WO2019065061A1 - Chipless rfid tag, tag reader, and rfid system - Google Patents

Chipless rfid tag, tag reader, and rfid system Download PDF

Info

Publication number
WO2019065061A1
WO2019065061A1 PCT/JP2018/032041 JP2018032041W WO2019065061A1 WO 2019065061 A1 WO2019065061 A1 WO 2019065061A1 JP 2018032041 W JP2018032041 W JP 2018032041W WO 2019065061 A1 WO2019065061 A1 WO 2019065061A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
tag
pattern
forming unit
rfid tag
Prior art date
Application number
PCT/JP2018/032041
Other languages
French (fr)
Japanese (ja)
Inventor
平岡 三郎
勝一 浦谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2019065061A1 publication Critical patent/WO2019065061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/08Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes

Definitions

  • the present disclosure relates to chipless RFID tags, tag readers, and RFID systems.
  • a barcode is known as an example of a tag that links information and the like related to an item. Since barcodes are inexpensive, they are currently printed on various articles, and are widely used as a means for digitizing information on the articles. On the other hand, in the case of a barcode tag, in order to read the printed content correctly, it is necessary to bring the barcode reader close to the barcode to about several centimeters, and this reading operation is felt by the operator to be complicated. In addition, there is also a problem that when the printed portion of the bar code is dirty, the printed content can not be read. In addition, since the barcode is printed at a visible position on the surface of the article, there is also a problem that the barcode can be easily rewritten to something malicious.
  • an IC chip built-in type electronic tag and the like are also known.
  • an electronic tag has a problem in cost because it is necessary to provide an IC chip.
  • the transmission wave transmitted from the IC chip to the RFID reader is easily scraped off by the metal parts or the like disposed close to each other, and it becomes difficult to secure high readability.
  • the chipless RFID tag changes the reflection characteristics (for example, the resonance frequency and the intensity pattern of the reflected wave) when irradiated with the electromagnetic wave by the pattern formed on the base material, thereby identifying the information Configure. Then, the tag reader reads the identification information attached to the chipless RFID tag by detecting the reflection characteristic when the chipless RFID tag is irradiated with the electromagnetic wave.
  • the reflection characteristics for example, the resonance frequency and the intensity pattern of the reflected wave
  • electromagnetic waves such as a millimeter wave of several tens of GHz at the time of reading.
  • electromagnetic waves have the property of transmitting general packaging materials (for example, paper materials etc.), and therefore, may be applied to an aspect different from conventional barcodes etc. It is possible.
  • the inventors of the present application use the characteristics of such high frequency electromagnetic waves to align the front and back of the tag, for example, as in the case of matching in a state where the tag is housed inside the packing material.
  • the present disclosure has been made in view of the above problems, and it is an object of the present disclosure to provide a chipless RFID tag, a tag reader, and an RFID system that can read identification information from either front or back.
  • a chipless RFID tag that causes a tag reader to read identification information by a reflected wave to an emitted electromagnetic wave, A substrate having permeability to the electromagnetic wave; An identification information forming unit that forms a pattern of an area in which the reflection characteristic to the electromagnetic wave is different from that of the base material in a predetermined plane of the base material, and the identification information is configured by the pattern; In the predetermined plane of the substrate, a region that generates the reflected wave in a different aspect in the case where the electromagnetic wave is irradiated from the front side of the substrate and the case where the electromagnetic wave is irradiated from the back side of the substrate A calibration information formation unit to be formed; A chipless RFID tag.
  • a tag reader applied to the above chipless RFID tag A tag reader which discriminates the identification information of the identification information formation unit by discriminating the front and back of the pattern of the identification information formation unit based on the mode of the reflected wave when the electromagnetic wave is irradiated to the calibration information formation unit It is.
  • identification information can be read from either front or back.
  • FIG. 1A and FIG. 1B are diagrams showing an example of the configuration of the RFID system according to the first embodiment.
  • FIGS. 2A and 2B are diagrams showing an example of an image pattern of a tag detected by the tag reader.
  • FIG. 3 is a diagram showing an example of the configuration of the tag according to the first embodiment.
  • FIG. 4A and FIG. 4B are views showing an example of an image pattern of a tag detected by a tag reader and a calibration pattern in the first embodiment.
  • 5A and 5B are diagrams showing another aspect of the calibration pattern.
  • FIG. 6 is a diagram showing an example of the configuration of a tag reader according to the second embodiment.
  • FIG. 7 is a flowchart showing an example of the operation of the tag reader according to the second embodiment.
  • FIG. 8A, 8B, and 8C are diagrams showing the configuration of a calibration information forming unit according to a modification of the first embodiment.
  • FIG. 9A, FIG. 9B, FIG. 9C, FIG. 9D is a figure which shows another example of the image pattern of the tag detected by the tag reader.
  • FIG. 10A and FIG. 10B are diagrams showing an example of the configuration of a second calibration information forming unit according to the second embodiment.
  • FIG. 11 is a flowchart showing an example of the operation of the tag reader according to the second embodiment.
  • 12A and 12B are diagrams showing the configuration of a tag according to Modification 1 of the second embodiment.
  • FIG. 13A and FIG. 13B are diagrams showing the configuration of a tag according to a modification 2 of the second embodiment.
  • FIG. 14A, FIG. 14B, and FIG. 14C are diagrams showing the configuration of the tag according to the third modification of the second embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of the RFID system U according to the first embodiment.
  • the RFID system U is configured to include the tag 1 and the tag reader 2.
  • the tag 1 is the above-described chipless RFID tag.
  • the tag 1 is formed with a pattern of a region in which the reflection characteristic when irradiated with an electromagnetic wave is different from that of the base material of the tag 1.
  • a member for example, the metal member 11 a
  • the electromagnetic wave having a high electromagnetic wave reflectivity represents the ratio of the energy of the reflected wave from the tag to the energy of the transmitted electromagnetic wave.
  • the aspect which comprises identification information with the pattern (Hereafter, it is also called an "image pattern") of the member (for example, electromagnetic wave absorption material 11b) with a low reflectance is shown (refer FIG. 1B).
  • the tag reader 2 outputs an electromagnetic wave of high frequency (for example, a millimeter wave band of 10 GHz to 3 THz) to irradiate the tag 1. Then, the tag reader 2 receives the reflected wave reflected from the tag 1 and recognizes, for example, an area in which the reflected wave is strong as “1” and an area in which the reflected wave is weak as “0”. Then, the tag reader 2 reads the image pattern formed on the tag 1 and the identification information corresponding to the image pattern based on the strength and weakness pattern of the reflected wave.
  • an electromagnetic wave of high frequency for example, a millimeter wave band of 10 GHz to 3 THz
  • the tag reader 2 since the tag reader 2 uses a high frequency electromagnetic wave, it transmits and receives the electromagnetic wave by transmitting the packing material P even when the tag 1 is disposed inside the packing material P (for example, a cardboard). be able to. In addition, even when the tag 1 is embedded in the living body, the tag reader 2 can transmit and receive electromagnetic waves by transmitting the living body in the same manner.
  • the tag 1 represents the state accommodated in the packaging material P with articles
  • articles for example, articles
  • the tag 1 is attached to the article in a state of being vertically erected so that the image pattern faces the front side of the packaging material P.
  • FIG. 2 is a view showing an example of the image pattern of the tag 1 detected by the tag reader 2.
  • FIG. 2A shows an image pattern detected when the tag reader 2 irradiates an electromagnetic wave from the surface side of the tag 1.
  • FIG. 2B shows an image pattern detected when the tag reader 2 irradiates an electromagnetic wave from the back side of the tag 1.
  • the tag reader 2 detects an inverted image pattern when detecting an image pattern from the front side of the tag 1 and when detecting an image pattern from the back side of the tag 1. Do. Then, if it is attempted to read the identification information of the tag 1 based on the inverted image pattern, the tag reader 2 will be misrecognized.
  • the tag 1 in view of the problem, in addition to the image pattern (corresponding to the “identification information forming unit” of the present invention), a correction pattern (see FIG. 2) Not shown, which corresponds to the “correction information forming unit” of the present invention (described later with reference to FIG. 3).
  • the tag 1 forms an image pattern by eight unit sections, with the area surrounded by a square as a unit section (hereinafter also referred to as a “pixel area”).
  • address codes (“a” to “h”) are given to each pixel area, and pixel areas having the same address code correspond to the same position in the tag 1.
  • the black pixel area and the white pixel area are areas having different reflection characteristics (for example, the strength of the reflected wave). For example, the black pixel area is “1”, and the white pixel area is It is recognized by the tag reader 2 as “0”.
  • FIG. 3 is a view showing an example of the configuration of the tag 1 according to the present embodiment.
  • the tag 1 includes a base 10, an identification information forming unit 11 that forms an image pattern in the base 10, and a calibration information forming unit 12 that forms an index of front / back discrimination in the base 10. And including.
  • the base 10 is, for example, a plate-like member on which an image pattern or the like is formed.
  • the base material 10 is made of a material (for example, a resin material) at least a part of which can transmit electromagnetic waves of high frequency so that the matching operation can be performed from either the front surface side or the back surface side of the tag 1.
  • a material for example, a resin material
  • the base material 10 has a certain degree of electromagnetic wave transmittance, its shape, material, etc. are arbitrary.
  • the base material 10 which concerns on this embodiment uses a material about the middle of the electromagnetic wave reflectance of the metal member 11a and the electromagnetic wave reflectance of the electromagnetic wave absorption material 11b from a viewpoint of contrast with the metal member 11a and the electromagnetic wave absorption material 11b. It is done.
  • the identification information forming unit 11 is, for example, the above-mentioned image pattern, and in a predetermined plane of the substrate 10, forms a pattern of a region having a reflection characteristic to electromagnetic waves different from that of the substrate 10, and configures identification information by the pattern Do.
  • the identification information formation part 11 which concerns on this embodiment is the metal member 11a and electromagnetic wave absorption which were formed in the pixel area (eight pixel areas in FIG. 3) which divided the inside of the predetermined plane of the base material 10 into a plurality of pixels. It is comprised by the material 11b.
  • the identification information forming unit 11 forms the image pattern 11 with, for example, the pixel area in which the metal member 11a is formed as an identification code of “0” and the pixel area in which the electromagnetic wave absorbing material 11b is formed as an identification code of “1”. doing.
  • the metal member 11a is, for example, an aluminum material, a copper material, or the like.
  • the metal member 11a has a high electromagnetic wave reflectivity (for example, 80% or more), and generates a reflected wave to the extent that the tag reader 2 can easily acquire the radiated electromagnetic wave.
  • the metal members 11 a are pattern-formed separately for each pixel area in pixel areas (here, pixel areas of addresses “b”, “g”, “h”) on the base material 10.
  • the metal member 11a is formed by, for example, an inkjet using an ink containing metal nanoparticles.
  • the electromagnetic wave absorbing material 11 b has a property of absorbing the energy of the electromagnetic wave transmitted by the tag reader 2 and attenuating the energy of the electromagnetic wave.
  • the electromagnetic wave absorbing material 11 b include materials such as a magnetic body, a conductive material, carbon, inorganic fine particles, metal fine wires, or an electromagnetic wave absorbing resin.
  • the electromagnetic wave absorbing material 11b one that converts energy of an electromagnetic wave into thermal energy, one that has a property of canceling energy by using the phase of the electromagnetic wave (for example, ⁇ / 4 type radio wave absorbing material), or Energy may be dissipated by scattering electromagnetic waves.
  • the electromagnetic wave absorbing material 11 b is divided into pixel areas on the substrate 10 (here, pixel areas of addresses “a”, “c”, “d”, “e”, “f”) for each pixel area. , Patterned.
  • the electromagnetic wave absorbing material 11 b is formed by, for example, an inkjet using an ink containing a magnetic material.
  • the identification information forming unit 11 increases the contrast of the reflected wave of each pixel region by thus forming the image pattern 11 using the combination of the electromagnetic wave absorbing material 11 b and the metal member 11 a, The tag reader 2 can easily detect the image pattern.
  • the material of the identification information forming unit 11 is not limited to this, and the base material 10 itself may be formed with a pattern having different reflection characteristics from other regions.
  • the proofreading information formation unit 12 is an index for making the tag reader 2 discriminate the front and back of the tag 1.
  • the calibration information forming unit 12 differs in the aspect of the reflected wave in the case where the electromagnetic wave is irradiated from the surface side of the substrate 10 and the case where the electromagnetic wave is irradiated from the back surface side of the substrate 10 within a predetermined plane of the substrate 10 An area is formed, which constitutes an index of the front / back discrimination.
  • the calibration information forming unit 12 according to the present embodiment is formed of a pattern of a metal member covering the surface of the base material 10.
  • the calibration information forming unit 12 according to the present embodiment uses, for example, the same material (here, the metal member 11 a) as the identification information forming unit 11 from the viewpoint of simplification of the manufacturing process.
  • the pattern of the calibration information forming unit 12 (hereinafter also referred to as “calibration pattern 12”) is a tag in the case where the electromagnetic wave is irradiated from the front side of the substrate 10 and the case where the electromagnetic wave is irradiated from the back side of the substrate 10 A shape to be detected as an inverted pattern in the reader 2 is selected.
  • the calibration pattern 12 is, for example, a pattern that exhibits an asymmetrical shape at least in the left-right direction with reference to the vertical direction (representing the height direction; the same applies to the following) of the surface of the substrate 10 and the left-right direction.
  • FIG. 3 as an example of the calibration pattern 12, an isosceles triangle whose apex angle is directed to the right is shown.
  • the calibration information forming unit 12 is formed at a position around the image pattern 11 so as to be detected together with the image pattern 11 when the tag reader 2 scans the image pattern 11.
  • FIG. 4 is a view showing an example of an image pattern 11 and a calibration pattern 12 of the tag 1 detected by the tag reader 2 according to the present embodiment.
  • FIG. 4A corresponds to the image pattern 11 and the calibration pattern 12 detected when the tag reader 2 irradiates an electromagnetic wave from the front side of the tag 1
  • FIG. 4B shows the electromagnetic wave from the back side of the tag 1 to the tag reader 2.
  • Corresponds to the image pattern 11 and the calibration pattern 12 detected when the light is irradiated corresponds to the image pattern 11 and the calibration pattern 12 detected when the light is irradiated (the same applies to FIGS. 5A and 5B described later).
  • the calibration pattern 12 has an asymmetrical shape in the left-right direction, it is reversed between when the electromagnetic wave is irradiated from the front side and when the electromagnetic wave is irradiated from the back side. It is detected as a shape. That is, the tag reader 2 can determine the front and back of the tag 1 by identifying the direction of the calibration pattern 12.
  • the tag reader 2 determines the front and back of the tag 1, the tag reader 2 detects the calibration pattern 12 from the intensity pattern of the reflected wave or the like (for example, using a known template matching or the like). Determine the direction of the pattern of. For example, as shown in FIG. 4A, when the tag reader 2 detects the calibration pattern 12 (isosceles triangle) whose apex angle is directed to the right, the tag reader 2 determines that the tag 1 is facing the surface. When the tag reader 2 detects the calibration pattern 12 (isosceles triangle) whose apex angle is leftward as shown in FIG. 4B, the tag reader 2 determines that the tag 1 is facing the back.
  • the calibration pattern 12 is optional as long as it is asymmetric in the left-right direction.
  • FIG. 5 is a view showing another aspect of the calibration pattern 12.
  • the calibration pattern 12 of FIG. 5 is configured by an array of two or more separate shapes. More specifically, the calibration pattern 12 of FIG. 5 has two line shapes extending vertically, which are arranged along the left-right direction. The calibration pattern 12 has an asymmetrical shape in the left-right direction because the lengths of the two linear shapes in the vertical direction are different.
  • the base material 10 is shown in the permeation
  • the reason why the calibration pattern 12 has an asymmetrical shape in the left-right direction is that the main aspect requiring the front / back discrimination of the tag 1 is the surface of the tag 1 as shown in FIG. 11) is a case in which the packaging material P is directed to the front side or the rear side.
  • FIG. 6 is a diagram showing an example of the configuration of the tag reader 2 according to the present embodiment.
  • the tag reader 2 has a function as a discrimination device for discriminating identification information based on the intensity pattern of the electromagnetic wave reflected by the tag 1, and as shown in FIG. 6, the electromagnetic wave transmission unit 21, the electromagnetic wave reception unit 22 and the operation
  • An input unit 24, a display unit 23, a storage unit 25, a control unit 20, and the like are provided.
  • the electromagnetic wave transmission unit 21 includes an electronic circuit for generating a wireless signal, an antenna for transmission, and the like, and transmits an electromagnetic wave of a predetermined frequency in the range of 10 GHz to 3 THz (centimeter wave to millimeter wave to far infrared) described above. It functions as an electromagnetic wave transmitter.
  • the electromagnetic wave transmission unit 21 transmits an electromagnetic wave of a specific frequency, but may be configured to sweep a predetermined frequency band.
  • the electromagnetic wave receiving unit 22 includes an antenna for reception, an electronic circuit, and the like, and functions as an electromagnetic wave reflected wave receiver that receives a signal of a reflected wave of the electromagnetic wave transmitted by the electromagnetic wave transmitting unit 21.
  • the electromagnetic wave receiving unit 22 is provided at a position corresponding to the reflection angle of the electromagnetic wave on the surface of the tag 1.
  • the electromagnetic wave receiving unit 22 supplies the received signal of the reflected wave to the control unit 20.
  • the peak point of the reception sensitivity in the electromagnetic wave reception unit 22 is set to the same frequency as the transmission frequency in the electromagnetic wave transmission unit 21.
  • the display unit 23 is configured of, for example, a liquid crystal display (LCD).
  • the display unit 23 displays various operation screens and identification information configured in the tag 1 in accordance with a display control signal input from the control unit 20.
  • the operation input unit 24 includes various switches such as a power switch for turning on and off the main power supply and an irradiation switch for irradiating an electromagnetic wave, receives various input operations by the user, and outputs an operation signal to the control unit 20 Do.
  • switches such as a power switch for turning on and off the main power supply and an irradiation switch for irradiating an electromagnetic wave, receives various input operations by the user, and outputs an operation signal to the control unit 20 Do.
  • the storage unit 25 is configured by a non-volatile semiconductor memory or a hard disk drive, and stores control programs and various data.
  • the control unit 20 includes a central processing unit (CPU) 20S, a read only memory (ROM) 20T, a random access memory (RAM) 20U, and the like.
  • the CPU 20S reads out a program corresponding to the processing content from the ROM 20T, expands it in the RAM 20U, and controls the operation of each block of the tag reader 2 in cooperation with the expanded program. At this time, various data stored in the storage unit 25 are referred to.
  • the control unit 20 analyzes the signal of the reflected wave input from the electromagnetic wave receiving unit 22 to obtain image data of the tag 1 as a target of reading (reflection characteristics of the entire area of the base 10 including the image pattern 11). The same applies to the following, and the process of decoding and displaying the identification information configured in the tag 1 from the image data is executed.
  • the control unit 20 includes an electromagnetic wave reflection information reading unit 20a, an image information conversion unit 20b, a tag front / back discrimination unit 20c, and an identification information reading unit 20d.
  • the electromagnetic wave reflection information reading unit 20 a causes the electromagnetic wave transmission unit 21 to output an electromagnetic wave, and causes the electromagnetic wave reception unit 22 to detect the intensity or the like of the reflected wave. Then, the electromagnetic wave reflection information reading unit 20a reads the reflection characteristic (also referred to as electromagnetic wave reflection information) of each position of the tag 1 by executing such control so as to scan in a two-dimensional plane.
  • the image information conversion unit 20 b converts the electromagnetic wave reflection information of each position of the read tag 1 into an image pattern 11. At this time, the image information conversion unit 20 b converts the electromagnetic wave reflection information into the image pattern 11 also for the position of the calibration pattern 12 in addition to the position of the image pattern 11. Note that, for example, image data in which the coordinates of the image pattern 11 and the intensity of the reflected wave at the coordinates are associated with each other is generated by the process of the image information conversion unit 20 b.
  • the tag front / back discrimination unit 20c identifies a calibration pattern from electromagnetic wave reflection information. Then, based on the reflected wave acquired from the calibration information forming unit 12 of the tag 1, the tag front / back discrimination unit 20c discriminates whether the electromagnetic wave is applied to the tag 1 from the front side or the back side. Do.
  • the identification information reading unit 20d recognizes the identification information from the image information (also referred to as coding) after setting the reading direction of the image pattern 11 based on the judgment result of the front / back judgment of the tag front / back judging unit 20c.
  • FIG. 7 is a flowchart showing an example of the operation of the tag reader 2 according to the present embodiment.
  • the flowchart in FIG. 7 is, for example, processing executed by the control unit 20 in response to the operation of the operation input unit 24 of the tag reader 2.
  • step S10 the control unit 20 causes the electromagnetic wave transmission unit 21 to transmit an electromagnetic wave and irradiates the tag 1 with the electromagnetic wave reception unit 22 sequentially (for example, the reflected wave from the tag 1). To detect the intensity). Then, the control unit 20 switches the transmission direction of the electromagnetic wave transmission unit 21 and the reception direction of the electromagnetic wave reception unit 22, and scans over a predetermined area where the image pattern 11 of the tag 1 is considered to be formed. Thereby, the control unit 20 generates the reflected wave information (here, the intensity information of the reflected wave) for each position of the area where the image pattern 11 of the tag 1 and the calibration pattern 12 are formed.
  • the reflected wave information here, the intensity information of the reflected wave
  • step S10 first, the pattern of the reference point (not shown) of the tag 1 is searched for and the intensity of the electromagnetic wave to be transmitted by calibration is checked before the process of detecting the reflected wave information is executed. Adjustments of may be performed.
  • step S20 the control unit 20 generates image data of the tag 1 based on the reflected wave information.
  • the control unit 20 converts “1” when the intensity of the reflected wave is large, and converts “0” when the intensity of the reflected wave is small.
  • the control unit 20 recognizes it as a region of the base 10 as a region not to be converted.
  • step S30 the control unit 20 extracts the calibration pattern 12 from the image data of the tag 1 by, for example, known template matching. Then, based on the orientation of the calibration pattern 12 (the orientation of the apex angle of the isosceles triangle), the control unit 20 applies an electromagnetic wave to the tag 1 from the front side or from the back side to the tag 1. It is determined whether or not an electromagnetic wave has been emitted.
  • step S40 the control unit 20 sets the reading direction of the image data 11 based on the judgment result of the front / back judgment of the tag front / back judgment unit 20c, and decodes the identification information from the image pattern.
  • the base 10 having permeability to electromagnetic waves is used, and the calibration information forming unit 12 determines the front and back of the tag reader 2 with respect to the tag reader 2. It can be done. As a result, even when the tag reader 2 or the like irradiates the tag 1 with an electromagnetic wave from either the front side or the back side, the identification information of the tag 1 can be read accurately.
  • FIG. 8 is a diagram showing a configuration of the calibration information forming unit 12 according to a modification of the first embodiment.
  • the calibration information forming unit 12 according to the present modification includes the electromagnetic wave reflectivity when the tag 1 is irradiated with the electromagnetic wave from the front side and the electromagnetic wave from the back side to the tag 1 in the partial region of the base material 10.
  • the calibration information forming unit 12 according to the first embodiment is different from the calibration information forming unit 12 according to the first embodiment in that an index for discriminating front and back is configured by making the electromagnetic wave reflectance different from that when irradiated.
  • FIG. 8C shows the reflection intensity (solid line) of the electromagnetic wave in the calibration information forming unit 12 (electromagnetic wave absorbing material 11b) when the electromagnetic wave is irradiated to the tag 1 from the front side, and the electromagnetic wave is irradiated to the tag 1 from the back side.
  • the reflected intensity (dotted line) of the electromagnetic wave in the calibration information formation part 12 (electromagnetic wave absorption material 11b) at the time of having performed is each shown.
  • the calibration information formation unit 12 is not limited to the image pattern 11 (in FIGS. 8A and 8B, the pixel areas of the addresses “a”, “c”, “d”, “e” and “f”). It is comprised by the electromagnetic wave absorption material 11b to form.
  • the electromagnetic wave absorbing material 11b has different electromagnetic wave transmittances (however, it is larger than 0% and smaller than 100%) in the case where the electromagnetic wave is irradiated from the front side and the case where the electromagnetic wave is irradiated from the rear side. Is configured as.
  • the means for realizing this aspect is optional, but for example, the material forming the electromagnetic wave absorbing material 11b has directivity of the electromagnetic wave absorptivity, or an electromagnetic wave reflector is provided on the front or back surface of the electromagnetic wave absorbing material 11b. It is possible to use a method of forming asperities on the surface or the back surface of the electromagnetic wave absorbing material 11b.
  • the area for forming the calibration information forming unit 12 can be omitted, which contributes to the miniaturization of the tag 1.
  • the material of the base 10 and the metal member 11a may be provided with directivity of the electromagnetic wave transmittance and the electromagnetic wave reflectivity instead of the aspect of the above-described modification.
  • the tag 1 is added to the calibration information forming unit 12 (hereinafter referred to as “first calibration information forming unit 12” or “first calibration pattern 12”) which is an index for discriminating front and back.
  • first calibration information forming unit 12 hereinafter referred to as “first calibration information forming unit 12” or “first calibration pattern 12”
  • second calibration information forming unit 13 serving as an index for determining the upper and lower This is different from the embodiment of FIG. Description of the configuration common to the first embodiment will be omitted.
  • the first calibration information forming unit 12 configures an index for discriminating front and back.
  • the image pattern 11 may not be identified accurately only by the index of the front / back discrimination.
  • FIG. 9 is a view showing another example of the image pattern 11 of the tag 1 detected by the tag reader 2 (in FIG. 9, the first calibration information forming unit 12 and the second calibration information forming unit 13 Not shown).
  • FIG. 9A shows an image pattern 11 (a tag reader 2 detects a tag 1 when an electromagnetic wave is applied to the tag 1 in the normal position (the tag 1 is not rotated; the same applies to the following)).
  • Fig. 2 shows the same as Fig. 2A).
  • FIG. 9B shows an image pattern 11 (similar to FIG. 2B) detected by the tag reader 2 when an electromagnetic wave is applied to the tag 1 in the normal position from the back side.
  • FIG. 9C shows an image pattern 11 detected by the tag reader 2 when an electromagnetic wave is irradiated from the front side to the tag 1 in a state of being rotated 180 degrees.
  • FIG. 9D shows an image pattern 11 detected by the tag reader 2 when an electromagnetic wave is irradiated from the back side to the tag 1 rotated 180 degrees.
  • the image pattern 11 of the tag 1 may be recognized as four different patterns by rotating the tag 1 by 180 degrees.
  • the state in which the tag 1 is rotated by 90 degrees can be determined from the aspect ratio of the image pattern 11 and the base material 10, so that only the state rotated by 180 degrees is a problem here.
  • the tag 1 is provided with a second calibration information forming unit 13 constituting an index for upper and lower discrimination, in addition to the first calibration information forming unit 12 for discriminating front and back. There is.
  • FIG. 10 is a diagram showing an example of the configuration of the second calibration information forming unit 13. As shown in FIG. 10A shows the tag 1 in the normal position, and FIG. 10B shows the tag 1 rotated 180 degrees.
  • the second calibration information forming unit 13 is configured of, for example, a pattern of the metal members 11 a having an asymmetrical shape in the vertical direction with reference to the vertical direction and the horizontal direction of the surface of the tag 1.
  • FIG. 10 as an example of the pattern of the second calibration information forming unit 13, an isosceles triangle in which the apex angle is directed upward is shown. That is, as can be seen from FIGS. 10A and 10B, since the second calibration information forming unit 13 has an asymmetrical shape in the vertical direction, the electromagnetic wave is rotated 180 degrees when it is irradiated at the normal position. When irradiated in the state, it is detected as an inverted shape.
  • the tag reader 2 identifies the orientation of the second calibration information forming unit 13 (whether it is an isosceles triangle with the apex angle directed upward or an isosceles triangle with the apex angle directed downward). , The top and bottom of the tag 1 can be determined.
  • the first calibration information forming unit 12 is configured by, for example, a pattern having an asymmetrical shape in the left-right direction in order to configure an index for discriminating front and back.
  • the tag reader 2 determines which state of the four image patterns 11 shown in FIGS. 9A to 9D. It becomes possible to distinguish.
  • FIG. 11 is a flowchart showing an example of the operation of the tag reader 2 according to the present embodiment. In addition, in FIG. 11, only the details of the process of the front / back discrimination of step S30 of FIG. 7 are shown.
  • step S31 the control unit 20 extracts the first calibration pattern 12 and the second calibration pattern 13 from the image data of the tag 1 by, for example, known template matching.
  • step S32 the control unit 20 irradiates the tag 1 with an electromagnetic wave from the front side based on the direction of the first calibration pattern 12 (the direction of the apex angle of the isosceles triangle) or the tag 1 It is determined whether the electromagnetic wave has been irradiated from the back side. Then, when the control unit 20 determines that the electromagnetic wave is irradiated to the tag 1 from the front side (step S32: Yes), the process proceeds to step S33. On the other hand, when the control unit 20 determines that the electromagnetic wave is not irradiated to the tag 1 from the front side, that is, the electromagnetic wave is irradiated from the back side (step S32: No), the process proceeds to step S36.
  • step S33 the control unit 20 determines whether the tag 1 is not rotated with respect to the normal position based on the orientation of the second calibration pattern 13 (the orientation of the apex angle of the isosceles triangle). Do.
  • the control unit 20 determines that the tag 1 is not in the rotation state with respect to the normal position (step S33: Yes)
  • step S33: No an image pattern (see FIG. 9C) is rotated 180 degrees (see FIG. After conversion to 9 A), the identification information is recognized (step S35).
  • step S36 the control unit 20 similarly causes the tag 1 to rotate with respect to the normal position based on the orientation of the second calibration pattern 13 (the orientation of the apex angle of the isosceles triangle). Determine if it is When the control unit 20 determines that the tag 1 is not in the rotation state with respect to the normal position (step S36: Yes), the image pattern 11 (see FIG. 9B) is axisymmetric pattern (see FIG. 9A) And then identify the identification information (step S37). On the other hand, when the control unit 20 determines that the tag 1 is in the rotational state with respect to the normal position (step S36: No), a pattern obtained by rotating the image pattern 11 (see FIG. 9D) by 180 degrees After conversion to FIG. 9A), the identification information is recognized (step S38).
  • the first calibration information forming unit 12 and the second calibration information forming unit 13 are provided.
  • both the front / back discrimination and the upper / lower discrimination (rotational state discrimination) of the tag 1 can be made, so that the tag reader 2 can be made to recognize more accurate identification information.
  • FIG. 12 is a diagram showing the configuration of the tag 1 according to the first modification of the second embodiment.
  • the tag 1 according to the present modification is different from the second embodiment in the pattern shape of the second calibration information forming unit 13.
  • FIG. 12A shows an image pattern 11 detected when the tag 1 is in the normal position as in FIG. 10A (same as in FIG. 13A and FIG. 14A described later), and FIG. 12B is similar to FIG. 10B.
  • the image pattern 11 detected when the tag 1 is rotated 180 degrees is shown (the same applies to FIGS. 13B and 14B described later).
  • the pattern shape of the second proofreading information formation unit 13 is configured by an array of two or more separated shapes. More specifically, in the pattern of the second calibration information forming unit 13, two line shapes extending in the left and right direction are arranged along the vertical direction. The pattern of the second calibration information forming unit 13 has a shape that is asymmetric in the vertical direction because the lengths in the left-right direction of the two linear shapes are different.
  • FIG. 13 is a view showing the configuration of a tag 1 according to a second modification of the second embodiment.
  • the tag 1 according to the present modification is different from the second embodiment in the pattern shape of the second calibration information forming unit 13.
  • the first calibration information forming unit 12 and the second calibration information forming unit 13 are integrally configured.
  • the first calibration information forming unit 12 and the second calibration information forming unit 13 are asymmetric in the left-right direction and in the vertical direction. More specifically, the first calibration information forming unit 12 and the second calibration information forming unit 13 have a pattern in which two line shapes extending vertically are arranged in the left-right direction, and the two lines Due to the difference in the length of the shape in the vertical direction, the shape is asymmetric in the horizontal direction.
  • the calibration information forming unit 12 and the second calibration information forming unit 13 form a shape which is asymmetric in the vertical direction by forming a linear shape extending in the left and right directions on the upper part of the two linear shapes.
  • FIG. 14 is a view showing the configuration of the tag 1 according to the third modification of the second embodiment.
  • the tag 1 according to the present modification is different from the second embodiment in that the second calibration information forming unit 13 is formed on the base material 10 itself.
  • the base material 10 according to the present modification is formed so that the reflection intensity of the electromagnetic wave decreases stepwise from the upper end side to the lower end side of the base material 10, whereby the second calibration information is formed.
  • the section 13 is configured (see T2-T2 'in FIG. 14C).
  • the tag reader 2 detects the reflection intensity of the electromagnetic wave of the base 10 so as to gradually decrease from the upper end to the lower end.
  • the reflection intensity of the electromagnetic wave of the base material 10 is detected so as to gradually decrease from the lower end side toward the upper end side.
  • the second calibration information forming unit 13 on the base material 10 itself, it is not necessary to separately provide a region of the calibration pattern, which contributes to the miniaturization of the tag 1.
  • the aspect comprised with the pattern of the member from which the electromagnetic wave reflectance differs formed in the predetermined plane of the base material 10 as an example of the identification information formation part 11 was shown.
  • the identification information formation part 11 should just be a pattern in which the reflective characteristic with respect to electromagnetic waves differs from the base material 10, and can be changed into various aspects.
  • the identification information forming unit 11 when the identification information forming unit 11 constructs one piece of identification information, it replaces the strength (amplitude) of the electromagnetic wave reflectance of each member (for example, the metal member 11a or the electromagnetic wave absorber 11b) from the members.
  • a phase shift of the reflected wave may be used.
  • the phase shift of the reflected wave can be given, for example, by adjusting the film thickness of the metal.
  • the identification information forming unit 11 may use the frequency characteristics of each member (for example, the metal member 11a or the electromagnetic wave absorber 11b) when configuring one piece of identification information.
  • the frequency characteristic of the member for the electromagnetic wave to be irradiated can be, for example, a resonant frequency given by the pattern shape of the metal member 11a or a frequency to be absorbed by changing the composition ratio of the electromagnetic wave absorber 11b as a specific frequency It is.
  • the identification information forming unit 11 may use a combination of reflection characteristics of a plurality of sections (for example, a shape formed by an arrangement pattern) when configuring one piece of identification information.
  • identification information can be read from either front or back.

Abstract

This chipless RFID tag (1) makes it possible for a tag reader (2) to use reflected waves from radiated electromagnetic waves to read identification information and is provided with: a substrate (10) that is transparent with respect to the electromagnetic waves; an identification information formation section (11) that forms the pattern of an area within a predetermined surface of the substrate (10) in which the reflection characteristics with respect to the electromagnetic waves differ from those of the substrate (10) and in which the identification information is formed by the pattern; and a calibration information formation section (12) forming an area within the predetermined surface of the substrate (10) in which the reflected waves that are generated have different forms when the electromagnetic waves are radiated from the front surface side of the substrate (10) and when the electromagnetic waves are radiated from the rear surface side of the substrate (10).

Description

チップレスRFIDタグ、タグリーダー、及びRFIDシステムChipless RFID tag, tag reader, and RFID system
 本開示は、チップレスRFIDタグ、タグリーダー、及びRFIDシステムに関する。 The present disclosure relates to chipless RFID tags, tag readers, and RFID systems.
 従来、物品に関する情報等を紐づけるタグの一例として、バーコードが知られている。バーコードは、安価であることから、現在では様々な物品に印字され、その物品に関する情報を電子化する手段として広く普及している。他方、バーコードタグの場合、印字内容を正しく読み取るためにはバーコードリーダーをバーコードに数cm程度まで近づける必要があり、この読み取り作業が作業者から煩雑と感じられている。また、バーコードの印字部位が汚れている場合、印字内容の読み取りができないという課題もある。加えて、バーコードは、物品表面の見える位置に印字されているため、悪意を持つものに容易に書き換えられるといった問題もある。 Conventionally, a barcode is known as an example of a tag that links information and the like related to an item. Since barcodes are inexpensive, they are currently printed on various articles, and are widely used as a means for digitizing information on the articles. On the other hand, in the case of a barcode tag, in order to read the printed content correctly, it is necessary to bring the barcode reader close to the barcode to about several centimeters, and this reading operation is felt by the operator to be complicated. In addition, there is also a problem that when the printed portion of the bar code is dirty, the printed content can not be read. In addition, since the barcode is printed at a visible position on the surface of the article, there is also a problem that the barcode can be easily rewritten to something malicious.
 他方、従来、ICチップ内蔵型の電子タグ等も知られている。しかしながら、かかる電子タグは、ICチップを設ける必要があるため、コスト面での問題がある。又、ICチップがRFIDリーダーに対して送信する送信波は、近接して配設された金属部品等によって、かき消されやすく、高い読み取り性を確保することが難しくなる。 On the other hand, conventionally, an IC chip built-in type electronic tag and the like are also known. However, such an electronic tag has a problem in cost because it is necessary to provide an IC chip. Further, the transmission wave transmitted from the IC chip to the RFID reader is easily scraped off by the metal parts or the like disposed close to each other, and it becomes difficult to secure high readability.
 近年、バーコードやICチップ内蔵型の電子タグに代わる技術として、「チップレスRFIDタグ」と称されるタグが注目されている(例えば、特許文献1を参照)。 In recent years, a tag called a "chipless RFID tag" has been attracting attention as a technology to replace a barcode and an IC chip built-in type electronic tag (see, for example, Patent Document 1).
 チップレスRFIDタグは、基材上に形成されたパターンによって、電磁波が照射された際の反射特性(例えば、共振周波数や反射波の強弱パターン)を基材上で変化させ、これによって識別情報を構成する。そして、タグリーダーは、電磁波をチップレスRFIDタグに照射した際の反射特性を検出することで、当該チップレスRFIDタグに付された識別情報を読み取る。 The chipless RFID tag changes the reflection characteristics (for example, the resonance frequency and the intensity pattern of the reflected wave) when irradiated with the electromagnetic wave by the pattern formed on the base material, thereby identifying the information Configure. Then, the tag reader reads the identification information attached to the chipless RFID tag by detecting the reflection characteristic when the chipless RFID tag is irradiated with the electromagnetic wave.
特表2009-529724号公報Japanese Patent Publication No. 2009-529724
 ところで、近年、チップレスRFIDタグ(以下、「タグ」と略称する)を用いたRFIDシステムにおいて、読み取りの際に、数十GHzのミリ波等の高周波の電磁波を用いることが検討されている。かかる高周波の電磁波(以下、「電磁波」と略称する)は、一般的な梱包材(例えば、紙材等)を透過する性質を有するため、従来のバーコード等とは異なる態様に適用することが可能である。 By the way, in recent years, in an RFID system using a chipless RFID tag (hereinafter, abbreviated as “tag”), it is considered to use a high frequency electromagnetic wave such as a millimeter wave of several tens of GHz at the time of reading. Such high frequency electromagnetic waves (hereinafter referred to as "electromagnetic waves") have the property of transmitting general packaging materials (for example, paper materials etc.), and therefore, may be applied to an aspect different from conventional barcodes etc. It is possible.
 本願の発明者等は、かかる高周波の電磁波の特性を利用して、例えば、梱包材の内部に物品と共にタグが収納された状態での照合のように、タグの表裏等の位置合わせを行うことなく照合を可能とするRFIDシステムへの適用を想到した。 The inventors of the present application use the characteristics of such high frequency electromagnetic waves to align the front and back of the tag, for example, as in the case of matching in a state where the tag is housed inside the packing material. We thought of application to RFID system that enables verification without.
 但し、かかる用途への適用を検討した場合、タグに形成されたパターンを表裏いずれからでも読み取り可能とする構成に加えて、タグに形成されたパターンの表裏を判別するための構成が必要となるおそれがある。即ち、タグリーダーが、タグの表裏を誤って判別した場合、タグに形成されたパターンを誤認識することになるからである。 However, when considering application to such an application, in addition to the configuration that enables the pattern formed on the tag to be read from either the front or back, a configuration for determining the front or back of the pattern formed on the tag is required. There is a fear. That is, if the tag reader erroneously discriminates the front and back of the tag, the pattern formed on the tag is erroneously recognized.
 本開示は、上記の問題点に鑑みてなされたもので、表裏いずれからでも識別情報を読み取り可能なチップレスRFIDタグ、タグリーダー、及びRFIDシステムを提供することを目的とする。 The present disclosure has been made in view of the above problems, and it is an object of the present disclosure to provide a chipless RFID tag, a tag reader, and an RFID system that can read identification information from either front or back.
 前述した課題を解決する主たる本開示は、
 照射された電磁波に対する反射波によりタグリーダーに識別情報を読み取らせるチップレスRFIDタグであって、
 前記電磁波に対して透過性を有する基材と、
 前記基材の所定面内において、前記電磁波に対する反射特性が前記基材とは異なる領域のパターンを形成し、当該パターンにより前記識別情報を構成する識別情報形成部と、
 前記基材の前記所定面内において、前記電磁波が前記基材の表面側から照射された場合と前記基材の裏面側から照射された場合とで、異なる態様の前記反射波を発生する領域を形成する校正情報形成部と、
 を備える、チップレスRFIDタグである。
The main present disclosure to solve the above-mentioned problems is
A chipless RFID tag that causes a tag reader to read identification information by a reflected wave to an emitted electromagnetic wave,
A substrate having permeability to the electromagnetic wave;
An identification information forming unit that forms a pattern of an area in which the reflection characteristic to the electromagnetic wave is different from that of the base material in a predetermined plane of the base material, and the identification information is configured by the pattern;
In the predetermined plane of the substrate, a region that generates the reflected wave in a different aspect in the case where the electromagnetic wave is irradiated from the front side of the substrate and the case where the electromagnetic wave is irradiated from the back side of the substrate A calibration information formation unit to be formed;
A chipless RFID tag.
 又、他の局面では、
 上記チップレスRFIDタグに適用されるタグリーダーであって、
 前記電磁波を前記校正情報形成部に照射した際の前記反射波の態様に基づいて、前記識別情報形成部の前記パターンの表裏を判別して、前記識別情報形成部の識別情報を識別する
 タグリーダーである。
And in other aspects,
A tag reader applied to the above chipless RFID tag,
A tag reader which discriminates the identification information of the identification information formation unit by discriminating the front and back of the pattern of the identification information formation unit based on the mode of the reflected wave when the electromagnetic wave is irradiated to the calibration information formation unit It is.
 又、他の局面では、
 上記チップレスRFIDタグを備えるRFIDシステムである。
And in other aspects,
It is an RFID system provided with the above-mentioned chipless RFID tag.
 本開示に係るチップレスRFIDタグによれば、表裏いずれからでも識別情報を読み取らせることができる。 According to the chipless RFID tag according to the present disclosure, identification information can be read from either front or back.
図1A、図1Bは、第1の実施形態に係るRFIDシステムの構成の一例を示す図である。FIG. 1A and FIG. 1B are diagrams showing an example of the configuration of the RFID system according to the first embodiment. 図2A、図2Bは、タグリーダーに検出されたタグの画像パターンの一例を示す図である。FIGS. 2A and 2B are diagrams showing an example of an image pattern of a tag detected by the tag reader. 図3は、第1の実施形態に係るタグの構成の一例を示す図である。FIG. 3 is a diagram showing an example of the configuration of the tag according to the first embodiment. 図4A、図4Bは、第1の実施形態において、タグリーダーによって検出されたタグの画像パターン及び校正用パターンの一例を示す図である。FIG. 4A and FIG. 4B are views showing an example of an image pattern of a tag detected by a tag reader and a calibration pattern in the first embodiment. 図5A、図5Bは、校正用パターンの他の態様を示す図である。5A and 5B are diagrams showing another aspect of the calibration pattern. 図6は、第2の実施形態に係るタグリーダーの構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of a tag reader according to the second embodiment. 図7は、第2の実施形態に係るタグリーダーの動作の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of the operation of the tag reader according to the second embodiment. 図8A、図8B、図8Cは、第1の実施形態の変形例に係る校正情報形成部の構成を示す図である。8A, 8B, and 8C are diagrams showing the configuration of a calibration information forming unit according to a modification of the first embodiment. 図9A、図9B、図9C、図9Dは、タグリーダーに検出されたタグの画像パターンの他の一例を示す図である。FIG. 9A, FIG. 9B, FIG. 9C, FIG. 9D is a figure which shows another example of the image pattern of the tag detected by the tag reader. 図10A、図10Bは、第2の実施形態に係る第2の校正情報形成部の構成の一例を示す図である。FIG. 10A and FIG. 10B are diagrams showing an example of the configuration of a second calibration information forming unit according to the second embodiment. 図11は、第2の実施形態に係るタグリーダーの動作の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of the operation of the tag reader according to the second embodiment. 図12A、図12Bは、第2の実施形態の変形例1に係るタグの構成を示す図である。12A and 12B are diagrams showing the configuration of a tag according to Modification 1 of the second embodiment. 図13A、図13Bは、第2の実施形態の変形例2に係るタグの構成を示す図である。FIG. 13A and FIG. 13B are diagrams showing the configuration of a tag according to a modification 2 of the second embodiment. 図14A、図14B、図14Cは、第2の実施形態の変形例3に係るタグの構成を示す図である。FIG. 14A, FIG. 14B, and FIG. 14C are diagrams showing the configuration of the tag according to the third modification of the second embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functions will be assigned the same reference numerals and redundant description will be omitted.
(第1の実施形態)
[RFIDシステムの構成]
 まず、図1を参照して、第1の実施形態に係るRFIDシステムの一例について説明する。
First Embodiment
[RFID system configuration]
First, an example of the RFID system according to the first embodiment will be described with reference to FIG.
 図1は、第1の実施形態に係るRFIDシステムUの構成の一例を示す図である。 FIG. 1 is a diagram showing an example of the configuration of the RFID system U according to the first embodiment.
 本実施形態に係るRFIDシステムUは、タグ1、及びタグリーダー2を含んで構成される。 The RFID system U according to the present embodiment is configured to include the tag 1 and the tag reader 2.
 本実施形態に係るタグ1は、上記したチップレスRFIDタグである。タグ1には、電磁波を照射した際の反射特性が当該タグ1の基材とは異なる領域のパターンが形成されている。 The tag 1 according to the present embodiment is the above-described chipless RFID tag. The tag 1 is formed with a pattern of a region in which the reflection characteristic when irradiated with an electromagnetic wave is different from that of the base material of the tag 1.
 図1中では、タグ1の構成の一例として、電磁波反射率(送信した電磁波のエネルギーに対するタグからの反射波のエネルギーの比率を表す。以下同じ)が高い部材(例えば、金属部材11a)と電磁波反射率が低い部材(例えば、電磁波吸収材11b)のパターン(以下、「画像パターン」とも称する)によって、識別情報を構成する態様を示している(図1Bを参照)。 In FIG. 1, as an example of the configuration of the tag 1, a member (for example, the metal member 11 a) and the electromagnetic wave having a high electromagnetic wave reflectivity (represents the ratio of the energy of the reflected wave from the tag to the energy of the transmitted electromagnetic wave). The aspect which comprises identification information with the pattern (Hereafter, it is also called an "image pattern") of the member (for example, electromagnetic wave absorption material 11b) with a low reflectance is shown (refer FIG. 1B).
 タグリーダー2は、高周波(例えば、10GHzから3THzのミリ波帯域)の電磁波を出力して、タグ1に照射する。そして、タグリーダー2は、タグ1から反射された反射波を受信して、例えば、反射波が強い領域を「1」、反射波が弱い領域を「0」として認識する。そして、タグリーダー2は、当該反射波の強弱パターンに基づいて、タグ1に形成された画像パターン及び当該画像パターンに対応する識別情報を読み取る。 The tag reader 2 outputs an electromagnetic wave of high frequency (for example, a millimeter wave band of 10 GHz to 3 THz) to irradiate the tag 1. Then, the tag reader 2 receives the reflected wave reflected from the tag 1 and recognizes, for example, an area in which the reflected wave is strong as “1” and an area in which the reflected wave is weak as “0”. Then, the tag reader 2 reads the image pattern formed on the tag 1 and the identification information corresponding to the image pattern based on the strength and weakness pattern of the reflected wave.
 尚、タグリーダー2は、高周波の電磁波を使用することから、タグ1が梱包材P(例えば、段ボール)の内部に配置されている状態でも、当該梱包材Pを透過させて電磁波の送受信を行うことができる。又、その他、タグリーダー2は、タグ1が生体内部に埋め込まれている状態でも、同様に、生体を透過させて電磁波の送受信を行うことができる。 In addition, since the tag reader 2 uses a high frequency electromagnetic wave, it transmits and receives the electromagnetic wave by transmitting the packing material P even when the tag 1 is disposed inside the packing material P (for example, a cardboard). be able to. In addition, even when the tag 1 is embedded in the living body, the tag reader 2 can transmit and receive electromagnetic waves by transmitting the living body in the same manner.
 図1A中では、タグ1は、物品(例えば、衣服、食品又は等の商品)と共に梱包材Pの中に収納された状態を表している。ここでは、タグ1は、梱包材Pの中において、画像パターンが梱包材Pの前面側に向くように、垂直に立てられた状態で、物品に取り付けられている。 In FIG. 1A, the tag 1 represents the state accommodated in the packaging material P with articles | goods (for example, articles | goods, such as clothes, foodstuffs, etc.). Here, in the packaging material P, the tag 1 is attached to the article in a state of being vertically erected so that the image pattern faces the front side of the packaging material P.
 図2は、タグリーダー2によって検出されたタグ1の画像パターンの一例を示す図である。 FIG. 2 is a view showing an example of the image pattern of the tag 1 detected by the tag reader 2.
 図2Aは、タグリーダー2が、タグ1の表面側から電磁波を照射した場合に検出された画像パターンを示す。一方、図2Bは、タグリーダー2が、タグ1の裏面側から電磁波を照射した場合に検出された画像パターンを示す。 FIG. 2A shows an image pattern detected when the tag reader 2 irradiates an electromagnetic wave from the surface side of the tag 1. On the other hand, FIG. 2B shows an image pattern detected when the tag reader 2 irradiates an electromagnetic wave from the back side of the tag 1.
 図2A及び図2Bから分かるように、タグリーダー2は、タグ1の表面側から画像パターンを検出した場合と、タグ1の裏面側から画像パターンを検出した場合とで、反転した画像パターンを検出する。そして、仮に、かかる反転した画像パターンをもとに、タグ1の識別情報を読み取ろうとすると、タグリーダー2には誤認識が生ずることになる。 As can be seen from FIGS. 2A and 2B, the tag reader 2 detects an inverted image pattern when detecting an image pattern from the front side of the tag 1 and when detecting an image pattern from the back side of the tag 1. Do. Then, if it is attempted to read the identification information of the tag 1 based on the inverted image pattern, the tag reader 2 will be misrecognized.
 本実施形態に係るタグ1は、かかる問題点に鑑みて、画像パターン(本発明の「識別情報形成部」に相当)に加えて、表裏判別の指標の校正用パターン(図2中には図示せず。本発明の「校正情報形成部」に相当)を備えている(図3を参照して後述)。 The tag 1 according to the present embodiment, in view of the problem, in addition to the image pattern (corresponding to the “identification information forming unit” of the present invention), a correction pattern (see FIG. 2) Not shown, which corresponds to the “correction information forming unit” of the present invention (described later with reference to FIG. 3).
 尚、図2A及び図2Bでは、タグ1は、四角で囲んだ領域を単位区画(以下、「画素領域」とも称する)として、8つの単位区画により、画像パターンを形成している。図2A及び図2B中には、各画素領域に対してアドレス符号(「a」~「h」)を付しており、アドレス符号が同一の画素領域は、タグ1中の同一の位置に相当する(図4、図5、図9、図10、図12、図13、図14も同様)。そして、黒塗りの画素領域と白抜きの画素領域とは、反射特性(例えば、反射波の強弱)が異なる領域であり、例えば、黒塗りの画素領域は「1」、白抜きの画素領域は「0」として、タグリーダー2に認識される。 In FIG. 2A and FIG. 2B, the tag 1 forms an image pattern by eight unit sections, with the area surrounded by a square as a unit section (hereinafter also referred to as a “pixel area”). In FIGS. 2A and 2B, address codes (“a” to “h”) are given to each pixel area, and pixel areas having the same address code correspond to the same position in the tag 1. (The same applies to FIG. 4, FIG. 5, FIG. 9, FIG. 10, FIG. 12, FIG. The black pixel area and the white pixel area are areas having different reflection characteristics (for example, the strength of the reflected wave). For example, the black pixel area is “1”, and the white pixel area is It is recognized by the tag reader 2 as “0”.
[タグの構成]
 図3は、本実施形態に係るタグ1の構成の一例を示す図である。
[Tag configuration]
FIG. 3 is a view showing an example of the configuration of the tag 1 according to the present embodiment.
 本実施形態に係るタグ1は、基材10と、当該基材10中に画像パターンを形成する識別情報形成部11と、当該基材10中に表裏判別の指標を形成する校正情報形成部12とを含んで構成される。 The tag 1 according to the present embodiment includes a base 10, an identification information forming unit 11 that forms an image pattern in the base 10, and a calibration information forming unit 12 that forms an index of front / back discrimination in the base 10. And including.
 基材10は、例えば、画像パターン等が形成される板状部材である。基材10は、タグ1の表面側又は裏面側のいずれからでも照合作業が可能となるように、少なくとも一部が高周波の電磁波を透過可能な素材(例えば、樹脂材)によって構成されている。但し、基材10は、ある程度の電磁波透過率を有していれば、その形状や素材等については任意である。 The base 10 is, for example, a plate-like member on which an image pattern or the like is formed. The base material 10 is made of a material (for example, a resin material) at least a part of which can transmit electromagnetic waves of high frequency so that the matching operation can be performed from either the front surface side or the back surface side of the tag 1. However, as long as the base material 10 has a certain degree of electromagnetic wave transmittance, its shape, material, etc. are arbitrary.
 尚、本実施形態に係る基材10は、金属部材11a及び電磁波吸収材11bとのコントラストの観点から、金属部材11aの電磁波反射率と電磁波吸収材11bの電磁波反射率の中間程度の材料が用いられている。 In addition, the base material 10 which concerns on this embodiment uses a material about the middle of the electromagnetic wave reflectance of the metal member 11a and the electromagnetic wave reflectance of the electromagnetic wave absorption material 11b from a viewpoint of contrast with the metal member 11a and the electromagnetic wave absorption material 11b. It is done.
 識別情報形成部11は、例えば、上記した画像パターンであり、基材10の所定平面内において、電磁波に対する反射特性が当該基材10と異なる領域のパターンを形成し、当該パターンにより識別情報を構成する。 The identification information forming unit 11 is, for example, the above-mentioned image pattern, and in a predetermined plane of the substrate 10, forms a pattern of a region having a reflection characteristic to electromagnetic waves different from that of the substrate 10, and configures identification information by the pattern Do.
 本実施形態に係る識別情報形成部11は、基材10の所定平面内をピクセル状に複数に分割した画素領域(図3中では、8つの画素領域)に形成された金属部材11a及び電磁波吸収材11bによって構成されている。識別情報形成部11は、例えば、金属部材11aが形成された画素領域を「0」の識別符号、電磁波吸収材11bが形成された画素領域を「1」の識別符号として、画像パターン11を形成している。 The identification information formation part 11 which concerns on this embodiment is the metal member 11a and electromagnetic wave absorption which were formed in the pixel area (eight pixel areas in FIG. 3) which divided the inside of the predetermined plane of the base material 10 into a plurality of pixels. It is comprised by the material 11b. The identification information forming unit 11 forms the image pattern 11 with, for example, the pixel area in which the metal member 11a is formed as an identification code of “0” and the pixel area in which the electromagnetic wave absorbing material 11b is formed as an identification code of “1”. doing.
 金属部材11aは、例えば、アルミ材や銅材等である。金属部材11aは、電磁波反射率が大きく(例えば、80%以上)、照射された電磁波に対して、タグリーダー2が容易に取得し得る程度の反射波を生成する。 The metal member 11a is, for example, an aluminum material, a copper material, or the like. The metal member 11a has a high electromagnetic wave reflectivity (for example, 80% or more), and generates a reflected wave to the extent that the tag reader 2 can easily acquire the radiated electromagnetic wave.
 金属部材11aは、基材10上の画素領域(ここでは、アドレス「b」、「g」、「h」の画素領域)に、画素領域毎に分離して、パターン形成されている。尚、金属部材11aは、例えば、金属ナノ粒子を含有するインクを使用したインクジェット等によって形成される。 The metal members 11 a are pattern-formed separately for each pixel area in pixel areas (here, pixel areas of addresses “b”, “g”, “h”) on the base material 10. The metal member 11a is formed by, for example, an inkjet using an ink containing metal nanoparticles.
 電磁波吸収材11bは、タグリーダー2が送信する電磁波のエネルギーを吸収し、かかる電磁波のエネルギーを減衰させる性質を有するものである。電磁波吸収材11bとしては、例えば、磁性体、導電性材料、カーボン、無機微粒子、金属細線、又は電磁波吸収樹脂等の素材が挙げられる。尚、電磁波吸収材11bとしては、電磁波のエネルギーを熱エネルギーに変換するもの、当該電磁波の位相を利用してエネルギーを打ち消す性質を有するもの(例えば、λ/4型電波吸収材)、又は、当該電磁波を散乱させることでエネルギーを消失させるものであってもよい。 The electromagnetic wave absorbing material 11 b has a property of absorbing the energy of the electromagnetic wave transmitted by the tag reader 2 and attenuating the energy of the electromagnetic wave. Examples of the electromagnetic wave absorbing material 11 b include materials such as a magnetic body, a conductive material, carbon, inorganic fine particles, metal fine wires, or an electromagnetic wave absorbing resin. In addition, as the electromagnetic wave absorbing material 11b, one that converts energy of an electromagnetic wave into thermal energy, one that has a property of canceling energy by using the phase of the electromagnetic wave (for example, λ / 4 type radio wave absorbing material), or Energy may be dissipated by scattering electromagnetic waves.
 電磁波吸収材11bは、基材10上の画素領域(ここでは、アドレス「a」、「c」、「d」、「e」、「f」の画素領域)に、画素領域毎に分離して、パターン形成されている。電磁波吸収材11bは、例えば、磁性体を含有するインクを使用したインクジェット等によって形成される。 The electromagnetic wave absorbing material 11 b is divided into pixel areas on the substrate 10 (here, pixel areas of addresses “a”, “c”, “d”, “e”, “f”) for each pixel area. , Patterned. The electromagnetic wave absorbing material 11 b is formed by, for example, an inkjet using an ink containing a magnetic material.
 本実施形態に係る識別情報形成部11は、このように、電磁波吸収材11bと金属部材11aの組み合わせを用いて画像パターン11を形成することによって、各画素領域の反射波のコントラストを大きくし、タグリーダー2が画像パターンを容易に検出し得るようにしている。 The identification information forming unit 11 according to the present embodiment increases the contrast of the reflected wave of each pixel region by thus forming the image pattern 11 using the combination of the electromagnetic wave absorbing material 11 b and the metal member 11 a, The tag reader 2 can easily detect the image pattern.
 但し、識別情報形成部11の素材は、これに限らず、基材10自体に反射特性が他の領域と異なるパターンが形成されてもよい。 However, the material of the identification information forming unit 11 is not limited to this, and the base material 10 itself may be formed with a pattern having different reflection characteristics from other regions.
 校正情報形成部12は、タグリーダー2にタグ1の表裏を判別させるための指標である。校正情報形成部12は、基材10の所定平面内において、電磁波が基材10の表面側から照射された場合と基材10の裏面側から照射された場合とで、反射波の態様が異なる領域を形成し、これによって表裏判別の指標を構成する。 The proofreading information formation unit 12 is an index for making the tag reader 2 discriminate the front and back of the tag 1. The calibration information forming unit 12 differs in the aspect of the reflected wave in the case where the electromagnetic wave is irradiated from the surface side of the substrate 10 and the case where the electromagnetic wave is irradiated from the back surface side of the substrate 10 within a predetermined plane of the substrate 10 An area is formed, which constitutes an index of the front / back discrimination.
 本実施形態に係る校正情報形成部12は、基材10の表面を覆う金属部材のパターンによって形成されている。本実施形態に係る校正情報形成部12は、製造プロセス簡易化の観点から、例えば、識別情報形成部11と同一の材料(ここでは、金属部材11a)が用いられている。 The calibration information forming unit 12 according to the present embodiment is formed of a pattern of a metal member covering the surface of the base material 10. The calibration information forming unit 12 according to the present embodiment uses, for example, the same material (here, the metal member 11 a) as the identification information forming unit 11 from the viewpoint of simplification of the manufacturing process.
 校正情報形成部12のパターン(以下、「校正用パターン12」とも称する)は、電磁波が基材10の表面側から照射された場合と基材10の裏面側から照射された場合とで、タグリーダー2に反転したパターンとして検出される形状が選択される。校正用パターン12は、例えば、基材10の表面の上下方向(高さ方向を表す。以下同じ)及び左右方向を基準として、少なくとも左右方向に非対称な形状を呈するパターンである。尚、図3中では、校正用パターン12の一例として、頂角を右方向に向けた二等辺三角形を示している。 The pattern of the calibration information forming unit 12 (hereinafter also referred to as “calibration pattern 12”) is a tag in the case where the electromagnetic wave is irradiated from the front side of the substrate 10 and the case where the electromagnetic wave is irradiated from the back side of the substrate 10 A shape to be detected as an inverted pattern in the reader 2 is selected. The calibration pattern 12 is, for example, a pattern that exhibits an asymmetrical shape at least in the left-right direction with reference to the vertical direction (representing the height direction; the same applies to the following) of the surface of the substrate 10 and the left-right direction. In FIG. 3, as an example of the calibration pattern 12, an isosceles triangle whose apex angle is directed to the right is shown.
 尚、校正情報形成部12は、タグリーダー2が画像パターン11をスキャンする際に、当該画像パターン11と共に検出されるように、画像パターン11の周囲の位置に形成される。 The calibration information forming unit 12 is formed at a position around the image pattern 11 so as to be detected together with the image pattern 11 when the tag reader 2 scans the image pattern 11.
 図4は、本実施形態に係るタグリーダー2によって検出されたタグ1の画像パターン11及び校正用パターン12の一例を示す図である。 FIG. 4 is a view showing an example of an image pattern 11 and a calibration pattern 12 of the tag 1 detected by the tag reader 2 according to the present embodiment.
 図4Aは、タグリーダー2がタグ1の表面側から電磁波を照射した際に検出された画像パターン11及び校正用パターン12に相当し、図4Bは、タグリーダー2がタグ1の裏面側から電磁波を照射した際に検出された画像パターン11及び校正用パターン12に相当する(後述する図5A、図5Bも同様)。 FIG. 4A corresponds to the image pattern 11 and the calibration pattern 12 detected when the tag reader 2 irradiates an electromagnetic wave from the front side of the tag 1, and FIG. 4B shows the electromagnetic wave from the back side of the tag 1 to the tag reader 2. Corresponds to the image pattern 11 and the calibration pattern 12 detected when the light is irradiated (the same applies to FIGS. 5A and 5B described later).
 図4A及び図4Bから分かるように、校正用パターン12は、左右方向に非対称な形状を有するため、電磁波が表面側から照射された際と電磁波が裏面側から照射された際とで、反転した形状として検出される。つまり、タグリーダー2は、校正用パターン12の向きを識別することで、タグ1の表裏を判別することができる。 As can be seen from FIGS. 4A and 4B, since the calibration pattern 12 has an asymmetrical shape in the left-right direction, it is reversed between when the electromagnetic wave is irradiated from the front side and when the electromagnetic wave is irradiated from the back side. It is detected as a shape. That is, the tag reader 2 can determine the front and back of the tag 1 by identifying the direction of the calibration pattern 12.
 尚、タグリーダー2は、かかるタグ1の表裏判別を行う際には、反射波の強弱パターン等から校正用パターン12を検出し(例えば、公知のテンプレートマッチング等を用いる)、当該校正用パターン12のパターンの向きを判別する。例えば、タグリーダー2は、図4Aのように、頂角を右方向に向けている校正用パターン12(二等辺三角形)を検出したときには、タグ1が表面を向いていると判断する。又、タグリーダー2は、図4Bのように、頂角を左方向に向けている校正用パターン12(二等辺三角形)を検出したときには、タグ1が裏面を向いていると判断する。 When the tag reader 2 determines the front and back of the tag 1, the tag reader 2 detects the calibration pattern 12 from the intensity pattern of the reflected wave or the like (for example, using a known template matching or the like). Determine the direction of the pattern of. For example, as shown in FIG. 4A, when the tag reader 2 detects the calibration pattern 12 (isosceles triangle) whose apex angle is directed to the right, the tag reader 2 determines that the tag 1 is facing the surface. When the tag reader 2 detects the calibration pattern 12 (isosceles triangle) whose apex angle is leftward as shown in FIG. 4B, the tag reader 2 determines that the tag 1 is facing the back.
 但し、校正用パターン12としては、左右方向に非対称であれば、任意である。 However, the calibration pattern 12 is optional as long as it is asymmetric in the left-right direction.
 図5は、校正用パターン12の他の態様を示す図である。  FIG. 5 is a view showing another aspect of the calibration pattern 12.
 図5の校正用パターン12は、二以上の分離した形状の配列で構成されている。より詳細には、図5の校正用パターン12は、上下に延びる二つの線形状が、左右方向に沿って配列されたものとなっている。そして、校正用パターン12は、当該二つの線形状の上下方向の長さが異なることにより、左右方向に非対称な形状を構成している。尚、図5では、説明の便宜として、基材10を透過状態で示している。 The calibration pattern 12 of FIG. 5 is configured by an array of two or more separate shapes. More specifically, the calibration pattern 12 of FIG. 5 has two line shapes extending vertically, which are arranged along the left-right direction. The calibration pattern 12 has an asymmetrical shape in the left-right direction because the lengths of the two linear shapes in the vertical direction are different. In addition, in FIG. 5, the base material 10 is shown in the permeation | transmission state for the facilities of description.
 尚、図4及び図5で、校正用パターン12を左右方向に非対称形状としているのは、タグ1の表裏判別が必要な主な態様が、図1に示すようなタグ1の表面(画像パターン11)が梱包材Pの前面側又は後面側に向く態様の場合であるためである。 In FIGS. 4 and 5, the reason why the calibration pattern 12 has an asymmetrical shape in the left-right direction is that the main aspect requiring the front / back discrimination of the tag 1 is the surface of the tag 1 as shown in FIG. 11) is a case in which the packaging material P is directed to the front side or the rear side.
[タグリーダーの構成]
 次に、図6及び図7を参照して、タグリーダー2の構成を説明する。
[Tag reader configuration]
Next, the configuration of the tag reader 2 will be described with reference to FIGS. 6 and 7.
 図6は、本実施形態に係るタグリーダー2の構成の一例を示す図である。 FIG. 6 is a diagram showing an example of the configuration of the tag reader 2 according to the present embodiment.
 タグリーダー2は、タグ1によって反射される電磁波の強弱パターンに基づいて識別情報を判別する判別装置としての機能を有し、図6に示すように、電磁波送信部21、電磁波受信部22、操作入力部24、表示部23、記憶部25、及び制御部20等を備える。 The tag reader 2 has a function as a discrimination device for discriminating identification information based on the intensity pattern of the electromagnetic wave reflected by the tag 1, and as shown in FIG. 6, the electromagnetic wave transmission unit 21, the electromagnetic wave reception unit 22 and the operation An input unit 24, a display unit 23, a storage unit 25, a control unit 20, and the like are provided.
 電磁波送信部21は、無線信号を生成するための電子回路や送信用のアンテナなどを備え、上述した10GHz~3THz(センチメートル波~ミリ波~遠赤外線)の範囲における所定周波数の電磁波を送信する電磁波送信機として機能する。 The electromagnetic wave transmission unit 21 includes an electronic circuit for generating a wireless signal, an antenna for transmission, and the like, and transmits an electromagnetic wave of a predetermined frequency in the range of 10 GHz to 3 THz (centimeter wave to millimeter wave to far infrared) described above. It functions as an electromagnetic wave transmitter.
 尚、本実施形態では、電磁波送信部21は、特定周波数の電磁波を送信するものとするが、所定の周波数帯域をスイープする構成としてもよい。 In the present embodiment, the electromagnetic wave transmission unit 21 transmits an electromagnetic wave of a specific frequency, but may be configured to sweep a predetermined frequency band.
 電磁波受信部22は、受信用のアンテナや電子回路等を備え、電磁波送信部21によって送信された電磁波の反射波の信号を受信する電磁波反射波受信機として機能する。電磁波受信部22は、タグ1の表面における電磁波の反射角度に対応した位置に設けられている。電磁波受信部22は、受信された反射波の信号を制御部20に供給する。電磁波受信部22における受信感度のピーク点は、電磁波送信部21における送信周波数と同一の周波数に設定されている。 The electromagnetic wave receiving unit 22 includes an antenna for reception, an electronic circuit, and the like, and functions as an electromagnetic wave reflected wave receiver that receives a signal of a reflected wave of the electromagnetic wave transmitted by the electromagnetic wave transmitting unit 21. The electromagnetic wave receiving unit 22 is provided at a position corresponding to the reflection angle of the electromagnetic wave on the surface of the tag 1. The electromagnetic wave receiving unit 22 supplies the received signal of the reflected wave to the control unit 20. The peak point of the reception sensitivity in the electromagnetic wave reception unit 22 is set to the same frequency as the transmission frequency in the electromagnetic wave transmission unit 21.
 表示部23は、例えば液晶ディスプレイ(LCD:Liquid Crystal Display)で構成される。表示部23は、制御部20から入力される表示制御信号に従って、各種操作画面や、タグ1に構成された識別情報を表示する。 The display unit 23 is configured of, for example, a liquid crystal display (LCD). The display unit 23 displays various operation screens and identification information configured in the tag 1 in accordance with a display control signal input from the control unit 20.
 操作入力部24は、主電源のオンオフを行うための電源スイッチ、電磁波を照射するための照射スイッチ、などの各種スイッチを備え、ユーザーによる各種入力操作を受け付けて、操作信号を制御部20に出力する。 The operation input unit 24 includes various switches such as a power switch for turning on and off the main power supply and an irradiation switch for irradiating an electromagnetic wave, receives various input operations by the user, and outputs an operation signal to the control unit 20 Do.
 記憶部25は、不揮発性の半導体メモリやハードディスクドライブで構成され、制御プログラムや各種データを記憶する。 The storage unit 25 is configured by a non-volatile semiconductor memory or a hard disk drive, and stores control programs and various data.
 制御部20は、CPU(Central Processing Unit)20S、ROM(Read Only Memory)20T、RAM(Random Access Memory)20U等を含んで構成される。CPU20Sは、ROM20Tから処理内容に応じたプログラムを読み出してRAM20Uに展開し、展開したプログラムと協働してタグリーダー2の各ブロックの動作を制御する。このとき、記憶部25に格納されている各種データが参照される。 The control unit 20 includes a central processing unit (CPU) 20S, a read only memory (ROM) 20T, a random access memory (RAM) 20U, and the like. The CPU 20S reads out a program corresponding to the processing content from the ROM 20T, expands it in the RAM 20U, and controls the operation of each block of the tag reader 2 in cooperation with the expanded program. At this time, various data stored in the storage unit 25 are referred to.
 制御部20は、電磁波受信部22から入力される反射波の信号を解析することによって、読み取りの対象となったタグ1の画像データ(画像パターン11を含む基材10全体の領域の反射特性を表す。以下同じ)を生成し、かかる画像データからタグ1に構成された識別情報を復号して表示する処理を実行する。 The control unit 20 analyzes the signal of the reflected wave input from the electromagnetic wave receiving unit 22 to obtain image data of the tag 1 as a target of reading (reflection characteristics of the entire area of the base 10 including the image pattern 11). The same applies to the following, and the process of decoding and displaying the identification information configured in the tag 1 from the image data is executed.
 制御部20は、電磁波反射情報読取部20a、画像情報変換部20b、タグ表裏判別部20c、及び、識別情報読取部20dを備えている。 The control unit 20 includes an electromagnetic wave reflection information reading unit 20a, an image information conversion unit 20b, a tag front / back discrimination unit 20c, and an identification information reading unit 20d.
 電磁波反射情報読取部20aは、電磁波送信部21に対して電磁波を出力させると共に、電磁波受信部22に対して反射波の強弱等を検出させる。そして、電磁波反射情報読取部20aは、二次元平面内をスキャンするようにかかる制御を実行することによって、タグ1の各位置の反射特性(電磁波反射情報とも称する)を読み取る。 The electromagnetic wave reflection information reading unit 20 a causes the electromagnetic wave transmission unit 21 to output an electromagnetic wave, and causes the electromagnetic wave reception unit 22 to detect the intensity or the like of the reflected wave. Then, the electromagnetic wave reflection information reading unit 20a reads the reflection characteristic (also referred to as electromagnetic wave reflection information) of each position of the tag 1 by executing such control so as to scan in a two-dimensional plane.
 画像情報変換部20bは、読み取ったタグ1の各位置の電磁波反射情報を画像パターン11に変換する。尚、この際、画像情報変換部20bは、画像パターン11の位置に加えて校正用パターン12の位置についても、電磁波反射情報を画像パターン11に変換する。尚、画像情報変換部20bの処理によって、例えば、画像パターン11の座標と、当該座標での反射波の強度と、が対応付けられた画像データが生成される。 The image information conversion unit 20 b converts the electromagnetic wave reflection information of each position of the read tag 1 into an image pattern 11. At this time, the image information conversion unit 20 b converts the electromagnetic wave reflection information into the image pattern 11 also for the position of the calibration pattern 12 in addition to the position of the image pattern 11. Note that, for example, image data in which the coordinates of the image pattern 11 and the intensity of the reflected wave at the coordinates are associated with each other is generated by the process of the image information conversion unit 20 b.
 タグ表裏判別部20cは、画像情報変換部20bと同様に、電磁波反射情報から校正用パターンを識別する。そして、タグ表裏判別部20cは、タグ1の校正情報形成部12から取得した反射波に基づいて、タグ1に対して表面側から電磁波を照射したか、裏面側から電磁波を照射したかを判別する。 Similar to the image information conversion unit 20b, the tag front / back discrimination unit 20c identifies a calibration pattern from electromagnetic wave reflection information. Then, based on the reflected wave acquired from the calibration information forming unit 12 of the tag 1, the tag front / back discrimination unit 20c discriminates whether the electromagnetic wave is applied to the tag 1 from the front side or the back side. Do.
 識別情報読取部20dは、タグ表裏判別部20cの表裏判別の判別結果に基づいて、画像パターン11の読み取り方向を設定した上で、画像情報から識別情報を認識する(コード化とも称する)。 The identification information reading unit 20d recognizes the identification information from the image information (also referred to as coding) after setting the reading direction of the image pattern 11 based on the judgment result of the front / back judgment of the tag front / back judging unit 20c.
 図7は、本実施形態に係るタグリーダー2の動作の一例を示すフローチャートである。尚、図7のフローチャートは、例えば、タグリーダー2の操作入力部24が操作されるに応じて、制御部20が実行する処理である。 FIG. 7 is a flowchart showing an example of the operation of the tag reader 2 according to the present embodiment. The flowchart in FIG. 7 is, for example, processing executed by the control unit 20 in response to the operation of the operation input unit 24 of the tag reader 2.
 ステップS10において、制御部20は、電磁波送信部21から電磁波を送信させて、タグ1に対して照射し、逐次的に、電磁波受信部22に当該タグ1からの反射波(例えば、反射波の強度)を検出させる。そして、制御部20は、電磁波送信部21の送信方向及び電磁波受信部22の受信方向を切り替え、タグ1の画像パターン11が形成されていると思われる所定領域に亘って走査する。これによって、制御部20は、タグ1の画像パターン11及び校正用パターン12が形成された領域の各位置について、反射波情報(ここでは、反射波の強度情報)を生成する。 In step S10, the control unit 20 causes the electromagnetic wave transmission unit 21 to transmit an electromagnetic wave and irradiates the tag 1 with the electromagnetic wave reception unit 22 sequentially (for example, the reflected wave from the tag 1). To detect the intensity). Then, the control unit 20 switches the transmission direction of the electromagnetic wave transmission unit 21 and the reception direction of the electromagnetic wave reception unit 22, and scans over a predetermined area where the image pattern 11 of the tag 1 is considered to be formed. Thereby, the control unit 20 generates the reflected wave information (here, the intensity information of the reflected wave) for each position of the area where the image pattern 11 of the tag 1 and the calibration pattern 12 are formed.
 尚、このステップS10において、反射波情報を検出する処理を実行する前に、まず、タグ1のリファレンスポイントのパターン(図示せず)をサーチし、キャリブレーションにより、送信する電磁波の強度、照合領域の調整等が行われてもよい。 In this step S10, first, the pattern of the reference point (not shown) of the tag 1 is searched for and the intensity of the electromagnetic wave to be transmitted by calibration is checked before the process of detecting the reflected wave information is executed. Adjustments of may be performed.
 ステップS20において、制御部20は、反射波情報に基づいて、タグ1の画像データを生成する。尚、ここでは、制御部20は、例えば、反射波の強度が大きい場合には「1」、反射波の強度が小さい場合には「0」に変換する。制御部20は、反射波の強度が中間の場合には基材10の領域として、変換対象ではない領域として認識する。 In step S20, the control unit 20 generates image data of the tag 1 based on the reflected wave information. Here, for example, the control unit 20 converts “1” when the intensity of the reflected wave is large, and converts “0” when the intensity of the reflected wave is small. When the intensity of the reflected wave is intermediate, the control unit 20 recognizes it as a region of the base 10 as a region not to be converted.
 ステップS30において、制御部20は、タグ1の画像データから、例えば、公知のテンプレートマッチングにより校正用パターン12を抽出する。そして、制御部20は、当該校正用パターン12の向き(二等辺三角形の頂角の向き)に基づいて、タグ1に対して表面側から電磁波を照射したか、タグ1に対して裏面側から電磁波を照射したかを判別する。 In step S30, the control unit 20 extracts the calibration pattern 12 from the image data of the tag 1 by, for example, known template matching. Then, based on the orientation of the calibration pattern 12 (the orientation of the apex angle of the isosceles triangle), the control unit 20 applies an electromagnetic wave to the tag 1 from the front side or from the back side to the tag 1. It is determined whether or not an electromagnetic wave has been emitted.
 ステップS40において、制御部20は、タグ表裏判別部20cの表裏判別の判別結果に基づいて、画像データ11の読み取り方向を設定した上で、画像パターンから識別情報を復号する。 In step S40, the control unit 20 sets the reading direction of the image data 11 based on the judgment result of the front / back judgment of the tag front / back judgment unit 20c, and decodes the identification information from the image pattern.
[効果] 
 以上のように、本実施形態に係るタグ1によれば、電磁波に対して透過性を有する基材10を用いると共に、校正情報形成部12によって、タグリーダー2に対して、自身の表裏を判別させることができる。これによって、タグリーダー2等は、タグ1に対して、表面側又は裏面側のいずれ側から電磁波を照射した場合でも、タグ1の識別情報を正確に読み取ることが可能となる。
[effect]
As described above, according to the tag 1 according to the present embodiment, the base 10 having permeability to electromagnetic waves is used, and the calibration information forming unit 12 determines the front and back of the tag reader 2 with respect to the tag reader 2. It can be done. As a result, even when the tag reader 2 or the like irradiates the tag 1 with an electromagnetic wave from either the front side or the back side, the identification information of the tag 1 can be read accurately.
(第1の実施形態の変形例)
 図8は、第1の実施形態の変形例に係る校正情報形成部12の構成を示す図である。
(Modification of the first embodiment)
FIG. 8 is a diagram showing a configuration of the calibration information forming unit 12 according to a modification of the first embodiment.
 図8A及び図8Bは、それぞれ、タグ1の表面側から見た識別情報形成部11及び校正情報形成部12、タグ1の裏面側から見た識別情報形成部11及び校正情報形成部12を示している。尚、ここでは、説明の便宜として、基材10を透過状態で示している。 8A and 8B respectively show the identification information forming unit 11 and the calibration information forming unit 12 as viewed from the front side of the tag 1, and the identification information forming unit 11 and the calibration information forming unit 12 as viewed from the back side of the tag 1. ing. In addition, the base material 10 is shown in the permeation | transmission state here for the facilities of description.
 本変形例に係る校正情報形成部12は、基材10の一部領域において、タグ1に対して表面側から電磁波を照射した際の電磁波反射率と、タグ1に対して裏面側から電磁波を照射した際の電磁波反射率とを異ならせることによって、表裏判別の指標を構成する点で、第1の実施形態に係る校正情報形成部12と相違する。 The calibration information forming unit 12 according to the present modification includes the electromagnetic wave reflectivity when the tag 1 is irradiated with the electromagnetic wave from the front side and the electromagnetic wave from the back side to the tag 1 in the partial region of the base material 10. The calibration information forming unit 12 according to the first embodiment is different from the calibration information forming unit 12 according to the first embodiment in that an index for discriminating front and back is configured by making the electromagnetic wave reflectance different from that when irradiated.
 図8Cは、タグ1に対して表面側から電磁波を照射した際の校正情報形成部12(電磁波吸収材11b)における電磁波の反射強度(実線)と、タグ1に対して裏面側から電磁波を照射した際の校正情報形成部12(電磁波吸収材11b)における電磁波の反射強度(破線)とをそれぞれ示している。 8C shows the reflection intensity (solid line) of the electromagnetic wave in the calibration information forming unit 12 (electromagnetic wave absorbing material 11b) when the electromagnetic wave is irradiated to the tag 1 from the front side, and the electromagnetic wave is irradiated to the tag 1 from the back side. The reflected intensity (dotted line) of the electromagnetic wave in the calibration information formation part 12 (electromagnetic wave absorption material 11b) at the time of having performed is each shown.
 つまり、本変形例に係る校正情報形成部12は、画像パターン11(図8A及び図8Bでは、アドレス「a」、「c」、「d」、「e」、「f」の画素領域)を形成する電磁波吸収材11bによって構成されている。換言すると、電磁波吸収材11bは、表面側から電磁波を照射された場合と裏面側から電磁波を照射された場合とで異なる電磁波透過率(但し、0%よりも大きく100%よりも小さい)を有するように構成されている。 That is, the calibration information formation unit 12 according to the present modification is not limited to the image pattern 11 (in FIGS. 8A and 8B, the pixel areas of the addresses “a”, “c”, “d”, “e” and “f”). It is comprised by the electromagnetic wave absorption material 11b to form. In other words, the electromagnetic wave absorbing material 11b has different electromagnetic wave transmittances (however, it is larger than 0% and smaller than 100%) in the case where the electromagnetic wave is irradiated from the front side and the case where the electromagnetic wave is irradiated from the rear side. Is configured as.
 かかる態様の実現手段は、任意であるが、例えば、電磁波吸収材11bを形成する素材に電磁波吸収率の指向性を持たせたり、電磁波吸収材11bの表面又は裏面に電磁波反射体を設けたり、電磁波吸収材11bの表面又は裏面に凹凸を形成したりする手法を用いることができる。 The means for realizing this aspect is optional, but for example, the material forming the electromagnetic wave absorbing material 11b has directivity of the electromagnetic wave absorptivity, or an electromagnetic wave reflector is provided on the front or back surface of the electromagnetic wave absorbing material 11b. It is possible to use a method of forming asperities on the surface or the back surface of the electromagnetic wave absorbing material 11b.
 以上のように、本変形例に係るタグ1によれば、校正情報形成部12を形成する領域を省略することができるため、タグ1の小型化に資する。 As described above, according to the tag 1 according to the present modification, the area for forming the calibration information forming unit 12 can be omitted, which contributes to the miniaturization of the tag 1.
 尚、上記変形例の態様に代えて、基材10や金属部材11aの素材に電磁波透過率や電磁波反射率の指向性を持たせたる態様としてもよいのは、勿論である。 As a matter of course, the material of the base 10 and the metal member 11a may be provided with directivity of the electromagnetic wave transmittance and the electromagnetic wave reflectivity instead of the aspect of the above-described modification.
(第2の実施形態)
 次に、図9~図11を参照して、第2の実施形態に係るタグ1について説明する。
Second Embodiment
Next, a tag 1 according to a second embodiment will be described with reference to FIGS. 9 to 11.
 本実施形態に係るタグ1は、表裏判別のための指標となる校正情報形成部12(以下、「第1の校正情報形成部12」又は「第1の校正用パターン12」と称する)に加えて、上下判別のための指標となる校正情報形成部13(以下、「第2の校正情報形成部13」又は「第2の校正用パターン13」と称する)を備えている点で、第1の実施形態と相違する。尚、第1の実施形態と共通する構成については、説明を省略する。 The tag 1 according to the present embodiment is added to the calibration information forming unit 12 (hereinafter referred to as “first calibration information forming unit 12” or “first calibration pattern 12”) which is an index for discriminating front and back. In that the calibration information forming unit 13 (hereinafter referred to as the “second calibration information forming unit 13” or the “second calibration pattern 13”) serving as an index for determining the upper and lower This is different from the embodiment of FIG. Description of the configuration common to the first embodiment will be omitted.
 第1の本実施形態に係るタグ1は、第1の校正情報形成部12によって表裏判別の指標を構成とした。しかしながら、タグ1の取り付け位置によっては、タグ1が180度回転し、画像パターン11の上下が反転する結果、表裏判別の指標のみでは画像パターン11を正確に識別できない場合がある。 In the tag 1 according to the first embodiment, the first calibration information forming unit 12 configures an index for discriminating front and back. However, depending on the attachment position of the tag 1, as a result of the tag 1 rotating 180 degrees and the upper and lower sides of the image pattern 11 being reversed, the image pattern 11 may not be identified accurately only by the index of the front / back discrimination.
 図9は、タグリーダー2によって検出されたタグ1の画像パターン11の他の一例を示す図である(図9中には、第1の校正情報形成部12及び第2の校正情報形成部13は、図示せず)。 FIG. 9 is a view showing another example of the image pattern 11 of the tag 1 detected by the tag reader 2 (in FIG. 9, the first calibration information forming unit 12 and the second calibration information forming unit 13 Not shown).
 図9Aは、正規位置の状態(タグ1が回転していない状態を表す。以下同じ)のタグ1に対して、表面側から電磁波を照射した際に、タグリーダー2が検出する画像パターン11(図2Aと同様)を示す。図9Bは、正規位置の状態のタグ1に対して、裏面側から電磁波を照射した際に、タグリーダー2が検出する画像パターン11(図2Bと同様)を示す。図9Cは、180度回転した状態のタグ1に対して、表面側から電磁波を照射した際に、タグリーダー2が検出する画像パターン11を示す。図9Dは、180度回転した状態のタグ1に対して、裏面側から電磁波を照射した際に、タグリーダー2が検出する画像パターン11を示す。 FIG. 9A shows an image pattern 11 (a tag reader 2 detects a tag 1 when an electromagnetic wave is applied to the tag 1 in the normal position (the tag 1 is not rotated; the same applies to the following)). Fig. 2 shows the same as Fig. 2A). FIG. 9B shows an image pattern 11 (similar to FIG. 2B) detected by the tag reader 2 when an electromagnetic wave is applied to the tag 1 in the normal position from the back side. FIG. 9C shows an image pattern 11 detected by the tag reader 2 when an electromagnetic wave is irradiated from the front side to the tag 1 in a state of being rotated 180 degrees. FIG. 9D shows an image pattern 11 detected by the tag reader 2 when an electromagnetic wave is irradiated from the back side to the tag 1 rotated 180 degrees.
 図9A~図9Dから分かるように、タグ1の画像パターン11は、タグ1が180度回転することによって、四通りの異なるパターンに認識されるおそれがある。 As can be seen from FIGS. 9A to 9D, the image pattern 11 of the tag 1 may be recognized as four different patterns by rotating the tag 1 by 180 degrees.
 尚、タグ1が90度回転した状態等については、画像パターン11や基材10の縦横比等から判別することができるため、ここでは、180度回転した状態のみを問題としている。 The state in which the tag 1 is rotated by 90 degrees can be determined from the aspect ratio of the image pattern 11 and the base material 10, so that only the state rotated by 180 degrees is a problem here.
 本実施形態に係るタグ1は、かかる観点から、表裏判別のための第1の校正情報形成部12に加えて、上下判別のための指標を構成する第2の校正情報形成部13を設けている。 From this point of view, the tag 1 according to the present embodiment is provided with a second calibration information forming unit 13 constituting an index for upper and lower discrimination, in addition to the first calibration information forming unit 12 for discriminating front and back. There is.
 図10は、第2の校正情報形成部13の構成の一例を示す図である。尚、図10Aは、タグ1が正規位置の状態を表し、図10Bは、タグ1が180度回転した状態を示す。 FIG. 10 is a diagram showing an example of the configuration of the second calibration information forming unit 13. As shown in FIG. 10A shows the tag 1 in the normal position, and FIG. 10B shows the tag 1 rotated 180 degrees.
 第2の校正情報形成部13は、例えば、タグ1の表面の上下方向及び左右方向を基準として、上下方向に非対称な形状を呈する金属部材11aのパターンによって、構成されている。 The second calibration information forming unit 13 is configured of, for example, a pattern of the metal members 11 a having an asymmetrical shape in the vertical direction with reference to the vertical direction and the horizontal direction of the surface of the tag 1.
 図10中では、第2の校正情報形成部13のパターンの一例として、頂角を上方向に向けた二等辺三角形を示している。つまり、図10A及び図10Bから分かるように、第2の校正情報形成部13は、上下方向に非対称な形状を有するため、電磁波が正規位置の状態で照射された場合と電磁波が180度回転した状態で照射された場合とで、反転した形状として検出される。タグリーダー2は、かかる第2の校正情報形成部13の向き(頂角を上方向に向けた二等辺三角形か、又は、頂角を下方向に向けた二等辺三角形か)を識別することで、タグ1の上下を判別することができる。 In FIG. 10, as an example of the pattern of the second calibration information forming unit 13, an isosceles triangle in which the apex angle is directed upward is shown. That is, as can be seen from FIGS. 10A and 10B, since the second calibration information forming unit 13 has an asymmetrical shape in the vertical direction, the electromagnetic wave is rotated 180 degrees when it is irradiated at the normal position. When irradiated in the state, it is detected as an inverted shape. The tag reader 2 identifies the orientation of the second calibration information forming unit 13 (whether it is an isosceles triangle with the apex angle directed upward or an isosceles triangle with the apex angle directed downward). , The top and bottom of the tag 1 can be determined.
 尚、第1の校正情報形成部12は、第1の実施形態で説明したように、表裏判別の指標を構成するため、例えば、左右方向に非対称な形状を呈するパターンによって構成されている。 Note that, as described in the first embodiment, the first calibration information forming unit 12 is configured by, for example, a pattern having an asymmetrical shape in the left-right direction in order to configure an index for discriminating front and back.
 つまり、第1の校正情報形成部12と第2の校正情報形成部13とを組み合わせることによって、タグリーダー2は、図9A乃至図9Dに示した四通りの画像パターン11のいずれの状態かを判別することが可能となる。 That is, by combining the first proofreading information formation unit 12 and the second proofreading information formation unit 13, the tag reader 2 determines which state of the four image patterns 11 shown in FIGS. 9A to 9D. It becomes possible to distinguish.
 図11は、本実施形態に係るタグリーダー2の動作の一例を示すフローチャートである。尚、図11中では、図7のステップS30の表裏判別の処理の詳細のみを示している。 FIG. 11 is a flowchart showing an example of the operation of the tag reader 2 according to the present embodiment. In addition, in FIG. 11, only the details of the process of the front / back discrimination of step S30 of FIG. 7 are shown.
 ステップS31において、制御部20は、タグ1の画像データから、例えば、公知のテンプレートマッチングにより、第1の校正用パターン12及び第2の校正用パターン13を抽出する。 In step S31, the control unit 20 extracts the first calibration pattern 12 and the second calibration pattern 13 from the image data of the tag 1 by, for example, known template matching.
 ステップS32において、制御部20は、第1の校正用パターン12の向き(二等辺三角形の頂角の向き)に基づいて、タグ1に対して表面側から電磁波を照射したか、タグ1に対して裏面側から電磁波を照射したかを判別する。そして、制御部20は、タグ1に対して表面側から電磁波を照射したと判断した場合(ステップS32:Yes)、ステップS33に処理を進める。一方、制御部20は、タグ1に対して表面側から電磁波を照射していない、即ち裏面側から電磁波を照射していると判断した場合(ステップS32:No)、ステップS36に処理を進める。 In step S32, the control unit 20 irradiates the tag 1 with an electromagnetic wave from the front side based on the direction of the first calibration pattern 12 (the direction of the apex angle of the isosceles triangle) or the tag 1 It is determined whether the electromagnetic wave has been irradiated from the back side. Then, when the control unit 20 determines that the electromagnetic wave is irradiated to the tag 1 from the front side (step S32: Yes), the process proceeds to step S33. On the other hand, when the control unit 20 determines that the electromagnetic wave is not irradiated to the tag 1 from the front side, that is, the electromagnetic wave is irradiated from the back side (step S32: No), the process proceeds to step S36.
 ステップS33において、制御部20は、第2の校正用パターン13の向き(二等辺三角形の頂角の向き)に基づいて、タグ1が正規位置に対して回転状態とはなっていないかを判別する。制御部20は、タグ1が正規位置に対して回転状態とはなっていないと判断した場合(ステップS33:Yes)、そのままの画像パターン11(図9Aを参照)から識別情報を認識する(ステップS34)。一方、制御部20は、タグ1が正規位置に対して回転状態となっていると判断した場合(ステップS33:No)、画像パターン11(図9Cを参照)を180度回転した画像パターン(図9Aを参照)に転換してから、識別情報を認識する(ステップS35)。 In step S33, the control unit 20 determines whether the tag 1 is not rotated with respect to the normal position based on the orientation of the second calibration pattern 13 (the orientation of the apex angle of the isosceles triangle). Do. When the control unit 20 determines that the tag 1 is not in the rotation state with respect to the normal position (step S33: Yes), it recognizes the identification information from the image pattern 11 (see FIG. 9A) as it is (step S34). On the other hand, when the control unit 20 determines that the tag 1 is rotated with respect to the normal position (step S33: No), an image pattern (see FIG. 9C) is rotated 180 degrees (see FIG. After conversion to 9 A), the identification information is recognized (step S35).
 ステップS36おいて、制御部20は、同様に、第2の校正用パターン13の向き(二等辺三角形の頂角の向き)に基づいて、タグ1が正規位置に対して回転状態とはとなっていないかを判別する。制御部20は、タグ1が正規位置に対して回転状態とはなっていないと判断した場合(ステップS36:Yes)、画像パターン11(図9Bを参照)を線対称パターン(図9Aを参照)に転換してから識別情報を認識する(ステップS37)。一方、制御部20は、タグ1が正規位置に対して回転状態とはとなっていると判断した場合(ステップS36:No)、画像パターン11(図9Dを参照)を180度回転したパターン(図9Aを参照)に転換してから、識別情報を認識する(ステップS38)。 In step S36, the control unit 20 similarly causes the tag 1 to rotate with respect to the normal position based on the orientation of the second calibration pattern 13 (the orientation of the apex angle of the isosceles triangle). Determine if it is When the control unit 20 determines that the tag 1 is not in the rotation state with respect to the normal position (step S36: Yes), the image pattern 11 (see FIG. 9B) is axisymmetric pattern (see FIG. 9A) And then identify the identification information (step S37). On the other hand, when the control unit 20 determines that the tag 1 is in the rotational state with respect to the normal position (step S36: No), a pattern obtained by rotating the image pattern 11 (see FIG. 9D) by 180 degrees After conversion to FIG. 9A), the identification information is recognized (step S38).
[効果] 
 以上のように、本実施形態に係るタグ1によれば、第1の校正情報形成部12と第2の校正情報形成部13とを有している。これによって、タグ1の表裏判別、及び上下判別(回転状態判別)の両方が可能となるため、タグリーダー2に対してより正確な識別情報を認識させることができる。
[effect]
As described above, according to the tag 1 according to the present embodiment, the first calibration information forming unit 12 and the second calibration information forming unit 13 are provided. As a result, both the front / back discrimination and the upper / lower discrimination (rotational state discrimination) of the tag 1 can be made, so that the tag reader 2 can be made to recognize more accurate identification information.
(第2の実施形態の変形例1)
 図12は、第2の実施形態の変形例1に係るタグ1の構成を示す図である。本変形例に係るタグ1は、第2の校正情報形成部13のパターン形状の点で、第2の実施形態とは相違する。
(Modification 1 of the second embodiment)
FIG. 12 is a diagram showing the configuration of the tag 1 according to the first modification of the second embodiment. The tag 1 according to the present modification is different from the second embodiment in the pattern shape of the second calibration information forming unit 13.
 尚、図12Aは、図10Aと同様に、タグ1が正規位置の状態のときに検出される画像パターン11を示し(後述する図13A、図14Aも同様)、図12Bは、図10Bと同様に、タグ1が180度回転した状態のときに検出される画像パターン11を示す(後述する図13B、図14Bも同様)。 12A shows an image pattern 11 detected when the tag 1 is in the normal position as in FIG. 10A (same as in FIG. 13A and FIG. 14A described later), and FIG. 12B is similar to FIG. 10B. The image pattern 11 detected when the tag 1 is rotated 180 degrees is shown (the same applies to FIGS. 13B and 14B described later).
 本変形例に係る第2の校正情報形成部13のパターン形状は、二以上の分離した形状の配列で構成されている。より詳細には、第2の校正情報形成部13のパターンは、左右に延びる二つの線形状が、上下方向に沿って配列されたものとなっている。そして、第2の校正情報形成部13のパターンは、当該二つの線形状の左右方向の長さが異なることにより、上下方向に非対称な形状を構成している。 The pattern shape of the second proofreading information formation unit 13 according to the present modification is configured by an array of two or more separated shapes. More specifically, in the pattern of the second calibration information forming unit 13, two line shapes extending in the left and right direction are arranged along the vertical direction. The pattern of the second calibration information forming unit 13 has a shape that is asymmetric in the vertical direction because the lengths in the left-right direction of the two linear shapes are different.
 第2の校正情報形成部13をかかるパターン形状とした場合であっても、上記実施形態と同様の効果を得ることができる。 Even when the second calibration information forming unit 13 has such a pattern shape, the same effect as that of the above embodiment can be obtained.
(第2の実施形態の変形例2)
 図13は、第2の実施形態の変形例2に係るタグ1の構成を示す図である。本変形例に係るタグ1は、第2の校正情報形成部13のパターン形状の点で、第2の実施形態とは相違する。
(Modification 2 of the second embodiment)
FIG. 13 is a view showing the configuration of a tag 1 according to a second modification of the second embodiment. The tag 1 according to the present modification is different from the second embodiment in the pattern shape of the second calibration information forming unit 13.
 本変形例に係るタグ1においては、第1の校正情報形成部12と第2の校正情報形成部13とが一体的に構成されている。 In the tag 1 according to this modification, the first calibration information forming unit 12 and the second calibration information forming unit 13 are integrally configured.
 より詳細には、本変形例に係る第1の校正情報形成部12及び第2の校正情報形成部13は、左右方向に非対称で、且つ、上下方向に非対称な形状を呈している。より詳細には、第1の校正情報形成部12及び第2の校正情報形成部13は、上下に延びる二つの線形状が、左右方向に沿って配列されたパターンを有し、当該二つの線形状の上下方向の長さが異なることにより、左右方向に非対称な形状を構成する。そして、校正情報形成部12及び第2の校正情報形成部13は、当該二つの線形状の上部に、左右に延びる線形状が形成されることにより、上下方向に非対称な形状を構成する。 More specifically, the first calibration information forming unit 12 and the second calibration information forming unit 13 according to the present modification are asymmetric in the left-right direction and in the vertical direction. More specifically, the first calibration information forming unit 12 and the second calibration information forming unit 13 have a pattern in which two line shapes extending vertically are arranged in the left-right direction, and the two lines Due to the difference in the length of the shape in the vertical direction, the shape is asymmetric in the horizontal direction. The calibration information forming unit 12 and the second calibration information forming unit 13 form a shape which is asymmetric in the vertical direction by forming a linear shape extending in the left and right directions on the upper part of the two linear shapes.
 第2の校正情報形成部13をかかるパターン形状とした場合であっても、上記実施形態と同様の効果を得ることができる。 Even when the second calibration information forming unit 13 has such a pattern shape, the same effect as that of the above embodiment can be obtained.
(第2の実施形態の変形例3)
 図14は、第2の実施形態の変形例3に係るタグ1の構成を示す図である。本変形例に係るタグ1は、第2の校正情報形成部13が基材10自体に構成されている点で、第2の実施形態とは相違する。
(Modification 3 of the second embodiment)
FIG. 14 is a view showing the configuration of the tag 1 according to the third modification of the second embodiment. The tag 1 according to the present modification is different from the second embodiment in that the second calibration information forming unit 13 is formed on the base material 10 itself.
 より詳細には、本変形例に係る基材10は、電磁波の反射強度が基材10の上端側から下端側に向かって段階的に小さくなるように形成され、これによって第2の校正情報形成部13を構成する(図14CのT2-T2’を参照)。 More specifically, the base material 10 according to the present modification is formed so that the reflection intensity of the electromagnetic wave decreases stepwise from the upper end side to the lower end side of the base material 10, whereby the second calibration information is formed. The section 13 is configured (see T2-T2 'in FIG. 14C).
 つまり、本変形例においては、タグリーダー2は、タグ1が正規位置の状態のときには、基材10の電磁波の反射強度を上端側から下端側に向かって段階的に小さくなるように検出し、タグ1が180度回転した状態のときには、基材10の電磁波の反射強度を下端側から上端側に向かって段階的に小さくなるように検出する。 That is, in the present modification, when the tag 1 is in the normal position, the tag reader 2 detects the reflection intensity of the electromagnetic wave of the base 10 so as to gradually decrease from the upper end to the lower end. When the tag 1 is rotated 180 degrees, the reflection intensity of the electromagnetic wave of the base material 10 is detected so as to gradually decrease from the lower end side toward the upper end side.
 このように、第2の校正情報形成部13を基材10自体に構成することで、校正用パターンの領域を別途設ける必要がないため、タグ1の小型化に資する。 As described above, by configuring the second calibration information forming unit 13 on the base material 10 itself, it is not necessary to separately provide a region of the calibration pattern, which contributes to the miniaturization of the tag 1.
(その他の実施形態)
 本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present invention is not limited to the above embodiment, and various modifications can be considered.
 上記実施形態では、タグ1の構成の一例を種々に示した。但し、各実施形態で示した態様を種々に組み合わせたものを用いてもよいのは勿論である。 In the said embodiment, an example of a structure of the tag 1 was variously shown. However, as a matter of course, various combinations of the modes shown in each embodiment may be used.
 又、上記実施形態では、識別情報形成部11の一例として、基材10の所定平面内に形成した電磁波反射率が異なる部材のパターンで構成する態様を示した。しかしながら、識別情報形成部11は、電磁波に対する反射特性が基材10とは異なるパターンであればよく、種々の態様に変形可能である。 Moreover, in the said embodiment, the aspect comprised with the pattern of the member from which the electromagnetic wave reflectance differs formed in the predetermined plane of the base material 10 as an example of the identification information formation part 11 was shown. However, the identification information formation part 11 should just be a pattern in which the reflective characteristic with respect to electromagnetic waves differs from the base material 10, and can be changed into various aspects.
 例えば、識別情報形成部11は、一の識別情報を構成する際に、各部材(例えば、金属部材11aや電磁波吸収体11b)の電磁波反射率の強弱(振幅)に代えて、各部材からの反射波の位相シフトを用いてもよい。反射波の位相シフトは、例えば、金属の膜厚調整等によって付与することが可能である。 For example, when the identification information forming unit 11 constructs one piece of identification information, it replaces the strength (amplitude) of the electromagnetic wave reflectance of each member (for example, the metal member 11a or the electromagnetic wave absorber 11b) from the members. A phase shift of the reflected wave may be used. The phase shift of the reflected wave can be given, for example, by adjusting the film thickness of the metal.
 又、識別情報形成部11は、一の識別情報を構成する際に、各部材(例えば、金属部材11aや電磁波吸収体11b)の周波数特性を用いてもよい。照射される電磁波に対する部材の周波数特性は、例えば、金属部材11aのパターン形状によって共振周波数を付与したり、電磁波吸収体11bの組成比を変化させることによって吸収する周波数を特定周波数とすることが可能である。 The identification information forming unit 11 may use the frequency characteristics of each member (for example, the metal member 11a or the electromagnetic wave absorber 11b) when configuring one piece of identification information. The frequency characteristic of the member for the electromagnetic wave to be irradiated can be, for example, a resonant frequency given by the pattern shape of the metal member 11a or a frequency to be absorbed by changing the composition ratio of the electromagnetic wave absorber 11b as a specific frequency It is.
 又、識別情報形成部11は、一の識別情報を構成する際に、複数の区画の反射特性の組み合わせ(例えば、配置パターンによって形成する形状)を用いてもよい。 Further, the identification information forming unit 11 may use a combination of reflection characteristics of a plurality of sections (for example, a shape formed by an arrangement pattern) when configuring one piece of identification information.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the specific examples of the present invention have been described above in detail, these are merely examples and do not limit the scope of the claims. The art set forth in the claims includes various variations and modifications of the specific examples illustrated above.
 2017年9月29日出願の特願2017-190579の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specification, drawings and abstract included in the Japanese application of Japanese Patent Application No. 2017-190579 filed on Sep. 29, 2017 are all incorporated herein by reference.
 本開示に係るチップレスRFIDタグによれば、表裏いずれからでも識別情報を読み取ることができる。 According to the chipless RFID tag according to the present disclosure, identification information can be read from either front or back.
 U RFIDシステム
 1 タグ
 10 基材
 11 識別情報形成部(画像パターン)
 11a 金属部材
 11b 電磁波吸収材
 12 校正情報形成部(校正用パターン)
 13 第2の校正情報形成部(第2の校正用パターン)
 2 タグリーダー
 20 制御部
 21 電磁波送信部
 22 電磁波受信部
 23 表示部
 24 操作入力部
 25 記憶部
U RFID system 1 tag 10 base material 11 identification information formation unit (image pattern)
11a metal member 11b electromagnetic wave absorbing material 12 calibration information forming unit (pattern for calibration)
13 Second calibration information formation unit (second calibration pattern)
2 tag reader 20 control unit 21 electromagnetic wave transmission unit 22 electromagnetic wave reception unit 23 display unit 24 operation input unit 25 storage unit

Claims (17)

  1.  照射された電磁波に対する反射波によりタグリーダーに識別情報を読み取らせるチップレスRFIDタグであって、
     前記電磁波に対して透過性を有する基材と、
     前記基材の所定面内において、前記電磁波に対する反射特性が前記基材とは異なる領域のパターンを形成し、当該パターンにより前記識別情報を構成する識別情報形成部と、
     前記基材の前記所定面内において、前記電磁波が前記基材の表面側から照射された場合と前記基材の裏面側から照射された場合とで、異なる態様の前記反射波を発生する領域を形成する校正情報形成部と、
     を備える、チップレスRFIDタグ。
    A chipless RFID tag that causes a tag reader to read identification information by a reflected wave to an emitted electromagnetic wave,
    A substrate having permeability to the electromagnetic wave;
    An identification information forming unit that forms a pattern of an area in which the reflection characteristic to the electromagnetic wave is different from that of the base material in a predetermined plane of the base material, and the identification information is configured by the pattern;
    In the predetermined plane of the substrate, a region that generates the reflected wave in a different aspect in the case where the electromagnetic wave is irradiated from the front side of the substrate and the case where the electromagnetic wave is irradiated from the back side of the substrate A calibration information formation unit to be formed;
    , Chipless RFID tag.
  2.  前記校正情報形成部は、前記電磁波に対する反射特性が前記基材とは異なる領域のパターンであって、当該パターンは、前記基材の前記所定面の上下方向及び左右方向を基準として、少なくとも左右方向に非対称な形状を呈する、
     請求項1に記載のチップレスRFIDタグ。
    The calibration information forming unit is a pattern of a region in which the reflection characteristic to the electromagnetic wave is different from that of the base material, and the pattern is at least in the left-right direction with reference to the vertical direction and the left-right direction of the predetermined surface of the base material. It has an asymmetric shape,
    The chipless RFID tag according to claim 1.
  3.  前記非対称な形状は、前記左右方向に沿って配列する二以上の形状で構成される、
     請求項2に記載のチップレスRFIDタグ。
    The asymmetrical shape is configured by two or more shapes arranged along the left-right direction.
    The chipless RFID tag according to claim 2.
  4.  前記校正情報形成部は、前記基材の前記所定面内において、前記電磁波が前記基材の表面側から照射された場合と前記基材の裏面側から照射された場合とで、前記反射波の反射強度が異なる領域である、
     請求項1に記載のチップレスRFIDタグ。
    The calibration information forming unit is configured to generate the reflected wave in the case where the electromagnetic wave is irradiated from the front side of the base and the case where the electromagnetic wave is irradiated from the rear side of the base in the predetermined plane of the base. It is an area where reflection intensity is different,
    The chipless RFID tag according to claim 1.
  5.  前記校正情報形成部の電磁波透過率は、0%よりも大きく100%よりも小さい、
     請求項4に記載のチップレスRFIDタグ。
    The electromagnetic wave transmittance of the calibration information forming unit is larger than 0% and smaller than 100%.
    The chipless RFID tag according to claim 4.
  6.  前記基材の前記所定面が正規位置の状態ときに前記電磁波を照射された場合と、前記基材の前記所定面が正規位置から180度回転した状態のときに前記電磁波を照射された場合と、で、異なる態様の前記反射波を発生する第2の校正情報形成部、を更に備える、
     請求項1乃至5のいずれか一項に記載のチップレスRFIDタグ。
    The case where the electromagnetic wave is irradiated when the predetermined surface of the substrate is in the normal position, and the case where the electromagnetic wave is irradiated when the predetermined surface of the substrate is rotated 180 degrees from the normal position , And a second calibration information forming unit that generates the reflected waves in different modes,
    The chipless RFID tag according to any one of claims 1 to 5.
  7.  前記第2の校正情報形成部は、前記電磁波に対する反射特性が前記基材とは異なる領域のパターンであって、当該パターンは、前記基材の前記所定面の上下方向及び左右方向を基準として、少なくとも前記上下方向に非対称な形状を呈する、
     請求項6に記載のチップレスRFIDタグ。
    The second calibration information forming unit is a pattern of a region in which the reflection characteristic to the electromagnetic wave is different from that of the substrate, and the pattern is based on the vertical direction and the lateral direction of the predetermined surface of the substrate. It has an asymmetrical shape at least in the vertical direction,
    The chipless RFID tag according to claim 6.
  8.  前記第2の校正情報形成部の前記パターンは、前記上下方向に沿って配列する二以上の形状で構成される、
     請求項7に記載のチップレスRFIDタグ。
    The pattern of the second calibration information forming unit is configured in two or more shapes arranged along the vertical direction.
    The chipless RFID tag according to claim 7.
  9.  前記第2の校正情報形成部は、前記基材の前記所定面内の上部側と下部側とで、前記電磁波に対する前記反射波の反射強度が異なる領域である、
     請求項6に記載のチップレスRFIDタグ。
    The second calibration information forming unit is a region in which the reflection intensity of the reflected wave with respect to the electromagnetic wave is different between the upper side and the lower side in the predetermined plane of the base material.
    The chipless RFID tag according to claim 6.
  10.  前記第2の校正情報形成部の電磁波透過率は、0%よりも大きく100%よりも小さい、
     請求項9に記載のチップレスRFIDタグ。
    The electromagnetic wave transmittance of the second calibration information forming unit is larger than 0% and smaller than 100%.
    The chipless RFID tag according to claim 9.
  11.  前記校正情報形成部及び前記第2の校正情報形成部は、前記基材の前記所定面の上下方向及び左右方向を基準として、前記上下方向及び前記左右方向のいずれにおいても非対称な形状により、構成される
     請求項6乃至8のいずれか一項に記載のチップレスRFIDタグ。
    The calibration information forming unit and the second calibration information forming unit are configured with an asymmetrical shape in any of the vertical direction and the horizontal direction based on the vertical direction and the horizontal direction of the predetermined surface of the base material. The chipless RFID tag according to any one of claims 6 to 8.
  12.  前記校正情報形成部及び前記第2の校正情報形成部は、三以上の分離した形状の配列で構成される、
     請求項11に記載のチップレスRFIDタグ。
    The calibration information forming unit and the second calibration information forming unit are configured by an array of three or more separated shapes.
    The chipless RFID tag according to claim 11.
  13.  前記識別情報形成部は、前記基材の前記所定面内に形成された金属部材のパターン、及び、前記基材の前記所定面内に形成された電磁波吸収材のパターンを含んで構成される、
     請求項1乃至12のいずれか一項に記載のチップレスRFIDタグ。
    The identification information forming unit includes a pattern of a metal member formed in the predetermined surface of the base, and a pattern of an electromagnetic wave absorbing material formed in the predetermined surface of the base.
    The chipless RFID tag according to any one of claims 1 to 12.
  14.  前記識別情報形成部の前記パターンは、前記基材の前記所定面内をピクセル状に複数に分割した形状を呈する、
     請求項1乃至13のいずれか一項に記載のチップレスRFIDタグ。
    The pattern of the identification information forming unit has a shape in which the inside of the predetermined plane of the base material is divided into a plurality of pixels.
    The chipless RFID tag according to any one of claims 1 to 13.
  15.  前記電磁波は、10GHz~3THzの周波数帯域内のいずれかの周波数の電磁波である、
     請求項1乃至14のいずれか一項に記載のチップレスRFIDタグ。
    The electromagnetic wave is an electromagnetic wave of any frequency in a frequency band of 10 GHz to 3 THz,
    The chipless RFID tag according to any one of claims 1 to 14.
  16.  請求項1乃至15のいずれか一項に記載のチップレスRFIDタグに適用されるタグリーダーであって、
     前記電磁波を前記校正情報形成部に照射した際の前記反射波の態様に基づいて、前記識別情報形成部の前記パターンの表裏を判別して、前記識別情報形成部の識別情報を識別する
     タグリーダー。
    A tag reader applied to the chipless RFID tag according to any one of claims 1 to 15, comprising:
    A tag reader which discriminates the identification information of the identification information formation unit by discriminating the front and back of the pattern of the identification information formation unit based on the mode of the reflected wave when the electromagnetic wave is irradiated to the calibration information formation unit .
  17.  請求項1乃至15のいずれか一項に記載のチップレスRFIDタグを備えるRFIDシステム。
     
     
    An RFID system comprising the chipless RFID tag according to any one of claims 1 to 15.

PCT/JP2018/032041 2017-09-29 2018-08-30 Chipless rfid tag, tag reader, and rfid system WO2019065061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190579 2017-09-29
JP2017-190579 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065061A1 true WO2019065061A1 (en) 2019-04-04

Family

ID=65900972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032041 WO2019065061A1 (en) 2017-09-29 2018-08-30 Chipless rfid tag, tag reader, and rfid system

Country Status (1)

Country Link
WO (1) WO2019065061A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039662A1 (en) * 2019-08-26 2021-03-04 コニカミノルタ株式会社 Tag
CN112819123A (en) * 2021-03-31 2021-05-18 福州大学 Electromagnetic wave absorption code recognition system and method
WO2022024811A1 (en) * 2020-07-28 2022-02-03 東芝テック株式会社 Wireless tag reading device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291703A (en) * 1993-04-05 1994-10-18 Omron Corp Data carrier, discriminating system and article branching method
JPH10302031A (en) * 1997-04-24 1998-11-13 Sensor Technos Kk Identification system
JP2013214157A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd System and method for identifying positional information of tags

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291703A (en) * 1993-04-05 1994-10-18 Omron Corp Data carrier, discriminating system and article branching method
JPH10302031A (en) * 1997-04-24 1998-11-13 Sensor Technos Kk Identification system
JP2013214157A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd System and method for identifying positional information of tags

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039662A1 (en) * 2019-08-26 2021-03-04 コニカミノルタ株式会社 Tag
WO2022024811A1 (en) * 2020-07-28 2022-02-03 東芝テック株式会社 Wireless tag reading device
CN112819123A (en) * 2021-03-31 2021-05-18 福州大学 Electromagnetic wave absorption code recognition system and method

Similar Documents

Publication Publication Date Title
WO2019065061A1 (en) Chipless rfid tag, tag reader, and rfid system
JP7147771B2 (en) Contactless read tag, manufacturing method of contactless read tag, discrimination device, and identification information reading method
US9639726B2 (en) Code symbol reading system having adjustable object detection
US7121467B2 (en) Indicators of optimum positioning of a data collection device for reading data carriers, such as RFID tags and machine-readable symbols
US7199719B2 (en) RFID tag reader with tag location indicated by visible light beam
US8514079B2 (en) Frequency selective surface aids to the operation of RFID products
US8742930B2 (en) Gate system
US8698656B2 (en) Enhanced range passive wireless controller
US7967206B2 (en) Functional aiming system for an automatic data collection device, such as an image acquisition device
JP2008527464A (en) Identification tag, identification method and identification reader
US10977455B2 (en) Tag reader, RFID system, and method for reading identification information
JP4548195B2 (en) RFID system and reader
EP2846287B1 (en) Encoded information reading terminal with item locate functionality
WO2009015114A1 (en) Controllable rfid device, and method
CA2402677A1 (en) Intelligent package for controlled product distribution
JP2009075998A (en) Wireless ic tag reader
JP7138211B2 (en) reader
US7535424B2 (en) Passive wireless keyboard powered by key activation
JP2010537553A (en) RFID antenna for use adjacent to a conductive element
JP2010039896A (en) Rfid tag and rfid system
JP5071064B2 (en) Portable reader / writer
JP2007199993A (en) Electric wave ic tag system and electric wave ic tag
JP4473146B2 (en) Contactless tag system
JP6458690B2 (en) RFID reader
JPH05128289A (en) Millimeter wave information reading system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP