジュールが、前記コンデンサモジュールの前記第一部分と2つの前記第二部分との配列方向に沿う配列方向視で前記第二部分と重複するとともに、前記基準面に直交する高さ方向に沿う高さ方向視で前記第一部分と重複するように配置されている。
The first inverter unit according to the present disclosure is
An inverter unit comprising: an inverter module having a switching element; and a capacitor module having a capacitor element,
The capacitor module is disposed at a first portion at a first height and at both sides of the first portion at a height from a reference surface, and has a second height higher than the first height from the reference surface. And a second part,
The inverter module overlaps the second portion in a direction of arrangement along the direction of arrangement of the first portion and the two second portions of the capacitor module, and the height along the height direction orthogonal to the reference plane It is disposed so as to overlap with the first portion in the longitudinal direction.
 この構成によれば、コンデンサモジュールの第一部分とその両側の第二部分との高さの差によって形成される空間を有効活用して、インバータモジュールを配置することができる。よって、インバータモジュールが配列方向視でコンデンサモジュールの第二部分とは重複しない構成や、高さ方向視でコンデンサモジュールの第一部分と重複しない構成に比べて、インバータユニット全体としての小型化を容易に図ることができる。 According to this configuration, the inverter module can be arranged by effectively utilizing the space formed by the difference in height between the first portion of the capacitor module and the second portion on both sides thereof. Therefore, as compared with the configuration in which the inverter module does not overlap with the second portion of the capacitor module in the array direction view or the configuration without overlapping with the first portion of the capacitor module in the height direction view, downsizing of the inverter unit as a whole is facilitated Can be
 本開示に係る第2のインバータユニットは、
 スイッチング素子を有するインバータモジュールと、コンデンサ素子を有するコンデンサモジュールと、前記コンデンサモジュールを収容するとともに冷媒を流通させる冷媒流路を有するコンデンサケースと、を備えるインバータユニットであって、
 前記コンデンサモジュールは、基準面に沿って配列された複数の前記コンデンサ素子を有し、複数の前記コンデンサ素子がそれぞれ直方体状に形成され、
 前記基準面に直交する方向を高さ方向、前記基準面に沿って複数の前記コンデンサ素子が配列される方向を配列方向、前記高さ方向及び前記配列方向の双方に直交する方向を幅方向として、
 複数の前記コンデンサ素子のうちの一部は、その最長辺が前記幅方向に沿う第一姿勢で配置されて前記コンデンサモジュールの第一部分を構成し、
 複数の前記コンデンサ素子のうちの残りは、その最長辺が前記高さ方向に沿う第二姿勢で配置されて前記コンデンサモジュールの第二部分を構成し、
 前記冷媒流路が、前記第一部分と前記第二部分との前記幅方向の長さの差によって形成される窪み空間と、前記第一部分と前記第二部分との高さの差によって形成される凹状空間と、に配置されている。
The second inverter unit according to the present disclosure is
An inverter unit comprising: an inverter module having a switching element; a capacitor module having a capacitor element; and a capacitor case that accommodates the capacitor module and has a refrigerant flow path through which a refrigerant flows.
The capacitor module includes a plurality of the capacitor elements arranged along a reference plane, and the plurality of capacitor elements are each formed in a rectangular parallelepiped shape.
The direction perpendicular to the reference plane is the height direction, the direction in which the plurality of capacitor elements are arranged along the reference plane is the arrangement direction, and the direction orthogonal to both the height direction and the arrangement direction is the width direction ,
A part of the plurality of capacitor elements is disposed in a first posture in which the longest side is along the width direction to form a first part of the capacitor module,
The remaining ones of the plurality of capacitor elements are arranged in a second posture in which the longest side extends along the height direction to form a second portion of the capacitor module,
The refrigerant flow path is formed by a hollow space formed by the difference in length in the width direction between the first portion and the second portion, and by a difference in height between the first portion and the second portion It is arranged in the concave space.
 この構成によれば、同一形状の複数のコンデンサ素子を用いつつ第一姿勢と第二姿勢とを組み合わせることで、部品点数を少なく抑えつつ、コンデンサモジュールに高さの異なる2つの部分(第一部分及び第二部分)を設けることができる。そして、コンデンサモジュールの第一部分と第二部分との幅方向の長さの差によって形成される窪み空間と、第一部分と第二部分との高さの差によって形成される凹状空間とを有効活用して、コンデンサケースに設けられた冷媒流路を配置することができる。よって、冷媒流路の全体がコンデンサモジュールの外側に突出するように配置される構成に比べて、インバータユニット全体としての小型化を容易に図ることができる。 According to this configuration, by combining the first attitude and the second attitude while using a plurality of capacitor elements having the same shape, the number of parts can be reduced, and two portions (the first portion A second part can be provided. And effectively utilizing the hollow space formed by the difference in length in the width direction between the first part and the second part of the capacitor module and the concave space formed by the difference in height between the first part and the second part Then, the refrigerant flow path provided in the capacitor case can be disposed. Therefore, compared with the structure arrange | positioned so that the whole refrigerant | coolant flow path may be protruded to the outer side of a capacitor | condenser module, size reduction as the whole inverter unit can be achieved easily.
 本開示に係る技術のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the technology according to the present disclosure will become more apparent from the following description of exemplary and non-limiting embodiments which will be described with reference to the drawings.
実施形態に係るインバータユニットの回路ブロック図Circuit block diagram of an inverter unit according to an embodiment インバータユニットの斜視図Perspective view of inverter unit インバータユニットの分解斜視図An exploded perspective view of the inverter unit インバータモジュールの分解斜視図An exploded perspective view of the inverter module インバータモジュールの平面図Top view of the inverter module インバータモジュールの側面図Side view of inverter module コンデンサモジュールの斜視図Perspective view of the capacitor module インバータユニットの平面図Top view of the inverter unit インバータユニットの正面図Front view of inverter unit インバータユニットの側面図Side view of the inverter unit 図9におけるXI-XI断面図XI-XI sectional view in FIG. 9 図9におけるXII-XII断面図XII-XII cross section in FIG. 9 図9におけるXIII-XIII断面図XIII-XIII sectional view in FIG. 9 図8におけるXIV-XIV断面図XIV-XIV sectional view in FIG. 8 別態様のインバータモジュールの平面図Top view of another embodiment of the inverter module 別態様のインバータモジュールの平面図Top view of another embodiment of the inverter module 別態様のインバータモジュールの平面図Top view of another embodiment of the inverter module 別態様のインバータモジュールの側面図Side view of another embodiment of the inverter module
 インバータモジュール及び当該インバータモジュールを備えるインバータユニットの実施形態について、図面を参照して説明する。本実施形態のインバータユニット1及びインバータモジュール10は、例えば電気自動車やハイブリッド車において車両(車輪)の駆動力源として働く回転電機5を制御する回転電機制御システムに組み込まれて用いられる。本実施形態の回転電機5は、直流電源2を電力源とし、複数相(一例として、U相,V相,W相からなる3相)の交流で駆動される交流回転電機である。 Embodiments of an inverter module and an inverter unit including the inverter module will be described with reference to the drawings. The inverter unit 1 and the inverter module 10 of the present embodiment are incorporated in, for example, a rotary electric machine control system that controls the rotary electric machine 5 working as a driving force source of a vehicle (wheel) in an electric car or a hybrid car. The rotary electric machine 5 of the present embodiment is an AC rotary electric machine which uses a DC power supply 2 as an electric power source and is driven by AC of a plurality of phases (three phases consisting of U phase, V phase and W phase as an example).
 図1に示すように、直流電源2と回転電機5との間にインバータ回路4が設けられている。インバータ回路4は、直流と複数相の交流との間で電力を変換する。インバータ回路4は、複数のスイッチング素子11を中核として構成されている。直流電源2とインバータ回路4との間にコンデンサ3が設けられている。コンデンサ3は、インバータ回路4の直流側の電圧を平滑化する。 As shown in FIG. 1, an inverter circuit 4 is provided between the DC power supply 2 and the rotating electrical machine 5. The inverter circuit 4 converts power between direct current and alternating current of multiple phases. The inverter circuit 4 is configured with a plurality of switching elements 11 as a core. A capacitor 3 is provided between the DC power supply 2 and the inverter circuit 4. The capacitor 3 smoothes the voltage on the DC side of the inverter circuit 4.
 複数のスイッチング素子11には、直流電源2の正極に接続される上段側スイッチング素子11Uと、直流電源2の負極に接続される下段側スイッチング素子11Lとが含まれる。各相(U相,V相,W相)において、上段側スイッチング素子11Uと下段側スイッチング素子11Lとが直列に接続されて1つのアームが構成されるとともに、各アームの中間点が、回転電機5の各相のステータコイルに接続されている。なお、以下の説明及び添付図面(例えば図4等)において、U相用の上段側スイッチング素子11Uを符号「11Uu」と表し、V相用の上段側スイッチング素子11Uを符号「11Uv」と表し、W相用の上段側スイッチング素子11Uを符号「11Uw」と表す場合がある。同様に、U相用の下段側スイッチング素子11Lを符号「11Lu」と表し、V相用の下段側スイッチング素子11Lを符号「11Lv」と表し、W相用の下段側スイッチング素子11Lを符号「11Lw」と表す場合がある。 The plurality of switching elements 11 include an upper stage switching element 11 U connected to the positive electrode of the DC power supply 2 and a lower stage switching element 11 L connected to the negative electrode of the DC power supply 2. In each phase (U phase, V phase, W phase), upper stage side switching element 11U and lower stage side switching element 11L are connected in series to constitute one arm, and the middle point of each arm is a rotating electric machine It is connected to the stator coil of each phase of 5. In the following description and the attached drawings (for example, FIG. 4 and the like), the upper stage switching element 11U for U phase is denoted by a symbol “11Uu”, and the upper stage switching element 11U for V phase is denoted by a symbol “11Uv”, There is a case where the upper stage side switching element 11U for W phase is represented by a code "11 Uw". Similarly, the lower phase side switching element 11L for U phase is represented by a symbol "11Lu", the lower side switching element 11L for V phase is represented by a symbol "11Lv", and the lower stage side switching element 11L for W phase is represented by a symbol "11Lw It may be expressed as ".
 スイッチング素子11としては、高周波での動作が可能なパワー半導体素子を好適に用いることができる。好ましい一例として、例えばIGBT(Insulated Gate Bipolar Transistor)や、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を例示することができる。或いは、SiC-MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)やSiC-SIT(SiC - Static Induction Transistor)、GaN-MOSFET(Gallium Nitride - MOSFET)等を例示することもできる。図1には、スイッチング素子11としてIGBTが用いられる形態を例示している。 As the switching element 11, a power semiconductor element capable of operating at high frequency can be suitably used. As a preferable example, for example, an IGBT (Insulated Gate Bipolar Transistor) or a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) can be exemplified. Alternatively, SiC-MOSFETs (Silicon Carbide-Metal Oxide Semiconductor FETs), SiC-SITs (SiC-Static Induction Transistors), GaN-MOSFETs (Gallium Nitride-MOSFETs), etc. can be exemplified. FIG. 1 illustrates an embodiment in which an IGBT is used as the switching element 11.
 各スイッチング素子11には、整流用のダイオード12が並列に接続されている。本実施形態では、スイッチング素子11(11Uu,11Uv,11Uw,11Lu,11Lv,11Lw)は、それぞれ、ダイオード12を内蔵したチップ型素子で構成されている。スイッチング素子11とダイオード12とを含むチップ型素子は、正方形に近い形状(例えばアスペクト比が0.8~1.2程度)の長方形状に形成されている。 A rectifying diode 12 is connected in parallel to each switching element 11. In the present embodiment, the switching elements 11 (11Uu, 11Uv, 11Uw, 11Lu, 11Lv, 11Lw) are each configured by a chip type element incorporating a diode 12. The chip type element including the switching element 11 and the diode 12 is formed in a rectangular shape having a shape close to a square (for example, an aspect ratio of about 0.8 to 1.2).
 インバータ回路4を構成する各スイッチング素子11の制御端子13(例えばIGBTのゲート端子)は、ドライブ回路7(DRV-CCT)を介してインバータ制御装置8(INV-CTRL)に接続されている。インバータ制御装置8は、例えば、より上位の車両制御装置9(VHL-CTRL)から提供される回転電機5の目標トルクに基づいて、ベクトル制御法を用いた電流フィードバック制御を行う。回転電機5の各相のステータコイルを流れる実電流は、電流センサSe1により検出され、回転電機5のロータの各時点での磁極位置は、回転センサSe2により検出される。インバータ制御装置8は、電流センサSe1及び回転センサSe2の検出結果を用いて電流フィードバック制御を実行し、各スイッチング素子11を個別にスイッチング制御する。 A control terminal 13 (for example, a gate terminal of an IGBT) of each switching element 11 constituting the inverter circuit 4 is connected to an inverter control device 8 (INV-CTRL) via a drive circuit 7 (DRV-CCT). The inverter control device 8 performs current feedback control using a vector control method based on, for example, the target torque of the rotating electrical machine 5 provided by the higher-order vehicle control device 9 (VHL-CTRL). The actual current flowing through the stator coil of each phase of the rotary electric machine 5 is detected by the current sensor Se1, and the magnetic pole position at each time of the rotor of the rotary electric machine 5 is detected by the rotation sensor Se2. The inverter control device 8 executes current feedback control using the detection results of the current sensor Se1 and the rotation sensor Se2, and performs switching control of each switching element 11 individually.
 図2及び図3に示すように、インバータユニット1は、インバータモジュール10と、コンデンサモジュール20と、コンデンサケース30と、制御基板40とを備え、これらが一体化されて構成されている。インバータユニット1は、全体としてコンパクトな直方体状に形成された一体化ユニットとして構成されている。 As shown in FIGS. 2 and 3, the inverter unit 1 includes an inverter module 10, a capacitor module 20, a capacitor case 30, and a control board 40, which are integrated. The inverter unit 1 is configured as an integrated unit formed in a compact rectangular parallelepiped shape as a whole.
 インバータモジュール10は、インバータ回路4を構成する複数のスイッチング素子11を有するモジュールである。なお、上述したように本実施形態ではスイッチング素子11はダイオード12を内蔵したチップ型素子で構成されており、以下では、インバータモジュール10に関して「スイッチング素子11」と言う場合には、「チップ型素子」の意を含んでいるものとする。インバータモジュール10は、複数のスイッチング素子11に加え、正極バスバー14と、負極バスバー15と、複数の出力バスバーとを備えている。本実施形のように回転電機5が3相交流で駆動される構成の場合には、複数の出力バスバーとして、第一出力バスバー16、第二出力バスバー17、及び第三出力バスバー18が備えられる。例えば第一出力バスバー16がU相に対応し、第二出力バスバー17がV相に対応し、第三出力バスバー18がW相に対応するものとすることができる。正極バスバー14及び負極バスバー15は、それぞれ1本ずつ備えられている。 The inverter module 10 is a module having a plurality of switching elements 11 constituting the inverter circuit 4. Note that, as described above, in the present embodiment, the switching element 11 is configured by a chip type element including the diode 12, and in the following, when the “switching element 11” is referred to with respect to the inverter module 10, “chip type element It includes the meaning of ''. The inverter module 10 includes a positive bus bar 14, a negative bus bar 15, and a plurality of output bus bars in addition to the plurality of switching elements 11. In the case where the rotary electric machine 5 is driven by three-phase alternating current as in this embodiment, the first output bus bar 16, the second output bus bar 17, and the third output bus bar 18 are provided as a plurality of output bus bars. . For example, the first output bus bar 16 may correspond to the U phase, the second output bus bar 17 may correspond to the V phase, and the third output bus bar 18 may correspond to the W phase. One positive bus bar 14 and one negative bus bar 15 are provided.
 スイッチング素子11、正極バスバー14、負極バスバー15、出力バスバー16,17,18は、例えばモールド樹脂からなる本体部19に少なくとも部分的に埋め込まれた状態で一体化されている。本体部19からは、スイッチング素子11の制御端子13と、正極バスバー14、負極バスバー15、及び出力バスバー16,17,18のそれぞれの接続端子部分が突出している。なお、図4には、本体部19の内部におけるスイッチング素子11、制御端子13、正極バスバー14、負極バスバー15、及び出力バスバー16,17,18の様子を、分解斜視図的に示している。 The switching element 11, the positive electrode bus bar 14, the negative electrode bus bar 15, and the output bus bars 16, 17, 18 are integrated in a state of being at least partially embedded in a main body 19 made of, for example, mold resin. Respective connection terminal portions of the control terminal 13 of the switching element 11, the positive electrode bus bar 14, the negative electrode bus bar 15, and the output bus bars 16, 17, 18 project from the main body portion 19. FIG. 4 is an exploded perspective view showing the switching element 11, the control terminal 13, the positive electrode bus bar 14, the negative electrode bus bar 15, and the output bus bars 16, 17, 18 inside the main body 19. As shown in FIG.
 図4及び図5に示すように、各相の上段側スイッチング素子11Uと下段側スイッチング素子11Lとは、第一方向D1に並んで配置されている。U相用の上段側スイッチング素子11Uuと下段側スイッチング素子11Luとが第一方向D1に並んで配置され、V相用の上段側スイッチング素子11Uvと下段側スイッチング素子11Lvとが第一方向D1に並んで配置され、W相用の上段側スイッチング素子11Uwと下段側スイッチング素子11Lwとが第一方向D1に並んで配置されている。 As shown in FIGS. 4 and 5, the upper stage switching elements 11U and the lower stage switching elements 11L of the respective phases are arranged side by side in the first direction D1. The upper stage side switching element 11Uu and the lower stage side switching element 11Lu for U phase are arranged side by side in the first direction D1, and the upper stage side switching element 11Uv and the lower stage side switching element 11Lv for V phase are arranged in the first direction D1. The upper stage side switching element 11Uw and the lower stage side switching element 11Lw for the W phase are arranged in the first direction D1.
 各相の上段側スイッチング素子11U及び下段側スイッチング素子11Lは、第一方向D1に交差する第二方向D2に並んで配置されている。各相の上段側スイッチング素子11Uは、互いに同一平面上に配置されている。同様に、各相の下段側スイッチング素子11Lは、互いに同一平面上に配置されている。すなわち、U相用の上段側スイッチング素子11Uuと、V相用の上段側スイッチング素子11Uvと、W相用の上段側スイッチング素子11Uwとが、互いに同一平面上において、第二方向D2に並んで配置されている。それらに平行に、U相用の下段側スイッチング素子11Luと、V相用の下段側スイッチング素子11Lvと、W相用の下段側スイッチング素子11Lwとが、互いに同一平面上において、第二方向D2に並んで配置されている。さらに、本実施形態では、各相の上段側スイッチング素子11Uと下段側スイッチング素子11Lとが、互いに同一平面上に配置されている。 The upper stage switching elements 11U and the lower stage switching elements 11L of the respective phases are disposed side by side in a second direction D2 intersecting the first direction D1. The upper stage switching elements 11U of each phase are arranged on the same plane. Similarly, the lower stage switching elements 11L of each phase are arranged on the same plane. That is, the upper stage switching element 11Uu for U phase, the upper stage switching element 11Uv for V phase, and the upper stage switching element 11Uw for W phase are arranged side by side in the second direction D2 on the same plane. It is done. In parallel thereto, the lower switching element 11Lu for U phase, the lower switching element 11Lv for V phase, and the lower switching element 11Lw for W phase are in the second direction D2 on the same plane. They are arranged side by side. Furthermore, in the present embodiment, the upper stage switching element 11U and the lower stage switching element 11L of each phase are disposed on the same plane.
 こうして、インバータ回路4を構成する全て(本例では6つ)のスイッチング素子11は、同一平面上において、2列×3列のマトリクス状に配置されている。本実施形態では、第一方向D1と第二方向D2との交差角度が90°に設定されている。すなわち、第一方向D1と第二方向D2とが互いに直交している。なお、本実施形態では、第一方向D1及び第二方向D2の双方に直交する方向を「第三方向D3」と定義して以下の説明で用いる。なお、以下の説明では、第三方向D3における制御基板40側を「上」、その反対側を「下」と言う場合があるが、これらは、必ずしも鉛直方向における「上」や「下」と一致する訳ではない。 Thus, all (six in this example) switching elements 11 constituting the inverter circuit 4 are arranged in the form of a 2 × 3 matrix on the same plane. In the present embodiment, the intersection angle between the first direction D1 and the second direction D2 is set to 90 °. That is, the first direction D1 and the second direction D2 are orthogonal to each other. In the present embodiment, a direction orthogonal to both the first direction D1 and the second direction D2 is defined as a "third direction D3" and used in the following description. In the following description, the control substrate 40 side in the third direction D3 may be referred to as “upper” and the opposite side may be referred to as “lower”, but these are necessarily “upper” or “lower” in the vertical direction. It does not match.
 同一平面上において2列×3列に整列配置される6つのスイッチング素子11に対して、正極バスバー14、負極バスバー15、及び出力バスバー16,17,18は、それぞれ以下の態様で配置されている。正極バスバー14は、複数の上段側スイッチング素子11Uの下面に接する状態で第二方向D2に沿って配置されている。本実施形態では、各上段側スイッチング素子11Uの下面が、当該上段側スイッチング素子11Uの「第一面」に相当する。また、正極バスバー14における各上段側スイッチング素子11Uのそれぞれの下面(第一面)との接点となる複数の正極接合面部14Sが、共通の平坦面を有することによって互いに同一平面上に配置されている。そして、その正極接合面部14Sの上面に、各上段側スイッチング素子11Uの下面が接する状態で接合されている。正極バスバー14の第二方向D2の両端部は、中央部にある正極接合面部14Sに対して第三方向D3にオフセットされた状態で第二方向D2の外側に突出配置され、それぞれ正極端子部14Tとなっている。 The positive bus bar 14, the negative bus bar 15, and the output bus bars 16, 17, 18 are arranged in the following manner with respect to the six switching elements 11 arranged in alignment in two rows and three in a single plane. . The positive electrode bus bar 14 is disposed along the second direction D2 in a state of being in contact with the lower surfaces of the plurality of upper stage side switching elements 11U. In the present embodiment, the lower surface of each upper stage switching element 11U corresponds to the “first surface” of the upper stage switching element 11U. In addition, a plurality of positive electrode joint surfaces 14S, which are contacts with the lower surface (first surface) of each upper stage switching element 11U in the positive electrode bus bar 14, are arranged on the same plane by having a common flat surface. There is. And it joins in the state which the lower surface of each upper stage side switching element 11U touches on the upper surface of the positive electrode joint surface part 14S. Both end portions of the positive electrode bus bar 14 in the second direction D2 are arranged to protrude outward in the second direction D2 in a state of being offset in the third direction D3 with respect to the positive electrode bonding surface portion 14S at the center portion. It has become.
 負極バスバー15は、複数の下段側スイッチング素子11Lの上面に接する状態で第二方向D2に沿って配置されている。本実施形態では、各下段側スイッチング素子11Lの上面が、当該下段側スイッチング素子11Lの「第二面」に相当する。また、負極バスバー15における各下段側スイッチング素子11Lのそれぞれの上面(第二面)との接点となる複数の負極接合面部15Sが、凹凸状の接続部を介して接続されつつ互いに同一平面上に配置されている。そして、その負極接合面部15Sの下面に、各下段側スイッチング素子11Lの上面が接する状態で接合されている。負極バスバー15の第二方向D2の両端部は、中央部にある負極接合面部15Sに対して第三方向D3にオフセットされた状態で第二方向D2の外側に突出配置され、それぞれ負極端子部15Tとなっている。 The negative bus bar 15 is disposed along the second direction D2 in a state of being in contact with the upper surfaces of the plurality of lower stage switching elements 11L. In the present embodiment, the upper surface of each lower switching element 11L corresponds to the “second surface” of the lower switching element 11L. In addition, a plurality of negative electrode joint surface portions 15S, which are contacts with the upper surfaces (second surfaces) of the lower stage side switching elements 11L in the negative electrode bus bar 15, are connected via the uneven connection portions on the same plane. It is arranged. And it joins in the state which the upper surface of each lower stage side switching element 11L touches on the lower surface of the negative electrode joint surface part 15S. Both end portions of the negative electrode bus bar 15 in the second direction D2 are arranged to protrude outward in the second direction D2 in a state of being offset in the third direction D3 with respect to the negative electrode bonding surface portion 15S at the central portion. It has become.
 このように、本実施形態では、正極バスバー14及び負極バスバー15は、それぞれ、第二方向D2の両側に端子部14T,15Tを有する。そして、正極バスバー14及び負極バスバー15は、第二方向D2の両側の端子部14T,15Tを介して、それぞれの両端部においてコンデンサ3(後述するコンデンサ素子23)に接続されている。 Thus, in the present embodiment, the positive electrode bus bar 14 and the negative electrode bus bar 15 respectively have the terminal portions 14T and 15T on both sides in the second direction D2. The positive electrode bus bar 14 and the negative electrode bus bar 15 are connected to the capacitor 3 (capacitor element 23 described later) at each end via the terminal portions 14T and 15T on both sides in the second direction D2.
 複数の出力バスバー16,17,18は、対応する相の上段側スイッチング素子11Uの上面に接し、かつ、対応する相の下段側スイッチング素子11Lの下面に接する状態で、第一方向D1に沿って配置されている。本実施形態では、各上段側スイッチング素子11Uの上面が、当該上段側スイッチング素子11Uの「第二面」に相当する。また、各下段側スイッチング素子11Lの下面が、当該上段側スイッチング素子11Uの「第一面」に相当する。 The plurality of output bus bars 16, 17, 18 are in contact with the upper surface of the upper stage switching element 11U of the corresponding phase, and in contact with the lower surface of the lower stage switching element 11L of the corresponding phase, along the first direction D1. It is arranged. In the present embodiment, the upper surface of each upper-stage switching element 11U corresponds to the “second surface” of the upper-stage switching element 11U. Further, the lower surface of each lower switching element 11L corresponds to the "first surface" of the upper switching element 11U.
 図6に示すように、第三出力バスバー18は、その延在方向である第一方向D1におけるW相用の下段側スイッチング素子11Lwと上段側スイッチング素子11Uwとの間の位置に、屈曲部18Bを有する。また、第三出力バスバー18は、第一方向D1における屈曲部18Bの両側に、下段出力接合面部18Lと上段出力接合面部18Uとを有する。下段出力接合面部18Lは、W相用の下段側スイッチング素子11Lwの下面(第一面)との接点となる部位であり、上段出力接合面部18Uは、W相用の上段側スイッチング素子11Uwの上面(第二面)との接点となる部位である。下段出力接合面部18Lと上段出力接合面部18Uとは互いに平行であり、かつ、上段出力接合面部18Uは下段出力接合面部18Lに対して上側にオフセットした位置に配置されている。こうして、第三出力バスバー18は、第二方向D2に見てクランク状に形成されている。上段出力接合面部18Uと下段出力接合面部18Lとのオフセット量は、スイッチング素子11の厚みと、正極バスバー14(及び負極バスバー15)の厚みとの和に等しく設定されている。 As shown in FIG. 6, the third output bus bar 18 is bent at a position between the lower stage switching element 11Lw for the W phase and the upper stage switching element 11Uw in the first direction D1 which is the extending direction thereof. Have. In addition, the third output bus bar 18 has a lower output joint surface portion 18L and an upper output joint surface portion 18U on both sides of the bent portion 18B in the first direction D1. The lower output joint surface portion 18L is a portion which is a contact point with the lower surface (first surface) of the lower stage switching element 11Lw for W phase, and the upper output joint surface section 18U is an upper surface of the upper stage switching element 11Uw for W phase. This part is a contact point with the (second surface). The lower output joint surface portion 18L and the upper output joint surface portion 18U are parallel to each other, and the upper output joint surface portion 18U is disposed at a position offset upward with respect to the lower output joint surface portion 18L. Thus, the third output bus bar 18 is formed in a crank shape as viewed in the second direction D2. The offset amount between the upper output joint surface portion 18U and the lower output joint surface portion 18L is set equal to the sum of the thickness of the switching element 11 and the thickness of the positive electrode bus bar 14 (and the negative electrode bus bar 15).
 さらに本実施形態では、第三出力バスバー18における上段出力接合面部18Uが、負極バスバー15における負極接合面部15Sと同一平面上に配置されている。さらに、第三出力バスバー18における下段出力接合面部18Lが、正極バスバー14における正極接合面部14Sと同一平面上に配置されている。 Furthermore, in the present embodiment, the upper output joint surface portion 18U of the third output bus bar 18 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative bus bar 15. Furthermore, the lower output joint surface portion 18L of the third output bus bar 18 is disposed on the same plane as the positive electrode joint surface portion 14S of the positive electrode bus bar 14.
 図示は省略するが、第一出力バスバー16及び第二出力バスバー17に関しても同様である。第一出力バスバー16は、屈曲部16Bと下段出力接合面部16Lと上段出力接合面部16Uとを有し、第二方向D2に見てクランク状に形成されている。第一出力バスバー16の上段出力接合面部16Uが負極バスバー15の負極接合面部15Sと同一平面上に配置され、第一出力バスバー16の下段出力接合面部16Lが正極バスバー14の正極接合面部14Sと同一平面上に配置されている。第二出力バスバー17は、屈曲部17Bと下段出力接合面部17Lと上段出力接合面部17Uとを有し、第二方向D2に見てクランク状に形成されている。第二出力バスバー17の上段出力接合面部17Uが負極バスバー15の負極接合面部15Sと同一平面上に配置され、第二出力バスバー17の下段出力接合面部17Lが正極バスバー14の正極接合面部14Sと同一平面上に配置されている。 Although illustration is omitted, the same applies to the first output bus bar 16 and the second output bus bar 17. The first output bus bar 16 has a bent portion 16B, a lower output joint surface portion 16L, and an upper output joint surface portion 16U, and is formed in a crank shape in the second direction D2. The upper output joint surface portion 16U of the first output bus bar 16 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative electrode bus bar 15, and the lower output joint surface portion 16L of the first output bus bar 16 is the same as the positive electrode joint surface portion 14S of the positive electrode bus bar 14. It is arranged on a plane. The second output bus bar 17 has a bent portion 17B, a lower output joint surface portion 17L, and an upper output joint surface portion 17U, and is formed in a crank shape in the second direction D2. The upper output joint surface portion 17U of the second output bus bar 17 is disposed on the same plane as the negative electrode joint surface portion 15S of the negative electrode bus bar 15, and the lower output joint surface portion 17L of the second output bus bar 17 is the same as the positive electrode joint surface portion 14S of the positive electrode bus bar 14. It is arranged on a plane.
 こうして、複数のスイッチング素子11、正極バスバー14、負極バスバー15、及び複数の出力バスバー16,17,18が、図6に示すように、スイッチング素子11、正極バスバー14(及び負極バスバー15)、及び第三出力バスバー18(及び出力バスバー16,17)の合計厚みの範囲内に全て収まるように配置されている。 Thus, as shown in FIG. 6, the plurality of switching elements 11, the positive electrode bus bar 14, the negative electrode bus bar 15, and the plurality of output bus bars 16, 17, 18, the switching element 11, the positive electrode bus bar 14 (and the negative electrode bus bar 15), All of the third output bus bars 18 (and the output bus bars 16 and 17) are arranged to fall within the total thickness range.
 複数の出力バスバー16,17,18の第一方向D1における下段出力接合面部16L,17L,18Lとは反対側の端部は、上向きに屈曲されて、当該部位は端子部16T,17T,18Tとなっている。端子部16T,17T,18Tは、回転電機5の各相のステータコイルから延びる回転電機接続バスバー90が接続される端子である。本実施形態では、端子部16T,17T,18Tは、第一方向D1において、上段側スイッチング素子11Uに対して下段側スイッチング素子11Lとは反対側に配置されている。それに伴い、端子部16T,17T,18Tは、第一方向D1において、正極バスバー14に対して負極バスバー15とは反対側に配置されている。 The ends of the plurality of output bus bars 16, 17, 18 opposite to the lower output joint surface portions 16L, 17L, 18L in the first direction D1 are bent upward, and the corresponding portions are terminal portions 16T, 17T, 18T, and the like. It has become. The terminal portions 16T, 17T, and 18T are terminals to which the rotary electric machine connection bus bars 90 extending from the stator coils of the respective phases of the rotary electric machine 5 are connected. In the present embodiment, the terminal portions 16T, 17T, and 18T are disposed on the side opposite to the lower switching element 11L with respect to the upper switching element 11U in the first direction D1. Accordingly, the terminal portions 16T, 17T, and 18T are disposed on the side of the positive electrode bus bar 14 opposite to the negative electrode bus bar 15 in the first direction D1.
 図4~図6に示すように、下段側スイッチング素子11Lの制御端子13は、当該下段側スイッチング素子11Lに接続された出力バスバー16,17,18と第三方向視で重複する位置において、負極バスバー15に対して第一方向D1に隣接する位置に配置されている。なお、2つの部材の配置に関して「ある方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線に直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が少なくとも一部に存在することを指す。 As shown in FIGS. 4 to 6, the control terminal 13 of the lower switching element 11L is a negative electrode at a position overlapping the output bus bar 16, 17, 18 connected to the lower switching element 11L in the third direction. It is arranged at a position adjacent to the bus bar 15 in the first direction D1. Note that “overlap in a certain direction” regarding the arrangement of two members means that two virtual straight lines are two members when the virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line. It means that the area which intersects both sides exists in at least one part.
 下段側スイッチング素子11Lの制御端子13は、第一方向D1において、負極バスバー15に対して正極バスバー14や端子部16T,17T,18Tとは反対側に隣接する位置に配置されている。そして、下段側スイッチング素子11Lの制御端子13は、負極バスバー15の側面に対して所定間隔を隔てた状態で、第三方向D3に沿って上方に延びるように配置されている。さらに、各相用の下段側スイッチング素子11Lu,11Lv,11Lwの制御端子13は、全体として、第二方向D2に沿って一直線上に並ぶように整列配置されている。 The control terminal 13 of the lower switching element 11L is disposed at a position adjacent to the negative bus bar 15 on the opposite side of the positive bus bar 14 and the terminal portions 16T, 17T, 18T in the first direction D1. The control terminal 13 of the lower switching element 11L is disposed to extend upward along the third direction D3 with a predetermined distance from the side surface of the negative electrode bus bar 15. Furthermore, the control terminals 13 of the lower stage side switching elements 11Lu, 11Lv, and 11Lw for each phase are aligned and arranged in a straight line along the second direction D2 as a whole.
 一方、上段側スイッチング素子11Uの制御端子13は、正極バスバー14と第三方向視で重複する位置において、当該上段側スイッチング素子11Uに接続された出力バスバー16,17,18に対して第二方向D2に隣接する位置に配置されている。複数の上段側スイッチング素子11Uの制御端子13のうちの少なくとも1つ(本例ではU相用及びV相用の計2つ)は、互いに隣接する第一出力バスバー16と第二出力バスバー17との間、又は、互いに隣接する第二出力バスバー17と第三出力バスバー18との間に配置されている。そして、上段側スイッチング素子11Uの制御端子13は、対応する出力バスバー16,17,18の側面に対して所定間隔を隔てた状態で、第三方向D3に沿って上方に延びるように配置されている。さらに、各相用の上段側スイッチング素子11Uu,11Uv,11Uwの制御端子13は、それぞれ第一方向D1に沿って整列した状態で、互いに平行に配置されている。 On the other hand, at a position where the control terminal 13 of the upper stage switching element 11U overlaps the positive electrode bus bar 14 in the third direction, the second direction with respect to the output bus bar 16, 17, 18 connected to the upper stage switching element 11U. It is arranged at a position adjacent to D2. At least one of the control terminals 13 of the plurality of upper stage side switching elements 11U (in this example, a total of two for the U phase and the V phase) includes the first output bus bar 16 and the second output bus bar 17 adjacent to each other Or between the second output bus bar 17 and the third output bus bar 18 adjacent to each other. The control terminal 13 of the upper stage switching element 11U is arranged to extend upward along the third direction D3 with a predetermined distance from the side surface of the corresponding output bus bar 16, 17, 18 There is. Furthermore, the control terminals 13 of the upper stage side switching elements 11Uu, 11Uv, 11Uw for each phase are arranged in parallel with each other in a state of being aligned along the first direction D1.
 コンデンサモジュール20は、コンデンサ3を構成する複数のコンデンサ素子23を有するモジュールである。図7に示すように、コンデンサモジュール20は、第一高さH1の第一部分21と、第二高さH2の第二部分22とを有する。第二高さH2は、第一高さH1よりも高い。なお、第一高さH1及び第二高さH2は、基準面Rからの第三方向D3に沿う高さであり、本実施形態では基準面Rは後述する支持板28(図14を参照)の支持面とされている。本実施形態では、第一部分21は1箇所に集約して設けられているのに対して、第二部分22は2箇所に分かれて設けられている。2つの第二部分22は、第一部分21に対して、第二方向D2の両側に配置されている。本実施形態では、第二方向D2が「配列方向」に相当し、第三方向D3が「高さ方向」に相当する。また、第二方向D2及び第三方向D3の双方に直交する第一方向D1が「幅方向」に相当する。なお、本実施形態では第三方向D3(高さ方向)は基準面Rに直交する方向であり、必ずしも鉛直方向と一致する訳ではない。 The capacitor module 20 is a module having a plurality of capacitor elements 23 constituting the capacitor 3. As shown in FIG. 7, the capacitor module 20 has a first portion 21 of a first height H1 and a second portion 22 of a second height H2. The second height H2 is higher than the first height H1. The first height H1 and the second height H2 are heights along the third direction D3 from the reference surface R, and in the present embodiment, the reference surface R is a support plate 28 described later (see FIG. 14). It is considered as a supporting surface of In the present embodiment, the first portion 21 is provided in one place, whereas the second portion 22 is provided in two places. The two second portions 22 are disposed on both sides of the second direction D2 with respect to the first portion 21. In the present embodiment, the second direction D2 corresponds to the “arrangement direction”, and the third direction D3 corresponds to the “height direction”. Moreover, the first direction D1 orthogonal to both the second direction D2 and the third direction D3 corresponds to the "width direction". In the present embodiment, the third direction D3 (height direction) is a direction orthogonal to the reference surface R, and does not necessarily coincide with the vertical direction.
 コンデンサモジュール20を構成する複数のコンデンサ素子23は、それぞれ直方体状に形成されている。コンデンサ素子23は、辺に沿う長さが最も長い最長辺23Lと、辺に沿う長さが最も短い最短辺と、辺に沿う長さが最短辺よりも長く最長辺23Lよりも短い中間辺23Mとを有する、1の頂点から延びる3辺の長さが互いに異なる直方体状に形成されている。複数のコンデンサ素子23は、互いに同一形状に形成されている。コンデンサ素子23は、例えばポリエチレンテレフタレート(PET)等のプラスチックフィルムを巻回して構成されたもの(フィルムコンデンサ)を用いることができる。但しそのような構成に限定されることなく、積層型のコンデンサ素子23や他の形式のコンデンサ素子23を用いても良い。複数のコンデンサ素子23は、支持板28(図14を参照)に支持された状態で基準面Rに沿って配列されている。 The plurality of capacitor elements 23 constituting the capacitor module 20 are each formed in a rectangular parallelepiped shape. Capacitor element 23 has a longest side 23L having the longest length along the side, a shortest side having the shortest length along the side, and an intermediate side 23M having a length along the side longer than the shortest side and shorter than the longest side 23L. The lengths of three sides extending from the top of one vertex are formed in mutually different rectangular shapes. The plurality of capacitor elements 23 are formed in the same shape. The capacitor element 23 can be, for example, one (film capacitor) configured by winding a plastic film such as polyethylene terephthalate (PET). However, without being limited to such a configuration, a multilayer capacitor element 23 or another type of capacitor element 23 may be used. The plurality of capacitor elements 23 are arranged along the reference surface R while being supported by the support plate 28 (see FIG. 14).
 本実施形態では、コンデンサモジュール20は5つのコンデンサ素子23を含んで構成されている。全て(本例では5つ)のコンデンサ素子23は、その最短辺が複数のコンデンサ素子23の配列方向である第二方向D2に沿う姿勢で配置されている。コンデンサモジュール20の第一部分21は、最長辺23Lが第一方向D1に沿う第一姿勢で配置された、複数のコンデンサ素子23のうちの一部(本例では3つのコンデンサ素子23)で構成されている。コンデンサモジュール20の第一部分21の第一高さH1は、コンデンサ素子23の中間辺23Mの長さに等しい。また、コンデンサモジュール20の第一部分21の第一方向D1に沿う長さ(奥行)は、コンデンサ素子23の最長辺23Lの長さに等しい。 In the present embodiment, the capacitor module 20 is configured to include five capacitor elements 23. All (five in the present example) capacitor elements 23 are arranged in a posture in which the shortest side is along the second direction D2 in which the plurality of capacitor elements 23 are arranged. The first portion 21 of the capacitor module 20 is configured by a part (three capacitor elements 23 in this example) of the plurality of capacitor elements 23 in which the longest side 23L is disposed in the first posture along the first direction D1. ing. The first height H 1 of the first portion 21 of the capacitor module 20 is equal to the length of the middle side 23 M of the capacitor element 23. Further, the length (depth) along the first direction D1 of the first portion 21 of the capacitor module 20 is equal to the length of the longest side 23L of the capacitor element 23.
 一方、コンデンサモジュール20の第二部分22は、最長辺23Lが第三方向D3に沿う第二姿勢で配置された、複数のコンデンサ素子23のうちの一部(本例では残余の2つのコンデンサ素子23の1つずつ)で構成されている。コンデンサモジュール20の第二部分22の第二高さH2は、コンデンサ素子23の最長辺23Lの長さに等しい。また、コンデンサモジュール20の第二部分22の第一方向D1に沿う長さ(奥行)は、コンデンサ素子23の中間辺23Mの長さに等しい。 On the other hand, in the second portion 22 of the capacitor module 20, a part of the plurality of capacitor elements 23 (the remaining two capacitor elements in this example) having the longest side 23L arranged in the second posture along the third direction D3. Each one of the 23). The second height H 2 of the second portion 22 of the capacitor module 20 is equal to the length of the longest side 23 L of the capacitor element 23. Further, the length (depth) of the second portion 22 of the capacitor module 20 along the first direction D1 is equal to the length of the middle side 23M of the capacitor element 23.
 このような構成により、コンデンサモジュール20の周辺には、当該コンデンサモジュール20の外径の凹凸によって形成された2種類の空間(凹状空間S1,窪み空間S2)が存在する。凹状空間S1は、第一部分21と第二部分22との高さの差(第三方向D3の長さの差)によって形成される空間である。凹状空間S1は、第一姿勢のコンデンサ素子23よりも上方であって、第二姿勢で対向する2つのコンデンサ素子23によって第二方向D2に挟まれた空間として形成されている。窪み空間S2は、第一部分21と第二部分22との奥行の差(第一方向D1の長さの差)によって形成される空間である。窪み空間S2は、第一姿勢のコンデンサ素子23に対して第二方向D2に隣接するとともに第二姿勢のコンデンサ素子23に対して第一方向D1に隣接し、全体として第三方向D3に沿って延びる空間として形成されている。 With such a configuration, two types of spaces (concave space S1 and hollow space S2) formed by the unevenness of the outer diameter of the capacitor module 20 exist around the capacitor module 20. The concave space S1 is a space formed by the difference in height between the first portion 21 and the second portion 22 (difference in length in the third direction D3). The concave space S1 is formed above the capacitor element 23 in the first posture, and is formed as a space sandwiched in the second direction D2 by the two capacitor elements 23 opposed in the second posture. The recess space S2 is a space formed by the difference in depth between the first portion 21 and the second portion 22 (difference in length in the first direction D1). The recess space S2 is adjacent to the capacitor element 23 in the first attitude in the second direction D2 and adjacent to the capacitor element 23 in the second attitude in the first direction D1, and generally along the third direction D3. It is formed as an extending space.
 本実施形態では、これらのうち、凹状空間S1を利用してインバータモジュール10が配置されている(図14を参照)。すなわち、インバータモジュール10が、コンデンサモジュール20の第一部分21と第二部分22との高さの差によって形成される凹状空間S1に配置されている。インバータモジュール10は、第二方向視でコンデンサモジュール20の第二部分22(第二姿勢のコンデンサ素子23)と重複するとともに、第三方向視でコンデンサモジュール20の第一部分21(第一姿勢のコンデンサ素子23)と重複するように配置されている。この点に関しては、コンデンサケース30の構造とも絡めて後述する。 In the present embodiment, among these, the inverter module 10 is disposed using the concave space S1 (see FIG. 14). That is, the inverter module 10 is disposed in the concave space S1 formed by the difference in height between the first portion 21 and the second portion 22 of the capacitor module 20. The inverter module 10 overlaps the second portion 22 (the capacitor element 23 of the second posture) of the capacitor module 20 in the second direction, and the first portion 21 of the capacitor module 20 (the capacitor in the first posture) in the third direction It is arranged to overlap with the element 23). This point will be described later in connection with the structure of the capacitor case 30.
 図11及び図12に示すように、コンデンサモジュール20の第二部分22(第二姿勢のコンデンサ素子23)の第三方向D3に沿う側面(第一方向D1の両側面)に、正電極24と負電極25とが設けられている。第二姿勢のコンデンサ素子23の第一方向D1の両側面のうちの一方に正電極24が設けられ、他方に負電極25が設けられている。そして、コンデンサモジュール20の正極端子26が、第二部分22における第二方向視で第一部分21(第一姿勢のコンデンサ素子23)と重複しない位置で正電極24から離れるように形成されている。また、コンデンサモジュール20の負極端子27が、第二部分22における第二方向D2視で第一部分21と重複しない位置で負電極25から離れるように形成されている。本実施形態では、正極端子26及び負極端子27は、いずれも、図3に示すように、第二部分22の上端部(第一部分21からの突出端部)で正電極24又は負電極25から離れるように形成されている。 As shown in FIGS. 11 and 12, the positive electrode 24 and the side surfaces (both side surfaces in the first direction D1) along the third direction D3 of the second portion 22 of the capacitor module 20 (the capacitor element 23 in the second posture) A negative electrode 25 is provided. The positive electrode 24 is provided on one of both side surfaces of the capacitor element 23 in the second posture in the first direction D1, and the negative electrode 25 is provided on the other. The positive electrode terminal 26 of the capacitor module 20 is formed so as to be separated from the positive electrode 24 at a position not overlapping with the first portion 21 (the capacitor element 23 in the first posture) in the second direction in the second portion 22. Further, the negative electrode terminal 27 of the capacitor module 20 is formed to be separated from the negative electrode 25 at a position not overlapping the first portion 21 in the second direction D2 in the second portion 22. In the present embodiment, as shown in FIG. 3, both the positive electrode terminal 26 and the negative electrode terminal 27 are from the positive electrode 24 or the negative electrode 25 at the upper end portion (projecting end portion from the first portion 21) of the second portion 22. It is formed to leave.
 コンデンサモジュール20の2つの第二部分22のそれぞれにおいて、正極端子26と負極端子27とは、同じ第二方向D2の位置において、第一方向D1に隣接して配置されている。コンデンサモジュール20の正極端子26には、コンデンサケース30の天井部35に形成された開口部を介して、インバータモジュール10の正極バスバー14の正極端子部14Tが接続される。また、コンデンサモジュール20の負極端子27には、コンデンサケース30の天井部35に形成された開口部を介して、インバータモジュール10の負極バスバー15の負極端子部15Tが接続される。 In each of the two second portions 22 of the capacitor module 20, the positive electrode terminal 26 and the negative electrode terminal 27 are disposed adjacent to the first direction D1 at the same position in the second direction D2. The positive electrode terminal portion 14T of the positive electrode bus bar 14 of the inverter module 10 is connected to the positive electrode terminal 26 of the capacitor module 20 through the opening formed in the ceiling portion 35 of the capacitor case 30. In addition, the negative electrode terminal portion 15T of the negative electrode bus bar 15 of the inverter module 10 is connected to the negative electrode terminal 27 of the capacitor module 20 via the opening formed in the ceiling portion 35 of the capacitor case 30.
 コンデンサケース30は、コンデンサモジュール20を収容するケースである。図3及び図11~図13等に示すように、コンデンサケース30は、コンデンサモジュール20の四方を取り囲む第一側壁31、第二側壁32、第三側壁33、及び第四側壁34と、コンデンサモジュール20上方を覆う天井部35とを有する箱型に形成されている。本実施形態のコンデンサケース30は、冷媒を流通させる冷媒流路36をさらに有している。冷媒流路36は、主にインバータモジュール10に含まれるスイッチング素子11を冷却するための冷媒(例えば冷却水)が流れる流路(冷却水路)であり、コンデンサケース30の内部に形成されている。コンデンサケース30は、例えばヒートシンクのように働いて冷却装置としても機能することができるように熱伝導率が高い材料(例えば銅やアルミニウム等)で形成されている。 The capacitor case 30 is a case for housing the capacitor module 20. As shown in FIGS. 3 and 11 to 13 and the like, the capacitor case 30 includes a first side wall 31, a second side wall 32, a third side wall 33, and a fourth side wall 34 surrounding four sides of the capacitor module 20; 20 is formed in a box shape having a ceiling 35 covering the upper side. The capacitor case 30 of the present embodiment further includes a refrigerant flow path 36 for circulating the refrigerant. The refrigerant flow channel 36 is a flow channel (cooling water channel) through which a refrigerant (for example, cooling water) for mainly cooling the switching element 11 included in the inverter module 10 flows, and is formed inside the capacitor case 30. The capacitor case 30 is formed of, for example, a material having a high thermal conductivity (for example, copper, aluminum, etc.) so as to function as a heat sink and also function as a cooling device.
 図3及び図11に示すように、冷媒流路36は、流入流路36Iと冷却流路36Cと排出流路36Oとを含む。流入流路36Iは、第三方向D3に沿って延びるように第二側壁32に形成されている。排出流路36Oは、第三方向D3に沿って延びるように第一側壁31に形成されている。冷却流路36Cは、流入流路36Iの下流側に連通するとともに排出流路36Oの上流側に連通し、第一方向D1及び第二方向D2の双方に沿って面状に広がるように、天井部35に形成されている。図11及び図14に示すように、冷却流路36Cには、複数の柱状(図示の例では細長い円柱状)のフィン37が設けられている。複数のフィン37は、冷却流路36Cのほぼ全域に設けられ、互いに僅かずつ隙間を空けた状態で規則的に(図示の例では六角格子状に)配列されている。 As shown in FIGS. 3 and 11, the refrigerant channel 36 includes an inflow channel 36I, a cooling channel 36C, and a discharge channel 36O. The inflow passage 36I is formed in the second side wall 32 so as to extend along the third direction D3. The discharge flow path 36O is formed in the first side wall 31 so as to extend along the third direction D3. The cooling passage 36C communicates with the downstream side of the inflow passage 36I and communicates with the upstream side of the discharging passage 36O, and extends in a planar manner along both the first direction D1 and the second direction D2. It is formed in the part 35. As shown in FIG. 11 and FIG. 14, a plurality of columnar (long and thin cylindrical in the illustrated example) fins 37 are provided in the cooling flow path 36C. The plurality of fins 37 are provided substantially in the entire area of the cooling flow passage 36C, and are arranged regularly (in the example of the illustrated example in the form of a hexagonal grid) with a gap slightly between them.
 上述したように、コンデンサモジュール20の周辺には、当該コンデンサモジュール20の外径の凹凸によって形成された2種類の空間(凹状空間S1,窪み空間S2)が存在する。本実施形態では、これらの凹状空間S1及び窪み空間S2を利用して冷媒流路36が配置されている。すなわち、冷媒流路36が、コンデンサモジュール20の第一部分21と第二部分22との高さの差によって形成される凹状空間S1と、コンデンサモジュール20の第一部分21と第二部分22との奥行の差によって形成される窪み空間S2とに配置されている。 As described above, around the capacitor module 20, there are two types of spaces (concave space S1 and recess space S2) formed by the unevenness of the outer diameter of the capacitor module 20. In the present embodiment, the refrigerant flow path 36 is disposed utilizing the concave space S1 and the hollow space S2. That is, the concave space S1 formed by the difference in height between the first portion 21 and the second portion 22 of the capacitor module 20, and the depth of the first portion 21 and the second portion 22 of the capacitor module 20 And a depression space S2 formed by the difference between
 具体的には、図12に示すように、冷媒流路36を構成する流入流路36Iが、2つの窪み空間S2のうちの一方において、当該窪み空間S2に沿って配置されている。流入流路36Iは、第一方向視でコンデンサモジュール20の第二部分22と重複するとともに、第二方向視でコンデンサモジュール20の第二部分22と重複するように配置されている。また、図14に示すように、冷媒流路36を構成する冷却流路36Cが、凹状空間S1に配置されている。冷却流路36Cは、第二方向視でコンデンサモジュール20の第二部分22と重複するとともに、第三方向視でコンデンサモジュール20の第一部分21と重複するように配置されている。冷却流路36Cは、凹状空間S1において、コンデンサモジュール20の第一部分21とインバータモジュール10との間に配置されている。冷却流路36Cの上面は平坦面に形成されており、そこにインバータモジュール10の下面が全体的に接する状態で固定されている。 Specifically, as shown in FIG. 12, the inflow passage 36I constituting the refrigerant passage 36 is disposed along the hollow space S2 in one of the two hollow spaces S2. The inflow passage 36I is disposed so as to overlap with the second portion 22 of the capacitor module 20 in a first direction view and to overlap with the second portion 22 of the capacitor module 20 in a second direction view. Further, as shown in FIG. 14, a cooling flow passage 36C that constitutes the refrigerant flow passage 36 is disposed in the concave space S1. The cooling flow passage 36C is disposed so as to overlap with the second portion 22 of the capacitor module 20 in the second direction view and overlap with the first portion 21 of the capacitor module 20 in the third direction view. The cooling passage 36C is disposed between the first portion 21 of the capacitor module 20 and the inverter module 10 in the concave space S1. The upper surface of the cooling channel 36C is formed to be a flat surface, and is fixed in a state in which the lower surface of the inverter module 10 is in contact with the entire surface.
 図2及び図8~図10等に示すように、第一側壁31における第三側壁33及び第四側壁34とのそれぞれの境界部の下端部に取付部31Mが設けられているとともに、第二側壁32における第三側壁33及び第四側壁34とのそれぞれの境界部の下端部に取付部32Mが設けられている。これらの取付部31M,32Mは、コンデンサケース30に収容された状態のコンデンサモジュール20を他部材に取り付けるための部位である。インバータユニット1が独立して流通する場合には、例えばコンデンサケース30の下部に固定される底部カバー38(図14を参照)が「他部材」であると良い。また、インバータユニット1が車載される場合には、当該車両の一部が「他部材」であって良く、その場合においてさらに車両の一部と底部カバー38とコンデンサケース30とが共締めされる場合には、当該車両の一部及び底部カバー38が「他部材」であって良い。 As shown in FIG. 2 and FIGS. 8 to 10, etc., the attachment portion 31M is provided at the lower end portion of the boundary portion between the third side wall 33 and the fourth side wall 34 in the first side wall 31 An attachment portion 32 </ b> M is provided at the lower end portion of the boundary portion between the third side wall 33 and the fourth side wall 34 in the side wall 32. The attachment portions 31M and 32M are portions for attaching the capacitor module 20 in a state of being accommodated in the capacitor case 30 to other members. In the case where the inverter unit 1 circulates independently, for example, the bottom cover 38 (see FIG. 14) fixed to the lower part of the capacitor case 30 may be the “other member”. Moreover, when the inverter unit 1 is mounted on a vehicle, a part of the vehicle may be the "other member", and in this case, the part of the vehicle, the bottom cover 38 and the capacitor case 30 are further tightened. In this case, a portion of the vehicle and the bottom cover 38 may be "other components".
 図8及び図13等を参照して理解できるように、第二側壁32の取付部32Mは、コンデンサモジュール20の第一部分21と第二部分22との奥行の差によって形成される窪み空間S2に配置されている。 As can be understood with reference to FIGS. 8 and 13, etc., the attachment portion 32M of the second side wall 32 is in the recess space S2 formed by the difference in depth between the first portion 21 and the second portion 22 of the capacitor module 20. It is arranged.
 なお、図12及び図13に示すように、冷媒流路36を構成する排出流路36Oや、第一側壁31の取付部31Mは、窪み空間S2には配置されていない。排出流路36Oや取付部31Mは、第一方向D1の一方側(図12における下側)において同一平面状に配置されたコンデンサモジュール20の側面に対してそれよりも外側に隣接して配置されている。第二方向視で排出流路36Oと重複する位置には、回転電機5の各相のステータコイルから延びる3本の回転電機接続バスバー90が、第一側壁31に沿う状態で、第二方向D2に沿って一列に並んで配置されている。 Note that, as shown in FIGS. 12 and 13, the discharge flow path 36O constituting the refrigerant flow path 36 and the mounting portion 31M of the first side wall 31 are not disposed in the depression space S2. The discharge flow path 36O and the attachment portion 31M are disposed adjacent to the outer side of the side surface of the capacitor module 20 disposed on the same plane on one side (the lower side in FIG. 12) of the first direction D1. ing. At a position overlapping the discharge flow path 36O in the second direction view, the three rotary electric machine connection bus bars 90 extending from the stator coils of each phase of the rotary electric machine 5 extend along the first side wall 31 in the second direction D2. Are arranged in a row along the.
 制御基板40は、ドライブ回路7やインバータ制御装置8を構成する機能部を実装した基板である。制御基板40は、インバータモジュール10を上方から覆う状態で、コンデンサケース30に固定されている。 The control substrate 40 is a substrate on which functional units constituting the drive circuit 7 and the inverter control device 8 are mounted. The control board 40 is fixed to the capacitor case 30 so as to cover the inverter module 10 from above.
〔その他の実施形態〕
(1)上記の実施形態では、正極バスバー14及び負極バスバー15がそれぞれ第二方向D2の両側に端子部14T,15Tを有する構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図15に示すように、正極バスバー14及び負極バスバー15が、それぞれ、第二方向D2の一方の側だけに端子部14T,15Tを有しても良い。この場合、図示するように、正極端子部14Tが第二方向D2の一方側に配置され、負極端子部15Tが第二方向D2の他方側に配置されても良い。或いは、図示は省略するが、正極端子部14T及び負極端子部15Tが第二方向D2の同じ側に配置されても良い。
Other Embodiments
(1) In the above embodiment, the configuration in which the positive electrode bus bar 14 and the negative electrode bus bar 15 respectively have the terminal portions 14T and 15T on both sides in the second direction D2 has been described as an example. However, without being limited to such a configuration, for example, as shown in FIG. 15, the positive electrode bus bar 14 and the negative electrode bus bar 15 each have terminal portions 14T and 15T only on one side in the second direction D2. It is good. In this case, as illustrated, the positive electrode terminal portion 14T may be disposed on one side in the second direction D2, and the negative electrode terminal portion 15T may be disposed on the other side in the second direction D2. Alternatively, although not shown, the positive electrode terminal portion 14T and the negative electrode terminal portion 15T may be disposed on the same side in the second direction D2.
(2)上記の実施形態では、各相の上段側スイッチング素子11Uの制御端子13が、対応する出力バスバー16,17,18に対して第二方向D2の同じ側に配置されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図16に示すように、各相の上段側スイッチング素子11Uの制御端子13のうちの一部が、第二方向D2において、対応する出力バスバー16,17,18に対して他の制御端子13とは反対側に配置されても良い。 (2) In the above embodiment, the control terminal 13 of the upper stage switching element 11U of each phase is arranged on the same side in the second direction D2 with respect to the corresponding output bus bar 16, 17, 18 As described. However, without being limited to such a configuration, for example, as shown in FIG. 16, a part of the control terminals 13 of the upper stage switching element 11U of each phase is a corresponding output bus bar in the second direction D2. It may be arranged on the opposite side to the other control terminal 13 with respect to 16, 17, and 18.
(3)上記の実施形態では、上段側スイッチング素子11Uが第一方向D1において下段側スイッチング素子11Lよりも出力バスバー16,17,18の端子部16T,17T,18Tに近い位置に配置されている構成を例として説明した。しかし、そのような構成に限定されることなく、下段側スイッチング素子11Lが上段側スイッチング素子11Uよりも端子部16T,17T,18Tに近い位置に配置されても良い。この場合、例えば図17及び図18に示すように、上段側スイッチング素子11Uの制御端子13及び下段側スイッチング素子11Lの制御端子13が、それぞれ、正極バスバー14又は負極バスバー15に対して第一方向D1に隣接する位置に配置されると良い。図示するように、上段側スイッチング素子11Uの制御端子13と下段側スイッチング素子11Lの制御端子13とが、互いに平行に、第一方向D1において正極バスバー14及び負極バスバー15を挟んで互いに反対側に配置されても良い。或いは、上段側スイッチング素子11Uの制御端子13が、正極バスバー14に対して第一方向D1に隣接する位置に配置され、下段側スイッチング素子11Lの制御端子13が、当該下段側スイッチング素子11Lに接続された出力バスバー16,17,18に対して第二方向D2に隣接する位置に配置されても良い。 (3) In the above embodiment, the upper switching element 11U is disposed at a position closer to the terminal portions 16T, 17T, 18T of the output bus bars 16, 17, 18 in the first direction D1 than the lower switching element 11L. The configuration has been described as an example. However, without being limited to such a configuration, the lower switching element 11L may be disposed closer to the terminal portions 16T, 17T, and 18T than the upper switching element 11U. In this case, for example, as shown in FIGS. 17 and 18, the control terminal 13 of the upper stage switching element 11U and the control terminal 13 of the lower stage switching element 11L respectively have a first direction with respect to the positive electrode bus bar 14 or the negative electrode bus bar 15. It is preferable to be disposed at a position adjacent to D1. As illustrated, the control terminal 13 of the upper stage switching element 11U and the control terminal 13 of the lower stage switching element 11L are parallel to each other and on opposite sides of the positive bus bar 14 and the negative bus bar 15 in the first direction D1. It may be arranged. Alternatively, the control terminal 13 of the upper stage switching element 11U is disposed at a position adjacent to the positive electrode bus bar 14 in the first direction D1, and the control terminal 13 of the lower stage switching element 11L is connected to the lower stage switching element 11L. It may be disposed at a position adjacent to the output bus bars 16, 17, 18 in the second direction D2.
(4)上記の実施形態では、各相の上段側スイッチング素子11Uと下段側スイッチング素子11Lとが互いに同一平面上に配置されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば各相の上段側スイッチング素子11Uと下段側スイッチング素子11Lとが第三方向D3における互いに異なる位置に、段違い状に配置されても良い。この場合、出力バスバー16,17,18は、屈曲部16B,17B,18Bを有することなく、第二方向視で平板状に形成されても良い。また、各相の上段側スイッチング素子11Uと下段側スイッチング素子11Lとが互いに同一平面上に配置される構成において、制御端子13の形状を調整することで、出力バスバー16,17,18を第二方向視で平板状に形成しても良い。 (4) In the above embodiment, the configuration in which the upper stage switching element 11U and the lower stage switching element 11L of each phase are disposed on the same plane has been described as an example. However, without being limited to such a configuration, for example, the upper stage switching element 11U and the lower stage switching element 11L of each phase may be arranged in a staggered manner at mutually different positions in the third direction D3. In this case, the output bus bars 16, 17, 18 may be formed flat in a second direction without having the bent portions 16B, 17B, 18B. Further, in the configuration in which the upper stage side switching element 11U and the lower stage side switching element 11L of each phase are disposed on the same plane with each other, the output bus bars 16, 17 and 18 can be secondly adjusted by adjusting the shape of the control terminal 13. You may form in flat form by direction view.
(5)上記の実施形態では、スイッチング素子11がダイオード12を内蔵したチップ型素子で構成されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えばスイッチング素子11とダイオード12とが、互いに独立した別々の素子で構成されても良い。 (5) In the above embodiment, the configuration in which the switching element 11 is a chip type element incorporating the diode 12 has been described as an example. However, without being limited to such a configuration, for example, the switching element 11 and the diode 12 may be configured by separate elements independent of each other.
(6)上記の実施形態では、「幅方向」としての第一方向D1と「配列方向」としての第二方向D2とが直交している構成を例として説明した。しかし、そのような構成に限定されることなく、第一方向D1と第二方向D2とが斜めに交差しても良い。 (6) In the above embodiment, the configuration in which the first direction D1 as the “width direction” and the second direction D2 as the “arrangement direction” are orthogonal to each other has been described as an example. However, without being limited to such a configuration, the first direction D1 and the second direction D2 may intersect diagonally.
(7)上記の実施形態では、同一形状のコンデンサ素子23の一部が第一姿勢で配置され、他の一部が第二姿勢で配置されることで、コンデンサモジュール20が高さの異なる第一部分21と第二部分22とを有する構成を例として説明した。しかし、そのような構成に限定されることなく、例えば高さだけが異なる2種の大きさのコンデンサ素子23を用いることで、コンデンサモジュール20が第一部分21と第二部分22とを有するように構成しても良い。このように、コンデンサモジュール20の第一部分21と第二部分22とが、第一方向D1に沿う奥行長さが等しく設定されても良い。 (7) In the above embodiment, a part of the capacitor elements 23 having the same shape is disposed in the first attitude, and another part is disposed in the second attitude, so that the capacitor modules 20 have different heights. The configuration having the portion 21 and the second portion 22 has been described as an example. However, without being limited to such a configuration, for example, by using capacitor elements 23 of two sizes different only in height, the capacitor module 20 has the first portion 21 and the second portion 22. You may configure. As described above, the first portion 21 and the second portion 22 of the capacitor module 20 may be set to have the same depth along the first direction D1.
(8)上記の実施形態では、コンデンサモジュール20が第一方向D1の一方側において同一平面状に配置され、第一方向D1の他方側に2つの窪み空間S2が設けられる構成を例として説明した。しかし、そのような構成に限定されることなく、例えば第二姿勢のコンデンサ素子23が第一姿勢のコンデンサ素子23の中間部に配置されて、コンデンサモジュール20の四隅に窪み空間S2が設けられても良い。この場合、冷媒流路36を構成する排出流路36Oや第一側壁31の取付部31Mも、窪み空間S2に配置されると良い。 (8) In the above embodiment, the configuration in which the capacitor module 20 is disposed in the same plane on one side in the first direction D1 and the two hollow spaces S2 are provided on the other side in the first direction D1 has been described as an example. . However, without being limited to such a configuration, for example, the capacitor element 23 in the second attitude is disposed in the middle portion of the capacitor element 23 in the first attitude, and the recess space S2 is provided at the four corners of the capacitor module 20 Also good. In this case, the exhaust flow path 36O constituting the refrigerant flow path 36 and the attachment portion 31M of the first side wall 31 may be disposed in the depression space S2.
(9)上記の実施形態では、コンデンサモジュール20の正極端子26や負極端子27が、第二部分22の上端部で正電極24又は負電極25から離れるように形成されている構成を例として説明した。しかし、そのような構成に限定されることなく、正極端子26及び負極端子27は、インバータモジュール10に近い位置でコンデンサモジュール20の正電極24又は負電極25から離れていることが望ましい。例えば正極端子26や負極端子27が、第二部分22における第一部分21よりも上方であって上端部よりも下方の位置で正電極24又は負電極25から離れるように形成されても良い。言い換えると、正極端子26及び負極端子27は、第二部分22における第二方向視(配列方向視)で第一部分21と重複しない位置で正電極24又は負電極25から離れるように形成されると良い。或いは、正極端子26及び負極端子27は、第二方向視(配列方向視)で第一部分21と重複する位置で正電極24又は負電極25から離れるように形成されても良い。 (9) In the above embodiment, the configuration in which the positive electrode terminal 26 and the negative electrode terminal 27 of the capacitor module 20 are formed away from the positive electrode 24 or the negative electrode 25 at the upper end of the second portion 22 is described as an example did. However, without being limited to such a configuration, it is desirable that the positive electrode terminal 26 and the negative electrode terminal 27 be separated from the positive electrode 24 or the negative electrode 25 of the capacitor module 20 at a position close to the inverter module 10. For example, the positive electrode terminal 26 and the negative electrode terminal 27 may be formed so as to be separated from the positive electrode 24 or the negative electrode 25 at a position above the first portion 21 and below the upper end of the second portion 22. In other words, when the positive electrode terminal 26 and the negative electrode terminal 27 are formed apart from the positive electrode 24 or the negative electrode 25 at a position not overlapping the first portion 21 in the second direction 22 (view in the arrangement direction) in the second portion 22 good. Alternatively, the positive electrode terminal 26 and the negative electrode terminal 27 may be formed apart from the positive electrode 24 or the negative electrode 25 at a position overlapping the first portion 21 in the second direction (arrangement direction).
(10)上記の実施形態では、冷媒流路36が凹状空間S1と窪み空間S2とに配置され、かつ、凹状空間S1に冷媒流路36を構成する冷却流路36Cと共にインバータモジュール10が配置された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば少なくとも凹状空間S1にインバータモジュール10が配置されていれば、冷媒流路36は必ずしも凹状空間S1及び窪み空間S2の両方には配置されなくても良い。 (10) In the above embodiment, the refrigerant channel 36 is disposed in the concave space S1 and the recess space S2, and the inverter module 10 is disposed in the concave space S1 together with the cooling channel 36C that constitutes the refrigerant channel 36. The above configuration has been described as an example. However, without being limited to such a configuration, for example, if the inverter module 10 is disposed at least in the concave space S1, the refrigerant channel 36 is not necessarily disposed in both the concave space S1 and the concave space S2. Also good.
(11)上述した各実施形態(上記の実施形態及びその他の実施形態を含む;以下同様)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本開示の趣旨を逸脱しない範囲内で適宜改変することが可能である。 (11) The configurations disclosed in the above-described embodiments (including the above-described embodiment and the other embodiments; the same applies hereinafter) are applied in combination with the configurations disclosed in the other embodiments, as long as no contradiction arises. It is also possible. With regard to other configurations, the embodiment disclosed in the present specification is illustrative in all respects, and can be appropriately modified within the scope of the present disclosure.
〔実施形態の概要〕
 以上をまとめると、本開示に係るインバータユニットは、好適には、以下の各構成を備える。
Outline of Embodiment
Summarizing the above, the inverter unit according to the present disclosure preferably includes the following configurations.
 スイッチング素子(11)を有するインバータモジュール(10)と、コンデンサ素子(23)を有するコンデンサモジュール(20)と、を備えるインバータユニット(1)であって、
 前記コンデンサモジュール(20)は、基準面(R)からの高さが第一高さ(H1)の第一部分(21)と、前記第一部分(21)の両側に配置され、前記基準面(R)からの高さが前記第一高さ(H1)よりも高い第二高さ(H2)の第二部分(22)と、を有し、
 前記インバータモジュール(10)が、前記コンデンサモジュール(20)の前記第一部分(21)と2つの前記第二部分(22)との配列方向(D2)に沿う配列方向視で前記第二部分(22)と重複するとともに、前記基準面(R)に直交する高さ方向(D3)に沿う高さ方向視で前記第一部分(21)と重複するように配置されている。
An inverter unit (1) comprising: an inverter module (10) having a switching element (11); and a capacitor module (20) having a capacitor element (23),
The capacitor module (20) is disposed on both sides of the first portion (21) of the first height (H1) at a height from the reference surface (R) and the first portion (21), the reference surface (R) And a second portion (22) of a second height (H2), the height of which is higher than said first height (H1),
The second portion (22) is viewed in the arrangement direction along the arrangement direction (D2) of the first portion (21) of the capacitor module (20) and the two second portions (22) of the inverter module (10). And the first portion (21) as viewed in the height direction along the height direction (D3) orthogonal to the reference surface (R).
 この構成によれば、コンデンサモジュール(20)の第一部分(21)とその両側の第二部分(22)との高さの差によって形成される空間を有効活用して、インバータモジュール(10)を配置することができる。よって、インバータモジュール(10)が配列方向視でコンデンサモジュール(20)の第二部分(22)とは重複しない構成や、高さ方向視でコンデンサモジュール(20)の第一部分(21)と重複しない構成に比べて、インバータユニット(1)全体としての小型化を容易に図ることができる。 According to this configuration, the space formed by the difference in height between the first portion (21) of the capacitor module (20) and the second portion (22) on both sides thereof is effectively used to make the inverter module (10) It can be arranged. Therefore, the inverter module (10) does not overlap with the second portion (22) of the capacitor module (20) in array direction view, or does not overlap with the first part (21) of capacitor module (20) in height direction Compared to the configuration, the overall downsizing of the inverter unit (1) can be easily achieved.
 スイッチング素子(11)を有するインバータモジュール(10)と、コンデンサ素子(23)を有するコンデンサモジュール(20)と、前記コンデンサモジュール(20)を収容するとともに冷媒を流通させる冷媒流路(36)を有するコンデンサケース(30)と、を備えるインバータユニット(1)であって、
 前記コンデンサモジュール(20)は、基準面(R)に沿って配列された複数の前記コンデンサ素子(23)を有し、複数の前記コンデンサ素子(23)がそれぞれ直方体状に形成され、
 前記基準面(R)に直交する方向を高さ方向(D3)、前記基準面(R)に沿って複数の前記コンデンサ素子(23)が配列される方向を配列方向(D2)、前記高さ方向(D3)及び前記配列方向(D2)の双方に直交する方向を幅方向(D1)として、
 複数の前記コンデンサ素子(23)のうちの一部は、その最長辺(23L)が前記幅方向(D1)に沿う第一姿勢で配置されて前記コンデンサモジュール(20)の第一部分(21)を構成し、
 複数の前記コンデンサ素子(23)のうちの残りは、その最長辺(23L)が前記高さ方向(D3)に沿う第二姿勢で配置されて前記コンデンサモジュール(20)の第二部分(22)を構成し、
 前記冷媒流路(36)が、前記第一部分(21)と前記第二部分(22)との前記幅方向(D1)の長さの差によって形成される窪み空間(S2)と、前記第一部分(21)と前記第二部分(22)との高さの差によって形成される凹状空間(S1)と、に配置されている。
An inverter module (10) having a switching element (11), a capacitor module (20) having a capacitor element (23), and a refrigerant flow path (36) for accommodating the capacitor module (20) and allowing the refrigerant to flow An inverter unit (1) comprising a capacitor case (30);
The capacitor module (20) includes a plurality of the capacitor elements (23) arranged along the reference surface (R), and the plurality of capacitor elements (23) are formed in a rectangular parallelepiped shape, respectively.
The direction orthogonal to the reference plane (R) is the height direction (D3), the direction in which the plurality of capacitor elements (23) are arranged along the reference plane (R) is the arrangement direction (D2), the height The direction orthogonal to both the direction (D3) and the arrangement direction (D2) is taken as the width direction (D1).
A part of the plurality of capacitor elements (23) is disposed in a first posture in which the longest side (23L) is along the width direction (D1) to form the first part (21) of the capacitor module (20). Configure
The rest of the plurality of capacitor elements (23) is disposed in a second posture in which the longest side (23L) is along the height direction (D3), and the second portion (22) of the capacitor module (20) Configure
A hollow space (S2) in which the refrigerant flow path (36) is formed by a difference in length in the width direction (D1) of the first portion (21) and the second portion (22), and the first portion It is arrange | positioned in the concave space (S1) formed of the difference of the height of (21) and said 2nd part (22).
 この構成によれば、同一形状の複数のコンデンサ素子(23)を用いつつ第一姿勢と第二姿勢とを組み合わせることで、部品種類数を少なく抑えつつ、コンデンサモジュール(20)に高さの異なる2つの部分(第一部分(21)及び第二部分(22))を設けることができる。そして、コンデンサモジュール(20)の第一部分(21)と第二部分(22)との幅方向(D1)の長さの差によって形成される窪み空間(S2)と、第一部分(21)と第二部分(22)との高さの差によって形成される凹状空間(S1)とを有効活用して、コンデンサケース(30)に設けられた冷媒流路(36)を配置することができる。よって、冷媒流路(36)の全体がコンデンサモジュール(20)の外側に突出するように配置される構成に比べて、インバータユニット(1)全体としての小型化を容易に図ることができる。 According to this configuration, by combining the first attitude and the second attitude while using a plurality of capacitor elements (23) having the same shape, the height of the capacitor module (20) is different while the number of component types is reduced. Two parts (a first part (21) and a second part (22)) can be provided. Then, a recess space (S2) formed by the difference in length in the width direction (D1) of the first portion (21) and the second portion (22) of the capacitor module (20), the first portion (21) and the The refrigerant flow path (36) provided in the capacitor case (30) can be disposed by effectively utilizing the concave space (S1) formed by the difference in height with the two portions (22). Therefore, the overall size of the inverter unit (1) can be easily reduced as compared with a configuration in which the entire refrigerant flow path (36) is disposed so as to protrude outside the capacitor module (20).
 一態様として、
 前記コンデンサモジュール(20)は、基準面(R)に沿って配列された複数の前記コンデンサ素子(23)を有し、複数の前記コンデンサ素子(23)がそれぞれ直方体状に形成され、
 前記高さ方向(D3)及び前記配列方向(D2)の双方に直交する方向を幅方向(D1)として、
 複数の前記コンデンサ素子(23)のうちの一部は、その最長辺(23L)が前記幅方向(D1)に沿う第一姿勢で配置されて前記第一部分(21)を構成し、
 複数の前記コンデンサ素子(23)のうちの残りは、その最長辺(23L)が前記高さ方向(D3)に沿う第二姿勢で配置されて前記第二部分(22)を構成していることが好ましい。
As one aspect,
The capacitor module (20) includes a plurality of the capacitor elements (23) arranged along the reference surface (R), and the plurality of capacitor elements (23) are formed in a rectangular parallelepiped shape, respectively.
A direction orthogonal to both the height direction (D3) and the arrangement direction (D2) is taken as a width direction (D1).
Among the plurality of capacitor elements (23), the longest side (23L) is disposed in a first posture along the width direction (D1) to form the first portion (21).
The rest of the plurality of capacitor elements (23) is arranged in a second posture in which the longest side (23L) is along the height direction (D3) to constitute the second portion (22) Is preferred.
 この構成によれば、同一形状の複数のコンデンサ素子(23)を用いつつ第一姿勢と第二姿勢とを組み合わせることで、部品点数を少なく抑えつつ、コンデンサモジュール(20)に高さの異なる2つの部分(第一部分(21)及び第二部分(22))を設けることができる。 According to this configuration, by combining the first attitude and the second attitude while using a plurality of capacitor elements (23) of the same shape, the number of parts can be reduced and the height of the capacitor module (20) is different 2 One part (a first part (21) and a second part (22)) can be provided.
 一態様として、
 前記コンデンサモジュール(20)を収容するとともに冷媒を流通させる冷媒流路(36)を有するコンデンサケース(30)をさらに備え、
 前記冷媒流路(36)が、前記第一部分(21)と前記第二部分(22)との前記幅方向(D1)の長さの差によって形成される窪み空間(S2)と、前記第一部分(21)と前記第二部分(22)との高さの差によって形成される凹状空間(S1)と、に配置されていることが好ましい。
As one aspect,
And a condenser case (30) having a refrigerant flow path (36) for accommodating the condenser module (20) and circulating the refrigerant.
A hollow space (S2) in which the refrigerant flow path (36) is formed by a difference in length in the width direction (D1) of the first portion (21) and the second portion (22), and the first portion It is preferable to arrange | position to concave space (S1) formed of the difference of the height of (21) and said 2nd part (22).
 この構成によれば、コンデンサモジュール(20)の第一部分(21)と第二部分(22)との幅方向(D1)の長さの差によって形成される窪み空間(S2)と、第一部分(21)と第二部分(22)との高さの差によって形成される凹状空間(S1)とを有効活用して、コンデンサケース(30)に設けられた冷媒流路(36)を配置することができる。よって、冷媒流路(36)の全体がコンデンサモジュール(20)の外側に突出するように配置される構成に比べて、インバータユニット(1)全体としての小型化を図ることができる。 According to this configuration, the hollow space (S2) formed by the difference in length in the width direction (D1) of the first portion (21) and the second portion (22) of the capacitor module (20) 21) arranging the refrigerant flow path (36) provided in the capacitor case (30) by effectively utilizing the concave space (S1) formed by the difference in height between the second portion (22) and the second portion (22) Can. Thus, the overall size of the inverter unit (1) can be reduced as compared to a configuration in which the entire refrigerant flow path (36) is disposed to protrude outside the capacitor module (20).
 一態様として、
 前記コンデンサモジュール(20)の前記第二部分(22)の前記高さ方向(D3)に沿う面に、前記コンデンサモジュール(20)の正電極(24)と負電極(25)とが設けられ、
 前記コンデンサモジュール(20)の正極端子(26)が、前記第二部分(22)における前記配列方向視で前記第一部分(21)と重複しない位置で前記正電極(24)から離れるように形成され、
 前記コンデンサモジュール(20)の負極端子(27)が、前記第二部分(22)における前記配列方向視で前記第一部分(21)と重複しない位置で前記負電極(25)から離れるように形成されていることが好ましい。
As one aspect,
The positive electrode (24) and the negative electrode (25) of the capacitor module (20) are provided on the surface of the second portion (22) of the capacitor module (20) along the height direction (D3),
The positive electrode terminal (26) of the capacitor module (20) is formed to be separated from the positive electrode (24) at a position not overlapping the first portion (21) in the arrangement direction in the second portion (22) ,
The negative electrode terminal (27) of the capacitor module (20) is formed to be separated from the negative electrode (25) at a position not overlapping the first portion (21) in the arrangement direction in the second portion (22) Is preferred.
 この構成によれば、コンデンサモジュール(20)の正極端子(26)や負極端子(27)が第二部分(22)における配列方向視で第一部分(21)と重複する位置で正電極(24)又は負電極(25)から離れる構成に比べて、インバータモジュール(10)とコンデンサモジュール(20)との有効配線長を短くすることができ、インダクタンスを低減することができる。よって、インバータモジュール(10)でのスイッチング損失を小さく抑えることが可能となる。 According to this configuration, the positive electrode (24) is disposed at a position where the positive electrode terminal (26) and the negative electrode terminal (27) of the capacitor module (20) overlap the first part (21) in the arrangement direction in the second part (22). Alternatively, the effective wiring length between the inverter module (10) and the capacitor module (20) can be shortened and the inductance can be reduced, as compared with the configuration in which the negative electrode (25) is apart. Therefore, it is possible to keep the switching loss in the inverter module (10) small.
 一態様として、
 前記コンデンサモジュール(20)を他部材に取り付けるための取付部(32M)をさらに備え、
 前記取付部(32M)が、前記第一部分(21)と前記第二部分(22)との前記幅方向(D1)の長さの差によって形成される窪み空間(S2)に配置されていることが好ましい。
As one aspect,
It further comprises a mounting portion (32M) for mounting the capacitor module (20) to another member,
The mounting portion (32M) is disposed in a hollow space (S2) formed by a difference in length of the first portion (21) and the second portion (22) in the width direction (D1). Is preferred.
 この構成によれば、取付部(32M)を介して、コンデンサモジュール(20)を含むインバータユニット(1)全体を他部材に固定することができる。その場合において、取付部(32M)の全体がコンデンサモジュール(20)の外側に突出するように配置される構成に比べて、インバータユニット(1)全体としての小型化を図ることができる。 According to this configuration, the entire inverter unit (1) including the capacitor module (20) can be fixed to the other member via the mounting portion (32M). In that case, the overall size of the inverter unit (1) can be reduced as compared to a configuration in which the entire mounting portion (32M) is disposed so as to protrude to the outside of the capacitor module (20).
 一態様として、
 前記凹状空間(S1)における、前記冷媒流路(36)に対して前記第一部分(21)側とは反対側に、前記インバータモジュール(10)が配置されていることが好ましい。
As one aspect,
Preferably, the inverter module (10) is disposed on the side of the refrigerant flow path (36) opposite to the first portion (21) in the concave space (S1).
 この構成によれば、コンデンサモジュール(20)の第一部分(21)と第二部分(22)との高さの差によって形成される凹状空間(S1)を有効活用して、さらにインバータモジュール(10)を配置することで、インバータユニット(1)のさらなる小型化を図ることができる。また、インバータモジュール(10)とコンデンサモジュール(20)の第一部分(21)との間に冷媒流路(36)を配置することで、スイッチング素子(11)及びコンデンサの両方を効率的に冷却することが容易となる。 According to this configuration, the concave space (S1) formed by the difference in height between the first portion (21) and the second portion (22) of the capacitor module (20) is effectively used to further The inverter unit (1) can be further miniaturized by arranging the inverter unit (1). Further, by arranging the refrigerant flow path (36) between the inverter module (10) and the first portion (21) of the capacitor module (20), both the switching element (11) and the capacitor can be efficiently cooled. Becomes easy.
 本開示に係るインバータユニットは、上述した各効果のうち、少なくとも1つを奏することができれば良い。 The inverter unit according to the present disclosure only needs to be able to exhibit at least one of the above-described effects.
1    インバータユニット
4    インバータ回路
10   インバータモジュール
11   スイッチング素子
11U  上段側スイッチング素子
11L  下段側スイッチング素子
12   ダイオード
13   制御端子
14   正極バスバー
14S  正極接合面部
14T  正極端子部
15   負極バスバー
15S  負極接合面部
15T  負極端子部
16   第一出力バスバー(出力バスバー)
17   第二出力バスバー(出力バスバー)
18   第三出力バスバー(出力バスバー)
16U  上段出力接合面部
17U  上段出力接合面部
18U  上段出力接合面部
16L  下段出力接合面部
17L  下段出力接合面部
18L  下段出力接合面部
20   コンデンサモジュール
21   第一部分
22   第二部分
23   コンデンサ素子
23L  最長辺
24   正電極
25   負電極
26   正極端子
27   負極端子
30   コンデンサケース
31M  取付部
32M  取付部
36   冷媒流路
R    基準面
D1   第一方向(幅方向)
D2   第二方向(配列方向)
D3   第三方向(高さ方向)
H1   第一高さ
H2   第二高さ
S1   凹状空間
S2   窪み空間
DESCRIPTION OF SYMBOLS 1 inverter unit 4 inverter circuit 10 inverter module 11 switching element 11U upper stage side switching element 11L lower stage side switching element 12 diode 13 control terminal 14 positive electrode bus bar 14S positive electrode connecting surface 14T positive electrode terminal 15 15 negative electrode bus bar 15S negative electrode connecting surface 15T First output bus bar (output bus bar)
17 2nd output bus bar (output bus bar)
18 3rd output bus bar (output bus bar)
16U upper stage output joint surface section 17U upper stage output joint surface section 18U upper stage output joint surface section 16L lower stage output joint surface section 17L lower stage output joint surface section 18L lower stage output joint surface section 20 capacitor module 21 first section 22 second section 23 capacitor element 23L longest side 24 positive electrode 25 Negative electrode 26 Positive electrode terminal 27 Negative electrode terminal 30 Capacitor case 31M Mounting portion 32M Mounting portion 36 Refrigerant flow path R Reference surface D1 First direction (width direction)
D2 Second direction (array direction)
D3 third direction (height direction)
H1 first height H2 second height S1 concave space S2 hollow space

Claims (9)

  1.  スイッチング素子を有するインバータモジュールと、コンデンサ素子を有するコンデンサモジュールと、を備えるインバータユニットであって、
     前記コンデンサモジュールは、基準面からの高さが第一高さの第一部分と、前記第一部分の両側に配置され、前記基準面からの高さが前記第一高さよりも高い第二高さの第二部分と、を有し、
     前記インバータモジュールが、前記コンデンサモジュールの前記第一部分と2つの前記第二部分との配列方向に沿う配列方向視で前記第二部分と重複するとともに、前記基準面に直交する高さ方向に沿う高さ方向視で前記第一部分と重複するように配置されているインバータユニット。
    An inverter unit comprising: an inverter module having a switching element; and a capacitor module having a capacitor element,
    The capacitor module is disposed at a first portion at a first height and at both sides of the first portion at a height from a reference surface, and has a second height higher than the first height from the reference surface. And a second part,
    The inverter module overlaps the second portion in a direction of arrangement along the direction of arrangement of the first portion and the two second portions of the capacitor module, and the height along the height direction orthogonal to the reference plane The inverter unit arrange | positioned so that it may overlap with the said 1st part by sight view.
  2.  前記コンデンサモジュールは、基準面に沿って配列された複数の前記コンデンサ素子を有し、複数の前記コンデンサ素子がそれぞれ直方体状に形成され、
     前記高さ方向及び前記配列方向の双方に直交する方向を幅方向として、
     複数の前記コンデンサ素子のうちの一部は、その最長辺が前記幅方向に沿う第一姿勢で配置されて前記第一部分を構成し、
     複数の前記コンデンサ素子のうちの残りは、その最長辺が前記高さ方向に沿う第二姿勢で配置されて前記第二部分を構成している請求項1に記載のインバータユニット。
    The capacitor module includes a plurality of the capacitor elements arranged along a reference plane, and the plurality of capacitor elements are each formed in a rectangular parallelepiped shape.
    A direction orthogonal to both the height direction and the arrangement direction is a width direction,
    Among the plurality of capacitor elements, the longest side is disposed in a first posture along the width direction to form the first portion,
    The inverter unit according to claim 1, wherein the remaining ones of the plurality of capacitor elements are arranged in a second posture in which the longest side is along the height direction to configure the second portion.
  3.  前記コンデンサモジュールを収容するとともに冷媒を流通させる冷媒流路を有するコンデンサケースをさらに備え、
     前記冷媒流路が、前記第一部分と前記第二部分との前記幅方向の長さの差によって形成される窪み空間と、前記第一部分と前記第二部分との高さの差によって形成される凹状空間と、に配置されている請求項2に記載のインバータユニット。
    And a condenser case having a refrigerant flow path for accommodating the condenser module and circulating the refrigerant.
    The refrigerant flow path is formed by a hollow space formed by the difference in length in the width direction between the first portion and the second portion, and by a difference in height between the first portion and the second portion The inverter unit according to claim 2 disposed in the concave space.
  4.  前記コンデンサモジュールの前記第二部分の前記高さ方向に沿う面に、前記コンデンサモジュールの正電極と負電極とが設けられ、
     前記コンデンサモジュールの正極端子が、前記第二部分における前記配列方向視で前記第一部分と重複しない位置で前記正電極から離れるように形成され、
     前記コンデンサモジュールの負極端子が、前記第二部分における前記配列方向視で前記第一部分と重複しない位置で前記負電極から離れるように形成されている請求項2又は3に記載のインバータユニット。
    A positive electrode and a negative electrode of the capacitor module are provided on a surface of the second portion of the capacitor module along the height direction,
    The positive electrode terminal of the capacitor module is formed to be separated from the positive electrode at a position not overlapping the first portion in the arrangement direction in the second portion,
    The inverter unit according to claim 2 or 3, wherein the negative electrode terminal of the capacitor module is formed to be separated from the negative electrode at a position not overlapping the first portion in the arrangement direction in the second portion.
  5.  前記コンデンサモジュールを他部材に取り付けるための取付部をさらに備え、
     前記取付部が、前記第一部分と前記第二部分との前記幅方向の長さの差によって形成される窪み空間に配置されている請求項2から4のいずれか一項に記載のインバータユニット。
    And a mounting portion for mounting the capacitor module to another member,
    The inverter unit according to any one of claims 2 to 4, wherein the attachment portion is disposed in a hollow space formed by a difference in length in the width direction between the first portion and the second portion.
  6.  スイッチング素子を有するインバータモジュールと、コンデンサ素子を有するコンデンサモジュールと、前記コンデンサモジュールを収容するとともに冷媒を流通させる冷媒流路を有するコンデンサケースと、を備えるインバータユニットであって、
     前記コンデンサモジュールは、基準面に沿って配列された複数の前記コンデンサ素子を有し、複数の前記コンデンサ素子がそれぞれ直方体状に形成され、
     前記基準面に直交する方向を高さ方向、前記基準面に沿って複数の前記コンデンサ素子が配列される方向を配列方向、前記高さ方向及び前記配列方向の双方に直交する方向を幅方向として、
     複数の前記コンデンサ素子のうちの一部は、その最長辺が前記幅方向に沿う第一姿勢で配置されて前記コンデンサモジュールの第一部分を構成し、
     複数の前記コンデンサ素子のうちの残りは、その最長辺が前記高さ方向に沿う第二姿勢で配置されて前記コンデンサモジュールの第二部分を構成し、
     前記冷媒流路が、前記第一部分と前記第二部分との前記幅方向の長さの差によって形成される窪み空間と、前記第一部分と前記第二部分との高さの差によって形成される凹状空間と、に配置されているインバータユニット。
    An inverter unit comprising: an inverter module having a switching element; a capacitor module having a capacitor element; and a capacitor case that accommodates the capacitor module and has a refrigerant flow path through which a refrigerant flows.
    The capacitor module includes a plurality of the capacitor elements arranged along a reference plane, and the plurality of capacitor elements are each formed in a rectangular parallelepiped shape.
    The direction perpendicular to the reference plane is the height direction, the direction in which the plurality of capacitor elements are arranged along the reference plane is the arrangement direction, and the direction orthogonal to both the height direction and the arrangement direction is the width direction ,
    A part of the plurality of capacitor elements is disposed in a first posture in which the longest side is along the width direction to form a first part of the capacitor module,
    The remaining ones of the plurality of capacitor elements are arranged in a second posture in which the longest side extends along the height direction to form a second portion of the capacitor module,
    The refrigerant flow path is formed by a hollow space formed by the difference in length in the width direction between the first portion and the second portion, and by a difference in height between the first portion and the second portion An inverter unit disposed in the concave space.
  7.  前記凹状空間における、前記冷媒流路に対して前記第一部分側とは反対側に、前記インバータモジュールが配置されている請求項6に記載のインバータユニット。 The inverter unit according to claim 6, wherein the inverter module is disposed in the concave space on the side opposite to the first portion side with respect to the refrigerant flow path.
  8.  前記コンデンサモジュールの前記第二部分の前記高さ方向に沿う面に、前記コンデンサモジュールの正電極と負電極とが設けられ、
     前記コンデンサモジュールの正極端子が、前記第二部分における前記配列方向視で前記第一部分と重複しない位置で前記正電極から離れるように形成され、
     前記コンデンサモジュールの負極端子が、前記第二部分における前記配列方向視で前記第一部分と重複しない位置で前記負電極から離れるように形成されている請求項6又は7に記載のインバータユニット。
    A positive electrode and a negative electrode of the capacitor module are provided on a surface of the second portion of the capacitor module along the height direction,
    The positive electrode terminal of the capacitor module is formed to be separated from the positive electrode at a position not overlapping the first portion in the arrangement direction in the second portion,
    The inverter unit according to claim 6 or 7, wherein the negative electrode terminal of the capacitor module is formed to be separated from the negative electrode at a position not overlapping the first portion in the arrangement direction in the second portion.
  9.  前記コンデンサモジュールを他部材に取り付けるための取付部をさらに備え、
     前記取付部が、前記窪み空間に配置されている請求項6から8のいずれか一項に記載のインバータユニット。
    And a mounting portion for mounting the capacitor module to another member,
    The inverter unit according to any one of claims 6 to 8, wherein the mounting portion is disposed in the hollow space.
PCT/JP2018/032560 2017-09-27 2018-09-03 Inverter unit WO2019065096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017187035A JP2019062696A (en) 2017-09-27 2017-09-27 Inverter unit
JP2017-187035 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065096A1 true WO2019065096A1 (en) 2019-04-04

Family

ID=65901713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032560 WO2019065096A1 (en) 2017-09-27 2018-09-03 Inverter unit

Country Status (2)

Country Link
JP (1) JP2019062696A (en)
WO (1) WO2019065096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157262A1 (en) * 2020-02-07 2021-08-12 パナソニックIpマネジメント株式会社 Capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2017017863A (en) * 2015-07-01 2017-01-19 日立オートモティブシステムズ株式会社 Power converter
JP2017108593A (en) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 Sealing structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119299A (en) * 2008-03-11 2010-05-27 Hitachi Automotive Systems Ltd Power conversion device
JP2017017863A (en) * 2015-07-01 2017-01-19 日立オートモティブシステムズ株式会社 Power converter
JP2017108593A (en) * 2015-12-11 2017-06-15 トヨタ自動車株式会社 Sealing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157262A1 (en) * 2020-02-07 2021-08-12 パナソニックIpマネジメント株式会社 Capacitor

Also Published As

Publication number Publication date
JP2019062696A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6830162B2 (en) Inverter module
US9065322B2 (en) Inverter device
US8169780B2 (en) Power conversion device
US9730311B2 (en) Device having heat sink
US9018807B2 (en) Inverter device
JP5747963B2 (en) Power converter
JP4478618B2 (en) Power semiconductor module
JP6296888B2 (en) Power converter
US20040062006A1 (en) Laminated bus bar for use with a power conversion configuration
JP2007006575A (en) Three-phase inverter device
JP2006304522A (en) Power unit device and power converter
JP5243353B2 (en) Power converter
WO2019021532A1 (en) Electric-power conversion device
JP5243354B2 (en) Power converter
JP6515836B2 (en) Inverter device
WO2019065096A1 (en) Inverter unit
CN114696546A (en) Electric motor and inverter assembly
JP2004031590A (en) Semiconductor device
JP2013099211A (en) Inverter circuit control device
US11916491B2 (en) Electric power converter
JP5204045B2 (en) Power converter
JP2010016924A (en) Power semiconductor module and semiconductor power conversion device equipped with the same
JP4038455B2 (en) Semiconductor device
US11259448B2 (en) Power electronics system having a housing, a cooling device, a power semiconductor module and a capacitor device
WO2017002693A1 (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863660

Country of ref document: EP

Kind code of ref document: A1