WO2019064879A1 - Axial fan - Google Patents

Axial fan Download PDF

Info

Publication number
WO2019064879A1
WO2019064879A1 PCT/JP2018/028349 JP2018028349W WO2019064879A1 WO 2019064879 A1 WO2019064879 A1 WO 2019064879A1 JP 2018028349 W JP2018028349 W JP 2018028349W WO 2019064879 A1 WO2019064879 A1 WO 2019064879A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
frame
hole
impeller
axial flow
Prior art date
Application number
PCT/JP2018/028349
Other languages
French (fr)
Japanese (ja)
Inventor
雅俊 大林
正 岡部
悠輔 齋藤
中田 佑希
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2019064879A1 publication Critical patent/WO2019064879A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present invention relates to axial fans.
  • An object of embodiments of the present invention is to provide an axial flow fan having improved durability in consideration of thermal expansion.
  • An axial flow fan has a shaft which is a rotating shaft, an air dynamic pressure bearing which suppresses fluctuation in the radial direction of the shaft by air dynamic pressure, and a first hole through which the shaft passes And a metal frame of a shape in which one end of a cylindrical shape is closed by a circular surface provided on the frame, and the frame is covered at the center of the circular surface so as to accommodate the frame inside.
  • a resin impeller is provided which is centered between the inside of the second hole and the shaft.
  • FIG. 1 is a perspective view showing a configuration of an axial flow fan according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the axial flow fan according to the embodiment.
  • FIG. 3 is a perspective view showing the configuration of the motor main body according to the embodiment.
  • FIG. 4 is a perspective view showing the configuration from the lower side of the impeller according to the embodiment.
  • FIG. 5 is a perspective view showing a state in which the impeller according to the embodiment is attached to the motor main body.
  • FIG. 6 is a perspective view showing a configuration in which the outer frame according to the embodiment is vertically cut.
  • FIG. 1 is a perspective view showing the configuration of an axial fan 10 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the axial flow fan 10 according to the embodiment.
  • the axial fan 10 is used, for example, as a cooling fan for cooling the server.
  • the axial fan 10 includes a motor body 1, an impeller 2 and an outer frame 3.
  • FIG. 3 is a perspective view showing the configuration of the motor main body 1 according to the embodiment.
  • the motor body 1 is divided into a rotating body that rotates and a stationary portion that is stationary with respect to the rotation of the rotating body.
  • the rotating body of the motor main body 1 includes a shaft 11, a shaft holder 12, a frame 13, and a magnet 14.
  • the shaft holder 12 and the frame 13 form a rotor holder.
  • the stationary portion of the motor body 1 is configured of a substrate 15, a plurality of coils 16, a core 17, and a plurality of support members 18.
  • the shaft 11 is a rotating shaft of a rotating body, and has a cylindrical shape.
  • the shaft 11 is made of metal such as iron.
  • the shaft holder 12 is ring-shaped, the front surface is flat, and the back surface is shaped to fit in the hole of the frame 13.
  • the shaft holder 12 is joined in a state in which the upper portion of the shaft 11 is fitted in the center hole of the surface.
  • the bottom portion of the shaft holder 12 is joined to the top of the frame 13.
  • the frame 13 has a shape in which a hole from which the shaft 11 protrudes is provided at the center on a circular surface (upper surface) that closes one end of the cylindrical shape.
  • the hole in the upper surface of the frame 13 is closed in such a manner that the gap formed between the shaft 11 and the frame 13 is covered by the shaft holder 12 when the shaft 11 passes through.
  • the frame 13 is made of metal such as iron.
  • the frame 13 is formed by pressing.
  • the magnet 14 is a permanent magnet for providing a function as a rotor of the motor body 1.
  • the magnet 14 has a cylindrical shape and is attached to the inside of the frame 13.
  • the substrate 15 is in the shape of a disk having a hole at its center through which the shaft 11 passes.
  • a control circuit for driving the motor body 1 is mounted on the substrate 15.
  • the substrate 15 is provided with a sensor 151 for detecting the rotational position of the rotor.
  • the substrate 15 may be used for a sensorless motor in which the sensor 151 is not provided. Further, the substrate 15 may be attached to the outer frame 3 instead of the motor body 1. Such a configuration is used, for example, for a sensorless motor in which the sensor 151 is not provided.
  • the coil 16 and the core 17 are provided inside the frame 13.
  • the coils 16 are wound around the core 17 and circumferentially equally spaced around the shaft 11.
  • the coil 16 and the core 17 have a function as a stator of the motor body 1.
  • the core 17 may be composed of any number of members.
  • the core 17 may be formed by stacking thin plates in the rotational axis direction to suppress eddy current loss.
  • the plurality of support members 18 include a member for supporting the rotating body to rotate with respect to the stationary portion of the motor body 1 and a member for supporting the stationary portion of the motor body 1 to be fixed to the outer frame 3 .
  • the support member 18 is a member for disposing the coil 16 and the core 17 or a rod-like member which is fixed to the outer frame 3 by penetrating the small hole provided in the substrate 15.
  • FIG. 4 is a perspective view showing the configuration from the lower side of the impeller 2 according to the embodiment.
  • FIG. 5 is a perspective view showing a state in which the impeller 2 according to the embodiment is attached to the motor body 1.
  • the impeller 2 is made of resin such as plastic.
  • the impeller 2 has a shape in which a plurality of blades 22 are provided on an impeller main body 21 having a shape in which one end of a cylindrical shape is closed.
  • the impeller main body 21 has a shape in which a hole in which the outer peripheral surface of the shaft holder 12 is fitted is provided at the center on a circular surface (upper surface).
  • the periphery of the hole on the upper surface of the impeller body 21 has a sufficient thickness to prevent cracks due to thermal expansion.
  • the inner shape of the impeller body 21 is such that the frame 13 fits from the top. Inside the impeller main body 21 may be provided a recess for applying an adhesive for bonding to the frame 13.
  • the impeller 2 is attached to the frame 13 so that the outer shape of the shaft holder 12 fits in the hole on the upper surface.
  • the motor main body 1 is in a centered state.
  • the inner peripheral surface of the impeller main body 21 and the outer peripheral surface of the frame 13 are bonded with an adhesive.
  • FIG. 6 is a perspective view showing a configuration in which the outer frame 3 according to the embodiment is vertically cut.
  • the outer frame 3 includes a cup portion 31, a plurality of stationary blades (ribs) 32, an outer portion 33, a bearing sleeve 34, and a magnetic bearing 35.
  • the cup portion 31 is disposed at the center of the bottom portion of the outer frame 3.
  • the cup portion 31 is a place where the motor body 1 is mounted.
  • the motor body 1 is mounted on the bottom of the cup portion 31 such that the impeller 2 is on top.
  • the substrate 15 is arranged to be fixed to the inside of the cup portion 31.
  • the outer shape of the cup portion 31 is one size larger than the outer shape of the substrate 15. Therefore, when the motor body 1 is mounted, there is a slight gap between the vertically extending outer edge on the outer periphery of the cup portion 31 and the substrate 15.
  • the substrate 15 is attached to the outer frame 3, the substrate 15 is bonded to the outer edge of the cup portion 31, and a slight gap is formed on the inner periphery of the hole at a position where the shaft 11 penetrates the hole at the center.
  • a slight gap is formed on the inner periphery of the hole at a position where the shaft 11 penetrates the hole at the center.
  • the stationary wings 32 are provided at equal intervals around the cup portion 31 so as to connect the outer peripheral surface of the cup portion 31 and the inner peripheral surface of the outer portion 33.
  • the stationary wing 32 is shaped in such a way that the wind passes between the two adjacent stationary wings 32 in the direction of the rotation axis according to the rotation of the rotating body.
  • the stationary wing 32 is formed in a thin shape with a flexible material such as a resin to secure the flow characteristics of air.
  • the outer portion 33 is a portion covering the outermost side of the axial flow fan 10.
  • the outer shape portion 33 has a shape in which a square flange portion provided with a hole for attaching the axial flow fan 10 to a mounting location is attached to both ends of a cylindrical shape portion in which the motor body 1 is accommodated.
  • a bearing sleeve 34 is provided at the center of the cup portion 31.
  • the bearing sleeve 34 is cylindrical in shape.
  • the motor body 1 is mounted such that the shaft 11 is inserted into the bearing sleeve 34.
  • the bearing sleeve 34 is an air dynamic pressure bearing for suppressing the fluctuation of the shaft 11 in the radial direction.
  • the air dynamic pressure around the shaft 11 keeps the gap between the shaft 11 and the bearing sleeve 34 constant, whereby the fluctuation of the shaft 11 is suppressed. Therefore, when the shaft 11 rotates, the shaft 11 and the bearing sleeve 34 are kept in non-contact with each other.
  • the magnetic bearing 35 is provided at a portion located on the bottom surface of the bearing sleeve 34.
  • the magnetic bearing 35 is mainly composed of permanent magnets.
  • the magnetic bearing 35 suppresses the fluctuation of the shaft 11 in the thrust direction by utilizing the attractive force or the repulsive force due to the magnetism of the permanent magnets. Therefore, the shaft 11 and the magnetic bearing 35 are kept in non-contact with each other.
  • the magnetic bearing 35 not only the magnetic bearing 35 but any thing may be used.
  • the magnetic bearing 35 as long as it is a non-contact type bearing in which the shaft 11 is kept non-contacting, it has good durability and is suitable for high-speed rotation, it may be a contact type.
  • a portion where the outer peripheral surface of the upper portion of the shaft holder 12 contacts the inside of the hole of the upper surface of the impeller 2 is the centering point SN of the axial flow fan 10.
  • centering adjustment is performed so that the center of the rotation axis of the shaft 11 is at a desired position at the centering position SN.
  • each component is thermally expanded by the heat generated by the operation of the axial flow fan 10.
  • the influence of the thermal expansion is smaller at the centering point SN inside the hole of the upper surface whose diameter is smaller than the inner peripheral surface of the impeller 2.
  • the outer peripheral surface of the shaft holder 12 as the centering location SN and the impeller 2
  • the gap between the top of the hole and the inside of the hole may be 0-50 ⁇ m.
  • the centering adjustment at the centering position SN it is not necessary to center at the contact portion between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13, so the gap at this portion is the impeller 2 and the frame 13. In consideration of the difference in the linear expansion coefficient of the above, it can be made wide enough not to cause a crack. Further, by setting the centering position SN inside the hole on the upper surface having a diameter smaller than the inner peripheral surface of the impeller 2, the width of the gap that needs to be secured in consideration of thermal expansion may be narrow. Accuracy can be increased.
  • the shaft holder 12 is provided around the top of the shaft 11.
  • the material of the shaft holder 12 is brass which has a relatively high specific gravity and is easy to cut. Therefore, by cutting the shaft holder 12, mass imbalance correction of the negative balance method is performed.
  • mass imbalance correction of the negative balance method is performed.
  • the mass balance of the rotor of the axial fan 10 is measured. Based on this measurement result, the location and depth at which the shaft holder 12 is drilled are determined. According to this determination result, the shaft holder 12 is bored with a drill.
  • the location and depth of the hole can be determined mechanically by using a conventionally known method. Therefore, from the measurement of the mass balance, the location and depth of the hole may be determined, and the process of performing the mass imbalance correction process on the shaft holder 12 may be automated.
  • the correction method of mass unbalance may be performed not only the above-mentioned method but how.
  • mass imbalance correction of the positive balance method may be performed.
  • a groove may be provided around the upper portion of the shaft 11, and an adhesive with a heavy specific gravity may be applied to the groove to perform mass imbalance correction.
  • the impeller is centered by centering location SN where the outer peripheral surface of the shaft holder 12 in which the shaft 11 is fitted in the center hole and the inside of the hole on the upper surface of the impeller 2 contact.
  • centering location SN where the outer peripheral surface of the shaft holder 12 in which the shaft 11 is fitted in the center hole and the inside of the hole on the upper surface of the impeller 2 contact.
  • the diameter of the centering portion SN of the impeller 2 is smaller than the diameter of the inner peripheral surface of the impeller 2, the magnitude of the change due to the thermal expansion also becomes smaller. Therefore, by performing centering at the centering position SN, the width of the gap in consideration of thermal expansion can be reduced as compared to the case where centering is performed on the inner peripheral surface of the impeller 2, so the centering accuracy is high. can do.
  • the hole in the upper surface of the frame 13 is burred so as to fit the shaft 11 and vertically raised around the hole.
  • the hole on the upper surface of the impeller 2 is made smaller so as to fit on the outer peripheral surface of the burred hole of the frame 13.
  • the contact point between the inside of the hole on the upper surface of the impeller 2 and the outer peripheral surface of the burred hole of the frame 13 is taken as a centering point SN.
  • the gap between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13 can be made wider.
  • centering can be performed at a portion having a smaller diameter, so that centering accuracy can be increased.
  • the present invention is not limited to the above-described embodiment, and the constituent elements may be deleted, added or changed. Further, by combining or exchanging the constituent elements in a plurality of embodiments, a new embodiment may be made. Even if such an embodiment differs directly from the above-described embodiment, the description of the same principle as the present invention is omitted as it is described as the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An axial fan (10) comprises: a shaft (11), which is a rotating shaft; an air dynamic pressure bearing (34) that through air dynamic pressure minimizes radial shifting of the shaft (11); a metal frame (13) having a circular surface in the middle of which is provided a first hole through which the shaft (11) passes, and having a cylindrical shape closed at one end; and a resinous impeller (2) which covers the frame such that the frame (13) is accommodated in the interior, and which is centered between the shaft (11) and the inner side of a second hole provided to the center of the circular surface.

Description

軸流ファンAxial fan
 本発明は、軸流ファンに関する。 The present invention relates to axial fans.
 一般に、様々な軸流ファンが知られている。例えば、アウターロータ型の送風ファンにおいて、機器取り付け部の固有振動数を異ならせる調整部材を設け、共振が発生するのを抑制することが開示されている(特許文献1参照)。 In general, various axial fans are known. For example, in an outer rotor type blower fan, it is disclosed that an adjustment member which makes the natural frequency of the device mounting portion be different is provided to suppress the occurrence of resonance (see Patent Document 1).
 しかしながら、円筒形状の金属製のロータホルダーに、樹脂製のインペラーを被せた形状の軸流ファンの場合、インペラーにクラックが発生する場合がある。これは、軸流ファンが稼働するとロータホルダーが発熱し、金属と樹脂の線膨張係数が異なることから生じるものである。特に、このようなファンの場合、ロータホルダーの外周を形成する側面とインペラーとの接触部分で芯出しを行うため、この接触部分に余分な隙間を持たせることはできず、このようなクラックが生じ易くなる。 However, in the case of an axial flow fan in which a resin-made impeller is covered on a cylindrical metal rotor holder, a crack may occur in the impeller. This is because the rotor holder generates heat when the axial flow fan operates, and the linear expansion coefficients of metal and resin are different. In particular, in the case of such a fan, since centering is performed at the contact portion between the side surface forming the outer periphery of the rotor holder and the impeller, no extra gap can be provided at this contact portion, and such a crack It becomes easy to occur.
特許第6183995号公報Patent No. 6183995
 本発明の実施形態の目的は、熱膨張を考慮して耐久性を向上させた軸流ファンを提供することにある。 An object of embodiments of the present invention is to provide an axial flow fan having improved durability in consideration of thermal expansion.
 本発明の観点に従った軸流ファンは、回転軸であるシャフトと、空気動圧により前記シャフトのラジアル方向の変動を抑制する空気動圧軸受と、前記シャフトが貫通する第1の穴が中央に設けられた円形状の面で円筒形状の一端が塞がれた形状の金属製のフレームと、前記フレームを内部に収納するように前記フレームに被さり、円形状の面の中央に設けられた第2の穴の内側と前記シャフトとの間で芯出しされた樹脂製のインペラーとを備える。 An axial flow fan according to an aspect of the present invention has a shaft which is a rotating shaft, an air dynamic pressure bearing which suppresses fluctuation in the radial direction of the shaft by air dynamic pressure, and a first hole through which the shaft passes And a metal frame of a shape in which one end of a cylindrical shape is closed by a circular surface provided on the frame, and the frame is covered at the center of the circular surface so as to accommodate the frame inside. A resin impeller is provided which is centered between the inside of the second hole and the shaft.
図1は、本発明の実施形態に係る軸流ファンの構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of an axial flow fan according to an embodiment of the present invention. 図2は、実施形態に係る軸流ファンの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the axial flow fan according to the embodiment. 図3は、実施形態に係るモータ本体の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the motor main body according to the embodiment. 図4は、実施形態に係るインペラーの下側からの構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration from the lower side of the impeller according to the embodiment. 図5は、実施形態に係るインペラーがモータ本体に取り付けられた状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which the impeller according to the embodiment is attached to the motor main body. 図6は、実施形態に係る外枠を垂直に切断した構成を示す斜視図である。FIG. 6 is a perspective view showing a configuration in which the outer frame according to the embodiment is vertically cut.
(実施形態)
 図1は、本発明の実施形態に係る軸流ファン10の構成を示す斜視図である。図2は、実施形態に係る軸流ファン10の構成を示す断面図である。
(Embodiment)
FIG. 1 is a perspective view showing the configuration of an axial fan 10 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the axial flow fan 10 according to the embodiment.
 軸流ファン10は、例えば、サーバを冷却するための冷却ファンとして用いられる。軸流ファン10は、モータ本体1、インペラー2、及び、外枠3を備える。 The axial fan 10 is used, for example, as a cooling fan for cooling the server. The axial fan 10 includes a motor body 1, an impeller 2 and an outer frame 3.
 図3は、実施形態に係るモータ本体1の構成を示す斜視図である。 FIG. 3 is a perspective view showing the configuration of the motor main body 1 according to the embodiment.
 モータ本体1は、回転する回転体と、回転体の回転に対して静止している静止部分とに分けられる。 The motor body 1 is divided into a rotating body that rotates and a stationary portion that is stationary with respect to the rotation of the rotating body.
 モータ本体1の回転体は、シャフト11、シャフトホルダ12、フレーム13、及び、マグネット14で構成される。シャフトホルダ12及びフレーム13は、ロータホルダーを形成する。 The rotating body of the motor main body 1 includes a shaft 11, a shaft holder 12, a frame 13, and a magnet 14. The shaft holder 12 and the frame 13 form a rotor holder.
 モータ本体1の静止部分は、基板15、複数のコイル16、コア17、及び、複数の支持部材18で構成される。 The stationary portion of the motor body 1 is configured of a substrate 15, a plurality of coils 16, a core 17, and a plurality of support members 18.
 シャフト11は、回転体の回転軸であり、円柱形状をしている。シャフト11は、鉄などの金属製である。 The shaft 11 is a rotating shaft of a rotating body, and has a cylindrical shape. The shaft 11 is made of metal such as iron.
 シャフトホルダ12は、リング形状で、表面は平面であり、裏面はフレーム13の穴に嵌合するような形状である。シャフトホルダ12は、表面の中央の穴にシャフト11の上部を嵌合した状態で接合される。シャフトホルダ12の底面部分は、フレーム13の上部に接合される。シャフトホルダ12の素材は、フレーム13の素材の金属と線膨張係数の近いものを選ぶことで、熱膨張によるシャフトホルダ12とフレーム13のズレが抑制される。具体的には、フレーム13が鉄製である場合、シャフトホルダ12は、真鍮製又は鋼製などが望ましい。真鍮は、鋼よりも錆び難いため、シャフトホルダ12の素材に適している。 The shaft holder 12 is ring-shaped, the front surface is flat, and the back surface is shaped to fit in the hole of the frame 13. The shaft holder 12 is joined in a state in which the upper portion of the shaft 11 is fitted in the center hole of the surface. The bottom portion of the shaft holder 12 is joined to the top of the frame 13. By selecting the material of the shaft holder 12 that is close to the metal of the material of the frame 13 and the linear expansion coefficient thereof, the shift between the shaft holder 12 and the frame 13 due to thermal expansion is suppressed. Specifically, when the frame 13 is made of iron, the shaft holder 12 is preferably made of brass or steel. Brass is more suitable for the shaft holder 12 because it is less likely to rust than steel.
 フレーム13は、円筒形状の一端を塞ぐ円形状の表面(上面)にシャフト11が突き出す穴が中央に設けられた形状である。フレーム13の上面の穴は、シャフト11が貫通した状態で、シャフト11とフレーム13との間にできる隙間をシャフトホルダ12により覆うように塞がれた状態になる。フレーム13は、鉄などの金属製である。フレーム13は、プレス加工されることにより成形される。 The frame 13 has a shape in which a hole from which the shaft 11 protrudes is provided at the center on a circular surface (upper surface) that closes one end of the cylindrical shape. The hole in the upper surface of the frame 13 is closed in such a manner that the gap formed between the shaft 11 and the frame 13 is covered by the shaft holder 12 when the shaft 11 passes through. The frame 13 is made of metal such as iron. The frame 13 is formed by pressing.
 マグネット14は、モータ本体1のロータとしての機能を持たすための永久磁石である。マグネット14は、円筒形状をしており、フレーム13の内側に取り付けられる。 The magnet 14 is a permanent magnet for providing a function as a rotor of the motor body 1. The magnet 14 has a cylindrical shape and is attached to the inside of the frame 13.
 基板15は、シャフト11が貫通する穴が中央に設けられた円板形状をしている。基板15は、モータ本体1を駆動するための制御回路が実装される。基板15には、ロータの回転位置を検出するセンサ151が設けられる。なお、基板15は、センサ151が設けられていないセンサレスモータに用いるものでもよい。また、基板15は、モータ本体1ではなく、外枠3に取り付けられていてもよい。このような構成は、例えば、センサ151が設けられていないセンサレスモータに用いられる。 The substrate 15 is in the shape of a disk having a hole at its center through which the shaft 11 passes. A control circuit for driving the motor body 1 is mounted on the substrate 15. The substrate 15 is provided with a sensor 151 for detecting the rotational position of the rotor. The substrate 15 may be used for a sensorless motor in which the sensor 151 is not provided. Further, the substrate 15 may be attached to the outer frame 3 instead of the motor body 1. Such a configuration is used, for example, for a sensorless motor in which the sensor 151 is not provided.
 コイル16及びコア17は、フレーム13の内部に設けられる。各コイル16は、コア17に巻かれて、シャフト11の周りを円周上に等間隔に配置される。コイル16及びコア17は、モータ本体1のステータとしての機能を持つ。なお、コア17は、いくつの部材で構成されてもよい。例えば、コア17は、薄い板を回転軸方向に積み重ねて形成し、渦電流損失を抑制する構造でもよい。 The coil 16 and the core 17 are provided inside the frame 13. The coils 16 are wound around the core 17 and circumferentially equally spaced around the shaft 11. The coil 16 and the core 17 have a function as a stator of the motor body 1. The core 17 may be composed of any number of members. For example, the core 17 may be formed by stacking thin plates in the rotational axis direction to suppress eddy current loss.
 複数の支持部材18は、モータ本体1の静止部分に対して回転体が回転するように支持する部材、及び、モータ本体1の静止部分が外枠3に固定されるように支持する部材を含む。例えば、支持部材18は、コイル16及びコア17を配置するための部材、又は、基板15に設けられた小さい穴に貫通させて、静止部分を外枠3に固定する棒状の部材などである。 The plurality of support members 18 include a member for supporting the rotating body to rotate with respect to the stationary portion of the motor body 1 and a member for supporting the stationary portion of the motor body 1 to be fixed to the outer frame 3 . For example, the support member 18 is a member for disposing the coil 16 and the core 17 or a rod-like member which is fixed to the outer frame 3 by penetrating the small hole provided in the substrate 15.
 図4は、実施形態に係るインペラー2の下側からの構成を示す斜視図である。図5は、実施形態に係るインペラー2がモータ本体1に取り付けられた状態を示す斜視図である。 FIG. 4 is a perspective view showing the configuration from the lower side of the impeller 2 according to the embodiment. FIG. 5 is a perspective view showing a state in which the impeller 2 according to the embodiment is attached to the motor body 1.
 インペラー2は、プラスチックなどの樹脂製である。インペラー2は、円筒形状の一端が塞がれた形状のインペラー本体21に複数の羽根22が設けられた形状である。インペラー本体21は、円形状の表面(上面)にシャフトホルダ12の外周面が嵌合する穴が中央に設けられた形状である。インペラー本体21の上面の穴の周りは、熱膨張によるクラックを防止するために十分な厚さを持たせてある。インペラー本体21の内側の形状は、フレーム13が上部から嵌るような形状である。インペラー本体21の内側には、フレーム13と接着するための接着剤を塗布する窪みが設けられていてもよい。羽根22は、回転すると回転軸方向に風を流す形状に成形される。インペラー2は、フレーム13に被せるようにして、上面の穴にシャフトホルダ12の外形が嵌るように取り付けられる。インペラー2の上面の穴に、シャフトホルダ12の外形を嵌めることで、モータ本体1の芯出しがされた状態になる。インペラー本体21の内周面とフレーム13の外周面は、接着剤で接着される。 The impeller 2 is made of resin such as plastic. The impeller 2 has a shape in which a plurality of blades 22 are provided on an impeller main body 21 having a shape in which one end of a cylindrical shape is closed. The impeller main body 21 has a shape in which a hole in which the outer peripheral surface of the shaft holder 12 is fitted is provided at the center on a circular surface (upper surface). The periphery of the hole on the upper surface of the impeller body 21 has a sufficient thickness to prevent cracks due to thermal expansion. The inner shape of the impeller body 21 is such that the frame 13 fits from the top. Inside the impeller main body 21 may be provided a recess for applying an adhesive for bonding to the frame 13. When the blades 22 rotate, they are shaped to flow air in the direction of the rotation axis. The impeller 2 is attached to the frame 13 so that the outer shape of the shaft holder 12 fits in the hole on the upper surface. By fitting the outer shape of the shaft holder 12 in the hole on the upper surface of the impeller 2, the motor main body 1 is in a centered state. The inner peripheral surface of the impeller main body 21 and the outer peripheral surface of the frame 13 are bonded with an adhesive.
 図6は、実施形態に係る外枠3を垂直に切断した構成を示す斜視図である。 FIG. 6 is a perspective view showing a configuration in which the outer frame 3 according to the embodiment is vertically cut.
 外枠3は、カップ部分31、複数の静止翼(リブ)32、外形部分33、軸受スリーブ34、及び、磁気軸受35を備える。 The outer frame 3 includes a cup portion 31, a plurality of stationary blades (ribs) 32, an outer portion 33, a bearing sleeve 34, and a magnetic bearing 35.
 カップ部分31は、外枠3の底面部分の中央に配置される。カップ部分31は、モータ本体1が実装される箇所である。モータ本体1は、インペラー2が上になるように、カップ部分31の底面に設置される。基板15は、カップ部分31の内部に固定されるように配置される。カップ部分31の外形は、基板15の外形よりも一回り大きい。したがって、モータ本体1が実装された状態では、カップ部分31の外周にある垂直方向に延びた外縁と基板15との間には少し隙間がある。なお、基板15が外枠3に取り付けられる場合、基板15は、カップ部分31の外縁と接着され、中央にある穴にシャフト11が貫通される位置で、この穴の内周に少し隙間ができるように設けられる。 The cup portion 31 is disposed at the center of the bottom portion of the outer frame 3. The cup portion 31 is a place where the motor body 1 is mounted. The motor body 1 is mounted on the bottom of the cup portion 31 such that the impeller 2 is on top. The substrate 15 is arranged to be fixed to the inside of the cup portion 31. The outer shape of the cup portion 31 is one size larger than the outer shape of the substrate 15. Therefore, when the motor body 1 is mounted, there is a slight gap between the vertically extending outer edge on the outer periphery of the cup portion 31 and the substrate 15. When the substrate 15 is attached to the outer frame 3, the substrate 15 is bonded to the outer edge of the cup portion 31, and a slight gap is formed on the inner periphery of the hole at a position where the shaft 11 penetrates the hole at the center. Provided as.
 静止翼32は、カップ部分31の外周面と外形部分33の内周面とを接続するように、カップ部分31の周りに等間隔で設けられる。静止翼32は、回転体の回転に応じて、隣接する2つの静止翼32の間を回転軸方向に風が通り抜けるような形状に成形される。静止翼32は、空気の流動特性を確保するために、樹脂などの柔軟性のある素材で、薄い形状に成形される。 The stationary wings 32 are provided at equal intervals around the cup portion 31 so as to connect the outer peripheral surface of the cup portion 31 and the inner peripheral surface of the outer portion 33. The stationary wing 32 is shaped in such a way that the wind passes between the two adjacent stationary wings 32 in the direction of the rotation axis according to the rotation of the rotating body. The stationary wing 32 is formed in a thin shape with a flexible material such as a resin to secure the flow characteristics of air.
 外形部分33は、軸流ファン10の最も外側を覆う部分である。外形部分33は、モータ本体1が収納される円筒形状部分の両端に、軸流ファン10を実装箇所に取り付けるための穴が設けられた四角形状のフランジ部分が取り付けられた形状である。 The outer portion 33 is a portion covering the outermost side of the axial flow fan 10. The outer shape portion 33 has a shape in which a square flange portion provided with a hole for attaching the axial flow fan 10 to a mounting location is attached to both ends of a cylindrical shape portion in which the motor body 1 is accommodated.
 軸受スリーブ34は、カップ部分31の中央に設けられる。軸受スリーブ34は、円筒形状である。モータ本体1は、軸受スリーブ34にシャフト11が挿入されるように実装される。軸受スリーブ34は、シャフト11がラジアル方向に変動するのを抑制するための空気動圧軸受である。シャフト11が回転すると、シャフト11の周りの空気動圧により、シャフト11と軸受スリーブ34との隙間が一定に保たれることで、シャフト11の変動が抑制される。したがって、シャフト11の回転時では、シャフト11と軸受スリーブ34は、非接触に保たれる。 A bearing sleeve 34 is provided at the center of the cup portion 31. The bearing sleeve 34 is cylindrical in shape. The motor body 1 is mounted such that the shaft 11 is inserted into the bearing sleeve 34. The bearing sleeve 34 is an air dynamic pressure bearing for suppressing the fluctuation of the shaft 11 in the radial direction. When the shaft 11 rotates, the air dynamic pressure around the shaft 11 keeps the gap between the shaft 11 and the bearing sleeve 34 constant, whereby the fluctuation of the shaft 11 is suppressed. Therefore, when the shaft 11 rotates, the shaft 11 and the bearing sleeve 34 are kept in non-contact with each other.
 磁気軸受35は、軸受スリーブ34の底面に位置する部分に設けられる。磁気軸受35は、主に永久磁石で構成される。磁気軸受35は、永久磁石同士の磁気による引力又は反発力などを利用して、シャフト11がスラスト方向に変動するのを抑制する。したがって、シャフト11と磁気軸受35は、非接触に保たれる。なお、シャフト11がスラスト方向に変動するのを抑制する軸受ならば、磁気軸受35に限らず、どのようなものでもよい。磁気軸受35のように、シャフト11が非接触に保たれる非接触型の軸受であれば、耐久性が良く、高速回転に適しているが、接触型のものでもよい。 The magnetic bearing 35 is provided at a portion located on the bottom surface of the bearing sleeve 34. The magnetic bearing 35 is mainly composed of permanent magnets. The magnetic bearing 35 suppresses the fluctuation of the shaft 11 in the thrust direction by utilizing the attractive force or the repulsive force due to the magnetism of the permanent magnets. Therefore, the shaft 11 and the magnetic bearing 35 are kept in non-contact with each other. In addition, as long as it is a bearing which suppresses that the shaft 11 is fluctuate | varied to a thrust direction, not only the magnetic bearing 35 but any thing may be used. As in the case of the magnetic bearing 35, as long as it is a non-contact type bearing in which the shaft 11 is kept non-contacting, it has good durability and is suitable for high-speed rotation, it may be a contact type.
 次に、軸流ファン10の芯出しについて説明する。 Next, centering of the axial fan 10 will be described.
 図1及び図2に示すように、シャフトホルダ12の上部の外周面とインペラー2の上面の穴の内側とが接触する部分が軸流ファン10の芯出し箇所SNである。軸流ファン10の製造時に、芯出し箇所SNで、シャフト11の回転軸の中心が所望の位置になるように芯出し調整が行われる。 As shown in FIGS. 1 and 2, a portion where the outer peripheral surface of the upper portion of the shaft holder 12 contacts the inside of the hole of the upper surface of the impeller 2 is the centering point SN of the axial flow fan 10. At the time of manufacture of the axial fan 10, centering adjustment is performed so that the center of the rotation axis of the shaft 11 is at a desired position at the centering position SN.
 軸流ファン10の製造は、常温で行われるため、軸流ファン10の稼働による発熱により、各部品が熱膨張することを考慮しなければならない。この熱膨張の影響は、インペラー2の内周面よりも径が小さい上面の穴の内側にある芯出し箇所SNの方が少ない。例えば、熱膨張を考慮して、インペラー2の内周面とフレーム13の外周面との間に、50~150μmの間隙が必要だとすると、芯出し箇所SNであるシャフトホルダ12の外周面とインペラー2の上面の穴の内側との間隙は、0~50μmでよい。 Since the manufacture of the axial flow fan 10 is performed at normal temperature, it is necessary to take into consideration that each component is thermally expanded by the heat generated by the operation of the axial flow fan 10. The influence of the thermal expansion is smaller at the centering point SN inside the hole of the upper surface whose diameter is smaller than the inner peripheral surface of the impeller 2. For example, if a gap of 50 to 150 μm is required between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13 in consideration of thermal expansion, the outer peripheral surface of the shaft holder 12 as the centering location SN and the impeller 2 The gap between the top of the hole and the inside of the hole may be 0-50 μm.
 芯出し箇所SNで芯出し調整を行うことで、インペラー2の内周面とフレーム13の外周面との接触箇所で芯出しをする必要がないため、この箇所の間隙をインペラー2とフレーム13との線膨張係数の違いを考慮して、クラックが生じないように十分に広くすることができる。また、芯出し箇所SNをインペラー2の内周面よりも径が小さい上面の穴の内側とすることで、熱膨張を考慮して確保する必要のある間隙の幅は狭くてよいため、芯出しの精度を高くすることができる。 By performing the centering adjustment at the centering position SN, it is not necessary to center at the contact portion between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13, so the gap at this portion is the impeller 2 and the frame 13. In consideration of the difference in the linear expansion coefficient of the above, it can be made wide enough not to cause a crack. Further, by setting the centering position SN inside the hole on the upper surface having a diameter smaller than the inner peripheral surface of the impeller 2, the width of the gap that needs to be secured in consideration of thermal expansion may be narrow. Accuracy can be increased.
 次に、軸流ファン10の回転体の質量アンバランスの修正方法の一例について説明する。 Next, an example of a method of correcting mass imbalance of the rotor of the axial fan 10 will be described.
 シャフトホルダ12は、シャフト11の上部の周りに設けられている。シャフトホルダ12の材質は、比重が比較的重く、切削加工し易い真鍮である。そこで、シャフトホルダ12を切削することで、マイナスバランス方式の質量アンバランス修正を行う。ここでは、例として、ドリルで円形の穴を空けて質量アンバランス修正をする方法を説明するが、何を用いて、どのように切削加工してもよい。 The shaft holder 12 is provided around the top of the shaft 11. The material of the shaft holder 12 is brass which has a relatively high specific gravity and is easy to cut. Therefore, by cutting the shaft holder 12, mass imbalance correction of the negative balance method is performed. Here, although the method of making a circular hole with a drill and performing a mass unbalance correction is described as an example, what may be used and how cutting may be carried out.
 まず、軸流ファン10の回転体の質量のバランスを測定する。この測定結果に基づいて、シャフトホルダ12にドリルで穴を空ける箇所及び深さを決定する。この決定結果に従って、ドリルでシャフトホルダ12に穴を空ける。穴を空ける箇所及び深さについては、従来から知られている方法を用いることで、機械的に決定することができる。したがって、質量のバランスの測定から、穴を空ける箇所及び深さを決定して、シャフトホルダ12に質量アンバランスの修正加工を行うまでを自動化してもよい。 First, the mass balance of the rotor of the axial fan 10 is measured. Based on this measurement result, the location and depth at which the shaft holder 12 is drilled are determined. According to this determination result, the shaft holder 12 is bored with a drill. The location and depth of the hole can be determined mechanically by using a conventionally known method. Therefore, from the measurement of the mass balance, the location and depth of the hole may be determined, and the process of performing the mass imbalance correction process on the shaft holder 12 may be automated.
 なお、質量アンバランスの修正方法は、上述の方法に限らず、どのように行ってもよい。例えば、プラスバランス方式の質量アンバランス修正を行ってもよい。具体例としては、シャフト11の上部の周りに溝を設け、比重の重い接着剤をこの溝に塗布することで、質量アンバランス修正を行ってもよい。 In addition, the correction method of mass unbalance may be performed not only the above-mentioned method but how. For example, mass imbalance correction of the positive balance method may be performed. As a specific example, a groove may be provided around the upper portion of the shaft 11, and an adhesive with a heavy specific gravity may be applied to the groove to perform mass imbalance correction.
 本実施形態によれば、シャフト11が中央の穴に嵌合されたシャフトホルダ12の外周面とインペラー2の上面の穴の内側とが接触する芯出し箇所SNで芯出しを行うことで、インペラー2の内周面とフレーム13の外周面との間では、芯出しを行う必要がない。このため、インペラー2の内周面とフレーム13の外周面との間隙を熱膨張を考慮して広めに確保することができる。これにより、インペラー2の素材である樹脂とフレーム13の素材である金属との線膨張係数の違いにより、インペラー2にクラックが発生するのを防止することができる。 According to the present embodiment, the impeller is centered by centering location SN where the outer peripheral surface of the shaft holder 12 in which the shaft 11 is fitted in the center hole and the inside of the hole on the upper surface of the impeller 2 contact. There is no need to center between the inner circumferential surface of the second frame and the outer circumferential surface of the frame 13. Therefore, the gap between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13 can be secured widely considering the thermal expansion. As a result, it is possible to prevent the occurrence of cracks in the impeller 2 due to the difference in coefficient of linear expansion between the resin which is the material of the impeller 2 and the metal which is the material of the frame 13.
 また、インペラー2の芯出し箇所SNの径は、インペラー2の内周面の径よりも小さいため、熱膨張による変化の大きさも小さくなる。したがって、芯出し箇所SNで芯出しを行うことで、インペラー2の内周面で芯出しを行う場合と比較して、熱膨張を考慮した間隙の幅を小さくできるため、芯出しの精度を高くすることができる。 In addition, since the diameter of the centering portion SN of the impeller 2 is smaller than the diameter of the inner peripheral surface of the impeller 2, the magnitude of the change due to the thermal expansion also becomes smaller. Therefore, by performing centering at the centering position SN, the width of the gap in consideration of thermal expansion can be reduced as compared to the case where centering is performed on the inner peripheral surface of the impeller 2, so the centering accuracy is high. can do.
 さらに、シャフト11の軸受に、非接触型の空気動圧軸受を採用することで、接触型のボールベアリング軸受と比較すると、高速回転に適した耐久性の高い軸流ファン10にすることができる。さらに、スラスト軸受として非接触型の磁気軸受を採用することで、より高速回転に適し、耐久性に優れた軸流ファン10にすることができる。 Furthermore, by adopting a non-contact type air dynamic bearing as the bearing of the shaft 11, it is possible to make the highly durable axial flow fan 10 suitable for high speed rotation as compared with the contact type ball bearing. . Furthermore, by adopting a non-contact type magnetic bearing as the thrust bearing, it is possible to make the axial flow fan 10 suitable for higher speed rotation and excellent in durability.
 また、切削可能なシャフトホルダ12を設けることで、マイナスバランス方式による回転体の質量アンバランス修正を容易にすることができる。 Further, by providing the cuttable shaft holder 12, mass imbalance correction of the rotating body by the negative balance method can be facilitated.
 なお、本実施形態の変形例として、次のように構成してもよい。シャフトホルダ12を設けずに、フレーム13の上面の穴を、シャフト11が嵌合する大きさになるようにバーリング加工して穴の周囲を垂直に立ち上げる。インペラー2の上面の穴をフレーム13のバーリング加工された穴の外周面に嵌合させるように小さくする。このような構成において、インペラー2の上面の穴の内側とフレーム13のバーリング加工された穴の外周面との接触箇所を芯出し箇所SNとする。これにより、本実施形態のように、熱膨張を考慮して、インペラー2の内周面とフレーム13の外周面との間隙を広めに確保することができる。したがって、2つの材質の線膨張係数の違いによるクラックの発生を抑制でき、耐久性を向上させることができる。また、インペラー2の内周面で芯出しを行う場合と比較して、より径の小さい箇所で芯出しをすることができるため、芯出しの精度を高くすることができる。 In addition, you may comprise as follows as a modification of this embodiment. Without providing the shaft holder 12, the hole in the upper surface of the frame 13 is burred so as to fit the shaft 11 and vertically raised around the hole. The hole on the upper surface of the impeller 2 is made smaller so as to fit on the outer peripheral surface of the burred hole of the frame 13. In such a configuration, the contact point between the inside of the hole on the upper surface of the impeller 2 and the outer peripheral surface of the burred hole of the frame 13 is taken as a centering point SN. Thus, as in the present embodiment, in consideration of thermal expansion, the gap between the inner peripheral surface of the impeller 2 and the outer peripheral surface of the frame 13 can be made wider. Therefore, the occurrence of a crack due to the difference between the linear expansion coefficients of the two materials can be suppressed, and the durability can be improved. Further, as compared with the case where centering is performed on the inner peripheral surface of the impeller 2, centering can be performed at a portion having a smaller diameter, so that centering accuracy can be increased.
 なお、本発明は上述した実施形態に限定されず、構成要素を削除、付加又は変更等をしてもよい。また、複数の実施形態について構成要素を組合せ又は交換等をすることで、新たな実施形態としてもよい。このような実施形態が上述した実施形態と直接的に異なるものであっても、本発明と同様の趣旨のものは、本発明の実施形態として説明したものとして、その説明を省略している。 The present invention is not limited to the above-described embodiment, and the constituent elements may be deleted, added or changed. Further, by combining or exchanging the constituent elements in a plurality of embodiments, a new embodiment may be made. Even if such an embodiment differs directly from the above-described embodiment, the description of the same principle as the present invention is omitted as it is described as the embodiment of the present invention.

Claims (7)

  1.  回転軸であるシャフトと、
     空気動圧により前記シャフトのラジアル方向の変動を抑制する空気動圧軸受と、
     前記シャフトが貫通する第1の穴が中央に設けられた円形状の面で円筒形状の一端が塞がれた形状の金属製のフレームと、
     前記フレームを内部に収納するように前記フレームに被さり、円形状の面の中央に設けられた第2の穴の内側と前記シャフトとの間で芯出しされた樹脂製のインペラーと
    を備えたことを特徴とする軸流ファン。
    A shaft that is a rotating shaft,
    An air dynamic pressure bearing that suppresses the radial fluctuation of the shaft by the air dynamic pressure;
    A metal frame having a shape in which one end of a cylindrical shape is closed by a circular surface provided at the center with a first hole through which the shaft passes;
    The frame is covered with the frame so as to accommodate the frame inside, and a resin-made impeller is provided which is centered between the inside of the second hole provided at the center of the circular surface and the shaft. An axial fan characterized by
  2.  前記フレームの外周面と前記インペラーの内周面との間隙が前記インペラーの前記第2の穴の内側と前記シャフトとの間で芯出しされた間隙よりも広いこと
    を特徴とする請求項1に記載の軸流ファン。
    The gap between the outer circumferential surface of the frame and the inner circumferential surface of the impeller is wider than the gap centered between the inside of the second hole of the impeller and the shaft. Axial fan described.
  3.  リング形状で、第3の穴に前記シャフトが嵌合された状態で接合され、前記フレームの前記第1の穴を塞ぐように設けられ、外周面と前記インペラーの前記第2の穴の内側との間で芯出しされたシャフトホルダ
    を備えたことを特徴とする請求項1に記載の軸流ファン。
    A ring-shaped member is joined in a state in which the shaft is fitted in a third hole, and is provided to close the first hole of the frame, and an outer peripheral surface and an inner side of the second hole of the impeller The axial flow fan according to claim 1, further comprising a shaft holder centered between the two.
  4.  前記シャフトホルダは、真鍮製であること
    を備えたことを特徴とする請求項3に記載の軸流ファン。
    The axial flow fan according to claim 3, wherein the shaft holder is made of brass.
  5.  磁気により前記シャフトのスラスト方向の変動を抑制する磁気軸受
    を備えたことを特徴とする請求項1から請求項4のいずれか1項に記載の軸流ファン。
    The axial flow fan according to any one of claims 1 to 4, further comprising a magnetic bearing that suppresses a fluctuation in a thrust direction of the shaft by magnetism.
  6.  前記シャフトホルダは、切削されることにより回転体の質量アンバランスを修正するために設けられたこと
    を特徴とする請求項3又は請求項4に記載の軸流ファン。
    The axial flow fan according to claim 3 or 4, wherein the shaft holder is provided to correct mass imbalance of the rotating body by cutting.
  7.  空気動圧により回転軸であるシャフトのラジアル方向の変動を抑制する空気動圧軸受を設け、
     前記シャフトが貫通する第1の穴が中央に設けられた円形状の面で円筒形状の一端が塞がれた形状の金属製のフレームを内部に収納するように前記フレームに樹脂製のインペラーを被せ、
     前記インペラーの円形状の面の中央に設けられた第2の穴の内側と前記シャフトとの間で芯出しすること
    を含むことを特徴とする軸流ファンの製造方法。
    An air dynamic pressure bearing is provided which suppresses the radial fluctuation of the shaft which is the rotating shaft by the air dynamic pressure,
    A resin impeller is mounted on the frame so as to internally accommodate a metal frame having a shape in which one end of the cylindrical shape is closed by a circular surface provided at the center with a first hole through which the shaft passes. Cover,
    A method of manufacturing an axial flow fan, comprising centering between the shaft and the inside of a second hole provided at the center of the circular surface of the impeller.
PCT/JP2018/028349 2017-09-26 2018-07-27 Axial fan WO2019064879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185308A JP2019060280A (en) 2017-09-26 2017-09-26 Axial flow fan
JP2017-185308 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019064879A1 true WO2019064879A1 (en) 2019-04-04

Family

ID=65901253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028349 WO2019064879A1 (en) 2017-09-26 2018-07-27 Axial fan

Country Status (3)

Country Link
JP (1) JP2019060280A (en)
TW (1) TW201915343A (en)
WO (1) WO2019064879A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056952B (en) * 2019-05-05 2021-12-21 重庆海尔空调器有限公司 Air outlet device, air conditioner indoor unit and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114197A (en) * 1994-10-17 1996-05-07 Yanagawa Seiko Kk Bearing structure for axial blower
JP2000009090A (en) * 1998-06-23 2000-01-11 Matsushita Electric Ind Co Ltd Cooling fan and heat sink device using it
JP3082701U (en) * 2001-06-14 2001-12-26 皚▲文▼科技股▲分▼有限公司 fan
JP2002034205A (en) * 2000-07-17 2002-01-31 Shicoh Eng Co Ltd Fan motor with oil-retaining bearing
JP2009247143A (en) * 2008-03-31 2009-10-22 Nidec Sankyo Corp Fan motor
DE102015112731A1 (en) * 2015-08-03 2017-02-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan device and method for balancing a fan device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114197A (en) * 1994-10-17 1996-05-07 Yanagawa Seiko Kk Bearing structure for axial blower
JP2000009090A (en) * 1998-06-23 2000-01-11 Matsushita Electric Ind Co Ltd Cooling fan and heat sink device using it
JP2002034205A (en) * 2000-07-17 2002-01-31 Shicoh Eng Co Ltd Fan motor with oil-retaining bearing
JP3082701U (en) * 2001-06-14 2001-12-26 皚▲文▼科技股▲分▼有限公司 fan
JP2009247143A (en) * 2008-03-31 2009-10-22 Nidec Sankyo Corp Fan motor
DE102015112731A1 (en) * 2015-08-03 2017-02-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan device and method for balancing a fan device

Also Published As

Publication number Publication date
TW201915343A (en) 2019-04-16
JP2019060280A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US10047754B2 (en) Brushless motor and fan using the motor
KR100421103B1 (en) Spindle motor having disc mounting portion
JP5233408B2 (en) Rotor holder and balance adjustment method in manufacturing the same
JP2006158030A (en) Axial gap electric motor
WO2006123773A1 (en) Spindle motor and disk drive device using the same
WO2019064879A1 (en) Axial fan
US20070223848A1 (en) Fluid dynamic bearing system
JP2000014113A (en) Driving motor for recording media
US20100148600A1 (en) Fluid dynamic bearing system
JP2003079095A (en) Axial vibration preventing mechanism and brushless motor provided therewith
WO2019064880A1 (en) Axial fan
JP4861023B2 (en) motor
WO2019064881A1 (en) Axial flow fan
US7327064B2 (en) Brushless motor
JP2006067652A (en) Cantilevered bearing mechanism and manufacturing method of same
JP2002343017A (en) Spindle motor having turntable section and method of manufacturing the same
US20150084463A1 (en) Bearing mechanism, spindle motor including the bearing mechanism and electronic equipment including the spindle motor
US20130257229A1 (en) Brushless motor, disk drive apparatus and brushless motor manufacturing method
JP2002218721A (en) High-speed rotating body, optical deflection system using the high-speed rotating body, and its balance correcting method
JP3135607U (en) Magnetic bearing type turbo molecular pump
JP6184934B2 (en) motor
WO2019082525A1 (en) Hydrodynamic air bearing cover
JP2019216526A (en) Rotor end plate, rotor, and rotary electric machine
WO2021166394A1 (en) Pneumatic bearing motor
JP2008111476A (en) Rotation drive device and rotating equipment equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860443

Country of ref document: EP

Kind code of ref document: A1