WO2019064588A1 - Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product - Google Patents
Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product Download PDFInfo
- Publication number
- WO2019064588A1 WO2019064588A1 PCT/JP2017/035724 JP2017035724W WO2019064588A1 WO 2019064588 A1 WO2019064588 A1 WO 2019064588A1 JP 2017035724 W JP2017035724 W JP 2017035724W WO 2019064588 A1 WO2019064588 A1 WO 2019064588A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength conversion
- conversion member
- resin composition
- meth
- compound
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
Definitions
- the present disclosure relates to a method for manufacturing a wavelength conversion member, a wavelength conversion member, a backlight unit, an image display device, a resin composition for a wavelength conversion member, and a resin cured product.
- the wavelength conversion member containing quantum dot fluorescent substance is arrange
- a wavelength conversion member containing a quantum dot phosphor emitting red light and a quantum dot phosphor emitting green light when the wavelength conversion member is irradiated with blue light as excitation light, light is emitted from the quantum dot phosphor White light can be obtained from the red light and green light that have been transmitted and the blue light transmitted through the wavelength conversion member.
- the color reproducibility of the display has been expanded from 72% of the conventional National Television System Committee (NTSC) ratio to 100% of the NTSC ratio.
- NTSC National Television System Committee
- the wavelength conversion member containing a quantum dot fluorescent substance usually has a cured product obtained by curing a curable composition containing a quantum dot fluorescent substance.
- the curable composition includes a thermosetting type and a photocurable type, and from the viewpoint of productivity, a photocurable type curable composition is preferably used.
- the wavelength conversion member provided with the resin cured material containing quantum dot fluorescent substance at least one part of resin cured material may be coat
- a barrier film having a barrier property to at least one of oxygen and water may be provided on one side or both sides of the cured resin.
- the quantum dot phosphor may be deteriorated by the influence of water vapor, oxygen, and the like.
- the quantum dot phosphor is easily deteriorated, and there is a possibility that the Rec 2020 coverage, which is a standard of display color reproducibility, is reduced.
- a method of manufacturing a wavelength conversion member containing quantum dot phosphors and having excellent heat and humidity resistance, a wavelength conversion member thereof, a backlight unit and an image display using the wavelength conversion member, and a wavelength conversion member thereof It is an object of the present invention to provide a resin composition for wavelength conversion member and a resin cured product used for the production of
- ⁇ 1> A process of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, a process of forming a resin composition layer using the resin composition, and curing the resin composition layer And a step of obtaining a cured resin, wherein the dispersoid containing the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin is a gel formed by the reaction of the dispersoid.
- Method of producing a wavelength conversion member comprising ⁇ 2> The method for producing a wavelength conversion member according to ⁇ 1>, wherein the gelable dispersoid contains a modified silicone.
- ⁇ 3> The method for producing a wavelength conversion member according to ⁇ 2>, wherein the modified silicone contains an amino-modified silicone.
- the resin composition contains a difunctional or higher epoxy compound, and the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01
- ⁇ 6> The method for producing a wavelength conversion member according to ⁇ 4> or ⁇ 5>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
- ⁇ 7> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 6>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement at a frequency of 10 Hz is 40 ° C. or higher. Production method.
- ⁇ 8> The method for producing a wavelength conversion member according to any one of ⁇ 1> to ⁇ 7>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
- ⁇ 9> The method for producing a wavelength conversion member according to any one of ⁇ 1> to ⁇ 8>, wherein the resin composition comprises a polyfunctional thiol compound and a (meth) allyl compound.
- the process of forming the ⁇ 10> said resin composition layer is a process of providing the said resin composition on a 1st base material, and forming the said resin composition layer, and before the process of obtaining the said resin cured material
- the wavelength described in any one of ⁇ 1> to ⁇ 9> further comprising the step of providing a second base on the side opposite to the side on which the first base is provided in the resin composition layer.
- a wavelength conversion member comprising: a resin cured product having a sea-island structure including a sea part and an island part, wherein the island part is a gelled material including a quantum dot phosphor.
- the cured resin product has a structure derived from each of a multifunctional thiol compound, a (meth) allyl compound, a modified silicone, and a difunctional or more epoxy compound.
- the modified silicone comprises an amino-modified silicone.
- ⁇ 14> The wavelength conversion according to ⁇ 13>, wherein the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 to 70.0.
- ⁇ 15> The wavelength conversion member according to any one of ⁇ 12> to ⁇ 14>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
- ⁇ 16> The wavelength conversion member according to any one of ⁇ 11> to ⁇ 15>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement under the condition of frequency 10 Hz is 40 ° C. or higher.
- ⁇ 17> The wavelength conversion member according to any one of ⁇ 11> to ⁇ 16>, wherein the quantum dot phosphor includes a compound including at least one of Cd and In.
- the wavelength conversion member according to any one of ⁇ 11> to ⁇ 17> including a covering material, wherein at least a part of the cured resin is covered with the covering material.
- the covering material has a barrier property to at least one of oxygen and water.
- a backlight unit comprising the wavelength conversion member according to any one of ⁇ 11> to ⁇ 19>, and a light source.
- the image display apparatus provided with the backlight unit as described in ⁇ 21> ⁇ 20>.
- a resin composition for a wavelength conversion member which comprises a quantum dot phosphor and a gelable dispersoid containing the quantum dot phosphor.
- the gelable dispersoid contains modified silicone.
- the modified silicone comprises an amino-modified silicone.
- a ratio of an amine equivalent of the amino-modified silicone to an epoxy equivalent of an epoxy compound having two or more functional groups (epoxy equivalent / amine equivalent) is 0.01 to 70.0 including an epoxy compound having two or more functional groups
- the resin composition for a wavelength conversion member according to any one of ⁇ 22> to ⁇ 24> which comprises an epoxy compound having two or more functional groups.
- a resin cured product comprising a gelled product obtained by curing the resin composition for a wavelength conversion member according to any one of ⁇ 22> to ⁇ 29> and reacting the dispersoid.
- the resin cured material as described in ⁇ 30> whose glass transition temperature measured on conditions of frequency 10 Hz by dynamic-viscoelasticity measurement is 40 degreeC or more.
- a method of manufacturing a wavelength conversion member including a quantum dot phosphor and having excellent heat and humidity resistance, a wavelength conversion member thereof, a backlight unit and an image display using the wavelength conversion member, and a wavelength thereof The resin composition for wavelength conversion members and resin cured material which are used for manufacture of a conversion member can be provided.
- each component may contain a plurality of corresponding substances.
- the content or content of each component is in the composition and in the wavelength conversion member unless otherwise specified.
- the total content or content of the substances of the species is meant.
- the words “layer” or “film” mean that when the region in which the layer or film is present is observed, in addition to the case where the region is entirely formed, only a part of the region The case where it is formed is also included.
- laminate in the present disclosure refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.
- (meth) allyl means allyl or methallyl
- (meth) acrylic means acrylic or methacrylic
- (meth) acryloyl means acryloyl or methacryloyl
- ( “Meth) acrylate” means acrylate or methacrylate.
- the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
- the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
- Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule are classified as (meth) allyl compounds for the sake of convenience.
- compounds containing both a thiol group and an alkyleneoxy group are classified as thiol compounds.
- compounds containing both (meth) allyl and alkyleneoxy groups are classified as (meth) allyl compounds.
- compounds containing both (meth) acrylic groups and alkyleneoxy groups are classified as alkyleneoxy group-containing compounds.
- oxygen in an ester group (oxygen bonded to a carbonyl group) and oxygen in a hydroxyl group are not classified as oxygen in an alkyleneoxy group.
- the method for producing a wavelength conversion member comprises the steps of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, and forming a resin composition layer using the resin composition; And curing the resin composition layer to obtain a cured resin product, wherein the dispersoid including the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin product is obtained by curing the resin composition layer. It contains a gelled product resulting from the reaction of dispersoids.
- the dispersoid is completely cured, the dispersoid cured product is likely to be cracked, and as a result, the quantum dot phosphor in the cured product is degraded in a high temperature and high humidity environment, and the Rec 2020 coverage is May not be able to control
- the manufacturing method of the present disclosure it is possible to manufacture a wavelength conversion member including a resin cured product containing a gelled product in which dispersoids are reacted, and in which the gelled product includes the quantum dot phosphor. Since the gelled product is less likely to crack, the deterioration of the quantum dot phosphor under high temperature and high humidity is suppressed, and as a result, the reduction of the Rec 2020 coverage rate under high temperature and high humidity is suppressed. Therefore, the wavelength conversion member manufactured by the manufacturing method of this indication is excellent in heat-and-moisture resistance. Moreover, since the deterioration of the quantum dot fluorescent substance under high temperature and high humidity is suppressed, the wavelength conversion member manufactured by the manufacturing method of the present disclosure tends to be excellent in storage stability over a long period of time.
- the fluidity of the quantum dot phosphor is compared to the case where the dispersoid is not gelled.
- the aggregation of the quantum dot phosphors is suppressed.
- aggregation of the two types of quantum dot phosphors causes the light emission of the quantum dot phosphor having a shorter emission center wavelength to disappear. Problems that the brightness decreases, can be suppressed.
- the manufacturing method of the wavelength conversion member of this indication includes the process of preparing the resin composition containing a quantum dot fluorescent substance and the gelable dispersoid.
- the above-mentioned resin composition can be obtained by stirring the mixture of each component contained in a resin composition.
- the obtained resin composition is an emulsion in which the dispersoid containing quantum dot fluorescent substance disperse
- the resin composition of the present disclosure and the wavelength conversion member of the present disclosure are not limited to the configuration in which all the quantum dot phosphors exist in the dispersoid, and at least one quantum dot phosphor exists in the outside of the dispersoid. Some of the at least one quantum dot phosphor may be outside the dispersoid.
- the manufacturing method of the wavelength conversion member of this indication includes the process of forming a resin composition layer using the above-mentioned resin composition.
- the resin composition described above may be applied to a substrate to form a resin composition layer on the substrate.
- the application method of the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
- the manufacturing method of the wavelength conversion member of this indication includes the process of hardening the above-mentioned resin composition layer, and obtaining a resin cured material.
- the cured resin product obtained in this step contains a gelled product formed by the reaction of the dispersoid.
- the resin cured product can be obtained by subjecting the above-mentioned resin composition layer to a drying treatment, if necessary, and then irradiating an active energy ray such as ultraviolet rays.
- the resin composition used in the method of manufacturing a wavelength conversion member according to the present disclosure includes a quantum dot phosphor and a gelable dispersoid, and the resin composition includes the dispersoid encapsulating the quantum dot phosphor dispersed therein.
- the resin composition contains the resin component (excluding the dispersoid) together with the quantum dot fluorescent substance and the dispersoid, and specifically, an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, A resin component such as a meta) acrylic compound, a monofunctional thiol compound, or an alkyleneoxy group-containing compound may be included.
- the resin composition may contain a photopolymerization initiator, a liquid medium, other components, and the like. Hereinafter, each component which may be contained in a resin composition is demonstrated.
- the resin composition of the present disclosure comprises a quantum dot phosphor.
- the quantum dot phosphor is not particularly limited, and includes particles containing at least one selected from the group consisting of II-VI compounds, III-V compounds, IV-VI compounds, and IV compounds. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
- II-VI compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeTe, ZnSeTe, ZnSe, HgSeS, HgSeTe, HgSTe, CdZnS.
- III-V group compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InN, InAs, InS, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb And AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPsb, GaAlNP, GaAlNAs, GaAlNAs, GaAlNs
- IV-VI compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSe, SnSTe, SnSe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, etc.
- group IV compound include Si, Ge, SiC, SiGe and the like.
- the band gap of the compound constituting the shell layer is wider than the band gap of the compound constituting the core part.
- the combination of the core part and the shell layer include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
- the quantum dot phosphor may have a so-called core multi-shell structure in which the shell layer has a multilayer structure.
- the quantum efficiency of the quantum dot phosphor is achieved by laminating one or two narrow shell layers with a narrow band gap in the wide band gap core part and further stacking a wide band gap shell layer on this shell layer. Further improvement is possible.
- the resin composition of the present disclosure may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphor.
- As an embodiment including two or more types of quantum dot phosphors for example, an embodiment including two or more types of quantum dot phosphors having different components but having the same average particle size, quantum dot fluorescence having the same components having different average particle sizes.
- An embodiment including two or more types of bodies, and an embodiment including two or more types of quantum dot phosphors having different components and average particle sizes may be mentioned.
- the emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the component of the quantum dot phosphor and the average particle diameter.
- the resin composition of the present disclosure includes a quantum dot phosphor G having an emission center wavelength in a green wavelength range of 520 nm to 560 nm, and a quantum dot phosphor R having an emission center wavelength in a red wavelength range of 600 nm to 680 nm. And may be included.
- a resin composition containing quantum dot phosphor G and quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light from quantum dot phosphor G and quantum dot phosphor R is emitted respectively. And red light is emitted.
- white light can be obtained from green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R, and blue light transmitted through the resin composition.
- the content of the quantum dot phosphor in the resin composition of the present disclosure is, for example, preferably 0.01% by mass to 1.0% by mass, and preferably 0.05% by mass, with respect to the total amount of the resin composition. It is more preferable that the amount is -0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass.
- the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the excitation light is irradiated, and the content of the quantum dot phosphor is 1.0% by mass or less In such a case, aggregation of the quantum dot phosphors tends to be suppressed.
- the resin composition of the present disclosure comprises a gellable dispersoid.
- the dispersoid is not particularly limited as long as it is dispersible in the resin composition and can be gelled, and modified silicone, dimethyl silicone, methylphenyl silicone, methyl hydrogen silicone, glycerin fatty acid ester, interface Active polyol etc. are mentioned. Among them, modified silicone is preferred.
- modified silicone is preferred.
- the dispersoid one type may be used alone, or two or more types may be used in combination.
- modified silicone amino modified silicone, phenol modified silicone, fluorine modified silicone, epoxy modified silicone, carboxy modified silicone, carbinol modified silicone, mercapto modified silicone, heterofunctional modified silicone, polyether modified silicone, methylstyryl modified silicone, Examples thereof include hydrophilic special modified silicone, higher alkoxy modified silicone, higher fatty acid modified silicone and the like. Amino-modified silicones are preferred from the viewpoint of light diffusibility and dispersibility of the quantum dot phosphor. As the modified silicone, one type may be used alone, or two or more types may be used in combination.
- the modified silicone is preferably a modified silicone having a reactive group which reacts with another compound, specifically an epoxy compound having two or more functional groups described later, from the viewpoint of easily forming a gelled product.
- modified silicones include amino-modified silicones, phenol-modified silicones, carboxy-modified silicones, carbinol-modified silicones, mercapto-modified silicones, different functional group-modified silicones and the like.
- the content of the dispersoid in the resin composition is, for example, preferably 1% by mass to 10% by mass, and more preferably 3% by mass to 7% by mass, with respect to the total amount of the resin composition. More preferably, it is 3% by mass to 5% by mass.
- the content of the dispersoid is 1% by mass or more, the emission intensity of the wavelength conversion member tends to improve, and when the content of the dispersoid is 10% by mass or less, the aggregation of the emulsion tends to be suppressed. .
- the total content of the quantum dot phosphor and the dispersoid in the resin composition may be, for example, 1% by mass to 10% by mass, and 3% by mass to 7% with respect to the total amount of the resin composition. It may be mass%, or 3 to 5 mass%.
- the resin composition of the present disclosure preferably contains a difunctional or higher epoxy compound.
- a difunctional or higher epoxy compound When the resin composition is cured, it tends to react with the dispersoid to form a gelled product, and in particular to react with the modified silicone to form a gelled product.
- the resin composition of the present disclosure preferably contains a modified silicone and a difunctional or higher epoxy compound, and more preferably contains an amino-modified silicone and a difunctional or higher epoxy compound.
- the resin composition contains a modified silicone and a difunctional or more epoxy compound, when curing the resin composition, the modified silicone and the bifunctional or more epoxy compound tend to react to easily form a gelled product. is there.
- the ratio of the amine equivalent (molecular weight per amino group) of the amino-modified silicone to the epoxy equivalent (molecular weight per epoxy group) of the difunctional or higher epoxy compound (epoxy equivalent) / Amine equivalent weight) is preferably 0.01 to 70.0, more preferably 0.5 to 30, and still more preferably 1.0 to 10.
- the epoxy equivalent / amine equivalent ratio is 0.01 or more, the amino-modified silicone tends to gel, and when it is 70.0 or less, aggregation of the emulsion tends to be suppressed.
- the bifunctional or higher epoxy compound preferably has 2 to 4 epoxy groups, and more preferably 2 or 3 epoxy groups, from the viewpoint of improving the moist heat resistance of the wavelength conversion member. It is further preferred to have one or more epoxy groups.
- the epoxy equivalent of the difunctional or higher epoxy compound is preferably 100 g / eq to 500 g / eq, more preferably 120 g / eq to 400 g / eq, and further preferably 200 g / eq to 400 g / eq. preferable.
- the bifunctional or higher epoxy compound preferably has at least one of a bisphenol structure and a hydrogenated bisphenol structure from the viewpoint of improving the weather resistance, more preferably a bisphenol structure or a hydrogenated bisphenol structure, and a hydrogenated bisphenol structure It is particularly preferred to have
- difunctional or higher epoxy compound examples include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl
- examples thereof include glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, bisphenol A type PO adduct and the like. Among these, hydrogenated bisphenol A type diglycidyl ether and bisphenol A type PO adduct are preferable.
- a bifunctional or higher epoxy compound one type may be used alone, or two or more types may be used in combination.
- the content of the difunctional or higher epoxy compound in the resin composition is, for example, 0.1% by mass to 4% by mass with respect to the total amount of the resin composition. Is preferably 0.1% by mass to 3% by mass, and more preferably 0.1% by mass to 2% by mass.
- the content of the bifunctional or higher epoxy compound is 0.1% by mass or more, it tends to easily form a gelled product, and when the content of the bifunctional or higher epoxy compound is 4% by mass or less, the emulsion Tend not to inhibit the formation of
- the resin composition of the present disclosure preferably comprises a multifunctional thiol compound.
- the polyfunctional thiol compound is preferably a compound having 2 to 6 thiol groups in the molecule, and more preferably a compound having 3 or 4 thiol groups in the molecule.
- polyfunctional thiol compounds include ethylene glycol bis (3-mercapto propionate), diethylene glycol bis (3-mercapto propionate), tetraethylene glycol bis (3-mercapto propionate), 1,2- Propylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutylate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris (3-mercaptoprote) Peonate Trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoisobutyrate), trimethylolpropane tri
- pentaerythritol tetrakis (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptobutyrate) are preferable, and pentaerythritol tetrakis (3-mercaptopropionate) is more preferable.
- polyfunctional thiol compounds one type may be used alone, or two or more types may be used in combination.
- thioether oligomer which reacted with the polyfunctional (meth) acryl compound beforehand.
- the thioether oligomer can be obtained, for example, by subjecting a polyfunctional thiol compound and a polyfunctional (meth) acrylic compound to an addition reaction in the presence of a polymerization initiator.
- the ratio of the number of equivalents of the thiol group of the polyfunctional thiol compound to the number of equivalents of the (meth) acryloyl group of the polyfunctional (meth) acrylic compound is, for example, 3 It is preferably from 0 to 3.3, more preferably from 3.0 to 3.2, still more preferably from 3.05 to 3.15.
- the weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and still more preferably 4000 to 6000.
- the weight average molecular weight of the thioether oligomer can be determined by converting it from the molecular weight distribution measured using gel permeation chromatography (GPC) using a standard polystyrene calibration curve, as shown in the examples described later. .
- the thiol equivalent of the thioether oligomer is preferably, for example, 200 g / eq to 400 g / eq, more preferably 250 g / eq to 350 g / eq, and further preferably 250 g / eq to 270 g / eq. preferable.
- thioether oligomers pentaerythritol tetrakis (3-mercaptopropionate) and tris (2-hydroxyethyl) isocyanurate triacrylate are more preferred from the viewpoint of further improving the optical properties, heat resistance and moist heat resistance of the cured resin.
- the content of the polyfunctional thiol compound in the resin composition is preferably, for example, 40% by mass to 80% by mass with respect to the total amount of the resin composition, The content is more preferably 50% by mass to 80% by mass, and still more preferably 50% by mass to 70% by mass.
- the content of the polyfunctional thiol compound is 40% by mass or more, the adhesion of the cured resin to the substrate tends to be further improved, and when the content of the polyfunctional thiol compound is 80% by mass or less, the resin The heat resistance and moist heat resistance of the cured product tend to be further improved.
- the resin composition of the present disclosure preferably contains a (meth) allyl compound.
- the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and a compound having two or more (meth) allyl groups in one molecule. It may be a functional (meth) allyl compound.
- the (meth) allyl compound one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) allyl compound and a polyfunctional (meth) allyl compound may be used in combination.
- the (meth) allyl compound preferably contains a polyfunctional (meth) allyl compound from the viewpoint of further improving the adhesion of the cured resin to the substrate.
- the ratio of the polyfunctional (meth) allyl compound to the total amount of the (meth) allyl compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. preferable.
- monofunctional (meth) allyl compounds include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, (meth) And allyl methyl ether, (meth) allyl glycidyl ether and the like.
- the polyfunctional (meth) allyl compound is preferably a compound having 2 to 4 (meth) allyl groups in the molecule, from the viewpoint of the heat resistance and moisture and heat resistance of the cured resin, More preferably, it is a compound having three (meth) allyl groups.
- polyfunctional (meth) allyl compound examples include cyclohexanedicarboxylic acid di (meth) allyl, di (meth) allyl maleate, di (meth) allyl adipate, di (meth) allyl phthalate, di (meth) allyl iso Phthalate, di (meth) allyl terephthalate, glycerol di (meth) allyl ether, trimethylolpropane di (meth) allyl ether, pentaerythritol di (meth) allyl ether, 1,3-di (meth) allyl-5-glycidyl isocyanate Nurate, tri (meth) allyl cyanurate, tri (meth) allyl isocyanurate, tri (meth) allyl trimellitate, tetra (meth) allyl pyromelitate, 1,3,4,6-tetra (meth) allyl glycol Ur
- At least one selected from the group consisting of allyl terephthalate and cyclohexanedicarboxylate di (meth) allyl is preferred, and tri (meth) allyl isocyanurate is more preferred.
- the content of the (meth) allyl compound in the resin composition is, for example, preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 45% by mass, with respect to the total amount of the resin composition. More preferably, the content is 20% by mass to 40% by mass.
- the content of the (meth) allyl compound is 10% by mass or more, the heat resistance and the moist heat resistance of the cured resin tend to be further improved, and the content of the (meth) allyl compound is 50% by mass or less The adhesion of the cured resin to the substrate tends to be further improved.
- the resin composition of the present disclosure may contain a (meth) acrylic compound.
- the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and a multiple compound having two or more (meth) acryloyl groups in one molecule. It may be a functional (meth) acrylic compound.
- the (meth) acrylic compound one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) acrylic compound and a polyfunctional (meth) acrylic compound may be used in combination.
- monofunctional (meth) acrylic compounds are: (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate )
- Alkyl (meth) acrylates having 1 to 18 carbon atoms in the alkyl group such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl (Meth) acrylate compounds having an aromatic ring such as meta) acrylate; aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (me
- (meth) acrylic N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide And (meth) acrylamide compounds such as;
- the polyfunctional (meth) acrylic compound is preferably a compound having 2 to 4 (meth) acryloyl groups in the molecule from the viewpoint of heat resistance and moisture and heat resistance of the cured resin, and it is preferable to use More preferably, it is a compound having three (meth) acryloyl groups.
- polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate and the like.
- Alkylene glycol di (meth) acrylate Alkylene glycol di (meth) acrylate; tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate; trimethylolpropane tetra (meth) acrylate, penta And tetra (meth) acrylate compounds such as erythritol tetra (meth) acrylate.
- tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate
- trimethylolpropane tetra (meth) acrylate, penta And tetra (meth) acrylate compounds such as erythritol tetra (meth) acrylate.
- the (meth) acrylic compound may contain a monofunctional (meth) acrylate compound having an alicyclic ring from the viewpoint of further improving the heat resistance and the moist heat resistance of the cured resin, and isobornyl (meth) acrylate dicyclo It may contain pentanyl (meth) acrylate or the like, and preferably may contain isobornyl (meth) acrylate.
- the content of the (meth) acrylic compound in the resin composition may be, for example, 1% by mass to 30% by mass, or 5% by mass to 20% by mass, with respect to the total amount of the resin composition. It may be 10% by mass to 15% by mass.
- the content of the (meth) acrylic compound is 1% by mass or more, the storage stability of the resin composition and the adhesion of the cured resin to the substrate tend to be further improved, and the content of the (meth) acrylic compound
- the heat resistance and the heat-and-moisture resistance of the resin cured product tend to be improved as the content of 30% by mass or less.
- the resin composition of the present disclosure may contain a monofunctional thiol compound.
- the monofunctional thiol compound include 1-hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanethiol, 1-decanethiol, 3-mercaptopropionic acid, methyl 3-mercaptopropionate, 3- Examples thereof include 3-methoxybutyl mercaptopropionate, octyl 3-mercaptopropionate, tridecyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate and the like.
- the monofunctional thiol compound one type may be used alone, or two or more types may be used in combination.
- the resin composition of the present disclosure may contain an alkyleneoxy group-containing compound having an alkyleneoxy group and a polymerizable reactive group. This tends to facilitate the preparation of a resin composition having a high viscosity.
- By setting the viscosity of the resin composition to a relatively high value when preparing the resin composition which is an emulsion by stirring the mixture of each component, coalescence of the dispersoid due to aggregation is suppressed, so High dispersion is maintained, and high brightness tends to be obtained for the wavelength conversion member.
- the alkyleneoxy group-containing compound preferably has an ester group. Thereby, the dispersibility of the dispersoid such as modified silicone tends to be enhanced.
- the alkyleneoxy group-containing compound only needs to have one or more ester groups, and preferably has two or more ester groups.
- the alkyleneoxy group-containing compound preferably has two or more polymerizable reactive groups, and more preferably two polymerizable reactive groups.
- the adhesion of the cured resin to the substrate, the heat resistance, and the moist heat resistance tend to be further improved.
- a polymerizable reaction group the functional group which has an ethylenic double bond is mentioned, More specifically, a (meth) acryloyl group etc. are mentioned.
- the alkyleneoxy group is preferably an alkyleneoxy group having a carbon number of 2 to 4, from the viewpoint of easily preparing a resin composition having a relatively high viscosity by increasing the viscosity of the alkyleneoxy group-containing compound. Is more preferably an alkyleneoxy group of 2 or 3, and still more preferably an alkyleneoxy group having 2 carbon atoms.
- the alkyleneoxy group-containing compound may have one type of alkyleneoxy group, and may have two or more types of alkyleneoxy group.
- the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
- the alkyleneoxy group-containing compound preferably has 2 to 30 alkyleneoxy groups, more preferably 2 to 20 alkyleneoxy groups, and 3 to 10 alkyleneoxy groups. Are more preferred, and it is particularly preferred to have 3 to 5 alkyleneoxy groups.
- the alkyleneoxy group-containing compound preferably has a bisphenol structure. Thereby, the heat and humidity resistance tends to be excellent.
- a bisphenol structure a bisphenol A structure and a bisphenol F structure are mentioned, for example, Especially, a bisphenol A structure is preferable.
- alkyleneoxy group-containing compound examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (Meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nona ethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, hepta propylene glycol monomethyl ether (Meth) acrylate, tetraethylene glycol monoethyl ester
- Polyalkylene glycol monoalkyl ether (meth) acrylates such as hydroxyl (meth) acrylate; polyalkylene glycol monoaryl ether (meth)
- (Meth) acrylate compounds ; (meth) acrylate compounds having a glycidyl group such as glycidyl (meth) acrylate; polyethylene glycol di Polyalkylene glycol di (meth) acrylates such as meta) acrylate and polypropylene glycol di (meth) acrylate; tri (meth) acrylate compounds such as ethylene oxide-added trimethylolpropane tri (meth) acrylate; ethylene oxide-added pentaerythritol tetra (meth) acrylate Etc .; bisphenol type di (meth) acrylates such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate ) Acrylate compounds; and the like.
- alkyleneoxy group-containing compounds ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate and propoxylated ethoxylated bisphenol A di (meth) acrylate are preferable, among which ethoxylated bisphenol A-type di (meth) acrylate is more preferred.
- the alkyleneoxy group-containing compound one type may be used alone, or two or more types may be used in combination.
- the content of the alkyleneoxy group-containing compound in the resin composition is, for example, 0.5% by mass to 10% by mass with respect to the total amount of the resin composition. Is preferable, 1 to 8% by mass is more preferable, and 1.5 to 5% by mass is more preferable.
- the content of the alkyleneoxy group-containing compound is 0.5% by mass or more, the viscosity of the resin composition tends to be easily increased, and when the content of the alkyleneoxy group-containing compound is 10% by mass or less The viscosity of the composition does not become too high, and the application of the resin composition to a substrate or the like and the production efficiency of the wavelength conversion member tend to be excellent.
- the resin composition of the present disclosure preferably contains a photopolymerization initiator. It does not restrict
- the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1,4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler's ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (4- 2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2 Aromatic ketone compounds such as
- the photopolymerization initiator is preferably at least one selected from the group consisting of an acyl phosphine oxide compound, an aromatic ketone compound, and an oxime ester compound from the viewpoint of curability, and from an acyl phosphine oxide compound and an aromatic ketone compound And more preferably at least one selected from the group consisting of: acyl phosphine oxide compounds.
- the content of the photopolymerization initiator in the resin composition is, for example, preferably 0.1% by mass to 5% by mass, and more preferably 0.1% by mass to 3% by mass, with respect to the total amount of the resin composition.
- the content is more preferably 0.5% by mass to 1.5% by mass.
- the resin composition of the present disclosure may contain a liquid medium.
- the liquid medium refers to a medium in a liquid state at room temperature (25 ° C.).
- liquid medium examples include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, etc .; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol
- the resin composition of the present disclosure may contain one type of liquid medium alone, or may contain two or more types of liquid media.
- the content of the liquid medium in the resin composition is, for example, preferably 1% by mass to 10% by mass, and more preferably 4% by mass to the total amount of the resin composition. It is more preferably 10% by mass, and still more preferably 4% by mass to 7% by mass.
- the resin composition of the present disclosure may contain other components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion promoter, an antioxidant, and the like.
- the resin composition of the present disclosure may contain one type alone or two or more types for each of the other components.
- a resin composition layer formed using a resin composition for example, a resin composition layer formed on a substrate by applying the resin composition to a substrate, was subjected to drying treatment as necessary. After that, an active energy ray such as ultraviolet rays is irradiated. Thereby, a resin composition layer hardens
- the wavelength and irradiation amount of the active energy ray can be appropriately set according to the composition of the resin composition. In some aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
- the ultraviolet light source include low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave excited mercury lamps and the like.
- the cured resin product obtained by curing the resin composition layer contains a gelled product formed by the reaction of the above-mentioned dispersoids, and preferably is formed by the reaction of the above-mentioned modified silicone and a difunctional or higher epoxy compound. Contains gelation. Furthermore, the resin cured product may be a gelled product that includes the sea area and the island area, and the island area includes the quantum dot phosphor.
- the shapes of the cured resin and the wavelength conversion member are not particularly limited, and examples thereof include films and lenses.
- the cured resin and the wavelength conversion member are preferably in the form of a film.
- the average thickness of the cured resin product is, for example, preferably 50 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m, and still more preferably 80 ⁇ m to 120 ⁇ m.
- the average thickness is 50 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 ⁇ m or less, when applied to a backlight unit described later, the backlight unit tends to be thinner. is there.
- the average thickness of the film-like cured resin is determined, for example, as an arithmetic average value of the thicknesses of three arbitrary points measured using a micrometer.
- the resin cured product may be a single layer, or two or more layers may be laminated. When two or more layers of the resin cured product are laminated, the curing conditions of the resin composition and the resin composition used to form each layer may be the same or different. .
- the resin cured product preferably has a structure derived from an ene-thiol reaction, and the sea part of the resin cured product more preferably has a structure derived from an ene-thiol reaction.
- the ene-thiol reaction is a bond forming reaction between a thiol compound and a compound having an ethylenically unsaturated group.
- the ene-thiol reaction is preferably a bond-forming reaction between a thiol compound and a (meth) allyl compound, from the viewpoint of excellent adhesion of the cured resin to a substrate.
- a resin composition containing a thiol compound, a (meth) allyl compound and a photopolymerization initiator is irradiated with an active energy ray such as ultraviolet light
- the thiol compound and the (meth) allyl are generated by radicals generated from the polymerization initiator.
- the reaction with the compound proceeds to obtain a cured resin having a structure derived from the ene-thiol reaction.
- the cured resin having a structure derived from an ene-thiol reaction may be a cured product derived from the reaction of a thiol compound, a (meth) allyl compound and a (meth) acrylic compound.
- the cured resin having a structure derived from an ene-thiol reaction may be, for example, a cured product obtained by further reacting an oligomer obtained by reacting a thiol compound and a (meth) acrylic compound with a (meth) allyl compound. .
- the cured resin has a loss tangent (tan ⁇ ) of 0.4 to 1.5 measured by dynamic viscoelasticity measurement at a frequency of 10 Hz and a temperature of 25 ° C. in order to further improve the adhesion to the substrate. Is preferable, 0.4 to 1.2 is more preferable, and 0.4 to 0.6 is more preferable.
- the loss tangent (tan ⁇ ) of the resin cured product can be measured using a dynamic viscoelasticity measurement device (eg, Rheometric Scientific, Inc., Solid Analyzer RSA-III).
- the cured resin preferably has a glass transition temperature (Tg) of 40 ° C. or higher, more preferably 45 ° C. or higher, and more preferably 50 ° C. or higher, from the viewpoint of further improving heat resistance and moist heat resistance. Is more preferred.
- the cured resin is preferably 90 ° C. or less, more preferably 80 ° C. or less, and still more preferably 75 ° C. or less, from the viewpoint of adhesion to the substrate.
- the glass transition temperature (Tg) of the resin cured product can be measured using a dynamic viscoelasticity measurement device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
- the cured resin has a storage elastic modulus of 1 ⁇ 10 7 Pa to 1 ⁇ 10 5 measured at a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving the adhesion to the substrate, the heat resistance and the moisture and heat resistance.
- the pressure is preferably 9 Pa, more preferably 5 ⁇ 10 7 Pa to 1 ⁇ 10 9 Pa, and still more preferably 5 ⁇ 10 7 Pa to 5 ⁇ 10 8 Pa.
- the storage elastic modulus of the resin cured product can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Inc., Solid Analyzer RSA-III).
- the wavelength conversion member manufactured by the method for manufacturing a wavelength conversion member of the present disclosure has a first base and a second base provided on both sides of a cured resin, and the first base, the cured resin, and The second base material may be a wavelength conversion member arranged in this order.
- a wavelength conversion member for example, in the step of forming a resin composition layer, the step of applying the resin composition to the first substrate to form a resin composition layer, and obtaining a cured resin product. Before this, it can manufacture by performing the process of providing a 2nd base material on the opposite side to the side in which the 1st base material in a resin composition layer was provided.
- covers at least one part of resin cured material is mentioned.
- the wavelength conversion member of the present disclosure may be one in which one surface or both surfaces of the cured resin in the form of a film is covered with a film-shaped covering material.
- the coating material preferably has a barrier property to at least one of oxygen and water, and more preferably has a barrier property to both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the quantum dot phosphor. It does not restrict
- the average thickness of the covering material is, for example, preferably 100 ⁇ m to 150 ⁇ m, more preferably 100 ⁇ m to 140 ⁇ m, and still more preferably 100 ⁇ m to 135 ⁇ m.
- the average thickness is 100 ⁇ m or more, the function such as barrier property tends to be sufficient, and when the average thickness is 150 ⁇ m or less, the decrease in light transmittance tends to be suppressed.
- the average thickness of the film-like covering material is determined in the same manner as the film-like cured resin.
- the oxygen permeability of the covering material is, for example, preferably 0.5 mL / (m 2 ⁇ 24 h ⁇ atm) or less, more preferably 0.3 mL / (m 2 ⁇ 24 h ⁇ atm) or less, 0 More preferably, it is not more than 1 mL / (m 2 ⁇ 24 h ⁇ atm).
- the oxygen permeability of the covering material can be measured under conditions of a temperature of 23 ° C. and a relative humidity of 65% using an oxygen permeability measuring device (for example, OX-TRAN, manufactured by MOCON).
- the water vapor transmission rate of the covering material is, for example, preferably 5 ⁇ 10 ⁇ 2 g / (m 2 ⁇ 24 h ⁇ Pa) or less, and 1 ⁇ 10 ⁇ 2 g / (m 2 ⁇ 24 h ⁇ Pa) or less Is more preferably 5 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h ⁇ Pa) or less.
- the water vapor transmission rate of the covering material can be measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% using a water vapor transmission rate measuring device (for example, AQUATRAN manufactured by MOCON).
- the wavelength conversion member which concerns on one form of this invention is a gelatinization thing provided with the resin cured material which has a sea island structure containing a sea part and an island part, and the said island part includes quantum dot fluorescent substance.
- the wavelength conversion member which concerns on one form of this invention can be manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, for example.
- each structure in the wavelength conversion member which concerns on one form of this invention is the same as each structure in the wavelength conversion member manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, the description is abbreviate
- the island portion is a gelled material in which the quantum dot phosphor is contained.
- the quantum dot fluorescent substance in gelatinization does not deteriorate easily under high temperature and high humidity environment, and a wavelength conversion member is excellent in heat-and-moisture resistance.
- the standard deviation of the diameter of the island is preferably 1.5 ⁇ m or less, more preferably 1.2 ⁇ m or less, and still more preferably 1.0 ⁇ m or less. It is particularly preferable that the diameter is not more than 8 ⁇ m. When the standard deviation of the diameter of the island portion is 1.5 ⁇ m or less, the emission intensity of the wavelength conversion member tends to be more excellent.
- the lower limit of the standard deviation of the diameter of the island is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and more preferably 0.3 ⁇ m or more from the viewpoint of the production efficiency of the wavelength conversion member. It is further preferred that
- the diameter of the island portion is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, still more preferably 3.0 ⁇ m or less, and 2.5 ⁇ m or less Is particularly preferred.
- the diameter of the island portion is 5.0 ⁇ m or less, the emission intensity of the wavelength conversion member tends to be more excellent.
- the lower limit of the diameter of the island portion is not particularly limited, but may be 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
- the standard deviation of the diameter of the island and the diameter of the island can be controlled by adjusting the viscosity of the resin composition used for producing the wavelength conversion member.
- the standard deviation of the diameter of the island and the diameter of the island are controlled by changing the stirring conditions such as the number of rotations and the stirring time when mixing each component. May be
- the diameter of the island portion is an arithmetic mean value of the diameters of 100 island portions selected indiscriminately when the wavelength conversion member is observed with an optical microscope.
- the standard deviation of the diameter of the island is a standard deviation obtained from the STDEV function using the diameter of the selected 100 islands.
- FIG. 1 An example of schematic structure of a wavelength conversion member is shown in FIG.
- the wavelength conversion member of the present disclosure is not limited to the configuration of FIG. 1.
- the sizes of the resin cured product and the covering material in FIG. 1 are conceptual, and the relative relationship of the sizes is not limited thereto.
- the wavelength conversion member 10 shown in FIG. 1 has a cured resin 11 in the form of a film and film-like covering materials 12A and 12B provided on both sides of the cured resin 11.
- the types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
- the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured, for example, by the following method.
- the above-mentioned resin composition is applied to the surface of the film-like covering material 12A (first base material) which is continuously conveyed, and a coating film (resin composition layer) is formed.
- the film-like covering material 12B (second base material) which is continuously conveyed is pasted onto the coating film.
- the coating is cured by irradiating the coating material 12A and the coating material 12B with active energy radiation from the side of the coating material capable of transmitting active energy radiation, thereby forming a cured resin containing a gelled product.
- the wavelength conversion member having the configuration shown in FIG. 1 can be obtained by cutting out to a prescribed size.
- an active energy ray may be irradiated to a coating film and resin cured material may be formed.
- the backlight unit of the present disclosure includes the above-described wavelength conversion member of the present disclosure and a light source.
- the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
- it has an emission center wavelength in a wavelength range of 430 nm to 480 nm and blue light having an emission intensity peak having a half width of 100 nm or less and an emission center wavelength in a wavelength range of 520 nm to 560 nm.
- the full width at half maximum of the emission intensity peak means a peak width at a half height of the peak height.
- the emission center wavelength of blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
- the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
- the emission center wavelength of red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
- the half-width of each of the light emission intensity peaks of blue light, green light and red light emitted by the backlight unit is preferably 80 nm or less, and 50 nm or less Some are more preferable, 40 nm or less is further preferable, 30 nm or less is particularly preferable, and 25 nm or less is very preferable.
- the wavelength conversion member preferably includes at least a quantum dot phosphor R emitting red light and a quantum dot phosphor G emitting green light. Thereby, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
- a light source of the backlight unit for example, a light source which emits ultraviolet light having an emission center wavelength in a wavelength range of 300 nm to 430 nm can be used.
- the light source includes, for example, an LED and a laser.
- the wavelength conversion member preferably includes the quantum dot phosphor R and the quantum dot phosphor G together with the quantum dot phosphor B which is excited by the excitation light and emits blue light. Thereby, white light can be obtained by the red light, the green light, and the blue light emitted from the wavelength conversion member.
- the backlight unit of the present disclosure may be an edge light system or a direct system.
- FIG. 2 An example of a schematic configuration of the edge light type backlight unit is shown in FIG.
- the backlight unit of the present disclosure is not limited to the configuration of FIG.
- the sizes of the members in FIG. 2 are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
- the backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face A retroreflective member 23 disposed opposite to the light guide plate 22 via the wavelength conversion member 10, and a reflector 24 disposed opposite to the wavelength conversion member 10 via the light guide plate 22.
- the wavelength conversion member 10 emits red light L R and green light L G using a part of the blue light L B as excitation light, and emits red light L R and green light L G and blue light L that has not become excitation light. Emit B and.
- White light LW is emitted from the retroreflective member 23 by the red light L R , the green light L G , and the blue light L B.
- An image display device of the present disclosure includes the backlight unit of the present disclosure described above. It does not restrict
- FIG. 3 An example of a schematic configuration of the liquid crystal display device is shown in FIG.
- the liquid crystal display device of the present disclosure is not limited to the configuration of FIG. 3.
- the sizes of the members in FIG. 3 are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
- the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 disposed to face the backlight unit 20.
- the liquid crystal cell unit 31 is configured such that the liquid crystal cell 32 is disposed between the polarizing plate 33A and the polarizing plate 33B.
- the driving method of the liquid crystal cell 32 is not particularly limited, and TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Virtical Alignment) method, IPS (In-Place-Switching) method, OCB (Optically Compensated Birefringence) System etc.
- TN Transmission Nematic
- STN Super Twisted Nematic
- VA Virtual Alignment
- IPS In-Place-Switching
- OCB Optically Compensated Birefringence
- the resin composition for a wavelength conversion member of the present disclosure includes a quantum dot phosphor and a gelable dispersoid that contains the quantum dot phosphor.
- the resin composition for wavelength conversion members of this embodiment is used for manufacture of a wavelength conversion member.
- the resin composition for wavelength conversion members of this embodiment is an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, a (meth) acrylic compound, a monofunctional thiol compound And a resin component such as an alkyleneoxy group-containing compound may be contained, and a photopolymerization initiator, a liquid medium, other components and the like may be contained.
- the components that can be contained in the resin composition for wavelength conversion members of the present embodiment and the content thereof are the respective components that can be contained in the resin composition used in the method for producing a wavelength conversion member of the present disclosure described above, and the content thereof Since it is the same, the description is omitted.
- the resin cured product of the present disclosure includes a gelled product obtained by curing the above-described resin composition for a wavelength conversion member and reacting the dispersoid.
- the conditions for curing the above-described resin composition for a wavelength conversion member, the preferable physical property values of the cured resin product, and the like are as described in the item of the method for producing a wavelength conversion member of the present disclosure described above.
- the weight average molecular weight is a value determined by conversion using gel permeation chromatography, using a calibration curve of standard polystyrene according to the following apparatus and measurement conditions. In preparation of a standard curve, five sample sets (PStQuick MP-H, PStQuick B (Tosoh Corp., trade name)) were used as standard polystyrene.
- High-speed GPC device HLC-8320GPC (Detector: Differential Refractometer) (Tosoh Corporation, trade name) Solvent used: tetrahydrofuran (THF)
- Sample concentration 10 mg / THF 5 mL
- Injection volume 20 ⁇ L
- Examples 1 to 4 and Comparative Examples 1 to 3 (Preparation of resin composition for wavelength conversion member)
- the resin compositions for wavelength conversion members of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by mixing the components shown in Table 1 in the blending amounts (unit: part by mass) shown in the same table. "-" In Table 1 means unblended.
- triallyl isocyanurate (Nippon Kasei Co., Ltd., Taik) was used as a (meth) allyl compound.
- epoxy compound hydrogenated bisphenol A type diglycidyl ether (Epolite 4000 manufactured by Kyoeisha Chemical Co., Ltd.), bisphenol A type PO 2 mol adduct diglycidyl ether (Kyoeisha Chemical Co., Ltd. Epolite 3002 (N)) and C12, 13 mixed Higher alcohol glycidyl ether epolite (Kyoeisha Chemical Co., Ltd. M-1230) was used. Further, as a photopolymerization initiator, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide (Sort, SB-PI 718) was used. As a quantum dot fluorescent substance, CdSe / ZnS (core / shell) dispersion (manufactured by Nanosys, Gen2 QD Concentrate, dispersoid: amino-modified silicone) was used.
- a composition containing a thioether oligomer and a CdSe / ZnS (core / shell) dispersion, a (meth) allyl compound, an epoxy compound, and a composition containing a photopolymerization initiator are mixed.
- a resin composition for wavelength conversion member is prepared. Therefore, when curing the resin composition for wavelength conversion members as will be described later, it is presumed that a part of the mixed epoxy compound reacts with the amino-modified silicone in the dispersion liquid to form a gelled product.
- Each curable composition obtained above was each apply
- Rec2020 coverage retention ratio (RLa-RLb) RLa: Initial Rec2020 cover rate (%) RLb: Rec 2020 coverage (%) after 65 ° C 95% RH x 500 hours
- the heat-and-moisture resistance of each wavelength conversion member was evaluated.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
- Liquid Crystal (AREA)
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
Abstract
Provided is a method for producing a wavelength conversion member, the method comprising: the step for preparing a resin composition that includes a quantum dot phosphor and a gellable dispersoid; the step for forming a resin composition layer using the resin composition; and the step for curing the resin composition layer to obtain a resin cured product, wherein the dispersoid including the quantum dot phosphor is dispersed in the resin composition, and the resin cured product includes a gelled substance formed by reaction of the dispersoid.
Description
本開示は、波長変換部材の製造方法、波長変換部材、バックライトユニット、画像表示装置、波長変換部材用樹脂組成物及び樹脂硬化物に関する。
The present disclosure relates to a method for manufacturing a wavelength conversion member, a wavelength conversion member, a backlight unit, an image display device, a resin composition for a wavelength conversion member, and a resin cured product.
近年、液晶表示装置等の画像表示装置の分野においては、ディスプレイの色再現性を向上させることが求められており、色再現性を向上させる手段として、量子ドット蛍光体を含む波長変換部材が注目を集めている(例えば、特許文献1及び2参照)。
In recent years, in the field of image display devices such as liquid crystal display devices, there is a need to improve the color reproducibility of displays, and wavelength conversion members containing quantum dot phosphors are attracting attention as a means to improve color reproducibility. (See, for example, Patent Documents 1 and 2).
量子ドット蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。量子ドット蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。
The wavelength conversion member containing quantum dot fluorescent substance is arrange | positioned, for example in the backlight unit of an image display apparatus. In the case of using a wavelength conversion member containing a quantum dot phosphor emitting red light and a quantum dot phosphor emitting green light, when the wavelength conversion member is irradiated with blue light as excitation light, light is emitted from the quantum dot phosphor White light can be obtained from the red light and green light that have been transmitted and the blue light transmitted through the wavelength conversion member. With the development of wavelength conversion members containing quantum dot phosphors, the color reproducibility of the display has been expanded from 72% of the conventional National Television System Committee (NTSC) ratio to 100% of the NTSC ratio.
量子ドット蛍光体を含む波長変換部材は、通常、量子ドット蛍光体を含む硬化性組成物を硬化させた硬化物を有する。硬化性組成物としては熱硬化型及び光硬化型があり、生産性の点からは光硬化型の硬化性組成物が好ましく用いられる。
The wavelength conversion member containing a quantum dot fluorescent substance usually has a cured product obtained by curing a curable composition containing a quantum dot fluorescent substance. The curable composition includes a thermosetting type and a photocurable type, and from the viewpoint of productivity, a photocurable type curable composition is preferably used.
ところで、量子ドット蛍光体を含む樹脂硬化物を備える波長変換部材においては、樹脂硬化物の少なくとも一部が被覆材によって被覆される場合がある。例えば、フィルム状の波長変換部材の場合、樹脂硬化物の片面又は両面に、酸素及び水の少なくとも一方に対するバリア性を有するバリアフィルムが設けられることがある。
By the way, in the wavelength conversion member provided with the resin cured material containing quantum dot fluorescent substance, at least one part of resin cured material may be coat | covered with a coating material. For example, in the case of a film-like wavelength conversion member, a barrier film having a barrier property to at least one of oxygen and water may be provided on one side or both sides of the cured resin.
樹脂硬化物の片面又は両面に前述のバリアフィルムが設けられている場合であっても、量子ドット蛍光体は水蒸気、酸素等の影響により劣化するおそれがある。特に、量子ドット蛍光体を含む波長変換部材を高温高湿環境下に放置した場合に量子ドット蛍光体が劣化しやすく、ディスプレイ色再現性の規格であるRec2020カバー率が低下するおそれがある。
Even when the above-described barrier film is provided on one side or both sides of the cured resin, the quantum dot phosphor may be deteriorated by the influence of water vapor, oxygen, and the like. In particular, when the wavelength conversion member including the quantum dot phosphor is left in a high temperature and high humidity environment, the quantum dot phosphor is easily deteriorated, and there is a possibility that the Rec 2020 coverage, which is a standard of display color reproducibility, is reduced.
本発明の一形態では、量子ドット蛍光体を含み、耐湿熱性に優れる波長変換部材の製造方法、その波長変換部材、その波長変換部材を用いたバックライトユニット及び画像表示装置、並びにその波長変換部材の製造に用いる波長変換部材用樹脂組成物及び樹脂硬化物を提供することを目的とする。
In one aspect of the present invention, a method of manufacturing a wavelength conversion member containing quantum dot phosphors and having excellent heat and humidity resistance, a wavelength conversion member thereof, a backlight unit and an image display using the wavelength conversion member, and a wavelength conversion member thereof It is an object of the present invention to provide a resin composition for wavelength conversion member and a resin cured product used for the production of
前記課題を達成するための具体的手段は以下の通りである。
<1> 量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程と、前記樹脂組成物を用いて樹脂組成物層を形成する工程と、前記樹脂組成物層を硬化させて樹脂硬化物を得る工程とを有し、前記樹脂組成物中にて前記量子ドット蛍光体を内包する前記分散質が分散しており、前記樹脂硬化物は前記分散質が反応してなるゲル化物を含む、波長変換部材の製造方法。
<2> 前記ゲル化可能な分散質は、変性シリコーンを含む、<1>に記載の波長変換部材の製造方法。
<3> 前記変性シリコーンがアミノ変性シリコーンを含む、<2>に記載の波長変換部材の製造方法。
<4> 前記樹脂組成物は二官能以上のエポキシ化合物を含み、前記アミノ変性シリコーンのアミン当量と前記二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<3>に記載の波長変換部材の製造方法。
<5> 前記樹脂組成物は二官能以上のエポキシ化合物を含む、<1>~<3>のいずれか1つに記載の波長変換部材の製造方法。
<6> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<4>又は<5>に記載の波長変換部材の製造方法。
<7> 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、<1>~<6>のいずれか1つに記載の波長変換部材の製造方法。
<8> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<1>~<7>のいずれか1つに記載の波長変換部材の製造方法。
<9> 前記樹脂組成物が、多官能チオール化合物及び(メタ)アリル化合物を含む<1>~<8>のいずれか1つに記載の波長変換部材の製造方法。
<10> 前記樹脂組成物層を形成する工程は、前記樹脂組成物を第一の基材上に付与して前記樹脂組成物層を形成する工程であり、前記樹脂硬化物を得る工程の前に、前記樹脂組成物層における前記第一の基材が設けられた側の反対側に第二の基材を設ける工程を更に有する<1>~<9>のいずれか1つに記載の波長変換部材の製造方法。 The specific means for achieving the said subject are as follows.
<1> A process of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, a process of forming a resin composition layer using the resin composition, and curing the resin composition layer And a step of obtaining a cured resin, wherein the dispersoid containing the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin is a gel formed by the reaction of the dispersoid. Method of producing a wavelength conversion member, comprising
<2> The method for producing a wavelength conversion member according to <1>, wherein the gelable dispersoid contains a modified silicone.
<3> The method for producing a wavelength conversion member according to <2>, wherein the modified silicone contains an amino-modified silicone.
<4> The resin composition contains a difunctional or higher epoxy compound, and the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 The manufacturing method of the wavelength conversion member as described in <3> which is -70.0.
<5> The method for producing a wavelength conversion member according to any one of <1> to <3>, wherein the resin composition contains an epoxy compound having two or more functional groups.
<6> The method for producing a wavelength conversion member according to <4> or <5>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<7> The wavelength conversion member according to any one of <1> to <6>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement at a frequency of 10 Hz is 40 ° C. or higher. Production method.
<8> The method for producing a wavelength conversion member according to any one of <1> to <7>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
<9> The method for producing a wavelength conversion member according to any one of <1> to <8>, wherein the resin composition comprises a polyfunctional thiol compound and a (meth) allyl compound.
The process of forming the <10> said resin composition layer is a process of providing the said resin composition on a 1st base material, and forming the said resin composition layer, and before the process of obtaining the said resin cured material And the wavelength described in any one of <1> to <9>, further comprising the step of providing a second base on the side opposite to the side on which the first base is provided in the resin composition layer. Method of manufacturing conversion member.
<1> 量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程と、前記樹脂組成物を用いて樹脂組成物層を形成する工程と、前記樹脂組成物層を硬化させて樹脂硬化物を得る工程とを有し、前記樹脂組成物中にて前記量子ドット蛍光体を内包する前記分散質が分散しており、前記樹脂硬化物は前記分散質が反応してなるゲル化物を含む、波長変換部材の製造方法。
<2> 前記ゲル化可能な分散質は、変性シリコーンを含む、<1>に記載の波長変換部材の製造方法。
<3> 前記変性シリコーンがアミノ変性シリコーンを含む、<2>に記載の波長変換部材の製造方法。
<4> 前記樹脂組成物は二官能以上のエポキシ化合物を含み、前記アミノ変性シリコーンのアミン当量と前記二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<3>に記載の波長変換部材の製造方法。
<5> 前記樹脂組成物は二官能以上のエポキシ化合物を含む、<1>~<3>のいずれか1つに記載の波長変換部材の製造方法。
<6> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<4>又は<5>に記載の波長変換部材の製造方法。
<7> 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、<1>~<6>のいずれか1つに記載の波長変換部材の製造方法。
<8> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<1>~<7>のいずれか1つに記載の波長変換部材の製造方法。
<9> 前記樹脂組成物が、多官能チオール化合物及び(メタ)アリル化合物を含む<1>~<8>のいずれか1つに記載の波長変換部材の製造方法。
<10> 前記樹脂組成物層を形成する工程は、前記樹脂組成物を第一の基材上に付与して前記樹脂組成物層を形成する工程であり、前記樹脂硬化物を得る工程の前に、前記樹脂組成物層における前記第一の基材が設けられた側の反対側に第二の基材を設ける工程を更に有する<1>~<9>のいずれか1つに記載の波長変換部材の製造方法。 The specific means for achieving the said subject are as follows.
<1> A process of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, a process of forming a resin composition layer using the resin composition, and curing the resin composition layer And a step of obtaining a cured resin, wherein the dispersoid containing the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin is a gel formed by the reaction of the dispersoid. Method of producing a wavelength conversion member, comprising
<2> The method for producing a wavelength conversion member according to <1>, wherein the gelable dispersoid contains a modified silicone.
<3> The method for producing a wavelength conversion member according to <2>, wherein the modified silicone contains an amino-modified silicone.
<4> The resin composition contains a difunctional or higher epoxy compound, and the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 The manufacturing method of the wavelength conversion member as described in <3> which is -70.0.
<5> The method for producing a wavelength conversion member according to any one of <1> to <3>, wherein the resin composition contains an epoxy compound having two or more functional groups.
<6> The method for producing a wavelength conversion member according to <4> or <5>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<7> The wavelength conversion member according to any one of <1> to <6>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement at a frequency of 10 Hz is 40 ° C. or higher. Production method.
<8> The method for producing a wavelength conversion member according to any one of <1> to <7>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
<9> The method for producing a wavelength conversion member according to any one of <1> to <8>, wherein the resin composition comprises a polyfunctional thiol compound and a (meth) allyl compound.
The process of forming the <10> said resin composition layer is a process of providing the said resin composition on a 1st base material, and forming the said resin composition layer, and before the process of obtaining the said resin cured material And the wavelength described in any one of <1> to <9>, further comprising the step of providing a second base on the side opposite to the side on which the first base is provided in the resin composition layer. Method of manufacturing conversion member.
<11> 海部と島部とを含む海島構造を有する樹脂硬化物を備え、前記島部が量子ドット蛍光体を内包するゲル化物である、波長変換部材。
<12> 前記樹脂硬化物が多官能チオール化合物、(メタ)アリル化合物、変性シリコーン及び二官能以上のエポキシ化合物のそれぞれに由来する構造を有する、<11>に記載の波長変換部材。
<13> 前記変性シリコーンがアミノ変性シリコーンを含む、<12>に記載の波長変換部材。
<14> 前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<13>に記載の波長変換部材。
<15> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<12>~<14>のいずれか1つに記載の波長変換部材。
<16> 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、<11>~<15>のいずれか1つに記載の波長変換部材。
<17> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<11>~<16>のいずれか1つに記載の波長変換部材。
<18> 被覆材を備え、前記被覆材により、前記樹脂硬化物の少なくとも一部が被覆された、<11>~<17>のいずれか1つに記載の波長変換部材。
<19> 前記被覆材が酸素及び水の少なくとも一方に対するバリア性を有する、<18>に記載の波長変換部材。 <11> A wavelength conversion member, comprising: a resin cured product having a sea-island structure including a sea part and an island part, wherein the island part is a gelled material including a quantum dot phosphor.
<12> The wavelength conversion member according to <11>, wherein the cured resin product has a structure derived from each of a multifunctional thiol compound, a (meth) allyl compound, a modified silicone, and a difunctional or more epoxy compound.
<13> The wavelength conversion member according to <12>, wherein the modified silicone comprises an amino-modified silicone.
<14> The wavelength conversion according to <13>, wherein the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 to 70.0. Element.
<15> The wavelength conversion member according to any one of <12> to <14>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<16> The wavelength conversion member according to any one of <11> to <15>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement under the condition offrequency 10 Hz is 40 ° C. or higher.
<17> The wavelength conversion member according to any one of <11> to <16>, wherein the quantum dot phosphor includes a compound including at least one of Cd and In.
<18> The wavelength conversion member according to any one of <11> to <17>, including a covering material, wherein at least a part of the cured resin is covered with the covering material.
<19> The wavelength conversion member according to <18>, wherein the covering material has a barrier property to at least one of oxygen and water.
<12> 前記樹脂硬化物が多官能チオール化合物、(メタ)アリル化合物、変性シリコーン及び二官能以上のエポキシ化合物のそれぞれに由来する構造を有する、<11>に記載の波長変換部材。
<13> 前記変性シリコーンがアミノ変性シリコーンを含む、<12>に記載の波長変換部材。
<14> 前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<13>に記載の波長変換部材。
<15> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<12>~<14>のいずれか1つに記載の波長変換部材。
<16> 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、<11>~<15>のいずれか1つに記載の波長変換部材。
<17> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<11>~<16>のいずれか1つに記載の波長変換部材。
<18> 被覆材を備え、前記被覆材により、前記樹脂硬化物の少なくとも一部が被覆された、<11>~<17>のいずれか1つに記載の波長変換部材。
<19> 前記被覆材が酸素及び水の少なくとも一方に対するバリア性を有する、<18>に記載の波長変換部材。 <11> A wavelength conversion member, comprising: a resin cured product having a sea-island structure including a sea part and an island part, wherein the island part is a gelled material including a quantum dot phosphor.
<12> The wavelength conversion member according to <11>, wherein the cured resin product has a structure derived from each of a multifunctional thiol compound, a (meth) allyl compound, a modified silicone, and a difunctional or more epoxy compound.
<13> The wavelength conversion member according to <12>, wherein the modified silicone comprises an amino-modified silicone.
<14> The wavelength conversion according to <13>, wherein the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 to 70.0. Element.
<15> The wavelength conversion member according to any one of <12> to <14>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<16> The wavelength conversion member according to any one of <11> to <15>, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement under the condition of
<17> The wavelength conversion member according to any one of <11> to <16>, wherein the quantum dot phosphor includes a compound including at least one of Cd and In.
<18> The wavelength conversion member according to any one of <11> to <17>, including a covering material, wherein at least a part of the cured resin is covered with the covering material.
<19> The wavelength conversion member according to <18>, wherein the covering material has a barrier property to at least one of oxygen and water.
<20> <11>~<19>のいずれか1つに記載の波長変換部材と、光源とを備えるバックライトユニット。
<20> A backlight unit comprising the wavelength conversion member according to any one of <11> to <19>, and a light source.
<21> <20>に記載のバックライトユニットを備える、画像表示装置。
The image display apparatus provided with the backlight unit as described in <21> <20>.
<22> 量子ドット蛍光体、及び前記量子ドット蛍光体を内包するゲル化可能な分散質を含む、波長変換部材用樹脂組成物。
<23> 前記ゲル化可能な分散質は、変性シリコーンを含む、<22>に記載の波長変換部材用樹脂組成物。
<24> 前記変性シリコーンがアミノ変性シリコーンを含む、<23>に記載の波長変換部材用樹脂組成物。
<25> 二官能以上のエポキシ化合物を含み、前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<24>に記載の波長変換部材用樹脂組成物。
<26> 二官能以上のエポキシ化合物を含む、<22>~<24>のいずれか1つに記載の波長変換部材用樹脂組成物。
<27> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<25>又は<26>に記載の波長変換部材用樹脂組成物。
<28> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<22>~<27>のいずれか1つに記載の波長変換部材用樹脂組成物。
<29> 多官能チオール化合物及び(メタ)アリル化合物を含む、<22>~<28>のいずれか1つに記載の波長変換部材用樹脂組成物。 <22> A resin composition for a wavelength conversion member, which comprises a quantum dot phosphor and a gelable dispersoid containing the quantum dot phosphor.
<23> The resin composition for a wavelength conversion member according to <22>, wherein the gelable dispersoid contains modified silicone.
<24> The resin composition for a wavelength conversion member according to <23>, wherein the modified silicone comprises an amino-modified silicone.
<25> A ratio of an amine equivalent of the amino-modified silicone to an epoxy equivalent of an epoxy compound having two or more functional groups (epoxy equivalent / amine equivalent) is 0.01 to 70.0 including an epoxy compound having two or more functional groups The resin composition for wavelength conversion members as described in <24>.
<26> The resin composition for a wavelength conversion member according to any one of <22> to <24>, which comprises an epoxy compound having two or more functional groups.
<27> The resin composition for a wavelength conversion member according to <25> or <26>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<28> The resin composition for a wavelength conversion member according to any one of <22> to <27>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
<29> The resin composition for a wavelength conversion member according to any one of <22> to <28>, which comprises a polyfunctional thiol compound and a (meth) allyl compound.
<23> 前記ゲル化可能な分散質は、変性シリコーンを含む、<22>に記載の波長変換部材用樹脂組成物。
<24> 前記変性シリコーンがアミノ変性シリコーンを含む、<23>に記載の波長変換部材用樹脂組成物。
<25> 二官能以上のエポキシ化合物を含み、前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、<24>に記載の波長変換部材用樹脂組成物。
<26> 二官能以上のエポキシ化合物を含む、<22>~<24>のいずれか1つに記載の波長変換部材用樹脂組成物。
<27> 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、<25>又は<26>に記載の波長変換部材用樹脂組成物。
<28> 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、<22>~<27>のいずれか1つに記載の波長変換部材用樹脂組成物。
<29> 多官能チオール化合物及び(メタ)アリル化合物を含む、<22>~<28>のいずれか1つに記載の波長変換部材用樹脂組成物。 <22> A resin composition for a wavelength conversion member, which comprises a quantum dot phosphor and a gelable dispersoid containing the quantum dot phosphor.
<23> The resin composition for a wavelength conversion member according to <22>, wherein the gelable dispersoid contains modified silicone.
<24> The resin composition for a wavelength conversion member according to <23>, wherein the modified silicone comprises an amino-modified silicone.
<25> A ratio of an amine equivalent of the amino-modified silicone to an epoxy equivalent of an epoxy compound having two or more functional groups (epoxy equivalent / amine equivalent) is 0.01 to 70.0 including an epoxy compound having two or more functional groups The resin composition for wavelength conversion members as described in <24>.
<26> The resin composition for a wavelength conversion member according to any one of <22> to <24>, which comprises an epoxy compound having two or more functional groups.
<27> The resin composition for a wavelength conversion member according to <25> or <26>, wherein the bifunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
<28> The resin composition for a wavelength conversion member according to any one of <22> to <27>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
<29> The resin composition for a wavelength conversion member according to any one of <22> to <28>, which comprises a polyfunctional thiol compound and a (meth) allyl compound.
<30> <22>~<29>のいずれか1つに記載の波長変換部材用樹脂組成物を硬化させてなり、かつ前記分散質が反応してなるゲル化物を含む、樹脂硬化物。
<31> 動的粘弾性測定により周波数10Hzの条件で測定したガラス転移温度が40℃以上である、<30>に記載の樹脂硬化物。 <30> A resin cured product comprising a gelled product obtained by curing the resin composition for a wavelength conversion member according to any one of <22> to <29> and reacting the dispersoid.
<31> The resin cured material as described in <30> whose glass transition temperature measured on conditions offrequency 10 Hz by dynamic-viscoelasticity measurement is 40 degreeC or more.
<31> 動的粘弾性測定により周波数10Hzの条件で測定したガラス転移温度が40℃以上である、<30>に記載の樹脂硬化物。 <30> A resin cured product comprising a gelled product obtained by curing the resin composition for a wavelength conversion member according to any one of <22> to <29> and reacting the dispersoid.
<31> The resin cured material as described in <30> whose glass transition temperature measured on conditions of
本発明の一形態によれば、量子ドット蛍光体を含み、耐湿熱性に優れる波長変換部材の製造方法、その波長変換部材、その波長変換部材を用いたバックライトユニット及び画像表示装置、並びにその波長変換部材の製造に用いる波長変換部材用樹脂組成物及び樹脂硬化物を提供することができる。
According to one aspect of the present invention, a method of manufacturing a wavelength conversion member including a quantum dot phosphor and having excellent heat and humidity resistance, a wavelength conversion member thereof, a backlight unit and an image display using the wavelength conversion member, and a wavelength thereof The resin composition for wavelength conversion members and resin cured material which are used for manufacture of a conversion member can be provided.
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中及び波長変換部材中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中及び波長変換部材中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本開示において「(メタ)アリル」とはアリル又はメタリルを意味し、「(メタ)アクリル」とはアクリル又はメタクリルを意味し、「(メタ)アクリロイル」とはアクリロイル又はメタクリロイルを意味し、「(メタ)アクリレート」とはアクリレート又はメタクリレートを意味する。
本開示において、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
また、本開示において、チオール基及びアルキレンオキシ基の両方を含む化合物は、チオール化合物に分類するものとする。
また、本開示において、(メタ)アリル基及びアルキレンオキシ基の両方を含む化合物は、(メタ)アリル化合物に分類するものとする。
また、本開示において、(メタ)アクリル基及びアルキレンオキシ基の両方を含む化合物は、アルキレンオキシ基含有化合物に分類するものとする。
また、本開示において、エステル基における酸素(カルボニル基に結合した酸素)及び水酸基における酸素は、アルキレンオキシ基における酸素に分類しないものとする。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition and in the wavelength conversion member, the content or content of each component is in the composition and in the wavelength conversion member unless otherwise specified. The total content or content of the substances of the species is meant.
In the present disclosure, the words “layer” or “film” mean that when the region in which the layer or film is present is observed, in addition to the case where the region is entirely formed, only a part of the region The case where it is formed is also included.
The term "laminate" in the present disclosure refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.
In the present disclosure, “(meth) allyl” means allyl or methallyl, “(meth) acrylic” means acrylic or methacrylic, “(meth) acryloyl” means acryloyl or methacryloyl, “( "Meth) acrylate" means acrylate or methacrylate.
In the present disclosure, the (meth) allyl compound means a compound having a (meth) allyl group in the molecule, and the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule. Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule are classified as (meth) allyl compounds for the sake of convenience.
In addition, in the present disclosure, compounds containing both a thiol group and an alkyleneoxy group are classified as thiol compounds.
In the present disclosure, compounds containing both (meth) allyl and alkyleneoxy groups are classified as (meth) allyl compounds.
In the present disclosure, compounds containing both (meth) acrylic groups and alkyleneoxy groups are classified as alkyleneoxy group-containing compounds.
Further, in the present disclosure, oxygen in an ester group (oxygen bonded to a carbonyl group) and oxygen in a hydroxyl group are not classified as oxygen in an alkyleneoxy group.
本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中及び波長変換部材中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中及び波長変換部材中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本開示において「(メタ)アリル」とはアリル又はメタリルを意味し、「(メタ)アクリル」とはアクリル又はメタクリルを意味し、「(メタ)アクリロイル」とはアクリロイル又はメタクリロイルを意味し、「(メタ)アクリレート」とはアクリレート又はメタクリレートを意味する。
本開示において、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
また、本開示において、チオール基及びアルキレンオキシ基の両方を含む化合物は、チオール化合物に分類するものとする。
また、本開示において、(メタ)アリル基及びアルキレンオキシ基の両方を含む化合物は、(メタ)アリル化合物に分類するものとする。
また、本開示において、(メタ)アクリル基及びアルキレンオキシ基の両方を含む化合物は、アルキレンオキシ基含有化合物に分類するものとする。
また、本開示において、エステル基における酸素(カルボニル基に結合した酸素)及び水酸基における酸素は、アルキレンオキシ基における酸素に分類しないものとする。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition and in the wavelength conversion member, the content or content of each component is in the composition and in the wavelength conversion member unless otherwise specified. The total content or content of the substances of the species is meant.
In the present disclosure, the words “layer” or “film” mean that when the region in which the layer or film is present is observed, in addition to the case where the region is entirely formed, only a part of the region The case where it is formed is also included.
The term "laminate" in the present disclosure refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.
In the present disclosure, “(meth) allyl” means allyl or methallyl, “(meth) acrylic” means acrylic or methacrylic, “(meth) acryloyl” means acryloyl or methacryloyl, “( "Meth) acrylate" means acrylate or methacrylate.
In the present disclosure, the (meth) allyl compound means a compound having a (meth) allyl group in the molecule, and the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule. Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule are classified as (meth) allyl compounds for the sake of convenience.
In addition, in the present disclosure, compounds containing both a thiol group and an alkyleneoxy group are classified as thiol compounds.
In the present disclosure, compounds containing both (meth) allyl and alkyleneoxy groups are classified as (meth) allyl compounds.
In the present disclosure, compounds containing both (meth) acrylic groups and alkyleneoxy groups are classified as alkyleneoxy group-containing compounds.
Further, in the present disclosure, oxygen in an ester group (oxygen bonded to a carbonyl group) and oxygen in a hydroxyl group are not classified as oxygen in an alkyleneoxy group.
[波長変換部材の製造方法]
本開示の波長変換部材の製造方法は、量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程と、前記樹脂組成物を用いて樹脂組成物層を形成する工程と、前記樹脂組成物層を硬化させて樹脂硬化物を得る工程とを有し、前記樹脂組成物中にて前記量子ドット蛍光体を内包する前記分散質が分散しており、前記樹脂硬化物は前記分散質が反応してなるゲル化物を含む。 [Method of manufacturing wavelength conversion member]
The method for producing a wavelength conversion member according to the present disclosure comprises the steps of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, and forming a resin composition layer using the resin composition; And curing the resin composition layer to obtain a cured resin product, wherein the dispersoid including the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin product is obtained by curing the resin composition layer. It contains a gelled product resulting from the reaction of dispersoids.
本開示の波長変換部材の製造方法は、量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程と、前記樹脂組成物を用いて樹脂組成物層を形成する工程と、前記樹脂組成物層を硬化させて樹脂硬化物を得る工程とを有し、前記樹脂組成物中にて前記量子ドット蛍光体を内包する前記分散質が分散しており、前記樹脂硬化物は前記分散質が反応してなるゲル化物を含む。 [Method of manufacturing wavelength conversion member]
The method for producing a wavelength conversion member according to the present disclosure comprises the steps of preparing a resin composition containing a quantum dot fluorescent substance and a gelable dispersoid, and forming a resin composition layer using the resin composition; And curing the resin composition layer to obtain a cured resin product, wherein the dispersoid including the quantum dot fluorescent material is dispersed in the resin composition, and the cured resin product is obtained by curing the resin composition layer. It contains a gelled product resulting from the reaction of dispersoids.
波長変換部材の耐湿熱性を向上させる手法としては、分散質である変性シリコーン等に量子ドット蛍光体が内包したエマルションである樹脂組成物について、分散質を硬化して、水蒸気、酸素等に対するバリア性を高め、水蒸気、酸素等の影響による量子ドット蛍光体の劣化を抑制し、波長変換部材の耐湿熱性を向上させる方法が考えられる。しかし、分散質を完全に硬化してしまうと分散質の硬化物に亀裂が入りやすく、その結果、高温高湿環境下にて硬化物中の量子ドット蛍光体が劣化してしまい、Rec2020カバー率の低下を抑制できないおそれがある。
As a method for improving the heat and moisture resistance of the wavelength conversion member, the resin composition which is an emulsion in which the quantum dot phosphor is contained in the modified silicone which is a dispersoid, the dispersoid is cured and the barrier property against water vapor, oxygen, etc. It is conceivable to improve the moisture and heat resistance of the wavelength conversion member by increasing the H.sub.2O.sub.2 and suppressing the deterioration of the quantum dot phosphor due to the influence of water vapor, oxygen and the like. However, if the dispersoid is completely cured, the dispersoid cured product is likely to be cracked, and as a result, the quantum dot phosphor in the cured product is degraded in a high temperature and high humidity environment, and the Rec 2020 coverage is May not be able to control
一方、本開示の製造方法では、分散質が反応してなるゲル化物を含む樹脂硬化物を備え、かつ、ゲル化物が量子ドット蛍光体を内包する波長変換部材を製造することができる。ゲル化物は亀裂が生じにくいため、高温高湿下での量子ドット蛍光体の劣化が抑制され、その結果、高温高湿下でのRec2020カバー率の低下が抑制される。したがって、本開示の製造方法にて製造される波長変換部材は、耐湿熱性に優れる。
また、本開示の製造方法にて製造される波長変換部材は、高温高湿下での量子ドット蛍光体の劣化が抑制されるため、長期間における保存安定性に優れる傾向にある。 On the other hand, in the manufacturing method of the present disclosure, it is possible to manufacture a wavelength conversion member including a resin cured product containing a gelled product in which dispersoids are reacted, and in which the gelled product includes the quantum dot phosphor. Since the gelled product is less likely to crack, the deterioration of the quantum dot phosphor under high temperature and high humidity is suppressed, and as a result, the reduction of the Rec 2020 coverage rate under high temperature and high humidity is suppressed. Therefore, the wavelength conversion member manufactured by the manufacturing method of this indication is excellent in heat-and-moisture resistance.
Moreover, since the deterioration of the quantum dot fluorescent substance under high temperature and high humidity is suppressed, the wavelength conversion member manufactured by the manufacturing method of the present disclosure tends to be excellent in storage stability over a long period of time.
また、本開示の製造方法にて製造される波長変換部材は、高温高湿下での量子ドット蛍光体の劣化が抑制されるため、長期間における保存安定性に優れる傾向にある。 On the other hand, in the manufacturing method of the present disclosure, it is possible to manufacture a wavelength conversion member including a resin cured product containing a gelled product in which dispersoids are reacted, and in which the gelled product includes the quantum dot phosphor. Since the gelled product is less likely to crack, the deterioration of the quantum dot phosphor under high temperature and high humidity is suppressed, and as a result, the reduction of the Rec 2020 coverage rate under high temperature and high humidity is suppressed. Therefore, the wavelength conversion member manufactured by the manufacturing method of this indication is excellent in heat-and-moisture resistance.
Moreover, since the deterioration of the quantum dot fluorescent substance under high temperature and high humidity is suppressed, the wavelength conversion member manufactured by the manufacturing method of the present disclosure tends to be excellent in storage stability over a long period of time.
更に、本開示の製造方法にて製造される波長変換部材では、ゲル化物が量子ドット蛍光体を内包するため、量子ドット蛍光体の流動性が分散質がゲル化されていない場合と比較して低下しており、量子ドット蛍光体の凝集が抑制される傾向にある。その結果、例えば、発光中心波長の異なる2種の量子ドット蛍光体を用いる場合に、2種の量子ドット蛍光体が凝集することにより、発光中心波長のより短い量子ドット蛍光体の発光が消失して輝度が低下するといった問題を抑制できる傾向にある。
Furthermore, in the wavelength conversion member manufactured by the manufacturing method of the present disclosure, since the gelled substance contains the quantum dot phosphor, the fluidity of the quantum dot phosphor is compared to the case where the dispersoid is not gelled. There is a tendency for the aggregation of the quantum dot phosphors to be suppressed. As a result, for example, when two types of quantum dot phosphors having different emission center wavelengths are used, aggregation of the two types of quantum dot phosphors causes the light emission of the quantum dot phosphor having a shorter emission center wavelength to disappear. Problems that the brightness decreases, can be suppressed.
本開示の波長変換部材の製造方法は、量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程を含む。例えば、樹脂組成物に含まれる各成分の混合物を撹拌することにより、前述の樹脂組成物を得ることができる。
なお、得られた樹脂組成物は、樹脂組成物中に量子ドット蛍光体を含む分散質が分散したエマルションである。
また、本開示の樹脂組成物及び本開示の波長変換部材では、分散質内に全ての量子ドット蛍光体が存在する構成に限定されず、分散質の外部に少なくとも一つの量子ドット蛍光体が存在していてもよく、少なくとも一つの量子ドット蛍光体の一部が分散質の外部に存在していてもよい。 The manufacturing method of the wavelength conversion member of this indication includes the process of preparing the resin composition containing a quantum dot fluorescent substance and the gelable dispersoid. For example, the above-mentioned resin composition can be obtained by stirring the mixture of each component contained in a resin composition.
In addition, the obtained resin composition is an emulsion in which the dispersoid containing quantum dot fluorescent substance disperse | distributed in the resin composition.
Further, the resin composition of the present disclosure and the wavelength conversion member of the present disclosure are not limited to the configuration in which all the quantum dot phosphors exist in the dispersoid, and at least one quantum dot phosphor exists in the outside of the dispersoid. Some of the at least one quantum dot phosphor may be outside the dispersoid.
なお、得られた樹脂組成物は、樹脂組成物中に量子ドット蛍光体を含む分散質が分散したエマルションである。
また、本開示の樹脂組成物及び本開示の波長変換部材では、分散質内に全ての量子ドット蛍光体が存在する構成に限定されず、分散質の外部に少なくとも一つの量子ドット蛍光体が存在していてもよく、少なくとも一つの量子ドット蛍光体の一部が分散質の外部に存在していてもよい。 The manufacturing method of the wavelength conversion member of this indication includes the process of preparing the resin composition containing a quantum dot fluorescent substance and the gelable dispersoid. For example, the above-mentioned resin composition can be obtained by stirring the mixture of each component contained in a resin composition.
In addition, the obtained resin composition is an emulsion in which the dispersoid containing quantum dot fluorescent substance disperse | distributed in the resin composition.
Further, the resin composition of the present disclosure and the wavelength conversion member of the present disclosure are not limited to the configuration in which all the quantum dot phosphors exist in the dispersoid, and at least one quantum dot phosphor exists in the outside of the dispersoid. Some of the at least one quantum dot phosphor may be outside the dispersoid.
本開示の波長変換部材の製造方法は、前述の樹脂組成物を用いて樹脂組成物層を形成する工程を含む。例えば、前述の樹脂組成物を基材に付与して基材上に樹脂組成物層を形成してもよい。
The manufacturing method of the wavelength conversion member of this indication includes the process of forming a resin composition layer using the above-mentioned resin composition. For example, the resin composition described above may be applied to a substrate to form a resin composition layer on the substrate.
樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。
The application method of the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
本開示の波長変換部材の製造方法は、前述の樹脂組成物層を硬化させて樹脂硬化物を得る工程を含む。また、本工程にて得られた樹脂硬化物は分散質が反応してなるゲル化物を含む。樹脂硬化物は、前述の樹脂組成物層に対し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。
The manufacturing method of the wavelength conversion member of this indication includes the process of hardening the above-mentioned resin composition layer, and obtaining a resin cured material. In addition, the cured resin product obtained in this step contains a gelled product formed by the reaction of the dispersoid. The resin cured product can be obtained by subjecting the above-mentioned resin composition layer to a drying treatment, if necessary, and then irradiating an active energy ray such as ultraviolet rays.
<樹脂組成物>
本開示の波長変換部材の製造方法にて用いる樹脂組成物は、量子ドット蛍光体及びゲル化可能な分散質を含み、樹脂組成物中にて量子ドット蛍光体を内包する分散質が分散している。
また、樹脂組成物は、量子ドット蛍光体及び分散質とともに樹脂成分(分散質を除く)を含み、具体的には、二官能以上のエポキシ化合物、多官能チオール化合物、(メタ)アリル化合物、(メタ)アクリル化合物、単官能チオール化合物、アルキレンオキシ基含有化合物等の樹脂成分を含んでいてもよい。
また、樹脂組成物は、光重合開始剤、液状媒体、その他の成分等を含んでいてもよい。
以下、樹脂組成物に含まれ得る各成分について説明する。 <Resin composition>
The resin composition used in the method of manufacturing a wavelength conversion member according to the present disclosure includes a quantum dot phosphor and a gelable dispersoid, and the resin composition includes the dispersoid encapsulating the quantum dot phosphor dispersed therein. There is.
Further, the resin composition contains the resin component (excluding the dispersoid) together with the quantum dot fluorescent substance and the dispersoid, and specifically, an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, A resin component such as a meta) acrylic compound, a monofunctional thiol compound, or an alkyleneoxy group-containing compound may be included.
In addition, the resin composition may contain a photopolymerization initiator, a liquid medium, other components, and the like.
Hereinafter, each component which may be contained in a resin composition is demonstrated.
本開示の波長変換部材の製造方法にて用いる樹脂組成物は、量子ドット蛍光体及びゲル化可能な分散質を含み、樹脂組成物中にて量子ドット蛍光体を内包する分散質が分散している。
また、樹脂組成物は、量子ドット蛍光体及び分散質とともに樹脂成分(分散質を除く)を含み、具体的には、二官能以上のエポキシ化合物、多官能チオール化合物、(メタ)アリル化合物、(メタ)アクリル化合物、単官能チオール化合物、アルキレンオキシ基含有化合物等の樹脂成分を含んでいてもよい。
また、樹脂組成物は、光重合開始剤、液状媒体、その他の成分等を含んでいてもよい。
以下、樹脂組成物に含まれ得る各成分について説明する。 <Resin composition>
The resin composition used in the method of manufacturing a wavelength conversion member according to the present disclosure includes a quantum dot phosphor and a gelable dispersoid, and the resin composition includes the dispersoid encapsulating the quantum dot phosphor dispersed therein. There is.
Further, the resin composition contains the resin component (excluding the dispersoid) together with the quantum dot fluorescent substance and the dispersoid, and specifically, an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, A resin component such as a meta) acrylic compound, a monofunctional thiol compound, or an alkyleneoxy group-containing compound may be included.
In addition, the resin composition may contain a photopolymerization initiator, a liquid medium, other components, and the like.
Hereinafter, each component which may be contained in a resin composition is demonstrated.
(量子ドット蛍光体)
本開示の樹脂組成物は、量子ドット蛍光体を含む。量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。 (Quantum dot phosphor)
The resin composition of the present disclosure comprises a quantum dot phosphor. The quantum dot phosphor is not particularly limited, and includes particles containing at least one selected from the group consisting of II-VI compounds, III-V compounds, IV-VI compounds, and IV compounds. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
本開示の樹脂組成物は、量子ドット蛍光体を含む。量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。 (Quantum dot phosphor)
The resin composition of the present disclosure comprises a quantum dot phosphor. The quantum dot phosphor is not particularly limited, and includes particles containing at least one selected from the group consisting of II-VI compounds, III-V compounds, IV-VI compounds, and IV compounds. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。 Specific examples of II-VI compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeTe, ZnSeTe, ZnSe, HgSeS, HgSeTe, HgSTe, CdZnS. CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgSe, CgHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSeTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeTe, HgZnETe,
Specific examples of III-V group compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InN, InAs, InS, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb And AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPsb, GaAlNP, GaAlNAs, GaAlNsb, GaAlPAs, GaAlPSb, GaAlPSb, GaInNPs, GaInNAs, GaInNSb, GaInNSb, GaInPSb, InAlNSP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and the like.
Specific examples of IV-VI compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSe, SnSTe, SnSe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, etc. .
Specific examples of the group IV compound include Si, Ge, SiC, SiGe and the like.
III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。 Specific examples of II-VI compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeTe, ZnSeTe, ZnSe, HgSeS, HgSeTe, HgSTe, CdZnS. CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgSe, CgHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSeTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeTe, HgZnETe,
Specific examples of III-V group compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InN, InAs, InS, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb And AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPsb, GaAlNP, GaAlNAs, GaAlNsb, GaAlPAs, GaAlPSb, GaAlPSb, GaInNPs, GaInNAs, GaInNSb, GaInNSb, GaInPSb, InAlNSP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and the like.
Specific examples of IV-VI compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSe, SnSTe, SnSe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, etc. .
Specific examples of the group IV compound include Si, Ge, SiC, SiGe and the like.
量子ドット蛍光体としては、コアシェル構造を有するものが好ましい。コア部を構成する化合物のバンドギャップよりもシェル層を構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア部及びシェル層の組み合わせ(コア部/シェル層)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。
As a quantum dot fluorescent substance, what has a core-shell structure is preferable. By making the band gap of the compound constituting the shell layer wider than the band gap of the compound constituting the core part, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Examples of the combination of the core part and the shell layer (core part / shell layer) include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
また、量子ドット蛍光体としては、シェル層が多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコア部にバンドギャップの狭いシェル層を1層又は2層以上積層し、更にこのシェル層の上にバンドギャップの広いシェル層を積層することで、量子ドット蛍光体の量子効率を更に向上させることが可能となる。
The quantum dot phosphor may have a so-called core multi-shell structure in which the shell layer has a multilayer structure. The quantum efficiency of the quantum dot phosphor is achieved by laminating one or two narrow shell layers with a narrow band gap in the wide band gap core part and further stacking a wide band gap shell layer on this shell layer. Further improvement is possible.
本開示の樹脂組成物は、1種類の量子ドット蛍光体を単独で含んでいてもよく、2種類以上の量子ドット蛍光体を含んでいてもよい。
2種類以上の量子ドット蛍光体を含む態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含む態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含む態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含む態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。 The resin composition of the present disclosure may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphor.
As an embodiment including two or more types of quantum dot phosphors, for example, an embodiment including two or more types of quantum dot phosphors having different components but having the same average particle size, quantum dot fluorescence having the same components having different average particle sizes. An embodiment including two or more types of bodies, and an embodiment including two or more types of quantum dot phosphors having different components and average particle sizes may be mentioned. The emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the component of the quantum dot phosphor and the average particle diameter.
2種類以上の量子ドット蛍光体を含む態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含む態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含む態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含む態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。 The resin composition of the present disclosure may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphor.
As an embodiment including two or more types of quantum dot phosphors, for example, an embodiment including two or more types of quantum dot phosphors having different components but having the same average particle size, quantum dot fluorescence having the same components having different average particle sizes. An embodiment including two or more types of bodies, and an embodiment including two or more types of quantum dot phosphors having different components and average particle sizes may be mentioned. The emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the component of the quantum dot phosphor and the average particle diameter.
例えば、本開示の樹脂組成物は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rとを含んでいてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含む樹脂組成物に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、樹脂組成物を透過する青色光とにより、白色光を得ることができる。
For example, the resin composition of the present disclosure includes a quantum dot phosphor G having an emission center wavelength in a green wavelength range of 520 nm to 560 nm, and a quantum dot phosphor R having an emission center wavelength in a red wavelength range of 600 nm to 680 nm. And may be included. When a resin composition containing quantum dot phosphor G and quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light from quantum dot phosphor G and quantum dot phosphor R is emitted respectively. And red light is emitted. As a result, white light can be obtained from green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R, and blue light transmitted through the resin composition.
本開示の樹脂組成物中の量子ドット蛍光体の含有率は、樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることが更に好ましい。量子ドット蛍光体の含有率が0.01質量%以上であると、励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が1.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。
The content of the quantum dot phosphor in the resin composition of the present disclosure is, for example, preferably 0.01% by mass to 1.0% by mass, and preferably 0.05% by mass, with respect to the total amount of the resin composition. It is more preferable that the amount is -0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass. When the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the excitation light is irradiated, and the content of the quantum dot phosphor is 1.0% by mass or less In such a case, aggregation of the quantum dot phosphors tends to be suppressed.
(分散質)
本開示の樹脂組成物は、ゲル化可能な分散質を含む。
分散質としては、樹脂組成物中にて分散可能であり、かつゲル化可能なものであれば特に限定されず、変性シリコーン、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、グリセリン脂肪酸エステル、界面活性ポリオール等が挙げられる。中でも、変性シリコーンが好ましい。
分散質としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 (Quality of dispersion)
The resin composition of the present disclosure comprises a gellable dispersoid.
The dispersoid is not particularly limited as long as it is dispersible in the resin composition and can be gelled, and modified silicone, dimethyl silicone, methylphenyl silicone, methyl hydrogen silicone, glycerin fatty acid ester, interface Active polyol etc. are mentioned. Among them, modified silicone is preferred.
As the dispersoid, one type may be used alone, or two or more types may be used in combination.
本開示の樹脂組成物は、ゲル化可能な分散質を含む。
分散質としては、樹脂組成物中にて分散可能であり、かつゲル化可能なものであれば特に限定されず、変性シリコーン、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、グリセリン脂肪酸エステル、界面活性ポリオール等が挙げられる。中でも、変性シリコーンが好ましい。
分散質としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 (Quality of dispersion)
The resin composition of the present disclosure comprises a gellable dispersoid.
The dispersoid is not particularly limited as long as it is dispersible in the resin composition and can be gelled, and modified silicone, dimethyl silicone, methylphenyl silicone, methyl hydrogen silicone, glycerin fatty acid ester, interface Active polyol etc. are mentioned. Among them, modified silicone is preferred.
As the dispersoid, one type may be used alone, or two or more types may be used in combination.
変性シリコーンとしては、アミノ変性シリコーン、フェノール変性シリコーン、フッ素変性シリコーン、エポキシ変性シリコーン、カルボキシ変性シリコーン、カルビノール変性シリコーン、メルカプト変性シリコーン、異種官能基変性シリコーン、ポリエーテル変性シリコーン、メチルスチリル変性シリコーン、親水性特殊変性シリコーン、高級アルコキシ変性シリコーン、高級脂肪酸変性シリコーン等が挙げられる。光拡散性及び量子ドット蛍光体の分散性の点から、アミノ変性シリコーンが好ましい。
変性シリコーンとしては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the modified silicone, amino modified silicone, phenol modified silicone, fluorine modified silicone, epoxy modified silicone, carboxy modified silicone, carbinol modified silicone, mercapto modified silicone, heterofunctional modified silicone, polyether modified silicone, methylstyryl modified silicone, Examples thereof include hydrophilic special modified silicone, higher alkoxy modified silicone, higher fatty acid modified silicone and the like. Amino-modified silicones are preferred from the viewpoint of light diffusibility and dispersibility of the quantum dot phosphor.
As the modified silicone, one type may be used alone, or two or more types may be used in combination.
変性シリコーンとしては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the modified silicone, amino modified silicone, phenol modified silicone, fluorine modified silicone, epoxy modified silicone, carboxy modified silicone, carbinol modified silicone, mercapto modified silicone, heterofunctional modified silicone, polyether modified silicone, methylstyryl modified silicone, Examples thereof include hydrophilic special modified silicone, higher alkoxy modified silicone, higher fatty acid modified silicone and the like. Amino-modified silicones are preferred from the viewpoint of light diffusibility and dispersibility of the quantum dot phosphor.
As the modified silicone, one type may be used alone, or two or more types may be used in combination.
変性シリコーンとしては、ゲル化物を生成しやすい点から、他の化合物、具体的には後述する二官能以上のエポキシ化合物と反応する反応基を有する変性シリコーンであることが好ましい。このような変性シリコーンとしては、アミノ変性シリコーン、フェノール変性シリコーン、カルボキシ変性シリコーン、カルビノール変性シリコーン、メルカプト変性シリコーン、異種官能基変性シリコーン等が挙げられる。
The modified silicone is preferably a modified silicone having a reactive group which reacts with another compound, specifically an epoxy compound having two or more functional groups described later, from the viewpoint of easily forming a gelled product. Examples of such modified silicones include amino-modified silicones, phenol-modified silicones, carboxy-modified silicones, carbinol-modified silicones, mercapto-modified silicones, different functional group-modified silicones and the like.
樹脂組成物中の分散質の含有率は、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、3質量%~7質量%であることがより好ましく、3質量%~5質量%であることが更に好ましい。分散質の含有率が1質量%以上であると、波長変換部材の発光強度が向上する傾向にあり、分散質の含有率が10質量%以下であると、エマルションの凝集が抑えられる傾向にある。
The content of the dispersoid in the resin composition is, for example, preferably 1% by mass to 10% by mass, and more preferably 3% by mass to 7% by mass, with respect to the total amount of the resin composition. More preferably, it is 3% by mass to 5% by mass. When the content of the dispersoid is 1% by mass or more, the emission intensity of the wavelength conversion member tends to improve, and when the content of the dispersoid is 10% by mass or less, the aggregation of the emulsion tends to be suppressed. .
また、樹脂組成物中の量子ドット蛍光体と分散質の合計の含有率は、樹脂組成物の全量に対して、例えば、1質量%~10質量%であってもよく、3質量%~7質量%であってもよく、3質量%~5質量%であってもよい。
In addition, the total content of the quantum dot phosphor and the dispersoid in the resin composition may be, for example, 1% by mass to 10% by mass, and 3% by mass to 7% with respect to the total amount of the resin composition. It may be mass%, or 3 to 5 mass%.
(二官能以上のエポキシ化合物)
本開示の樹脂組成物は、二官能以上のエポキシ化合物を含むことが好ましい。これにより、樹脂組成物を硬化する際に、分散質と反応してゲル化物を形成しやすく、特に変性シリコーンと反応してゲル化物を形成しやすい。 (Difunctional or higher epoxy compound)
The resin composition of the present disclosure preferably contains a difunctional or higher epoxy compound. Thus, when the resin composition is cured, it tends to react with the dispersoid to form a gelled product, and in particular to react with the modified silicone to form a gelled product.
本開示の樹脂組成物は、二官能以上のエポキシ化合物を含むことが好ましい。これにより、樹脂組成物を硬化する際に、分散質と反応してゲル化物を形成しやすく、特に変性シリコーンと反応してゲル化物を形成しやすい。 (Difunctional or higher epoxy compound)
The resin composition of the present disclosure preferably contains a difunctional or higher epoxy compound. Thus, when the resin composition is cured, it tends to react with the dispersoid to form a gelled product, and in particular to react with the modified silicone to form a gelled product.
本開示の樹脂組成物は、変性シリコーンと二官能以上のエポキシ化合物とを含むことが好ましく、アミノ変性シリコーンと二官能以上のエポキシ化合物とを含むことがより好ましい。樹脂組成物が変性シリコーンと二官能以上のエポキシ化合物とを含むことにより、樹脂組成物を硬化する際に、変性シリコーンと二官能以上のエポキシ化合物とが反応してゲル化物を形成しやすい傾向にある。
The resin composition of the present disclosure preferably contains a modified silicone and a difunctional or higher epoxy compound, and more preferably contains an amino-modified silicone and a difunctional or higher epoxy compound. When the resin composition contains a modified silicone and a difunctional or more epoxy compound, when curing the resin composition, the modified silicone and the bifunctional or more epoxy compound tend to react to easily form a gelled product. is there.
分散質がアミノ変性シリコーンを含む場合、アミノ変性シリコーンのアミン当量(アミノ基1個あたりの分子量)と二官能以上のエポキシ化合物のエポキシ当量(エポキシ基1個あたりの分子量)との比率(エポキシ当量/アミン当量)が、0.01~70.0であることが好ましく、0.5~30であることがより好ましく、1.0~10であることが更に好ましい。エポキシ当量/アミン当量比率が0.01以上であるとアミノ変性シリコーンがゲル化しやすい傾向にあり、70.0以下であるとエマルションの凝集が抑えられる傾向にある。
When the dispersoid contains an amino-modified silicone, the ratio of the amine equivalent (molecular weight per amino group) of the amino-modified silicone to the epoxy equivalent (molecular weight per epoxy group) of the difunctional or higher epoxy compound (epoxy equivalent) / Amine equivalent weight) is preferably 0.01 to 70.0, more preferably 0.5 to 30, and still more preferably 1.0 to 10. When the epoxy equivalent / amine equivalent ratio is 0.01 or more, the amino-modified silicone tends to gel, and when it is 70.0 or less, aggregation of the emulsion tends to be suppressed.
二官能以上のエポキシ化合物は、波長変換部材の耐湿熱性を向上させる点から、2個~4個のエポキシ基を有することが好ましく、2個又は3個のエポキシ基を有することがより好ましく、2個のエポキシ基を有することが更に好ましい。
The bifunctional or higher epoxy compound preferably has 2 to 4 epoxy groups, and more preferably 2 or 3 epoxy groups, from the viewpoint of improving the moist heat resistance of the wavelength conversion member. It is further preferred to have one or more epoxy groups.
二官能以上のエポキシ化合物のエポキシ当量は、100g/eq~500g/eqであることが好ましく、120g/eq~400g/eqであることがより好ましく、200g/eq~400g/eqであることが更に好ましい。
The epoxy equivalent of the difunctional or higher epoxy compound is preferably 100 g / eq to 500 g / eq, more preferably 120 g / eq to 400 g / eq, and further preferably 200 g / eq to 400 g / eq. preferable.
二官能以上のエポキシ化合物は、耐候性を向上させる点から、ビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有することが好ましく、ビスフェノール構造又は水添ビスフェノール構造を有することがより好ましく、水添ビスフェノール構造を有することが特に好ましい。
The bifunctional or higher epoxy compound preferably has at least one of a bisphenol structure and a hydrogenated bisphenol structure from the viewpoint of improving the weather resistance, more preferably a bisphenol structure or a hydrogenated bisphenol structure, and a hydrogenated bisphenol structure It is particularly preferred to have
二官能以上のエポキシ化合物の具体例としては、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、水添ビスフェノールA型ジグリシジルエーテル、ビスフェノールA型 PO付加物等が挙げられる。中でも、水添ビスフェノールA型ジグリシジルエーテル及びビスフェノールA型 PO付加物が好ましい。
二官能以上のエポキシ化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the difunctional or higher epoxy compound include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl Examples thereof include glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, bisphenol A type PO adduct and the like. Among these, hydrogenated bisphenol A type diglycidyl ether and bisphenol A type PO adduct are preferable.
As a bifunctional or higher epoxy compound, one type may be used alone, or two or more types may be used in combination.
二官能以上のエポキシ化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the difunctional or higher epoxy compound include ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl Examples thereof include glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, hydrogenated bisphenol A type diglycidyl ether, bisphenol A type PO adduct and the like. Among these, hydrogenated bisphenol A type diglycidyl ether and bisphenol A type PO adduct are preferable.
As a bifunctional or higher epoxy compound, one type may be used alone, or two or more types may be used in combination.
樹脂組成物が二官能以上のエポキシ化合物を含む場合、樹脂組成物中の二官能以上のエポキシ化合物の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~4質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~2質量%であることが更に好ましい。二官能以上のエポキシ化合物の含有率が0.1質量%以上であると、ゲル化物を形成しやすくなる傾向にあり、二官能以上のエポキシ化合物の含有率が4質量%以下であると、エマルションの形成を阻害しない傾向にある。
When the resin composition contains a difunctional or higher epoxy compound, the content of the difunctional or higher epoxy compound in the resin composition is, for example, 0.1% by mass to 4% by mass with respect to the total amount of the resin composition. Is preferably 0.1% by mass to 3% by mass, and more preferably 0.1% by mass to 2% by mass. When the content of the bifunctional or higher epoxy compound is 0.1% by mass or more, it tends to easily form a gelled product, and when the content of the bifunctional or higher epoxy compound is 4% by mass or less, the emulsion Tend not to inhibit the formation of
(多官能チオール化合物)
本開示の樹脂組成物は、多官能チオール化合物を含むことが好ましい。これにより、後述する基材に対する樹脂硬化物の密着性、耐熱性、及び耐湿熱性をより向上させることができる傾向にある。 (Multifunctional thiol compound)
The resin composition of the present disclosure preferably comprises a multifunctional thiol compound. As a result, the adhesion of the cured resin to the base material described later, the heat resistance, and the heat and humidity resistance tend to be further improved.
本開示の樹脂組成物は、多官能チオール化合物を含むことが好ましい。これにより、後述する基材に対する樹脂硬化物の密着性、耐熱性、及び耐湿熱性をより向上させることができる傾向にある。 (Multifunctional thiol compound)
The resin composition of the present disclosure preferably comprises a multifunctional thiol compound. As a result, the adhesion of the cured resin to the base material described later, the heat resistance, and the heat and humidity resistance tend to be further improved.
多官能チオール化合物としては、分子内にチオール基を2個~6個有する化合物であることが好ましく、分子内にチオール基を3個又は4個有する化合物であることがより好ましい。
The polyfunctional thiol compound is preferably a compound having 2 to 6 thiol groups in the molecule, and more preferably a compound having 3 or 4 thiol groups in the molecule.
多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。中でも、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)及びペンタエリスリトールテトラキス(3-メルカプトブチレート)が好ましく、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)がより好ましい。
多官能チオール化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of polyfunctional thiol compounds include ethylene glycol bis (3-mercapto propionate), diethylene glycol bis (3-mercapto propionate), tetraethylene glycol bis (3-mercapto propionate), 1,2- Propylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutylate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris (3-mercaptoprote) Peonate Trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoisobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), trimethylolpropane tristhioglycolate, tris- [ (3-Mercaptopropionyloxy) -ethyl] -isocyanurate, trimethylolethane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), penta Erythritol tetrakis (3-mercapto isobutyrate), pentaerythritol tetrakis (2-mercapto isobutyrate), dipentaerythritol hexakis (3-mercapto) (Pionate), dipentaerythritol hexakis (2-mercaptopropionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis ( 2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycolate, dipentaerythritol hexakisthioglycolate and the like. Among them, pentaerythritol tetrakis (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptobutyrate) are preferable, and pentaerythritol tetrakis (3-mercaptopropionate) is more preferable.
As polyfunctional thiol compounds, one type may be used alone, or two or more types may be used in combination.
多官能チオール化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of polyfunctional thiol compounds include ethylene glycol bis (3-mercapto propionate), diethylene glycol bis (3-mercapto propionate), tetraethylene glycol bis (3-mercapto propionate), 1,2- Propylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutylate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris (3-mercaptoprote) Peonate Trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoisobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), trimethylolpropane tristhioglycolate, tris- [ (3-Mercaptopropionyloxy) -ethyl] -isocyanurate, trimethylolethane tris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), penta Erythritol tetrakis (3-mercapto isobutyrate), pentaerythritol tetrakis (2-mercapto isobutyrate), dipentaerythritol hexakis (3-mercapto) (Pionate), dipentaerythritol hexakis (2-mercaptopropionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis ( 2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycolate, dipentaerythritol hexakisthioglycolate and the like. Among them, pentaerythritol tetrakis (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptobutyrate) are preferable, and pentaerythritol tetrakis (3-mercaptopropionate) is more preferable.
As polyfunctional thiol compounds, one type may be used alone, or two or more types may be used in combination.
また、多官能チオール化合物としては、多官能(メタ)アクリル化合物とあらかじめ反応したチオエーテルオリゴマーを用いてもよい。
Moreover, as a polyfunctional thiol compound, you may use the thioether oligomer which reacted with the polyfunctional (meth) acryl compound beforehand.
チオエーテルオリゴマーは、例えば、多官能チオール化合物と多官能(メタ)アクリル化合物とを重合開始剤の存在下で付加反応させることにより得ることができる。多官能(メタ)アクリル化合物の(メタ)アクリロイル基の当量数に対する多官能チオール化合物のチオール基の当量数の割合(チオール基の当量数/(メタ)アクリロイル基の当量数)は、例えば、3.0~3.3であることが好ましく、3.0~3.2であることがより好ましく、3.05~3.15であることが更に好ましい。
The thioether oligomer can be obtained, for example, by subjecting a polyfunctional thiol compound and a polyfunctional (meth) acrylic compound to an addition reaction in the presence of a polymerization initiator. The ratio of the number of equivalents of the thiol group of the polyfunctional thiol compound to the number of equivalents of the (meth) acryloyl group of the polyfunctional (meth) acrylic compound (number of equivalents of thiol group / number of equivalents of (meth) acryloyl group) is, for example, 3 It is preferably from 0 to 3.3, more preferably from 3.0 to 3.2, still more preferably from 3.05 to 3.15.
チオエーテルオリゴマーの重量平均分子量は、例えば、3000~10000であることが好ましく、3000~8000であることがより好ましく、4000~6000であることが更に好ましい。
なお、チオエーテルオリゴマーの重量平均分子量は、後述する実施例に示すように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。 The weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and still more preferably 4000 to 6000.
The weight average molecular weight of the thioether oligomer can be determined by converting it from the molecular weight distribution measured using gel permeation chromatography (GPC) using a standard polystyrene calibration curve, as shown in the examples described later. .
なお、チオエーテルオリゴマーの重量平均分子量は、後述する実施例に示すように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。 The weight average molecular weight of the thioether oligomer is, for example, preferably 3000 to 10000, more preferably 3000 to 8000, and still more preferably 4000 to 6000.
The weight average molecular weight of the thioether oligomer can be determined by converting it from the molecular weight distribution measured using gel permeation chromatography (GPC) using a standard polystyrene calibration curve, as shown in the examples described later. .
また、チオエーテルオリゴマーのチオール当量は、例えば、200g/eq~400g/eqであることが好ましく、250g/eq~350g/eqであることがより好ましく、250g/eq~270g/eqであることが更に好ましい。
The thiol equivalent of the thioether oligomer is preferably, for example, 200 g / eq to 400 g / eq, more preferably 250 g / eq to 350 g / eq, and further preferably 250 g / eq to 270 g / eq. preferable.
なお、チオエーテルオリゴマーのチオール当量は、以下のようなヨウ素滴定法により測定することができる。
測定試料0.2gを精秤し、これにクロロホルム20mLを加えて試料溶液とする。デンプン指示薬として可溶性デンプン0.275gを30gの純水に溶解させたものを用いて、純水20mL、イソプロピルアルコール10mL、及びデンプン指示薬1mLを加え、スターラーで撹拌する。ヨウ素溶液を滴下し、クロロホルム層が緑色を呈した点を終点とする。このとき下記式にて与えられる値を、測定試料のチオール当量とする。
チオール当量(g/eq)=測定試料の質量(g)×10000/ヨウ素溶液の滴定量(mL)×ヨウ素溶液のファクター The thiol equivalent of the thioether oligomer can be measured by the following iodine titration method.
0.2 g of the measurement sample is precisely weighed, and 20 mL of chloroform is added thereto to make a sample solution. Using 0.275 g of soluble starch dissolved in 30 g of pure water as a starch indicator, add 20 mL of pure water, 10 mL of isopropyl alcohol and 1 mL of starch indicator, and stir with a stirrer. An iodine solution is dropped, and the point at which the chloroform layer turned green is defined as the end point. At this time, the value given by the following formula is taken as the thiol equivalent of the measurement sample.
Thiol equivalent (g / eq) = mass of measurement sample (g) × 10000 / titration amount of iodine solution (mL) × factor of iodine solution
測定試料0.2gを精秤し、これにクロロホルム20mLを加えて試料溶液とする。デンプン指示薬として可溶性デンプン0.275gを30gの純水に溶解させたものを用いて、純水20mL、イソプロピルアルコール10mL、及びデンプン指示薬1mLを加え、スターラーで撹拌する。ヨウ素溶液を滴下し、クロロホルム層が緑色を呈した点を終点とする。このとき下記式にて与えられる値を、測定試料のチオール当量とする。
チオール当量(g/eq)=測定試料の質量(g)×10000/ヨウ素溶液の滴定量(mL)×ヨウ素溶液のファクター The thiol equivalent of the thioether oligomer can be measured by the following iodine titration method.
0.2 g of the measurement sample is precisely weighed, and 20 mL of chloroform is added thereto to make a sample solution. Using 0.275 g of soluble starch dissolved in 30 g of pure water as a starch indicator, add 20 mL of pure water, 10 mL of isopropyl alcohol and 1 mL of starch indicator, and stir with a stirrer. An iodine solution is dropped, and the point at which the chloroform layer turned green is defined as the end point. At this time, the value given by the following formula is taken as the thiol equivalent of the measurement sample.
Thiol equivalent (g / eq) = mass of measurement sample (g) × 10000 / titration amount of iodine solution (mL) × factor of iodine solution
チオエーテルオリゴマーの中でも、樹脂硬化物の光学特性、耐熱性、及び耐湿熱性をより向上させる点から、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)とトリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレートとを付加反応させて得られるチオエーテルオリゴマーが好ましい。
Among the thioether oligomers, pentaerythritol tetrakis (3-mercaptopropionate) and tris (2-hydroxyethyl) isocyanurate triacrylate are more preferred from the viewpoint of further improving the optical properties, heat resistance and moist heat resistance of the cured resin. Preferred are thioether oligomers obtained by addition reaction.
樹脂組成物が多官能チオール化合物を含む場合、樹脂組成物中の多官能チオール化合物の含有率は、樹脂組成物の全量に対して、例えば、40質量%~80質量%であることが好ましく、50質量%~80質量%であることがより好ましく、50質量%~70質量%であることが更に好ましい。多官能チオール化合物の含有率が40質量%以上であると、基材に対する樹脂硬化物の密着性がより向上する傾向にあり、多官能チオール化合物の含有率が80質量%以下であると、樹脂硬化物の耐熱性及び耐湿熱性がより向上する傾向にある。
When the resin composition contains a polyfunctional thiol compound, the content of the polyfunctional thiol compound in the resin composition is preferably, for example, 40% by mass to 80% by mass with respect to the total amount of the resin composition, The content is more preferably 50% by mass to 80% by mass, and still more preferably 50% by mass to 70% by mass. When the content of the polyfunctional thiol compound is 40% by mass or more, the adhesion of the cured resin to the substrate tends to be further improved, and when the content of the polyfunctional thiol compound is 80% by mass or less, the resin The heat resistance and moist heat resistance of the cured product tend to be further improved.
((メタ)アリル化合物)
本開示の樹脂組成物は、(メタ)アリル化合物を含むことが好ましい。(メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。
(メタ)アリル化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよく、単官能(メタ)アリル化合物及び多官能(メタ)アリル化合物を併用してもよい。
基材に対する樹脂硬化物の密着性をより向上させる点からは、(メタ)アリル化合物は、多官能(メタ)アリル化合物を含むことが好ましい。(メタ)アリル化合物の全量に対する多官能(メタ)アリル化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが更に好ましい。 ((Meth) allyl compounds)
The resin composition of the present disclosure preferably contains a (meth) allyl compound. The (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and a compound having two or more (meth) allyl groups in one molecule. It may be a functional (meth) allyl compound.
As the (meth) allyl compound, one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) allyl compound and a polyfunctional (meth) allyl compound may be used in combination.
The (meth) allyl compound preferably contains a polyfunctional (meth) allyl compound from the viewpoint of further improving the adhesion of the cured resin to the substrate. The ratio of the polyfunctional (meth) allyl compound to the total amount of the (meth) allyl compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. preferable.
本開示の樹脂組成物は、(メタ)アリル化合物を含むことが好ましい。(メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。
(メタ)アリル化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよく、単官能(メタ)アリル化合物及び多官能(メタ)アリル化合物を併用してもよい。
基材に対する樹脂硬化物の密着性をより向上させる点からは、(メタ)アリル化合物は、多官能(メタ)アリル化合物を含むことが好ましい。(メタ)アリル化合物の全量に対する多官能(メタ)アリル化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが更に好ましい。 ((Meth) allyl compounds)
The resin composition of the present disclosure preferably contains a (meth) allyl compound. The (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and a compound having two or more (meth) allyl groups in one molecule. It may be a functional (meth) allyl compound.
As the (meth) allyl compound, one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) allyl compound and a polyfunctional (meth) allyl compound may be used in combination.
The (meth) allyl compound preferably contains a polyfunctional (meth) allyl compound from the viewpoint of further improving the adhesion of the cured resin to the substrate. The ratio of the polyfunctional (meth) allyl compound to the total amount of the (meth) allyl compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. preferable.
単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。
Specific examples of monofunctional (meth) allyl compounds include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, (meth) And allyl methyl ether, (meth) allyl glycidyl ether and the like.
多官能(メタ)アリル化合物としては、樹脂硬化物の耐熱性及び耐湿熱性の点からは、分子内に2個~4個の(メタ)アリル基を有する化合物であることが好ましく、分子内に3個の(メタ)アリル基を有する化合物であることがより好ましい。
The polyfunctional (meth) allyl compound is preferably a compound having 2 to 4 (meth) allyl groups in the molecule, from the viewpoint of the heat resistance and moisture and heat resistance of the cured resin, More preferably, it is a compound having three (meth) allyl groups.
多官能(メタ)アリル化合物の具体例としては、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1,3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1,3,4,6-テトラ(メタ)アリルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a,6a-ジメチルグリコールウリル等が挙げられる。中でも、樹脂硬化物の耐熱性及び耐湿熱性の点から、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、トリ(メタ)アリルイソシアヌレートがより好ましい。
Specific examples of the polyfunctional (meth) allyl compound include cyclohexanedicarboxylic acid di (meth) allyl, di (meth) allyl maleate, di (meth) allyl adipate, di (meth) allyl phthalate, di (meth) allyl iso Phthalate, di (meth) allyl terephthalate, glycerol di (meth) allyl ether, trimethylolpropane di (meth) allyl ether, pentaerythritol di (meth) allyl ether, 1,3-di (meth) allyl-5-glycidyl isocyanate Nurate, tri (meth) allyl cyanurate, tri (meth) allyl isocyanurate, tri (meth) allyl trimellitate, tetra (meth) allyl pyromelitate, 1,3,4,6-tetra (meth) allyl glycol Uril, 1,3,4,6-tetra (meth) allyl-3a-methi Glycoluril, 1,3,4,6-tetra (meth) allyl -3a, 6a- dimethyl glycoluril. Among them, tri (meth) allyl cyanurate, tri (meth) allyl isocyanurate, di (meth) allyl phthalate, di (meth) allyl isophthalate and di (meth) from the viewpoint of heat resistance and moisture and heat resistance of the cured resin. At least one selected from the group consisting of allyl terephthalate and cyclohexanedicarboxylate di (meth) allyl is preferred, and tri (meth) allyl isocyanurate is more preferred.
樹脂組成物中の(メタ)アリル化合物の含有率は、樹脂組成物の全量に対して、例えば、10質量%~50質量%であることが好ましく、15質量%~45質量%であることがより好ましく、20質量%~40質量%であることが更に好ましい。(メタ)アリル化合物の含有率が10質量%以上であると、樹脂硬化物の耐熱性及び耐湿熱性がより向上する傾向にあり、(メタ)アリル化合物の含有率が50質量%以下であると、基材に対する樹脂硬化物の密着性がより向上する傾向にある。
The content of the (meth) allyl compound in the resin composition is, for example, preferably 10% by mass to 50% by mass, and more preferably 15% by mass to 45% by mass, with respect to the total amount of the resin composition. More preferably, the content is 20% by mass to 40% by mass. When the content of the (meth) allyl compound is 10% by mass or more, the heat resistance and the moist heat resistance of the cured resin tend to be further improved, and the content of the (meth) allyl compound is 50% by mass or less The adhesion of the cured resin to the substrate tends to be further improved.
((メタ)アクリル化合物)
本開示の樹脂組成物は、(メタ)アクリル化合物を含んでいてもよい。 ((Meth) acrylic compounds)
The resin composition of the present disclosure may contain a (meth) acrylic compound.
本開示の樹脂組成物は、(メタ)アクリル化合物を含んでいてもよい。 ((Meth) acrylic compounds)
The resin composition of the present disclosure may contain a (meth) acrylic compound.
(メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。
(メタ)アクリル化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよく、単官能(メタ)アクリル化合物及び多官能(メタ)アクリル化合物を併用してもよい。 The (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and a multiple compound having two or more (meth) acryloyl groups in one molecule. It may be a functional (meth) acrylic compound.
As the (meth) acrylic compound, one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) acrylic compound and a polyfunctional (meth) acrylic compound may be used in combination.
(メタ)アクリル化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよく、単官能(メタ)アクリル化合物及び多官能(メタ)アクリル化合物を併用してもよい。 The (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and a multiple compound having two or more (meth) acryloyl groups in one molecule. It may be a functional (meth) acrylic compound.
As the (meth) acrylic compound, one type may be used alone, two or more types may be used in combination, and a monofunctional (meth) acrylic compound and a polyfunctional (meth) acrylic compound may be used in combination.
単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。
Specific examples of monofunctional (meth) acrylic compounds are: (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate ) Alkyl (meth) acrylates having 1 to 18 carbon atoms in the alkyl group such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl (Meth) acrylate compounds having an aromatic ring such as meta) acrylate; aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate , (Meth) acrylate compounds having an alicyclic ring such as isobornyl (meth) acrylate, methylene oxide addition cyclodecatriene (meth) acrylate, etc .; (meth) acrylate compounds having a heterocyclic ring such as (meth) acryloyl morpholine; heptadecafluorodecyl Fluorinated alkyl (meth) acrylates such as (meth) acrylates; (meth) acrylate compounds having a hydroxyl group such as 2-hydroxyethyl (meth) acrylates, 3-hydroxypropyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates (Meth) acrylate compounds having an isocyanate group such as 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, etc. (meth) acrylic , N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide And (meth) acrylamide compounds such as;
多官能(メタ)アクリル化合物としては、樹脂硬化物の耐熱性及び耐湿熱性の点からは、分子内に2個~4個の(メタ)アクリロイル基を有する化合物であることが好ましく、分子内に3個の(メタ)アクリロイル基を有する化合物であることがより好ましい。
The polyfunctional (meth) acrylic compound is preferably a compound having 2 to 4 (meth) acryloyl groups in the molecule from the viewpoint of heat resistance and moisture and heat resistance of the cured resin, and it is preferable to use More preferably, it is a compound having three (meth) acryloyl groups.
多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;などが挙げられる。
Specific examples of the polyfunctional (meth) acrylic compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate and the like. Alkylene glycol di (meth) acrylate; tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate; trimethylolpropane tetra (meth) acrylate, penta And tetra (meth) acrylate compounds such as erythritol tetra (meth) acrylate.
(メタ)アクリル化合物としては、樹脂硬化物の耐熱性及び耐湿熱性をより向上させる点からは、脂環を有する単官能(メタ)アクリレート化合物を含んでいてもよく、イソボルニル(メタ)アクリレートジシクロペンタニル(メタ)アクリレート等を含んでいてもよく、好ましくはイソボルニル(メタ)アクリレートを含んでいてもよい。
The (meth) acrylic compound may contain a monofunctional (meth) acrylate compound having an alicyclic ring from the viewpoint of further improving the heat resistance and the moist heat resistance of the cured resin, and isobornyl (meth) acrylate dicyclo It may contain pentanyl (meth) acrylate or the like, and preferably may contain isobornyl (meth) acrylate.
樹脂組成物中の(メタ)アクリル化合物の含有率は、樹脂組成物の全量に対して、例えば、1質量%~30質量%であってもよく、5質量%~20質量%であってもよく、10質量%~15質量%であってもよい。(メタ)アクリル化合物の含有率が1質量%以上であると、樹脂組成物の保存安定性及び基材に対する樹脂硬化物の密着性がより向上する傾向にあり、(メタ)アクリル化合物の含有率が30質量%以下であると、樹脂硬化物の耐熱性及び耐湿熱性が向上する傾向にある。
The content of the (meth) acrylic compound in the resin composition may be, for example, 1% by mass to 30% by mass, or 5% by mass to 20% by mass, with respect to the total amount of the resin composition. It may be 10% by mass to 15% by mass. When the content of the (meth) acrylic compound is 1% by mass or more, the storage stability of the resin composition and the adhesion of the cured resin to the substrate tend to be further improved, and the content of the (meth) acrylic compound The heat resistance and the heat-and-moisture resistance of the resin cured product tend to be improved as the content of 30% by mass or less.
(単官能チオール化合物)
本開示の樹脂組成物は、単官能チオール化合物を含んでいてもよい。
単官能チオール化合物の具体例としては、1-ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプトプロピオン酸オクチル、3-メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
単官能チオール化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 (Monofunctional thiol compound)
The resin composition of the present disclosure may contain a monofunctional thiol compound.
Specific examples of the monofunctional thiol compound include 1-hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanethiol, 1-decanethiol, 3-mercaptopropionic acid, methyl 3-mercaptopropionate, 3- Examples thereof include 3-methoxybutyl mercaptopropionate, octyl 3-mercaptopropionate, tridecyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate and the like.
As the monofunctional thiol compound, one type may be used alone, or two or more types may be used in combination.
本開示の樹脂組成物は、単官能チオール化合物を含んでいてもよい。
単官能チオール化合物の具体例としては、1-ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプトプロピオン酸オクチル、3-メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
単官能チオール化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 (Monofunctional thiol compound)
The resin composition of the present disclosure may contain a monofunctional thiol compound.
Specific examples of the monofunctional thiol compound include 1-hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanethiol, 1-decanethiol, 3-mercaptopropionic acid, methyl 3-mercaptopropionate, 3- Examples thereof include 3-methoxybutyl mercaptopropionate, octyl 3-mercaptopropionate, tridecyl 3-mercaptopropionate, 2-ethylhexyl 3-mercaptopropionate, n-octyl 3-mercaptopropionate and the like.
As the monofunctional thiol compound, one type may be used alone, or two or more types may be used in combination.
(アルキレンオキシ基含有化合物)
本開示の樹脂組成物は、アルキレンオキシ基及び重合性反応基を有するアルキレンオキシ基含有化合物を含んでいてもよい。これにより、粘度が高い樹脂組成物を調製しやすい傾向にある。樹脂組成物の粘度を比較的高い値にすることにより、各成分の混合物を撹拌してエマルションである樹脂組成物を準備する際、凝集による分散質の合一が抑制されるため、分散質の高い分散性が維持され、波長変換部材について高い輝度が得られる傾向にある。 (Alkylene oxy group-containing compound)
The resin composition of the present disclosure may contain an alkyleneoxy group-containing compound having an alkyleneoxy group and a polymerizable reactive group. This tends to facilitate the preparation of a resin composition having a high viscosity. By setting the viscosity of the resin composition to a relatively high value, when preparing the resin composition which is an emulsion by stirring the mixture of each component, coalescence of the dispersoid due to aggregation is suppressed, so High dispersion is maintained, and high brightness tends to be obtained for the wavelength conversion member.
本開示の樹脂組成物は、アルキレンオキシ基及び重合性反応基を有するアルキレンオキシ基含有化合物を含んでいてもよい。これにより、粘度が高い樹脂組成物を調製しやすい傾向にある。樹脂組成物の粘度を比較的高い値にすることにより、各成分の混合物を撹拌してエマルションである樹脂組成物を準備する際、凝集による分散質の合一が抑制されるため、分散質の高い分散性が維持され、波長変換部材について高い輝度が得られる傾向にある。 (Alkylene oxy group-containing compound)
The resin composition of the present disclosure may contain an alkyleneoxy group-containing compound having an alkyleneoxy group and a polymerizable reactive group. This tends to facilitate the preparation of a resin composition having a high viscosity. By setting the viscosity of the resin composition to a relatively high value, when preparing the resin composition which is an emulsion by stirring the mixture of each component, coalescence of the dispersoid due to aggregation is suppressed, so High dispersion is maintained, and high brightness tends to be obtained for the wavelength conversion member.
アルキレンオキシ基含有化合物は、エステル基を有することが好ましい。これにより、変性シリコーン等の分散質の分散性が高まる傾向にある。アルキレンオキシ基含有化合物は、エステル基を1個以上有していればよく、2個以上有していることが好ましい。
The alkyleneoxy group-containing compound preferably has an ester group. Thereby, the dispersibility of the dispersoid such as modified silicone tends to be enhanced. The alkyleneoxy group-containing compound only needs to have one or more ester groups, and preferably has two or more ester groups.
アルキレンオキシ基含有化合物は、重合性反応基を2個以上有することが好ましく、重合性反応基を2個有することがより好ましい。重合性反応基を2個以上有することにより、基材に対する樹脂硬化物の密着性、耐熱性、及び耐湿熱性をより向上させることができる傾向にある。
重合性反応基としては、エチレン性二重結合を有する官能基が挙げられ、より具体的には、(メタ)アクリロイル基等が挙げられる。 The alkyleneoxy group-containing compound preferably has two or more polymerizable reactive groups, and more preferably two polymerizable reactive groups. By having two or more polymerizable reactive groups, the adhesion of the cured resin to the substrate, the heat resistance, and the moist heat resistance tend to be further improved.
As a polymerizable reaction group, the functional group which has an ethylenic double bond is mentioned, More specifically, a (meth) acryloyl group etc. are mentioned.
重合性反応基としては、エチレン性二重結合を有する官能基が挙げられ、より具体的には、(メタ)アクリロイル基等が挙げられる。 The alkyleneoxy group-containing compound preferably has two or more polymerizable reactive groups, and more preferably two polymerizable reactive groups. By having two or more polymerizable reactive groups, the adhesion of the cured resin to the substrate, the heat resistance, and the moist heat resistance tend to be further improved.
As a polymerizable reaction group, the functional group which has an ethylenic double bond is mentioned, More specifically, a (meth) acryloyl group etc. are mentioned.
アルキレンオキシ基としては、アルキレンオキシ基含有化合物の粘度を高くすることにより、粘度が比較的高い樹脂組成物をより調製しやすい点から、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基が更に好ましい。
アルキレンオキシ基含有化合物は、1種のアルキレンオキシ基を有していてもよく、2種以上のアルキレンオキシ基を有していてもよい。 The alkyleneoxy group is preferably an alkyleneoxy group having a carbon number of 2 to 4, from the viewpoint of easily preparing a resin composition having a relatively high viscosity by increasing the viscosity of the alkyleneoxy group-containing compound. Is more preferably an alkyleneoxy group of 2 or 3, and still more preferably an alkyleneoxy group having 2 carbon atoms.
The alkyleneoxy group-containing compound may have one type of alkyleneoxy group, and may have two or more types of alkyleneoxy group.
アルキレンオキシ基含有化合物は、1種のアルキレンオキシ基を有していてもよく、2種以上のアルキレンオキシ基を有していてもよい。 The alkyleneoxy group is preferably an alkyleneoxy group having a carbon number of 2 to 4, from the viewpoint of easily preparing a resin composition having a relatively high viscosity by increasing the viscosity of the alkyleneoxy group-containing compound. Is more preferably an alkyleneoxy group of 2 or 3, and still more preferably an alkyleneoxy group having 2 carbon atoms.
The alkyleneoxy group-containing compound may have one type of alkyleneoxy group, and may have two or more types of alkyleneoxy group.
アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。
The alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
アルキレンオキシ基含有化合物は、2個~30個のアルキレンオキシ基を有することが好ましく、2個~20個のアルキレンオキシ基を有することがより好ましく、3個~10個のアルキレンオキシ基を有することが更に好ましく、3個~5個のアルキレンオキシ基を有することが特に好ましい。
The alkyleneoxy group-containing compound preferably has 2 to 30 alkyleneoxy groups, more preferably 2 to 20 alkyleneoxy groups, and 3 to 10 alkyleneoxy groups. Are more preferred, and it is particularly preferred to have 3 to 5 alkyleneoxy groups.
アルキレンオキシ基含有化合物は、ビスフェノール構造を有することが好ましい。これにより、耐湿熱性に優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。
The alkyleneoxy group-containing compound preferably has a bisphenol structure. Thereby, the heat and humidity resistance tends to be excellent. As a bisphenol structure, a bisphenol A structure and a bisphenol F structure are mentioned, for example, Especially, a bisphenol A structure is preferable.
アルキレンオキシ基含有化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;などが挙げられる。
アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
アルキレンオキシ基含有化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the alkyleneoxy group-containing compound include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (Meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nona ethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, hepta propylene glycol monomethyl ether (Meth) acrylate, tetraethylene glycol monoethyl ester Polyalkylene glycol monoalkyl ether (meth) acrylates such as hydroxyl (meth) acrylate; polyalkylene glycol monoaryl ether (meth) acrylates such as hexaethylene glycol monophenyl ether (meth) acrylate; tetrahydrofurfuryl (meth) acrylate and the like Heterocyclic (meth) acrylate compounds; having hydroxyl groups such as triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, etc. (Meth) acrylate compounds; (meth) acrylate compounds having a glycidyl group such as glycidyl (meth) acrylate; polyethylene glycol di Polyalkylene glycol di (meth) acrylates such as meta) acrylate and polypropylene glycol di (meth) acrylate; tri (meth) acrylate compounds such as ethylene oxide-added trimethylolpropane tri (meth) acrylate; ethylene oxide-added pentaerythritol tetra (meth) acrylate Etc .; bisphenol type di (meth) acrylates such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate ) Acrylate compounds; and the like.
Among the alkyleneoxy group-containing compounds, ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate and propoxylated ethoxylated bisphenol A di (meth) acrylate are preferable, among which ethoxylated bisphenol A-type di (meth) acrylate is more preferred.
As the alkyleneoxy group-containing compound, one type may be used alone, or two or more types may be used in combination.
アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
アルキレンオキシ基含有化合物としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the alkyleneoxy group-containing compound include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (Meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nona ethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, hepta propylene glycol monomethyl ether (Meth) acrylate, tetraethylene glycol monoethyl ester Polyalkylene glycol monoalkyl ether (meth) acrylates such as hydroxyl (meth) acrylate; polyalkylene glycol monoaryl ether (meth) acrylates such as hexaethylene glycol monophenyl ether (meth) acrylate; tetrahydrofurfuryl (meth) acrylate and the like Heterocyclic (meth) acrylate compounds; having hydroxyl groups such as triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, etc. (Meth) acrylate compounds; (meth) acrylate compounds having a glycidyl group such as glycidyl (meth) acrylate; polyethylene glycol di Polyalkylene glycol di (meth) acrylates such as meta) acrylate and polypropylene glycol di (meth) acrylate; tri (meth) acrylate compounds such as ethylene oxide-added trimethylolpropane tri (meth) acrylate; ethylene oxide-added pentaerythritol tetra (meth) acrylate Etc .; bisphenol type di (meth) acrylates such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate ) Acrylate compounds; and the like.
Among the alkyleneoxy group-containing compounds, ethoxylated bisphenol A di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate and propoxylated ethoxylated bisphenol A di (meth) acrylate are preferable, among which ethoxylated bisphenol A-type di (meth) acrylate is more preferred.
As the alkyleneoxy group-containing compound, one type may be used alone, or two or more types may be used in combination.
樹脂組成物がアルキレンオキシ基含有化合物を含む場合、樹脂組成物中のアルキレンオキシ基含有化合物の含有率は、樹脂組成物の全量に対して、例えば、0.5質量%~10質量%であることが好ましく、1質量%~8質量%であることがより好ましく、1.5質量%~5質量%であることが更に好ましい。アルキレンオキシ基含有化合物の含有率が0.5質量%以上であると、樹脂組成物が高粘度化しやすくなる傾向にあり、アルキレンオキシ基含有化合物の含有率が10質量%以下であると、樹脂組成物の粘度が高くなり過ぎず、基板等への樹脂組成物の付与性、波長変換部材の製造効率に優れる傾向にある。
When the resin composition contains an alkyleneoxy group-containing compound, the content of the alkyleneoxy group-containing compound in the resin composition is, for example, 0.5% by mass to 10% by mass with respect to the total amount of the resin composition. Is preferable, 1 to 8% by mass is more preferable, and 1.5 to 5% by mass is more preferable. When the content of the alkyleneoxy group-containing compound is 0.5% by mass or more, the viscosity of the resin composition tends to be easily increased, and when the content of the alkyleneoxy group-containing compound is 10% by mass or less The viscosity of the composition does not become too high, and the application of the resin composition to a substrate or the like and the production efficiency of the wavelength conversion member tend to be excellent.
(光重合開始剤)
本開示の樹脂組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては特に制限されず、例えば、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。 (Photopolymerization initiator)
The resin composition of the present disclosure preferably contains a photopolymerization initiator. It does not restrict | limit especially as a photoinitiator, For example, the compound which generate | occur | produces a radical by irradiation of active energy rays, such as an ultraviolet-ray, is mentioned.
本開示の樹脂組成物は、光重合開始剤を含むことが好ましい。光重合開始剤としては特に制限されず、例えば、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。 (Photopolymerization initiator)
The resin composition of the present disclosure preferably contains a photopolymerization initiator. It does not restrict | limit especially as a photoinitiator, For example, the compound which generate | occur | produces a radical by irradiation of active energy rays, such as an ultraviolet-ray, is mentioned.
光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。
光重合開始剤としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1,4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler's ketone"), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (4- 2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2 Aromatic ketone compounds such as hydroxy-2-methyl-1-phenylpropan-1-one; quinone compounds such as alkyl anthraquinone and phenanthrene quinone; benzoin compounds such as benzoin and alkyl benzoin; benzoin such as benzoin alkyl ether and benzoin phenyl ether Ether compounds; benzyl derivatives such as benzyl dimethyl ketal; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole , 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxy Phenyl) -5-phenylimidazole Dimer, 2,4,5-triarylimidazole dimer such as 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer; 9-phenylacridine, 1,7- (9, Acridine derivatives such as 9'-acridinyl) heptane; 1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2-methyl) Oxime ester compounds such as benzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylcoumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-phenyl- And acyl phosphine oxide compounds such as ethoxy-phosphine oxide;
As the photopolymerization initiator, one type may be used alone, or two or more types may be used in combination.
光重合開始剤としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1,4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler's ketone"), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (4- 2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2 Aromatic ketone compounds such as hydroxy-2-methyl-1-phenylpropan-1-one; quinone compounds such as alkyl anthraquinone and phenanthrene quinone; benzoin compounds such as benzoin and alkyl benzoin; benzoin such as benzoin alkyl ether and benzoin phenyl ether Ether compounds; benzyl derivatives such as benzyl dimethyl ketal; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole , 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxy Phenyl) -5-phenylimidazole Dimer, 2,4,5-triarylimidazole dimer such as 2- (2,4-dimethoxyphenyl) -4,5-diphenylimidazole dimer; 9-phenylacridine, 1,7- (9, Acridine derivatives such as 9'-acridinyl) heptane; 1,2-octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2-methyl) Oxime ester compounds such as benzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylcoumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-phenyl- And acyl phosphine oxide compounds such as ethoxy-phosphine oxide;
As the photopolymerization initiator, one type may be used alone, or two or more types may be used in combination.
光重合開始剤としては、硬化性の点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物が更に好ましい。
The photopolymerization initiator is preferably at least one selected from the group consisting of an acyl phosphine oxide compound, an aromatic ketone compound, and an oxime ester compound from the viewpoint of curability, and from an acyl phosphine oxide compound and an aromatic ketone compound And more preferably at least one selected from the group consisting of: acyl phosphine oxide compounds.
樹脂組成物中の光重合開始剤の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.5質量%~1.5質量%であることが更に好ましい。光重合開始剤の含有率が0.1質量%以上であると、樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。
The content of the photopolymerization initiator in the resin composition is, for example, preferably 0.1% by mass to 5% by mass, and more preferably 0.1% by mass to 3% by mass, with respect to the total amount of the resin composition. The content is more preferably 0.5% by mass to 1.5% by mass. When the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence of the composition on the hue and the decrease in storage stability tend to be suppressed.
(液状媒体)
本開示の樹脂組成物は、液状媒体を含んでいてもよい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。 (Liquid medium)
The resin composition of the present disclosure may contain a liquid medium. The liquid medium refers to a medium in a liquid state at room temperature (25 ° C.).
本開示の樹脂組成物は、液状媒体を含んでいてもよい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。 (Liquid medium)
The resin composition of the present disclosure may contain a liquid medium. The liquid medium refers to a medium in a liquid state at room temperature (25 ° C.).
液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸;などが挙げられる。本開示の樹脂組成物は、1種類の液状媒体を単独で含んでいてもよく、2種類以上の液状媒体を含んでいてもよい。
Specific examples of the liquid medium include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, etc .; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, Diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n-butyl ether , Triethylene glycol Methyl n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl n- Hexyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol di-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol Methyl-n-butyl ether, dipropi Polyethylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl ether -N-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl n-butyl ether , Tetrapropylene glycol di-n-butyl ether, teto Ether solvents such as propylene glycol methyl-n-hexyl ether; carbonate solvents such as propylene carbonate, ethylene carbonate, diethyl carbonate; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec acetic acid -Butyl, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, Methyl cyclohexyl cyclohexyl, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl acetate , Dipropylene glycol ethyl ether acetate, glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate , N-butyl lactate, n-amyl lactate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate Ester solvents such as propylene glycol propyl ether acetate, γ-butyrolactone and γ-valerolactone; acetonitrile, N- Aprotic polar polarity such as chill pyrrolidinone, N-ethyl pyrrolidinone, N-propyl pyrrolidinone, N-butyl pyrrolidinone, N-hexyl pyrrolidinone, N-cyclohexyl pyrrolidinone, N, N-dimethylformamide, N, N-dimethyl acetamide, dimethyl sulfoxide and the like Solvents: methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-o Cranol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethyl nonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2- Alcohol solvents such as propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol Monoethyl ether, diethylene glycol mono-n-butyl ester Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. Solvents for glycol monoethers; Terpinene, Terpineol, Myrcene, Alloocimene, Limonene, Dipentene, Pinene, Carboxyl, Osimene, Ferandrene etc. Terpene solvents; Butanoic acid, Pentanic acid, Hexanoic acid, Heptanoic acid, Octanoic acid, Nonanoic acid, Decane Acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octa Saturated aliphatic monocarboxylic acid having 4 or more carbon atoms such as kanamic acid, nonadecanoic acid, icosanic acid, eicosenic acid, etc .; unsaturated aliphatic monocarboxylic acid having 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, palmitoleic acid And the like. The resin composition of the present disclosure may contain one type of liquid medium alone, or may contain two or more types of liquid media.
樹脂組成物が液状媒体を含む場合、樹脂組成物中の液状媒体の含有率は、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることが更に好ましい。
When the resin composition contains a liquid medium, the content of the liquid medium in the resin composition is, for example, preferably 1% by mass to 10% by mass, and more preferably 4% by mass to the total amount of the resin composition. It is more preferably 10% by mass, and still more preferably 4% by mass to 7% by mass.
(その他の成分)
本開示の樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着性付与剤、酸化防止剤等のその他の成分を含んでいてもよい。本開示の樹脂組成物は、その他の成分のそれぞれについて、1種類を単独で含んでいてもよく、2種類以上を含んでいてもよい。 (Other ingredients)
The resin composition of the present disclosure may contain other components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion promoter, an antioxidant, and the like. The resin composition of the present disclosure may contain one type alone or two or more types for each of the other components.
本開示の樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着性付与剤、酸化防止剤等のその他の成分を含んでいてもよい。本開示の樹脂組成物は、その他の成分のそれぞれについて、1種類を単独で含んでいてもよく、2種類以上を含んでいてもよい。 (Other ingredients)
The resin composition of the present disclosure may contain other components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion promoter, an antioxidant, and the like. The resin composition of the present disclosure may contain one type alone or two or more types for each of the other components.
樹脂組成物を用いて形成された樹脂組成物層、例えば、樹脂組成物が基材に付与されることにより基材上に形成された樹脂組成物層について、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射する。これにより、樹脂組成物層が硬化し、樹脂硬化物が得られる。活性エネルギー線の波長及び照射量は、樹脂組成物の組成に応じて適宜設定することができる。ある一態様では、280nm~400nmの波長の紫外線を100mJ/cm2~5000mJ/cm2の照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。
A resin composition layer formed using a resin composition, for example, a resin composition layer formed on a substrate by applying the resin composition to a substrate, was subjected to drying treatment as necessary. After that, an active energy ray such as ultraviolet rays is irradiated. Thereby, a resin composition layer hardens | cures and resin cured | curing material is obtained. The wavelength and irradiation amount of the active energy ray can be appropriately set according to the composition of the resin composition. In some aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ~ 400 nm at an irradiation amount of 100mJ / cm 2 ~ 5000mJ / cm 2. Examples of the ultraviolet light source include low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave excited mercury lamps and the like.
樹脂組成物層を硬化させて得られる樹脂硬化物は、前述の分散質が反応してなるゲル化物を含んでおり、好ましくは前述の変性シリコーンと二官能以上のエポキシ化合物とが反応してなるゲル化物を含んでいる。
更に、樹脂硬化物は、海部と島部とを含み、島部が量子ドット蛍光体を内包するゲル化物であってもよい。 The cured resin product obtained by curing the resin composition layer contains a gelled product formed by the reaction of the above-mentioned dispersoids, and preferably is formed by the reaction of the above-mentioned modified silicone and a difunctional or higher epoxy compound. Contains gelation.
Furthermore, the resin cured product may be a gelled product that includes the sea area and the island area, and the island area includes the quantum dot phosphor.
更に、樹脂硬化物は、海部と島部とを含み、島部が量子ドット蛍光体を内包するゲル化物であってもよい。 The cured resin product obtained by curing the resin composition layer contains a gelled product formed by the reaction of the above-mentioned dispersoids, and preferably is formed by the reaction of the above-mentioned modified silicone and a difunctional or higher epoxy compound. Contains gelation.
Furthermore, the resin cured product may be a gelled product that includes the sea area and the island area, and the island area includes the quantum dot phosphor.
樹脂硬化物及び波長変換部材の形状は特に制限されず、フィルム状、レンズ状等が挙げられる。後述するバックライトユニットに適用する場合には、樹脂硬化物及び波長変換部材はフィルム状であることが好ましい。
The shapes of the cured resin and the wavelength conversion member are not particularly limited, and examples thereof include films and lenses. When applied to a backlight unit described later, the cured resin and the wavelength conversion member are preferably in the form of a film.
樹脂硬化物がフィルム状である場合、樹脂硬化物の平均厚みは、例えば、50μm~200μmであることが好ましく、50μm~150μmであることがより好ましく、80μm~120μmであることが更に好ましい。平均厚みが50μm以上であると、波長変換効率がより向上する傾向にあり、平均厚みが200μm以下であると、後述するバックライトユニットに適用した場合に、バックライトユニットをより薄型化できる傾向にある。
フィルム状の樹脂硬化物の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。 When the cured resin product is in the form of a film, the average thickness of the cured resin product is, for example, preferably 50 μm to 200 μm, more preferably 50 μm to 150 μm, and still more preferably 80 μm to 120 μm. When the average thickness is 50 μm or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 μm or less, when applied to a backlight unit described later, the backlight unit tends to be thinner. is there.
The average thickness of the film-like cured resin is determined, for example, as an arithmetic average value of the thicknesses of three arbitrary points measured using a micrometer.
フィルム状の樹脂硬化物の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。 When the cured resin product is in the form of a film, the average thickness of the cured resin product is, for example, preferably 50 μm to 200 μm, more preferably 50 μm to 150 μm, and still more preferably 80 μm to 120 μm. When the average thickness is 50 μm or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 μm or less, when applied to a backlight unit described later, the backlight unit tends to be thinner. is there.
The average thickness of the film-like cured resin is determined, for example, as an arithmetic average value of the thicknesses of three arbitrary points measured using a micrometer.
樹脂硬化物は、一層であってもよく、二層以上が積層されたものであってもよい。樹脂硬化物は二層以上が積層されたものである場合、それぞれの層の形成に用いた樹脂組成物、樹脂組成物の硬化条件等は、それぞれ同じであってもよく、異なっていてもよい。
The resin cured product may be a single layer, or two or more layers may be laminated. When two or more layers of the resin cured product are laminated, the curing conditions of the resin composition and the resin composition used to form each layer may be the same or different. .
樹脂硬化物はエン-チオール反応由来の構造を有することが好ましく、樹脂硬化物の海部はエン-チオール反応由来の構造を有することがより好ましい。
エン-チオール反応は、チオール化合物と、エチレン性不飽和基を有する化合物との結合形成反応である。また、エン-チオール反応は、基材に対する樹脂硬化物の密着性に優れる点から、チオール化合物と(メタ)アリル化合物との結合形成反応であることが好ましい。例えば、チオール化合物、(メタ)アリル化合物及び光重合開始剤を含む樹脂組成物に対して紫外線等の活性エネルギー線を照射すると、重合開始剤から生成されたラジカルにより、チオール化合物と(メタ)アリル化合物との反応が進行し、エン-チオール反応由来の構造を有する樹脂硬化物が得られる。 The resin cured product preferably has a structure derived from an ene-thiol reaction, and the sea part of the resin cured product more preferably has a structure derived from an ene-thiol reaction.
The ene-thiol reaction is a bond forming reaction between a thiol compound and a compound having an ethylenically unsaturated group. The ene-thiol reaction is preferably a bond-forming reaction between a thiol compound and a (meth) allyl compound, from the viewpoint of excellent adhesion of the cured resin to a substrate. For example, when a resin composition containing a thiol compound, a (meth) allyl compound and a photopolymerization initiator is irradiated with an active energy ray such as ultraviolet light, the thiol compound and the (meth) allyl are generated by radicals generated from the polymerization initiator. The reaction with the compound proceeds to obtain a cured resin having a structure derived from the ene-thiol reaction.
エン-チオール反応は、チオール化合物と、エチレン性不飽和基を有する化合物との結合形成反応である。また、エン-チオール反応は、基材に対する樹脂硬化物の密着性に優れる点から、チオール化合物と(メタ)アリル化合物との結合形成反応であることが好ましい。例えば、チオール化合物、(メタ)アリル化合物及び光重合開始剤を含む樹脂組成物に対して紫外線等の活性エネルギー線を照射すると、重合開始剤から生成されたラジカルにより、チオール化合物と(メタ)アリル化合物との反応が進行し、エン-チオール反応由来の構造を有する樹脂硬化物が得られる。 The resin cured product preferably has a structure derived from an ene-thiol reaction, and the sea part of the resin cured product more preferably has a structure derived from an ene-thiol reaction.
The ene-thiol reaction is a bond forming reaction between a thiol compound and a compound having an ethylenically unsaturated group. The ene-thiol reaction is preferably a bond-forming reaction between a thiol compound and a (meth) allyl compound, from the viewpoint of excellent adhesion of the cured resin to a substrate. For example, when a resin composition containing a thiol compound, a (meth) allyl compound and a photopolymerization initiator is irradiated with an active energy ray such as ultraviolet light, the thiol compound and the (meth) allyl are generated by radicals generated from the polymerization initiator. The reaction with the compound proceeds to obtain a cured resin having a structure derived from the ene-thiol reaction.
エン-チオール反応由来の構造を有する樹脂硬化物は、チオール化合物と、(メタ)アリル化合物及び(メタ)アクリル化合物との反応に由来する硬化物であってもよい。エン-チオール反応由来の構造を有する樹脂硬化物は、例えば、チオール化合物と(メタ)アクリル化合物を反応させたオリゴマーを、(メタ)アリル化合物と更に反応させて得られる硬化物であってもよい。
The cured resin having a structure derived from an ene-thiol reaction may be a cured product derived from the reaction of a thiol compound, a (meth) allyl compound and a (meth) acrylic compound. The cured resin having a structure derived from an ene-thiol reaction may be, for example, a cured product obtained by further reacting an oligomer obtained by reacting a thiol compound and a (meth) acrylic compound with a (meth) allyl compound. .
樹脂硬化物は、基材に対する密着性をより向上させる点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることが更に好ましい。樹脂硬化物の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
The cured resin has a loss tangent (tan δ) of 0.4 to 1.5 measured by dynamic viscoelasticity measurement at a frequency of 10 Hz and a temperature of 25 ° C. in order to further improve the adhesion to the substrate. Is preferable, 0.4 to 1.2 is more preferable, and 0.4 to 0.6 is more preferable. The loss tangent (tan δ) of the resin cured product can be measured using a dynamic viscoelasticity measurement device (eg, Rheometric Scientific, Inc., Solid Analyzer RSA-III).
また、樹脂硬化物は、耐熱性及び耐湿熱性をより向上させる点から、ガラス転移温度(Tg)が40℃以上であることが好ましく、45℃以上であることがより好ましく、50℃以上であることが更に好ましい。
また、樹脂硬化物は、基材に対する密着性の点から、90℃以下であることが好ましく、80℃以下であることがより好ましく、75℃以下であることが更に好ましい。
樹脂硬化物のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 The cured resin preferably has a glass transition temperature (Tg) of 40 ° C. or higher, more preferably 45 ° C. or higher, and more preferably 50 ° C. or higher, from the viewpoint of further improving heat resistance and moist heat resistance. Is more preferred.
The cured resin is preferably 90 ° C. or less, more preferably 80 ° C. or less, and still more preferably 75 ° C. or less, from the viewpoint of adhesion to the substrate.
The glass transition temperature (Tg) of the resin cured product can be measured using a dynamic viscoelasticity measurement device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
また、樹脂硬化物は、基材に対する密着性の点から、90℃以下であることが好ましく、80℃以下であることがより好ましく、75℃以下であることが更に好ましい。
樹脂硬化物のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 The cured resin preferably has a glass transition temperature (Tg) of 40 ° C. or higher, more preferably 45 ° C. or higher, and more preferably 50 ° C. or higher, from the viewpoint of further improving heat resistance and moist heat resistance. Is more preferred.
The cured resin is preferably 90 ° C. or less, more preferably 80 ° C. or less, and still more preferably 75 ° C. or less, from the viewpoint of adhesion to the substrate.
The glass transition temperature (Tg) of the resin cured product can be measured using a dynamic viscoelasticity measurement device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
また、樹脂硬化物は、基材に対する密着性、耐熱性、及び耐湿熱性をより向上させる点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×107Pa~1×109Paであることが好ましく、5×107Pa~1×109Paであることがより好ましく、5×107Pa~5×108Paであることが更に好ましい。樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
In addition, the cured resin has a storage elastic modulus of 1 × 10 7 Pa to 1 × 10 5 measured at a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving the adhesion to the substrate, the heat resistance and the moisture and heat resistance. The pressure is preferably 9 Pa, more preferably 5 × 10 7 Pa to 1 × 10 9 Pa, and still more preferably 5 × 10 7 Pa to 5 × 10 8 Pa. The storage elastic modulus of the resin cured product can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Inc., Solid Analyzer RSA-III).
本開示の波長変換部材の製造方法にて製造される波長変換部材は、樹脂硬化物の両面に第一の基材及び第二の基材が設けられ、第一の基材、樹脂硬化物及び第二の基材がこの順番に配置された波長変換部材であってもよい。このような波長変換部材は、例えば、樹脂組成物層を形成する工程にて、樹脂組成物を第一の基材に付与して樹脂組成物層を形成し、かつ、樹脂硬化物を得る工程の前に、樹脂組成物層における第一の基材が設けられた側の反対側に第二の基材を設ける工程を行うことにより、製造することができる。
The wavelength conversion member manufactured by the method for manufacturing a wavelength conversion member of the present disclosure has a first base and a second base provided on both sides of a cured resin, and the first base, the cured resin, and The second base material may be a wavelength conversion member arranged in this order. In such a wavelength conversion member, for example, in the step of forming a resin composition layer, the step of applying the resin composition to the first substrate to form a resin composition layer, and obtaining a cured resin product. Before this, it can manufacture by performing the process of providing a 2nd base material on the opposite side to the side in which the 1st base material in a resin composition layer was provided.
第一の基材及び第二の基材としては、樹脂硬化物の少なくとも一部を被覆する被覆材が挙げられる。本開示の波長変換部材は、樹脂硬化物がフィルム状である場合、フィルム状の樹脂硬化物の片面又は両面がフィルム状の被覆材によって被覆されたものであってもよい。
As a 1st base material and a 2nd base material, the coating material which coat | covers at least one part of resin cured material is mentioned. When the cured resin is in the form of a film, the wavelength conversion member of the present disclosure may be one in which one surface or both surfaces of the cured resin in the form of a film is covered with a film-shaped covering material.
被覆材は、量子ドット蛍光体の発光効率の低下を抑える点から、酸素及び水の少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水の少なくとも一方に対するバリア性を有する被覆材としては特に制限されず、無機層を有するバリアフィルム等の公知の被覆材を用いることができる。
The coating material preferably has a barrier property to at least one of oxygen and water, and more preferably has a barrier property to both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the quantum dot phosphor. It does not restrict | limit especially as a coating material which has a barrier property with respect to at least one of oxygen and water, Well-known coating materials, such as a barrier film which has an inorganic layer, can be used.
被覆材がフィルム状である場合、被覆材の平均厚みは、例えば、100μm~150μmであることが好ましく、100μm~140μmであることがより好ましく、100μm~135μmであることが更に好ましい。平均厚みが100μm以上であると、バリア性等の機能が充分なものとなる傾向にあり、平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。
フィルム状の被覆材の平均厚みは、フィルム状の樹脂硬化物と同様にして求められる。 When the covering material is in the form of a film, the average thickness of the covering material is, for example, preferably 100 μm to 150 μm, more preferably 100 μm to 140 μm, and still more preferably 100 μm to 135 μm. When the average thickness is 100 μm or more, the function such as barrier property tends to be sufficient, and when the average thickness is 150 μm or less, the decrease in light transmittance tends to be suppressed.
The average thickness of the film-like covering material is determined in the same manner as the film-like cured resin.
フィルム状の被覆材の平均厚みは、フィルム状の樹脂硬化物と同様にして求められる。 When the covering material is in the form of a film, the average thickness of the covering material is, for example, preferably 100 μm to 150 μm, more preferably 100 μm to 140 μm, and still more preferably 100 μm to 135 μm. When the average thickness is 100 μm or more, the function such as barrier property tends to be sufficient, and when the average thickness is 150 μm or less, the decrease in light transmittance tends to be suppressed.
The average thickness of the film-like covering material is determined in the same manner as the film-like cured resin.
被覆材の酸素透過率は、例えば、0.5mL/(m2・24h・atm)以下であることが好ましく、0.3mL/(m2・24h・atm)以下であることがより好ましく、0.1mL/(m2・24h・atm)以下であることが更に好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度65%の条件で測定することができる。
また、被覆材の水蒸気透過率は、例えば、5×10-2g/(m2・24h・Pa)以下であることが好ましく、1×10-2g/(m2・24h・Pa)以下であることがより好ましく、5×10-3g/(m2・24h・Pa)以下であることが更に好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度90%の条件で測定することができる。 The oxygen permeability of the covering material is, for example, preferably 0.5 mL / (m 2 · 24 h · atm) or less, more preferably 0.3 mL / (m 2 · 24 h · atm) or less, 0 More preferably, it is not more than 1 mL / (m 2 · 24 h · atm). The oxygen permeability of the covering material can be measured under conditions of a temperature of 23 ° C. and a relative humidity of 65% using an oxygen permeability measuring device (for example, OX-TRAN, manufactured by MOCON).
Further, the water vapor transmission rate of the covering material is, for example, preferably 5 × 10 −2 g / (m 2 · 24 h · Pa) or less, and 1 × 10 −2 g / (m 2 · 24 h · Pa) or less Is more preferably 5 × 10 −3 g / (m 2 · 24 h · Pa) or less. The water vapor transmission rate of the covering material can be measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% using a water vapor transmission rate measuring device (for example, AQUATRAN manufactured by MOCON).
また、被覆材の水蒸気透過率は、例えば、5×10-2g/(m2・24h・Pa)以下であることが好ましく、1×10-2g/(m2・24h・Pa)以下であることがより好ましく、5×10-3g/(m2・24h・Pa)以下であることが更に好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度90%の条件で測定することができる。 The oxygen permeability of the covering material is, for example, preferably 0.5 mL / (m 2 · 24 h · atm) or less, more preferably 0.3 mL / (m 2 · 24 h · atm) or less, 0 More preferably, it is not more than 1 mL / (m 2 · 24 h · atm). The oxygen permeability of the covering material can be measured under conditions of a temperature of 23 ° C. and a relative humidity of 65% using an oxygen permeability measuring device (for example, OX-TRAN, manufactured by MOCON).
Further, the water vapor transmission rate of the covering material is, for example, preferably 5 × 10 −2 g / (m 2 · 24 h · Pa) or less, and 1 × 10 −2 g / (m 2 · 24 h · Pa) or less Is more preferably 5 × 10 −3 g / (m 2 · 24 h · Pa) or less. The water vapor transmission rate of the covering material can be measured under the conditions of a temperature of 40 ° C. and a relative humidity of 90% using a water vapor transmission rate measuring device (for example, AQUATRAN manufactured by MOCON).
[波長変換部材]
本発明の一形態に係る波長変換部材は、海部と島部とを含む海島構造を有する樹脂硬化物を備え、前記島部が量子ドット蛍光体を内包するゲル化物である。
本発明の一形態に係る波長変換部材は、例えば、前述の本開示の波長変換部材の製造方法により製造することができる。
また、本発明の一形態に係る波長変換部材における各構成は、前述の本開示の波長変換部材の製造方法により製造される波長変換部材における各構成と同様であるため、その説明を省略する。 [Wavelength conversion member]
The wavelength conversion member which concerns on one form of this invention is a gelatinization thing provided with the resin cured material which has a sea island structure containing a sea part and an island part, and the said island part includes quantum dot fluorescent substance.
The wavelength conversion member which concerns on one form of this invention can be manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, for example.
Moreover, since each structure in the wavelength conversion member which concerns on one form of this invention is the same as each structure in the wavelength conversion member manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, the description is abbreviate | omitted.
本発明の一形態に係る波長変換部材は、海部と島部とを含む海島構造を有する樹脂硬化物を備え、前記島部が量子ドット蛍光体を内包するゲル化物である。
本発明の一形態に係る波長変換部材は、例えば、前述の本開示の波長変換部材の製造方法により製造することができる。
また、本発明の一形態に係る波長変換部材における各構成は、前述の本開示の波長変換部材の製造方法により製造される波長変換部材における各構成と同様であるため、その説明を省略する。 [Wavelength conversion member]
The wavelength conversion member which concerns on one form of this invention is a gelatinization thing provided with the resin cured material which has a sea island structure containing a sea part and an island part, and the said island part includes quantum dot fluorescent substance.
The wavelength conversion member which concerns on one form of this invention can be manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, for example.
Moreover, since each structure in the wavelength conversion member which concerns on one form of this invention is the same as each structure in the wavelength conversion member manufactured by the manufacturing method of the wavelength conversion member of above-mentioned this indication, the description is abbreviate | omitted.
本形態に係る波長変換部材では、島部が量子ドット蛍光体を内包するゲル化物である。これにより、高温高湿環境下にてゲル化物中の量子ドット蛍光体が劣化しにくく、波長変換部材は耐湿熱性に優れる。
In the wavelength conversion member according to the present embodiment, the island portion is a gelled material in which the quantum dot phosphor is contained. Thereby, the quantum dot fluorescent substance in gelatinization does not deteriorate easily under high temperature and high humidity environment, and a wavelength conversion member is excellent in heat-and-moisture resistance.
本形態に係る波長変換部材では、島部の径の標準偏差が1.5μm以下であることが好ましく、1.2μm以下であることがより好ましく、1.0μm以下であることが更に好ましく、0.8μm以下であることが特に好ましい。島部の径の標準偏差が1.5μm以下であることにより、波長変換部材の発光強度により優れる傾向にある。
In the wavelength conversion member according to the present embodiment, the standard deviation of the diameter of the island is preferably 1.5 μm or less, more preferably 1.2 μm or less, and still more preferably 1.0 μm or less. It is particularly preferable that the diameter is not more than 8 μm. When the standard deviation of the diameter of the island portion is 1.5 μm or less, the emission intensity of the wavelength conversion member tends to be more excellent.
島部の径の標準偏差の下限は特に限定されないが、波長変換部材の製造効率の点から、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることが更に好ましい。
The lower limit of the standard deviation of the diameter of the island is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.2 μm or more, and more preferably 0.3 μm or more from the viewpoint of the production efficiency of the wavelength conversion member. It is further preferred that
本形態に係る波長変換部材では、島部の径は5.0μm以下であることが好ましく、4.0μm以下であることがより好ましく、3.0μm以下であることが更に好ましく、2.5μm以下であることが特に好ましい。島部の径が5.0μm以下であることにより、波長変換部材の発光強度により優れる傾向にある。
In the wavelength conversion member according to the present embodiment, the diameter of the island portion is preferably 5.0 μm or less, more preferably 4.0 μm or less, still more preferably 3.0 μm or less, and 2.5 μm or less Is particularly preferred. When the diameter of the island portion is 5.0 μm or less, the emission intensity of the wavelength conversion member tends to be more excellent.
島部の径の下限は特に限定されないが、0.3μm以上であってもよく、0.5μm以上であってもよく、1.0μm以上であってもよい。
The lower limit of the diameter of the island portion is not particularly limited, but may be 0.3 μm or more, 0.5 μm or more, or 1.0 μm or more.
例えば、島部の径の標準偏差及び島部の径は、波長変換部材の製造に用いる樹脂組成物の粘度を調節することにより制御することができる。他にも、樹脂組成物を調製する際に、各成分を混合するときの回転数、撹拌時間等の撹拌条件を変更することにより、島部の径の標準偏差及び島部の径を制御してもよい。
For example, the standard deviation of the diameter of the island and the diameter of the island can be controlled by adjusting the viscosity of the resin composition used for producing the wavelength conversion member. In addition, when preparing the resin composition, the standard deviation of the diameter of the island and the diameter of the island are controlled by changing the stirring conditions such as the number of rotations and the stirring time when mixing each component. May be
本開示において、島部の径は、波長変換部材を光学顕微鏡で観察したときに無差別で選ばれた100箇所の島部の径の算術平均値である。
また、本開示において、島部の径の標準偏差は、前述の選ばれた100箇所の島部の径を用いてSTDEV関数から求められる標準偏差である。 In the present disclosure, the diameter of the island portion is an arithmetic mean value of the diameters of 100 island portions selected indiscriminately when the wavelength conversion member is observed with an optical microscope.
Further, in the present disclosure, the standard deviation of the diameter of the island is a standard deviation obtained from the STDEV function using the diameter of the selected 100 islands.
また、本開示において、島部の径の標準偏差は、前述の選ばれた100箇所の島部の径を用いてSTDEV関数から求められる標準偏差である。 In the present disclosure, the diameter of the island portion is an arithmetic mean value of the diameters of 100 island portions selected indiscriminately when the wavelength conversion member is observed with an optical microscope.
Further, in the present disclosure, the standard deviation of the diameter of the island is a standard deviation obtained from the STDEV function using the diameter of the selected 100 islands.
波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。また、図1における樹脂硬化物及び被覆材の大きさは概念的なものであり、大きさの相対的な関係はこれに限定されない。
An example of schematic structure of a wavelength conversion member is shown in FIG. However, the wavelength conversion member of the present disclosure is not limited to the configuration of FIG. 1. Further, the sizes of the resin cured product and the covering material in FIG. 1 are conceptual, and the relative relationship of the sizes is not limited thereto.
図1に示す波長変換部材10は、フィルム状である樹脂硬化物11と、樹脂硬化物11の両面に設けられたフィルム状の被覆材12A及び12Bとを有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。
The wavelength conversion member 10 shown in FIG. 1 has a cured resin 11 in the form of a film and film- like covering materials 12A and 12B provided on both sides of the cured resin 11. The types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
図1に示す構成の波長変換部材は、例えば、以下のような方法により製造することができる。
The wavelength conversion member having the configuration shown in FIG. 1 can be manufactured, for example, by the following method.
まず、連続搬送されるフィルム状の被覆材12A(第一の基材)の表面に、前述の樹脂組成物を付与し、塗膜(樹脂組成物層)を形成する。
First, the above-mentioned resin composition is applied to the surface of the film-like covering material 12A (first base material) which is continuously conveyed, and a coating film (resin composition layer) is formed.
次いで、塗膜の上に、連続搬送されるフィルム状の被覆材12B(第二の基材)を貼り合わせる。
Subsequently, the film-like covering material 12B (second base material) which is continuously conveyed is pasted onto the coating film.
次いで、被覆材12A及び被覆材12Bのうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、ゲル化物を含む樹脂硬化物を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。
Next, the coating is cured by irradiating the coating material 12A and the coating material 12B with active energy radiation from the side of the coating material capable of transmitting active energy radiation, thereby forming a cured resin containing a gelled product. Thereafter, the wavelength conversion member having the configuration shown in FIG. 1 can be obtained by cutting out to a prescribed size.
なお、被覆材12A及び被覆材12Bのいずれも活性エネルギー線を透過可能でない場合には、被覆材12Bを貼り合わせる前に活性エネルギー線を塗膜に照射し、樹脂硬化物を形成してもよい。
In addition, when neither coating | covering material 12A nor coating | covering material 12B can permeate | transmit an active energy ray, before bonding together the coating | covering material 12B, an active energy ray may be irradiated to a coating film and resin cured material may be formed. .
[バックライトユニット]
本開示のバックライトユニットは、上述した本開示の波長変換部材と、光源とを備える。 [Backlight unit]
The backlight unit of the present disclosure includes the above-described wavelength conversion member of the present disclosure and a light source.
本開示のバックライトユニットは、上述した本開示の波長変換部材と、光源とを備える。 [Backlight unit]
The backlight unit of the present disclosure includes the above-described wavelength conversion member of the present disclosure and a light source.
バックライトユニットとしては、色再現性を向上させる点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。
The backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility. In a preferred embodiment, it has an emission center wavelength in a wavelength range of 430 nm to 480 nm and blue light having an emission intensity peak having a half width of 100 nm or less and an emission center wavelength in a wavelength range of 520 nm to 560 nm. A back that emits green light having an emission intensity peak whose half width is 100 nm or less and red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and an emission intensity peak whose half width is 100 nm or less A light unit can be mentioned. The full width at half maximum of the emission intensity peak means a peak width at a half height of the peak height.
色再現性をより向上させる点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。
From the viewpoint of further improving color reproducibility, the emission center wavelength of blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm. From the same point of view, the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm. From the same point of view, the emission center wavelength of red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
また、色再現性をより向上させる点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることが更に好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。
In addition, in order to further improve color reproducibility, the half-width of each of the light emission intensity peaks of blue light, green light and red light emitted by the backlight unit is preferably 80 nm or less, and 50 nm or less Some are more preferable, 40 nm or less is further preferable, 30 nm or less is particularly preferable, and 25 nm or less is very preferable.
バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
As a light source of the backlight unit, for example, a light source which emits blue light having an emission center wavelength in a wavelength range of 430 nm to 480 nm can be used. Examples of the light source include an LED (Light Emitting Diode) and a laser. When a light source emitting blue light is used, the wavelength conversion member preferably includes at least a quantum dot phosphor R emitting red light and a quantum dot phosphor G emitting green light. Thereby, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。
Further, as a light source of the backlight unit, for example, a light source which emits ultraviolet light having an emission center wavelength in a wavelength range of 300 nm to 430 nm can be used. The light source includes, for example, an LED and a laser. When a light source emitting ultraviolet light is used, the wavelength conversion member preferably includes the quantum dot phosphor R and the quantum dot phosphor G together with the quantum dot phosphor B which is excited by the excitation light and emits blue light. Thereby, white light can be obtained by the red light, the green light, and the blue light emitted from the wavelength conversion member.
本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。
The backlight unit of the present disclosure may be an edge light system or a direct system.
エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。但し、本開示のバックライトユニットは、図2の構成に限定されるものではない。また、図2における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
An example of a schematic configuration of the edge light type backlight unit is shown in FIG. However, the backlight unit of the present disclosure is not limited to the configuration of FIG. Further, the sizes of the members in FIG. 2 are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
図2に示すバックライトユニット20は、青色光LBを出射する光源21と、光源21から出射された青色光LBを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光LBの一部を励起光として赤色光LR及び緑色光LGを発光し、赤色光LR及び緑色光LGと、励起光とならなかった青色光LBとを出射する。この赤色光LR、緑色光LG、及び青色光LBにより、再帰反射性部材23から白色光LWが出射される。
The backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face A retroreflective member 23 disposed opposite to the light guide plate 22 via the wavelength conversion member 10, and a reflector 24 disposed opposite to the wavelength conversion member 10 via the light guide plate 22. . The wavelength conversion member 10 emits red light L R and green light L G using a part of the blue light L B as excitation light, and emits red light L R and green light L G and blue light L that has not become excitation light. Emit B and. White light LW is emitted from the retroreflective member 23 by the red light L R , the green light L G , and the blue light L B.
[画像表示装置]
本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。 [Image display device]
An image display device of the present disclosure includes the backlight unit of the present disclosure described above. It does not restrict | limit especially as an image display apparatus, For example, a liquid crystal display device is mentioned.
本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。 [Image display device]
An image display device of the present disclosure includes the backlight unit of the present disclosure described above. It does not restrict | limit especially as an image display apparatus, For example, a liquid crystal display device is mentioned.
液晶表示装置の概略構成の一例を図3に示す。但し、本開示の液晶表示装置は、図3の構成に限定されるものではない。また、図3における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
An example of a schematic configuration of the liquid crystal display device is shown in FIG. However, the liquid crystal display device of the present disclosure is not limited to the configuration of FIG. 3. Also, the sizes of the members in FIG. 3 are conceptual, and the relative relationship between the sizes of the members is not limited thereto.
図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成である。
The liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 disposed to face the backlight unit 20. The liquid crystal cell unit 31 is configured such that the liquid crystal cell 32 is disposed between the polarizing plate 33A and the polarizing plate 33B.
液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Virtical Alignment)方式、IPS(In-Place-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。
The driving method of the liquid crystal cell 32 is not particularly limited, and TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Virtical Alignment) method, IPS (In-Place-Switching) method, OCB (Optically Compensated Birefringence) System etc.
[波長変換部材用樹脂組成物]
本開示の波長変換部材用樹脂組成物は、量子ドット蛍光体、及び前記量子ドット蛍光体を内包するゲル化可能な分散質を含む。本実施形態の波長変換部材用樹脂組成物は、波長変換部材の製造に用いる。 [Resin composition for wavelength conversion member]
The resin composition for a wavelength conversion member of the present disclosure includes a quantum dot phosphor and a gelable dispersoid that contains the quantum dot phosphor. The resin composition for wavelength conversion members of this embodiment is used for manufacture of a wavelength conversion member.
本開示の波長変換部材用樹脂組成物は、量子ドット蛍光体、及び前記量子ドット蛍光体を内包するゲル化可能な分散質を含む。本実施形態の波長変換部材用樹脂組成物は、波長変換部材の製造に用いる。 [Resin composition for wavelength conversion member]
The resin composition for a wavelength conversion member of the present disclosure includes a quantum dot phosphor and a gelable dispersoid that contains the quantum dot phosphor. The resin composition for wavelength conversion members of this embodiment is used for manufacture of a wavelength conversion member.
また、本実施形態の波長変換部材用樹脂組成物は、前述の成分に加えて、二官能以上のエポキシ化合物、多官能チオール化合物、(メタ)アリル化合物、(メタ)アクリル化合物、単官能チオール化合物、アルキレンオキシ基含有化合物等の樹脂成分を含んでいてもよく、光重合開始剤、液状媒体、その他の成分等を含んでいてもよい。
本実施形態の波長変換部材用樹脂組成物に含まれ得る成分及びその含有率は、前述の本開示の波長変換部材の製造方法にて用いる樹脂組成物に含まれ得る各成分及びその含有率と同様であるため、その説明を省略する。 In addition to the above-mentioned components, the resin composition for wavelength conversion members of this embodiment is an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, a (meth) acrylic compound, a monofunctional thiol compound And a resin component such as an alkyleneoxy group-containing compound may be contained, and a photopolymerization initiator, a liquid medium, other components and the like may be contained.
The components that can be contained in the resin composition for wavelength conversion members of the present embodiment and the content thereof are the respective components that can be contained in the resin composition used in the method for producing a wavelength conversion member of the present disclosure described above, and the content thereof Since it is the same, the description is omitted.
本実施形態の波長変換部材用樹脂組成物に含まれ得る成分及びその含有率は、前述の本開示の波長変換部材の製造方法にて用いる樹脂組成物に含まれ得る各成分及びその含有率と同様であるため、その説明を省略する。 In addition to the above-mentioned components, the resin composition for wavelength conversion members of this embodiment is an epoxy compound having two or more functions, a polyfunctional thiol compound, a (meth) allyl compound, a (meth) acrylic compound, a monofunctional thiol compound And a resin component such as an alkyleneoxy group-containing compound may be contained, and a photopolymerization initiator, a liquid medium, other components and the like may be contained.
The components that can be contained in the resin composition for wavelength conversion members of the present embodiment and the content thereof are the respective components that can be contained in the resin composition used in the method for producing a wavelength conversion member of the present disclosure described above, and the content thereof Since it is the same, the description is omitted.
[樹脂硬化物]
本開示の樹脂硬化物は、前述の波長変換部材用樹脂組成物を硬化させてなり、かつ前記分散質が反応してなるゲル化物を含むものである。前述の波長変換部材用樹脂組成物を硬化させる条件、樹脂硬化物の好ましい物性値等は、前述の本開示の波長変換部材の製造方法の項目にて説明した通りである。 [Cured resin]
The resin cured product of the present disclosure includes a gelled product obtained by curing the above-described resin composition for a wavelength conversion member and reacting the dispersoid. The conditions for curing the above-described resin composition for a wavelength conversion member, the preferable physical property values of the cured resin product, and the like are as described in the item of the method for producing a wavelength conversion member of the present disclosure described above.
本開示の樹脂硬化物は、前述の波長変換部材用樹脂組成物を硬化させてなり、かつ前記分散質が反応してなるゲル化物を含むものである。前述の波長変換部材用樹脂組成物を硬化させる条件、樹脂硬化物の好ましい物性値等は、前述の本開示の波長変換部材の製造方法の項目にて説明した通りである。 [Cured resin]
The resin cured product of the present disclosure includes a gelled product obtained by curing the above-described resin composition for a wavelength conversion member and reacting the dispersoid. The conditions for curing the above-described resin composition for a wavelength conversion member, the preferable physical property values of the cured resin product, and the like are as described in the item of the method for producing a wavelength conversion member of the present disclosure described above.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
<合成例1>
温度計、撹拌装置、窒素導入管、及び真空配管を備えた反応容器に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(エバンスケメテックス社、PEMP)を174.0g量り取り、回転速度200回/分で撹拌しながら真空ポンプを用いて反応容器内を減圧し、30分間保持した。その後、あらかじめ55℃~65℃で加温して溶解したトリス(2-アクリロイルオキシエチル)イソシアヌレート(日立化成株式会社、ファンクリルFA-731A)を26.0g配合し、30分間撹拌した。続いて、触媒としてトリエチルアミン0.25gを添加し、2時間にわたって反応させた。赤外分光分析測定によりアクリロイル基の吸収ピークが消失したことを確認して反応を終了し、チオエーテルオリゴマー(重量平均分子量:4600)を得た。 Synthesis Example 1
174.0 g of pentaerythritol tetrakis (3-mercaptopropionate) (Evans Chemetex, PEMP) is weighed into a reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a vacuum pipe, and the rotation speed is 200 times The reaction vessel was depressurized using a vacuum pump while stirring at a rate of 1 minute and held for 30 minutes. Thereafter, 26.0 g of tris (2-acryloyloxyethyl) isocyanurate (Hitachi Chemical Co., Ltd., Funcryl FA-731A) dissolved in advance by heating at 55 ° C. to 65 ° C. was blended and stirred for 30 minutes. Subsequently, 0.25 g of triethylamine was added as a catalyst and allowed to react for 2 hours. The reaction was terminated by confirming that the absorption peak of acryloyl group disappeared by infrared spectrophotometric measurement to obtain a thioether oligomer (weight average molecular weight: 4600).
温度計、撹拌装置、窒素導入管、及び真空配管を備えた反応容器に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(エバンスケメテックス社、PEMP)を174.0g量り取り、回転速度200回/分で撹拌しながら真空ポンプを用いて反応容器内を減圧し、30分間保持した。その後、あらかじめ55℃~65℃で加温して溶解したトリス(2-アクリロイルオキシエチル)イソシアヌレート(日立化成株式会社、ファンクリルFA-731A)を26.0g配合し、30分間撹拌した。続いて、触媒としてトリエチルアミン0.25gを添加し、2時間にわたって反応させた。赤外分光分析測定によりアクリロイル基の吸収ピークが消失したことを確認して反応を終了し、チオエーテルオリゴマー(重量平均分子量:4600)を得た。 Synthesis Example 1
174.0 g of pentaerythritol tetrakis (3-mercaptopropionate) (Evans Chemetex, PEMP) is weighed into a reaction vessel equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a vacuum pipe, and the rotation speed is 200 times The reaction vessel was depressurized using a vacuum pump while stirring at a rate of 1 minute and held for 30 minutes. Thereafter, 26.0 g of tris (2-acryloyloxyethyl) isocyanurate (Hitachi Chemical Co., Ltd., Funcryl FA-731A) dissolved in advance by heating at 55 ° C. to 65 ° C. was blended and stirred for 30 minutes. Subsequently, 0.25 g of triethylamine was added as a catalyst and allowed to react for 2 hours. The reaction was terminated by confirming that the absorption peak of acryloyl group disappeared by infrared spectrophotometric measurement to obtain a thioether oligomer (weight average molecular weight: 4600).
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、下記の装置及び測定条件により、標準ポリスチレンの検量線を使用して換算することによって決定した値である。検量線の作成にあたっては、標準ポリスチレンとして5サンプルセット(PStQuick MP-H、PStQuick B[東ソー株式会社、商品名])を用いた。
装置:高速GPC装置 HLC-8320GPC(検出器:示差屈折計)(東ソー株式会社、商品名)
使用溶媒:テトラヒドロフラン(THF)
カラム:カラムTSKGEL SuperMultipore HZ-H(東ソー株式会社、商品名)
カラムサイズ:カラム長15cm、カラム内径4.6mm
測定温度:40℃
流量:0.35mL/分
試料濃度:10mg/THF5mL
注入量:20μL The weight average molecular weight is a value determined by conversion using gel permeation chromatography, using a calibration curve of standard polystyrene according to the following apparatus and measurement conditions. In preparation of a standard curve, five sample sets (PStQuick MP-H, PStQuick B (Tosoh Corp., trade name)) were used as standard polystyrene.
Device: High-speed GPC device HLC-8320GPC (Detector: Differential Refractometer) (Tosoh Corporation, trade name)
Solvent used: tetrahydrofuran (THF)
Column: Column TSKSEL SuperMultipore HZ-H (Tosoh Corporation, trade name)
Column size: Column length 15 cm, column inner diameter 4.6 mm
Measurement temperature: 40 ° C
Flow rate: 0.35 mL / min Sample concentration: 10 mg / THF 5 mL
Injection volume: 20 μL
装置:高速GPC装置 HLC-8320GPC(検出器:示差屈折計)(東ソー株式会社、商品名)
使用溶媒:テトラヒドロフラン(THF)
カラム:カラムTSKGEL SuperMultipore HZ-H(東ソー株式会社、商品名)
カラムサイズ:カラム長15cm、カラム内径4.6mm
測定温度:40℃
流量:0.35mL/分
試料濃度:10mg/THF5mL
注入量:20μL The weight average molecular weight is a value determined by conversion using gel permeation chromatography, using a calibration curve of standard polystyrene according to the following apparatus and measurement conditions. In preparation of a standard curve, five sample sets (PStQuick MP-H, PStQuick B (Tosoh Corp., trade name)) were used as standard polystyrene.
Device: High-speed GPC device HLC-8320GPC (Detector: Differential Refractometer) (Tosoh Corporation, trade name)
Solvent used: tetrahydrofuran (THF)
Column: Column TSKSEL SuperMultipore HZ-H (Tosoh Corporation, trade name)
Column size: Column length 15 cm, column inner diameter 4.6 mm
Measurement temperature: 40 ° C
Flow rate: 0.35 mL / min Sample concentration: 10 mg / THF 5 mL
Injection volume: 20 μL
<実施例1~4及び比較例1~3>
(波長変換部材用樹脂組成物の調製)
表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例1~4及び比較例1~3の波長変換部材用樹脂組成物をそれぞれ調製した。表1中の「-」は未配合を意味する。
なお、(メタ)アリル化合物としては、トリアリルイソシアヌレート(日本化成株式会社、タイク)を用いた。また、エポキシ化合物としては、水添ビスフェノールA型ジグリシジルエーテル(共栄社化学株式会社製 エポライト4000)、ビスフェノールA型 PO2mol付加物ジグリシジルエーテル(共栄社化学株式会社 エポライト3002(N))及びC12、13混合高級アルコールグリシジルエーテルエポライト(共栄社化学株式会社 M-1230)を用いた。また、光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(株式会社ソート、SB-PI 718)を用いた。また、量子ドット蛍光体としては、CdSe/ZnS(コア/シェル)分散液(Nanosys社製、Gen2 QD Concentrate、分散質:アミノ変性シリコーン)を用いた。 Examples 1 to 4 and Comparative Examples 1 to 3
(Preparation of resin composition for wavelength conversion member)
The resin compositions for wavelength conversion members of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by mixing the components shown in Table 1 in the blending amounts (unit: part by mass) shown in the same table. "-" In Table 1 means unblended.
In addition, as a (meth) allyl compound, triallyl isocyanurate (Nippon Kasei Co., Ltd., Taik) was used. Also, as the epoxy compound, hydrogenated bisphenol A type diglycidyl ether (Epolite 4000 manufactured by Kyoeisha Chemical Co., Ltd.), bisphenol A type PO 2 mol adduct diglycidyl ether (Kyoeisha Chemical Co., Ltd. Epolite 3002 (N)) and C12, 13 mixed Higher alcohol glycidyl ether epolite (Kyoeisha Chemical Co., Ltd. M-1230) was used. Further, as a photopolymerization initiator, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide (Sort, SB-PI 718) was used. As a quantum dot fluorescent substance, CdSe / ZnS (core / shell) dispersion (manufactured by Nanosys, Gen2 QD Concentrate, dispersoid: amino-modified silicone) was used.
(波長変換部材用樹脂組成物の調製)
表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例1~4及び比較例1~3の波長変換部材用樹脂組成物をそれぞれ調製した。表1中の「-」は未配合を意味する。
なお、(メタ)アリル化合物としては、トリアリルイソシアヌレート(日本化成株式会社、タイク)を用いた。また、エポキシ化合物としては、水添ビスフェノールA型ジグリシジルエーテル(共栄社化学株式会社製 エポライト4000)、ビスフェノールA型 PO2mol付加物ジグリシジルエーテル(共栄社化学株式会社 エポライト3002(N))及びC12、13混合高級アルコールグリシジルエーテルエポライト(共栄社化学株式会社 M-1230)を用いた。また、光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(株式会社ソート、SB-PI 718)を用いた。また、量子ドット蛍光体としては、CdSe/ZnS(コア/シェル)分散液(Nanosys社製、Gen2 QD Concentrate、分散質:アミノ変性シリコーン)を用いた。 Examples 1 to 4 and Comparative Examples 1 to 3
(Preparation of resin composition for wavelength conversion member)
The resin compositions for wavelength conversion members of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by mixing the components shown in Table 1 in the blending amounts (unit: part by mass) shown in the same table. "-" In Table 1 means unblended.
In addition, as a (meth) allyl compound, triallyl isocyanurate (Nippon Kasei Co., Ltd., Taik) was used. Also, as the epoxy compound, hydrogenated bisphenol A type diglycidyl ether (Epolite 4000 manufactured by Kyoeisha Chemical Co., Ltd.), bisphenol A type PO 2 mol adduct diglycidyl ether (Kyoeisha Chemical Co., Ltd. Epolite 3002 (N)) and C12, 13 mixed Higher alcohol glycidyl ether epolite (Kyoeisha Chemical Co., Ltd. M-1230) was used. Further, as a photopolymerization initiator, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide (Sort, SB-PI 718) was used. As a quantum dot fluorescent substance, CdSe / ZnS (core / shell) dispersion (manufactured by Nanosys, Gen2 QD Concentrate, dispersoid: amino-modified silicone) was used.
なお、より具体的には、チオエーテルオリゴマー及びCdSe/ZnS(コア/シェル)分散液を含む組成物と、(メタ)アリル化合物と、エポキシ化合物と、光重合開始剤を含む組成物と、を混合して波長変換部材用樹脂組成物を調製している。そのため、後述するように波長変換部材用樹脂組成物を硬化させる際に、混合したエポキシ化合物の一部が分散液中のアミノ変性シリコーンと反応してゲル化物を形成していると推測される。
More specifically, a composition containing a thioether oligomer and a CdSe / ZnS (core / shell) dispersion, a (meth) allyl compound, an epoxy compound, and a composition containing a photopolymerization initiator are mixed. Thus, a resin composition for wavelength conversion member is prepared. Therefore, when curing the resin composition for wavelength conversion members as will be described later, it is presumed that a part of the mixed epoxy compound reacts with the amino-modified silicone in the dispersion liquid to form a gelled product.
(波長変換部材の製造)
上記で得られた各硬化性組成物を被覆材である厚み120μmのバリアフィルム(大日本印刷株式会社、FF1CM)上にそれぞれ塗布して塗膜を形成した。この塗膜上に被覆材である厚み120μmのバリアフィルム(大日本印刷株式会社、FF1CM)を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を塗膜に照射(照射量:1000mJ/cm2)することにより、樹脂硬化物の両面に被覆材が配置された波長変換部材をそれぞれ得た。 (Manufacturing of wavelength conversion member)
Each curable composition obtained above was each apply | coated on the 120-micrometer-thick barrier film (Dainippon Printing Co., Ltd., FF1 CM) which is a coating material, and the coating film was formed. A 120 μm thick barrier film (Dainippon Printing Co., Ltd., FF1 CM), which is a covering material, is pasted onto this coating film, and the coating film is irradiated with ultraviolet light (irradiation amount: By performing 1000 mJ / cm < 2 >, the wavelength conversion member by which the coating material was arrange | positioned on both surfaces of the resin cured material was obtained, respectively.
上記で得られた各硬化性組成物を被覆材である厚み120μmのバリアフィルム(大日本印刷株式会社、FF1CM)上にそれぞれ塗布して塗膜を形成した。この塗膜上に被覆材である厚み120μmのバリアフィルム(大日本印刷株式会社、FF1CM)を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を塗膜に照射(照射量:1000mJ/cm2)することにより、樹脂硬化物の両面に被覆材が配置された波長変換部材をそれぞれ得た。 (Manufacturing of wavelength conversion member)
Each curable composition obtained above was each apply | coated on the 120-micrometer-thick barrier film (Dainippon Printing Co., Ltd., FF1 CM) which is a coating material, and the coating film was formed. A 120 μm thick barrier film (Dainippon Printing Co., Ltd., FF1 CM), which is a covering material, is pasted onto this coating film, and the coating film is irradiated with ultraviolet light (irradiation amount: By performing 1000 mJ / cm < 2 >, the wavelength conversion member by which the coating material was arrange | positioned on both surfaces of the resin cured material was obtained, respectively.
(ゲル化物の確認)
実施例1~4にて得られた波長変換部材をミクロトームにより薄く切り出した後、透過型電子顕微鏡で観察した際にその断面から反応物が流れ出すことはなく、かつ、波長変換部材における反応物を含む領域にピンセットで触れた際に形状が変形したため、分散質の反応物がゲル化物であることを確認した。
一方、比較例1~3にて得られた波長変換部材をミクロトームにより薄く切り出した後、透過型電子顕微鏡で観察した際にその断面から流れ出すものが観察された。 (Confirmation of gelation)
After the wavelength conversion member obtained in Examples 1 to 4 is thinly cut out with a microtome, when observed with a transmission electron microscope, the reactant does not flow out from the cross section, and the reactant in the wavelength conversion member is not It was confirmed that the reaction product of the dispersoid was a gelled product because the shape was deformed when touching the area including the area with tweezers.
On the other hand, after the wavelength conversion members obtained in Comparative Examples 1 to 3 were thinly cut out with a microtome, when observed with a transmission electron microscope, those flowing out of the cross section were observed.
実施例1~4にて得られた波長変換部材をミクロトームにより薄く切り出した後、透過型電子顕微鏡で観察した際にその断面から反応物が流れ出すことはなく、かつ、波長変換部材における反応物を含む領域にピンセットで触れた際に形状が変形したため、分散質の反応物がゲル化物であることを確認した。
一方、比較例1~3にて得られた波長変換部材をミクロトームにより薄く切り出した後、透過型電子顕微鏡で観察した際にその断面から流れ出すものが観察された。 (Confirmation of gelation)
After the wavelength conversion member obtained in Examples 1 to 4 is thinly cut out with a microtome, when observed with a transmission electron microscope, the reactant does not flow out from the cross section, and the reactant in the wavelength conversion member is not It was confirmed that the reaction product of the dispersoid was a gelled product because the shape was deformed when touching the area including the area with tweezers.
On the other hand, after the wavelength conversion members obtained in Comparative Examples 1 to 3 were thinly cut out with a microtome, when observed with a transmission electron microscope, those flowing out of the cross section were observed.
<評価>
上記で得られた各波長変換部材について、以下に示す各項目の測定及び評価した。
結果を表2に示す。 <Evaluation>
About each wavelength conversion member obtained above, measurement and evaluation of each item shown below were carried out.
The results are shown in Table 2.
上記で得られた各波長変換部材について、以下に示す各項目の測定及び評価した。
結果を表2に示す。 <Evaluation>
About each wavelength conversion member obtained above, measurement and evaluation of each item shown below were carried out.
The results are shown in Table 2.
(耐湿熱性)
上記で得られた各波長変換部材を、幅100mm、長さ100mmの寸法に裁断した後、65℃95%RH(相対湿度)の恒温恒湿槽に投入して500時間静置し、下記式に従って波長変換部材のRec2020カバー率保持率を算出した。
Rec2020カバー率保持率:(RLa-RLb)
RLa:初期Rec2020カバー率(%)
RLb:65℃95%RH×500時間後のRec2020カバー率(%)
そして、以下の評価基準に従い、各波長変換部材の耐湿熱性を評価した。
-評価基準-
A:Rec2020カバー率保持率:1%未満
B:Rec2020カバー率保持率:1%以上5%未満
C:Rec2020カバー率保持率:5%以上 (Moisture resistant)
After cutting each wavelength conversion member obtained above into a dimension of width 100 mm and length 100 mm, it is put into a constant temperature and humidity chamber at 65 ° C. and 95% RH (relative humidity) and allowed to stand for 500 hours. According to the equation, the Rec2020 coverage retention ratio of the wavelength conversion member was calculated.
Rec2020 Cover ratio retention rate: (RLa-RLb)
RLa: Initial Rec2020 cover rate (%)
RLb: Rec 2020 coverage (%) after 65 ° C 95% RH x 500 hours
And according to the following evaluation criteria, the heat-and-moisture resistance of each wavelength conversion member was evaluated.
-Evaluation criteria-
A: Rec2020 coverage retention rate: less than 1% B: Rec2020 coverage retention rate: 1% or more and less than 5% C: Rec2020 coverage retention rate: 5% or more
上記で得られた各波長変換部材を、幅100mm、長さ100mmの寸法に裁断した後、65℃95%RH(相対湿度)の恒温恒湿槽に投入して500時間静置し、下記式に従って波長変換部材のRec2020カバー率保持率を算出した。
Rec2020カバー率保持率:(RLa-RLb)
RLa:初期Rec2020カバー率(%)
RLb:65℃95%RH×500時間後のRec2020カバー率(%)
そして、以下の評価基準に従い、各波長変換部材の耐湿熱性を評価した。
-評価基準-
A:Rec2020カバー率保持率:1%未満
B:Rec2020カバー率保持率:1%以上5%未満
C:Rec2020カバー率保持率:5%以上 (Moisture resistant)
After cutting each wavelength conversion member obtained above into a dimension of width 100 mm and length 100 mm, it is put into a constant temperature and humidity chamber at 65 ° C. and 95% RH (relative humidity) and allowed to stand for 500 hours. According to the equation, the Rec2020 coverage retention ratio of the wavelength conversion member was calculated.
Rec2020 Cover ratio retention rate: (RLa-RLb)
RLa: Initial Rec2020 cover rate (%)
RLb: Rec 2020 coverage (%) after 65 ° C 95% RH x 500 hours
And according to the following evaluation criteria, the heat-and-moisture resistance of each wavelength conversion member was evaluated.
-Evaluation criteria-
A: Rec2020 coverage retention rate: less than 1% B: Rec2020 coverage retention rate: 1% or more and less than 5% C: Rec2020 coverage retention rate: 5% or more
表2から分かるように、実施例1~4における波長変換部材は、比較例1~3の波長変換部材と比較して耐湿熱性に優れていた。
As can be seen from Table 2, the wavelength conversion members in Examples 1 to 4 were superior in moisture and heat resistance as compared with the wavelength conversion members of Comparative Examples 1 to 3.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Incorporated herein by reference.
Claims (31)
- 量子ドット蛍光体及びゲル化可能な分散質を含む樹脂組成物を準備する工程と、
前記樹脂組成物を用いて樹脂組成物層を形成する工程と、
前記樹脂組成物層を硬化させて樹脂硬化物を得る工程とを有し、
前記樹脂組成物中にて前記量子ドット蛍光体を内包する前記分散質が分散しており、前記樹脂硬化物は前記分散質が反応してなるゲル化物を含む、波長変換部材の製造方法。 Providing a resin composition comprising a quantum dot phosphor and a gelable dispersoid;
Forming a resin composition layer using the resin composition;
Curing the resin composition layer to obtain a cured resin product,
The manufacturing method of the wavelength conversion member which the said dispersoid which includes the said quantum dot fluorescent substance in the said resin composition is disperse | distributed, and the said resin cured material contains the gelatinization which the said dispersoid reacts. - 前記ゲル化可能な分散質は、変性シリコーンを含む、請求項1に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to claim 1, wherein the gelable dispersoid comprises a modified silicone.
- 前記変性シリコーンがアミノ変性シリコーンを含む、請求項2に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to claim 2, wherein the modified silicone comprises an amino-modified silicone.
- 前記樹脂組成物は二官能以上のエポキシ化合物を含み、
前記アミノ変性シリコーンのアミン当量と前記二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、請求項3に記載の波長変換部材の製造方法。 The resin composition comprises a difunctional or higher epoxy compound,
The wavelength conversion member according to claim 3, wherein a ratio (epoxy equivalent / amine equivalent) of an amine equivalent of the amino-modified silicone and an epoxy equivalent of the difunctional or higher epoxy compound is 0.01 to 70.0. Production method. - 前記樹脂組成物は二官能以上のエポキシ化合物を含む、請求項1~請求項3のいずれか1項に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to any one of claims 1 to 3, wherein the resin composition contains an epoxy compound having two or more functional groups.
- 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、請求項4又は請求項5に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to claim 4, wherein the difunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
- 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、請求項1~請求項6のいずれか1項に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to any one of claims 1 to 6, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement under conditions of a frequency of 10 Hz is 40 属 C or higher.
- 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、請求項1~請求項7のいずれか1項に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to any one of claims 1 to 7, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
- 前記樹脂組成物が、多官能チオール化合物及び(メタ)アリル化合物を含む請求項1~請求項8のいずれか1項に記載の波長変換部材の製造方法。 The method for producing a wavelength conversion member according to any one of claims 1 to 8, wherein the resin composition contains a polyfunctional thiol compound and a (meth) allyl compound.
- 前記樹脂組成物層を形成する工程は、前記樹脂組成物を第一の基材上に付与して前記樹脂組成物層を形成する工程であり、
前記樹脂硬化物を得る工程の前に、前記樹脂組成物層における前記第一の基材が設けられた側の反対側に第二の基材を設ける工程を更に有する請求項1~請求項9のいずれか1項に記載の波長変換部材の製造方法。 The step of forming the resin composition layer is a step of applying the resin composition on a first substrate to form the resin composition layer,
10. The method according to claim 1, further comprising the step of providing a second base on the side opposite to the side on which the first base is provided in the resin composition layer before the step of obtaining the cured resin product. The manufacturing method of the wavelength conversion member of any one of these. - 海部と島部とを含む海島構造を有する樹脂硬化物を備え、
前記島部が量子ドット蛍光体を内包するゲル化物である、波長変換部材。 It has a cured resin that has a sea-island structure including the sea area and the island area,
The wavelength conversion member, wherein the island portion is a gelled material including a quantum dot phosphor. - 前記樹脂硬化物が多官能チオール化合物、(メタ)アリル化合物、変性シリコーン及び二官能以上のエポキシ化合物のそれぞれに由来する構造を有する、請求項11に記載の波長変換部材。 The wavelength conversion member according to claim 11, wherein the resin cured product has a structure derived from each of a polyfunctional thiol compound, a (meth) allyl compound, a modified silicone, and a difunctional or more epoxy compound.
- 前記変性シリコーンがアミノ変性シリコーンを含む、請求項12に記載の波長変換部材。 The wavelength conversion member according to claim 12, wherein the modified silicone comprises an amino-modified silicone.
- 前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、請求項13に記載の波長変換部材。 The wavelength conversion member according to claim 13, wherein the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 to 70.0.
- 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、請求項12~請求項14のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 12 to 14, wherein the difunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
- 動的粘弾性測定により周波数10Hzの条件で測定した前記樹脂硬化物のガラス転移温度が40℃以上である、請求項11~請求項15のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 11 to 15, wherein the glass transition temperature of the cured resin product measured by dynamic viscoelasticity measurement under the condition of frequency 10 Hz is 40 属 C or higher.
- 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、請求項11~請求項16のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 11 to 16, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
- 被覆材を備え、
前記被覆材により、前記樹脂硬化物の少なくとも一部が被覆された、請求項11~請求項17のいずれか1項に記載の波長変換部材。 Equipped with a covering
The wavelength conversion member according to any one of claims 11 to 17, wherein at least a part of the cured resin is covered by the covering material. - 前記被覆材が酸素及び水の少なくとも一方に対するバリア性を有する、請求項18に記載の波長変換部材。 The wavelength conversion member according to claim 18, wherein the covering material has a barrier property to at least one of oxygen and water.
- 請求項11~請求項19のいずれか1項に記載の波長変換部材と、光源とを備えるバックライトユニット。 A backlight unit comprising the wavelength conversion member according to any one of claims 11 to 19 and a light source.
- 請求項20に記載のバックライトユニットを備える、画像表示装置。 An image display apparatus comprising the backlight unit according to claim 20.
- 量子ドット蛍光体、及び前記量子ドット蛍光体を内包するゲル化可能な分散質を含む、波長変換部材用樹脂組成物。 A resin composition for a wavelength conversion member, which comprises a quantum dot phosphor and a gelable dispersoid containing the quantum dot phosphor.
- 前記ゲル化可能な分散質は、変性シリコーンを含む、請求項22に記載の波長変換部材用樹脂組成物。 The resin composition for a wavelength conversion member according to claim 22, wherein the gelable dispersoid comprises a modified silicone.
- 前記変性シリコーンがアミノ変性シリコーンを含む、請求項23に記載の波長変換部材用樹脂組成物。 The resin composition for wavelength conversion members according to claim 23, wherein the modified silicone comprises an amino-modified silicone.
- 二官能以上のエポキシ化合物を含み、
前記アミノ変性シリコーンのアミン当量と二官能以上のエポキシ化合物のエポキシ当量との比率(エポキシ当量/アミン当量)が、0.01~70.0である、請求項24に記載の波長変換部材用樹脂組成物。 Containing a bifunctional or higher epoxy compound,
The resin for a wavelength conversion member according to claim 24, wherein the ratio of the amine equivalent of the amino-modified silicone to the epoxy equivalent of the difunctional or higher epoxy compound (epoxy equivalent / amine equivalent) is 0.01 to 70.0. Composition. - 二官能以上のエポキシ化合物を含む、請求項22~請求項24のいずれか1項に記載の波長変換部材用樹脂組成物。 The resin composition for a wavelength conversion member according to any one of claims 22 to 24, comprising a difunctional or higher epoxy compound.
- 前記二官能以上のエポキシ化合物がビスフェノール構造及び水添ビスフェノール構造の少なくとも一方を有する、請求項25又は請求項26に記載の波長変換部材用樹脂組成物。 The resin composition for wavelength conversion members according to claim 25 or 26, wherein the difunctional or higher epoxy compound has at least one of a bisphenol structure and a hydrogenated bisphenol structure.
- 前記量子ドット蛍光体が、Cd及びInの少なくとも一方を含む化合物を含む、請求項22~請求項27のいずれか1項に記載の波長変換部材用樹脂組成物。 The resin composition for a wavelength conversion member according to any one of claims 22 to 27, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
- 多官能チオール化合物及び(メタ)アリル化合物を含む、請求項22~請求項28のいずれか1項に記載の波長変換部材用樹脂組成物。 The resin composition for a wavelength conversion member according to any one of claims 22 to 28, comprising a polyfunctional thiol compound and a (meth) allyl compound.
- 請求項22~請求項29のいずれか1項に記載の波長変換部材用樹脂組成物を硬化させてなり、かつ前記分散質が反応してなるゲル化物を含む、樹脂硬化物。 A resin cured product comprising a gelled product obtained by curing the resin composition for a wavelength conversion member according to any one of claims 22 to 29 and reacting the dispersoid.
- 動的粘弾性測定により周波数10Hzの条件で測定したガラス転移温度が40℃以上である、請求項30に記載の樹脂硬化物。 The resin cured material of Claim 30 whose glass transition temperature measured on the conditions of frequency 10 Hz by dynamic-viscoelasticity measurement is 40 degreeC or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019544185A JPWO2019064588A1 (en) | 2017-09-29 | 2017-09-29 | Manufacturing method of wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member and cured resin |
PCT/JP2017/035724 WO2019064588A1 (en) | 2017-09-29 | 2017-09-29 | Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/035724 WO2019064588A1 (en) | 2017-09-29 | 2017-09-29 | Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019064588A1 true WO2019064588A1 (en) | 2019-04-04 |
Family
ID=65903788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035724 WO2019064588A1 (en) | 2017-09-29 | 2017-09-29 | Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019064588A1 (en) |
WO (1) | WO2019064588A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021152739A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
WO2021152738A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
WO2021152737A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262375A (en) * | 2006-03-30 | 2007-10-11 | Kyocera Corp | Wavelength converter and light-emitting device |
JP2010147244A (en) * | 2008-12-18 | 2010-07-01 | Stanley Electric Co Ltd | Light-emitting device and method of manufacturing the same |
JP2015113360A (en) * | 2013-12-09 | 2015-06-22 | コニカミノルタ株式会社 | Composition for forming optical layer, and optical film |
JP2015523439A (en) * | 2012-06-22 | 2015-08-13 | ナノシス・インク. | Silicone ligands for stabilizing quantum dot films |
US20150260373A1 (en) * | 2014-03-14 | 2015-09-17 | Ningbo Exciton Technology Co., Ltd. | Quantum dot film applied to backlight module |
JP2015211076A (en) * | 2014-04-24 | 2015-11-24 | 豊田合成株式会社 | Method of manufacturing light emission device |
WO2016081219A1 (en) * | 2014-11-17 | 2016-05-26 | 3M Innovative Properties Company | Quantum dot article with thiol-alkene matrix |
JP2016111292A (en) * | 2014-12-10 | 2016-06-20 | 富士フイルム株式会社 | Wavelength conversion member, backlight unit, liquid crystal display device, and method for manufacturing wavelength conversion member |
-
2017
- 2017-09-29 WO PCT/JP2017/035724 patent/WO2019064588A1/en active Application Filing
- 2017-09-29 JP JP2019544185A patent/JPWO2019064588A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262375A (en) * | 2006-03-30 | 2007-10-11 | Kyocera Corp | Wavelength converter and light-emitting device |
JP2010147244A (en) * | 2008-12-18 | 2010-07-01 | Stanley Electric Co Ltd | Light-emitting device and method of manufacturing the same |
JP2015523439A (en) * | 2012-06-22 | 2015-08-13 | ナノシス・インク. | Silicone ligands for stabilizing quantum dot films |
JP2015113360A (en) * | 2013-12-09 | 2015-06-22 | コニカミノルタ株式会社 | Composition for forming optical layer, and optical film |
US20150260373A1 (en) * | 2014-03-14 | 2015-09-17 | Ningbo Exciton Technology Co., Ltd. | Quantum dot film applied to backlight module |
JP2015211076A (en) * | 2014-04-24 | 2015-11-24 | 豊田合成株式会社 | Method of manufacturing light emission device |
WO2016081219A1 (en) * | 2014-11-17 | 2016-05-26 | 3M Innovative Properties Company | Quantum dot article with thiol-alkene matrix |
JP2016111292A (en) * | 2014-12-10 | 2016-06-20 | 富士フイルム株式会社 | Wavelength conversion member, backlight unit, liquid crystal display device, and method for manufacturing wavelength conversion member |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021152739A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
WO2021152738A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
WO2021152737A1 (en) * | 2020-01-29 | 2021-08-05 | 昭和電工マテリアルズ株式会社 | Wavelength conversion member, backlight unit, and image display device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019064588A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2018056469A1 (en) | Wavelength conversion material, backlight unit, image display device, and curable composition | |
JP7120279B2 (en) | Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product | |
US20210292643A1 (en) | Wavelength conversion member, back light unit, image display device, resin composition for wavelength conversion, and resin cured product for wavelength conversion | |
WO2019077752A1 (en) | Backlight unit, image display device, and wavelength conversion member | |
EP3767345A1 (en) | Wavelength conversion member, backlight unit, image display device and curable composition | |
EP3761077A1 (en) | Wavelength conversion member, backlight unit, image display device, curable composition and cured product | |
WO2019064588A1 (en) | Method for producing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured product | |
JP2019174562A (en) | Wavelength conversion member, backlight unit, and image display device | |
JP2019174565A (en) | Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product | |
JP2019174563A (en) | Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product for wavelength conversion | |
WO2019130582A1 (en) | Laminate, wavelength conversion member, backlight unit, and image display device | |
US20220187517A1 (en) | Wavelength conversion member, backlight unit, image display device, and wavelength conversion resin composition | |
WO2019064587A1 (en) | Method for manufacturing wavelength conversion member, wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and resin cured material | |
EP3761076A1 (en) | Wavelength conversion member, backlight unit, image display device and curable composition | |
JP2019174566A (en) | Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product | |
JP2019174561A (en) | Wavelength conversion member, backlight unit, image display device, and method of manufacturing wavelength conversion member | |
WO2022014653A1 (en) | Wavelength conversion member, backlight unit, image display device, production method for wavelength conversion member, and inorganic phosphor processing liquid | |
WO2019064586A1 (en) | Wavelength conversion member, backlight unit and image display device | |
JP2019172767A (en) | Polymer, resin composition for wavelength conversion member, resin cured product, wavelength conversion member, backlight unit, and image display device | |
JP2019101366A (en) | Wavelength conversion member, backlight unit and image display device | |
JP2021015284A (en) | Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin product for wavelength conversion | |
JP2019174567A (en) | Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17927174 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019544185 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17927174 Country of ref document: EP Kind code of ref document: A1 |