WO2019064728A1 - Negative electrode active material containing oxygen-containing silicon material, and method for producing same - Google Patents

Negative electrode active material containing oxygen-containing silicon material, and method for producing same Download PDF

Info

Publication number
WO2019064728A1
WO2019064728A1 PCT/JP2018/023079 JP2018023079W WO2019064728A1 WO 2019064728 A1 WO2019064728 A1 WO 2019064728A1 JP 2018023079 W JP2018023079 W JP 2018023079W WO 2019064728 A1 WO2019064728 A1 WO 2019064728A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
negative electrode
containing silicon
silicon material
electrode active
Prior art date
Application number
PCT/JP2018/023079
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 山口
彩人 井山
敬史 毛利
正則 原田
裕介 渡邉
弘樹 大島
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018023432A external-priority patent/JP6852691B2/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019064728A1 publication Critical patent/WO2019064728A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material containing an oxygen-containing silicon material.
  • Silicon is known to be used as a component of semiconductors, solar cells, secondary batteries and the like, and hence research on silicon is actively conducted.
  • Patent Document 1 discloses that a layered silicon compound mainly composed of layered polysilane from which CaSi 2 is reacted with an acid to remove Ca is synthesized, and the layered silicon compound is heated at 300 ° C. or higher to generate hydrogen.
  • a lithium ion secondary battery is described which has produced a detached silicon material and which comprises the silicon material as a negative electrode active material.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a negative electrode active material containing a silicon material and a method of manufacturing the same, which can optimize the capacity retention rate of a secondary battery.
  • the inventor repeated trial and error and examined a method of manufacturing a silicon material. As a result, it has been found that a secondary battery employing a silicon material containing an element other than silicon to some extent is excellent in capacity retention rate.
  • the present invention relates to an oxygen-containing silicon material focusing on oxygen as an element other than silicon, and in particular, to provide a manufacturing method capable of controlling the oxygen content of the oxygen-containing silicon material.
  • the negative electrode active material of the present invention has an oxygen mass% (W 2 O %) of 16 ⁇ W 2 O ⁇ 27 and an silicon mass% (W Si %) of 62 ⁇ W Si ⁇ 81 (hereinafter referred to as And the oxygen-containing silicon material of the present invention).
  • One embodiment of a method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention is a-1) reacting CaSi 2 with an aqueous acid solution at 15 to 50 ° C. to synthesize an oxygen-containing layered silicon compound containing layered polysilane, b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material; It is characterized by including.
  • Another aspect of the method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention is a-2-1) reacting CaSi 2 with an aqueous acid solution at ⁇ 20 to 10 ° C., a-2-2) a step of synthesizing an oxygen-containing layered silicon compound containing layered polysilane with the temperature of the reaction liquid being set to 15 to 50 ° C., following the above step a-2-1), b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material; It is characterized by including.
  • a negative electrode active material containing an oxygen-containing silicon material and a method for producing the same, which can optimize the capacity retention rate of a secondary battery.
  • FIG. 1 It is a graph which shows the relationship of the integral capacity and discharge capacity of each lithium ion secondary battery in evaluation example 2.
  • FIG. It is a graph which shows the relationship of the integral capacity and discharge capacity of each lithium ion secondary battery in evaluation example 9.
  • FIG. 1 It is a graph which shows the relationship of the integral capacity and discharge capacity of each lithium ion secondary battery in evaluation example 9.
  • the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in that range. And a numerical range can be constituted by combining these arbitrarily including the upper limit and lower limit, and the numerical value listed in the example. Furthermore, numerical values arbitrarily selected from these numerical ranges can be used as new upper and lower numerical values.
  • the negative electrode active material of the present invention contains an oxygen-containing silicon material in which oxygen mass% (W 2 O %) is 16 ⁇ W 2 O ⁇ 27 and silicon mass% (W Si %) is 62 ⁇ W Si ⁇ 81. It is characterized by
  • the oxygen-containing silicon material of the present invention can be used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery. Since the oxygen-containing silicon material of the present invention has an appropriate ratio of oxygen to silicon, the secondary battery comprising the oxygen-containing silicon material of the present invention satisfies all of the capacity retention rate, capacity, and initial efficiency in a well-balanced manner. .
  • An oxygen-containing silicon material having an excessively low oxygen mass% and an excessively high silicon mass% is excellent in capacity and initial efficiency as a negative electrode active material, but is inferior in capacity retention rate.
  • an oxygen-containing silicon material having an excessively high oxygen content by mass and an excessively low silicon content by mass is inferior in capacity and initial efficiency as a negative electrode active material.
  • Oxygen mass% in the oxygen-containing silicon material of the present invention is preferably 16.5 ⁇ W O ⁇ 26.5, and more preferably 17 ⁇ W O ⁇ 26, is 18 ⁇ W O ⁇ 25.5 More preferably, 19 ⁇ W o ⁇ 25 is particularly preferred.
  • the silicon mass% (W Si %) in the oxygen-containing silicon material of the present invention preferably satisfies 65 ⁇ W Si ⁇ 80, more preferably 68 ⁇ W Si ⁇ 79, and 70 ⁇ W Si ⁇ It is further preferable to satisfy 78, and it is particularly preferable to satisfy 70 ⁇ W Si ⁇ 76.
  • the oxygen-containing silicon material of the present invention may contain elements other than oxygen and silicon. As such an element, Al is preferable.
  • the oxygen-containing silicon material of the present invention containing Al has a reduced resistance. Therefore, it can be said that the oxygen-containing silicon material of the present invention containing Al is excellent in the function as a negative electrode active material.
  • oxygen having a stable Al—O bond can be said to be less likely to be involved in the oxidation of silicon which is more electronegative than Al. Therefore, a secondary battery having the oxygen-containing silicon material of the present invention containing Al as a negative electrode active material can be expected to have a long life.
  • Al mass% (W Al %) in the oxygen-containing silicon material of the present invention satisfy 0 ⁇ W Al ⁇ 1, and more preferably 0 ⁇ W Al ⁇ 0.8. It is further preferable to satisfy ⁇ W Al ⁇ 0.6, and it is particularly preferable to satisfy 0.05 ⁇ W Al ⁇ 0.4.
  • the oxygen-containing silicon material of the present invention may contain an impurity derived from a manufacturing process or an impurity derived from a raw material.
  • an acid is used in the method for producing an oxygen-containing silicon material of the present invention.
  • the element derived from the anion of the acid is likely to be contained as an impurity in the oxygen-containing silicon material of the present invention.
  • the element mass% (W x %) derived from the acid anion is preferably a small value. When W x % is large, the irreversible capacity of the oxygen-containing silicon material is increased, thereby reducing the initial efficiency. As a range of W x %, 0 ⁇ W x ⁇ 8 can be illustrated.
  • the range of W x % preferably satisfies 0 ⁇ W x ⁇ 6, more preferably 0 ⁇ W x ⁇ 4, and still more preferably 0 ⁇ W x ⁇ 3. It is particularly preferred to satisfy W x ⁇ 2.
  • the element mass% (W x %) derived from the acid anion is read as halogen mass% (W x %).
  • impurities that can be contained in the oxygen-containing silicon material of the present invention include Ca and Fe.
  • Ca is derived from the raw material CaSi 2 .
  • Fe is an impurity in the raw material.
  • the Ca mass% (W Ca %) in the oxygen-containing silicon material of the present invention is preferably a small value.
  • Ca mass% in the oxygen-containing silicon material of the present invention (W Ca%) is preferably satisfies 0 ⁇ W Ca ⁇ 5, more preferably satisfies 0 ⁇ W Ca ⁇ 1, 0 ⁇ W Ca ⁇ It is further preferable to satisfy 0.5, and it is particularly preferable to satisfy 0 ⁇ W Ca ⁇ 0.3. In view of easiness of mixing and removal of Ca , it is assumed that Ca mass% (W Ca %) in the oxygen-containing silicon material of the present invention is 0 ⁇ W Ca.
  • the Fe mass% (W 2 Fe %) in the oxygen-containing silicon material of the present invention is preferably a small value.
  • Fe wt% in the oxygen-containing silicon material of the present invention (W Fe%) is preferably satisfies 0 ⁇ W Fe ⁇ 3, more preferably satisfies 0 ⁇ W Fe ⁇ 1, 0 ⁇ W Fe ⁇ It is more preferable to satisfy 0.5, particularly preferably to satisfy 0 ⁇ W Fe ⁇ 0.3, and most preferably to satisfy 0 ⁇ W Fe ⁇ 0.1.
  • Fe mass% (W 2 Fe %) in the Al-containing silicon material of the present invention is 0 ⁇ W 2 Fe .
  • the relationship of Al mass% (W Al %) and Fe mass% (W Fe %) satisfies W Al > W Fe, and more preferably W Al > 2 ⁇ W Fe .
  • the oxygen-containing silicon material of the present invention preferably has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction. This laminated structure can be confirmed by observation with a scanning electron microscope or the like.
  • the plate-like silicon body has a thickness of 10 nm for efficient insertion and desorption reaction of lithium ions. Those in the range of ⁇ 100 nm are preferable, and those in the range of 20 nm to 50 nm are more preferable.
  • the length of the plate-like silicon body in the long axis direction is preferably in the range of 0.1 ⁇ m to 50 ⁇ m.
  • the plate-like silicon body preferably has a (longitudinal direction length) / (thickness) in the range of 2 to 1,000.
  • the layered structure of the plate-like silicon body is considered to be the remnant of the Si layer in CaSi 2 of the raw material.
  • the oxygen-containing silicon material of the present invention may contain either or both of amorphous silicon and silicon crystals.
  • the size of the silicon crystal is preferably nano-sized. Specifically, the size of the silicon crystal is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 1 nm to 10 nm preferable.
  • the size of the silicon crystal is calculated from the Scheller equation using the half value width of the diffraction peak of the Si (111) surface of the obtained XRD chart by performing X-ray diffraction measurement (XRD measurement) on the silicon material. Ru.
  • the ratio of crystal to amorphous in silicon of the oxygen-containing silicon material of the present invention is 0: 100 to 100: 0, 1: 99 to 50: 50, 0: 100 to 30: 70, 5: 95 to 30:
  • the range of 70, 10: 90 to 20: 80 can be exemplified.
  • the oxygen-containing silicon material of the present invention is preferably in the form of powder, and is preferably an aggregate of particles exhibiting a certain particle size distribution.
  • the average particle diameter of the oxygen-containing silicon material of the present invention is preferably in the range of 0.5 to 30 ⁇ m, more preferably in the range of 1 to 20 ⁇ m, and still more preferably in the range of 2 to 10 ⁇ m.
  • the average particle size means the D 50 as measured by conventional laser diffraction type particle size distribution measuring apparatus.
  • the BET specific surface area of the oxygen-containing silicon material of the present invention is in the range of 0.5 to 15 m 2 / g, in the range of 0.5 to 10 m 2 / g, in the range of 1 to 10 m 2 / g, 3 to The range of 10 m 2 / g can be exemplified.
  • the production method of the present invention a method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention (hereinafter, sometimes simply referred to as “the production method of the present invention”) will be described.
  • the key to the production method of the present invention is to set the temperature of the reaction solution to 15 to 50 ° C. in the step of reacting CaSi 2 with an aqueous acid solution to synthesize an oxygen-containing layered silicon compound containing layered polysilane. And controlling the oxygen content in the oxygen-containing layered silicon compound containing layered polysilane and the oxygen-containing silicon material of the present invention.
  • One aspect of the production method of the present invention is a-1) A step of synthesizing an oxygen-containing layered silicon compound containing layered polysilane by reacting CaSi 2 with an aqueous acid solution of 15 to 50 ° C. (hereinafter simply referred to as “a-1) step”. ), b) A step of synthesizing the oxygen-containing silicon material by heating the oxygen-containing layered silicon compound at 300 ° C. or higher (hereinafter simply referred to as “step b”). And the like.
  • step a-1 When an aqueous hydrogen chloride solution (hydrochloric acid) is used as the aqueous acid solution in step a-1), the reaction represented by the following formula (1) proceeds, and then, for example, on the surface of Si 6 H 6 which is a layered polysilane: It is considered that the reaction represented by the formula (2) proceeds. Therefore, the step a-1) can be said to be a key step for determining the oxygen content in the oxygen-containing layered silicon compound containing the layered polysilane and the oxygen-containing silicon material of the present invention.
  • Formula (1) 3CaSi 2 +6 HCl ⁇ Si 6 H 6 +3 CaCl 2
  • the temperature in the step a-1) is preferably in the range of 18 to 45 ° C., and more preferably in the range of 20 to 40 ° C. a-1)
  • a thermostat such as a thermostat may be used.
  • the treatment time of step a-1) may be 1 to 50 hours, 5 to 40 hours, or 10 to 30 hours.
  • step a-1 the following steps a-2-1) and a-2-2) may be employed.
  • steps a-2-1) A step of reacting CaSi 2 with an aqueous acid solution at -20 to 10 ° C a-2-2) Subsequent to the step a-2-1), the temperature of the reaction liquid is changed to 15 to 50 ° C to form a layer Process for synthesizing an oxygen-containing layered silicon compound containing polysilane
  • step a-2-2) is a key step for determining the oxygen content in the oxygen-containing layered silicon compound containing the layered polysilane and the oxygen-containing silicon material of the present invention.
  • Examples of the timing at which the step a-2-1) is switched to the step a-2-2) include a point at which the heat generation resulting from the reaction has taken a break, and a point at which bubbling from the reaction solution has taken a break.
  • the temperature-controlled device used in the a-2-1) step may be heated, or it may be used in the a-2-1) step
  • the same thermostat may be replaced with another thermostat which has been previously adjusted to a temperature range of 15 to 50.degree.
  • the temperature in the step a-2-1) is preferably in the range of -10 to 5 ° C, more preferably in the range of -5 to 5 ° C.
  • a specific time of the step a-2-1 for example, 10 minutes, 20 minutes, 1 hour or 2 hours, etc. can be exemplified after the completion of mixing of CaSi 2 and the aqueous acid solution.
  • the temperature in the step a-2-2) is preferably in the range of 18 to 45 ° C., and more preferably in the range of 20 to 40 ° C.
  • 1 to 50 hours, 5 to 40 hours, and 10 to 30 hours can be exemplified.
  • a process of reacting CaSi 2 with an aqueous acid solution to synthesize an oxygen-containing layered silicon compound containing layered polysilane may be collectively referred to as a process a).
  • CaSi 2 which is a raw material generally has a structure in which a Ca layer and a Si layer are laminated.
  • CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted.
  • CaSi 2 preferably contains Al.
  • the content of Al is preferably less than 4.5%, more preferably in the range of 0.01 to 3%, still more preferably in the range of 0.05 to 2%, and in the range of 0.1 to 1% Is particularly preferred.
  • hydrofluoric acid hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoro acid Arsenic acid, fluoroantimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV) acid, trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconic acid, trifluoromethanesulfonic acid, fluorosulfonic acid are exemplified. Ru. These acids may be used alone or in combination.
  • the acid is preferably used in an amount capable of supplying 2 mol or more of protons to 1 mol of CaSi 2 .
  • the reason for using water as a solvent in step a) is that, from the technical point of view, removal of unnecessary substances such as CaCl 2 is easy and oxygen is extremely introduced into the layered polysilane produced in step a). It is an easy point.
  • the concentration of the acid in the aqueous acid solution is preferably 5 to 36% by mass, more preferably 5 to 30% by mass, still more preferably 10 to 30% by mass, particularly preferably 13 to 25% by mass, and 15 to 20% by mass Is most preferred. If the concentration of the acid is too low, the progress of the reaction will be slow and the production efficiency will be reduced. On the other hand, when the concentration of the acid is too high, an element derived from the acid anion is contained in a large amount in the oxygen-containing silicon material of the present invention.
  • the reaction conditions in the step a) are preferably under an inert gas atmosphere such as nitrogen, helium or argon, and are preferably under stirring conditions.
  • a filtration step, a washing step, and a drying step may be appropriately carried out.
  • an inert gas atmosphere such as nitrogen, helium or argon.
  • the step b) is a step of heating the oxygen-containing layered silicon compound at 300 ° C. or higher.
  • the step b) is a step of synthesizing an oxygen-containing silicon material by releasing hydrogen or the like from the oxygen-containing layered silicon compound by heating.
  • the reaction formula when hydrogen is released from the layered polysilane in step b) is as follows. Si 6 H 6 ⁇ 6 Si + 3 H 2 ⁇
  • the step b) is preferably carried out under a non-oxidizing atmosphere having a lower oxygen content than under normal atmosphere.
  • a non-oxidizing atmosphere a reduced pressure atmosphere including vacuum, an inert gas atmosphere such as nitrogen, helium, argon and the like can be exemplified.
  • the heating temperature is preferably in the range of 300 ° C. to 1000 ° C., more preferably in the range of 500 ° C. to 900 ° C., and still more preferably in the range of 600 ° C. to 800 ° C. If the heating temperature is too low, desorption of hydrogen may not be sufficient.
  • the heating temperature is too high, crystallization of silicon in the oxygen-containing silicon material may proceed excessively, which may lead to a decrease in performance as a negative electrode active material.
  • the heating time may be appropriately set in accordance with the heating temperature, and it is also preferable to determine the heating time while measuring the amount of hydrogen and the like which leaks out of the reaction system.
  • the ratio of amorphous silicon and silicon crystals contained in the oxygen-containing silicon material to be produced, and the size of silicon crystals can also be prepared, and further, it is produced It is also possible to adjust the shape and size of a nano-level thick layer including amorphous silicon and silicon crystals contained in the oxygen-containing silicon material.
  • the oxygen-containing silicon material of the present invention may be pulverized or classified into particles having a constant particle size distribution.
  • the oxygen-containing silicon material of the present invention can be used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery.
  • a secondary battery such as a lithium ion secondary battery.
  • a method of carbon coating a mechanical milling method in which a mixture of oxygen-containing silicon material and carbon powder is subjected to strong pressure and then stirred and integrated, or carbon generated from a carbon source is vapor-deposited onto the oxygen-containing silicon material Can be exemplified by chemical vapor deposition (CVD).
  • the CVD method is preferable as a carbon coating method in that the surface of the oxygen-containing silicon material can be uniformly coated with a thin carbon layer. Then, among the CVD methods, a thermal CVD method in which a gaseous organic substance which is a carbon source is decomposed by heat to generate carbon is preferable.
  • the carbon mass% (W C %) in the carbon-coated oxygen-containing silicon material of the present invention preferably satisfies 1 ⁇ W C ⁇ 10, more preferably 3 ⁇ W C ⁇ 9, and 5 It is further preferable to satisfy ⁇ W c ⁇ 8.
  • the numerical range described for the oxygen-containing silicon material of the present invention is incorporated.
  • a secondary battery including the oxygen-containing silicon material of the present invention as a negative electrode active material will be described by taking a lithium ion secondary battery as an example.
  • a lithium ion secondary battery including the oxygen-containing silicon material of the present invention as a negative electrode active material is referred to as a lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode including the oxygen-containing silicon material of the present invention as a negative electrode active material, an electrolytic solution, and a separator as necessary.
  • the positive electrode has a current collector and a positive electrode active material layer bonded to the surface of the current collector.
  • the current collector refers to a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, stainless steel, etc. A metal material can be illustrated.
  • the current collector may be coated with a known protective layer. What processed the surface of a collector by a well-known method may be used as a collector.
  • the current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive aid and / or a binder.
  • a positive electrode active material spinel such as LiMn 2 O 4 and a solid solution composed of a mixture of spinel and layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (M in the formula is Co, Ni, Mn, Polyanionic compounds represented by (at least one of Fe) and the like can be mentioned.
  • tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to.
  • any metal oxide used as a positive electrode active material may have the above composition formula as a basic composition, and one obtained by replacing the metal element contained in the basic composition with another metal element can also be used.
  • a positive electrode active material a positive electrode active material containing no lithium ion contributing to charge and discharge, for example, a simple substance of sulfur, a compound of sulfur and carbon, a metal sulfide such as TiS 2 , V 2 O 5 , MnO Oxides such as 2 , polyaniline and anthraquinone, and compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic substances, and other known materials can also be used.
  • a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl or the like may be adopted as the positive electrode active material.
  • a positive electrode active material containing no lithium it is necessary to add ions to the positive electrode and / or the negative electrode by a known method.
  • a metal or a compound containing the ions may be used.
  • a conductive aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive support agent may be any chemically active high electron conductor, and carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles are exemplified. Ru. Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, channel black and the like. These conductive assistants can be added to the active material layer singly or in combination of two or more.
  • the ratio is more preferably 0.2, and more preferably 1: 0.02 to 1: 0.15. If the amount of the conductive additive is too small, efficient conductive paths can not be formed. If the amount of the conductive additive is too large, the formability of the active material layer deteriorates and the energy density of the electrode decreases.
  • the binder plays the role of anchoring the active material and the conductive aid to the surface of the current collector and maintaining the conductive network in the electrode.
  • the binder may, for example, be a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, an alkoxysilyl group-containing resin, Examples include acrylic resins such as meta) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethyl cellulose. These binders may be used alone or in combination.
  • the ratio is more preferably 0.2, and more preferably 1: 0.02 to 1: 0.15.
  • the negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector.
  • As the current collector one described for the positive electrode may be appropriately adopted appropriately.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive aid and / or a binder.
  • any material containing the oxygen-containing silicon material of the present invention may be used, and only the oxygen-containing silicon material of the present invention may be adopted, and the oxygen-containing silicon material of the present invention and the known negative electrode active material You may use together.
  • those described for the positive electrode may be appropriately adopted at the same mixing ratio.
  • a crosslinked polymer in which a carboxyl group-containing polymer such as polyacrylic acid or polymethacrylic acid as disclosed in WO 2016/063882 is crosslinked with a polyamine such as diamine may be used as a binder.
  • diamine used for the cross-linked polymer examples include alkylene diamines such as ethylene diamine, propylene diamine and hexamethylene diamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, isophorone diamine, bis (4-aminocyclohexyl) methane and the like.
  • Saturated carbocyclic ring diamine m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, bis (4-aminophenyl) sulfone, benzidine, o-tolidine, 2,4- Aromatic diamines such as tolylene diamine, 2,6-tolylene diamine, xylylene diamine and naphthalene diamine can be mentioned.
  • an active material layer on the surface of a current collector current collection can be performed using conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, and curtain coating.
  • the active material may be applied to the surface of the body.
  • the active material, the solvent, and, if necessary, the binder and / or the conductive auxiliary agent are mixed to prepare a slurry.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and water.
  • the slurry is applied to the surface of a current collector and then dried. The dried one may be compressed to increase the electrode density.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic carbonate As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate.
  • cyclic esters include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain carbonates include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate.
  • chain esters examples include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • ethers tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be exemplified.
  • non-aqueous solvent a compound in which part or all of hydrogens in the chemical structure of the above specific solvent is substituted with fluorine may be adopted.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiN (FSO 2 ) 2 and the like in nonaqueous solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate and the like
  • nonaqueous solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate and the like
  • a solution dissolved at a concentration of 1 / L, 1 to 3 mol / L, or 1.6 to 2.5 mol / L can be exemplified.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing a short circuit due to the contact of the both electrodes.
  • synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose and amylose, natural substances such as fibroin, keratin, lignin and suberin Examples thereof include porous bodies, non-woven fabrics, and woven fabrics using one or more kinds of electrically insulating materials such as polymers and ceramics.
  • the separator may have a multilayer structure.
  • the positive electrode and the negative electrode sandwich a separator to form an electrode body.
  • the electrode body may be any of a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a laminate of a positive electrode, a separator and a negative electrode is wound.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle using electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form a battery pack.
  • various household appliances driven by a battery such as a personal computer and a mobile communication apparatus, as well as a vehicle, an office apparatus, an industrial apparatus and the like can be mentioned.
  • the lithium ion secondary battery of the present invention can be used in wind power generation, solar power generation, hydroelectric power generation, storage devices and power smoothing devices for electric power systems, power sources for power and / or accessories of ships, etc., aircraft, Power supply source for power of spacecraft and / or accessories, auxiliary power supply for vehicles not using electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charge station etc. for electric vehicles.
  • the reaction vessel containing 35 mass% hydrochloric acid was placed in a thermostat at 18 ° C. After confirming that the temperature of hydrochloric acid had reached 18 ° C., the above CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 2 hours after the addition of the CaSi 2 powder, and then the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 1.
  • the negative electrode and the lithium ion secondary battery of Example 1 were produced as follows.
  • a polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid.
  • a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone.
  • Example 1 72.5 parts by mass of the oxygen-containing silicon material of Example 1 as a negative electrode active material, 13.5 parts by mass of acetylene black as a conduction aid, and 14 parts by mass of solid content as a binder And, an appropriate amount of N-methyl-2-pyrrolidone was mixed to prepare a slurry.
  • a copper foil was prepared as a current collector for the negative electrode.
  • the slurry was applied in the form of a film on the surface of the copper foil using a doctor blade.
  • the copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. Thereafter, the resultant was pressed and baked at 180 ° C. to produce the negative electrode of Example 1 in which the negative electrode active material layer was formed.
  • a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • the negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut to a diameter of 13 mm and used as a counter electrode.
  • a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator.
  • the two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body.
  • the electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.).
  • the electrolytic solution was injected into the battery case, and the battery case was sealed to manufacture the lithium ion secondary battery of Example 1.
  • Example 2 The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Example 2 are the same as in Example 1 except that in the step a), the temperature of the constant temperature bath is 40 ° C. Manufactured.
  • Comparative example 1 The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Comparative Example 1 are prepared in the same manner as in Example 1 except that the temperature of the constant temperature bath is set to 0 ° C. in step a). Manufactured.
  • Comparative example 2 The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Comparative Example 2 are the same as in Example 1 except that in the step a), the temperature of the constant temperature bath is 60 ° C. Manufactured.
  • the initial efficiency and capacity retention rate were calculated by the following formulas.
  • Initial efficiency (%) 100 ⁇ (initial discharge capacity) / (initial charge capacity)
  • Capacity retention rate (%) 100 ⁇ (discharge capacity at 50 cycles) / (discharge capacity at 1 cycle)
  • the results of the initial efficiency and capacity retention are shown in Table 2 along with some of the elemental analysis results. Further, FIG. 1 shows the relationship between the integrated capacity and the discharge capacity of each lithium ion secondary battery in 50 charge and discharge cycles.
  • Example 1 shows the relationship between the cumulative capacity and the discharge capacity of each lithium ion secondary battery that the oxygen-containing silicon materials of Example 1 and Example 2 are particularly excellent negative electrode active materials. .
  • the BET specific surface area of the oxygen-containing silicon material tends to increase as the temperature in the step a) rises, but it can be said that it becomes substantially constant at 40 ° C. or higher.
  • the proportions of silicon crystals and amorphous silicon in the oxygen-containing silicon material are considered to have no correlation with the temperature in the step a).
  • Example 3 An Al-containing CaSi 2 powder was prepared as follows. Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
  • Process a-2-1) Process A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
  • Example 3 Thereafter, in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery of Example 3 were produced.
  • Example 4 The oxygen-containing layered silicon compound of Example 4, oxygen-containing in the same manner as in Example 3 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 30 ° C. at a rate of 1 ° C./min. A silicon material, a negative electrode and a lithium ion secondary battery were manufactured.
  • Example 5 The oxygen-containing layered silicon compound of Example 5, oxygen-containing in the same manner as in Example 3 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. A silicon material, a negative electrode and a lithium ion secondary battery were manufactured.
  • Example 6 The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Example 6 were manufactured in the same manner as in Example 3 except that the process a) was performed as follows.
  • Initial efficiency (%) 100 ⁇ (initial discharge capacity) / (initial charge capacity)
  • Capacity retention rate (%) 100 ⁇ (discharge capacity at 50 cycles) / (discharge capacity at 1 cycle)
  • the results of the initial charge capacity, the initial discharge capacity, the initial efficiency, and the capacity retention rate are shown in Tables 5 and 6 together with part of the results of the elemental analysis.
  • Example 6 shows equivalent results in terms of battery characteristics. From the viewpoint of safety in terms of work, it is reasonable to adopt a production method in which the reaction is allowed to proceed under low temperature conditions and the temperature is gradually raised when CaSi 2 powder in which a relatively vigorous reaction occurs is caused .
  • Example 7 An Al-containing CaSi 2 powder was prepared as follows. Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
  • Process a-2-1) A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
  • Step a-2-1 the temperature of the thermostat was raised to 20 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 7.
  • Example 7 Carbon Coating Step The oxygen-containing silicon material of Example 7 was placed in a rotary kiln type reactor, and thermal CVD was performed at 880 ° C. for 60 minutes under aeration of propane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 7.
  • the negative electrode and lithium ion secondary battery of Example 7 were produced as follows.
  • a polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid.
  • a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone.
  • Example 7 78.5 parts by mass of the carbon-coated silicon material of Example 7 as a negative electrode active material, 10.5 parts by mass of acetylene black as a conductive additive, and the above-mentioned binding in an amount such that the solid content is 11 parts by mass as a binder
  • the slurry was prepared by mixing the agent solution and an appropriate amount of N-methyl-2-pyrrolidone.
  • a copper foil was prepared as a current collector for the negative electrode.
  • the slurry was applied in the form of a film on the surface of the copper foil using a doctor blade.
  • the copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. Thereafter, pressing and baking at 180 ° C. were performed to manufacture the negative electrode of Example 7 in which the negative electrode active material layer was formed.
  • the -2-pyrrolidone was mixed to produce a slurry.
  • An aluminum foil was prepared as a positive electrode current collector.
  • the slurry was applied in the form of a film on the surface of the aluminum foil using a doctor blade.
  • the N-methyl-2-pyrrolidone was removed by drying the aluminum foil to which the slurry was applied. Thereafter, pressing and baking at 120 ° C. were performed to manufacture a positive electrode in which a positive electrode active material layer was formed on the surface of the positive electrode current collector.
  • Dimethyl carbonate, ethyl methyl carbonate and fluoroethylene carbonate were mixed at a volume ratio of 63:27:10 to give a mixed organic solvent.
  • LiPF 6 was dissolved in a mixed organic solvent at a concentration of 2 mol / L to form an electrolyte.
  • a porous membrane made of polyethylene was prepared as a separator.
  • the separator was sandwiched between the positive electrode and the negative electrode of Example 7 to form an electrode plate group.
  • the electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. By sealing the remaining one side, the four sides were airtightly sealed to obtain a lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. This battery was used as a lithium ion secondary battery of Example 7.
  • Example 8 The oxygen-containing layered silicon compound of Example 8, oxygen-containing in the same manner as in Example 7 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
  • Comparative example 7 The negative electrode of Comparative Example 7 and lithium ion in the same manner as in Example 7 except that carbon-coated SiO (Shin-Etsu Chemical Co., Ltd.), which is a carbon-coated, oxygen-containing silicon material, was employed as the negative electrode active material. The following battery was manufactured.
  • carbon-coated SiO Shin-Etsu Chemical Co., Ltd.
  • Comparative Example 6 and Comparative Example 7 having a high oxygen content have low initial discharge capacity. It can be said that Example 7 and Example 8 in which the oxygen content and the silicon content are in appropriate ranges are all excellent in the initial discharge capacity, the 25 ° C. output and the 0 ° C. output. Further, from the results of Comparative Example 6 and Comparative Example 7 in which the oxygen content and the silicon content are equal, it is understood that the lithium ion secondary battery of Comparative Example 6 is more excellent in battery characteristics.
  • An oxygen-containing silicon material based on CaSi 2 has a unique structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction, which is not observed in general SiO.
  • the reason why the lithium ion secondary battery of Comparative Example 6 is superior in output characteristics when Comparative Example 6 and Comparative Example 7 are compared is that a plurality of plate shapes possessed by the oxygen-containing silicon material of Comparative Example 6 It is considered that the silicon body is in the structure of being stacked in the thickness direction.
  • Example 9 An Al-containing CaSi 2 powder was prepared as follows. Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
  • Process a-2-1) A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
  • Step a-2-1 the temperature of the thermostat was raised to 20 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 9.
  • Example 9 Carbon Coating Step The oxygen-containing silicon material of Example 9 was placed in a rotary kiln type reactor, and thermal CVD was performed at 880 ° C. and a residence time of 60 minutes under aeration of a propane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 9.
  • the negative electrode and lithium ion secondary battery of Example 9 were produced as follows.
  • a polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid.
  • a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone.
  • Example 9 78.5 parts by mass of the carbon-coated silicon material of Example 9 as a negative electrode active material, 10.5 parts by mass of acetylene black as a conductive additive, and the above-mentioned binding in an amount such that the solid content is 11 parts by mass as a binder
  • the slurry was prepared by mixing the agent solution and an appropriate amount of N-methyl-2-pyrrolidone.
  • a copper foil was prepared as a current collector for the negative electrode.
  • the slurry was applied in the form of a film on the surface of the copper foil using a doctor blade.
  • the copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. After that, pressing and baking at 180 ° C. manufactured a negative electrode of Example 9 in which a negative electrode active material layer was formed.
  • a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • the negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut to a diameter of 13 mm and used as a counter electrode.
  • a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator.
  • the two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body.
  • the electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.).
  • An electrolytic solution was injected into the battery case, the battery case was sealed, and a lithium ion secondary battery of Example 9 was manufactured.
  • Example 10 The oxygen-containing layered silicon compound of Example 10, oxygen-containing in the same manner as Example 9, except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
  • the oxygen-containing layered silicon compound of Comparative Example 8 and the oxygen-containing silicon material of Comparative Example 8 are the same as in Example 9 except that the temperature of the constant temperature bath is not increased and maintained at 0 ° C. Carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
  • Comparative example 9 The oxygen-containing layered silicon compound of Comparative Example 9 in the same manner as in Example 9 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 60 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
  • the lithium ion secondary battery comprising the oxygen-containing silicon material of Example 9 and Example 10, in which oxygen mass% and silicon mass% are in appropriate ranges, has initial efficiency and capacity retention It can be said that the rate and integrated capacity are satisfied in a well-balanced manner.
  • An Al-containing CaSi 2 powder was prepared as follows. Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
  • Process a-2-1) A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
  • Step a-2-1 the temperature of the thermostat was raised to 40 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 11.
  • Example 11 Carbon Coating Step The oxygen-containing silicon material of Example 11 was placed in a rotary kiln type reactor, and thermal CVD was performed under the conditions of 700 ° C. and a residence time of 60 minutes under aeration of a hexane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 11.
  • the negative electrode and lithium ion secondary battery of Example 11 were produced as follows.
  • Example 11 72.5 parts by mass of the carbon-coated silicon material of Example 11 as a negative electrode active material, 13.5 parts by mass of acetylene black as a conductive additive, 14 parts by mass of polyamideimide as a binder, and an appropriate amount of N-methyl
  • the -2-pyrrolidone was mixed to produce a slurry.
  • a copper foil was prepared as a current collector for the negative electrode.
  • the slurry was applied in the form of a film on the surface of the copper foil using a doctor blade.
  • the copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. After that, pressing and baking at 180 ° C. manufactured a negative electrode of Example 11 in which a negative electrode active material layer was formed.
  • a solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
  • the negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode.
  • a metal lithium foil having a thickness of 500 ⁇ m was cut to a diameter of 13 mm and used as a counter electrode.
  • a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator.
  • the two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body.
  • the electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.).
  • An electrolytic solution was injected into the battery case, and the battery case was sealed to manufacture a lithium ion secondary battery of Example 11.
  • Example 12 In the step of preparing the CaSi 2 powder containing Al, the procedure is the same as in Example 11 except that the addition amount of Al is set to 0.5% with respect to the total mass of Ca, Al and Si.
  • the oxygen-containing layered silicon compound of Example 12 the oxygen-containing silicon material, the carbon-coated oxygen-containing silicon material, the negative electrode and the lithium ion secondary battery were manufactured.
  • Example 13 At the step of preparing a CaSi 2 powder containing Al, without adding Al, except preparing the CaSi 2 powder not containing Al is in the same manner as in Example 11, the oxygen-containing layered silicon of Example 13 Compounds, oxygen-containing silicon materials, carbon coated-oxygen-containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
  • Example 14 (Example 14) b) In the same manner as in Example 11 except that the heating temperature in the step is 900 ° C., and the conditions for the carbon coating step are 880 ° C. and a residence time of 60 minutes under aeration of a propane-argon mixed gas.
  • An oxygen-containing layered silicon compound, an oxygen-containing silicon material, a carbon-coated oxygen-containing silicon material, a negative electrode and a lithium ion secondary battery of Example 14 were manufactured.
  • Example 15 (Example 15) b) In the same manner as in Example 13, except that the heating temperature in the step is 900 ° C., and the conditions for the carbon coating step are 880 ° C. and a residence time of 60 minutes under aeration of propane-argon mixed gas.
  • An oxygen-containing layered silicon compound, an oxygen-containing silicon material, a carbon-coated oxygen-containing silicon material, a negative electrode and a lithium ion secondary battery of Example 15 were manufactured.
  • the preferred oxygen-mass% carbon-coated oxygen-containing silicon material exhibits excellent characteristics as a negative electrode active material. Further, it can be seen that the oxygen mass%, silicon mass% and Al mass% of the carbon-coated silicon-containing silicon material affect the capacity retention rate of the secondary battery.

Abstract

Provided are: a negative electrode active material which contains a silicon material and makes it possible to modify the capacity maintenance rate of a secondary battery to a suitable value; and a method for producing the negative electrode active material. A negative electrode active material characterized by containing an oxygen-containing silicon material having an oxygen content (WO %) of 16 to 27% by mass exclusive (i.e., 16 < WO < 27) and a silicon content (WSi %) of 62 to 81% by mass exclusive (i.e., 62 < WSi < 81).

Description

酸素含有シリコン材料を含む負極活物質及びその製造方法Negative electrode active material containing oxygen-containing silicon material and method of manufacturing the same
 本発明は、酸素含有シリコン材料を含む負極活物質に関する。 The present invention relates to a negative electrode active material containing an oxygen-containing silicon material.
 シリコンは半導体、太陽電池、二次電池などの構成要素として用いられることが知られており、それゆえに、シリコンに関する研究が活発に行われている。 Silicon is known to be used as a component of semiconductors, solar cells, secondary batteries and the like, and hence research on silicon is actively conducted.
 例えば、特許文献1には、CaSiと酸とを反応させてCaを除去した層状ポリシランを主成分とする層状シリコン化合物を合成したこと、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させたシリコン材料を製造したこと、及び、当該シリコン材料を負極活物質として具備するリチウムイオン二次電池が記載されている。 For example, Patent Document 1 discloses that a layered silicon compound mainly composed of layered polysilane from which CaSi 2 is reacted with an acid to remove Ca is synthesized, and the layered silicon compound is heated at 300 ° C. or higher to generate hydrogen. A lithium ion secondary battery is described which has produced a detached silicon material and which comprises the silicon material as a negative electrode active material.
国際公開第2014/080608号International Publication No. 2014/080608
 シリコン材料を二次電池の負極活物質として採用する場合、電荷担体を吸蔵及び放出するとの負極活物質としての機能を発揮するのは、シリコンそのものである。そのため、電荷担体を吸蔵及び放出するとの機能を向上させるには、シリコン材料の純度を高くする必要がある。しかしながら、シリコンの割合が高いシリコン材料を負極活物質として用いた二次電池においては、(初期放電容量)/(初期充電容量)で示される初期効率が改善されるものの、充放電を繰り返した際の容量が大きく減少することが判明した。 When a silicon material is employed as a negative electrode active material of a secondary battery, it is silicon itself that exhibits the function as a negative electrode active material for storing and releasing charge carriers. Therefore, to improve the function of inserting and extracting charge carriers, it is necessary to increase the purity of the silicon material. However, in a secondary battery using a silicon material with a high proportion of silicon as the negative electrode active material, although the initial efficiency indicated by (initial discharge capacity) / (initial charge capacity) is improved, when charging and discharging are repeated It was found that the capacity of
 本発明は、かかる事情に鑑みて為されたものであり、二次電池の容量維持率を好適化可能な、シリコン材料を含む負極活物質及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a negative electrode active material containing a silicon material and a method of manufacturing the same, which can optimize the capacity retention rate of a secondary battery.
 本発明者は、試行錯誤を繰り返し、シリコン材料の製造方法を検討した。その結果、シリコン以外の元素をある程度含有するシリコン材料を採用した二次電池が、容量維持率に優れることを見出した。
 本発明は、シリコン以外の元素として酸素に着目した、酸素含有シリコン材料に関するものであり、特に、酸素含有シリコン材料の酸素含有量を制御し得る製造方法を提供するものである。
The inventor repeated trial and error and examined a method of manufacturing a silicon material. As a result, it has been found that a secondary battery employing a silicon material containing an element other than silicon to some extent is excellent in capacity retention rate.
The present invention relates to an oxygen-containing silicon material focusing on oxygen as an element other than silicon, and in particular, to provide a manufacturing method capable of controlling the oxygen content of the oxygen-containing silicon material.
 本発明の負極活物質は、酸素質量%(W%)が16<W<27であり、シリコン質量%(WSi%)が62<WSi<81である酸素含有シリコン材料(以下、本発明の酸素含有シリコン材料ということがある。)を含むことを特徴とする。 The negative electrode active material of the present invention has an oxygen mass% (W 2 O %) of 16 <W 2 O <27 and an silicon mass% (W Si %) of 62 <W Si <81 (hereinafter referred to as And the oxygen-containing silicon material of the present invention).
 本発明の酸素含有シリコン材料を含む負極活物質の製造方法の一態様は、
 a-1)CaSiを15~50℃の酸水溶液と反応させて、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程、
 b)前記酸素含有層状シリコン化合物を300℃以上で加熱して、酸素含有シリコン材料を合成する工程、
 を含むことを特徴とする。
One embodiment of a method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention is
a-1) reacting CaSi 2 with an aqueous acid solution at 15 to 50 ° C. to synthesize an oxygen-containing layered silicon compound containing layered polysilane,
b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material;
It is characterized by including.
 本発明の酸素含有シリコン材料を含む負極活物質の製造方法の他の一態様は、
 a-2-1)CaSiを-20~10℃の酸水溶液と反応させる工程、
 a-2-2)前記a-2-1)工程に引き続き、反応液の温度を15~50℃として、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程、
 b)前記酸素含有層状シリコン化合物を300℃以上で加熱して、酸素含有シリコン材料を合成する工程、
 を含むことを特徴とする。
Another aspect of the method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention is
a-2-1) reacting CaSi 2 with an aqueous acid solution at −20 to 10 ° C.,
a-2-2) a step of synthesizing an oxygen-containing layered silicon compound containing layered polysilane with the temperature of the reaction liquid being set to 15 to 50 ° C., following the above step a-2-1),
b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material;
It is characterized by including.
 本発明により、二次電池の容量維持率を好適化可能な、酸素含有シリコン材料を含む負極活物質及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a negative electrode active material containing an oxygen-containing silicon material and a method for producing the same, which can optimize the capacity retention rate of a secondary battery.
評価例2における、各リチウムイオン二次電池の積算容量と放電容量の関係を示すグラフである。It is a graph which shows the relationship of the integral capacity and discharge capacity of each lithium ion secondary battery in evaluation example 2. FIG. 評価例9における、各リチウムイオン二次電池の積算容量と放電容量の関係を示すグラフである。It is a graph which shows the relationship of the integral capacity and discharge capacity of each lithium ion secondary battery in evaluation example 9. FIG.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。 Below, the form for implementing this invention is demonstrated. Incidentally, unless otherwise specified, the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in that range. And a numerical range can be constituted by combining these arbitrarily including the upper limit and lower limit, and the numerical value listed in the example. Furthermore, numerical values arbitrarily selected from these numerical ranges can be used as new upper and lower numerical values.
 本発明の負極活物質は、酸素質量%(W%)が16<W<27であり、シリコン質量%(WSi%)が62<WSi<81である酸素含有シリコン材料を含むことを特徴とする。 The negative electrode active material of the present invention contains an oxygen-containing silicon material in which oxygen mass% (W 2 O %) is 16 <W 2 O <27 and silicon mass% (W Si %) is 62 <W Si <81. It is characterized by
 本発明の酸素含有シリコン材料は、リチウムイオン二次電池などの二次電池の負極活物質として使用できる。本発明の酸素含有シリコン材料は酸素とシリコンの割合が適切であるため、本発明の酸素含有シリコン材料を具備する二次電池は、容量維持率、容量、及び初期効率のすべてをバランス良く満足する。 The oxygen-containing silicon material of the present invention can be used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery. Since the oxygen-containing silicon material of the present invention has an appropriate ratio of oxygen to silicon, the secondary battery comprising the oxygen-containing silicon material of the present invention satisfies all of the capacity retention rate, capacity, and initial efficiency in a well-balanced manner. .
 酸素質量%が過度に低く、シリコン質量%が過度に高い酸素含有シリコン材料は、負極活物質としての容量及び初期効率に優れるものの、容量維持率に劣る。他方、酸素質量%が過度に高く、シリコン質量%が過度に低い酸素含有シリコン材料は、負極活物質としての容量及び初期効率に劣る。 An oxygen-containing silicon material having an excessively low oxygen mass% and an excessively high silicon mass% is excellent in capacity and initial efficiency as a negative electrode active material, but is inferior in capacity retention rate. On the other hand, an oxygen-containing silicon material having an excessively high oxygen content by mass and an excessively low silicon content by mass is inferior in capacity and initial efficiency as a negative electrode active material.
 本発明の酸素含有シリコン材料における酸素質量%(W%)は、16.5≦W≦26.5が好ましく、17≦W≦26がより好ましく、18≦W≦25.5がさらに好ましく、19≦W≦25が特に好ましい。
 本発明の酸素含有シリコン材料におけるシリコン質量%(WSi%)は、65≦WSi≦80を満足するのが好ましく、68≦WSi≦79を満足するのがより好ましく、70≦WSi≦78を満足するのがさらに好ましく、70≦WSi≦76を満足するのが特に好ましい。
Oxygen mass% in the oxygen-containing silicon material of the present invention (W O%) is preferably 16.5 ≦ W O ≦ 26.5, and more preferably 17 ≦ W O ≦ 26, is 18 ≦ W O ≦ 25.5 More preferably, 19 ≦ W o ≦ 25 is particularly preferred.
The silicon mass% (W Si %) in the oxygen-containing silicon material of the present invention preferably satisfies 65 ≦ W Si ≦ 80, more preferably 68 ≦ W Si ≦ 79, and 70 ≦ W Si ≦ It is further preferable to satisfy 78, and it is particularly preferable to satisfy 70 ≦ W Si ≦ 76.
 本発明の酸素含有シリコン材料は、酸素及びシリコン以外の元素を含有してもよい。かかる元素としては、Alが好ましい。Alを含有する本発明の酸素含有シリコン材料は、抵抗が低減する。そのため、Alを含有する本発明の酸素含有シリコン材料は、負極活物質としての機能に優れるといえる。 The oxygen-containing silicon material of the present invention may contain elements other than oxygen and silicon. As such an element, Al is preferable. The oxygen-containing silicon material of the present invention containing Al has a reduced resistance. Therefore, it can be said that the oxygen-containing silicon material of the present invention containing Al is excellent in the function as a negative electrode active material.
 また、二次電池の充放電条件下においては、電解液の構成成分が分解して、負極活物質の表面に酸素を含むSEI(Solid Electrolyte Interphase)被膜が形成することが知られている。ここで、負極活物質がシリコンを含有する場合、シリコンがSEI被膜に含まれる酸素によって酸化されて劣化することが懸念される。
 しかしながら、Alを含有する本発明の酸素含有シリコン材料は、Alを含有するので、シリコンの酸化劣化が抑制されると考えられる。その理由は、Alはシリコンよりも電気陰性度が低いため酸素と優先的にかつ安定に結合すると考えられる点、Alと酸素とのAl-O結合がSi-O結合よりも安定である点、及び、安定なAl-O結合を形成した酸素はAlよりも電気陰性度の高いシリコンの酸化には関与し難いといえる点にある。
 したがって、Alを含有する本発明の酸素含有シリコン材料を負極活物質として具備する二次電池は、長寿命であることが期待できる。
Further, it is known that, under charge and discharge conditions of a secondary battery, constituents of the electrolytic solution are decomposed to form an SEI (Solid Electrolyte Interphase) film containing oxygen on the surface of the negative electrode active material. Here, when the negative electrode active material contains silicon, there is a concern that silicon is oxidized by oxygen contained in the SEI film to be degraded.
However, since the oxygen-containing silicon material of the present invention containing Al contains Al, it is considered that the oxidative degradation of silicon is suppressed. The reason is that Al is considered to bind preferentially and stably to oxygen since it has lower electronegativity than silicon, and that Al-O bond of Al and oxygen is more stable than Si-O bond. Also, oxygen having a stable Al—O bond can be said to be less likely to be involved in the oxidation of silicon which is more electronegative than Al.
Therefore, a secondary battery having the oxygen-containing silicon material of the present invention containing Al as a negative electrode active material can be expected to have a long life.
 本発明の酸素含有シリコン材料におけるAl質量%(WAl%)は、0<WAl<1を満足するのが好ましく、0<WAl≦0.8を満足するのがより好ましく、0.01≦WAl≦0.6を満足するのがさらに好ましく、0.05≦WAl≦0.4を満足するのが特に好ましい。 It is preferable that Al mass% (W Al %) in the oxygen-containing silicon material of the present invention satisfy 0 <W Al <1, and more preferably 0 <W Al ≦ 0.8. It is further preferable to satisfy ≦ W Al ≦ 0.6, and it is particularly preferable to satisfy 0.05 ≦ W Al ≦ 0.4.
 本発明の酸素含有シリコン材料には、製造工程由来の不純物や、原料由来の不純物が含有される場合がある。後述するように、本発明の酸素含有シリコン材料の製造方法においては、酸を使用する。当該酸のアニオン由来の元素は、不純物として本発明の酸素含有シリコン材料に含有されやすい。
 本発明の酸素含有シリコン材料における、酸のアニオン由来の元素質量%(W%)は、小さい値が好ましい。W%が大きい場合、酸素含有シリコン材料の不可逆容量が増加するため、初期効率が低下する。W%の範囲として、0<W<8を例示できる。W%の範囲は、0<W<6を満足するのが好ましく、0<W≦4を満足するのがより好ましく、0<W≦3を満足するのがさらに好ましく、0<W≦2を満足するのが特に好ましい。酸のアニオンがハロゲンの場合には、酸のアニオン由来の元素質量%(W%)を、ハロゲン質量%(W%)と読み替える。
The oxygen-containing silicon material of the present invention may contain an impurity derived from a manufacturing process or an impurity derived from a raw material. As described later, in the method for producing an oxygen-containing silicon material of the present invention, an acid is used. The element derived from the anion of the acid is likely to be contained as an impurity in the oxygen-containing silicon material of the present invention.
In the oxygen-containing silicon material of the present invention, the element mass% (W x %) derived from the acid anion is preferably a small value. When W x % is large, the irreversible capacity of the oxygen-containing silicon material is increased, thereby reducing the initial efficiency. As a range of W x %, 0 <W x <8 can be illustrated. The range of W x % preferably satisfies 0 <W x <6, more preferably 0 <W x ≦ 4, and still more preferably 0 <W x ≦ 3. It is particularly preferred to satisfy W x ≦ 2. When the acid anion is a halogen, the element mass% (W x %) derived from the acid anion is read as halogen mass% (W x %).
 本発明の酸素含有シリコン材料に含有され得る不純物として、CaとFeを例示できる。Caは、原料のCaSiに由来する。Feは、原料中の不純物である。 Examples of impurities that can be contained in the oxygen-containing silicon material of the present invention include Ca and Fe. Ca is derived from the raw material CaSi 2 . Fe is an impurity in the raw material.
 本発明の酸素含有シリコン材料における、Ca質量%(WCa%)は、小さい値が好ましい。本発明の酸素含有シリコン材料におけるCa質量%(WCa%)は、0≦WCa<5を満足するのが好ましく、0≦WCa≦1を満足するのがより好ましく、0≦WCa≦0.5を満足するのがさらに好ましく、0≦WCa≦0.3を満足するのが特に好ましい。Caの混入容易性及び除去困難性を鑑みると、本発明の酸素含有シリコン材料におけるCa質量%(WCa%)は、0<WCaとなる場合が想定される。 The Ca mass% (W Ca %) in the oxygen-containing silicon material of the present invention is preferably a small value. Ca mass% in the oxygen-containing silicon material of the present invention (W Ca%) is preferably satisfies 0 ≦ W Ca <5, more preferably satisfies 0 ≦ W Ca ≦ 1, 0 ≦ W Ca ≦ It is further preferable to satisfy 0.5, and it is particularly preferable to satisfy 0 ≦ W Ca ≦ 0.3. In view of easiness of mixing and removal of Ca , it is assumed that Ca mass% (W Ca %) in the oxygen-containing silicon material of the present invention is 0 <W Ca.
 本発明の酸素含有シリコン材料における、Fe質量%(WFe%)は、小さい値が好ましい。本発明の酸素含有シリコン材料におけるFe質量%(WFe%)は、0≦WFe≦3を満足するのが好ましく、0≦WFe≦1を満足するのがより好ましく、0≦WFe≦0.5を満足するのがさらに好ましく、0≦WFe≦0.3を満足するのが特に好ましく、0≦WFe≦0.1を満足するのが最も好ましい。Feの混入容易性及び除去困難性を鑑みると、本発明のAl含有シリコン材料におけるFe質量%(WFe%)は、0<WFeとなる場合が想定される。
 また、Al質量%(WAl%)とFe質量%(WFe%)の関係が、WAl>WFeを満足するのが好ましく、WAl>2×WFeを満足するのがより好ましい。
The Fe mass% (W 2 Fe %) in the oxygen-containing silicon material of the present invention is preferably a small value. Fe wt% in the oxygen-containing silicon material of the present invention (W Fe%) is preferably satisfies 0 ≦ W Fe ≦ 3, more preferably satisfies 0 ≦ W Fe ≦ 1, 0 ≦ W Fe ≦ It is more preferable to satisfy 0.5, particularly preferably to satisfy 0 ≦ W Fe ≦ 0.3, and most preferably to satisfy 0 ≦ W Fe ≦ 0.1. In view of easiness of mixing of Fe and difficulty of removal, it is assumed that Fe mass% (W 2 Fe %) in the Al-containing silicon material of the present invention is 0 <W 2 Fe .
Moreover, it is preferable that the relationship of Al mass% (W Al %) and Fe mass% (W Fe %) satisfies W Al > W Fe, and more preferably W Al > 2 × W Fe .
 構造の面からは、本発明の酸素含有シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するのが好ましい。この積層構造は、走査型電子顕微鏡などによる観察で確認できる。本発明の酸素含有シリコン材料をリチウムイオン二次電池の負極活物質として使用することを考慮すると、リチウムイオンの効率的な挿入及び脱離反応のためには、板状シリコン体は厚さが10nm~100nmの範囲内のものが好ましく、20nm~50nmの範囲内のものがより好ましい。また、板状シリコン体の長軸方向の長さは、0.1μm~50μmの範囲内のものが好ましい。また、板状シリコン体は、(長軸方向の長さ)/(厚さ)が2~1000の範囲内であるのが好ましい。なお、板状シリコン体の積層構造は、原料のCaSiにおけるSi層の名残りと考えられる。 From the viewpoint of structure, the oxygen-containing silicon material of the present invention preferably has a structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction. This laminated structure can be confirmed by observation with a scanning electron microscope or the like. Considering using the oxygen-containing silicon material of the present invention as a negative electrode active material of a lithium ion secondary battery, the plate-like silicon body has a thickness of 10 nm for efficient insertion and desorption reaction of lithium ions. Those in the range of ̃100 nm are preferable, and those in the range of 20 nm to 50 nm are more preferable. The length of the plate-like silicon body in the long axis direction is preferably in the range of 0.1 μm to 50 μm. The plate-like silicon body preferably has a (longitudinal direction length) / (thickness) in the range of 2 to 1,000. The layered structure of the plate-like silicon body is considered to be the remnant of the Si layer in CaSi 2 of the raw material.
 本発明の酸素含有シリコン材料は、アモルファスシリコン及びシリコン結晶のいずれかを含有してもよいし、両者を含有してもよい。シリコン結晶のサイズとしては、ナノサイズのものが好ましい。具体的には、シリコン結晶のサイズは、0.5nm~300nmの範囲内が好ましく、1nm~100nmの範囲内がより好ましく、1nm~50nmの範囲内がさらに好ましく、1nm~10nmの範囲内が特に好ましい。なお、シリコン結晶のサイズは、シリコン材料に対してX線回折測定(XRD測定)を行い、得られたXRDチャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。 The oxygen-containing silicon material of the present invention may contain either or both of amorphous silicon and silicon crystals. The size of the silicon crystal is preferably nano-sized. Specifically, the size of the silicon crystal is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, particularly preferably in the range of 1 nm to 10 nm preferable. In addition, the size of the silicon crystal is calculated from the Scheller equation using the half value width of the diffraction peak of the Si (111) surface of the obtained XRD chart by performing X-ray diffraction measurement (XRD measurement) on the silicon material. Ru.
 本発明の酸素含有シリコン材料のシリコンにおける、結晶とアモルファスとの比率としては、0:100~100:0、1:99~50:50、0:100~30:70、5:95~30:70、10:90~20:80の範囲を例示できる。 The ratio of crystal to amorphous in silicon of the oxygen-containing silicon material of the present invention is 0: 100 to 100: 0, 1: 99 to 50: 50, 0: 100 to 30: 70, 5: 95 to 30: The range of 70, 10: 90 to 20: 80 can be exemplified.
 本発明の酸素含有シリコン材料は粉末状態のものが好ましく、一定の粒度分布を示す粒子の集合体であるのが好ましい。本発明の酸素含有シリコン材料の平均粒子径としては、0.5~30μmの範囲内が好ましく、1~20μmの範囲内がより好ましく、2~10μmの範囲内がさらに好ましい。なお、本明細書において、平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で測定した場合のD50を意味する。 The oxygen-containing silicon material of the present invention is preferably in the form of powder, and is preferably an aggregate of particles exhibiting a certain particle size distribution. The average particle diameter of the oxygen-containing silicon material of the present invention is preferably in the range of 0.5 to 30 μm, more preferably in the range of 1 to 20 μm, and still more preferably in the range of 2 to 10 μm. In the present specification, the average particle size means the D 50 as measured by conventional laser diffraction type particle size distribution measuring apparatus.
 本発明の酸素含有シリコン材料におけるBET比表面積としては、0.5~15m/gの範囲内、0.5~10m/gの範囲内、1~10m/gの範囲内、3~10m/gの範囲内を例示できる。 The BET specific surface area of the oxygen-containing silicon material of the present invention is in the range of 0.5 to 15 m 2 / g, in the range of 0.5 to 10 m 2 / g, in the range of 1 to 10 m 2 / g, 3 to The range of 10 m 2 / g can be exemplified.
 次に、本発明の酸素含有シリコン材料を含む負極活物質の製造方法(以下、単に「本発明の製造方法」ということがある。)について説明する。
 本発明の製造方法において鍵となるのは、CaSiを酸水溶液と反応させて、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程において、反応液の温度を15~50℃に設定することにより、層状ポリシランを含む酸素含有層状シリコン化合物、及び本発明の酸素含有シリコン材料における酸素含有量を制御することにある。
Next, a method for producing a negative electrode active material containing the oxygen-containing silicon material of the present invention (hereinafter, sometimes simply referred to as “the production method of the present invention”) will be described.
The key to the production method of the present invention is to set the temperature of the reaction solution to 15 to 50 ° C. in the step of reacting CaSi 2 with an aqueous acid solution to synthesize an oxygen-containing layered silicon compound containing layered polysilane. And controlling the oxygen content in the oxygen-containing layered silicon compound containing layered polysilane and the oxygen-containing silicon material of the present invention.
 本発明の製造方法の一態様は、
 a-1)CaSiを15~50℃の酸水溶液と反応させて、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程(以下、単に「a-1)工程」ということがある。)、
 b)前記酸素含有層状シリコン化合物を300℃以上で加熱して、酸素含有シリコン材料を合成する工程(以下、単に「b)工程」ということがある。)、を含むことを特徴とする。
One aspect of the production method of the present invention is
a-1) A step of synthesizing an oxygen-containing layered silicon compound containing layered polysilane by reacting CaSi 2 with an aqueous acid solution of 15 to 50 ° C. (hereinafter simply referred to as “a-1) step”. ),
b) A step of synthesizing the oxygen-containing silicon material by heating the oxygen-containing layered silicon compound at 300 ° C. or higher (hereinafter simply referred to as “step b”). And the like.
 a-1)工程において、酸水溶液として塩化水素水溶液(塩酸)を使用する場合は、以下の式(1)で示す反応が進行し、次いで、層状ポリシランであるSiの表面において、例えば式(2)で示す反応が進行すると考えられる。よって、a-1)工程は、層状ポリシランを含む酸素含有層状シリコン化合物、及び本発明の酸素含有シリコン材料における、酸素含有量を決定する鍵工程であるといえる。
 式(1) 3CaSi+6HCl→Si+3CaCl
 式(2) Si+3HO→Si(OH)+3H
When an aqueous hydrogen chloride solution (hydrochloric acid) is used as the aqueous acid solution in step a-1), the reaction represented by the following formula (1) proceeds, and then, for example, on the surface of Si 6 H 6 which is a layered polysilane: It is considered that the reaction represented by the formula (2) proceeds. Therefore, the step a-1) can be said to be a key step for determining the oxygen content in the oxygen-containing layered silicon compound containing the layered polysilane and the oxygen-containing silicon material of the present invention.
Formula (1) 3CaSi 2 +6 HCl → Si 6 H 6 +3 CaCl 2
Formula (2) Si 6 H 6 + 3H 2 O → Si 6 H 3 (OH) 3 + 3H 2
 a-1)工程の上記温度としては、18~45℃の範囲内が好ましく、20~40℃の範囲内がより好ましい。a-1)工程の温度を制御するには、恒温槽などの恒温装置を使用すればよい。a-1)工程の処理時間としては、1~50時間、5~40時間、10~30時間を例示できる。 The temperature in the step a-1) is preferably in the range of 18 to 45 ° C., and more preferably in the range of 20 to 40 ° C. a-1) In order to control the temperature in the step, a thermostat such as a thermostat may be used. The treatment time of step a-1) may be 1 to 50 hours, 5 to 40 hours, or 10 to 30 hours.
 a-1)工程に替えて、以下のa-2-1)工程及びa-2-2)工程を採用してもよい。
 a-2-1)CaSiを-20~10℃の酸水溶液と反応させる工程
 a-2-2)前記a-2-1)工程に引き続き、反応液の温度を15~50℃として、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程
Instead of the step a-1), the following steps a-2-1) and a-2-2) may be employed.
a-2-1) A step of reacting CaSi 2 with an aqueous acid solution at -20 to 10 ° C a-2-2) Subsequent to the step a-2-1), the temperature of the reaction liquid is changed to 15 to 50 ° C to form a layer Process for synthesizing an oxygen-containing layered silicon compound containing polysilane
 a-2-1)工程においては、主に式(1)で示す反応が進行すると考えられ、a-2-2)工程においては、主に式(2)で示す反応が進行すると考えられる。よって、a-2-2)工程は、層状ポリシランを含む酸素含有層状シリコン化合物、及び本発明の酸素含有シリコン材料における、酸素含有量を決定する鍵工程であるといえる。 In the a-2-1) step, the reaction represented by the formula (1) is considered to proceed, and in the a-2-2) step, the reaction represented by the formula (2) is considered to proceed. Therefore, it can be said that the step a-2-2) is a key step for determining the oxygen content in the oxygen-containing layered silicon compound containing the layered polysilane and the oxygen-containing silicon material of the present invention.
 a-2-1)工程をa-2-2)工程に切り替えるタイミングとしては、反応に由来する発熱が一段落した時点や、反応液からの発泡が一段落した時点を挙げることができる。a-2-1)工程をa-2-2)工程に切り替えるには、a-2-1)工程で用いた恒温装置を昇温してもよいし、a-2-1)工程で用いた恒温装置を、あらかじめ15~50℃の温度範囲内に調整した他の恒温装置と交換してもよい。 Examples of the timing at which the step a-2-1) is switched to the step a-2-2) include a point at which the heat generation resulting from the reaction has taken a break, and a point at which bubbling from the reaction solution has taken a break. In order to switch the a-2-1) step to the a-2-2) step, the temperature-controlled device used in the a-2-1) step may be heated, or it may be used in the a-2-1) step The same thermostat may be replaced with another thermostat which has been previously adjusted to a temperature range of 15 to 50.degree.
 a-2-1)工程の温度としては、-10~5℃の範囲内が好ましく、-5~5℃の範囲内がより好ましい。a-2-1)工程の具体的な時間としては、CaSiと酸水溶液との混合が終了してから、10分間、20分間、1時間又は2時間などを例示できる。
 a-2-2)工程の温度としては、18~45℃の範囲内が好ましく、20~40℃の範囲内がより好ましい。a-2-2)工程の具体的な時間としては、1~50時間、5~40時間、10~30時間を例示できる。
The temperature in the step a-2-1) is preferably in the range of -10 to 5 ° C, more preferably in the range of -5 to 5 ° C. As a specific time of the step a-2-1), for example, 10 minutes, 20 minutes, 1 hour or 2 hours, etc. can be exemplified after the completion of mixing of CaSi 2 and the aqueous acid solution.
The temperature in the step a-2-2) is preferably in the range of 18 to 45 ° C., and more preferably in the range of 20 to 40 ° C. As a specific time of step a-2-2), 1 to 50 hours, 5 to 40 hours, and 10 to 30 hours can be exemplified.
 以下、CaSiを酸水溶液と反応させて層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程を総称して、a)工程ということがある。 Hereinafter, the process of reacting CaSi 2 with an aqueous acid solution to synthesize an oxygen-containing layered silicon compound containing layered polysilane may be collectively referred to as a process a).
 原料であるCaSiは、一般にCa層とSi層が積層した構造からなる。CaSiは、公知の製造方法で合成してもよく、市販されているものを採用してもよい。a)工程に用いるCaSiは、あらかじめ粉砕し、粉末状にしておくことが好ましい。 CaSi 2 which is a raw material generally has a structure in which a Ca layer and a Si layer are laminated. CaSi 2 may be synthesized by a known production method, or a commercially available one may be adopted. CaSi 2 used in step a), previously crushed, it is preferable to powdered.
 CaSiは、Alを含有しているものが好ましい。Alの含有量としては、4.5%未満が好ましく、0.01~3%の範囲内がより好ましく、0.05~2%の範囲内がさらに好ましく、0.1~1%の範囲内が特により好ましい。 CaSi 2 preferably contains Al. The content of Al is preferably less than 4.5%, more preferably in the range of 0.01 to 3%, still more preferably in the range of 0.05 to 2%, and in the range of 0.1 to 1% Is particularly preferred.
 酸としては、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸、蟻酸、酢酸、メタンスルホン酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、ヘキサフルオロヒ素酸、フルオロアンチモン酸、ヘキサフルオロケイ酸、ヘキサフルオロゲルマン酸、ヘキサフルオロスズ(IV)酸、トリフルオロ酢酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸、トリフルオロメタンスルホン酸、フルオロスルホン酸が例示される。これらの酸を単独又は併用して使用すれば良い。 As the acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, methanesulfonic acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoro acid Arsenic acid, fluoroantimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV) acid, trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconic acid, trifluoromethanesulfonic acid, fluorosulfonic acid are exemplified. Ru. These acids may be used alone or in combination.
 酸は、1モルのCaSiに対して、2モル以上のプロトンを供給できる量を用いるのが好ましい。a)工程において水を溶媒として使用する理由は、技術的観点からは、CaClなどの不要物の除去が容易な点と、a)工程で製造される層状ポリシランに酸素を導入するのが極めて簡単な点にある。 The acid is preferably used in an amount capable of supplying 2 mol or more of protons to 1 mol of CaSi 2 . The reason for using water as a solvent in step a) is that, from the technical point of view, removal of unnecessary substances such as CaCl 2 is easy and oxygen is extremely introduced into the layered polysilane produced in step a). It is an easy point.
 酸水溶液中における酸の濃度としては、5~36質量%が好ましく、5~30質量%がより好ましく、10~30質量%がさらに好ましく、13~25質量%が特に好ましく、15~20質量%が最も好ましい。酸の濃度が低すぎると、反応の進行が緩慢になるため、生産効率が低下する。他方、酸の濃度が高すぎると、酸のアニオン由来の元素が本発明の酸素含有シリコン材料に多量に含有される。 The concentration of the acid in the aqueous acid solution is preferably 5 to 36% by mass, more preferably 5 to 30% by mass, still more preferably 10 to 30% by mass, particularly preferably 13 to 25% by mass, and 15 to 20% by mass Is most preferred. If the concentration of the acid is too low, the progress of the reaction will be slow and the production efficiency will be reduced. On the other hand, when the concentration of the acid is too high, an element derived from the acid anion is contained in a large amount in the oxygen-containing silicon material of the present invention.
 a)工程における反応条件は、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気下とすることが好ましく、また、撹拌条件下とすることが好ましい。 The reaction conditions in the step a) are preferably under an inert gas atmosphere such as nitrogen, helium or argon, and are preferably under stirring conditions.
 a)工程で得られる酸素含有層状シリコン化合物を単離するために、適宜、濾過工程、洗浄工程、乾燥工程を実施してもよい。酸素含有層状シリコン化合物の酸素量を制御するために、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気下でこれらの工程を実施するのが好ましい。 In order to isolate the oxygen-containing layered silicon compound obtained in the step a), a filtration step, a washing step, and a drying step may be appropriately carried out. In order to control the oxygen content of the oxygen-containing layered silicon compound, it is preferable to carry out these steps under an inert gas atmosphere such as nitrogen, helium or argon.
 次に、b)工程について説明する。b)工程は、酸素含有層状シリコン化合物を300℃以上で加熱する工程である。 Next, the step b) will be described. The step b) is a step of heating the oxygen-containing layered silicon compound at 300 ° C. or higher.
 化学的な観点から述べると、b)工程は、加熱により、酸素含有層状シリコン化合物から水素などを離脱させて、酸素含有シリコン材料を合成する工程である。b)工程において、層状ポリシランから水素を離脱させた場合の反応式を示すと、以下のとおりとなる。
 Si→6Si+3H
From the chemical point of view, the step b) is a step of synthesizing an oxygen-containing silicon material by releasing hydrogen or the like from the oxygen-containing layered silicon compound by heating. The reaction formula when hydrogen is released from the layered polysilane in step b) is as follows.
Si 6 H 66 Si + 3 H 2
 b)工程は、通常の大気下よりも酸素含有量の少ない非酸化性雰囲気下で行われるのが好ましい。非酸化性雰囲気としては、真空を包含する減圧雰囲気、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気を例示できる。加熱温度は、300℃~1000℃の範囲内が好ましく、500℃~900℃の範囲内がより好ましく、600℃~800℃の範囲内がさらに好ましい。加熱温度が低すぎると水素の離脱が十分でない場合がある。他方、加熱温度が高すぎると、酸素含有シリコン材料におけるシリコンの結晶化が過剰に進行して、負極活物質としての性能低下に繋がる虞がある。加熱時間は加熱温度に応じて適宜設定すれば良く、また、反応系外に抜けていく水素などの量を測定しながら加熱時間を決定するのも好ましい。加熱温度及び加熱時間を適宜選択することにより、製造される酸素含有シリコン材料に含まれるアモルファスシリコン及びシリコン結晶の割合、並びに、シリコン結晶の大きさを調製することもでき、さらには、製造される酸素含有シリコン材料に含まれる、アモルファスシリコン及びシリコン結晶を含むナノ水準の厚みの層の形状や大きさを調製することもできる。 The step b) is preferably carried out under a non-oxidizing atmosphere having a lower oxygen content than under normal atmosphere. As the non-oxidizing atmosphere, a reduced pressure atmosphere including vacuum, an inert gas atmosphere such as nitrogen, helium, argon and the like can be exemplified. The heating temperature is preferably in the range of 300 ° C. to 1000 ° C., more preferably in the range of 500 ° C. to 900 ° C., and still more preferably in the range of 600 ° C. to 800 ° C. If the heating temperature is too low, desorption of hydrogen may not be sufficient. On the other hand, if the heating temperature is too high, crystallization of silicon in the oxygen-containing silicon material may proceed excessively, which may lead to a decrease in performance as a negative electrode active material. The heating time may be appropriately set in accordance with the heating temperature, and it is also preferable to determine the heating time while measuring the amount of hydrogen and the like which leaks out of the reaction system. By appropriately selecting the heating temperature and the heating time, the ratio of amorphous silicon and silicon crystals contained in the oxygen-containing silicon material to be produced, and the size of silicon crystals can also be prepared, and further, it is produced It is also possible to adjust the shape and size of a nano-level thick layer including amorphous silicon and silicon crystals contained in the oxygen-containing silicon material.
 本発明の酸素含有シリコン材料は、粉砕や分級を経て、一定の粒度分布の粒子としてもよい。 The oxygen-containing silicon material of the present invention may be pulverized or classified into particles having a constant particle size distribution.
 既述したとおり、本発明の酸素含有シリコン材料は、リチウムイオン二次電池などの二次電池の負極活物質として使用することができる。その際には、本発明の酸素含有シリコン材料を炭素で被覆して用いるのが好ましい。炭素被覆により、導電性が向上するためである。
 炭素被覆の方法としては、酸素含有シリコン材料及び炭素粉末の混合物に対して、強い圧力を付した上で撹拌して一体化するメカニカルミリング法や、炭素源から生じる炭素を酸素含有シリコン材料に蒸着させるCVD(chemical vapor deposition)法を例示できる。
As already stated, the oxygen-containing silicon material of the present invention can be used as a negative electrode active material of a secondary battery such as a lithium ion secondary battery. At that time, it is preferable to use the oxygen-containing silicon material of the present invention coated with carbon. This is because the carbon coating improves the conductivity.
As a method of carbon coating, a mechanical milling method in which a mixture of oxygen-containing silicon material and carbon powder is subjected to strong pressure and then stirred and integrated, or carbon generated from a carbon source is vapor-deposited onto the oxygen-containing silicon material Can be exemplified by chemical vapor deposition (CVD).
 酸素含有シリコン材料の表面を薄い炭素層で均一に被覆できる点から、炭素被覆の方法としては、CVD法が好ましい。そして、CVD法のうち、炭素源である気体状態の有機物を熱で分解して炭素を発生させる熱CVD法が好ましい。 The CVD method is preferable as a carbon coating method in that the surface of the oxygen-containing silicon material can be uniformly coated with a thin carbon layer. Then, among the CVD methods, a thermal CVD method in which a gaseous organic substance which is a carbon source is decomposed by heat to generate carbon is preferable.
 炭素被覆された本発明の酸素含有シリコン材料における炭素質量%(W%)は、1≦W≦10を満足するのが好ましく、3≦W≦9を満足するのがより好ましく、5≦W≦8を満足するのがさらに好ましい。炭素被覆された本発明の酸素含有シリコン材料における炭素以外の元素の含有量については、本発明の酸素含有シリコン材料で説明した数値範囲を援用する。 The carbon mass% (W C %) in the carbon-coated oxygen-containing silicon material of the present invention preferably satisfies 1 ≦ W C ≦ 10, more preferably 3 ≦ W C ≦ 9, and 5 It is further preferable to satisfy ≦ W c ≦ 8. As for the content of elements other than carbon in the carbon-coated oxygen-containing silicon material of the present invention, the numerical range described for the oxygen-containing silicon material of the present invention is incorporated.
 以下、本発明の酸素含有シリコン材料を負極活物質として具備する二次電池について、その代表としてリチウムイオン二次電池を例にして、説明する。本発明の酸素含有シリコン材料を負極活物質として具備するリチウムイオン二次電池を、以下、本発明のリチウムイオン二次電池という。具体的には、本発明のリチウムイオン二次電池は、正極、本発明の酸素含有シリコン材料を負極活物質として具備する負極、電解液及び必要に応じてセパレータを具備する。 Hereinafter, a secondary battery including the oxygen-containing silicon material of the present invention as a negative electrode active material will be described by taking a lithium ion secondary battery as an example. Hereinafter, a lithium ion secondary battery including the oxygen-containing silicon material of the present invention as a negative electrode active material is referred to as a lithium ion secondary battery of the present invention. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode including the oxygen-containing silicon material of the present invention as a negative electrode active material, an electrolytic solution, and a separator as necessary.
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。 The positive electrode has a current collector and a positive electrode active material layer bonded to the surface of the current collector.
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 The current collector refers to a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, stainless steel, etc. A metal material can be illustrated. The current collector may be coated with a known protective layer. What processed the surface of a collector by a well-known method may be used as a collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used. When the current collector is in the form of a foil, a sheet or a film, the thickness is preferably in the range of 1 μm to 100 μm.
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive aid and / or a binder.
 正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、LiNiCoAl(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦3)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極および/または負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。 As the positive electrode active material, a layered compound Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe, Cr, Cu, At least one element selected from Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 3 ), Li a Ni b Co c Al d DeO f (0.2 ≦ a ≦ 2, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, Cu, Zn, Ca, Mg, S , At least one element selected from Si, Na, K, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 3), Li 2 MnO 3 Can. In addition, as a positive electrode active material, spinel such as LiMn 2 O 4 and a solid solution composed of a mixture of spinel and layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (M in the formula is Co, Ni, Mn, Polyanionic compounds represented by (at least one of Fe) and the like can be mentioned. Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as a positive electrode active material may have the above composition formula as a basic composition, and one obtained by replacing the metal element contained in the basic composition with another metal element can also be used. In addition, as a positive electrode active material, a positive electrode active material containing no lithium ion contributing to charge and discharge, for example, a simple substance of sulfur, a compound of sulfur and carbon, a metal sulfide such as TiS 2 , V 2 O 5 , MnO Oxides such as 2 , polyaniline and anthraquinone, and compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic substances, and other known materials can also be used. Furthermore, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl or the like may be adopted as the positive electrode active material. In the case of using a positive electrode active material containing no lithium, it is necessary to add ions to the positive electrode and / or the negative electrode by a known method. Here, in order to add the ions, a metal or a compound containing the ions may be used.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。 A conductive aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. The conductive support agent may be any chemically active high electron conductor, and carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles are exemplified. Ru. Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, channel black and the like. These conductive assistants can be added to the active material layer singly or in combination of two or more.
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.02~1:0.15であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 The compounding ratio of the conductive aid in the active material layer is, in mass ratio, preferably active material: conductive aid = 1: 0.005 to 1: 0.5, 1: 0.01 to 1: 0 The ratio is more preferably 0.2, and more preferably 1: 0.02 to 1: 0.15. If the amount of the conductive additive is too small, efficient conductive paths can not be formed. If the amount of the conductive additive is too large, the formability of the active material layer deteriorates and the energy density of the electrode decreases.
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。 The binder plays the role of anchoring the active material and the conductive aid to the surface of the current collector and maintaining the conductive network in the electrode. The binder may, for example, be a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene or fluororubber, a thermoplastic resin such as polypropylene or polyethylene, an imide resin such as polyimide or polyamideimide, an alkoxysilyl group-containing resin, Examples include acrylic resins such as meta) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethyl cellulose. These binders may be used alone or in combination.
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.05~1:0.3であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.02~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The blending ratio of the binder in the active material layer is, in mass ratio, preferably active material: binder = 1: 0.05 to 1: 0.3, 1: 0.01 to 1: 0 The ratio is more preferably 0.2, and more preferably 1: 0.02 to 1: 0.15. When the amount of the binder is too small, the formability of the electrode decreases, and when the amount of the binder is too large, the energy density of the electrode decreases.
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The negative electrode includes a current collector and a negative electrode active material layer bonded to the surface of the current collector. As the current collector, one described for the positive electrode may be appropriately adopted appropriately. The negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive aid and / or a binder.
 負極活物質としては、本発明の酸素含有シリコン材料を含むものであればよく、本発明の酸素含有シリコン材料のみを採用してもよいし、本発明の酸素含有シリコン材料と公知の負極活物質を併用してもよい。 As the negative electrode active material, any material containing the oxygen-containing silicon material of the present invention may be used, and only the oxygen-containing silicon material of the present invention may be adopted, and the oxygen-containing silicon material of the present invention and the known negative electrode active material You may use together.
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。 As the conductive auxiliary and the binder used for the negative electrode, those described for the positive electrode may be appropriately adopted at the same mixing ratio.
 また、国際公開第2016/063882号に開示される、ポリアクリル酸やポリメタクリル酸などのカルボキシル基含有ポリマーをジアミンなどのポリアミンで架橋した架橋ポリマーを、結着剤として用いてもよい。 In addition, a crosslinked polymer in which a carboxyl group-containing polymer such as polyacrylic acid or polymethacrylic acid as disclosed in WO 2016/063882 is crosslinked with a polyamine such as diamine may be used as a binder.
 架橋ポリマーに用いられるジアミンとしては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、イソホロンジアミン、ビス(4-アミノシクロヘキシル)メタン等の含飽和炭素環ジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、ビス(4-アミノフェニル)スルホン、ベンジジン、o-トリジン、2,4-トリレンジアミン、2,6-トリレンジアミン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミンが挙げられる。 Examples of the diamine used for the cross-linked polymer include alkylene diamines such as ethylene diamine, propylene diamine and hexamethylene diamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, isophorone diamine, bis (4-aminocyclohexyl) methane and the like. Saturated carbocyclic ring diamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, bis (4-aminophenyl) sulfone, benzidine, o-tolidine, 2,4- Aromatic diamines such as tolylene diamine, 2,6-tolylene diamine, xylylene diamine and naphthalene diamine can be mentioned.
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form an active material layer on the surface of a current collector, current collection can be performed using conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, and curtain coating. The active material may be applied to the surface of the body. Specifically, the active material, the solvent, and, if necessary, the binder and / or the conductive auxiliary agent are mixed to prepare a slurry. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and water. The slurry is applied to the surface of a current collector and then dried. The dried one may be compressed to increase the electrode density.
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. Examples of cyclic esters include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate. Examples of chain esters include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like. As the ethers, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be exemplified. As the non-aqueous solvent, a compound in which part or all of hydrogens in the chemical structure of the above specific solvent is substituted with fluorine may be adopted.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(FSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (FSO 2 ) 2 .
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiN(FSOなどのリチウム塩を0.5~3.5mol/L、1~3mol/L、1.6~2.5mol/Lの濃度で溶解させた溶液を例示できる。 As electrolyte solution, 0.5 to 3.5 mol of lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiN (FSO 2 ) 2 and the like in nonaqueous solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate and the like A solution dissolved at a concentration of 1 / L, 1 to 3 mol / L, or 1.6 to 2.5 mol / L can be exemplified.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing a short circuit due to the contact of the both electrodes. As a separator, synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile, etc., polysaccharides such as cellulose and amylose, natural substances such as fibroin, keratin, lignin and suberin Examples thereof include porous bodies, non-woven fabrics, and woven fabrics using one or more kinds of electrically insulating materials such as polymers and ceramics. In addition, the separator may have a multilayer structure.
 次に、正極、負極及び電解液を用いた本発明のリチウムイオン二次電池の製造方法について説明する。 Next, a method of manufacturing a lithium ion secondary battery of the present invention using a positive electrode, a negative electrode and an electrolytic solution will be described.
 例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。 For example, the positive electrode and the negative electrode sandwich a separator to form an electrode body. The electrode body may be any of a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a laminate of a positive electrode, a separator and a negative electrode is wound. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collection lead or the like, an electrolytic solution is added to the electrode body to form a lithium ion secondary battery. Good.
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle using electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form a battery pack. As an apparatus which mounts a lithium ion secondary battery, various household appliances driven by a battery, such as a personal computer and a mobile communication apparatus, as well as a vehicle, an office apparatus, an industrial apparatus and the like can be mentioned. Furthermore, the lithium ion secondary battery of the present invention can be used in wind power generation, solar power generation, hydroelectric power generation, storage devices and power smoothing devices for electric power systems, power sources for power and / or accessories of ships, etc., aircraft, Power supply source for power of spacecraft and / or accessories, auxiliary power supply for vehicles not using electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charge station etc. for electric vehicles.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。  Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples. The present invention is not limited by these examples.
(実施例1)
 a)工程
 a-1)工程
 不純物としてFeを含有するCaSi粉末を準備した。
 35質量%塩酸を入れた反応容器を、18℃の恒温槽に設置した。塩酸の温度が18℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、2時間撹拌を継続し、その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例1の酸素含有層状シリコン化合物を得た。
Example 1
a) Step a-1) Step CaSi 2 powder containing Fe as an impurity was prepared.
The reaction vessel containing 35 mass% hydrochloric acid was placed in a thermostat at 18 ° C. After confirming that the temperature of hydrochloric acid had reached 18 ° C., the above CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 2 hours after the addition of the CaSi 2 powder, and then the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 1.
 b)工程
 実施例1の酸素含有層状シリコン化合物を、窒素ガス雰囲気下にて900℃で1時間加熱し、酸素含有シリコン材料を得た。これを実施例1の酸素含有シリコン材料とした。
b) Step The oxygen-containing layered silicon compound of Example 1 was heated at 900 ° C. for 1 hour in a nitrogen gas atmosphere to obtain an oxygen-containing silicon material. This was used as the oxygen-containing silicon material of Example 1.
 実施例1の負極及びリチウムイオン二次電池を以下のとおり製造した。 The negative electrode and the lithium ion secondary battery of Example 1 were produced as follows.
 重量平均分子量80万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’-ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。 A polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid. In addition, a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone. Under stirring conditions, the entire amount of 4,4'-diaminodiphenylmethane solution is added dropwise to 7 mL of a polyacrylic acid solution (corresponding to 9.5 mmol in terms of acrylic acid monomer), and the resulting mixture is allowed to stand at room temperature for 30 minutes. It stirred. Then, using a Dean-Stark apparatus, the mixture was stirred at 130 ° C. for 3 hours to allow the dehydration reaction to proceed, thereby producing a binder solution.
 負極活物質として実施例1の酸素含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の上記結着剤溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N-メチル-2-ピロリドンを除去した。その後、プレス、180℃でのベークをすることで、負極活物質層が形成された実施例1の負極を製造した。 72.5 parts by mass of the oxygen-containing silicon material of Example 1 as a negative electrode active material, 13.5 parts by mass of acetylene black as a conduction aid, and 14 parts by mass of solid content as a binder And, an appropriate amount of N-methyl-2-pyrrolidone was mixed to prepare a slurry. A copper foil was prepared as a current collector for the negative electrode. The slurry was applied in the form of a film on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. Thereafter, the resultant was pressed and baked at 180 ° C. to produce the negative electrode of Example 1 in which the negative electrode active material layer was formed.
 エチレンカーボネート及びジエチルカーボネートを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lの濃度で溶解した溶液を電解液とした。 A solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
 負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容した。電池ケースに電解液を注入し、電池ケースを密閉して、実施例1のリチウムイオン二次電池を製造した。  The negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut to a diameter of 13 mm and used as a counter electrode. A glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator. The two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body. The electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.). The electrolytic solution was injected into the battery case, and the battery case was sealed to manufacture the lithium ion secondary battery of Example 1.
(実施例2)
 a)工程にて、恒温槽の温度を40℃とした以外は、実施例1と同様の方法で、実施例2の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 2)
The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Example 2 are the same as in Example 1 except that in the step a), the temperature of the constant temperature bath is 40 ° C. Manufactured.
(比較例1)
 a)工程にて、恒温槽の温度を0℃とした以外は、実施例1と同様の方法で、比較例1の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 1)
The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Comparative Example 1 are prepared in the same manner as in Example 1 except that the temperature of the constant temperature bath is set to 0 ° C. in step a). Manufactured.
(比較例2)
 a)工程にて、恒温槽の温度を60℃とした以外は、実施例1と同様の方法で、比較例2の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 2)
The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Comparative Example 2 are the same as in Example 1 except that in the step a), the temperature of the constant temperature bath is 60 ° C. Manufactured.
(評価例1)
 実施例1、実施例2、比較例1及び比較例2の酸素含有シリコン材料に対して、蛍光X線分析装置(XRF)を用いて、Si、Cl、Fe及びCaを対象とした元素分析を行った。また、酸素・窒素・水素分析装置(不活性ガス溶融法)を用いて、実施例1、実施例2、比較例1及び比較例2の酸素含有シリコン材料に対して、酸素を対象とした元素分析を行った。
 これらの元素分析の結果を、質量%として、表1に示す。表1から、a)工程の温度が高くなるに従い、シリコン含有量が低くなり、かつ、酸素含有量が高くなることがわかる。 
(Evaluation example 1)
Elemental analysis of Si, Cl, Fe and Ca with respect to the oxygen-containing silicon materials of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 using a fluorescent X-ray analyzer (XRF) went. In addition, with respect to the oxygen-containing silicon materials of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 using an oxygen-nitrogen-hydrogen analyzer (inert gas melting method), an element targeted for oxygen Analysis was carried out.
The results of these elemental analyzes are shown in Table 1 as mass%. It can be seen from Table 1 that as the temperature of the process a) increases, the silicon content decreases and the oxygen content increases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価例2)
 実施例1、実施例2、比較例1及び比較例2のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで充電を行い、その後、電流0.2mAで1.0Vまで放電を行うとの初期充放電を行った。
 さらに、初期充放電後の実施例1、実施例2、比較例1及び比較例2のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで充電を行い、その後、電流0.5mAで1.0Vまで放電を行うとの充放電サイクルを50回行った。
(Evaluation example 2)
The lithium ion secondary batteries of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 are charged to 0.01 V at a current of 0.2 mA, and then discharged to 1.0 V at a current of 0.2 mA. The initial charge and discharge was performed.
Furthermore, the lithium ion secondary batteries of Example 1 and Example 2 and Comparative Examples 1 and 2 after the initial charge and discharge are charged to 0.01 V at a current of 0.5 mA, and then at a current of 0.5 mA. The charge and discharge cycle of discharging to 1.0 V was performed 50 times.
 初期効率及び容量維持率を以下の各式で算出した。
 初期効率(%)=100×(初期放電容量)/(初期充電容量)
 容量維持率(%)=100×(50サイクル時の放電容量)/(1サイクル時の放電容量)
 初期効率及び容量維持率の結果を、元素分析の結果の一部とともに表2に示す。また、50回の充放電サイクルにおける、各リチウムイオン二次電池の積算容量と放電容量の関係を図1に示す。 
The initial efficiency and capacity retention rate were calculated by the following formulas.
Initial efficiency (%) = 100 × (initial discharge capacity) / (initial charge capacity)
Capacity retention rate (%) = 100 × (discharge capacity at 50 cycles) / (discharge capacity at 1 cycle)
The results of the initial efficiency and capacity retention are shown in Table 2 along with some of the elemental analysis results. Further, FIG. 1 shows the relationship between the integrated capacity and the discharge capacity of each lithium ion secondary battery in 50 charge and discharge cycles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の初期効率の結果から、比較例2のリチウムイオン二次電池における初期効率の値が著しく低いことがわかる。比較例2の酸素含有シリコン材料よりも、シリコン質量%が高く、酸素質量%が低い酸素含有シリコン材料が、初期効率に優れるといえる。製造条件の点では、a)工程の温度が60℃未満であることが、初期効率に優れる酸素含有シリコン材料を製造する好適な条件であるといえる。 From the results of the initial efficiency in Table 2, it can be seen that the value of the initial efficiency in the lithium ion secondary battery of Comparative Example 2 is extremely low. It can be said that the oxygen-containing silicon material having a high silicon mass% and a low oxygen mass% is superior to the oxygen-containing silicon material of Comparative Example 2 in the initial efficiency. From the viewpoint of production conditions, it can be said that the temperature of the step a) is less than 60 ° C., which is a suitable condition for producing an oxygen-containing silicon material excellent in initial efficiency.
 表2の容量維持率の結果から、比較例1のリチウムイオン二次電池における容量維持率の値が著しく低いことがわかる。表2の元素分析の結果からみて、酸素質量%が16%以下の酸素含有シリコン材料と、酸素質量%が16%超えの酸素含有シリコン材料では、著しい容量維持率の差があると考えられる。
 製造条件の点では、a)工程の温度が0℃超であることが、酸素の導入に有利であり、容量維持率に優れる酸素含有シリコン材料を製造する条件であるといえる。
From the results of the capacity retention rates in Table 2, it can be seen that the value of the capacity retention rate in the lithium ion secondary battery of Comparative Example 1 is extremely low. From the results of elemental analysis in Table 2, it is considered that there is a significant difference in capacity retention rate between the oxygen-containing silicon material whose oxygen mass% is 16% or less and the oxygen-containing silicon material whose oxygen mass% exceeds 16%.
From the viewpoint of production conditions, it can be said that the temperature of the step a) is more than 0 ° C., which is advantageous for the introduction of oxygen, and a condition for producing an oxygen-containing silicon material excellent in capacity retention.
 また、各リチウムイオン二次電池の積算容量と放電容量の関係を示した図1のグラフから、実施例1及び実施例2の酸素含有シリコン材料が、特に優れた負極活物質であることがわかる。  Further, it is understood from the graph of FIG. 1 showing the relationship between the cumulative capacity and the discharge capacity of each lithium ion secondary battery that the oxygen-containing silicon materials of Example 1 and Example 2 are particularly excellent negative electrode active materials. .
(評価例3)
 実施例1、実施例2、比較例1及び比較例2の酸素含有シリコン材料のBET比表面積を測定した。
 また、ラマン分光装置にて、各酸素含有シリコン材料のラマン分光を測定した。各ラマン分光スペクトルにおいて、520cm-1付近にシリコン結晶に由来するピークが観察され、480cm-1付近にアモルファスシリコンに由来するピークが観察された。アモルファスシリコンとシリコン結晶を重量比1:1で混ぜたサンプルを測定し、当該サンプルの測定結果を基準として、各ピークの強度比からシリコン結晶とアモルファスシリコンの割合を算出した。
 以上の結果を表3に示す。 
(Evaluation example 3)
The BET specific surface areas of the oxygen-containing silicon materials of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were measured.
In addition, Raman spectroscopy of each oxygen-containing silicon material was measured by a Raman spectroscopy apparatus. In each Raman spectrum, a peak derived from silicon crystal was observed at around 520 cm -1 and a peak derived from amorphous silicon was observed at around 480 cm -1 . The sample which mixed amorphous silicon and a silicon crystal by weight ratio 1: 1 was measured, and the ratio of the silicon crystal and the amorphous silicon was computed from the intensity ratio of each peak on the basis of the measurement result of the sample concerned.
The above results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、酸素含有シリコン材料のBET比表面積は、a)工程の温度が上昇するに伴い、大きくなる傾向にあるものの、40℃以上では、ほぼ一定になるといえる。なお、酸素含有シリコン材料におけるシリコン結晶及びアモルファスシリコンの割合については、a)工程の温度とは相関がないと考えられる。  From Table 3, the BET specific surface area of the oxygen-containing silicon material tends to increase as the temperature in the step a) rises, but it can be said that it becomes substantially constant at 40 ° C. or higher. The proportions of silicon crystals and amorphous silicon in the oxygen-containing silicon material are considered to have no correlation with the temperature in the step a).
(実施例3)
 以下のとおり、Alを含有するCaSi粉末を準備した。
 Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して、CaSi粉末にした後に、a)工程に供した。
(Example 3)
An Al-containing CaSi 2 powder was prepared as follows.
Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
 a)工程
 a-2-1)工程
 18質量%塩酸を入れた反応容器を、0℃の恒温槽に設置した。塩酸の温度が0℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、15分間撹拌を継続した。
 a-2-2)工程
 前記a-2-1)工程後に、恒温槽を1℃/分の速度で20℃まで昇温し、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例3の酸素含有層状シリコン化合物を得た。
a) Process a-2-1) Process A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
a-2-2) Step After the step a-2-1), the temperature of the thermostat was raised to 20 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 3.
 b)工程
 実施例3の酸素含有層状シリコン化合物を、窒素ガス雰囲気下にて900℃で1時間加熱し、酸素含有シリコン材料を得た。これを実施例3の酸素含有シリコン材料とした。
b) Step The oxygen-containing layered silicon compound of Example 3 was heated at 900 ° C. for 1 hour in a nitrogen gas atmosphere to obtain an oxygen-containing silicon material. This was used as the oxygen-containing silicon material of Example 3.
 以下、実施例1と同様の方法で、実施例3の負極及びリチウムイオン二次電池を製造した。  Thereafter, in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery of Example 3 were produced.
(実施例4)
 a-2-2)工程にて、恒温槽を1℃/分の速度で30℃まで昇温した以外は、実施例3と同様の方法で、実施例4の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 4)
The oxygen-containing layered silicon compound of Example 4, oxygen-containing in the same manner as in Example 3 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 30 ° C. at a rate of 1 ° C./min. A silicon material, a negative electrode and a lithium ion secondary battery were manufactured.
(実施例5)
 a-2-2)工程にて、恒温槽を1℃/分の速度で40℃まで昇温した以外は、実施例3と同様の方法で、実施例5の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 5)
The oxygen-containing layered silicon compound of Example 5, oxygen-containing in the same manner as in Example 3 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. A silicon material, a negative electrode and a lithium ion secondary battery were manufactured.
(実施例6)
 a)工程を以下のとおりとした以外は、実施例3と同様の方法で、実施例6の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
 a-1)工程
 18質量%塩酸を入れた反応容器を、20℃の恒温槽に設置した。塩酸の温度が20℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例6の酸素含有層状シリコン化合物を得た。 
(Example 6)
The oxygen-containing layered silicon compound, the oxygen-containing silicon material, the negative electrode, and the lithium ion secondary battery of Example 6 were manufactured in the same manner as in Example 3 except that the process a) was performed as follows.
a-1) Step A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 20 ° C. After confirming that the temperature of the hydrochloric acid reached 20 ° C., the CaSi 2 powder was gradually added to the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. After charging of the CaSi 2 powder, the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 6.
(比較例3)
 a-2-2)工程にて、恒温槽を昇温せず、0℃を維持した以外は、実施例3と同様の方法で、比較例3の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 3)
In the step a-2-2), the oxygen-containing layered silicon compound of Comparative Example 3 and the oxygen-containing silicon material in the same manner as in Example 3 except that the constant temperature bath is not heated and maintained at 0 ° C. Negative electrodes and lithium ion secondary batteries were manufactured.
(比較例4)
 a-2-2)工程にて、恒温槽を1℃/分の速度で60℃まで昇温した以外は、実施例3と同様の方法で、比較例4の酸素含有層状シリコン化合物、酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 4)
Oxygen-containing layered silicon compound of Comparative Example 4 in the same manner as in Example 3 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 60 ° C. at a rate of 1 ° C./min A silicon material, a negative electrode and a lithium ion secondary battery were manufactured.
(評価例4)
 実施例3~実施例6、比較例3~比較例4の酸素含有シリコン材料に対して、評価例1と同様の方法で、元素分析を行った。これらの元素分析の結果を、質量%として、表4に示す。 
(Evaluation example 4)
Elemental analysis was performed on the oxygen-containing silicon materials of Examples 3 to 6 and Comparative Examples 3 to 4 in the same manner as in Evaluation Example 1. The results of these elemental analyzes are shown in Table 4 as mass%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、a-2-2)工程の反応温度が上昇するに従い、酸素含有量が増加することがわかる。a-2-2)工程の温度を制御することに因り、以下の式(2)の反応速度を制御し得ると考えられる。
 式(2) Si+3HO→Si(OH)+3H
From the results in Table 4, it can be seen that as the reaction temperature in the step a-2-2) increases, the oxygen content increases. a-2-2) It is considered that the reaction rate of the following formula (2) can be controlled by controlling the temperature of the step.
Formula (2) Si 6 H 6 + 3H 2 O → Si 6 H 3 (OH) 3 + 3H 2
 また、35質量%塩酸を使用した実施例1の酸素含有シリコン材料と比較すると、18質量%塩酸を使用した実施例3~実施例5、比較例3~比較例4の酸素含有シリコン材料におけるCl含有量は、著しく低いことがわかる。  Further, in comparison with the oxygen-containing silicon material of Example 1 using 35 mass% hydrochloric acid, Cl in the oxygen-containing silicon materials of Examples 3 to 5 and Comparative Examples 3 to 4 using 18 mass% hydrochloric acid It can be seen that the content is very low.
(評価例5)
 実施例3~実施例6、比較例3~比較例4のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで充電を行い、その後、電流0.2mAで1.0Vまで放電を行うとの初期充放電を行った。
 さらに、初期充放電後の実施例3~実施例5、比較例3~比較例4のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで充電を行い、その後、電流0.5mAで1.0Vまで放電を行うとの充放電サイクルを50回行った。
(Evaluation example 5)
The lithium ion secondary batteries of Examples 3 to 6 and Comparative Examples 3 to 4 are charged to 0.01 V at a current of 0.2 mA, and then discharged to 1.0 V at a current of 0.2 mA. The initial charge and discharge was performed.
Furthermore, the lithium ion secondary batteries of Example 3 to Example 5 and Comparative Example 3 to Comparative Example 4 after the initial charge and discharge are charged to 0.01 V at a current of 0.5 mA, and then at a current of 0.5 mA. The charge and discharge cycle of discharging to 1.0 V was performed 50 times.
 初期効率及び容量維持率を以下の各式で算出した。
 初期効率(%)=100×(初期放電容量)/(初期充電容量)
 容量維持率(%)=100×(50サイクル時の放電容量)/(1サイクル時の放電容量)
 初期充電容量、初期放電容量、初期効率、容量維持率の結果を、元素分析の結果の一部とともに表5及び表6に示す。 
The initial efficiency and capacity retention rate were calculated by the following formulas.
Initial efficiency (%) = 100 × (initial discharge capacity) / (initial charge capacity)
Capacity retention rate (%) = 100 × (discharge capacity at 50 cycles) / (discharge capacity at 1 cycle)
The results of the initial charge capacity, the initial discharge capacity, the initial efficiency, and the capacity retention rate are shown in Tables 5 and 6 together with part of the results of the elemental analysis.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6の結果から、a-2-2)工程の温度が60℃である比較例4の初期充電容量、初期放電容量及び初期効率の値が、著しく低いことがわかる。この結果は、a-2-2)工程の温度が60℃であったために、酸素導入反応である式(2)の反応が過剰に進行したこと、及び、酸素含有シリコン材料における酸素含有量が高すぎたことが、反映されたといえる。
 また、表6の結果から、a-2-2)工程の温度が0℃である比較例3の容量維持率の値が、著しく低いことがわかる。この結果は、a-2-2)工程の温度が0℃であったために、酸素導入反応である式(2)の反応が緩慢となったこと、及び、酸素含有シリコン材料におけるシリコン含有量が高すぎたことが、反映されたといえる。
From the results of Tables 5 and 6, it is understood that the values of the initial charge capacity, the initial discharge capacity and the initial efficiency of Comparative Example 4 in which the temperature in the step a-2-2) is 60 ° C. are extremely low. The result is that the reaction of the formula (2), which is an oxygen introduction reaction, excessively proceeds because the temperature of the step a-2-2) is 60 ° C., and the oxygen content in the oxygen-containing silicon material is It can be said that what was too high was reflected.
Further, from the results in Table 6, it is understood that the value of the capacity retention rate of Comparative Example 3 in which the temperature in the step a-2-2) is 0 ° C. is extremely low. This result indicates that the reaction of formula (2), which is an oxygen introduction reaction, became slow because the temperature of the step a-2-2) was 0 ° C., and the silicon content in the oxygen-containing silicon material is It can be said that what was too high was reflected.
 なお、表5及び表6から、CaSi粉末投入時の温度が0℃であり、その後20℃に昇温した実施例3と、CaSi粉末投入時の温度が20℃であり、20℃を維持した実施例6は、電池特性の点からは同等の結果を示したといえる。作業面での安全性の観点からは、比較的激しい反応が生じるCaSi粉末投入時は、低温条件下で反応を進行させて、次第に昇温するとの製造方法を採用するのが合理的といえる。  From Tables 5 and 6, the temperature at the time of CaSi 2 powder introduction is 0 ° C., and then the temperature at the time of CaSi 2 powder introduction is 20 ° C., and the temperature at 20 ° C. is 20 ° C. It can be said that Example 6 maintained shows equivalent results in terms of battery characteristics. From the viewpoint of safety in terms of work, it is reasonable to adopt a production method in which the reaction is allowed to proceed under low temperature conditions and the temperature is gradually raised when CaSi 2 powder in which a relatively vigorous reaction occurs is caused .
(実施例7)
 以下のとおり、Alを含有するCaSi粉末を準備した。
 Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して、CaSi粉末にした後に、a)工程に供した。
(Example 7)
An Al-containing CaSi 2 powder was prepared as follows.
Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
 a)工程
 a-2-1)工程
 18質量%塩酸を入れた反応容器を、0℃の恒温槽に設置した。塩酸の温度が0℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、15分間撹拌を継続した。
a) Process a-2-1) Process A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
 a-2-2)工程
 前記a-2-1)工程後に、恒温槽を1℃/分の速度で20℃まで昇温し、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例7の酸素含有層状シリコン化合物を得た。
a-2-2) Step After the step a-2-1), the temperature of the thermostat was raised to 20 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 7.
 b)工程
 実施例7の酸素含有層状シリコン化合物を、窒素ガス雰囲気下にて900℃で1時間加熱し、酸素含有シリコン材料を得た。当該酸素含有シリコン材料を、ジェットミルを用いて粉砕し、平均粒子径5μmの粉末とした。
 この粉末を実施例7の酸素含有シリコン材料とした。
b) Step The oxygen-containing layered silicon compound of Example 7 was heated at 900 ° C. for 1 hour in a nitrogen gas atmosphere to obtain an oxygen-containing silicon material. The oxygen-containing silicon material was pulverized using a jet mill to obtain a powder having an average particle size of 5 μm.
This powder was used as the oxygen-containing silicon material of Example 7.
 ・炭素被覆工程
 実施例7の酸素含有シリコン材料をロータリーキルン型の反応器に入れ、プロパン-アルゴン混合ガスの通気下にて880℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆された酸素含有シリコン材料を得た。これを実施例7の炭素被覆-酸素含有シリコン材料とした。
Carbon Coating Step The oxygen-containing silicon material of Example 7 was placed in a rotary kiln type reactor, and thermal CVD was performed at 880 ° C. for 60 minutes under aeration of propane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 7.
 実施例7の負極及びリチウムイオン二次電池を以下のとおり製造した。 The negative electrode and lithium ion secondary battery of Example 7 were produced as follows.
 重量平均分子量80万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’-ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。 A polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid. In addition, a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone. Under stirring conditions, the entire amount of 4,4'-diaminodiphenylmethane solution is added dropwise to 7 mL of a polyacrylic acid solution (corresponding to 9.5 mmol in terms of acrylic acid monomer), and the resulting mixture is allowed to stand at room temperature for 30 minutes. It stirred. Then, using a Dean-Stark apparatus, the mixture was stirred at 130 ° C. for 3 hours to allow the dehydration reaction to proceed, thereby producing a binder solution.
 負極活物質として実施例7の炭素被覆-酸素含有シリコン材料78.5質量部、導電助剤としてアセチレンブラック10.5質量部、結着剤として固形分が11質量部となる量の上記結着剤溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N-メチル-2-ピロリドンを除去した。その後、プレス、180℃でのベークをすることで、負極活物質層が形成された実施例7の負極を製造した。 78.5 parts by mass of the carbon-coated silicon material of Example 7 as a negative electrode active material, 10.5 parts by mass of acetylene black as a conductive additive, and the above-mentioned binding in an amount such that the solid content is 11 parts by mass as a binder The slurry was prepared by mixing the agent solution and an appropriate amount of N-methyl-2-pyrrolidone. A copper foil was prepared as a current collector for the negative electrode. The slurry was applied in the form of a film on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. Thereafter, pressing and baking at 180 ° C. were performed to manufacture the negative electrode of Example 7 in which the negative electrode active material layer was formed.
 正極活物質としてLiNi82/100Co14/100Al4/10096質量部、導電助剤としてアセチレンブラック2質量部、結着剤としてポリフッ化ビニリデン2質量部、及び、適量のN-メチル-2-ピロリドンを混合して、スラリーを製造した。正極用集電体としてアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布されたアルミニウム箔を乾燥することで、N-メチル-2-ピロリドンを除去した。その後、プレス、120℃でのベークをすることで、正極集電体の表面に正極活物質層が形成された正極を製造した。 96 parts by mass of LiNi 82/100 Co 14/100 Al 4/100 O 2 as a positive electrode active material, 2 parts by mass of acetylene black as a conduction aid, 2 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl The -2-pyrrolidone was mixed to produce a slurry. An aluminum foil was prepared as a positive electrode current collector. The slurry was applied in the form of a film on the surface of the aluminum foil using a doctor blade. The N-methyl-2-pyrrolidone was removed by drying the aluminum foil to which the slurry was applied. Thereafter, pressing and baking at 120 ° C. were performed to manufacture a positive electrode in which a positive electrode active material layer was formed on the surface of the positive electrode current collector.
 ジメチルカーボネート、エチルメチルカーボネート及びフルオロエチレンカーボネートを、体積比63:27:10で混合して、混合有機溶媒とした。混合有機溶媒にLiPFを2mol/Lの濃度で溶解して、電解液とした。 Dimethyl carbonate, ethyl methyl carbonate and fluoroethylene carbonate were mixed at a volume ratio of 63:27:10 to give a mixed organic solvent. LiPF 6 was dissolved in a mixed organic solvent at a concentration of 2 mol / L to form an electrolyte.
 セパレータとして、ポリエチレン製の多孔質膜を準備した。 A porous membrane made of polyethylene was prepared as a separator.
 正極と実施例7の負極とでセパレータを挟持し、極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに、電解液を注入した。残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたリチウムイオン二次電池を得た。この電池を実施例7のリチウムイオン二次電池とした。  The separator was sandwiched between the positive electrode and the negative electrode of Example 7 to form an electrode plate group. The electrode plate group was covered with a pair of laminate films, the three sides were sealed, and then an electrolytic solution was injected into the bag-like laminate film. By sealing the remaining one side, the four sides were airtightly sealed to obtain a lithium ion secondary battery in which the electrode plate group and the electrolytic solution were sealed. This battery was used as a lithium ion secondary battery of Example 7.
(実施例8)
 a-2-2)工程にて、恒温槽を1℃/分の速度で40℃まで昇温した以外は、実施例7と同様の方法で、実施例8の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 8)
The oxygen-containing layered silicon compound of Example 8, oxygen-containing in the same manner as in Example 7 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(比較例5)
 a-2-2)工程にて、恒温槽を昇温せず、0℃を維持した以外は、実施例7と同様の方法で、比較例5の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 5)
In the step a-2-2), the oxygen-containing layered silicon compound of Comparative Example 5, the oxygen-containing silicon material, and the method of Comparative Example 5 are carried out in the same manner as in Example 7 except that Carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(比較例6)
 a-2-2)工程にて、恒温槽を1℃/分の速度で60℃まで昇温した以外は、実施例7と同様の方法で、比較例6の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 6)
Oxygen-containing layered silicon compound of Comparative Example 6 in the same manner as in Example 7 except that in the step a-2-2), the temperature of the thermostatic chamber was raised to 60 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(比較例7)
 負極活物質として、炭素被覆-酸素含有シリコン材料である炭素被覆されたSiO(信越化学工業株式会社)を採用した以外は、実施例7と同様の方法で、比較例7の負極及びリチウムイオン二次電池を製造した。 
(Comparative example 7)
The negative electrode of Comparative Example 7 and lithium ion in the same manner as in Example 7 except that carbon-coated SiO (Shin-Etsu Chemical Co., Ltd.), which is a carbon-coated, oxygen-containing silicon material, was employed as the negative electrode active material. The following battery was manufactured.
(評価例6)
 実施例7~実施例8、比較例5~比較例7の炭素被覆-酸素含有シリコン材料に対して、評価例1と同様の方法で、元素分析を行った。ただし、炭素を対象とした元素分析は、炭素・硫黄分析装置を用いて行った。
 これらの元素分析の結果を、質量%として、表7に示す。 
(Evaluation example 6)
Elemental analysis was performed on the carbon-coated oxygen-containing silicon materials of Examples 7 to 8 and Comparative Examples 5 to 7 in the same manner as in Evaluation Example 1. However, elemental analysis for carbon was performed using a carbon / sulfur analyzer.
The results of these elemental analyzes are shown in Table 7 as mass%.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(評価例7)
 実施例7~実施例8、比較例5~比較例7のリチウムイオン二次電池に対して、25℃の条件下、電圧4.28Vまで充電を行い、その後、電圧3Vまで放電を行って、初期放電容量を測定した。
 また、SOC15%に調整した各リチウムイオン二次電池に対して、25℃の条件下、一定電流で10秒間放電させた場合の電圧を測定した。当該測定は、電流を変えた複数の条件下で行った。得られた結果から、SOC15%の各リチウムイオン二次電池につき、電圧2.5Vまでの放電時間が10秒となる一定電流(mA)を算出して、2.5Vとその電流値を乗算した値を25℃10秒出力(mW)とした。
 さらに、SOC15%に調整した各リチウムイオン二次電池に対して、0℃の条件下、一定電流で5秒間放電させた場合の電圧を測定した。当該測定は、電流を変えた複数の条件下で行った。得られた結果から、SOC15%の各リチウムイオン二次電池につき、電圧2.5Vまでの放電時間が5秒となる一定電流(mA)を算出して、2.5Vとその電流値を乗算した値を0℃5秒出力とした。
 以上の結果を、表8に示す。 
(Evaluation example 7)
The lithium ion secondary batteries of Examples 7 to 8 and Comparative Examples 5 to 7 are charged to a voltage of 4.28 V under conditions of 25 ° C., and then discharged to a voltage of 3 V, The initial discharge capacity was measured.
In addition, with respect to each lithium ion secondary battery adjusted to SOC 15%, a voltage was measured in the case of discharging at constant current for 10 seconds under the condition of 25 ° C. The measurements were performed under multiple conditions of varying current. From the obtained results, a constant current (mA) at which the discharge time up to a voltage of 2.5 V is 10 seconds was calculated for each lithium ion secondary battery of SOC 15%, and 2.5 V was multiplied by the current value. The value was set to 25 ° C. for 10 seconds output (mW).
Furthermore, with respect to each lithium ion secondary battery adjusted to SOC 15%, the voltage in the case of discharging at constant current for 5 seconds under the condition of 0 ° C. was measured. The measurements were performed under multiple conditions of varying current. From the obtained results, a constant current (mA) at which the discharge time up to a voltage of 2.5 V is 5 seconds was calculated for each lithium ion secondary battery of SOC 15%, and 2.5 V was multiplied by the current value. The value is 0 ° C. for 5 seconds output.
The above results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8から、酸素含有量が高い比較例6及び比較例7は、初期放電容量が低いことがわかる。酸素含有量とシリコン含有量が適切な範囲の実施例7及び実施例8は、初期放電容量、25℃出力及び0℃出力のいずれの結果も優れているといえる。
 また、酸素含有量とシリコン含有量が同等である比較例6と比較例7の結果から、比較例6のリチウムイオン二次電池の方が電池特性に優れることがわかる。CaSiを原料とした酸素含有シリコン材料は、一般的なSiOでは観察されない、複数枚の板状シリコン体が厚さ方向に積層されてなる独特の構造を有する。比較例6と比較例7を比べた際に、比較例6のリチウムイオン二次電池の方が出力特性に優れていた理由は、比較例6の酸素含有シリコン材料が有する、複数枚の板状シリコン体が厚さ方向に積層されてなる構造にあると考えられる。 
From Table 8, it can be seen that Comparative Example 6 and Comparative Example 7 having a high oxygen content have low initial discharge capacity. It can be said that Example 7 and Example 8 in which the oxygen content and the silicon content are in appropriate ranges are all excellent in the initial discharge capacity, the 25 ° C. output and the 0 ° C. output.
Further, from the results of Comparative Example 6 and Comparative Example 7 in which the oxygen content and the silicon content are equal, it is understood that the lithium ion secondary battery of Comparative Example 6 is more excellent in battery characteristics. An oxygen-containing silicon material based on CaSi 2 has a unique structure in which a plurality of plate-like silicon bodies are stacked in the thickness direction, which is not observed in general SiO. The reason why the lithium ion secondary battery of Comparative Example 6 is superior in output characteristics when Comparative Example 6 and Comparative Example 7 are compared is that a plurality of plate shapes possessed by the oxygen-containing silicon material of Comparative Example 6 It is considered that the silicon body is in the structure of being stacked in the thickness direction.
(実施例9)
 以下のとおり、Alを含有するCaSi粉末を準備した。
 Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して、CaSi粉末にした後に、a)工程に供した。
(Example 9)
An Al-containing CaSi 2 powder was prepared as follows.
Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
 a)工程
 a-2-1)工程
 18質量%塩酸を入れた反応容器を、0℃の恒温槽に設置した。塩酸の温度が0℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、15分間撹拌を継続した。
a) Process a-2-1) Process A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
 a-2-2)工程
 前記a-2-1)工程後に、恒温槽を1℃/分の速度で20℃まで昇温し、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例9の酸素含有層状シリコン化合物を得た。
a-2-2) Step After the step a-2-1), the temperature of the thermostat was raised to 20 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 9.
 b)工程
 実施例9の酸素含有層状シリコン化合物を、窒素ガス雰囲気下にて900℃で1時間加熱し、酸素含有シリコン材料を得た。当該酸素含有シリコン材料を、ジェットミルを用いて粉砕し、平均粒子径5μmの粉末とした。
 この粉末を実施例9の酸素含有シリコン材料とした。
b) Step The oxygen-containing layered silicon compound of Example 9 was heated at 900 ° C. for 1 hour in a nitrogen gas atmosphere to obtain an oxygen-containing silicon material. The oxygen-containing silicon material was pulverized using a jet mill to obtain a powder having an average particle size of 5 μm.
This powder was used as the oxygen-containing silicon material of Example 9.
 ・炭素被覆工程
 実施例9の酸素含有シリコン材料をロータリーキルン型の反応器に入れ、プロパン-アルゴン混合ガスの通気下にて880℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆された酸素含有シリコン材料を得た。これを実施例9の炭素被覆-酸素含有シリコン材料とした。
Carbon Coating Step The oxygen-containing silicon material of Example 9 was placed in a rotary kiln type reactor, and thermal CVD was performed at 880 ° C. and a residence time of 60 minutes under aeration of a propane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 9.
 実施例9の負極及びリチウムイオン二次電池を以下のとおり製造した。 The negative electrode and lithium ion secondary battery of Example 9 were produced as follows.
 重量平均分子量80万のポリアクリル酸をN-メチル-2-ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’-ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN-メチル-2-ピロリドンに溶解して、4,4’-ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’-ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。 A polyacrylic acid having a weight average molecular weight of 800,000 was dissolved in N-methyl-2-pyrrolidone to prepare a polyacrylic acid solution containing 10% by mass of polyacrylic acid. In addition, a solution of 4,4'-diaminodiphenylmethane was prepared by dissolving 0.2 g (1.0 mmol) of 4,4'-diaminodiphenylmethane in 0.4 mL of N-methyl-2-pyrrolidone. Under stirring conditions, the entire amount of 4,4'-diaminodiphenylmethane solution is added dropwise to 7 mL of a polyacrylic acid solution (corresponding to 9.5 mmol in terms of acrylic acid monomer), and the resulting mixture is allowed to stand at room temperature for 30 minutes. It stirred. Then, using a Dean-Stark apparatus, the mixture was stirred at 130 ° C. for 3 hours to allow the dehydration reaction to proceed, thereby producing a binder solution.
 負極活物質として実施例9の炭素被覆-酸素含有シリコン材料78.5質量部、導電助剤としてアセチレンブラック10.5質量部、結着剤として固形分が11質量部となる量の上記結着剤溶液、及び、適量のN-メチル-2-ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N-メチル-2-ピロリドンを除去した。その後、プレス、180℃ベークすることで、負極活物質層が形成された実施例9の負極を製造した。 78.5 parts by mass of the carbon-coated silicon material of Example 9 as a negative electrode active material, 10.5 parts by mass of acetylene black as a conductive additive, and the above-mentioned binding in an amount such that the solid content is 11 parts by mass as a binder The slurry was prepared by mixing the agent solution and an appropriate amount of N-methyl-2-pyrrolidone. A copper foil was prepared as a current collector for the negative electrode. The slurry was applied in the form of a film on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. After that, pressing and baking at 180 ° C. manufactured a negative electrode of Example 9 in which a negative electrode active material layer was formed.
 エチレンカーボネート及びジエチルカーボネートを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lの濃度で溶解した溶液を電解液とした。 A solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
 負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容した。電池ケースに電解液を注入し、電池ケースを密閉して、実施例9のリチウムイオン二次電池を製造した。  The negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut to a diameter of 13 mm and used as a counter electrode. A glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator. The two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body. The electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.). An electrolytic solution was injected into the battery case, the battery case was sealed, and a lithium ion secondary battery of Example 9 was manufactured.
(実施例10)
 a-2-2)工程にて、恒温槽を1℃/分の速度で40℃まで昇温した以外は、実施例9と同様の方法で、実施例10の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 10)
The oxygen-containing layered silicon compound of Example 10, oxygen-containing in the same manner as Example 9, except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 40 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(比較例8)
 a-2-2)工程にて、恒温槽を昇温せず、0℃を維持した以外は、実施例9と同様の方法で、比較例8の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 8)
In the step a-2-2), the oxygen-containing layered silicon compound of Comparative Example 8 and the oxygen-containing silicon material of Comparative Example 8 are the same as in Example 9 except that the temperature of the constant temperature bath is not increased and maintained at 0 ° C. Carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(比較例9)
 a-2-2)工程にて、恒温槽を1℃/分の速度で60℃まで昇温した以外は、実施例9と同様の方法で、比較例9の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Comparative example 9)
The oxygen-containing layered silicon compound of Comparative Example 9 in the same manner as in Example 9 except that in the step a-2-2) the temperature of the thermostatic chamber was raised to 60 ° C. at a rate of 1 ° C./min. Silicon materials, carbon coated-oxygen containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(評価例8)
 実施例9~実施例10、比較例8~比較例9の炭素被覆-酸素含有シリコン材料に対して、評価例6と同様の方法で、元素分析を行った。これらの元素分析の結果を、質量%として、表9に示す。 
(Evaluation example 8)
Elemental analysis was performed on the carbon-coated oxygen-containing silicon materials of Examples 9 to 10 and Comparative Examples 8 to 9 in the same manner as in Evaluation Example 6. The results of these elemental analyzes are shown in Table 9 as mass%.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(評価例9)
 評価例2と同様の方法で、実施例9~実施例10、比較例8~比較例9のリチウムイオン二次電池に対して、充放電試験を行った。結果を表10に示す。また、50回の充放電サイクルにおける、各リチウムイオン二次電池の積算容量と放電容量の関係を図2に示す。 
(Evaluation example 9)
A charge and discharge test was performed on the lithium ion secondary batteries of Examples 9 to 10 and Comparative Examples 8 to 9 in the same manner as in Evaluation Example 2. The results are shown in Table 10. Further, FIG. 2 shows the relationship between the integrated capacity and the discharge capacity of each lithium ion secondary battery in 50 charge and discharge cycles.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10及び図2の結果から、酸素質量%及びシリコン質量%が適切な範囲にある、実施例9及び実施例10の酸素含有シリコン材料を具備するリチウムイオン二次電池は、初期効率、容量維持率及び積算容量をバランス良く満足するといえる。  From the results of Table 10 and FIG. 2, the lithium ion secondary battery comprising the oxygen-containing silicon material of Example 9 and Example 10, in which oxygen mass% and silicon mass% are in appropriate ranges, has initial efficiency and capacity retention It can be said that the rate and integrated capacity are satisfied in a well-balanced manner.
(実施例11)
 以下のとおり、Alを含有するCaSi粉末を準備した。
 Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して、CaSi粉末にした後に、a)工程に供した。
(Example 11)
An Al-containing CaSi 2 powder was prepared as follows.
Ca, Al and Si were weighed in a carbon crucible. The elemental composition ratio of Ca and Si was 1: 2, and the amount of Al added was 1% with respect to the total mass of Ca, Al and Si. A carbon crucible was heated at around 1300 ° C. in a high frequency induction heating apparatus under an argon gas atmosphere to obtain a molten metal containing Ca, Al and Si. The molten metal is poured into a predetermined mold to cool and solidify. The solid was crushed into CaSi 2 powder and then subjected to a) step.
 a)工程
 a-2-1)工程
 18質量%塩酸を入れた反応容器を、0℃の恒温槽に設置した。塩酸の温度が0℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi粉末を塩酸に徐々に投入した。CaSi粉末の投入後、15分間撹拌を継続した。
a) Process a-2-1) Process A reaction vessel containing 18 mass% hydrochloric acid was placed in a thermostat at 0 ° C. After confirming that the temperature of the hydrochloric acid reached 0 ° C., the CaSi 2 powder was gradually introduced into the hydrochloric acid under a nitrogen gas atmosphere and under stirring conditions. Stirring was continued for 15 minutes after the addition of the CaSi 2 powder.
 a-2-2)工程
 前記a-2-1)工程後に、恒温槽を1℃/分の速度で40℃まで昇温し、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥して実施例11の酸素含有層状シリコン化合物を得た。
a-2-2) Step After the step a-2-1), the temperature of the thermostat was raised to 40 ° C. at a rate of 1 ° C./min, and the reaction solution was stirred overnight. Thereafter, the reaction solution was filtered. The residue was washed with distilled water and then with methanol and dried under reduced pressure to obtain the oxygen-containing layered silicon compound of Example 11.
 b)工程
 実施例11の酸素含有層状シリコン化合物を、窒素ガス雰囲気下にて700℃で1時間加熱し、酸素含有シリコン材料を得た。当該酸素含有シリコン材料を、ジェットミルを用いて粉砕し、平均粒子径5μmの粉末とした。
 この粉末を実施例11の酸素含有シリコン材料とした。
b) Step The oxygen-containing layered silicon compound of Example 11 was heated at 700 ° C. for 1 hour in a nitrogen gas atmosphere to obtain an oxygen-containing silicon material. The oxygen-containing silicon material was pulverized using a jet mill to obtain a powder having an average particle size of 5 μm.
This powder was used as the oxygen-containing silicon material of Example 11.
 ・炭素被覆工程
 実施例11の酸素含有シリコン材料をロータリーキルン型の反応器に入れ、ヘキサン-アルゴン混合ガスの通気下にて700℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆された酸素含有シリコン材料を得た。これを実施例11の炭素被覆-酸素含有シリコン材料とした。
Carbon Coating Step The oxygen-containing silicon material of Example 11 was placed in a rotary kiln type reactor, and thermal CVD was performed under the conditions of 700 ° C. and a residence time of 60 minutes under aeration of a hexane-argon mixed gas, and carbon coated. An oxygen-containing silicon material was obtained. This was used as the carbon-coated oxygen-containing silicon material of Example 11.
 実施例11の負極及びリチウムイオン二次電池を以下のとおり製造した。 The negative electrode and lithium ion secondary battery of Example 11 were produced as follows.
 負極活物質として実施例11の炭素被覆-酸素含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤としてポリアミドイミド14質量部、及び、適量のN-メチル-2-ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N-メチル-2-ピロリドンを除去した。その後、プレス、180℃ベークすることで、負極活物質層が形成された実施例11の負極を製造した。 72.5 parts by mass of the carbon-coated silicon material of Example 11 as a negative electrode active material, 13.5 parts by mass of acetylene black as a conductive additive, 14 parts by mass of polyamideimide as a binder, and an appropriate amount of N-methyl The -2-pyrrolidone was mixed to produce a slurry. A copper foil was prepared as a current collector for the negative electrode. The slurry was applied in the form of a film on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. After that, pressing and baking at 180 ° C. manufactured a negative electrode of Example 11 in which a negative electrode active material layer was formed.
 エチレンカーボネート及びジエチルカーボネートを体積比1:1で混合した混合溶媒に、LiPFを1mol/Lの濃度で溶解した溶液を電解液とした。 A solution in which LiPF 6 was dissolved at a concentration of 1 mol / L was used as an electrolytic solution in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
 負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容した。電池ケースに電解液を注入し、電池ケースを密閉して、実施例11のリチウムイオン二次電池を製造した。  The negative electrode was cut to a diameter of 11 mm and used as an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut to a diameter of 13 mm and used as a counter electrode. A glass filter (Hoechst Celanese) and celgard 2400 (Polypore Co., Ltd.) which is a single-layer polypropylene were prepared as a separator. The two types of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode to form an electrode body. The electrode body was housed in a coin-type battery case CR2032 (Hohsen Co., Ltd.). An electrolytic solution was injected into the battery case, and the battery case was sealed to manufacture a lithium ion secondary battery of Example 11.
(実施例12)
 Alを含有するCaSi粉末を準備する工程にて、Alの添加量をCa、Al及びSiの全体の質量に対して0.5%とした以外は、実施例11と同様の方法で、実施例12の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 12)
In the step of preparing the CaSi 2 powder containing Al, the procedure is the same as in Example 11 except that the addition amount of Al is set to 0.5% with respect to the total mass of Ca, Al and Si. The oxygen-containing layered silicon compound of Example 12, the oxygen-containing silicon material, the carbon-coated oxygen-containing silicon material, the negative electrode and the lithium ion secondary battery were manufactured.
(実施例13)
 Alを含有するCaSi粉末を準備する工程にて、Alを添加せず、Alを含有しないCaSi粉末を準備した以外は、実施例11と同様の方法で、実施例13の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
(Example 13)
At the step of preparing a CaSi 2 powder containing Al, without adding Al, except preparing the CaSi 2 powder not containing Al is in the same manner as in Example 11, the oxygen-containing layered silicon of Example 13 Compounds, oxygen-containing silicon materials, carbon coated-oxygen-containing silicon materials, negative electrodes and lithium ion secondary batteries were manufactured.
(実施例14)
 b)工程の加熱温度を900℃として、かつ、炭素被覆工程の条件を、プロパン-アルゴン混合ガスの通気下にて880℃、滞留時間60分間とした以外は、実施例11と同様の方法で、実施例14の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 14)
b) In the same manner as in Example 11 except that the heating temperature in the step is 900 ° C., and the conditions for the carbon coating step are 880 ° C. and a residence time of 60 minutes under aeration of a propane-argon mixed gas. An oxygen-containing layered silicon compound, an oxygen-containing silicon material, a carbon-coated oxygen-containing silicon material, a negative electrode and a lithium ion secondary battery of Example 14 were manufactured.
(実施例15)
 b)工程の加熱温度を900℃として、かつ、炭素被覆工程の条件を、プロパン-アルゴン混合ガスの通気下にて880℃、滞留時間60分間とした以外は、実施例13と同様の方法で、実施例15の酸素含有層状シリコン化合物、酸素含有シリコン材料、炭素被覆-酸素含有シリコン材料、負極及びリチウムイオン二次電池を製造した。 
(Example 15)
b) In the same manner as in Example 13, except that the heating temperature in the step is 900 ° C., and the conditions for the carbon coating step are 880 ° C. and a residence time of 60 minutes under aeration of propane-argon mixed gas. An oxygen-containing layered silicon compound, an oxygen-containing silicon material, a carbon-coated oxygen-containing silicon material, a negative electrode and a lithium ion secondary battery of Example 15 were manufactured.
(評価例10)
 実施例11~実施例15の炭素被覆-酸素含有シリコン材料に対して、評価例6と同様の方法で、元素分析を行った。これらの元素分析の結果を、質量%として、表11に示す。 
(Evaluation example 10)
Elemental analysis was performed on the carbon-coated oxygen-containing silicon material of Example 11 to Example 15 in the same manner as in Evaluation Example 6. The results of these elemental analyzes are shown in Table 11 as mass%.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(評価例11)
 実施例11~実施例15の炭素被覆-酸素含有シリコン材料のBET比表面積を測定した。結果を、a)工程以外の製造方法の特徴と共に表12に示す。 
(Evaluation example 11)
The BET specific surface area of the carbon-coated oxygen-containing silicon material of Example 11 to Example 15 was measured. The results are shown in Table 12 together with the features of the production methods other than the step a).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(評価例12)
 実施例11~実施例15のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで充電を行い、その後、電流0.2mAで1.0Vまで放電を行うとの初期充放電を行った。
 さらに、初期充放電後の実施例11~実施例15のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで充電を行い、その後、電流0.5mAで1.0Vまで放電を行うとの充放電サイクルを50回行った。
(Evaluation example 12)
The lithium ion secondary batteries of Examples 11 to 15 were charged to 0.01 V at a current of 0.2 mA and then discharged to 1.0 V at a current of 0.2 mA. went.
Furthermore, the lithium ion secondary batteries of Examples 11 to 15 after the initial charge and discharge are charged to 0.01 V with a current of 0.5 mA, and then discharged to 1.0 V with a current of 0.5 mA. The charge and discharge cycle of 50 cycles was performed.
 初期効率及び容量維持率を以下の各式で算出した。
 初期効率(%)=100×(0.8Vまでの初期放電容量)/(初期充電容量)
 容量維持率(%)=100×(50サイクル時の放電容量)/(1サイクル時の放電容量)
 以上の結果を、炭素被覆-酸素含有シリコン材料の元素分析などのデータと共に表13に示す。 
The initial efficiency and capacity retention rate were calculated by the following formulas.
Initial efficiency (%) = 100 × (initial discharge capacity up to 0.8 V) / (initial charge capacity)
Capacity retention rate (%) = 100 × (discharge capacity at 50 cycles) / (discharge capacity at 1 cycle)
The above results are shown in Table 13 together with data such as elemental analysis of carbon-coated oxygen-containing silicon material.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13の結果から、好適な酸素質量%の炭素被覆-酸素含有シリコン材料は、負極活物質として優れた特性を示すといえる。また、炭素被覆-酸素含有シリコン材料の酸素質量%、シリコン質量%及びAl質量%が、二次電池の容量維持率に影響を与えることがわかる。 From the results in Table 13, it can be said that the preferred oxygen-mass% carbon-coated oxygen-containing silicon material exhibits excellent characteristics as a negative electrode active material. Further, it can be seen that the oxygen mass%, silicon mass% and Al mass% of the carbon-coated silicon-containing silicon material affect the capacity retention rate of the secondary battery.

Claims (16)

  1.  a-1)CaSiを15~50℃の酸水溶液と反応させて、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程、
     b)前記酸素含有層状シリコン化合物を300℃以上で加熱して、酸素含有シリコン材料を合成する工程、
     を含むことを特徴とする酸素含有シリコン材料を含む負極活物質の製造方法。
    a-1) reacting CaSi 2 with an aqueous acid solution at 15 to 50 ° C. to synthesize an oxygen-containing layered silicon compound containing layered polysilane,
    b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material;
    A method of manufacturing a negative electrode active material comprising an oxygen-containing silicon material, characterized in that the method comprises:
  2.  a-2-1)CaSiを-20~10℃の酸水溶液と反応させる工程、
     a-2-2)前記a-2-1)工程に引き続き、反応液の温度を15~50℃として、層状ポリシランを含む酸素含有層状シリコン化合物を合成する工程、
     b)前記酸素含有層状シリコン化合物を300℃以上で加熱して、酸素含有シリコン材料を合成する工程、
     を含むことを特徴とする酸素含有シリコン材料を含む負極活物質の製造方法。
    a-2-1) reacting CaSi 2 with an aqueous acid solution at −20 to 10 ° C.,
    a-2-2) a step of synthesizing an oxygen-containing layered silicon compound containing layered polysilane with the temperature of the reaction liquid being set to 15 to 50 ° C., following the above step a-2-1),
    b) heating the oxygen-containing layered silicon compound at 300 ° C. or higher to synthesize an oxygen-containing silicon material;
    A method of manufacturing a negative electrode active material comprising an oxygen-containing silicon material, characterized in that the method comprises:
  3.  前記酸水溶液における酸の濃度が5~30質量%の範囲内である請求項1又は2に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The method for producing a negative electrode active material containing an oxygen-containing silicon material according to claim 1 or 2, wherein the concentration of the acid in the aqueous acid solution is in the range of 5 to 30% by mass.
  4.  前記酸素含有シリコン材料が前記酸のアニオン由来の元素を含有し、前記酸素含有シリコン材料における当該元素質量%(W%)が0<W<6である請求項3に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The oxygen-containing silicon according to claim 3, wherein the oxygen-containing silicon material contains an element derived from the anion of the acid, and the element mass% (W x %) in the oxygen-containing silicon material is 0 <W x <6. The manufacturing method of the negative electrode active material containing a material.
  5.  前記酸素含有シリコン材料における酸素質量%(W%)が16<W<27である請求項1~4のいずれか1項に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The method for producing a negative electrode active material including the oxygen-containing silicon material according to any one of claims 1 to 4, wherein oxygen mass% (W 2 O %) in the oxygen-containing silicon material is 16 <W 2 O <27.
  6.  前記酸素含有シリコン材料におけるシリコン質量%(WSi%)が62<WSi<81である請求項1~5のいずれか1項に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The method for producing a negative electrode active material containing an oxygen-containing silicon material according to any one of claims 1 to 5, wherein the silicon mass% (W Si %) in the oxygen-containing silicon material is 62 <W Si <81.
  7.  前記CaSiがAlを含有し、かつ、前記酸素含有シリコン材料におけるAl質量%(WAl%)が0<WAl<1である請求項1~6のいずれか1項に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The oxygen-containing silicon according to any one of claims 1 to 6, wherein the CaSi 2 contains Al, and the Al mass% (W Al %) in the oxygen-containing silicon material is 0 <W Al <1. The manufacturing method of the negative electrode active material containing a material.
  8.  前記酸素含有シリコン材料におけるシリコン結晶とアモルファスシリコンとの比が、0:100~30:70の範囲内である請求項1~7のいずれか1項に記載の酸素含有シリコン材料を含む負極活物質の製造方法。 The negative electrode active material containing oxygen-containing silicon material according to any one of claims 1 to 7, wherein the ratio of silicon crystal to amorphous silicon in the oxygen-containing silicon material is in the range of 0: 100 to 30: 70. Manufacturing method.
  9.  請求項1~8のいずれか1項に記載の製造方法で製造された酸素含有シリコン材料を含む負極活物質を用いる、負極の製造方法。 A method of manufacturing a negative electrode using a negative electrode active material containing an oxygen-containing silicon material manufactured by the method according to any one of claims 1 to 8.
  10.  請求項9に記載の製造方法で製造された負極を用いる、二次電池の製造方法。 The manufacturing method of a secondary battery using the negative electrode manufactured by the manufacturing method of Claim 9.
  11.  酸素質量%(W%)が16<W<27であり、シリコン質量%(WSi%)が62<WSi<81である酸素含有シリコン材料を含むことを特徴とする負極活物質。 A negative electrode active material comprising an oxygen-containing silicon material having an oxygen mass% (W 2 O %) of 16 <W 2 O <27 and a silicon mass% (W 2 Si %) of 62 <W 2 Si <81.
  12.  前記酸素含有シリコン材料がAlをAl質量%(WAl%):0<WAl<1で含有する請求項11に記載の負極活物質。 The negative electrode active material according to claim 11, wherein the oxygen-containing silicon material contains Al at Al mass% (W Al %): 0 <W Al <1.
  13.  前記酸素含有シリコン材料がハロゲンをハロゲン質量%(W%):0<W<6で含有する請求項11又は12に記載の負極活物質。 The negative electrode active material according to claim 11, wherein the oxygen-containing silicon material contains a halogen at a halogen mass% (W x %): 0 <W x <6.
  14.  前記酸素含有シリコン材料におけるシリコン結晶とアモルファスシリコンとの比が、0:100~30:70の範囲内である請求項11~13のいずれか1項に記載の負極活物質。 The negative electrode active material according to any one of claims 11 to 13, wherein the ratio of silicon crystals to amorphous silicon in the oxygen-containing silicon material is in the range of 0: 100 to 30:70.
  15.  請求項11~14のいずれか1項に記載の負極活物質を具備する負極。 A negative electrode comprising the negative electrode active material according to any one of claims 11 to 14.
  16.  請求項15に記載の負極を具備する二次電池。 A secondary battery comprising the negative electrode according to claim 15.
PCT/JP2018/023079 2017-09-26 2018-06-18 Negative electrode active material containing oxygen-containing silicon material, and method for producing same WO2019064728A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-185083 2017-09-26
JP2017185083 2017-09-26
JP2018023432A JP6852691B2 (en) 2017-09-26 2018-02-13 Oxygen-containing silicon material and its manufacturing method
JP2018-023432 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019064728A1 true WO2019064728A1 (en) 2019-04-04

Family

ID=65901268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023079 WO2019064728A1 (en) 2017-09-26 2018-06-18 Negative electrode active material containing oxygen-containing silicon material, and method for producing same

Country Status (1)

Country Link
WO (1) WO2019064728A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device
JP2015106563A (en) * 2013-11-29 2015-06-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 SIOx BASED COMPOSITE NEGATIVE ELECTRODE MATERIAL, PREPARATION METHOD AND BATTERY
JP2016138029A (en) * 2015-01-29 2016-08-04 株式会社豊田自動織機 Layered silicon compound, method for producing silicon material and secondary battery comprising silicon material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
JP2011222151A (en) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
WO2014080608A1 (en) * 2012-11-21 2014-05-30 株式会社豊田自動織機 Nanocrystalline silicon material, negative electrode active material, method for producing said material, and electric storage device
JP2015106563A (en) * 2013-11-29 2015-06-08 深▲セン▼市貝特瑞新能源材料股▲ふん▼有限公司 SIOx BASED COMPOSITE NEGATIVE ELECTRODE MATERIAL, PREPARATION METHOD AND BATTERY
JP2016138029A (en) * 2015-01-29 2016-08-04 株式会社豊田自動織機 Layered silicon compound, method for producing silicon material and secondary battery comprising silicon material

Similar Documents

Publication Publication Date Title
JP6311947B2 (en) Method for producing carbon-coated silicon material
JP6288285B2 (en) MSix (M is at least one element selected from Group 3 to 9 elements, where 1/3 ≦ x ≦ 3) containing silicon material and manufacturing method thereof
JP2019145402A (en) Lithium ion secondary battery
US11688852B2 (en) Negative electrode active material including Al- and O-containing silicon material
US10800660B2 (en) Method for producing silicon material
CN107835789B (en) Containing CaSi2Composition and method for producing silicon material
JP6252864B2 (en) Method for producing silicon material
WO2019053985A1 (en) Negative electrode active material containing al-containing silicon material
JP6852691B2 (en) Oxygen-containing silicon material and its manufacturing method
JP2021077596A (en) Charging method of lithium ion secondary battery
WO2019064728A1 (en) Negative electrode active material containing oxygen-containing silicon material, and method for producing same
JP6852690B2 (en) Al-containing silicon material
JP6859930B2 (en) Al-containing silicon material
JP2020017512A (en) Method of manufacturing negative electrode active material containing silicon material
JP6852689B2 (en) Al-containing silicon material
WO2019053983A1 (en) Negative electrode active material containing al-containing silicon material
JP2018140926A (en) Silicon material having no silicon crystals
WO2019053984A1 (en) Negative electrode active substance comprising al-containing silicon material
JP2018032602A (en) Method of producing negative electrode material
JP2017157385A (en) Secondary battery
JP2017095326A (en) M-CONTAINING SILICON MATERIAL, WHERE M IS AT LEAST ONE ELEMENT SELECTED FROM Sn, Pb, Sb, Bi, In, Zn OR Au, AND MANUFACTURING METHOD THEREFOR
JP2020102383A (en) Negative electrode active material
JP2016219354A (en) Negative electrode including crystalline silicon powder and amorphous silicon powder
JP2019135199A (en) Carbon-coated Al-containing silicon material
JP2020191158A (en) Method for producing negative electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862435

Country of ref document: EP

Kind code of ref document: A1