WO2019065068A1 - Microcapsule and film - Google Patents

Microcapsule and film Download PDF

Info

Publication number
WO2019065068A1
WO2019065068A1 PCT/JP2018/032212 JP2018032212W WO2019065068A1 WO 2019065068 A1 WO2019065068 A1 WO 2019065068A1 JP 2018032212 W JP2018032212 W JP 2018032212W WO 2019065068 A1 WO2019065068 A1 WO 2019065068A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
shell layer
outer shell
core
microcapsule
Prior art date
Application number
PCT/JP2018/032212
Other languages
French (fr)
Japanese (ja)
Inventor
高央 溝口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019544460A priority Critical patent/JP6884873B2/en
Publication of WO2019065068A1 publication Critical patent/WO2019065068A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to microcapsules and films.
  • Quantum dots Colloidal semiconductor nanoparticles (quantum dots) of single nanosize level obtained by chemical synthesis method in solution containing metallic elements have begun to be put into practical use as fluorescent materials in wavelength conversion films for some display applications Also, applications to biological labels, light emitting diodes, solar cells, thin film transistors and the like are expected. On the other hand, since quantum dots have a large specific surface area and high surface activity, methods of microencapsulating for stabilization etc. are known (for example, Patent Document 1).
  • an object of this invention is to provide the film containing the microcapsule which was excellent in the quantum yield and durability, and the said microcapsule.
  • the inventor of the present invention examined the ratio of the radius of the core material of the microcapsule (the internal radius of the microcapsule) to the thickness of the outer shell layer. It has become clear that a correlation can be seen, and by setting the above ratio to a specific range, it is possible to significantly suppress the degradation and achieve a high level of quantum yield.
  • the present invention is based on the above findings, and the specific configuration thereof is as follows.
  • a microcapsule having a core substance and an outer shell layer covering the core substance contains quantum dots and a dispersion medium that is liquid at 25 ° C .
  • the material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a resin,
  • the radius of the core substance is 10 nm or more and 10 ⁇ m or less,
  • the thickness of the outer shell layer is 5 nm or more and 9 ⁇ m or less,
  • the microcapsule whose ratio of the thickness of the said outer shell layer with respect to the radius of the said core substance is 0.50-0.90.
  • the above quantum dot is Hydrophobic having at least one group selected from the group consisting of carboxy group, amino group, thiol group, phosphido group, phosphine oxide group, phosphine sulfide group, phosphonic acid group and sulfide group, having 6 or more carbon atoms
  • the microcapsule according to (1) above which has a sex ligand.
  • the microcapsule as described in said (3) whose ratio of the thickness of the said outer shell layer with respect to the radius of the said core substance is 0.65 or more and less than 0.90.
  • microcapsule according to (4) wherein the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.65 or more and 0.85 or less.
  • (6) The microcapsule according to any one of the above (1) to (5), wherein the boiling point of the dispersion medium is 120 ° C. or more.
  • (7) The microcapsule as described in said (6) whose boiling point of the said dispersion medium is 180 degreeC or more.
  • a method for producing a microcapsule which produces the microcapsule according to any one of (1) to (8) above, A dispersion liquid containing quantum dots, a low polarity dispersion medium which is liquid at 25 ° C., and a monomer which becomes a resin which is a material of an outer shell layer of the microcapsule after polymerization, and a solvent having a polarity higher than the dispersion medium Mixing, at least mixing with a surfactant to obtain a mixed solution, By heating the mixture while stirring, the micelles of the dispersion are formed, and the monomer is polymerized at the interface of the micelles to form a core substance containing the quantum dots and the dispersion medium.
  • a microcapsule having excellent quantum yield and durability, and a film containing the above-mentioned microcapsule can be provided.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the microcapsule of the present invention.
  • FIG. 2A is a schematic view of an embodiment of a preferred embodiment of the method of producing the microcapsule of the present invention.
  • FIG. 2B is a schematic view of an embodiment of a preferred embodiment of the method of producing the microcapsule of the present invention.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the microcapsule of the present invention has a core substance and an outer shell layer covering the core substance.
  • the core material contains quantum dots and a dispersion medium that is liquid at 25 ° C.
  • the material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a kind of resin.
  • the radius of the core substance is 10 nm to 10 ⁇ m
  • the thickness of the outer shell layer is 5 nm to 9 ⁇ m
  • the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.50 to 0. It is 90 or less.
  • the microcapsule of the present invention is considered to exhibit a desired effect by taking such a configuration.
  • the reason is not clear in detail, but is presumed to be as follows.
  • the core material containing quantum dots is protected by an outer shell layer made of a specific resin.
  • the outer shell layer is considered to have a role of blocking factors (such as oxygen) that deteriorate the quantum dots.
  • simply increasing the thickness of the shell layer does not necessarily improve the durability. For example, it has been found that even if the shell layer is thickened, the durability is insufficient when the radius (inner radius) of the core material is also large.
  • the microcapsules of the present invention are distorted and the deterioration factor such as oxygen is not sufficiently blocked It is guessed that.
  • the microcapsules of the present invention not only the absolute value of the thickness of the shell layer is specified, but also the ratio of the thickness of the shell layer to the inner radius is in a specific range. And the distortion as described above is less likely to occur. As a result, the microcapsules of the present invention are considered to exhibit extremely excellent durability.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the microcapsule of the present invention.
  • the microcapsule 10 shown in FIG. 1 has a core substance 3 containing quantum dots 1 and a dispersion medium 2 which is liquid at 25 ° C., and an outer shell layer 4 covering the core substance 3.
  • the material of the outer shell layer 4 is at least selected from the group consisting of a urea resin, a melamine resin, a polyurethane resin, a polyurea resin, a polyamide resin, and two or more of these copolymer resins. It is one kind of resin.
  • the core substance 3 is spherical with a radius r, and this core substance 3 is covered with the outer shell layer 4 of thickness d.
  • the microcapsules 10 are spherical with a radius r + d.
  • the radius r of the core substance 3 is 10 nm to 10 ⁇ m
  • the thickness d of the outer shell layer 4 is 5 nm to 9 ⁇ m
  • the ratio of the thickness d of the outer shell layer to the radius r of the core substance (d / r) Is 0.50 or more and 0.90 or less.
  • the core material contains quantum dots and a dispersion medium that is liquid at 25 ° C.
  • the core material preferably contains a plurality of quantum dots because the effect of the present invention is more excellent.
  • the quantum dot contained in the core substance refers to a semiconductor nanoparticle having a quantum confinement effect.
  • the particle size of the quantum dots is generally in the range of 1 to 10 nm.
  • the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot.
  • the energy band gap can be adjusted, and energy of various levels of wavelength bands can be obtained.
  • the material of the quantum dot is not particularly limited, but specific examples thereof include simple substances of Group IV elements such as carbon, silicon, germanium and tin, simple substances of Group V elements such as phosphorus (black phosphorus), and VI such as selenium and tellurium A single group element, a compound comprising a plurality of group IV elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ) , Tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin (II) telluride (SnTe), lead sulfide (II) (PbS), selenium Group IV-VI semiconductors such as lead (II) halide (PbSe) and lead (II)
  • the above-mentioned quantum dot has 6 or more carbon atoms, a carboxy group (—COOH), an amino group (—NR 2 : R is a hydrogen atom or a hydrocarbon group), a thiol group (the hydrogen atom or hydrocarbon group).
  • the number of carbon atoms is preferably 8 to 35, and more preferably 10 to 25 because the effect of the present invention is more excellent.
  • the group is preferably a thiol group because the effect of the present invention is more excellent.
  • the hydrophobic ligand include oleylamine, dodecylamine, dodecanethiol, 1,2-hexadecanethiol and trioctylphosphine oxide.
  • the quantum dot preferably has the hydrophobic ligand on the surface.
  • the said quantum dot is a core-shell particle from the reason which the effect of this invention is more excellent.
  • the quantum dot is a core-shell particle, for example, a core containing a group III element and a group V element, and a group II element and a group VI covering at least a part of the surface of the core.
  • the aspect (single shell form) which has a shell containing an element is mentioned.
  • the quantum dot is a core-shell particle, for example, a core containing a group III element and a group V element, and a first shell covering at least a part of the surface of the core And a second shell covering at least a part of the first shell (multi-shell shape).
  • the core of the core-shell particle is preferably a so-called III-V semiconductor containing a group III element and a group V element because the effect of the present invention is more excellent.
  • Group III element Specific examples of the group III element include, for example, indium (In), aluminum (Al), and gallium (Ga). Among them, In is particularly preferably In because the effect of the present invention is more excellent. Is preferred.
  • Group V element Specific examples of the group V element include P (phosphorus), N (nitrogen), and As (arsenic), and the like. Among them, P is P because the effect of the present invention is more excellent. Is preferred.
  • a III-V group semiconductor appropriately combining the above-described examples of the group III element and the group V element can be used as the core, but InP, InN, or InAs is preferable, and InP is more preferable.
  • the present invention it is preferable to further contain a Group II element in addition to the Group III element and the Group V element mentioned above because the effect of the present invention is more excellent, and in particular when the core is InP, Group II By doping Zn as an element, the lattice constant is reduced, and lattice matching with a shell (for example, GaP, ZnS or the like described later) having a smaller lattice constant than InP is enhanced.
  • a shell for example, GaP, ZnS or the like described later
  • the shell is a material covering at least a part of the surface of the core, and contains a group II element and a group VI element because the effect of the present invention is more excellent. So-called II-VI semiconductors are preferred.
  • whether or not the shell covers at least a part of the surface of the core can be determined, for example, by energy dispersive X-ray spectroscopy (TEM (Transmission Electron Microscope)) using a transmission electron microscope. It can also be confirmed by composition distribution analysis by EDX (Energy Dispersive X-ray spectroscopy).
  • Group II element Specific examples of the Group II element include zinc (Zn), cadmium (Cd), and magnesium (Mg), among which Zn is particularly preferable because the effect of the present invention is more excellent. Is preferred.
  • Group VI element Specific examples of the Group VI element include, for example, sulfur (S), oxygen (O), selenium (Se), and tellurium (Te). Among them, the reason why the effect of the present invention is more excellent From the above, S or Se is preferable, and S is more preferable.
  • the shell in the present invention, although a II-VI group semiconductor appropriately combining the above-described examples of the group II element and the group VI element can be used as the shell, it is the same as the core described above because the effect of the present invention is more excellent. Or similar crystal systems are preferred. Specifically, ZnS and ZnSe are preferable because the effect of the present invention is more excellent, and ZnS is more preferable from the viewpoint of safety and the like.
  • the first shell is a material covering at least a part of the surface of the core.
  • whether or not the first shell covers at least a part of the surface of the core can be determined, for example, by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It can also be confirmed by composition distribution analysis.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the first shell contains a group II element or a group III element because it is easy to suppress interface defects with the core.
  • the group III element contained in the first shell is a group III element different from the group III element contained in the core described above.
  • the first shell containing a Group II element or a Group III element for example, a Group III-VI semiconductor containing a Group III element and a Group VI element in addition to a Group II-VI semiconductor and a Group III-V semiconductor described later (For example, Ga 2 O 3 , Ga 2 S 3 and the like) and the like.
  • the first shell contains a group II-VI semiconductor containing a group II element and a group VI element or a group III element and a group V element because a high quality crystal phase with few defects is obtained.
  • the semiconductor device is preferably a group III-V semiconductor, more preferably a group III-V semiconductor having a small difference in lattice constant with the core described above.
  • the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core described above.
  • II-VI Group Semiconductor examples include zinc (Zn), cadmium (Cd), magnesium (Mg) and the like. Among them, Zn is preferable because the effect of the present invention is more excellent.
  • Specific examples of the group VI element contained in the group II-VI semiconductor include sulfur (S), oxygen (O), selenium (Se), and tellurium (Te). Among these, S or Se is preferable, and S is more preferable because the effect of the present invention is more excellent.
  • a II-VI group semiconductor obtained by combining the above-described examples of the II group element and the VI group element can be used as appropriate, but the same or similar core as the above core can be obtained because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnSe is more preferable because the effect of the present invention is more excellent.
  • Group III-V semiconductor Specific examples of group III elements contained in the group III-V semiconductor include indium (In), aluminum (Al), and gallium (Ga). Among them, Ga is preferable because the effect of the present invention is more excellent.
  • the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core described above, and, for example, the group III element contained in the core is In In such a case, the Group III element contained in the Group III-V semiconductor is Al, Ga or the like.
  • group V element contained in the above-mentioned group III-V semiconductor include P (phosphorus), N (nitrogen), and As (arsenic), and the like, and the present invention is particularly preferably It is preferable that it is P because the effect of is more excellent.
  • a group III-V semiconductor obtained by appropriately combining the examples of the group III element and the group V element described above can be used, but the same or similar as the core described above because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, GaP is preferable.
  • the difference in lattice constant between the core and the first shell described above be small because the surface defects of the obtained core-shell particles are reduced.
  • the core and the first shell described above It is preferable that the difference of the lattice constant of is 10% or less.
  • the first shell is ZnSe (difference in lattice constant: 3.4%) or GaP (difference in lattice constant: 7.1%)
  • GaP GaP which is the same III-V semiconductor as the core and which can easily form a mixed crystal state at the interface between the core and the first shell because the effect of the present invention is more excellent. .
  • the first shell when the first shell is a III-V group semiconductor, other elements (for example, the above-described elements) may be used as long as the magnitude relation of the band gap with the core (core ⁇ first shell) is not affected.
  • Group II element and group VI element may be contained or doped.
  • other elements for example, the aforementioned group III elements and the above-described elements
  • Group V element may be contained or doped.
  • the second shell is a material covering at least a part of the surface of the first shell described above.
  • whether or not the second shell covers at least a part of the surface of the first shell can be determined, for example, by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It is possible to confirm also by composition distribution analysis by.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the second shell contains a group II element and a group VI element because it suppresses interface defects with the first shell and provides a high quality crystal phase with few defects.
  • the material is a semiconductor or a group III-V semiconductor containing a group III element and a group V element, and a shell having high reactivity of the material itself and higher crystallinity can be easily obtained. It is more preferable to be a group semiconductor.
  • the group II element, the group VI element, the group III element and the group V element those described in the first shell can be mentioned.
  • a II-VI group semiconductor obtained by combining the above-described examples of the II group element and the VI group element can be used as appropriate, but the same or similar core as the above core can be obtained because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnS is more preferable.
  • III-V group semiconductor which combined the illustration of the III group element and the V group element mentioned above suitably can be used as the 2nd shell, it is the same as or similar to the core mentioned above because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, GaP is preferable.
  • the difference in lattice constant between the first shell and the second shell described above be small, because the surface defects of the obtained core-shell particles are reduced.
  • the difference in lattice constant with the second shell is preferably 10% or less.
  • the second shell is ZnSe (difference in lattice constant: 3.8%), or ZnS (difference in lattice constant: 0.8%) Is preferable, and ZnS is more preferable.
  • the second shell when the second shell is a II-VI group semiconductor, other elements (for example, the above-described elements) can be used as long as the magnitude relationship of the band gap with the core (core ⁇ second shell) is not affected.
  • Group III elements and group V elements may be contained or doped.
  • other elements for example, the above-mentioned II group elements and the above-described elements
  • Group VI element may be contained or doped.
  • the above-mentioned core, the first shell, and the second shell are all crystal systems having a zinc-blende structure because epitaxial growth is facilitated and interface defects between layers are easily suppressed.
  • the above-mentioned core, the first shell, and the second shell are all crystal systems having a zinc-blende structure because epitaxial growth is facilitated and interface defects between layers are easily suppressed.
  • the above-mentioned core, the first shell, and the second shell are all crystal systems having a zinc-blende structure because epitaxial growth is facilitated and interface defects between layers are easily suppressed.
  • the above-mentioned core, the first shell, and the second shell are all crystal systems having a zinc-blende structure because epitaxial growth is facilitated and interface defects between layers are easily suppressed.
  • the band gap of the core is the smallest among the cores, the first shell and the second shell described above because the probability that excitons stay in the core increases and the light emission efficiency becomes higher.
  • the core and the first shell are core-shell particles exhibiting a band structure of type 1 (type I).
  • the method for producing the quantum dot is not particularly limited, and a known method can be used.
  • the quantum dot is a core-shell particle having a core of a III-V semiconductor and a shell of a II-VI semiconductor covering at least a part of the core
  • the method of producing a quantum dot is more excellent in the effect of the present invention
  • a Group II raw material and a Group VI raw material are added and heated.
  • a method of forming a shell of a II-VI semiconductor covering at least a part of the core is preferable.
  • a method of producing a quantum dot having a hydrophobic ligand described above for example, a method of adding a hydrophobic ligand when producing a quantum dot, and a method of using a hydrophobic ligand as a raw material of quantum dots (for example, the method of using an alkyl thiol as a VI group raw material etc. are mentioned.
  • solvent is preferably a nonpolar solvent because the effect of the present invention is more excellent.
  • nonpolar solvents include aliphatic saturated hydrocarbons such as n-decane, n-dodecane, n-hexadecane and n-octadecane; aliphatics such as 1-undecene, 1-dodecene, 1-hexadecene and 1-octadecene Unsaturated hydrocarbon; trioctyl phosphine; and the like.
  • aliphatic unsaturated hydrocarbons having 12 or more carbon atoms are preferable, and 1-octadecene is more preferable because the effect of the present invention is more excellent.
  • Source III examples include indium chloride, indium oxide, fatty acid indium (eg, indium acetate and indium myristate), indium nitrate, indium sulfate, and indium acid; aluminum phosphate, aluminum acetylacetonate aluminum, aluminum chloride, Aluminum fluoride, aluminum oxide, aluminum nitrate, and aluminum sulfate; and acetylacetonatogallium, gallium chloride, gallium fluoride, gallium oxide, gallium nitrate, and gallium sulfate; Or two or more may be used in combination.
  • an indium compound is preferable because the quantum yield and durability of the obtained microcapsule are more excellent (hereinafter, also simply referred to as “more excellent in the effect of the present invention”), and impurity ion such as chloride is preferable. It is more preferable to use indium acetate which is difficult to be incorporated into the core and which can easily realize high crystallinity.
  • Group V raw material examples include tristrialkylsilylphosphine, trisdialkylsilylphosphine, and trisdialkylaminophosphine; arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, and arsenic iodide; Nitrogen, nitric acid, and ammonium nitrate; and the like can be mentioned, and these may be used alone or in combination of two or more. Among them, a compound containing P is preferable because the effect of the present invention is more excellent. For example, it is preferable to use tristrialkylsilyl phosphine or trisdialkylamino phosphine. Specifically, tristrimethylsilyl is preferable. It is more preferred to use phosphine.
  • Group II raw material examples include dimethyl zinc, diethyl zinc, zinc carboxylate, acetylacetonato zinc, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, Zinc oxide, zinc peroxide, zinc perchlorate, fatty acid zinc (eg, zinc acetate, zinc stearate), zinc sulfate and the like may be mentioned, and one or more of these may be used alone. You may use together. Among them, it is preferable to use fatty acid zinc because the effect of the present invention is more excellent.
  • Group VI raw material examples include sulfur, alkyl thiols, trialkyl phosphine sulfides, trialkenyl phosphine sulfides, alkyl amino sulfides, alkenyl amino sulfides, cyclohexyl isothiocyanate, diethyl dithiocarbamic acid, and diethyl dithiocarbamic acid; Phosphine selenium, trialkenyl phosphine selenium, alkylaminoselenium, alkenylaminoselenium, trialkylphosphine telluride, trialkenylphosphine telluride, alkylaminotelluride, and alkenylaminotelluride; Or two or more may be used in combination.
  • alkylthiol because the effect of the present invention is more excellent. Specifically, it is more preferable to use dodecanethiol or octanethiol, and it is more preferable to use dodecanethiol.
  • the content of the quantum dots in the core substance is not particularly limited, but is preferably 0.1 to 50% by mass, and more preferably 0.5 to 30% by mass because the effect of the present invention is more excellent. More preferable.
  • the above quantum dots may be used alone or in combination of two or more.
  • the dispersion medium contained in the core substance is not particularly limited as long as the dispersion medium is a liquid at 25 ° C.
  • the dispersion medium that is liquid at 25 ° C. may be a highly polar dispersion medium (highly polar dispersion medium) (for example, water) or a low polarity dispersion medium (lowly polar dispersion medium). It is preferable that it is a low-polar dispersion medium from the reason of being excellent, and it is preferable that it is a low-polar dispersion medium whose polarity is lower than water.
  • low-polar dispersion medium examples include aromatic hydrocarbons such as toluene and mesitylene; halogenated alkyl such as chloroform; and aliphatics such as hexane, octane, n-decane, n-dodecane, n-hexadecane and n-octadecane Saturated hydrocarbons; aliphatic unsaturated hydrocarbons such as 1-undecene, 1-dodecene, 1-hexadecene and 1-octadecene; trioctyl phosphine; (meth) acrylates; etc., among which the effect of the present invention is For the reason of being more excellent, aromatic hydrocarbons and (meth) acrylates are preferable, and (meth) acrylates are more preferable.
  • aromatic hydrocarbons and (meth) acrylates are preferable, and (meth) acrylates are more preferable.
  • Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofulf Furyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, isononyl (meth) acrylate, isodecinonyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, butoxydiethylene glycol (meth) acrylate, benzyl ) Acrylate, di
  • the boiling point of the dispersion medium which is liquid at 25 ° C. is not particularly limited, but is preferably 100 ° C. or more, more preferably 120 ° C. or more, and more preferably 180 ° C. or more because the effect of the present invention is more excellent. C., more preferably 200.degree. C. or more.
  • the upper limit of the boiling point of the dispersion medium which is liquid at 25 ° C. is not particularly limited, but is preferably 350 ° C. or less because the effect of the present invention is more excellent.
  • the said boiling point is taken as the value in 1 atmosphere.
  • the content of the dispersion medium which is liquid at 25 ° C. in the core substance is not particularly limited, but is preferably 50 to 99.9% by mass, and more preferably 70 to 99. More preferably, it is 5% by mass.
  • the dispersion medium which is liquid at 25 ° C. may be used alone or in combination of two or more.
  • the core material may contain other components that do not correspond to any of the quantum dots and the dispersion medium that is liquid at 25 ° C., but the content of the other components in the core material is It is preferable that it is 5 mass% or less from the reason which the effect of invention is more excellent.
  • the microcapsules of the present invention have an outer shell layer covering the core substance.
  • the material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a resin.
  • urea-based resin is a resin obtained by polycondensation of urea and formaldehyde
  • melamine-based resin is a resin obtained by polycondensation of melamine and formaldehyde
  • polyurethane-based resin is a resin obtained by polycondensation of melamine and formaldehyde
  • polyurethane-based resin Resin
  • polyurea resin is a resin having a urea bond (-NHCONH-) in the main chain
  • polyamide resin Is a resin having an amide bond (-NRCO-: R is a hydrogen atom or a hydrocarbon group) in the main chain.
  • copolymer resins for example, urea melamine resin (resin obtained by polycondensation of urea, melamine and formaldehyde), polyurethane urea resin (urethane bond and urea bond in main chain) Resin, polyurethane amide resin (resin having urethane bond and amide bond in main chain), polyurethane urea amide resin (resin having urethane bond, urea bond and amide bond in main chain), etc. .
  • urea melamine resin resin obtained by polycondensation of urea, melamine and formaldehyde
  • polyurethane urea resin urethane bond and urea bond in main chain
  • Resin polyurethane amide resin (resin having urethane bond and amide bond in main chain)
  • polyurethane urea amide resin resin having urethane bond, urea bond and amide bond in main chain
  • the material of the outer shell layer is selected from the group consisting of a resin having a urethane bond and / or a urea bond in the main chain (polyurethane resin, polyurea resin, and polyurethaneurea resin, for the reason that the effect of the present invention is more excellent
  • the resin is preferably at least one kind of resin), and more preferably a resin having a urethane bond and a urea bond in the main chain (polyurethane urea resin).
  • the radius of the core substance (core substance radius), the thickness of the outer shell layer (outer shell layer thickness), and the ratio of the thickness of the outer shell layer to the radius of the core substance (thickness / radius)
  • the core substance and the microcapsules are usually spherical, but not limited thereto.
  • the core material radius is 10 nm or more and 10 ⁇ m or less. Especially, it is preferable that they are 2 micrometers or more and 8 micrometers or less from the reason which the effect of this invention is more excellent.
  • the core material radius corresponds to the internal radius of the microcapsule. For the core material radius (inner radius of microcapsules), observe at least 20 microcapsules with a SEM (scanning electron microscope), and calculate the radius of a circle having the same area as the projected area inside the outer shell layer , Find them by arithmetic averaging.
  • the shell thickness is 5 nm or more and 9 ⁇ m or less. Especially, it is preferable that they are 1 micrometer or more and 7 micrometers or less from the reason which the effect of this invention is more excellent.
  • the shell layer thickness corresponds to a value obtained by subtracting the core material radius (the inner radius of the microcapsule) from the radius of the microcapsule.
  • Outer shell layer thickness observes at least 20 microcapsules by SEM (scanning electron microscope), calculates the radius of a circle having the same area as the projected area outside the outer shell layer, and arithmetically averages them To determine the radius of the microcapsule, and then subtracting the core material radius (the internal radius of the microcapsule) from the radius of the microcapsule.
  • the method of determining the core substance radius (the internal radius of the microcapsule) is as described above.
  • the ratio (thickness / radius) of the thickness of the shell layer to the radius of the core substance is 0.50 or more and 0.90 or less. Especially, it is preferable that they are 0.60 or more and 0.90 or less, more preferably 0.65 or more and less than 0.90, and more preferably 0.70 or more and 0.85 or less because the effect of the present invention is more excellent. It is further preferred that
  • the method for producing the microcapsules of the present invention is not particularly limited.
  • micelles of a dispersion containing quantum dots, a dispersion medium, and monomers are formed, and monomers are polymerized at the interface of the micelles to form quantum dots.
  • a method of coating a core material containing a dispersion medium with an outer shell layer (Method 1), preparing microcapsules of only the outer shell layer beforehand, and containing quantum dots and a dispersion medium inside the outer shell layer
  • the method (method 2) etc. which extract core materials are mentioned.
  • the method 1 is preferable, and the method described in the following preferred embodiment is more preferable because the effect of the present invention is more excellent.
  • the method of producing the microcapsules of the present invention is preferably a method comprising the following steps (1) to (2) (hereinafter also referred to as “the method of the present invention”) because the effects of the present invention are more excellent.
  • a mixed solution is obtained by mixing at least a solvent and a surfactant, and mixing step (2) The mixed solution is heated with stirring to form micelles of the dispersion, and the interface of the micelles.
  • FIGS. 2A and 2B are schematic views of an embodiment of a preferred embodiment (method of the present invention) of the method of producing the microcapsule of the present invention.
  • the mixed solution is heated with stirring to form micelles 5 of the dispersion in the highly polar solvent 6 (FIG. 2A), and the monomer is polymerized at the interface of the micelles 5 to form the quantum
  • the core material 3 containing the dots and the dispersion medium is covered with the outer shell layer 4 made of the resin.
  • a microcapsule 10 having the core substance and an outer shell layer covering the core substance is obtained (FIG. 2B).
  • the mixing step includes a dispersion containing a quantum dot, a dispersion medium of low polarity which is liquid at 25 ° C., and a monomer which becomes a resin which is a material of an outer shell layer of microcapsules after polymerization, and more polar than the dispersion medium.
  • This is a step of obtaining a mixed solution by mixing at least a high solvent and a surfactant.
  • Quantum dot The quantum dots are as described above.
  • the dispersion medium is not particularly limited as long as it is a liquid dispersion medium having low polarity at 25 ° C.
  • the low polarity dispersion medium which is liquid at 25 ° C. is preferably a polarity lower dispersion medium than water because the effect of the present invention is more excellent.
  • Specific examples of the dispersion medium having a polarity lower than that of water are the same as the low polarity dispersion medium described above.
  • a monomer is a monomer used as resin which is a material of an outer shell layer mentioned above.
  • the material of the shell layer is a urea-based resin
  • examples of the monomer include urea and formaldehyde.
  • a monomer in case the material of an outer shell layer is a melamine resin
  • a melamine and formaldehyde are mentioned, for example.
  • a monomer in case the material of outer shell layer is a polyurethane-type resin
  • polyisocyanate and a polyol are mentioned, for example.
  • polyisocyanate is mentioned, for example.
  • outer shell layer is a polyamide-type resin
  • carboxylic acid or carboxylic acid derivatives, such as carboxylic acid halide
  • amine are mentioned.
  • carboxylic acid or carboxylic acid derivatives, such as carboxylic acid halide
  • the polyisocyanate reacts with water at the interface of micelles in the microcapsulation step to be described later, resulting in a polyurea system.
  • An outer shell layer made of resin is formed.
  • one side is contained in a dispersion medium among two types of monomers, and the other is a dispersion liquid with water and surfactant.
  • a dispersion liquid with water and surfactant Preferably it is mixed with
  • Phenylenediamine is polymerized to form an outer shell layer made of a polyamide resin.
  • the solvent is not particularly limited as long as it is a solvent having a polarity higher than that of the dispersion medium. Among them, water is preferable because the effect of the present invention is more excellent.
  • the surfactant is not particularly limited, and known ones can be used. Specific examples of the surfactant include anionic surfactants, nonionic surfactants (for example, polyvinyl alcohol (PVA)), cationic surfactants, amphoteric surfactants and the like.
  • anionic surfactants for example, polyvinyl alcohol (PVA)
  • nonionic surfactants for example, polyvinyl alcohol (PVA)
  • cationic surfactants for example, polyvinyl alcohol (PVA)
  • amphoteric surfactants amphoteric surfactants and the like.
  • the microcapsulation step forms micelles of the dispersion by heating the mixture while stirring, and polymerizing the monomer at the interface of the micelles to contain the quantum dots and the dispersion medium.
  • the core material is coated with an outer shell layer made of the above-mentioned resin.
  • the heating conditions are not particularly limited as long as the monomers react, but the temperature is preferably 35 to 100 ° C. and the time is 0.5 to 10 hours, because the effect of the present invention is more excellent. Is preferred.
  • the radius of the core substance can be controlled, for example, by the stirring conditions of the microencapsulation process. Also, the thickness and thickness / radius of the shell layer can be controlled, for example, by the quantitative ratio of the quantum dot and the dispersion medium to the monomer.
  • the film of the present invention is a film containing the above-mentioned microcapsule of the present invention.
  • a film of the present invention exhibits excellent quantum yield and durability, so it is applied to, for example, wavelength conversion films for display applications, photoelectric conversion (or wavelength conversion) films of solar cells, biological markers, thin film transistors, etc. be able to.
  • the film of the present invention is suitable for application to a down conversion or down shift type wavelength conversion film that absorbs light in the short wave region rather than the absorption edge of the quantum dot and emits longer wave light. .
  • the film material as a base material which comprises the film of this invention is not specifically limited, A resin may be sufficient and a thin glass film may be sufficient.
  • a resin may be sufficient and a thin glass film may be sufficient.
  • ionomers polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypropylene, polyester, polycarbonate, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid A copolymer film, a resin material based on nylon etc. are mentioned.
  • Quantum dots J. AM. CHEM. SOC. Quantum dots were manufactured with reference to 2008, 130, 11588-11589. Specifically, 0.1 mmol of indium myristate is dissolved in 10 ml of octadecene, heated to 250 ° C. under N 2 , and then 0.1 mmol of tristrimethylsilyl phosphine is added and reacted at 250 ° C. for 1 hour for InP An octadecene solution was prepared.
  • microcapsules of each example and each comparative example were manufactured as follows.
  • Example 1 ⁇ Mixing process> 5% of the DCP dispersion (quantity A of the quantum dots) manufactured as described above and 1% by mass of polyol based on polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.) (trimethylolpropane adduct of metaxylylene diisocyanate)
  • a solution (solution C) was prepared by mixing 10 mL of the solution (solution B) to which (Exenol 823 manufactured by Asahi Glass Co., Ltd.) was added. And the mixed liquid was prepared by mixing the obtained dispersion liquid (C liquid) and 30 mL of PVA 5 mass% aqueous solution.
  • ⁇ Microencapsulation process> The resulting mixed solution is heated at 75 ° C. for 2 hours while vigorously stirring to polymerize polyisocyanate and polyol at the interface of micelles, thereby forming a core substance containing quantum dots and a dispersion medium (DCP) as a main chain.
  • DCP dispersion medium
  • the outer shell layer made of a resin having a urethane bond and a urea bond polyurethane urea resin
  • microcapsules were produced.
  • the reason why an outer shell layer made of a resin having a urethane bond and a urea bond in the main chain is formed so as to cover the core material containing the quantum dots and the dispersion medium is presumed as follows.
  • the polyisocyanate and the polyol diffuse in the micelle, and the polyisocyanate reacts with water at the interface of the micelle to form a urea bond.
  • the quantum dots and the dispersion medium are less likely to be close to the interface and closer to the center of the micelles.
  • the polyol is relatively hydrophilic, it tends to the interface side to separate from the quantum dot. Therefore, the polyol reacts with the polyisocyanate near the interface to form a urethane bond.
  • an outer shell layer formed of a resin (polyurethane urea resin) having a urethane bond and a urea bond in the main chain is formed so as to cover the core substance containing the quantum dots and the dispersion medium. .
  • Examples 2 to 15, Comparative Examples 1 to 5 Microcapsules were produced according to the same procedure as in Example 1, except that the ratio by volume of the solution A and the solution B and the stirring conditions for the microencapsulation step were changed.
  • mesitylene liquid at 25 ° C., boiling point: 165 ° C.
  • DCP liquid at 25 ° C., boiling point: 111 ° C.
  • Example 15 toluene (liquid at 25 ° C., boiling point: 111 ° C.) was used as the dispersion medium for the liquid A, instead of DCP.
  • Example 16 ⁇ Mixing process> 3 mL of isophthaloyl dichloride was added to the above solution A to prepare a dispersion (solution D). Then, a liquid mixture was prepared by mixing the obtained dispersion (liquid D), 30 mL of a 5% by mass aqueous solution of PVA and 7 mL of a 10% by mass aqueous solution of p-phenylenediamine.
  • ⁇ Microencapsulation process> The resulting mixed solution is heated at 75 ° C. for 2 hours while vigorously stirring to polymerize isophthaloyl dichloride and p-phenylenediamine at the interface of micelles, thereby forming a core material containing quantum dots and a dispersion medium as a polyamide. It was coated with an outer shell layer made of a base resin. Thus, microcapsules were produced.
  • Quantum yield The quantum yield (initial) of the obtained microcapsules was measured using an absolute quantum yield meter (C11347-01 manufactured by Hamamatsu Photonics K. K.). At that time, the absorbance at a wavelength of 450 nm was adjusted to 0.1 and measured. Moreover, about the comparative example 1 using Cy5.5 (dye), the absorbance in wavelength 658nm was adjusted to 0.1, and was measured. Also, the quantum yield (before microcapsule) was similarly measured for the quantum dots before being microcapsuled. And the reduction rate was calculated
  • Decay rate [quantum yield (before microcapsules)-quantum yield (initial)] / quantum yield (before microcapsules)
  • the results are shown in Table 1. Practically, A to C is preferable, A or B is more preferable, and A is more preferable.
  • ⁇ D Decrease rate is 15% or more
  • Decreasing rate [quantum yield (initial)-quantum yield (after 3 days)] / quantum yield (initial) ⁇ AA: Decrease rate is less than 1.0% ⁇ A: Decrease rate is 1.0% to less than 1.5% ⁇ B: Decrease rate is 1.5% to less than 3% ⁇ C: Decrease rate is 3% or more Less than 5% ⁇ D: Decrease rate of 5% or more
  • the column of fluorescent material represents the fluorescent material in the core material.
  • “InP / ZnS” represents a quantum dot (having dodecanethiol as a hydrophobic ligand) having InP (core) and ZnS (shell) manufactured as described above.
  • the column of dispersion medium represents the dispersion medium in the core material.
  • the column of the outer shell layer represents the material of the outer shell layer.
  • Examples 1 to 16 having a thickness / radius of 0.50 or more and 0.90 or less exhibited excellent quantum yield and durability.
  • the thickness / radius is 0.60 or more and 0 Examples 2 to 7, which are less than or equal to 90, showed better durability.
  • Examples 3 to 7 having a thickness / radius of 0.65 or more and 0.90 or less exhibited further excellent durability.
  • Examples 3 to 6 having a thickness / radius of 0.65 or more and less than 0.90 exhibited more excellent quantum yield.
  • Examples 3 to 5 having a thickness / radius of 0.65 or more and 0.85 or less exhibited further excellent quantum yield.
  • the thickness / radius is 0.60.
  • Examples 9 and 10 which are greater than or equal to 0.90, showed better quantum yield and durability.
  • the thickness / radius is 0.60.
  • the material of the outer shell layer has a urethane bond and / or a urea bond in the main chain
  • Example 3 which is a resin having at least one resin selected from the group consisting of a polyurethane resin, a polyurea resin, and a polyurethane urea resin, shows a more excellent quantum yield and durability. .

Abstract

The present invention addresses the problem of providing: a microcapsule having excellent quantum yield and durability; and a film containing the microcapsule. The microcapsule according to the present invention contains a core substance and an outer shell layer that covers the core substance, wherein the core substance contains quantum dots and a dispersion medium that has a liquid form at 25°C, the material for the outer shell layer is at least one resin selected from the group consisting of a urea-based resin, a melamine-based resin, a polyurethane-based resin, a polyurea-based resin, a polyamide-based resin and a copolymer resin composed of at least two of these resins, the core substance has a radius of 10 nm to 10 μm inclusive, the outer shell layer has a thickness of 5 nm to 9 μm inclusive, and the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.50 to 0.90 inclusive.

Description

マイクロカプセル及びフィルムMicrocapsule and film
 本発明は、マイクロカプセル及びフィルムに関する。 The present invention relates to microcapsules and films.
 金属元素を含む溶液中において化学的な合成法によって得られるシングルナノサイズレベルのコロイド状の半導体ナノ粒子(量子ドット)は、一部のディスプレイ用途の波長変換フィルムにおける蛍光材料として実用化が始まっており、また、生体標識、発光ダイオード、太陽電池、薄膜トランジスタ等への応用も期待されている。
 一方、量子ドットは比表面積が大きく、表面活性が高いため、安定化等のためにマイクロカプセル化する方法が知られている(例えば、特許文献1)。
Colloidal semiconductor nanoparticles (quantum dots) of single nanosize level obtained by chemical synthesis method in solution containing metallic elements have begun to be put into practical use as fluorescent materials in wavelength conversion films for some display applications Also, applications to biological labels, light emitting diodes, solar cells, thin film transistors and the like are expected.
On the other hand, since quantum dots have a large specific surface area and high surface activity, methods of microencapsulating for stabilization etc. are known (for example, Patent Document 1).
特開2017-112174号公報JP, 2017-112174, A
 昨今、量子ドットの実用化が進むなか、量子収率のさらなる向上が求められている。また、量子ドットは空気中の酸素等により劣化し易いため、空気中に保管したときの量子収率の低下し難さ(耐久性)の向上が求められている。
 このようななか、本発明者が特許文献1を参考にマイクロカプセルを製造したところ、その量子収率及び耐久性は昨今要求されているレベルを必ずしも満たすものではないことが明らかになった。
Recently, with the progress of commercialization of quantum dots, further improvement of quantum yield is required. In addition, since quantum dots are easily degraded by oxygen and the like in the air, it is required to improve the difficulty (durability) of lowering the quantum yield when stored in the air.
Under these circumstances, when the present inventors manufactured microcapsules with reference to Patent Document 1, it became clear that the quantum yield and the durability do not necessarily satisfy the level required nowadays.
 そこで、本発明は、上記実情を鑑みて、量子収率及び耐久性に優れたマイクロカプセル、及び、上記マイクロカプセルを含有するフィルムを提供することを目的とする。 Then, in view of the said situation, an object of this invention is to provide the film containing the microcapsule which was excellent in the quantum yield and durability, and the said microcapsule.
 上述のとおり、量子ドットは空気中の酸素等により劣化し易いことが分かっている。
 このようななか、本発明者がマイクロカプセルの芯物質の半径(マイクロカプセルの内部半径)と外殻層の厚みとの比に着目し検討を行ったところ、上記比と劣化との間に顕著な相関が見られること、そして、上記比を特定の範囲にすることで劣化を著しく抑えるとともに高いレベルの量子収率を達成できることが明らかになった。
 本発明は上記知見に基づくものであり、その具体的な構成は以下のとおりである。
As described above, it is known that quantum dots are easily degraded by oxygen and the like in the air.
Under these circumstances, the inventor of the present invention examined the ratio of the radius of the core material of the microcapsule (the internal radius of the microcapsule) to the thickness of the outer shell layer. It has become clear that a correlation can be seen, and by setting the above ratio to a specific range, it is possible to significantly suppress the degradation and achieve a high level of quantum yield.
The present invention is based on the above findings, and the specific configuration thereof is as follows.
(1) 芯物質と上記芯物質を覆う外殻層とを有するマイクロカプセルであって、
 上記芯物質が、量子ドットと25℃において液体である分散媒とを含有し、
 上記外殻層の材料が、尿素系樹脂、メラミン系樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、ポリアミド系樹脂、及び、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂であり、
 上記芯物質の半径が、10nm以上10μm以下であり、
 上記外殻層の厚みが、5nm以上9μm以下であり、
 上記芯物質の半径に対する上記外殻層の厚みの比が、0.50以上0.90以下である、マイクロカプセル。
(2) 上記量子ドットが、
 炭素数6が以上であり、カルボキシ基、アミノ基、チオール基、ホスフィド基、ホスフィンオキシド基、ホスフィンスルフィド基、ホスホン酸基及びスルフィド基からなる群より選択される少なくとも1種の基を有する、疎水性リガンドを有する、上記(1)に記載のマイクロカプセル。
(3) 上記芯物質の半径に対する上記外殻層の厚みの比が、0.60以上0.90以下である、上記(1)又は(2)に記載のマイクロカプセル。
(4) 上記芯物質の半径に対する上記外殻層の厚みの比が、0.65以上0.90未満である、上記(3)に記載のマイクロカプセル。
(5) 上記芯物質の半径に対する上記外殻層の厚みの比が、0.65以上0.85以下である、上記(4)に記載のマイクロカプセル。
(6) 上記分散媒の沸点が、120℃以上である、上記(1)~(5)のいずれかに記載のマイクロカプセル。
(7) 上記分散媒の沸点が、180℃以上である、上記(6)に記載のマイクロカプセル。
(8) 上記外殻層の材料が、ポリウレタン系樹脂、ポリウレア系樹脂、及び、ポリウレタンウレア系樹脂からなる群より選択される少なくとも1種の樹脂である、上記(1)~(7)のいずれかに記載のマイクロカプセル。
(9) 上記(1)~(8)のいずれかに記載のマイクロカプセルを製造する、マイクロカプセルの製造方法であって、
 量子ドットと25℃において液体である極性の低い分散媒と重合後に上記マイクロカプセルの外殻層の材料である樹脂となるモノマーとを含有する分散液と、上記分散媒よりも極性の高い溶媒と、界面活性剤とを少なくとも混合することで、混合液を得る、混合工程と、
 上記混合液を攪拌しながら加熱することで、上記分散液のミセルを形成するとともに、上記ミセルの界面で上記モノマーを重合して、上記量子ドットと上記分散媒とを含有する芯物質を、上記樹脂を材料とする外殻層で被覆する、マイクロカプセル化工程と、
 を備える、マイクロカプセルの製造方法。
(10) 上記(1)~(8)のいずれか1項に記載のマイクロカプセルを含有するフィルム。
(1) A microcapsule having a core substance and an outer shell layer covering the core substance,
The core material contains quantum dots and a dispersion medium that is liquid at 25 ° C .;
The material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a resin,
The radius of the core substance is 10 nm or more and 10 μm or less,
The thickness of the outer shell layer is 5 nm or more and 9 μm or less,
The microcapsule whose ratio of the thickness of the said outer shell layer with respect to the radius of the said core substance is 0.50-0.90.
(2) The above quantum dot is
Hydrophobic having at least one group selected from the group consisting of carboxy group, amino group, thiol group, phosphido group, phosphine oxide group, phosphine sulfide group, phosphonic acid group and sulfide group, having 6 or more carbon atoms The microcapsule according to (1) above, which has a sex ligand.
(3) The microcapsule according to (1) or (2), wherein the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.60 or more and 0.90 or less.
(4) The microcapsule as described in said (3) whose ratio of the thickness of the said outer shell layer with respect to the radius of the said core substance is 0.65 or more and less than 0.90.
(5) The microcapsule according to (4), wherein the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.65 or more and 0.85 or less.
(6) The microcapsule according to any one of the above (1) to (5), wherein the boiling point of the dispersion medium is 120 ° C. or more.
(7) The microcapsule as described in said (6) whose boiling point of the said dispersion medium is 180 degreeC or more.
(8) Any of the above (1) to (7), wherein the material of the outer shell layer is at least one resin selected from the group consisting of polyurethane resins, polyurea resins, and polyurethaneurea resins The microcapsule described in.
(9) A method for producing a microcapsule, which produces the microcapsule according to any one of (1) to (8) above,
A dispersion liquid containing quantum dots, a low polarity dispersion medium which is liquid at 25 ° C., and a monomer which becomes a resin which is a material of an outer shell layer of the microcapsule after polymerization, and a solvent having a polarity higher than the dispersion medium Mixing, at least mixing with a surfactant to obtain a mixed solution,
By heating the mixture while stirring, the micelles of the dispersion are formed, and the monomer is polymerized at the interface of the micelles to form a core substance containing the quantum dots and the dispersion medium. A microencapsulation step of coating with a resin-made outer shell layer;
A method of manufacturing a microcapsule, comprising:
(10) A film containing the microcapsule according to any one of the above (1) to (8).
 以下に示すように、本発明によれば、量子収率及び耐久性に優れたマイクロカプセル、及び、上記マイクロカプセルを含有するフィルムを提供することができる。 As described below, according to the present invention, a microcapsule having excellent quantum yield and durability, and a film containing the above-mentioned microcapsule can be provided.
図1は、本発明のマイクロカプセルの一実施態様の模式的断面図である。FIG. 1 is a schematic cross-sectional view of one embodiment of the microcapsule of the present invention. 図2Aは、本発明のマイクロカプセルを製造する方法の好適な態様の一実施態様の概略図である。FIG. 2A is a schematic view of an embodiment of a preferred embodiment of the method of producing the microcapsule of the present invention. 図2Bは、本発明のマイクロカプセルを製造する方法の好適な態様の一実施態様の概略図である。FIG. 2B is a schematic view of an embodiment of a preferred embodiment of the method of producing the microcapsule of the present invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
Although the description of the configuration requirements described below may be made based on the representative embodiments of the present invention, the present invention is not limited to such embodiments.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
[1]マイクロカプセル
 本発明のマイクロカプセルは、芯物質と上記芯物質を覆う外殻層とを有する。
 ここで、上記芯物質は、量子ドットと25℃において液体である分散媒とを含有する。
 また、上記外殻層の材料は、尿素系樹脂、メラミン系樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、ポリアミド系樹脂、及び、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂である。
 また、上記芯物質の半径は10nm以上10μm以下であり、上記外殻層の厚みは5nm以上9μm以下であり、上記芯物質の半径に対する上記外殻層の厚みの比は0.50以上0.90以下である。
[1] Microcapsule The microcapsule of the present invention has a core substance and an outer shell layer covering the core substance.
Here, the core material contains quantum dots and a dispersion medium that is liquid at 25 ° C.
The material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a kind of resin.
The radius of the core substance is 10 nm to 10 μm, the thickness of the outer shell layer is 5 nm to 9 μm, and the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.50 to 0. It is 90 or less.
 本発明のマイクロカプセルはこのような構成をとることにより、所望の効果を発現するものと考えられる。その理由は詳細には明らかではないが、およそ以下のとおりと推測される。
 本発明のマイクロカプセルにおいて、量子ドットを含有する芯物質は特定の樹脂を材料とする外殻層によって保護されている。上記外殻層は量子ドットを劣化させる因子(酸素等)を遮断する役割を有するものと考えられる。ここで、本発明者の検討から、単に外殻層を厚くしただけでは必ずしも耐久性は向上しないことが分かっている。例えば、外殻層を厚くしても、芯物質の半径(内部半径)も大きい場合には耐久性は不十分となることが分かっている。これは、外殻層を厚くしても、芯物質の半径(内部半径)に対する外殻層の厚みの比が小さい場合、マイクロカプセルに歪みが生じ、酸素等の劣化因子が十分に遮断されなくなるためと推測される。
 一方、本発明のマイクロカプセルは、外殻層の厚みの絶対値が特定されているだけでなく、内部半径に対する外殻層の厚みの比が特定の範囲にあるため、マイクロカプセル構造の安定性が高く、上述したような歪みが生じ難い。結果として、本発明のマイクロカプセルは極めて優れた耐久性を示すものと考えられる。
The microcapsule of the present invention is considered to exhibit a desired effect by taking such a configuration. The reason is not clear in detail, but is presumed to be as follows.
In the microcapsules of the present invention, the core material containing quantum dots is protected by an outer shell layer made of a specific resin. The outer shell layer is considered to have a role of blocking factors (such as oxygen) that deteriorate the quantum dots. Here, from the study of the present inventor, it is known that simply increasing the thickness of the shell layer does not necessarily improve the durability. For example, it has been found that even if the shell layer is thickened, the durability is insufficient when the radius (inner radius) of the core material is also large. This is because, even if the shell layer is thickened, if the ratio of the thickness of the shell layer to the radius (inner radius) of the core material is small, the microcapsules are distorted and the deterioration factor such as oxygen is not sufficiently blocked It is guessed that.
On the other hand, in the microcapsules of the present invention, not only the absolute value of the thickness of the shell layer is specified, but also the ratio of the thickness of the shell layer to the inner radius is in a specific range. And the distortion as described above is less likely to occur. As a result, the microcapsules of the present invention are considered to exhibit extremely excellent durability.
 最初に図面を用いて本発明のマイクロカプセルについて説明する。ただし、本発明のマイクロカプセルはこれに限られるものではない。
 図1は、本発明のマイクロカプセルの一実施態様の模式的断面図である。
 図1に示されるマイクロカプセル10は、量子ドット1と25℃において液体である分散媒2とを含有する芯物質3と、芯物質3を覆う外殻層4とを有する。
 ここで、外殻層4の材料は、尿素系樹脂、メラミン系樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、ポリアミド系樹脂、及び、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂である。
 また、芯物質3は半径rの球状であり、この芯物質3を厚みdの外殻層4が覆う。なお、マイクロカプセル10は半径r+dの球状である。
 また、芯物質3の半径rは10nm以上10μm以下であり、外殻層4の厚みdは5nm以上9μm以下であり、芯物質の半径rに対する外殻層の厚みdの比(d/r)は0.50以上0.90以下である。
First, the microcapsules of the present invention will be described with reference to the drawings. However, the microcapsule of the present invention is not limited to this.
FIG. 1 is a schematic cross-sectional view of one embodiment of the microcapsule of the present invention.
The microcapsule 10 shown in FIG. 1 has a core substance 3 containing quantum dots 1 and a dispersion medium 2 which is liquid at 25 ° C., and an outer shell layer 4 covering the core substance 3.
Here, the material of the outer shell layer 4 is at least selected from the group consisting of a urea resin, a melamine resin, a polyurethane resin, a polyurea resin, a polyamide resin, and two or more of these copolymer resins. It is one kind of resin.
Also, the core substance 3 is spherical with a radius r, and this core substance 3 is covered with the outer shell layer 4 of thickness d. The microcapsules 10 are spherical with a radius r + d.
The radius r of the core substance 3 is 10 nm to 10 μm, the thickness d of the outer shell layer 4 is 5 nm to 9 μm, and the ratio of the thickness d of the outer shell layer to the radius r of the core substance (d / r) Is 0.50 or more and 0.90 or less.
 以下、本発明のマイクロカプセルの各構成について詳述する。 Hereinafter, each structure of the microcapsule of this invention is explained in full detail.
[芯物質]
 芯物質は、量子ドットと25℃において液体である分散媒とを含有する。
 芯物質は、本発明の効果がより優れる理由から、複数の量子ドットを含有するのが好ましい。
[Core substance]
The core material contains quantum dots and a dispersion medium that is liquid at 25 ° C.
The core material preferably contains a plurality of quantum dots because the effect of the present invention is more excellent.
〔量子ドット〕
 芯物質に含有される量子ドットは、量子閉じ込め効果(quantum confinement effect)を有する半導体ナノ粒子を指す。
 量子ドット(半導体ナノ粒子)の粒径は、一般的に1~10nmの範囲にある。
 量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。よって、量子ドットのサイズ又は物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。
[Quantum dot]
The quantum dot contained in the core substance refers to a semiconductor nanoparticle having a quantum confinement effect.
The particle size of the quantum dots (semiconductor nanoparticles) is generally in the range of 1 to 10 nm.
When the quantum dot absorbs light from the excitation source and reaches an energy excited state, it emits energy corresponding to the energy band gap of the quantum dot. Thus, by adjusting the size of the quantum dot or the composition of the substance, the energy band gap can be adjusted, and energy of various levels of wavelength bands can be obtained.
<材料>
 上記量子ドットの材料は特に制限されないが、具体例としては、炭素、ケイ素、ゲルマニウム及び錫等のIV族元素の単体、リン(黒リン)等のV族元素の単体、セレン及びテルル等のVI族元素の単体、炭化ケイ素(SiC)等の複数のIV族元素からなる化合物、酸化錫(IV)(SnO)、硫化錫(II,IV)(Sn(II)Sn(IV)S)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、硫化鉛(II)(PbS)、セレン化鉛(II)(PbSe)及びテルル化鉛(II)(PbTe)等のIV-VI族半導体、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)及びアンチモン化インジウム(InSb)等のIII-V族半導体、硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe)、テルル化ガリウム(GaTe)、酸化インジウム(In)、硫化インジウム(In)、セレン化インジウム(InSe)及びテルル化インジウム(InTe)等のIII-VI族半導体、塩化タリウム(I)(TlCl)、臭化タリウム(I)(TlBr)及びヨウ化タリウム(I)(TlI)等のIII-VII族半導体、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)及びテルル化水銀(HgTe)等のII-VI族半導体、硫化砒素(III)(As)、セレン化砒素(III)(AsSe)、テルル化砒素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)及びテルル化ビスマス(III)(BiTe)等のV-VI族半導体等が挙げられ、これらのうち1種を用いても2種以上を併用してもよい。本発明の効果がより優れる理由から、上記量子ドットの材料は、III-V族半導体及びII-VI族半導体からなる群より選択される少なくとも1種であることが好ましい。
<Material>
The material of the quantum dot is not particularly limited, but specific examples thereof include simple substances of Group IV elements such as carbon, silicon, germanium and tin, simple substances of Group V elements such as phosphorus (black phosphorus), and VI such as selenium and tellurium A single group element, a compound comprising a plurality of group IV elements such as silicon carbide (SiC), tin oxide (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II) Sn (IV) S 3 ) , Tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin (II) telluride (SnTe), lead sulfide (II) (PbS), selenium Group IV-VI semiconductors such as lead (II) halide (PbSe) and lead (II) telluride (PbTe), boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), aluminum nitride (AlN) , Phosphide aluminum (AlP), aluminum arsenide (AlAs), aluminum antimonide (AlSb), gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium antimonide (GaSb), indium nitride (InN), phosphorus Group III-V semiconductors such as indium phosphide (InP), indium arsenide (InAs) and indium antimonide (InSb), aluminum sulfide (Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2) S 3 ), Gallium selenide (Ga 2 Se 3 ), Gallium telluride (Ga 2 Te 3 ), Indium oxide (In 2 O 3 ), Indium sulfide (In 2 S 3 ), Indium selenide (In 2 Se 3) ) and III such telluride, indium (in 2 Te 3) III-VII semiconductors such as Group VI semiconductors, thallium (I) chloride (TlCl), thallium (I) bromide (TlBr) and thallium (I) iodide (TlI), zinc oxide (ZnO), zinc sulfide (ZnS) ), Zinc selenide (ZnSe), zinc telluride (ZnTe), cadmium oxide (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), mercury sulfide (HgS), selenization II-VI semiconductors such as mercury (HgSe) and mercury telluride (HgTe), arsenic (III) sulfide (As 2 S 3 ), arsenic selenide (III) (As 2 Se 3 ), arsenic telluride (III) (As 2 Te 3), antimony sulfide (III) (Sb 2 S 3 ), selenium antimony (III) (Sb 2 Se 3 ), tellurium Kaa Chimon (III) (Sb 2 Te 3 ), bismuth sulfide (III) (Bi 2 S 3 ), bismuth selenide (III) (Bi 2 Se 3 ) and bismuth telluride (III) (Bi 2 Te 3 ) , such as Examples thereof include V-VI group semiconductors, etc. One of these may be used or two or more may be used in combination. The material of the quantum dot is preferably at least one selected from the group consisting of III-V semiconductors and II-VI semiconductors because the effects of the present invention are more excellent.
<疎水性リガンド>
 上記量子ドットは、本発明の効果がより優れる理由から、炭素数が6以上であり、カルボキシ基(-COOH)、アミノ基(-NR:Rは水素原子又は炭化水素基)、チオール基(-SH)、ホスフィド基(-PR:Rは水素原子又は炭化水素基)、ホスフィンオキシド基(-PR(=O):Rは水素原子又は炭化水素基)、ホスフィンスルフィド基(-PR(=S):Rは水素原子又は炭化水素基)、ホスホン酸基(-P(=O)(OH))及びスルフィド基(-S-)からなる群より選択される少なくとも1種の基を有する、疎水性リガンドを有するのが好ましい。
 上記炭素数は、本発明の効果がより優れる理由から、8~35であることが好ましく、10~25であることがより好ましい。
 上記基は、本発明の効果がより優れる理由から、チオール基であることが好ましい。
 上記疎水性リガンドの具体例としては、オレイルアミン、ドデシルアミン、ドデカンチオール、1,2-ヘキサデカンチオール及びトリオクチルホスフィンオキシド等が挙げられる。
 上記量子ドットは、上記疎水性リガンドを表面に有するのが好ましい。
<Hydrophobic ligand>
The above-mentioned quantum dot has 6 or more carbon atoms, a carboxy group (—COOH), an amino group (—NR 2 : R is a hydrogen atom or a hydrocarbon group), a thiol group (the hydrogen atom or hydrocarbon group). -SH), phosphide group (-PR 2 : R is a hydrogen atom or a hydrocarbon group), phosphine oxide group (-PR 2 (= O): R is a hydrogen atom or a hydrocarbon group), phosphine sulfide group (-PR 2 (= S): R is a hydrogen atom or a hydrocarbon group, at least one group selected from the group consisting of a phosphonic acid group (-P (= O) (OH) 2 ) and a sulfide group (-S-) It is preferred to have a hydrophobic ligand.
The number of carbon atoms is preferably 8 to 35, and more preferably 10 to 25 because the effect of the present invention is more excellent.
The group is preferably a thiol group because the effect of the present invention is more excellent.
Specific examples of the hydrophobic ligand include oleylamine, dodecylamine, dodecanethiol, 1,2-hexadecanethiol and trioctylphosphine oxide.
The quantum dot preferably has the hydrophobic ligand on the surface.
<好適な態様>
 上記量子ドットは、本発明の効果がより優れる理由から、コアシェル粒子であることが好ましい。
 上記量子ドットがコアシェル粒子である場合の第1の好適な態様としては、例えば、III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆うII族元素及びVI族元素を含有するシェルとを有する態様(シングルシェル形状)が挙げられる。
 また、上記量子ドットがコアシェル粒子である場合の第2の好適な態様としては、例えば、III族元素及びV族元素を含有するコアと、上記コアの表面の少なくとも一部を覆う第1シェルと、上記第1シェルの少なくとも一部を覆う第2シェルとを有する態様(マルチシェル形状)が挙げられる。
<Preferred embodiment>
It is preferable that the said quantum dot is a core-shell particle from the reason which the effect of this invention is more excellent.
As a first preferred embodiment in the case where the quantum dot is a core-shell particle, for example, a core containing a group III element and a group V element, and a group II element and a group VI covering at least a part of the surface of the core The aspect (single shell form) which has a shell containing an element is mentioned.
Further, as a second preferred embodiment in the case where the quantum dot is a core-shell particle, for example, a core containing a group III element and a group V element, and a first shell covering at least a part of the surface of the core And a second shell covering at least a part of the first shell (multi-shell shape).
<コア>
 上記量子ドットがコアシェル粒子である場合、コアシェル粒子が有するコアは、本発明の効果がより優れる理由から、III族元素及びV族元素を含有する、いわゆるIII-V族半導体であるのが好ましい。
<Core>
When the quantum dot is a core-shell particle, the core of the core-shell particle is preferably a so-called III-V semiconductor containing a group III element and a group V element because the effect of the present invention is more excellent.
(III族元素)
 III族元素としては、具体的には、例えば、インジウム(In)、アルミニウム(Al)、及び、ガリウム(Ga)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Inであるのが好ましい。
(Group III element)
Specific examples of the group III element include, for example, indium (In), aluminum (Al), and gallium (Ga). Among them, In is particularly preferably In because the effect of the present invention is more excellent. Is preferred.
(V族元素)
 V族元素としては、具体的には、例えば、P(リン)、N(窒素)、及び、As(ヒ素)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Pであるのが好ましい。
(Group V element)
Specific examples of the group V element include P (phosphorus), N (nitrogen), and As (arsenic), and the like. Among them, P is P because the effect of the present invention is more excellent. Is preferred.
 本発明においては、コアとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、本発明の効果がより優れる理由から、InP、InN、又は、InAsであるのが好ましく、InPであるのがより好ましい。 In the present invention, a III-V group semiconductor appropriately combining the above-described examples of the group III element and the group V element can be used as the core, but InP, InN, or InAs is preferable, and InP is more preferable.
 本発明においては、本発明の効果がより優れる理由から、上述したIII族元素及びV族元素以外に、更にII族元素を含有しているのが好ましく、特にコアがInPである場合、II族元素としてのZnをドープさせることにより格子定数が小さくなり、InPよりも格子定数の小さいシェル(例えば、後述するGaP、ZnSなど)との格子整合性が高くなる。 In the present invention, it is preferable to further contain a Group II element in addition to the Group III element and the Group V element mentioned above because the effect of the present invention is more excellent, and in particular when the core is InP, Group II By doping Zn as an element, the lattice constant is reduced, and lattice matching with a shell (for example, GaP, ZnS or the like described later) having a smaller lattice constant than InP is enhanced.
<シェル>
 上記量子ドットがシングルシェル形状のコアシェル粒子である場合、本発明の効果がより優れる理由から、シェルは、コアの表面の少なくとも一部を覆う材料であって、II族元素及びVI族元素を含有する、いわゆるII-VI族半導体であるのが好ましい。
 ここで、本発明においては、シェルがコアの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM(Transmission Electron Microscope)-EDX(Energy Dispersive X-ray spectroscopy))による組成分布解析によっても確認することが可能である。
<Shell>
When the quantum dot is a single-shell core-shell particle, the shell is a material covering at least a part of the surface of the core, and contains a group II element and a group VI element because the effect of the present invention is more excellent. So-called II-VI semiconductors are preferred.
Here, in the present invention, whether or not the shell covers at least a part of the surface of the core can be determined, for example, by energy dispersive X-ray spectroscopy (TEM (Transmission Electron Microscope)) using a transmission electron microscope. It can also be confirmed by composition distribution analysis by EDX (Energy Dispersive X-ray spectroscopy).
(II族元素)
 II族元素としては、具体的には、例えば、亜鉛(Zn)、カドミウム(Cd)、及び、マグネシウム(Mg)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Znであるのが好ましい。
(Group II element)
Specific examples of the Group II element include zinc (Zn), cadmium (Cd), and magnesium (Mg), among which Zn is particularly preferable because the effect of the present invention is more excellent. Is preferred.
(VI族元素)
 VI族元素としては、具体的には、例えば、硫黄(S)、酸素(O)、セレン(Se)、及び、テルル(Te)等が挙げられ、なかでも、本発明の効果がより優れる理由から、S又はSeであるのが好ましく、Sであるのがより好ましい。
(Group VI element)
Specific examples of the Group VI element include, for example, sulfur (S), oxygen (O), selenium (Se), and tellurium (Te). Among them, the reason why the effect of the present invention is more excellent From the above, S or Se is preferable, and S is more preferable.
 本発明においては、シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系であるのが好ましい。
 具体的には、本発明の効果がより優れる理由から、ZnS、ZnSeであるのが好ましく、安全性等の観点から、ZnSであるのがより好ましい。
In the present invention, although a II-VI group semiconductor appropriately combining the above-described examples of the group II element and the group VI element can be used as the shell, it is the same as the core described above because the effect of the present invention is more excellent. Or similar crystal systems are preferred.
Specifically, ZnS and ZnSe are preferable because the effect of the present invention is more excellent, and ZnS is more preferable from the viewpoint of safety and the like.
<第1シェル>
 上記量子ドットがマルチシェル形状のコアシェル粒子である場合、第1シェルは、コアの表面の少なくとも一部を覆う材料である。
 ここで、本発明においては、第1シェルがコアの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)による組成分布解析によっても確認することが可能である。
<First shell>
When the quantum dot is a core-shell particle having a multi-shell shape, the first shell is a material covering at least a part of the surface of the core.
Here, in the present invention, whether or not the first shell covers at least a part of the surface of the core can be determined, for example, by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It can also be confirmed by composition distribution analysis.
 本発明においては、コアとの界面欠陥を抑制しやすくなる理由から、第1シェルがII族元素又はIII族元素を含むことが好ましい。
 ここで、第1シェルがIII族元素を含む場合は、第1シェルに含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素である。
 また、II族元素又はIII族元素を含む第1シェルとしては、例えば、後述するII-VI族半導体及びIII-V族半導体の他、III族元素及びVI族元素を含有するIII-VI族半導体(例えば、Ga23、Ga23など)などが挙げられる。
In the present invention, it is preferable that the first shell contains a group II element or a group III element because it is easy to suppress interface defects with the core.
Here, when the first shell contains a group III element, the group III element contained in the first shell is a group III element different from the group III element contained in the core described above.
Also, as the first shell containing a Group II element or a Group III element, for example, a Group III-VI semiconductor containing a Group III element and a Group VI element in addition to a Group II-VI semiconductor and a Group III-V semiconductor described later (For example, Ga 2 O 3 , Ga 2 S 3 and the like) and the like.
 本発明においては、欠陥の少ない良質な結晶相が得られる理由から、第1シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体であるのが好ましく、上述したコアとの格子定数の差が小さいIII-V族半導体であるのがより好ましい。
 ここで、第1シェルがIII-V族半導体である場合は、III-V族半導体に含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素である。
In the present invention, the first shell contains a group II-VI semiconductor containing a group II element and a group VI element or a group III element and a group V element because a high quality crystal phase with few defects is obtained. The semiconductor device is preferably a group III-V semiconductor, more preferably a group III-V semiconductor having a small difference in lattice constant with the core described above.
Here, when the first shell is a group III-V semiconductor, the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core described above.
(1)II-VI族半導体
 上記II-VI族半導体に含まれるII族元素としては、具体的には、例えば、亜鉛(Zn)、カドミウム(Cd)、及び、マグネシウム(Mg)等が挙げられ、なかでも本発明の効果がより優れる理由から、Znであるのが好ましい。
 また、上記II-VI族半導体に含まれるVI族元素としては、具体的には、例えば、硫黄(S)、酸素(O)、セレン(Se)、及び、テルル(Te)等が挙げられ、なかでも本発明の効果がより優れる理由から、S又はSeであるのが好ましく、Sであるのがより好ましい。
(1) II-VI Group Semiconductor Examples of the II group element contained in the above-mentioned II-VI semiconductor include zinc (Zn), cadmium (Cd), magnesium (Mg) and the like. Among them, Zn is preferable because the effect of the present invention is more excellent.
Specific examples of the group VI element contained in the group II-VI semiconductor include sulfur (S), oxygen (O), selenium (Se), and tellurium (Te). Among these, S or Se is preferable, and S is more preferable because the effect of the present invention is more excellent.
 第1シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、本発明の効果がより優れる理由から、ZnSe、ZnS、又はそれらの混晶であるのが好ましく、ZnSeであるのがより好ましい。 As the first shell, a II-VI group semiconductor obtained by combining the above-described examples of the II group element and the VI group element can be used as appropriate, but the same or similar core as the above core can be obtained because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnSe is more preferable because the effect of the present invention is more excellent.
(2)III-V族半導体
 上記III-V族半導体に含まれるIII族元素としては、具体的には、例えば、インジウム(In)、アルミニウム(Al)、及び、ガリウム(Ga)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Gaであるのが好ましい。なお、上述した通り、III-V族半導体に含まれるIII族元素は、上述したコアに含まれるIII族元素とは異なるIII族元素であり、例えば、コアに含まれるIII族元素がInである場合は、III-V族半導体に含まれるIII族元素はAl、Ga等である。
 また、上記III-V族半導体に含まれるV族元素としては、具体的には、例えば、P(リン)、N(窒素)、及び、As(ヒ素)等が挙げられ、なかでも、本発明の効果がより優れる理由から、Pであるのが好ましい。
(2) Group III-V Semiconductor Specific examples of group III elements contained in the group III-V semiconductor include indium (In), aluminum (Al), and gallium (Ga). Among them, Ga is preferable because the effect of the present invention is more excellent. As described above, the group III element contained in the group III-V semiconductor is a group III element different from the group III element contained in the core described above, and, for example, the group III element contained in the core is In In such a case, the Group III element contained in the Group III-V semiconductor is Al, Ga or the like.
Specific examples of the group V element contained in the above-mentioned group III-V semiconductor include P (phosphorus), N (nitrogen), and As (arsenic), and the like, and the present invention is particularly preferably It is preferable that it is P because the effect of is more excellent.
 第1シェルとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、GaPであるのが好ましい。 As the first shell, a group III-V semiconductor obtained by appropriately combining the examples of the group III element and the group V element described above can be used, but the same or similar as the core described above because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, GaP is preferable.
 本発明においては、得られるコアシェル粒子の表面欠陥が少なくなる理由から、上述したコアと第1シェルとの格子定数の差が小さい方が好ましく、具体的には、上述したコアと第1シェルとの格子定数の差が10%以下であることが好ましい。
 具体的には、上述したコアがInPである場合、上述した通り、第1シェルはZnSe(格子定数の差:3.4%)、又は、GaP(格子定数の差:7.1%)であることが好ましく、特に、本発明の効果がより優れる理由から、コアと同じIII-V族半導体であり、コアと第1シェルとの界面に混晶状態を作りやすいGaPであることがより好ましい。
In the present invention, it is preferable that the difference in lattice constant between the core and the first shell described above be small because the surface defects of the obtained core-shell particles are reduced. Specifically, the core and the first shell described above It is preferable that the difference of the lattice constant of is 10% or less.
Specifically, when the above-mentioned core is InP, as described above, the first shell is ZnSe (difference in lattice constant: 3.4%) or GaP (difference in lattice constant: 7.1%) In particular, it is more preferable to use GaP which is the same III-V semiconductor as the core and which can easily form a mixed crystal state at the interface between the core and the first shell because the effect of the present invention is more excellent. .
 また、本発明においては、第1シェルがIII-V族半導体である場合、コアとのバンドギャップの大小関係(コア<第1シェル)に影響を与えない範囲で他の元素(例えば、上述したII族元素及びVI族元素)を含有又はドープしていてもよい。同様に、第1シェルがII-VI族半導体である場合、コアとのバンドギャップの大小関係(コア<第1シェル)に影響を与えない範囲で他の元素(例えば、上述したIII族元素及びV族元素)を含有又はドープしていてもよい。 Further, in the present invention, when the first shell is a III-V group semiconductor, other elements (for example, the above-described elements) may be used as long as the magnitude relation of the band gap with the core (core <first shell) is not affected. Group II element and group VI element) may be contained or doped. Similarly, in the case where the first shell is a II-VI group semiconductor, other elements (for example, the aforementioned group III elements and the above-described elements) can be used as long as the magnitude relation of the band gap with the core (core <first shell) is not affected. Group V element) may be contained or doped.
<第2シェル>
 上記量子ドットがマルチシェル形状のコアシェル粒子である場合、第2シェルは、上述した第1シェルの表面の少なくとも一部を覆う材料である。
 ここで、本発明においては、第2シェルが第1シェルの表面の少なくとも一部を被覆しているか否かは、例えば、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)による組成分布解析によっても確認することが可能である。
<Second shell>
When the quantum dot is a core-shell particle having a multi-shell shape, the second shell is a material covering at least a part of the surface of the first shell described above.
Here, in the present invention, whether or not the second shell covers at least a part of the surface of the first shell can be determined, for example, by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. It is possible to confirm also by composition distribution analysis by.
 本発明においては、第1シェルとの界面欠陥を抑制し、また、欠陥の少ない良質な結晶相が得られる理由から、第2シェルが、II族元素及びVI族元素を含有するII-VI族半導体、又は、III族元素及びV族元素を含有するIII-V族半導体であるのが好ましく、材料自体の反応性が高く、より結晶性の高いシェルが容易に得られる理由から、II-VI族半導体であるのがより好ましい。
 なお、II族元素及びVI族元素並びにIII族元素及びV族元素としては、いずれも、第1シェルにおいて説明したものが挙げられる。
In the present invention, the second shell contains a group II element and a group VI element because it suppresses interface defects with the first shell and provides a high quality crystal phase with few defects. It is preferable that the material is a semiconductor or a group III-V semiconductor containing a group III element and a group V element, and a shell having high reactivity of the material itself and higher crystallinity can be easily obtained. It is more preferable to be a group semiconductor.
In addition, as the group II element, the group VI element, the group III element and the group V element, those described in the first shell can be mentioned.
 第2シェルとして、上述したII族元素及びVI族元素の例示を適宜組み合わせたII-VI族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、ZnSe、ZnS、又はそれらの混晶であるのが好ましく、ZnSであるのがより好ましい。 As the second shell, a II-VI group semiconductor obtained by combining the above-described examples of the II group element and the VI group element can be used as appropriate, but the same or similar core as the above core can be obtained because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, ZnSe, ZnS, or a mixed crystal thereof is preferable, and ZnS is more preferable.
 第2シェルとして、上述したIII族元素及びV族元素の例示を適宜組み合わせたIII-V族半導体を用いることができるが、本発明の効果がより優れる理由から、上述したコアと同一又は類似の結晶系(例えば、閃亜鉛鉱構造)であるのが好ましい。具体的には、GaPであるのが好ましい。 Although the III-V group semiconductor which combined the illustration of the III group element and the V group element mentioned above suitably can be used as the 2nd shell, it is the same as or similar to the core mentioned above because the effect of the present invention is more excellent. It is preferably crystalline (eg, zinc blende structure). Specifically, GaP is preferable.
 本発明においては、得られるコアシェル粒子の表面欠陥が少なくなる理由から、上述した第1シェルと第2シェルとの格子定数の差が小さい方が好ましく、具体的には、上述した第1シェルと第2シェルとの格子定数の差が10%以下であることが好ましい。
 具体的には、上述した第1シェルがGaPである場合、上述した通り、第2シェルはZnSe(格子定数の差:3.8%)、又は、ZnS(格子定数の差:0.8%)であることが好ましく、ZnSであることがより好ましい。
In the present invention, it is preferable that the difference in lattice constant between the first shell and the second shell described above be small, because the surface defects of the obtained core-shell particles are reduced. Specifically, with the first shell described above The difference in lattice constant with the second shell is preferably 10% or less.
Specifically, when the first shell described above is GaP, as described above, the second shell is ZnSe (difference in lattice constant: 3.8%), or ZnS (difference in lattice constant: 0.8%) Is preferable, and ZnS is more preferable.
 また、本発明においては、第2シェルがII-VI族半導体である場合、コアとのバンドギャップの大小関係(コア<第2シェル)に影響を与えない範囲で他の元素(例えば、上述したIII族元素及びV族元素)を含有又はドープしていてもよい。同様に、第2シェルがIII-V族半導体である場合、コアとのバンドギャップの大小関係(コア<第2シェル)に影響を与えない範囲で他の元素(例えば、上述したII族元素及びVI族元素)を含有又はドープしていてもよい。 Further, in the present invention, when the second shell is a II-VI group semiconductor, other elements (for example, the above-described elements) can be used as long as the magnitude relationship of the band gap with the core (core <second shell) is not affected. Group III elements and group V elements) may be contained or doped. Similarly, when the second shell is a III-V group semiconductor, other elements (for example, the above-mentioned II group elements and the above-described elements) can be used as long as the magnitude relationship of the band gap with the core (core <second shell) is not affected. Group VI element) may be contained or doped.
 本発明においては、エピタキシャル成長が容易となり、各層間の界面欠陥を抑制しやすくなる理由から、上述したコアと、第1シェルと、第2シェルとが、いずれも閃亜鉛鉱構造を有する結晶系であるのが好ましい。 In the present invention, the above-mentioned core, the first shell, and the second shell are all crystal systems having a zinc-blende structure because epitaxial growth is facilitated and interface defects between layers are easily suppressed. Preferably there.
 また、本発明においては、コアにエキシトンが滞在する確率が増大し、発光効率がより高くなる理由から、上述したコア、第1シェル及び第2シェルのうち、コアのバンドギャップが最も小さく、かつ、コア及び第1シェルがタイプ1型(タイプI型)のバンド構造を示すコアシェル粒子であるのが好ましい。 Further, in the present invention, the band gap of the core is the smallest among the cores, the first shell and the second shell described above because the probability that excitons stay in the core increases and the light emission efficiency becomes higher. Preferably, the core and the first shell are core-shell particles exhibiting a band structure of type 1 (type I).
<量子ドットの製造方法>
 上記量子ドットの製造方法は特に制限されず、公知の方法を用いることができる。
 上記量子ドットがIII-V族半導体のコアと上記コアの少なくとも一部を覆うII-VI族半導体のシェルとを有するコアシェル粒子である場合、量子ドットの製造方法は、本発明の効果がより優れる理由から、溶媒中にIII族原料とV族原料とを添加し、加熱することで、III-V族半導体のコアを形成してから、II族原料とVI族原料とを添加し、加熱することで、上記コアの少なくとも一部を覆うII-VI族半導体のシェルを形成する方法が好ましい。
 また、上述した疎水性リガンドを有する量子ドットを製造する方法としては、例えば、量子ドットを製造する際に疎水性リガンドを添加する方法、及び、量子ドットの原料として疎水性リガンドを使用する方法(例えば、VI族原料としてアルキルチオールを使用する方法)などが挙げられる。
<Method of manufacturing quantum dot>
The method for producing the quantum dot is not particularly limited, and a known method can be used.
When the quantum dot is a core-shell particle having a core of a III-V semiconductor and a shell of a II-VI semiconductor covering at least a part of the core, the method of producing a quantum dot is more excellent in the effect of the present invention For the reason, after adding a Group III raw material and a Group V raw material to the solvent and heating to form a core of the III-V semiconductor, a Group II raw material and a Group VI raw material are added and heated. Preferably, a method of forming a shell of a II-VI semiconductor covering at least a part of the core is preferable.
In addition, as a method of producing a quantum dot having a hydrophobic ligand described above, for example, a method of adding a hydrophobic ligand when producing a quantum dot, and a method of using a hydrophobic ligand as a raw material of quantum dots ( For example, the method of using an alkyl thiol as a VI group raw material etc. are mentioned.
(溶媒)
 上記溶媒は、本発明の効果がより優れる理由から、非極性溶媒であるのが好ましい。
 非極性溶媒としては、例えば、n-デカン、n-ドデカン、n-ヘキサデカン、n-オクタデカンなどの脂肪族飽和炭化水素;1-ウンデセン、1-ドデセン、1-ヘキサデセン、1-オクタデセンなどの脂肪族不飽和炭化水素;トリオクチルホスフィン;等が挙げられる。なかでも、本発明の効果がより優れる理由から、炭素数12以上の脂肪族不飽和炭化水素が好ましく、1-オクタデセンがより好ましい。
(solvent)
The above solvent is preferably a nonpolar solvent because the effect of the present invention is more excellent.
Examples of nonpolar solvents include aliphatic saturated hydrocarbons such as n-decane, n-dodecane, n-hexadecane and n-octadecane; aliphatics such as 1-undecene, 1-dodecene, 1-hexadecene and 1-octadecene Unsaturated hydrocarbon; trioctyl phosphine; and the like. Among them, aliphatic unsaturated hydrocarbons having 12 or more carbon atoms are preferable, and 1-octadecene is more preferable because the effect of the present invention is more excellent.
(III族原料)
 上記III原料としては、例えば、塩化インジウム、酸化インジウム、脂肪酸インジウム(例えば、酢酸インジウム、ミリスチン酸インジウム)、硝酸インジウム、硫酸インジウム、及び、インジウム酸;リン酸アルミニウム、アセチルアセトナトアルミニウム、塩化アルミニウム、フッ化アルミニウム、酸化アルミニウム、硝酸アルミニウム、及び、硫酸アルミニウム;並びに、アセチルアセトナトガリウム、塩化ガリウム、フッ化ガリウム、酸化ガリウム、硝酸ガリウム、及び、硫酸ガリウム;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なかでも、得られるマイクロカプセルの量子収率及び耐久性がより優れる(以下、単に「本発明の効果がより優れる」とも言う)理由から、インジウム化合物であることが好ましく、塩化物などの不純物イオンがコアに取り込まれ難く、高い結晶性を実現しやすい酢酸インジウムを用いるのがより好ましい。
(Group III raw material)
Examples of the source III include indium chloride, indium oxide, fatty acid indium (eg, indium acetate and indium myristate), indium nitrate, indium sulfate, and indium acid; aluminum phosphate, aluminum acetylacetonate aluminum, aluminum chloride, Aluminum fluoride, aluminum oxide, aluminum nitrate, and aluminum sulfate; and acetylacetonatogallium, gallium chloride, gallium fluoride, gallium oxide, gallium nitrate, and gallium sulfate; Or two or more may be used in combination.
Among them, an indium compound is preferable because the quantum yield and durability of the obtained microcapsule are more excellent (hereinafter, also simply referred to as “more excellent in the effect of the present invention”), and impurity ion such as chloride is preferable. It is more preferable to use indium acetate which is difficult to be incorporated into the core and which can easily realize high crystallinity.
(V族原料)
 上記V族原料としては、例えば、トリストリアルキルシリルホスフィン、トリスジアルキルシリルホスフィン、及び、トリスジアルキルアミノホスフィン;酸化砒素、塩化砒素、硫酸砒素、臭化砒素、及び、ヨウ化砒素;並びに、一酸化窒素、硝酸、及び、硝酸アンモニウム;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なかでも、本発明の効果がより優れる理由から、Pを含む化合物であるのが好ましく、例えば、トリストリアルキルシリルホスフィン、又は、トリスジアルキルアミノホスフィンを用いるのが好ましく、具体的には、トリストリメチルシリルホスフィンを用いるのがより好ましい。
(Group V raw material)
Examples of the group V raw materials include tristrialkylsilylphosphine, trisdialkylsilylphosphine, and trisdialkylaminophosphine; arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, and arsenic iodide; Nitrogen, nitric acid, and ammonium nitrate; and the like can be mentioned, and these may be used alone or in combination of two or more.
Among them, a compound containing P is preferable because the effect of the present invention is more excellent. For example, it is preferable to use tristrialkylsilyl phosphine or trisdialkylamino phosphine. Specifically, tristrimethylsilyl is preferable. It is more preferred to use phosphine.
(II族原料)
 上記II族原料としては、例えば、ジメチル亜鉛、ジエチル亜鉛、亜鉛カルボキシル酸塩、アセチルアセトナト亜鉛、ヨウ化亜鉛、臭化亜鉛、塩化亜鉛、フッ化亜鉛、炭酸亜鉛、シアン化亜鉛、硝酸亜鉛、酸化亜鉛、過酸化亜鉛、亜鉛過塩素酸塩、脂肪酸亜鉛(例えば、酢酸亜鉛、ステアリン酸亜鉛)、及び、硫酸亜鉛等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なかでも、本発明の効果がより優れる理由から、脂肪酸亜鉛を用いるのが好ましい。
(Group II raw material)
Examples of the group II raw materials include dimethyl zinc, diethyl zinc, zinc carboxylate, acetylacetonato zinc, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitrate, Zinc oxide, zinc peroxide, zinc perchlorate, fatty acid zinc (eg, zinc acetate, zinc stearate), zinc sulfate and the like may be mentioned, and one or more of these may be used alone. You may use together.
Among them, it is preferable to use fatty acid zinc because the effect of the present invention is more excellent.
(VI族原料)
 上記VI族原料としては、例えば、硫黄、アルキルチオール、トリアルキルホスフィンスルフィド、トリアルケニルホスフィンスルフィド、アルキルアミノスルフィド、アルケニルアミノスルフィド、イソチオシアン酸シクロヘキシル、ジエチルジチオカルバミン酸、及び、ジエチルジチオカルバミン酸;並びに、トリアルキルホスフィンセレン、トリアルケニルホスフィンセレン、アルキルアミノセレン、アルケニルアミノセレン、トリアルキルホスフィンテルリド、トリアルケニルホスフィンテルリド、アルキルアミノテルリド、及び、アルケニルアミノテルリド;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なかでも、本発明の効果がより優れる理由から、アルキルチオールを用いるのが好ましく、具体的には、ドデカンチオール、又は、オクタンチオールを用いるのがより好ましく、ドデカンチオールを用いるのがさらに好ましい。
(Group VI raw material)
Examples of the group VI raw materials include sulfur, alkyl thiols, trialkyl phosphine sulfides, trialkenyl phosphine sulfides, alkyl amino sulfides, alkenyl amino sulfides, cyclohexyl isothiocyanate, diethyl dithiocarbamic acid, and diethyl dithiocarbamic acid; Phosphine selenium, trialkenyl phosphine selenium, alkylaminoselenium, alkenylaminoselenium, trialkylphosphine telluride, trialkenylphosphine telluride, alkylaminotelluride, and alkenylaminotelluride; Or two or more may be used in combination.
Among them, it is preferable to use alkylthiol because the effect of the present invention is more excellent. Specifically, it is more preferable to use dodecanethiol or octanethiol, and it is more preferable to use dodecanethiol.
<含有量>
 上記芯物質中の量子ドットの含有量は特に制限されないが、本発明の効果がより優れる理由から、0.1~50質量%であることが好ましく、0.5~30質量%であることがより好ましい。
 上記量子ドットは、1種を用いても、2種以上を併用してもよい。
<Content>
The content of the quantum dots in the core substance is not particularly limited, but is preferably 0.1 to 50% by mass, and more preferably 0.5 to 30% by mass because the effect of the present invention is more excellent. More preferable.
The above quantum dots may be used alone or in combination of two or more.
〔分散媒〕
 芯物質に含有される分散媒は、25℃において液体である分散媒であれば特に制限されない。
 上記25℃において液体である分散媒は、極性の高い分散媒(高極性分散媒)(例えば、水)でも極性の低い分散媒(低極性分散媒)でも構わないが、本発明の効果がより優れる理由から、低極性分散媒であることが好ましく、水よりも極性の低い低極性分散媒であることが好ましい。
[Dispersion medium]
The dispersion medium contained in the core substance is not particularly limited as long as the dispersion medium is a liquid at 25 ° C.
The dispersion medium that is liquid at 25 ° C. may be a highly polar dispersion medium (highly polar dispersion medium) (for example, water) or a low polarity dispersion medium (lowly polar dispersion medium). It is preferable that it is a low-polar dispersion medium from the reason of being excellent, and it is preferable that it is a low-polar dispersion medium whose polarity is lower than water.
 上記低極性分散媒としては、例えば、トルエン及びメシチレンなどの芳香族炭化水素;クロロホルムなどのハロゲン化アルキル;ヘキサン、オクタン、n-デカン、n-ドデカン、n-ヘキサデカン及びn-オクタデカンなどの脂肪族飽和炭化水素;1-ウンデセン、1-ドデセン、1-ヘキサデセン及び1-オクタデセンなどの脂肪族不飽和炭化水素;トリオクチルホスフィン;(メタ)アクリレート;等が挙げられ、なかでも、本発明の効果がより優れる理由から、芳香族炭化水素及び(メタ)アクリレートが好ましく、(メタ)アクリレートがより好ましい。 Examples of the low-polar dispersion medium include aromatic hydrocarbons such as toluene and mesitylene; halogenated alkyl such as chloroform; and aliphatics such as hexane, octane, n-decane, n-dodecane, n-hexadecane and n-octadecane Saturated hydrocarbons; aliphatic unsaturated hydrocarbons such as 1-undecene, 1-dodecene, 1-hexadecene and 1-octadecene; trioctyl phosphine; (meth) acrylates; etc., among which the effect of the present invention is For the reason of being more excellent, aromatic hydrocarbons and (meth) acrylates are preferable, and (meth) acrylates are more preferable.
 上記(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシノニル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロヘキシル(メタ)アクリレート、2-ジシクロヘキシルオキシエチル(メタ)アクリレート、モルホリノ(メタ)アクリルアミド、フェノキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、2-モルホリノエチル(メタ)アクリレート、9-アントリル(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシフェニル)プロパン、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トランス-1,4-シクロヘキサンジオールジ(メタ)アクリレート、ジシクロペンテニルオキシエチルメタクリレート及びジシクロペンタニルアクリレート(DCP)などが挙げられ、なかでも、本発明の効果がより優れる理由から、ジシクロペンタニルアクリレート(DCP)が好ましい。 Examples of the (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofulf Furyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, isononyl (meth) acrylate, isodecinonyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, isobornyl (meth) acrylate, butoxydiethylene glycol (meth) acrylate, benzyl ) Acrylate, dicyclohexyl (meth) acrylate, 2-dicyclohexyloxyethyl (meth) acrylate, morpholino (meth) acrylamide, phenoxyethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ethylene glycol di (meth) acrylate, 1,1 4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, nonanediol di (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, 2-morpholinoethyl (meth) acrylate, 9-anthryl (meth) acrylate, 2,2-bis (4- (meth) acrylic acid Iroxyphenyl) propane, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trans-1,4-cyclohexanediol di (meth) acrylate, dicyclopentenyloxyethyl methacrylate and dicyclopentanyl acrylate ( Among them, dicyclopentanyl acrylate (DCP) is preferable because the effect of the present invention is more excellent.
 上記25℃において液体である分散媒の沸点は特に制限されないが、本発明の効果がより優れる理由から、100℃以上であることが好ましく、120℃以上であることがより好ましく、180℃以上であることがさらに好ましく、200℃以上であることが特に好ましい。
 上記25℃において液体である分散媒の沸点の上限は特に制限されないが、本発明の効果がより優れる理由から、350℃以下であることが好ましい。
 なお、上記沸点は、1気圧における値とする。
The boiling point of the dispersion medium which is liquid at 25 ° C. is not particularly limited, but is preferably 100 ° C. or more, more preferably 120 ° C. or more, and more preferably 180 ° C. or more because the effect of the present invention is more excellent. C., more preferably 200.degree. C. or more.
The upper limit of the boiling point of the dispersion medium which is liquid at 25 ° C. is not particularly limited, but is preferably 350 ° C. or less because the effect of the present invention is more excellent.
In addition, the said boiling point is taken as the value in 1 atmosphere.
 上記芯物質中の上記25℃において液体である分散媒の含有量は特に制限されないが、本発明の効果がより優れる理由から、50~99.9質量%であることが好ましく、70~99.5質量%であることがより好ましい。
 上記25℃において液体である分散媒は、1種を用いても、2種以上を併用してもよい。
The content of the dispersion medium which is liquid at 25 ° C. in the core substance is not particularly limited, but is preferably 50 to 99.9% by mass, and more preferably 70 to 99. More preferably, it is 5% by mass.
The dispersion medium which is liquid at 25 ° C. may be used alone or in combination of two or more.
〔その他の成分〕
 上記芯物質は、上記量子ドット及び上記25℃において液体である分散媒のいずれにも該当しないその他の成分を含有していてもよいが、芯物質中の上記その他の成分の含有量は、本発明の効果がより優れる理由から、5質量%以下であることが好ましい。
[Other ingredients]
The core material may contain other components that do not correspond to any of the quantum dots and the dispersion medium that is liquid at 25 ° C., but the content of the other components in the core material is It is preferable that it is 5 mass% or less from the reason which the effect of invention is more excellent.
[外殻層]
 上述のとおり、本発明のマイクロカプセルは、芯物質を覆う外殻層を有する。
 上記外殻層の材料は、尿素系樹脂、メラミン系樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、ポリアミド系樹脂、及び、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂である。
 ここで、「尿素系樹脂」とは、尿素とホルムアルデヒドとの重縮合によって得られる樹脂であり、「メラミン系樹脂」とは、メラミンとホルムアルデヒドとの重縮合によって得られる樹脂であり、「ポリウレタン系樹脂」とは、主鎖にウレタン結合(-NHCOO-)を有する樹脂であり、「ポリウレア系樹脂」とは、主鎖にウレア結合(-NHCONH-)を有する樹脂であり、「ポリアミド系樹脂」とは、主鎖にアミド結合(-NRCO-:Rは水素原子又は炭化水素基)を有する樹脂である。
 また、「これら2つ以上の共重合樹脂」としては、例えば、尿素メラミン系樹脂(尿素とメラミンとホルムアルデヒドとの重縮合によって得られる樹脂)、ポリウレタンウレア系樹脂(主鎖にウレタン結合及びウレア結合を有する樹脂)、ポリウレタンアミド系樹脂(主鎖にウレタン結合及びアミド結合を有する樹脂)、及び、ポリウレタンウレアアミド系樹脂(主鎖にウレタン結合、ウレア結合及びアミド結合を有する樹脂)などが挙げられる。
Outer shell layer
As mentioned above, the microcapsules of the present invention have an outer shell layer covering the core substance.
The material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a resin.
Here, "urea-based resin" is a resin obtained by polycondensation of urea and formaldehyde, and "melamine-based resin" is a resin obtained by polycondensation of melamine and formaldehyde, "polyurethane-based resin""Resin" is a resin having a urethane bond (-NHCOO-) in the main chain, "polyurea resin" is a resin having a urea bond (-NHCONH-) in the main chain, "polyamide resin" Is a resin having an amide bond (-NRCO-: R is a hydrogen atom or a hydrocarbon group) in the main chain.
In addition, as “these two or more copolymer resins”, for example, urea melamine resin (resin obtained by polycondensation of urea, melamine and formaldehyde), polyurethane urea resin (urethane bond and urea bond in main chain) Resin, polyurethane amide resin (resin having urethane bond and amide bond in main chain), polyurethane urea amide resin (resin having urethane bond, urea bond and amide bond in main chain), etc. .
 外殻層の材料は、本発明の効果がより優れる理由から、主鎖にウレタン結合及び/又はウレア結合を有する樹脂(ポリウレタン系樹脂、ポリウレア系樹脂、及び、ポリウレタンウレア系樹脂からなる群より選択される少なくとも1種の樹脂)であることが好ましく、主鎖にウレタン結合及びウレア結合を有する樹脂(ポリウレタンウレア系樹脂)であることがより好ましい。 The material of the outer shell layer is selected from the group consisting of a resin having a urethane bond and / or a urea bond in the main chain (polyurethane resin, polyurea resin, and polyurethaneurea resin, for the reason that the effect of the present invention is more excellent The resin is preferably at least one kind of resin), and more preferably a resin having a urethane bond and a urea bond in the main chain (polyurethane urea resin).
[芯物質半径、外殻層厚み、及び、厚み/半径]
 以下、本発明のマイクロカプセルにおける、芯物質の半径(芯物質半径)、外殻層の厚み(外殻層厚み)、及び、芯物質の半径に対する外殻層の厚みの比(厚み/半径)について説明する。
 なお、芯物質及びマイクロカプセルは通常球状であるが、これに限られない。
[Core substance radius, shell thickness, and thickness / radius]
Hereinafter, in the microcapsule of the present invention, the radius of the core substance (core substance radius), the thickness of the outer shell layer (outer shell layer thickness), and the ratio of the thickness of the outer shell layer to the radius of the core substance (thickness / radius) Will be explained.
The core substance and the microcapsules are usually spherical, but not limited thereto.
〔芯物質半径〕
 本発明のマイクロカプセルにおいて、芯物質半径は、10nm以上10μm以下である。なかでも、本発明の効果がより優れる理由から、2μm以上8μm以下であることが好ましい。
 ここで、芯物質半径は、マイクロカプセルの内部半径に相当する。芯物質半径(マイクロカプセルの内部半径)は、少なくとも20個のマイクロカプセルをSEM(走査型電子顕微鏡)で観察し、外殻層の内側の投影面積と同一面積を有する円の半径を算出して、それらを算術平均することで求める。
[Core material radius]
In the microcapsule of the present invention, the core material radius is 10 nm or more and 10 μm or less. Especially, it is preferable that they are 2 micrometers or more and 8 micrometers or less from the reason which the effect of this invention is more excellent.
Here, the core material radius corresponds to the internal radius of the microcapsule. For the core material radius (inner radius of microcapsules), observe at least 20 microcapsules with a SEM (scanning electron microscope), and calculate the radius of a circle having the same area as the projected area inside the outer shell layer , Find them by arithmetic averaging.
〔外殻層厚み〕
 本発明のマイクロカプセルにおいて、外殻層厚みは、5nm以上9μm以下である。なかでも、本発明の効果がより優れる理由から、1μm以上7μm以下であることが好ましい。
 ここで、外殻層厚みは、マイクロカプセルの半径から芯物質半径(マイクロカプセルの内部半径)を差し引いた値に相当する。外殻層厚みは、少なくとも20個のマイクロカプセルをSEM(走査型電子顕微鏡)で観察し、外殻層の外側の投影面積と同一面積を有する円の半径を算出して、それらを算術平均することでマイクロカプセルの半径を求め、次いで、マイクロカプセルの半径から芯物質半径(マイクロカプセルの内部半径)を差し引くことで求める。芯物質半径(マイクロカプセルの内部半径)の求め方は上述のとおりである。
[Shell thickness]
In the microcapsule of the present invention, the shell thickness is 5 nm or more and 9 μm or less. Especially, it is preferable that they are 1 micrometer or more and 7 micrometers or less from the reason which the effect of this invention is more excellent.
Here, the shell layer thickness corresponds to a value obtained by subtracting the core material radius (the inner radius of the microcapsule) from the radius of the microcapsule. Outer shell layer thickness observes at least 20 microcapsules by SEM (scanning electron microscope), calculates the radius of a circle having the same area as the projected area outside the outer shell layer, and arithmetically averages them To determine the radius of the microcapsule, and then subtracting the core material radius (the internal radius of the microcapsule) from the radius of the microcapsule. The method of determining the core substance radius (the internal radius of the microcapsule) is as described above.
〔厚み/半径〕
 本発明のマイクロカプセルにおいて、芯物質の半径に対する外殻層の厚みの比(厚み/半径)は、0.50以上0.90以下である。なかでも、本発明の効果がより優れる理由から、0.60以上0.90以下であることが好ましく、0.65以上0.90未満であることがより好ましく、0.70以上0.85以下であることがさらに好ましい。
[Thickness / radius]
In the microcapsules of the present invention, the ratio (thickness / radius) of the thickness of the shell layer to the radius of the core substance is 0.50 or more and 0.90 or less. Especially, it is preferable that they are 0.60 or more and 0.90 or less, more preferably 0.65 or more and less than 0.90, and more preferably 0.70 or more and 0.85 or less because the effect of the present invention is more excellent. It is further preferred that
[マイクロカプセルの製造方法]
 本発明のマイクロカプセルを製造する方法は特に制限されないが、例えば、量子ドットと分散媒とモノマーとを含有する分散液のミセルを形成し、上記ミセルの界面でモノマーを重合して、量子ドットと分散媒とを含有する芯物質を外殻層で被覆する方法(方法1)、予め外殻層のみのマイクロカプセルを作製しておき、外殻層の内側に量子ドットと分散媒とを含有する芯物質を抽入する方法(方法2)などが挙げられる。なかでも、本発明の効果がより優れる理由から、方法1が好ましく、下記好適な態様に記載の方法がより好ましい。
[Method of producing microcapsules]
The method for producing the microcapsules of the present invention is not particularly limited. For example, micelles of a dispersion containing quantum dots, a dispersion medium, and monomers are formed, and monomers are polymerized at the interface of the micelles to form quantum dots. A method of coating a core material containing a dispersion medium with an outer shell layer (Method 1), preparing microcapsules of only the outer shell layer beforehand, and containing quantum dots and a dispersion medium inside the outer shell layer The method (method 2) etc. which extract core materials are mentioned. Among them, the method 1 is preferable, and the method described in the following preferred embodiment is more preferable because the effect of the present invention is more excellent.
〔好適な態様〕
 本発明のマイクロカプセルを製造する方法は、本発明の効果がより優れる理由から、下記(1)~(2)の工程を備える方法(以下、「本発明の方法」とも言う)が好ましい。
(1)量子ドットと25℃において液体である極性の低い分散媒と重合後にマイクロカプセルの外殻層の材料である樹脂となるモノマーとを含有する分散液と、上記分散媒よりも極性の高い溶媒と、界面活性剤とを少なくとも混合することで、混合液を得る、混合工程
(2)上記混合液を攪拌しながら加熱することで、上記分散液のミセルを形成するとともに、上記ミセルの界面で上記モノマーを重合して、上記量子ドットと上記分散媒とを含有する芯物質を、上記樹脂を材料とする外殻層で被覆する、マイクロカプセル化工程
[Preferred embodiment]
The method of producing the microcapsules of the present invention is preferably a method comprising the following steps (1) to (2) (hereinafter also referred to as “the method of the present invention”) because the effects of the present invention are more excellent.
(1) A dispersion containing a quantum dot, a low polarity dispersion medium which is liquid at 25 ° C., and a monomer to be a resin which is a material of an outer shell layer of microcapsules after polymerization, and polarity higher than the above dispersion medium. A mixed solution is obtained by mixing at least a solvent and a surfactant, and mixing step (2) The mixed solution is heated with stirring to form micelles of the dispersion, and the interface of the micelles. Microcapsulation step of polymerizing the above-mentioned monomers and coating the core material containing the above-mentioned quantum dots and the above-mentioned dispersion medium with the outer shell layer made of the above-mentioned resin as a material
 最初に図面を用いて本発明の方法について説明する。ただし、本発明の方法はこれに限られるものではない。
 図2A及び図2Bは、本発明のマイクロカプセルを製造する方法の好適な態様(本発明の方法)の一実施態様の概略図である。
 まず、混合工程において、量子ドットと25℃において液体である極性の低い分散媒と重合後にマイクロカプセルの外殻層の材料である樹脂となるモノマーとを含有する分散液と、上記分散媒よりも極性の高い溶媒と、界面活性剤とを少なくとも混合することで、混合液を得る。
 次に、上記混合液を攪拌しながら加熱することで、極性の高い溶媒6中に上記分散液のミセル5を形成し(図2A)、ミセル5の界面で上記モノマーを重合して、上記量子ドットと上記分散媒とを含有する芯物質3を、上記樹脂を材料とする外殻層4で被覆する。このようにして、上記芯物質と上記芯物質を覆う外殻層とを有するマイクロカプセル10を得る(図2B)。
First, the method of the present invention will be described using the drawings. However, the method of the present invention is not limited to this.
FIGS. 2A and 2B are schematic views of an embodiment of a preferred embodiment (method of the present invention) of the method of producing the microcapsule of the present invention.
First, in the mixing step, a dispersion containing a quantum dot, a dispersion medium of low polarity that is liquid at 25 ° C., and a monomer that becomes a resin that is a material of the shell layer of microcapsules after polymerization, and the dispersion medium A mixed solution is obtained by mixing at least a highly polar solvent and a surfactant.
Next, the mixed solution is heated with stirring to form micelles 5 of the dispersion in the highly polar solvent 6 (FIG. 2A), and the monomer is polymerized at the interface of the micelles 5 to form the quantum The core material 3 containing the dots and the dispersion medium is covered with the outer shell layer 4 made of the resin. Thus, a microcapsule 10 having the core substance and an outer shell layer covering the core substance is obtained (FIG. 2B).
 以下、各工程について説明する。 Each step will be described below.
<混合工程>
 混合工程は、量子ドットと25℃において液体である極性の低い分散媒と重合後にマイクロカプセルの外殻層の材料である樹脂となるモノマーとを含有する分散液と、上記分散媒よりも極性の高い溶媒と、界面活性剤とを少なくとも混合することで、混合液を得る工程である。
<Mixing process>
The mixing step includes a dispersion containing a quantum dot, a dispersion medium of low polarity which is liquid at 25 ° C., and a monomer which becomes a resin which is a material of an outer shell layer of microcapsules after polymerization, and more polar than the dispersion medium. This is a step of obtaining a mixed solution by mixing at least a high solvent and a surfactant.
(量子ドット)
 量子ドットについては上述のとおりである。
(Quantum dot)
The quantum dots are as described above.
(分散媒)
 分散媒は25℃において液体である極性の低い分散媒であれば特に制限されない。
 25℃において液体である極性の低い分散媒は、本発明の効果がより優れる理由から、水よりも極性の低い分散媒であることが好ましい。上記水よりも極性の低い分散媒の具体例は、上述した低極性分散媒と同じである。
(Dispersion medium)
The dispersion medium is not particularly limited as long as it is a liquid dispersion medium having low polarity at 25 ° C.
The low polarity dispersion medium which is liquid at 25 ° C. is preferably a polarity lower dispersion medium than water because the effect of the present invention is more excellent. Specific examples of the dispersion medium having a polarity lower than that of water are the same as the low polarity dispersion medium described above.
(モノマー)
 モノマーは上述した外殻層の材料である樹脂となるモノマーである。
 外殻層の材料が尿素系樹脂である場合のモノマーとしては、例えば、尿素及びホルムアルデヒドが挙げられる。また、外殻層の材料がメラミン系樹脂である場合のモノマーとしては、例えば、メラミン及びホルムアルデヒドが挙げられる。また、外殻層の材料がポリウレタン系樹脂である場合のモノマーとしては、例えば、ポリイソシアネート及びポリオールが挙げられる。また、外殻層の材料がポリウレア系樹脂である場合のモノマーとしては、例えば、ポリイソシアネートが挙げられる。また、外殻層の材料がポリアミド系樹脂である場合のモノマーとしては、カルボン酸(又は、カルボン酸ハロゲン化物等のカルボン酸誘導体)及びアミンが挙げられる。
 例えば、モノマーとしてポリイソシアネートを含有する分散液と、水と、界面活性剤との混合液を用いた場合、後述するマイクロカプセル化工程においてミセルの界面でポリイソシアネートと水とが反応してポリウレア系樹脂を材料とする外殻層が形成される。
(monomer)
A monomer is a monomer used as resin which is a material of an outer shell layer mentioned above.
When the material of the shell layer is a urea-based resin, examples of the monomer include urea and formaldehyde. Moreover, as a monomer in case the material of an outer shell layer is a melamine resin, a melamine and formaldehyde are mentioned, for example. Moreover, as a monomer in case the material of outer shell layer is a polyurethane-type resin, polyisocyanate and a polyol are mentioned, for example. Moreover, as a monomer in case the material of outer shell layer is polyurea type resin, polyisocyanate is mentioned, for example. Moreover, as a monomer in case the material of outer shell layer is a polyamide-type resin, carboxylic acid (or carboxylic acid derivatives, such as carboxylic acid halide) and amine are mentioned.
For example, in the case of using a mixture of a dispersion containing polyisocyanate as a monomer, water, and a surfactant, the polyisocyanate reacts with water at the interface of micelles in the microcapsulation step to be described later, resulting in a polyurea system. An outer shell layer made of resin is formed.
 なお、後述するマイクロカプセル化工程において2種類のモノマーを反応させることで外殻層を形成する場合、2種類のモノマーのうち一方が分散媒に含有され、他方は水及び界面活性剤とともに分散液に混合するのが好ましい。例えば、二塩化イソフタロイルを含有する分散液と、水と、界面活性剤と、p-フェニレンジアミンとの混合液を用いた場合、後述するマイクロカプセル化工程においてミセルの界面で二塩化イソフタロイル及びp-フェニレンジアミンが重合してポリアミド系樹脂を材料とする外殻層が形成される。 In addition, when forming an outer shell layer by making two types of monomers react in the microencapsulation process mentioned later, one side is contained in a dispersion medium among two types of monomers, and the other is a dispersion liquid with water and surfactant. Preferably it is mixed with For example, in the case of using a mixture of a dispersion containing isophthaloyl dichloride, water, a surfactant and p-phenylenediamine, isophthaloyl dichloride and p- at the interface of micelles in the microcapsulation step described later. Phenylenediamine is polymerized to form an outer shell layer made of a polyamide resin.
(溶媒)
 溶媒は、分散媒よりも極性の高い溶媒であれば特に制限されない。なかでも、本発明の効果がより優れる理由から、水が好ましい。
(solvent)
The solvent is not particularly limited as long as it is a solvent having a polarity higher than that of the dispersion medium. Among them, water is preferable because the effect of the present invention is more excellent.
(界面活性剤)
 界面活性剤は特に制限されず、公知のものを使用することができる。界面活性剤の具体例としては、陰イオン性界面活性剤、非イオン性界面活性剤(例えば、ポリビニルアルコール(PVA))、陽イオン性界面活性剤、両性界面活性剤等が挙げられる。
(Surfactant)
The surfactant is not particularly limited, and known ones can be used. Specific examples of the surfactant include anionic surfactants, nonionic surfactants (for example, polyvinyl alcohol (PVA)), cationic surfactants, amphoteric surfactants and the like.
<マイクロカプセル化工程>
 マイクロカプセル化工程は、上記混合液を攪拌しながら加熱することで、上記分散液のミセルを形成するとともに、上記ミセルの界面で上記モノマーを重合して、上記量子ドットと上記分散媒とを含有する芯物質を、上記樹脂を材料とする外殻層で被覆する工程である。
 加熱の条件はモノマーが反応する条件であれば特に制限されないが、本発明の効果がより優れる理由から、温度は35~100℃であることが好ましく、時間は0.5~10時間であることが好ましい。
<Microencapsulation process>
The microcapsulation step forms micelles of the dispersion by heating the mixture while stirring, and polymerizing the monomer at the interface of the micelles to contain the quantum dots and the dispersion medium. The core material is coated with an outer shell layer made of the above-mentioned resin.
The heating conditions are not particularly limited as long as the monomers react, but the temperature is preferably 35 to 100 ° C. and the time is 0.5 to 10 hours, because the effect of the present invention is more excellent. Is preferred.
 なお、芯物質の半径は、例えば、マイクロカプセル化工程の攪拌条件によって制御することができる。また、外殻層の厚み、及び、厚み/半径は、例えば、量子ドット及び分散媒とモノマーとの量比によって制御することができる。 The radius of the core substance can be controlled, for example, by the stirring conditions of the microencapsulation process. Also, the thickness and thickness / radius of the shell layer can be controlled, for example, by the quantitative ratio of the quantum dot and the dispersion medium to the monomer.
[2]フィルム
 本発明のフィルムは、上述した本発明のマイクロカプセルを含有するフィルムである。
 このような本発明のフィルムは、優れた量子収率及び耐久性を示すため、例えば、ディスプレイ用途の波長変換フィルム、太陽電池の光電変換(または波長変換)フィルム、生体標識、薄膜トランジスタ等に適用することができる。特に、本発明のフィルムは、量子ドットの吸収端よりも短波の領域の光を吸収し、より長波の光を放出するダウンコンバージョン、または、ダウンシフト型の波長変換フィルムへの応用が好適である。
[2] Film The film of the present invention is a film containing the above-mentioned microcapsule of the present invention.
Such a film of the present invention exhibits excellent quantum yield and durability, so it is applied to, for example, wavelength conversion films for display applications, photoelectric conversion (or wavelength conversion) films of solar cells, biological markers, thin film transistors, etc. be able to. In particular, the film of the present invention is suitable for application to a down conversion or down shift type wavelength conversion film that absorbs light in the short wave region rather than the absorption edge of the quantum dot and emits longer wave light. .
 また、本発明のフィルムを構成する母材としてのフィルム材料は特に限定されず、樹脂であってもよく、薄いガラス膜であってもよい。
 具体的には、アイオノマー、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリプロピレン、ポリエステル、ポリカーボネート、ポリスチレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体フィルム、ナイロン等をベースとする樹脂材料が挙げられる。
Moreover, the film material as a base material which comprises the film of this invention is not specifically limited, A resin may be sufficient and a thin glass film may be sufficient.
Specifically, ionomers, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polypropylene, polyester, polycarbonate, polystyrene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-methacrylic acid A copolymer film, a resin material based on nylon etc. are mentioned.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[量子ドットの製造]
 J.AM.CHEM.SOC.2008,130,11588-11589を参考に量子ドットを製造した。
 具体的には、ミリスチン酸インジウム0.1mmolをオクタデセン10mlに溶解し、N下で250℃に加熱し、その後0.1mmolトリストリメチルシリルホスフィンを投入し、250℃で1時間反応させることでInPのオクタデセン溶液を調製した。
 続いて、250℃に保持したまま、ステアリン酸亜鉛0.1mmol及びドデカンチオール0.2mmolを加え2時間加熱することで、InP(コア)とZnS(シェル)とを有する量子ドット(疎水性リガンドとしてドデカンチオールを有する)のオクタデセン分散液を調製した。
 得られた量子ドットのオクタデセン分散液10mlにトルエン10ml及びアセトン30mlを加え量子ドットの沈殿を生成させた。その後、遠心分離により沈殿を分離し、沈殿にトルエンを加え、量子ドットのトルエン分散液を調製した。
 さらに、得られた量子ドットのトルエン分散液10mlにアセトン20mlを加え、沈殿を生成させた。その後、遠心分離により沈殿を分離し、沈殿に分散媒としてジシクロペンタニルアクリレート(DCP)(25℃において液体、沸点:279℃)10mlを加え、量子ドットのDCP分散液(A液)を調製した(分散液中の量子ドットの濃度:1.0質量%)。
[Manufacturing of quantum dots]
J. AM. CHEM. SOC. Quantum dots were manufactured with reference to 2008, 130, 11588-11589.
Specifically, 0.1 mmol of indium myristate is dissolved in 10 ml of octadecene, heated to 250 ° C. under N 2 , and then 0.1 mmol of tristrimethylsilyl phosphine is added and reacted at 250 ° C. for 1 hour for InP An octadecene solution was prepared.
Subsequently, while maintaining the temperature at 250 ° C., add 0.1 mmol of zinc stearate and 0.2 mmol of dodecanethiol and heat for 2 hours to obtain a quantum dot (Hydrophobic ligand) having InP (core) and ZnS (shell) An octadecene dispersion of (with dodecanethiol) was prepared.
10 ml of toluene and 30 ml of acetone were added to 10 ml of the obtained octadecene dispersion liquid of quantum dots to form precipitates of quantum dots. Thereafter, the precipitate was separated by centrifugation, and toluene was added to the precipitate to prepare a toluene dispersion of quantum dots.
Further, 20 ml of acetone was added to 10 ml of the obtained toluene dispersion of quantum dots to form a precipitate. Thereafter, the precipitate is separated by centrifugation, and 10 ml of dicyclopentanyl acrylate (DCP) (liquid at 25 ° C., boiling point: 279 ° C.) is added as a dispersion medium to prepare a DCP dispersion of quantum dots (liquid A). (Concentration of quantum dots in the dispersion: 1.0% by mass).
[マイクロカプセルの製造]
 以下のとおり、各実施例及び各比較例のマイクロカプセルを製造した。
[Manufacture of microcapsules]
The microcapsules of each example and each comparative example were manufactured as follows.
〔実施例1〕
<混合工程>
 上述のとおり製造した量子ドットのDCP分散液(A液)5mLと、ポリイソシアネート(三井化学社製タケネートD-110N)(メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体)に対して1質量%のポリオール(旭硝子社製エクセノール823)を加えた液(B液)10mLとを混合して分散液(C液)を調製した。そして、得られた分散液(C液)とPVA5質量%水溶液30mLとを混合することで混合液を調製した。
Example 1
<Mixing process>
5% of the DCP dispersion (quantity A of the quantum dots) manufactured as described above and 1% by mass of polyol based on polyisocyanate (Takenate D-110N manufactured by Mitsui Chemicals, Inc.) (trimethylolpropane adduct of metaxylylene diisocyanate) A solution (solution C) was prepared by mixing 10 mL of the solution (solution B) to which (Exenol 823 manufactured by Asahi Glass Co., Ltd.) was added. And the mixed liquid was prepared by mixing the obtained dispersion liquid (C liquid) and 30 mL of PVA 5 mass% aqueous solution.
<マイクロカプセル化工程>
 得られた混合液を激しく攪拌しながら75℃で2時間加熱してミセルの界面でポリイソシアネート及びポリオールを重合することで、量子ドットと分散媒(DCP)とを含有する芯物質を、主鎖にウレタン結合及びウレア結合を有する樹脂(ポリウレタンウレア樹脂)を材料とする外殻層で被覆した。このようにして、マイクロカプセルを製造した。
 なお、量子ドットと分散媒とを含有する芯物質を覆うように主鎖にウレタン結合及びウレア結合を有する樹脂を材料とする外殻層が形成される理由は以下のように推測される。すなわち、得られた混合液を激しく攪拌しながら加熱すると、ポリイソシアネート及びポリオールがミセル内で拡散し、ポリイソシアネートはミセルの界面で水と反応してウレア結合を形成する。ここで、量子ドットの疎水性が高いため、量子ドットと分散媒は界面には寄りづらく、ミセルの中央に寄る。そして、ポリオールは比較的親水性が高いので、量子ドットと分離しようとして界面側に寄る。そのため、ポリオールは界面付近でポリイソシアネートと反応してウレタン結合を形成する。また、ポリイソシアネートとポリオールとがミセルの中央で反応しても、量子ドットとは反応せず、量子ドットとの相溶性も高くないため、界面側に拡散する。結果として、量子ドットと分散媒とを含有する芯物質を覆うように主鎖にウレタン結合及びウレア結合を有する樹脂(ポリウレタンウレア樹脂)を材料とする外殻層が形成されるものと推測される。
<Microencapsulation process>
The resulting mixed solution is heated at 75 ° C. for 2 hours while vigorously stirring to polymerize polyisocyanate and polyol at the interface of micelles, thereby forming a core substance containing quantum dots and a dispersion medium (DCP) as a main chain. And the outer shell layer made of a resin having a urethane bond and a urea bond (polyurethane urea resin) as a material. Thus, microcapsules were produced.
The reason why an outer shell layer made of a resin having a urethane bond and a urea bond in the main chain is formed so as to cover the core material containing the quantum dots and the dispersion medium is presumed as follows. That is, when the resulting mixed solution is heated while being vigorously stirred, the polyisocyanate and the polyol diffuse in the micelle, and the polyisocyanate reacts with water at the interface of the micelle to form a urea bond. Here, due to the high hydrophobicity of the quantum dots, the quantum dots and the dispersion medium are less likely to be close to the interface and closer to the center of the micelles. And, since the polyol is relatively hydrophilic, it tends to the interface side to separate from the quantum dot. Therefore, the polyol reacts with the polyisocyanate near the interface to form a urethane bond. Further, even if the polyisocyanate and the polyol react at the center of the micelle, they do not react with the quantum dots, and the compatibility with the quantum dots is not high, so they diffuse to the interface side. As a result, it is speculated that an outer shell layer formed of a resin (polyurethane urea resin) having a urethane bond and a urea bond in the main chain is formed so as to cover the core substance containing the quantum dots and the dispersion medium. .
<芯物質半径、外殻層厚み、及び、厚み/半径>
 得られたマイクロカプセルについてSEM観察を行い、芯物質の半径(芯物質半径)、及び、外殻層の厚み(外殻層厚み)を測定した。また、芯物質の半径と外殻層の厚みから、芯物質の半径に対する外殻層の厚みの比(厚み/半径)を求めた。結果を表1に示す。なお、芯物質の半径、及び、外殻層の厚みの測定方法の詳細は上述のとおりである。
<Core material radius, shell thickness, and thickness / radius>
SEM observation was performed about the obtained microcapsule, and the radius (core substance radius) of the core substance and the thickness (outer shell layer thickness) of the outer shell layer were measured. In addition, the ratio (thickness / radius) of the thickness of the shell layer to the radius of the core material was determined from the radius of the core material and the thickness of the shell layer. The results are shown in Table 1. The details of the method of measuring the radius of the core substance and the thickness of the outer shell layer are as described above.
〔実施例2~15、比較例1~5〕
 上記A液と上記B液の量比、及び、マイクロカプセル化工程の攪拌条件を変更した以外は、実施例1と同様の手順に従って、マイクロカプセルを製造した。
 なお、実施例14では、A液の分散媒として、DCPの代わりにメシチレン(25℃において液体、沸点:165℃)を用いた。また、実施例15では、A液の分散媒として、DCPの代わりにトルエン(25℃において液体、沸点:111℃)を用いた。また、比較例6では、量子ドットのDCP分散液(A液)の代わりにCy5.5(色素)のDCP分散液(分散液中のCy5.5の濃度:0.2質量%)を用いた。
 各実施例及び比較例について、実施例1と同様に、芯物質の半径、及び、外殻層の厚みを測定した。また、厚み/半径を求めた。結果を表1に示す。
[Examples 2 to 15, Comparative Examples 1 to 5]
Microcapsules were produced according to the same procedure as in Example 1, except that the ratio by volume of the solution A and the solution B and the stirring conditions for the microencapsulation step were changed.
In Example 14, mesitylene (liquid at 25 ° C., boiling point: 165 ° C.) was used instead of DCP as the dispersion medium for solution A. Further, in Example 15, toluene (liquid at 25 ° C., boiling point: 111 ° C.) was used as the dispersion medium for the liquid A, instead of DCP. In Comparative Example 6, a DCP dispersion of Cy5.5 (dye) (concentration of Cy5.5 in the dispersion: 0.2% by mass) was used instead of the DCP dispersion of the quantum dots (liquid A). .
The radius of the core material and the thickness of the outer shell layer were measured in the same manner as in Example 1 for each of the examples and the comparative examples. Also, the thickness / radius was determined. The results are shown in Table 1.
〔実施例16〕
<混合工程>
 上記A液に二塩化イソフタロイル3mLを加えて分散液(D液)を調製した。そして、得られた分散液(D液)とPVA5質量%水溶液30mLと10質量%p-フェニレンジアミン水溶液7mLとを混合することで混合液を調製した。
[Example 16]
<Mixing process>
3 mL of isophthaloyl dichloride was added to the above solution A to prepare a dispersion (solution D). Then, a liquid mixture was prepared by mixing the obtained dispersion (liquid D), 30 mL of a 5% by mass aqueous solution of PVA and 7 mL of a 10% by mass aqueous solution of p-phenylenediamine.
<マイクロカプセル化工程>
 得られた混合液を激しく攪拌しながら75℃で2時間加熱してミセルの界面で二塩化イソフタロイル及びp-フェニレンジアミンを重合することで、量子ドットと分散媒とを含有する芯物質を、ポリアミド系樹脂を材料とする外殻層で被覆した。このようにして、マイクロカプセルを製造した。
<Microencapsulation process>
The resulting mixed solution is heated at 75 ° C. for 2 hours while vigorously stirring to polymerize isophthaloyl dichloride and p-phenylenediamine at the interface of micelles, thereby forming a core material containing quantum dots and a dispersion medium as a polyamide. It was coated with an outer shell layer made of a base resin. Thus, microcapsules were produced.
<芯物質半径、外殻層厚み、及び、厚み/半径>
 得られたマイクロカプセルについて、実施例1と同様に、芯物質の半径、及び、外殻層の厚みを測定した。また、厚み/半径を求めた。結果を表1に示す。
<Core material radius, shell thickness, and thickness / radius>
The radius of the core substance and the thickness of the outer shell layer were measured for the obtained microcapsules in the same manner as in Example 1. Also, the thickness / radius was determined. The results are shown in Table 1.
[評価]
 得られたマイクロカプセルについて以下の評価を行った。
[Evaluation]
The following evaluation was performed about the obtained microcapsule.
〔量子収率〕
 得られたマイクロカプセルについて絶対量子収率測定計(浜松ホトニクス社製C11347-01)を用いて量子収率(初期)を測定した。その際、波長450nmにおける吸光度を0.1に調節して測定した。また、Cy5.5(色素)を用いた比較例1については波長658nmにおける吸光度を0.1に調整して測定した。
 また、マイクロカプセルにする前の量子ドットについても同様に量子収率(マイクロカプセル前)を測定した。そして、下記のとおり減少率を求め、下記基準により量子収率を評価した。
減少率=[量子収率(マイクロカプセル前)-量子収率(初期)]/量子収率(マイクロカプセル前)
 結果を表1に示す。実用上、A~Cであることが好ましく、A又はBであることがより好ましく、Aであることがさらに好ましい。
・A:減少率が5%未満
・B:減少率が5%以上10%未満
・C:減少率が10%以上15%未満
・D:減少率が15%以上
[Quantum yield]
The quantum yield (initial) of the obtained microcapsules was measured using an absolute quantum yield meter (C11347-01 manufactured by Hamamatsu Photonics K. K.). At that time, the absorbance at a wavelength of 450 nm was adjusted to 0.1 and measured. Moreover, about the comparative example 1 using Cy5.5 (dye), the absorbance in wavelength 658nm was adjusted to 0.1, and was measured.
Also, the quantum yield (before microcapsule) was similarly measured for the quantum dots before being microcapsuled. And the reduction rate was calculated | required as follows and the quantum yield was evaluated by the following reference | standard.
Decay rate = [quantum yield (before microcapsules)-quantum yield (initial)] / quantum yield (before microcapsules)
The results are shown in Table 1. Practically, A to C is preferable, A or B is more preferable, and A is more preferable.
・ A: Decrease rate is less than 5% ・ B: Decrease rate is 5% to less than 10% ・ C: Decrease rate is 10% to less than 15% ・ D: Decrease rate is 15% or more
〔耐久性〕
 得られたマイクロカプセルを空気中に3日間保管した後に、絶対量子収率測定計を用いて量子収率(3日後)を測定した。そして、下記のとおり減少率を求め、下記基準により耐久性を評価した。
 結果を表1に示す。実用上、AA~Cであることが好ましく、AA~Bであることがより好ましく、AA又はAであることがさらに好ましく、AAであることが特に好ましい。
減少率=[量子収率(初期)-量子収率(3日後)]/量子収率(初期)
・AA:減少率が1.0%未満
・A:減少率が1.0%以上1.5%未満
・B:減少率が1.5%以上3%未満
・C:減少率が3%以上5%未満
・D:減少率が5%以上
〔durability〕
After storing the obtained microcapsules in air for 3 days, the quantum yield (after 3 days) was measured using an absolute quantum yield meter. And the reduction rate was calculated | required as follows and durability was evaluated by the following reference | standard.
The results are shown in Table 1. Practically, AA to C is preferable, AA to B is more preferable, AA or A is more preferable, and AA is particularly preferable.
Decreasing rate = [quantum yield (initial)-quantum yield (after 3 days)] / quantum yield (initial)
・ AA: Decrease rate is less than 1.0% ・ A: Decrease rate is 1.0% to less than 1.5% ・ B: Decrease rate is 1.5% to less than 3% ・ C: Decrease rate is 3% or more Less than 5% · D: Decrease rate of 5% or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、蛍光材料の欄は、芯物質中の蛍光材料を表す。なお、「InP/ZnS」は、上述のとおり製造したInP(コア)とZnS(シェル)とを有する量子ドット(疎水性リガンドとしてドデカンチオールを有する)を表す。
 また、表1中、分散媒の欄は、芯物質中の分散媒を表す。
 また、表1中、外殻層の欄は、外殻層の材料を表す。
In Table 1, the column of fluorescent material represents the fluorescent material in the core material. "InP / ZnS" represents a quantum dot (having dodecanethiol as a hydrophobic ligand) having InP (core) and ZnS (shell) manufactured as described above.
Further, in Table 1, the column of dispersion medium represents the dispersion medium in the core material.
Moreover, in Table 1, the column of the outer shell layer represents the material of the outer shell layer.
 表1から分かるように、厚み/半径が0.50以上0.90以下である実施例1~16は、優れた量子収率及び耐久性を示した。
 実施例1~7の対比(分散媒がDCPであり、外殻層の材料がポリウレタンウレア樹脂であり、芯物質半径が2μmである態様同士の対比)から、厚み/半径が0.60以上0.90以下である実施例2~7は、より優れた耐久性を示した。なかでも、厚み/半径が0.65以上0.90以下である実施例3~7は、さらに優れた耐久性を示した。そのなかでも、厚み/半径が0.65以上0.90未満である実施例3~6は、より優れた量子収率を示した。そのなかでも、厚み/半径が0.65以上0.85以下である実施例3~5は、さらに優れた量子収率を示した。
 また、実施例8~10の対比(分散媒がDCPであり、外殻層の材料がポリウレタンウレア樹脂であり、芯物質半径が3μmである態様同士の対比)から、厚み/半径が0.60以上0.90以下である実施例9及び10は、より優れた量子収率及び耐久性を示した。
 また、実施例11~13の対比(分散媒がDCPであり、外殻層の材料がポリウレタンウレア樹脂であり、芯物質半径が7μmである態様同士の対比)から、厚み/半径が0.60以上0.90以下である実施例12及び13は、より優れた耐久性を示した。なかでも、厚み/半径が0.65以上0.85以下である実施例12は、より優れた量子収率を示した。
 また、実施例3と14と15との対比(外殻層の材料がポリウレタンウレア樹脂であり、厚み/半径が0.75である態様同士の対比)から、分散剤の沸点が120℃以上である実施例3及び14は、より優れた量子収率を示した。なかでも、分散剤の沸点が180℃以上である実施例3は、より優れた耐久性を示した。
 また、実施例3と16との対比(分散剤がDCPであり、厚み/半径が0.75である態様同士の対比)から、外殻層の材料が主鎖にウレタン結合及び/又はウレア結合を有する樹脂(ポリウレタン系樹脂、ポリウレア系樹脂、及び、ポリウレタンウレア系樹脂からなる群より選択される少なくとも1種の樹脂)である実施例3は、より優れた量子収率及び耐久性を示した。
As can be seen from Table 1, Examples 1 to 16 having a thickness / radius of 0.50 or more and 0.90 or less exhibited excellent quantum yield and durability.
From the comparison of Examples 1 to 7 (the comparison of the embodiments in which the dispersion medium is DCP, the material of the outer shell layer is a polyurethane urea resin, and the core material radius is 2 μm), the thickness / radius is 0.60 or more and 0 Examples 2 to 7, which are less than or equal to 90, showed better durability. Among them, Examples 3 to 7 having a thickness / radius of 0.65 or more and 0.90 or less exhibited further excellent durability. Among them, Examples 3 to 6 having a thickness / radius of 0.65 or more and less than 0.90 exhibited more excellent quantum yield. Among them, Examples 3 to 5 having a thickness / radius of 0.65 or more and 0.85 or less exhibited further excellent quantum yield.
Further, from the comparison of Examples 8 to 10 (a comparison of the embodiments in which the dispersion medium is DCP, the material of the outer shell layer is a polyurethane urea resin, and the core material radius is 3 μm), the thickness / radius is 0.60. Examples 9 and 10, which are greater than or equal to 0.90, showed better quantum yield and durability.
Further, from the comparison of Examples 11 to 13 (a comparison of embodiments in which the dispersion medium is DCP, the material of the outer shell layer is a polyurethane urea resin, and the core material radius is 7 μm), the thickness / radius is 0.60. Examples 12 and 13 having a density of 0.90 or less exhibited more excellent durability. Among them, Example 12 having a thickness / radius of 0.65 or more and 0.85 or less exhibited a more excellent quantum yield.
Further, according to the comparison of Examples 3 and 14 and 15 (the comparison of the embodiments in which the material of the outer shell layer is a polyurethane urea resin and the thickness / radius is 0.75), the boiling point of the dispersant is 120 ° C. or higher Certain Examples 3 and 14 showed better quantum yield. Among these, Example 3 in which the boiling point of the dispersant is 180 ° C. or more showed more excellent durability.
Further, from the comparison of Examples 3 and 16 (contrasts in which the dispersant is DCP and the thickness / radius is 0.75), the material of the outer shell layer has a urethane bond and / or a urea bond in the main chain Example 3 which is a resin having at least one resin selected from the group consisting of a polyurethane resin, a polyurea resin, and a polyurethane urea resin, shows a more excellent quantum yield and durability. .
 一方、厚み/半径が0.50に満たない比較例1及び2は、耐久性が不十分であった。また、厚み/半径が0.90を超える比較例3及び4は、量子収率が不十分であった。また、量子ドットの代わりに色素を用いた比較例5は、耐久性が不十分であった。 On the other hand, Comparative Examples 1 and 2 in which the thickness / radius was less than 0.50 had insufficient durability. Moreover, the quantum yield of Comparative Examples 3 and 4 in which the thickness / radius exceeds 0.90 was insufficient. In addition, Comparative Example 5 in which a dye was used instead of the quantum dot was insufficient in durability.
1  量子ドット
2  分散媒
3  芯物質
4  外殻層
5  ミセル
6  溶媒
10  マイクロカプセル
Reference Signs List 1 quantum dot 2 dispersion medium 3 core substance 4 outer shell layer 5 micelle 6 solvent 10 microcapsule

Claims (10)

  1.  芯物質と前記芯物質を覆う外殻層とを有するマイクロカプセルであって、
     前記芯物質が、量子ドットと25℃において液体である分散媒とを含有し、
     前記外殻層の材料が、尿素系樹脂、メラミン系樹脂、ポリウレタン系樹脂、ポリウレア系樹脂、ポリアミド系樹脂、及び、これらの2つ以上の共重合樹脂からなる群より選択される少なくとも1種の樹脂であり、
     前記芯物質の半径が、10nm以上10μm以下であり、
     前記外殻層の厚みが、5nm以上9μm以下であり、
     前記芯物質の半径に対する前記外殻層の厚みの比が、0.50以上0.90以下である、マイクロカプセル。
    A microcapsule having a core substance and an outer shell layer covering the core substance,
    The core material contains quantum dots and a dispersion medium that is liquid at 25 ° C.,
    The material of the outer shell layer is at least one selected from the group consisting of urea resins, melamine resins, polyurethane resins, polyurea resins, polyamide resins, and two or more of these copolymer resins. It is a resin,
    The radius of the core material is 10 nm or more and 10 μm or less,
    The thickness of the outer shell layer is 5 nm or more and 9 μm or less,
    The microcapsule whose ratio of the thickness of the said outer shell layer with respect to the radius of the said core substance is 0.50-0.90.
  2.  前記量子ドットが、
     炭素数6が以上であり、カルボキシ基、アミノ基、チオール基、ホスフィド基、ホスフィンオキシド基、ホスフィンスルフィド基、ホスホン酸基及びスルフィド基からなる群より選択される少なくとも1種の基を有する、疎水性リガンドを有する、請求項1に記載のマイクロカプセル。
    The quantum dot is
    Hydrophobic having at least one group selected from the group consisting of carboxy group, amino group, thiol group, phosphido group, phosphine oxide group, phosphine sulfide group, phosphonic acid group and sulfide group, having 6 or more carbon atoms The microcapsule according to claim 1 having a sex ligand.
  3.  前記芯物質の半径に対する前記外殻層の厚みの比が、0.60以上0.90以下である、請求項1又は2に記載のマイクロカプセル。 The microcapsule according to claim 1 or 2, wherein the ratio of the thickness of the outer shell layer to the radius of the core substance is 0.60 or more and 0.90 or less.
  4.  前記芯物質の半径に対する前記外殻層の厚みの比が、0.65以上0.90未満である、請求項3に記載のマイクロカプセル。 The microcapsule according to claim 3, wherein the ratio of the thickness of the shell layer to the radius of the core substance is 0.65 or more and less than 0.90.
  5.  前記芯物質の半径に対する前記外殻層の厚みの比が、0.65以上0.85以下である、請求項4に記載のマイクロカプセル。 The microcapsule according to claim 4, wherein a ratio of a thickness of the outer shell layer to a radius of the core substance is 0.65 or more and 0.85 or less.
  6.  前記分散媒の沸点が、120℃以上である、請求項1~5のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 5, wherein the boiling point of the dispersion medium is 120 属 C or more.
  7.  前記分散媒の沸点が、180℃以上である、請求項6に記載のマイクロカプセル。 The microcapsule according to claim 6, wherein the boiling point of the dispersion medium is 180 ° C or more.
  8.  前記外殻層の材料が、ポリウレタン系樹脂、ポリウレア系樹脂、及び、ポリウレタンウレア系樹脂からなる群より選択される少なくとも1種の樹脂である、請求項1~7のいずれか1項に記載のマイクロカプセル。 The material of the outer shell layer is at least one resin selected from the group consisting of polyurethane resins, polyurea resins, and polyurethane urea resins. Microcapsules.
  9.  請求項1~8のいずれか1項に記載のマイクロカプセルを製造する、マイクロカプセルの製造方法であって、
     量子ドットと25℃において液体である極性の低い分散媒と重合後に前記マイクロカプセルの外殻層の材料である樹脂となるモノマーとを含有する分散液と、前記分散媒よりも極性の高い溶媒と、界面活性剤とを少なくとも混合することで、混合液を得る、混合工程と、
     前記混合液を攪拌しながら加熱することで、前記分散液のミセルを形成するとともに、前記ミセルの界面で前記モノマーを重合して、前記量子ドットと前記分散媒とを含有する芯物質を、前記樹脂を材料とする外殻層で被覆する、マイクロカプセル化工程と、
     を備える、マイクロカプセルの製造方法。
    A method for producing a microcapsule, comprising producing the microcapsule according to any one of claims 1 to 8;
    A dispersion liquid containing quantum dots, a low polarity dispersion medium which is liquid at 25 ° C., and a monomer which becomes a resin which is a material of an outer shell layer of the microcapsule after polymerization, and a solvent having a polarity higher than the dispersion medium Mixing, at least mixing with a surfactant to obtain a mixed solution,
    By heating the mixture while stirring, micelles of the dispersion are formed, and the monomer is polymerized at the interface of the micelles to form a core substance containing the quantum dots and the dispersion medium. A microencapsulation step of coating with a resin-made outer shell layer;
    A method of manufacturing a microcapsule, comprising:
  10.  請求項1~8のいずれか1項に記載のマイクロカプセルを含有するフィルム。 A film containing the microcapsule according to any one of claims 1 to 8.
PCT/JP2018/032212 2017-09-26 2018-08-30 Microcapsule and film WO2019065068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544460A JP6884873B2 (en) 2017-09-26 2018-08-30 Microcapsules and films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-185131 2017-09-26
JP2017185131 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065068A1 true WO2019065068A1 (en) 2019-04-04

Family

ID=65901692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032212 WO2019065068A1 (en) 2017-09-26 2018-08-30 Microcapsule and film

Country Status (2)

Country Link
JP (1) JP6884873B2 (en)
WO (1) WO2019065068A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480713A (en) * 2021-06-30 2021-10-08 上海交通大学 Preparation method of polyurea quantum dot fluorescent microspheres
CN114316949A (en) * 2022-01-12 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 Preparation method of quantum dot material, quantum dot material and application
CN114524998A (en) * 2022-03-11 2022-05-24 纳晶科技股份有限公司 Quantum dot laminate and method for preparing the same
JP2023033060A (en) * 2021-08-26 2023-03-09 ラシュバン・コーリア・カンパニー・リミテッド Functional microcapsule containing germanium particle and functional textile fabric containing the same
WO2023127163A1 (en) * 2021-12-29 2023-07-06 シャープディスプレイテクノロジー株式会社 Light-emitting element and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028884A1 (en) * 2009-09-02 2011-03-10 The Regents Of The University Of California Microcapsule and methods of making and using microcapsules
JP2013505347A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Encapsulated semiconductor nanoparticle-based material
JP2016141744A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Composition for wavelength conversion layer, wavelength conversion member, backlight unit, and liquid crystal display device
WO2017135085A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Aqueous dispersion, production method for same, and image formation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028884A1 (en) * 2009-09-02 2011-03-10 The Regents Of The University Of California Microcapsule and methods of making and using microcapsules
JP2013505347A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Encapsulated semiconductor nanoparticle-based material
JP2016141744A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Composition for wavelength conversion layer, wavelength conversion member, backlight unit, and liquid crystal display device
WO2017135085A1 (en) * 2016-02-05 2017-08-10 富士フイルム株式会社 Aqueous dispersion, production method for same, and image formation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, B. ET AL.: "Fluorescence-profile pre-definable quantum-dot barcodes in liquid-core microcapsules", MICROFLUIDICS AND NANOFLUIDICS, vol. 13, no. 6, 2012, pages 909 - 917, XP035144028, DOI: doi:10.1007/s10404-012-1009-4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480713A (en) * 2021-06-30 2021-10-08 上海交通大学 Preparation method of polyurea quantum dot fluorescent microspheres
CN113480713B (en) * 2021-06-30 2023-01-24 上海交通大学 Preparation method of polyurea quantum dot fluorescent microspheres
JP2023033060A (en) * 2021-08-26 2023-03-09 ラシュバン・コーリア・カンパニー・リミテッド Functional microcapsule containing germanium particle and functional textile fabric containing the same
WO2023127163A1 (en) * 2021-12-29 2023-07-06 シャープディスプレイテクノロジー株式会社 Light-emitting element and method for producing same
CN114316949A (en) * 2022-01-12 2022-04-12 广东粤港澳大湾区国家纳米科技创新研究院 Preparation method of quantum dot material, quantum dot material and application
CN114316949B (en) * 2022-01-12 2022-10-11 广东粤港澳大湾区国家纳米科技创新研究院 Preparation method of quantum dot material, quantum dot material and application
CN114524998A (en) * 2022-03-11 2022-05-24 纳晶科技股份有限公司 Quantum dot laminate and method for preparing the same
CN114524998B (en) * 2022-03-11 2023-07-07 纳晶科技股份有限公司 Quantum dot lamellar body and preparation method thereof

Also Published As

Publication number Publication date
JPWO2019065068A1 (en) 2020-04-23
JP6884873B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6884873B2 (en) Microcapsules and films
US10985296B2 (en) Quantum dot based color conversion layer in display devices
US11824146B2 (en) Quantum dot encapsulation techniques
EP3184603B1 (en) Quantum dots and devices including the same
US9890329B2 (en) Quantum dot nanocrystal structure
EP3296257B1 (en) Core-shell particles, method for manufacturing core-shell particles, and film
US11634629B2 (en) Method to improve performance of devices comprising nanostructures
CN113597461B (en) III-V group quantum dot and method for producing same
US10266764B2 (en) Core shell particle, method of producing core shell particle, and film
US10519369B2 (en) Core shell particles, method for producing core shell particles, and film
US11015117B2 (en) Semiconductor nanoparticle-containing dispersion liquid and film
US20220154071A1 (en) Iii-v-based quantum dot and method of manufacturing same
US11133382B2 (en) Semiconductor nanoparticle, semiconductor nanoparticle-containing dispersion liquid, and film
WO2022087245A1 (en) Electroluminescent devices with hybrid transport layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863775

Country of ref document: EP

Kind code of ref document: A1