WO2019062943A1 - 车载电池的温度调节方法和温度调节系统 - Google Patents

车载电池的温度调节方法和温度调节系统 Download PDF

Info

Publication number
WO2019062943A1
WO2019062943A1 PCT/CN2018/108747 CN2018108747W WO2019062943A1 WO 2019062943 A1 WO2019062943 A1 WO 2019062943A1 CN 2018108747 W CN2018108747 W CN 2018108747W WO 2019062943 A1 WO2019062943 A1 WO 2019062943A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
temperature
cooling
vehicle
Prior art date
Application number
PCT/CN2018/108747
Other languages
English (en)
French (fr)
Inventor
伍星驰
谈际刚
王洪军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019062943A1 publication Critical patent/WO2019062943A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present disclosure relates to the field of automotive technologies, and in particular, to a temperature adjustment method for a vehicle battery and a temperature adjustment system for a vehicle battery.
  • the performance of the vehicle battery of an electric vehicle is greatly affected by the climatic environment. If the ambient temperature is too high or too low, the performance of the vehicle battery will be affected. Therefore, the temperature of the vehicle battery needs to be adjusted to maintain the temperature within the preset range. .
  • the above methods cannot solve the problem of excessive temperature and low temperature of the vehicle battery, and the method for adjusting the temperature of the vehicle battery is rough, and cannot be accurately controlled according to the actual state of each battery.
  • the heating power and cooling power of each battery cannot balance the temperature of each area in the vehicle when the battery temperature is adjusted.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the present disclosure proposes a temperature adjustment method for a vehicle battery, which allocates the amount of cooling of the battery and each area in the vehicle according to the actual state of the battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only When the battery temperature is too high or too low, the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each area of the vehicle can be equalized.
  • the present disclosure also proposes a temperature regulation system for a vehicle battery.
  • the present disclosure also provides an apparatus.
  • An embodiment of the present disclosure provides a method for adjusting a temperature of an on-vehicle battery, comprising the steps of: separately acquiring a required power of the battery and an actual power of the battery; respectively acquiring an area temperature and an air conditioning set temperature of the plurality of areas in the vehicle. And the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of in-vehicle cooling branches according to required power of the battery, actual power of the battery, a plurality of the area temperatures, and the air conditioning set temperature The power of the plurality of cooling branches is adjusted.
  • the temperature adjustment method of the vehicle battery according to the embodiment of the present disclosure, first, the required power of the battery and the actual power of the battery are separately obtained, and then the regional temperature and the air conditioning set temperature of the plurality of regions in the vehicle are respectively acquired, and then according to the demand of the battery.
  • the power, the actual power of the battery, the plurality of zone temperatures, and the air conditioning set temperature adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches. Therefore, the method distributes the cooling capacity of the battery and each area in the vehicle according to the actual state of the battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or when the temperature is too low. Adjustments are made to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • a temperature regulation system for a vehicle battery comprising: a plurality of refrigeration branches, wherein each refrigeration branch includes a compressor, a condenser connected to the compressor; a plurality of in-vehicle cooling branches connected to the plurality of cooling branches; a plurality of battery cooling branches connected to the plurality of cooling branches; and battery temperature adjusting devices respectively connected to the battery and the plurality of battery cooling branches And for obtaining the required power of the battery and the actual power of the battery, and acquiring the regional temperature and the air conditioning set temperature of the plurality of regions in the vehicle, and according to the required power of the battery, the actual power of the battery, and the plurality of The zone temperature and the air conditioning set temperature adjust power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches.
  • the required power of the battery and the actual power of the battery are acquired by the battery temperature adjustment device, and the regional temperature and the air conditioner set temperature of the plurality of regions in the vehicle are acquired, and according to the demand of the battery
  • the power, the actual power of the battery, the plurality of zone temperatures, and the air conditioning set temperature adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches. Therefore, the system allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of the battery and the temperature of the plurality of zones in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or when the temperature is too low. Adjustments are made to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • An embodiment of the third aspect of the present disclosure also provides an apparatus comprising: one or more processors; a memory; one or more programs, the one or more programs being stored in the memory when When one or more processors are executed, the temperature adjustment method of the on-vehicle battery of the above-described embodiment of the present disclosure is performed.
  • FIG. 1A is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a first embodiment of the present disclosure
  • FIG. 1B is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a second embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a third embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a fourth embodiment of the present disclosure
  • FIG. 3A is a schematic diagram of a working principle of a controller according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a temperature adjustment method of a vehicle battery according to a first embodiment of the present disclosure
  • FIG. 5 is a flowchart of a temperature adjustment method of a vehicle battery according to a second embodiment of the present disclosure
  • FIG. 6 is a flowchart of a temperature adjustment method of a vehicle battery according to a third embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a temperature adjustment method of a vehicle battery according to a fourth embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a temperature adjustment method of a vehicle battery according to a fifth embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a fourth embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a temperature adjustment method of a vehicle battery according to a sixth embodiment of the present disclosure.
  • 11A is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a seventh embodiment of the present disclosure
  • 11B is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to an eighth embodiment of the present disclosure.
  • 11C is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a ninth embodiment of the present disclosure.
  • FIG. 12a is a flowchart of a temperature adjustment method of a vehicle battery according to a seventh embodiment of the present disclosure
  • 12b is a flowchart of a temperature adjustment method of a vehicle battery according to an eighth embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a temperature adjustment method of a vehicle battery according to a ninth embodiment of the present disclosure.
  • 14A is a flowchart of a temperature adjustment method of a vehicle according to a tenth embodiment of the present disclosure
  • 14B is a flowchart of a temperature adjustment method of a vehicle according to an eleventh embodiment of the present disclosure.
  • 15 is a flowchart of a temperature adjustment method of a vehicle according to a first embodiment of the present disclosure
  • 16 is a flowchart of a temperature adjustment method of a vehicle according to a second embodiment of the present disclosure.
  • FIG. 17 is a flowchart of a temperature adjustment method of a vehicle according to a third embodiment of the present disclosure.
  • 19A is a schematic diagram of a flow path structure of a temperature adjustment system of an in-vehicle battery according to an eighth embodiment of the present disclosure.
  • 19B is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a ninth embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a ninth embodiment of the present disclosure.
  • 21 is a schematic view showing a distribution position of an air outlet according to an embodiment of the present disclosure.
  • 22 is a flowchart of a temperature adjustment method of a vehicle battery according to an eighth embodiment of the present disclosure.
  • FIG. 23 is a flowchart of a temperature adjustment method of a vehicle battery according to a ninth embodiment of the present disclosure.
  • 24 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a tenth embodiment of the present disclosure
  • 25 is a flowchart of a temperature adjustment method of a vehicle battery according to a tenth embodiment of the present disclosure
  • 26 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to an eleventh embodiment of the present disclosure
  • 26A is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a twelfth embodiment of the present disclosure
  • 26B is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a thirteenth embodiment of the present disclosure
  • FIG. 27 is a flowchart of a temperature adjustment method of a vehicle battery according to an eleventh embodiment of the present disclosure.
  • FIG. 28 is a schematic diagram of a flow path structure of a temperature adjustment system of a vehicle battery according to a fourteenth embodiment of the present disclosure
  • 29 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • the temperature regulation system of the vehicle battery includes a compressor 1, a condenser 2, a battery cooling branch 4, and a battery temperature adjusting device 5.
  • the condenser 2 is connected to the compressor 1, and the battery cooling branch 4 is connected between the compressor 1 and the condenser 2.
  • the battery temperature adjusting device 5 is connected to the battery cooling branch 4 for acquiring the required power P1 of the battery 6 and the actual power P2 of the battery 6, and adjusting the temperature of the battery 6 according to the required power P1 and the actual power P2.
  • the compressor 1 and the condenser 2 constitute a cooling branch.
  • the required power P1 of the battery 6 and the actual power P2 of the battery 6 are used to adjust the temperature of the battery.
  • the required power P1 is to adjust the temperature of the battery to the target temperature
  • the temperature required by the battery adjusts the power.
  • the actual battery power P2 is the temperature adjustment power actually obtained by the battery when the battery is currently temperature-adjusted.
  • the target temperature is the set value, which can be preset according to the actual condition of the vehicle battery. For example, when it is winter, the outdoor environment temperature is very low, and the battery needs to be heated.
  • the target temperature can be set at about 10 °C, when it is summer.
  • the battery needs to be cooled, and the target temperature can be set at about 35 °C.
  • the battery temperature adjusting device 5 acquires the required power P1 of the battery 6 and the actual power P2 of the battery 6, and adjusts the power of the compressor 1 and the heater according to the required power P1 and the actual power P2 to adjust the temperature of the battery 6.
  • the battery cooling branch 4 has two pipes, the first pipe is connected to the compressor 1, and the second pipe is connected to the battery temperature.
  • the device 5 is in communication, wherein the first pipe and the second pipe are disposed adjacent to each other independently, so that the medium (media such as refrigerant medium such as refrigerant, water, oil, air or phase change material or other chemicals) is independent of each other.
  • the vehicle air conditioning refrigeration function When the temperature of the battery 6 is too high, the vehicle air conditioning refrigeration function is turned on, the battery cooling function is activated, and the flow directions of the coolant (such as the refrigerant) in the first pipe and the second pipe are respectively: compressor 1 - condenser 2 - battery cooling Branch 4 - Compressor 1; Battery Cooling Branch 4 - Battery Temperature Regulating Device 5 - Battery 6 - Battery Temperature Regulating Device 5 - Battery Cooling Branch 4.
  • the coolant such as the refrigerant
  • the vehicle air conditioner is only used to cool and heat the battery 6, and the temperature adjustment system can also cool both the cabin and the battery 6 by the vehicle air conditioner.
  • the temperature adjustment system may further include an in-vehicle cooling branch 3, and the in-vehicle cooling branch 3 is connected to the compressor 1 and the condenser 2 between.
  • the heating power and the cooling power of the vehicle battery can be accurately controlled according to the actual state of the battery, thereby adjusting the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range to avoid occurrence. Since the temperature affects the performance of the vehicle battery, and the temperature of the battery satisfies the requirements, the temperature inside the vehicle can be satisfied.
  • the battery cooling branch 4 may include a heat exchanger 41 including a first duct and a second duct, the second duct being connected to the battery temperature adjusting device 5,
  • the first pipe is in communication with the compressor 1, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the physical position of the heat exchanger 41 may be located in the circuit where the vehicle air conditioner compressor 1 is located, facilitating the commissioning of the vehicle air conditioner, and enabling the vehicle air conditioner to be separately supplied and assembled, and at the same time, the vehicle air conditioner is in the installation process. Just add the media once.
  • the physical position of the heat exchanger 41 can also be located in the circuit where the battery 6 is located, and the physical position of the heat exchanger 41 can also be set independently of the circuit in which the vehicle air conditioner compressor 1 is located and the circuit in which the battery 6 is located.
  • the battery temperature adjusting device 5 may include a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is disposed in the battery 6.
  • a pump 51, a medium container 52, a heater 53, and a controller (not specifically shown) are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the battery 6 and the actual power P2 of the battery, and adjusts the temperature of the battery 6 according to the required power P1 of the battery and the actual power P2.
  • the in-vehicle cooling branch 3 may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the battery cooling branch 4 may not be provided with the heat exchanger 41.
  • the refrigerant flowing in the battery cooling branch 4 is the refrigerant. If the heat exchanger 41 is provided, the refrigerant flows in the first pipe of the battery cooling branch 4, the coolant flows in the second pipe, and the refrigerant flows in the cooling pipe 3 in the vehicle.
  • the battery temperature adjusting device 5 further includes a first temperature sensor 55 disposed at an inlet of the flow path, a second temperature sensor 56 disposed at an outlet of the flow path, and a flow rate sensor 57. It will be appreciated that the inlet and outlet locations of the flow path are not absolute, but are determined based on the steering of the pump 51.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioner controller.
  • the battery thermal management controller may be electrically connected to the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57.
  • the battery thermal management controller performs CAN communication with the pump 51 and the heater 53, and according to the specific heat capacity and medium of the medium. The density, the cross-sectional area of the flow path, the actual power P2, the rotational speed of the pump 51, and the power of the control heater 53 are obtained.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control of the vehicle.
  • the air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected to the expansion valve and the electronic valve respectively, and the vehicle air conditioner controller can perform CAN communication with the battery management controller, the battery thermal management controller and the compressor 1, respectively, to obtain the required power P1 according to the battery management controller.
  • the actual power P2 obtained by the battery thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the heat exchanger 41 can be a plate heat exchanger, and the plate heat exchanger can be installed inside the vehicle air conditioner, so that the entire refrigerant circuit is inside the vehicle air conditioner, which facilitates the factory debugging of the vehicle air conditioner, and enables the vehicle air conditioner to be separately supplied and assembled. At the same time, the vehicle air conditioner only needs to be refilled once during the installation process.
  • the coolant flows into the inside of the battery 6 from the inlet of the flow path, and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery 6 and the cooling liquid.
  • the pump 51 is primarily used to provide power.
  • the media container 52 is primarily used to store coolant and accept coolant added to the temperature regulation system.
  • the coolant in the media container 52 is automatically replenished as the coolant in the temperature regulation system is reduced.
  • the heater 53 can be a PTC (Positive Temperature Coefficient, a positive temperature coefficient, generally refers to a semiconductor material or component having a large positive temperature coefficient), and can be CAN (Controller Area Network) with a battery thermal management controller.
  • the communication provides heating power for the temperature regulation system of the on-vehicle battery, controlled by a controlled battery thermal management controller, and the heater 53 can be disposed at any position between the medium container 52 and the first temperature sensor 55. That is, the heater 53 is not directly in contact with the battery 6, and has high safety, reliability, and practicability.
  • the first temperature sensor 55 is for detecting the temperature of the flow path inlet coolant
  • the second temperature sensor 56 is for detecting the temperature of the flow path outlet coolant.
  • the flow rate sensor 57 is used to detect the flow rate information of the coolant in the pipe in the temperature regulation system.
  • the first electronic valve 33 is used to control the opening and closing of the in-vehicle cooling branch 3, and the first expansion valve 32 can be used to control the flow rate of the coolant in the in-vehicle cooling branch 3.
  • the second electronic valve 43 is used to control the opening and closing of the battery cooling branch 4, and the second expansion valve 42 can be used to control the flow of coolant in the battery cooling branch 4.
  • Power, and the compressor power P described later is the power of the compressor described herein for cooling the battery. It will be understood that the maximum (or rated) cooling power of the compressor described later is the maximum (or rated) of the compressor.
  • the power is multiplied by the heat transfer efficiency.
  • the heat exchange efficiency may be a set value, which is measured after the whole system is built; or may be obtained in real time, and may be increased by adding a temperature sensor before and after the heat exchanger and increasing the loop of the heat exchanger.
  • the flow rate sensor can know the actual heat exchange power, and the ratio of the actual power P2 of the battery to the actual heat exchange power is the heat exchange efficiency.
  • the battery management controller may be configured to acquire a first parameter when the battery is turned on, and generate a first required power of the battery according to the first parameter, and acquire a second parameter of the battery when the temperature is adjusted. And generating a second required power of the battery according to the second parameter, and generating a required power P1 of the battery according to the first required power of the battery and the second required power of the battery.
  • the first parameter is an initial temperature and a target temperature when the battery 6 is turned on, and a target time t from the initial temperature to the target temperature
  • the battery management controller acquires the initial temperature and the target temperature.
  • the first temperature difference ⁇ T 1 between , and the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery 6
  • M is the mass of the battery 6.
  • the second parameter is the average current I of the battery 6 for a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery 6.
  • the battery thermal management controller generates a second temperature difference ⁇ T 2 according to the inlet temperature detected by the first temperature sensor 55 and the outlet temperature detected by the second temperature sensor 56, respectively, and according to the second of each battery
  • the temperature difference ⁇ T 2 and the flow rate v detected by the flow rate sensor 57 generate the actual power P2 of the battery.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m v*s* ⁇
  • s is the flow The cross-sectional area of the road
  • v is the flow rate of the coolant
  • is the density of the coolant.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle needs temperature adjustment, for example, the temperature of the battery 6 is too high, the temperature adjustment function is sent to the vehicle air conditioner controller through CAN communication. The information that the vehicle air conditioner controller turns on the temperature adjustment function sends the heat exchange information to the battery thermal management controller, while the vehicle air conditioner controller controls the second electronic valve 43 to be turned on, and the battery thermal management controller controls the pump 51 to the default speed (such as low) Speed) starts working.
  • the vehicle air conditioner controller controls the second electronic valve 43 to be turned on
  • the battery thermal management controller controls the pump 51 to the default speed (such as low) Speed) starts working.
  • the battery management controller acquires the initial temperature (ie, the current temperature) of the battery 6, the target temperature, and the target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions, and according to the formula (1) Calculate the first required power of the battery.
  • the battery management controller also obtains the average current I of the battery 6 for a preset time and calculates the second required power of the battery according to formula (2).
  • the battery management controller calculates the required power P1 according to the first required power of the battery 6 and the second required power (that is, the required power of the battery 6 is adjusted to the target temperature within the target time), wherein when the battery 6 is cooled
  • P1 ⁇ T 1 * C * M / t + I 2 * R
  • P1 ⁇ T 1 * C * M / tI 2 * R.
  • the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 to detect the temperature information, and acquires the flow rate information detected by the flow rate sensor 57, and calculates the actual power P2 of the battery 6 according to the formula (3).
  • the vehicle air conditioner controller controls the output power of the compressor and the opening degree of the second expansion valve 42 according to the required power P1 of the battery 6, the actual power P2, and the battery thermal management controller adjusts the rotational speed of the pump 51. For example, if the required power P1 is greater than the actual power P2, the power of the compressor is increased and the opening degree of the second expansion valve 42 is increased according to the difference between the required power P1 and the actual power P2, and the rotation speed of the pump 51 can be increased; When the required power P1 is smaller than the actual power P2, the power of the compressor is reduced and the opening degree of the second expansion valve 42 is reduced according to the difference between the required power P1 and the actual power P2, and the rotation speed of the pump 51 can be reduced.
  • the required power P1 is composed of two parts.
  • the initial temperature of the battery 6 is 45 ° C
  • the target temperature is 35 ° C
  • the battery needs to be dissipated from 45 ° C to 35 ° C.
  • the heat is fixed and can be directly calculated by the formula (1), that is, ⁇ T 1 *C*M/t, that is, the first demand power.
  • the discharge and charging process which generates heat. Since the discharge of the battery 6 or the charging current is varied, this part of the heat can also be directly obtained by detecting the average current I of the battery.
  • the heating power of the current battery 6, that is, the second required power is directly calculated by the formula (3), that is, I 2 *R.
  • a battery management controller is further configured to detect a temperature of the battery, and when the temperature of the battery is greater than the first temperature threshold, control the temperature adjustment system to enter a cooling mode, and the temperature of the battery is less than the second temperature At the threshold, the temperature control system is controlled to enter the heating mode.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions.
  • the first temperature threshold is generally greater than the second temperature threshold.
  • the first temperature threshold may be 40 ° C
  • the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of the battery 6 in real time and makes a determination. If the temperature of the battery 6 is higher than 40 ° C, indicating that the temperature of the battery 6 is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery 6, it is necessary to cool the battery 6 to control the temperature adjustment system to enter the cooling mode, and send The battery cooling function starts the information to the car air conditioner controller.
  • the vehicle air conditioner controller controls the second electronic valve 43 to be turned on after receiving the battery cooling function activation information to exchange heat between the coolant and the battery 6 to lower the temperature of the battery 6. As shown in FIG.
  • the flow directions of the coolant in the corresponding first pipe and the second pipe in the circuit where the battery 6 is located are: compressor 1 - condenser 2 - second electron Valve 43 - second expansion valve 42 - heat exchanger 41 - compressor 1; medium container 52 - heat exchanger 41 - heater 53 (closed) - pump 51 - valve 58 - first temperature sensor 55 - battery 6 - The second temperature sensor 56 - the flow rate sensor 57 - the medium container 52, is circulated, and heat is exchanged at the heat exchanger 41 to effect cooling of the battery 6.
  • the battery management controller controls the temperature adjustment system to enter the heating. Mode and send battery heating function start message to the car air conditioner controller.
  • the vehicle air conditioner controller controls the second electronic valve 43 to close after receiving the battery heating function activation information, and the battery thermal management controller controls the heater 53 to be turned on to provide heating power for the temperature regulation system.
  • the flow direction of the coolant is: medium container 52 - heat exchanger 41 - heater 53 (on) - pump 51 - first temperature sensor 55 - battery 6 - second temperature sensor 56 - Flow rate sensor 57 - medium container 52; this cycle, to achieve the temperature rise of the battery 6.
  • the controller acquires the power between the required power P1 of the battery and the actual power P2. Poor, and increase the power of the compressor for cooling the battery 6 according to the power difference, or increase the coolant flow rate of the battery 6, to increase the cooling power of the battery 6, and when the required power P1 of the battery 6 is less than or equal to the actual power P2
  • the power of the compressor is reduced or the power of the compressor is kept constant, or the coolant flow rate of the battery is reduced to reduce the cooling power of the battery 6.
  • the battery management controller acquires the required power P1 of the battery
  • the battery thermal management controller acquires the actual power P2 of the battery
  • the vehicle air conditioning controller determines according to the required power P1 and the actual power P2. . If the required power P1 of the battery 6 is greater than the actual power P2, it indicates that if the cooling of the battery 6 cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller obtains the required power P1 of the battery and the actual amount.
  • the power difference between the powers P2, and the power of the compressor 1 is increased according to the power difference, or the coolant flow rate of the battery is increased, that is, the opening degree of the second expansion valve 42 is increased to increase the cooling power of the battery, wherein the actual power
  • the greater the power difference between P1 and the actual power P2 the more the power of the compressor 1 and the coolant flow rate of the battery increase, so that the temperature of the battery is lowered to the target temperature within a preset time t.
  • the vehicle air conditioner controller can keep the power of the compressor 1 constant or appropriately reduce the power of the compressor 1, or reduce the coolant flow rate of the battery, that is, decrease
  • the opening of the second expansion valve 42 is small to reduce the cooling power of the battery.
  • the vehicle air conditioner controller appropriately increases the power of the compressor 1 so that the battery completes the cooling as soon as possible.
  • the controller acquires a power difference between the required power P1 of the battery and the actual power P2, and according to The power difference increases the power of the heater 53 for heating the battery, or adjusts the coolant flow rate of the battery to increase the heating power of the battery, and the reduced power when the required power P1 of the battery is less than or equal to the actual power P2, Or keep the power of the heater 53 unchanged, or adjust to reduce the coolant flow rate of the battery to reduce the heating power of the battery.
  • the battery management controller acquires P1 of the battery, and the battery thermal management controller acquires the actual power P2 of the battery. If the required power P1 of the battery 6 is greater than the actual power P2, it indicates that if the temperature of the battery 6 cannot be completed within the target time according to the current heating power or the coolant flow rate, the battery thermal management controller acquires the required power P1 of the battery. And the power difference between the actual power P2, and the power for heating the heater 53 of the battery 6 is increased according to the power difference, or the coolant flow rate of the battery is increased, for example, the rotation speed of the pump 51 can be increased, so that the battery can be Temperature adjustment is completed within the target time.
  • the battery thermal management controller may appropriately reduce the power of the heater 53, or keep the power of the heater 53 unchanged, or adjust to reduce the coolant flow of the battery circuit. To reduce the heating power of the battery.
  • a preset temperature for example, 10 ° C
  • the battery management controller sends a message to turn off the temperature adjustment function to the battery thermal management controller through CAN communication, and the battery thermal management controller controls the heater. 53 closed.
  • the battery thermal management controller appropriately increases the power of the heater 53 so that the battery 6 is warmed up as soon as possible. .
  • the battery thermal management controller is further configured to reduce the rotational speed of the pump 51 or keep the rotational speed of the pump 51 unchanged when the required power P1 of the battery is less than or equal to the corresponding actual power P2, and When the required power P1 is greater than the corresponding actual power P2, the rotational speed of the pump 51 is increased.
  • the battery thermal management controller controls the rotation speed of the pump 51 to decrease, thereby saving power or keeping the rotation speed of the pump 51 not change.
  • the controller is used to control the increase of the power of the heater 53, the compressor 1, or the increase of the coolant flow rate of the circuit in which the battery is located, and is also used to control the increase of the rotational speed of the pump 51.
  • the mass of the coolant flowing through the cross section of the cooling flow path per unit time is increased, thereby increasing the actual power P2 of the battery to achieve temperature adjustment within the target time t.
  • the required power P1 of the battery 6 is equal to the actual power P2, the rotational speed of the control pump 51 is maintained at the current rotational speed.
  • the vehicle air conditioner controller When the temperature adjustment system operates in the cooling mode, if the sum of the required power P1 of the battery 6 and the required cooling power P4 of the vehicle is less than the maximum cooling power P of the compressor, that is, P1+P4 ⁇ P, the vehicle air conditioner controller The compressor 1 is controlled to operate in accordance with the P1 + P4 cooling power.
  • the battery management controller determines whether the temperature of the battery 6 is greater than a set temperature (eg, 45 ° C), and if it is greater than 45 ° C, the cooling power is preferentially provided to the battery 6, and the vehicle air conditioner controller controls the compressor 1 According to the maximum cooling power operation, the vehicle air conditioner controller controls the opening degree of the first expansion valve 32 and the second expansion valve 42 so that the cooling power of the battery cooling branch 4 is equal to the battery demand power P1, and the cooling branch of the vehicle is Power P4 is equal to P minus P1.
  • a set temperature eg, 45 ° C
  • the cooling power is preferentially provided for the interior of the vehicle, and the compressor 1 is controlled to operate at the maximum cooling power, and the cooling power of the in-vehicle cooling branch 3 is P4, the cooling power of the battery cooling branch 4 is P-P4. If the temperature inside the vehicle has reached the set temperature, the cooling of the battery 6 is preferentially satisfied.
  • the battery management controller determines whether the battery temperature is greater than the set temperature. For example, the set temperature may be 45 ° C. If the battery temperature is greater than 45 ° C, the battery 6 is preferentially provided with cooling power.
  • the vehicle air conditioner controller controls the compressor 1 to operate according to the maximum cooling power.
  • the vehicle air conditioner controller maintains the power of the compressor unchanged, or reduces the power of the compressor, or reduces the opening degree of the second expansion valve 42, or reduces the rotation speed of the pump 51, so that the battery cooling branch 4 The cooling power is reduced.
  • P1 > P2 the battery thermal management controller controls the heating power of the heater 53 to increase P3 and increases the rotational speed of the pump 51.
  • P1 ⁇ P2 the battery thermal management may keep the power of the heater 53 constant, or reduce the power of the heater 53 by P3 to save power or reduce the rotational speed of the pump 51.
  • the cooling function is turned on for a preset time, for example, after 1 hour, the temperature of the battery 6 is still higher than 35 ° C, the cooling power of the battery is increased. If the average battery temperature is still below 10 ° C after the heating function is turned on for 1 hour, the battery thermal management controller can appropriately increase the power of the heater 53.
  • a single compressor 1 cannot meet the power required to cool the battery 6, a plurality of compressors 1 can be provided to provide cooling power to the battery 6.
  • a plurality of compressors 1 can be provided to provide cooling power to the battery 6.
  • the vehicle air conditioner controller is further used according to the battery.
  • the required power P1 and the maximum cooling power P of each compressor determine the number of compressors that are started, and control the corresponding number of compressors 1 to start when the temperature adjustment system is in the cooling mode.
  • the battery management controller is when the temperature adjustment system enters the cooling mode.
  • the required power P1 of the battery 6 is obtained. If the required power P1 of the battery 6 is less than or equal to the maximum cooling power of the single compressor 1, the vehicle air conditioner controller controls one compressor 1 to start. If the required power P1 of the battery 6 is greater than the maximum cooling power of the single compressor 1, the vehicle air conditioner controller controls the two compressors 1 to simultaneously start the operation to meet the cooling and cooling power demand of the battery 6.
  • the temperature regulation system of the vehicle battery can accurately control the heating power and the cooling power of the battery according to the actual state of the battery, and adjust the temperature when the battery temperature is too high or too low, so that the temperature of the battery is maintained at the pre-charge. Set the range to avoid the situation where the performance of the vehicle battery is affected by the temperature.
  • the temperature adjustment method of the vehicle battery includes the following steps:
  • acquiring the required power of the battery specifically includes:
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • generating the first required power according to the first parameter specifically includes: acquiring A first temperature difference ⁇ T 1 between the initial temperature and the target temperature.
  • the first required power P1 is generated based on the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is an average current I of the battery within a preset time
  • the second required power is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • obtaining the actual power of the battery specifically includes:
  • the actual power P2 is generated according to the second temperature difference ⁇ T 2 and the flow velocity v.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • C is the specific heat capacity of the battery
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m v* ⁇ *s
  • v is the flow rate of the coolant
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the temperature of the battery is adjusted according to the required power P1 and the actual power P2.
  • the temperature of the battery is adjusted within the target time according to the required power P1 and the actual power P2 to reach the target temperature.
  • the initial temperature of the battery ie, the current temperature
  • the target temperature ie, the target temperature
  • the target time t from the initial temperature to the target temperature, wherein the target temperature and the target time are obtained.
  • t can be preset according to the actual situation of the vehicle battery, and then the first required power is calculated according to formula (1).
  • the average current I of the battery in the preset time is obtained, and the second demand power is calculated according to the formula (2).
  • the required power P1 that is, the required power of the battery is adjusted to the target temperature
  • the required power P1 is calculated based on the first required power and the second required power.
  • the control method can accurately control the time required for the battery temperature adjustment, and the actual battery power can be adjusted in real time, which can ensure the temperature adjustment of the vehicle battery is completed within the target time, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding A situation occurs in which the performance of the vehicle battery is affected by temperature.
  • the temperature adjustment method of the vehicle battery may further include: detecting a temperature of the battery, and determining whether the temperature is greater than a first temperature threshold or less than a second temperature threshold (S10-S20) ).
  • the temperature adjustment system enters a cooling mode (S30).
  • the first preset temperature threshold may be preset according to actual conditions, for example, may be 40 ° C.
  • the temperature adjustment system enters a heating mode (S40-S50).
  • the second preset temperature threshold may be preset according to actual conditions, for example, may be 0 ° C.
  • the temperature of the battery is detected in real time and judged. If the temperature of the battery is higher than 40 ° C, it means that the temperature of the battery is too high. In order to avoid the impact of high temperature on the performance of the battery, the battery needs to be cooled.
  • the temperature adjustment system enters the cooling mode and controls the compressor to start. The coolant is exchanged with the battery to reduce the temperature of the battery. If the temperature of the battery is lower than 0 ° C, the temperature of the battery is too low. In order to avoid the influence of low temperature on the performance of the battery, the battery needs to be heated, the temperature adjustment system enters the heating mode, and the heater is turned on. To provide heating power.
  • the temperature adjustment of the battery 6 according to the required power P1 and the actual power P2 of the battery can accurately control the time required for the battery temperature adjustment, and the P2 can be adjusted in real time to ensure the temperature of the battery is completed within the target time t. Adjustment. Also, the required power P1 and the actual power P2 are easily acquired.
  • P1 is composed of two parts.
  • the initial temperature of the battery is 45 ° C
  • the target temperature of the battery cooling is 35 ° C
  • the battery needs to be emitted from 45 ° C to 35 ° C.
  • the heat is fixed and can be directly calculated by the formula (1), ⁇ T 1 *C*M/t.
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • there is a discharge and charging process This process generates heat. This part of the heat can also be directly obtained by detecting the current.
  • the formula (3) ie I 2 *R, directly calculates the current battery heat. Power, the second demand power. Where I is the average current and R is the internal resistance of the battery.
  • the required power P1 ⁇ T 1 *C*M/tI 2 *R, that is, the larger the battery discharge or the charging current is during the heating of the battery, the more the required heating power, that is, the required power P1 small.
  • the cooling power also varies with the current average discharge of the battery or the charging current. And change. If the car air conditioner cools the battery and the car at the same time, when the discharge current of the battery is small, the I 2 *R will decrease, and at this time, the car air conditioner can allocate more cooling power to the car, so that the car is faster. The set temperature is reached. At the same time, when the battery discharge or charging current is large, I 2 * R will be larger, and the vehicle air conditioner can allocate more cooling power to the battery. Through such adjustment, the time required for cooling the battery is always accurate, and at the same time, the cooling power of the vehicle air conditioner can be utilized more efficiently, without having to configure an air conditioner with a large cooling power, resulting in waste of cooling power.
  • the cooling time of the battery is affected by the cooling efficiency
  • the cooling efficiency is affected by the external ambient temperature and the current temperature of the battery
  • the efficiency of the temperature regulating system is constantly changing during the cooling of the battery, so the cooling efficiency cannot be 100%. Therefore, according to the required power P1, it is impossible to accurately adjust the time required for the battery to cool, and it is necessary to detect the actual power P2 of the battery.
  • the actual power P2 of the battery can be calculated by the formula (3), that is, ⁇ T2*C*m.
  • P2 can also be calculated by the actual cooling power P2 of the battery.
  • the actual power P2 is hardly equal to the required power P1.
  • the required power P1 is equal to the actual power P2 of the battery.
  • adjusting the temperature of the battery according to the required power P1 and the actual power P2 specifically includes:
  • the power of the compressor 1 is adjusted according to the required power P1 and the actual power P2. If the required power P1 is greater than the actual power P2, it means that if the compressor is operated at the current power, the temperature of the battery cannot be lowered to the target temperature within the target time t. Therefore, the power difference between the required power P1 and the actual power P2 is continuously obtained, and the power of the compressor is increased according to the power difference. The greater the power difference between the required power P1 and the actual power P2, the more the power of the compressor increases, so that the battery The temperature is lowered to the target temperature within the preset time.
  • the power of the compressor can be kept constant or the power of the compressor can be appropriately reduced.
  • the temperature of the battery is lower than 35 ° C, the battery is cooled, and the information for turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, the temperature of the battery is still higher than 35 ° C, the power of the compressor is appropriately increased to allow the battery to complete the cooling as soon as possible.
  • adjusting the temperature of the battery according to the required power and the actual power specifically includes:
  • the heater when the temperature adjustment system enters the heating mode, the heater is turned on, and the power of the heater is adjusted according to the required power P1 and the actual power P2. If the required power P1 is greater than the actual power P2, it means that if the heater is heated according to the current power, the temperature of the battery cannot be raised to the target temperature within a preset time. Therefore, the power difference between the required powers P1 and P2 is continuously obtained, and the power of the heater is increased according to the power difference, wherein the greater the difference between the required power P1 and the actual power P2, the more the power of the heater increases. If the required power P1 is less than or equal to the actual power P2, the power of the heater can be kept constant.
  • the battery management controller When the temperature of the battery is higher than the preset temperature, for example, 10 ° C, the battery heating is completed, and the battery management controller sends a message to turn off the temperature adjustment function to the battery thermal management controller through CAN communication, and controls the heater to be turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, the temperature of the battery is still lower than 10 ° C, the power of the heater is appropriately increased to allow the battery to complete the temperature rise as soon as possible.
  • the preset temperature for example, 10 ° C
  • the temperature adjustment method of the above-mentioned vehicle battery may further include:
  • the rotation speed of the control pump is lowered to save electric energy or keep the rotation speed of the pump unchanged. If the required power P1 is greater than the actual power P2, in addition to controlling the power of the heater or the compressor, the speed of the pump is controlled to increase, and the mass of the coolant flowing through the cross section of the cooling flow path per unit time can be increased, thereby increasing the actual power. P2 to achieve temperature regulation of the battery within the target time.
  • the above method may further include: determining the number of compressors to be started according to the required power P1 and the maximum cooling power of each compressor .
  • the temperature regulation system is in the cooling mode, a corresponding number of compressors are controlled to start.
  • Determining the number of compressors to be started according to the required power P1 and the maximum cooling power of each compressor specifically includes determining whether the required power P1 of the battery is greater than the maximum cooling power of the single compressor. If it is greater than the maximum cooling power of a single compressor, then multiple compressors are controlled to start at the same time.
  • the number of started compressors is judged according to the required power P1 and the maximum cooling power of each compressor, if the required power P1 is required. Less than or equal to the maximum cooling power of a single compressor, then control one compressor to start. If the degree-regulated demand power P1 is greater than the maximum cooling power of the single compressor, then the two compressors are controlled to start working simultaneously to meet the cooling and cooling power requirements of the battery.
  • the battery may be a single battery pack (consisting of a plurality of battery cells), or may be composed of a plurality of battery packs connected in series, in parallel, or in a mixture.
  • the battery includes a plurality of battery packs connected in parallel, temperature-regulated power distribution between the individual battery packs is required, which requires power distribution through the valves.
  • the compressor when the temperature adjustment system is operating in the cooling mode, if the sum of the required power P1 of the battery and the required cooling power P4 of the vehicle is less than the maximum cooling power P of the compressor, that is, P1+P4 ⁇ P5, the compressor is controlled according to P1+P4 cooling power operation. If P1+P4>P, it is judged whether the temperature of the battery is greater than the set temperature (such as 45 °C). If it is greater than 45 °C, the cooling power is preferentially provided for the battery, and the compressor is controlled to operate according to the maximum cooling power.
  • the set temperature such as 45 °C
  • the flow rate of the refrigerant in the road and the in-vehicle cooling branch is controlled such that the cooling power of the battery cooling branch is equal to the battery demand power P1, and the power P4 of the in-vehicle cooling branch is equal to P minus P1. If it is determined that the battery temperature is not more than 45 ° C, and the temperature inside the vehicle has not reached the set temperature, the cooling power is preferentially provided for the vehicle, the compressor is controlled to operate at the maximum cooling power, and the cooling power of the cooling branch in the vehicle is P4.
  • the cooling power of the battery cooling branch is P-P4.
  • the cooling power is preferentially provided for the interior of the vehicle, and the compressor 1 is controlled to operate at the maximum cooling power, and the cooling power of the in-vehicle cooling branch is P4.
  • the cooling power of the battery cooling branch is P-P4. If the temperature inside the car has reached the set temperature, then the cooling of the battery is prioritized.
  • the compressor 1 needs to increase the cooling power to P3, which can be increased by increasing the battery.
  • the refrigerant flow of the branch and / or increase the speed of the pump so that P1 P2.
  • the battery management controller determines whether the battery temperature is greater than the set temperature.
  • the set temperature may be 45 ° C. If the battery temperature is greater than 45 ° C, the battery is preferably provided with cooling power.
  • the compressor is controlled to operate at the maximum cooling power, so that the cooling power of the battery cooling branch is increased, and the cooling power of the cooling branch in the vehicle is reduced.
  • the cooling power is preferentially provided for the vehicle, the compressor is controlled to operate at the maximum cooling power, and the cooling power of the cooling branch in the vehicle is P4.
  • the cooling power of the battery cooling branch is P-P4. If the temperature inside the vehicle has reached the set temperature, the cooling of the battery is preferentially satisfied, and the cooling power of the battery cooling branch is increased by P3.
  • the battery thermal management controller can appropriately increase the power of the heater.
  • the required power of the battery is first obtained, and then the actual power of the battery is obtained. Finally, the temperature of the battery is adjusted according to the required power and the actual power at the target time to reach the target temperature. Therefore, the method can accurately control the temperature adjustment time of the battery, and the actual power of the battery can be adjusted in real time, which can ensure that the heating power and the cooling power of the vehicle battery are accurately controlled according to the actual state of the vehicle battery in the target time.
  • the temperature is adjusted to maintain the temperature of the vehicle battery in a preset range to avoid the situation where the performance of the vehicle battery is affected by the temperature.
  • the present disclosure also proposes a non-transitory computer readable storage medium having stored thereon a computer program which, when executed by the processor, implements the above-described temperature adjustment method of the on-vehicle battery.
  • the non-transitory computer readable storage medium of the embodiment of the present disclosure first, the required power of the battery is acquired, and then the actual power of the battery is obtained, and finally, the temperature of the battery is adjusted according to the required power of the battery and the actual power of the battery, thereby When the temperature of the vehicle battery is too high or too low, the temperature is adjusted to maintain the temperature of the vehicle battery in a preset range, so as to avoid the situation that the performance of the vehicle battery is affected by the temperature.
  • the temperature regulation system of the battery includes a compressor 1, a condenser 2, a battery cooling branch 4, and a battery temperature adjusting device 5.
  • the condenser 2 is connected to the compressor 1, and the battery cooling branch 4 is connected between the compressor 1 and the condenser 2.
  • the battery temperature adjusting device 5 is connected to the plurality of parallel batteries 6 and the battery cooling branch 4 to obtain the required power P1 and the actual power P2 of the plurality of parallel batteries, and respectively according to the required power P1 and the actual power of the plurality of parallel batteries.
  • P2 regulates the temperature of a plurality of batteries connected in parallel.
  • the temperature of the plurality of parallel batteries is adjusted according to the required power P1 and the actual power P2 of the plurality of parallel batteries, respectively, including: respectively, according to the required power P1 of the plurality of parallel batteries and the actual The power P2 adjusts the temperature of the plurality of parallel batteries within the target time t to reach the target temperature.
  • the battery temperature adjusting device 5 performs temperature adjustment for each of the batteries 6 in accordance with P1 and P2 of each battery, it can be ensured that the heating power of the vehicle battery is accurately controlled according to the actual state of each battery 6 within the target time t. And cooling power to adjust the temperature when the vehicle battery temperature is too high or too low.
  • the flow direction of the coolant in the first pipe and the second pipe is: compressor 1 - condenser 2 - battery cooling branch 4 - compressor 1; battery cooling back branch road 4—Battery temperature adjusting device 5—Second battery 62—Battery temperature adjusting device 5—Battery cooling branch 4.
  • the cooling power of the battery temperature adjusting device 5 is provided by the vehicle air conditioner, and the cooling capacity is shared with the in-vehicle refrigeration system, so that the volume of the temperature regulating system can be reduced, and the distribution of the coolant flow rate can be made more flexible.
  • the heating power and the cooling power of each battery can be precisely controlled according to the actual state of each battery, thereby adjusting the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained at a preset range. To avoid the situation where the performance of the vehicle battery is affected by temperature.
  • the battery cooling branch 4 may include a heat exchanger 41 including a first pipe and a second pipe, and a second pipe and battery temperature adjusting device 5 connected, the first pipe is connected to the compressor 1, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 may include a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is disposed in the battery 6.
  • a pump 51, a medium container 52, a heater 53, and a controller (not specifically shown) are connected between the flow path and the heat exchanger 41.
  • the controller separately obtains the required power P1 of the plurality of parallel batteries 6 and the actual power P2 of the battery, and adjusts the temperature of each battery 6 according to the required power P1 and the actual power P2 of each battery, respectively.
  • the in-vehicle cooling branch 3 may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the battery cooling branch 4 may not be provided with the heat exchanger 41.
  • the refrigerant flowing in the battery cooling branch 4 is the refrigerant. If the heat exchanger 41 is provided, the refrigerant flows in the first pipe in the battery cooling branch 4, the coolant flows in the second pipe, and the refrigerant flows in the cooling branch in the vehicle.
  • the battery temperature adjusting device 5 further includes a first temperature sensor 55 disposed at an inlet of the flow path, a second temperature sensor 56 disposed at an outlet of the flow path, and a flow rate sensor 57. It will be appreciated that the inlet and outlet locations of the flow path are not absolute, but are determined based on the steering of the pump 51.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioning controller.
  • the battery thermal management controller can be electrically connected to the pump 51, the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57, and obtain the actual power P2 of the plurality of parallel batteries according to the specific heat capacity of the medium and the density of the medium. And controlling the rotation speed of the pump 51.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected with the compressor 1, the expansion valve and the electronic valve to control the power P, the expansion valve and the electronic valve of the compressor according to the required power P1 obtained by the battery management controller and the actual power P2 obtained by the battery thermal management controller. Opening and closing, to achieve the purpose of controlling the amount of heat exchange.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the heat exchanger 41 can be a plate heat exchanger, and the plate heat exchanger can be installed inside the vehicle air conditioner, so that the entire refrigerant circuit is inside the vehicle air conditioner, which facilitates the factory debugging of the vehicle air conditioner, and enables the vehicle air conditioner to be separately supplied and assembled. At the same time, the vehicle air conditioner only needs to be refilled once during the installation process.
  • the coolant flows into the inside of the battery 6 from the inlet of the flow path, and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery 6 and the cooling liquid.
  • the pump 51 is primarily used to provide power.
  • the media container 52 is primarily used to store coolant and accept coolant added to the temperature regulation system.
  • the coolant in the media container 52 is automatically replenished as the coolant in the temperature regulation system is reduced.
  • the heater 53 can be a PTC (Positive Temperature Coefficient, a positive temperature coefficient, generally refers to a semiconductor material or component having a large positive temperature coefficient), and can be CAN (Controller Area Network) with a battery thermal management controller. Communication provides heating power for the on-board battery temperature regulation system and is controlled by the battery thermal management controller. That is, the heater 53 is not directly in contact with the battery 6, and has high safety, reliability, and practicability.
  • the first temperature sensor 55 is for detecting the temperature of the flow path inlet coolant
  • the second temperature sensor 56 is for detecting the temperature of the flow path outlet coolant.
  • the flow rate sensor 57 is used to detect the flow rate information of the coolant in the pipe in the temperature regulation system.
  • the first electronic valve 33 is used to control the opening and closing of the in-vehicle cooling branch 3, and the first expansion valve 32 can be used to control the flow rate of the coolant in the in-vehicle cooling branch 3.
  • the second electronic valve 43 is used to control the opening and closing of the battery cooling branch 4, and the second expansion valve 42 can be used to control the flow of the coolant in the battery cooling branch 4.
  • a valve 58 is also provided at the flow path inlet of each battery 6.
  • the vehicle air conditioner controller can control the flow rate of the coolant flowing into each of the batteries 6 through the control valves 58 according to the corresponding valves P1 and P2 of each of the batteries 6, so that the heating power/cooling power of each of the batteries 6 can be accurately controlled.
  • the battery management controller is further configured to generate a total required power Pz according to the required power P1 of the plurality of parallel batteries, and determine whether the total required power Pz matches the maximum cooling power P of the vehicle air conditioner, wherein If they match, the vehicle air conditioner controller cools the plurality of batteries 6 connected in parallel according to the required power P1 of the plurality of batteries connected in parallel. If there is no match, the vehicle air conditioner controller cools the plurality of batteries 6 connected in parallel according to the maximum cooling power P of the air conditioner and the required power P1 of the plurality of parallel batteries.
  • the battery management controller can calculate the total required power Pz of the entire temperature adjustment system according to the required power P1 of each battery, that is, add the required power P1 of each battery to obtain the total required power. Pz. Then, according to the total demand power Pz, it is judged whether Pz matches the maximum cooling power P of the vehicle air conditioner, that is, whether Pz is less than or equal to P, and if so, the vehicle air conditioner controller passes the control valve 58 or controls according to the required power P1 of each battery. The power of the compressor 1 cools each battery.
  • the controller performs cooling according to the maximum cooling power P of the air conditioner and the required power P1 of each battery by adjusting the opening degree of the valve 58.
  • the liquid flow is distributed so that each battery 6 can be cooled down with maximum efficiency.
  • the battery management controller may be configured to respectively acquire a first parameter when each battery is turned on, and generate a first required power of each battery according to the first parameter, and acquire each battery separately. a second parameter at the time of temperature adjustment, and generating a second required power of each battery according to the second parameter, and generating a required power of each battery according to the first required power of each battery and the second required power of each battery P1.
  • the first parameter is the initial temperature and the target temperature when the battery 6 is turned on, and the target time t from the initial temperature to the target temperature, and the battery management controller acquires the first between the initial temperature and the target temperature.
  • a temperature difference ⁇ T 1 and generating a first required power according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery 6
  • M is the mass of the battery 6.
  • the second parameter is the average current I of each battery 6 within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery 6.
  • the battery thermal management controller generates a second temperature difference ⁇ T 2 according to the inlet temperature detected by the first temperature sensor 55 and the outlet temperature detected by the second temperature sensor 56, respectively, and according to the second of each battery
  • the temperature difference ⁇ T 2 and the flow rate v detected by the flow rate sensor 57 generate the actual power P2 of each battery.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle needs temperature adjustment, for example, the temperature of the battery 6 is too high, the information of turning on the temperature adjustment function is sent to the vehicle air conditioner through CAN communication. After the vehicle air conditioner controller turns on the temperature adjustment function, the heat exchange information is sent to the battery thermal management controller, and the vehicle air conditioner controller controls the second electronic valve 43 to be turned on, and the battery thermal management controller controls the pump 51 to use the default speed (such as the low speed). start working.
  • the battery management controller acquires the initial temperature (ie, the current temperature) of each battery 6, the target temperature, and the target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions, and The first required power of each battery is calculated according to formula (1).
  • the battery management controller also obtains the average current I of the battery 6 for a preset time, and calculates the second required power of each battery according to the formula (2).
  • the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 corresponding to each battery to detect the temperature information, and respectively obtains the flow rate information detected by the flow rate sensor 57, and calculates each according to formula (3).
  • the vehicle air conditioner controller controls the flow rate of the coolant flowing into each of the batteries 6 through the control valve 58 according to the required power P1 and the actual power P2 corresponding to each of the batteries 6, so that the heating power/cooling power of each battery 6 can be accurately controlled. .
  • the vehicle air conditioner controller may control the opening degree of the valve 58 that increases the loop in which the first battery 61 is located, and decrease the position of the second battery 62. The opening of the valve 58 of the circuit.
  • the vehicle air conditioner controller controls the second electronic valve 43 to be turned off, the battery thermal management controller controls the heater 53 to be activated, and the battery thermal management controller controls the heater 53 according to the required power P1 and the actual power P2.
  • the heating power is used to raise the temperature of the battery 6 to the target temperature within the target time t, preventing the excessive temperature from affecting the performance of the battery 6. Thereby, it is possible to ensure that the heating power and the cooling power of each battery are accurately controlled according to the actual state of each battery in the target time, thereby adjusting the temperature when the vehicle battery temperature is too high or too low.
  • the required power P1 is composed of two parts.
  • the initial temperature of the first battery 61 is 45 ° C
  • the target temperature is 35 ° C.
  • the amount of heat that needs to be dissipated is fixed from 45 ° C to 35 ° C, which can be directly calculated by the formula (1), ⁇ T 1 *C*M/t.
  • this process generates heat.
  • This part of the heat can also be directly obtained by detecting the average current I of the first battery, by the formula (3), ie, I 2 * R, directly calculating the heating power of the current first battery 61, that is, the second required power.
  • the required power P1 ⁇ T 1 *C*M/tI 2 *R, that is, the larger the discharge or charging current of the first battery 61 during the heating of the first battery 61 is required.
  • the heating power, that is, the required power P1 is smaller.
  • the cooling power also depends on the current average of the first battery 61.
  • the discharge changes or changes in the charging current. If the vehicle air conditioner simultaneously cools the first battery 61 and the cabin, when the discharge current of the first battery 61 is small, the I 2 *R is reduced, and at this time, more cooling power can be distributed to the passenger compartment, so that The cabin reaches the set temperature faster. Meanwhile, when the discharge or charging current of the first battery 61 is large, I 2 *R is large, and at this time, the vehicle air conditioner can allocate more cooling power to the first battery 61. Through such adjustment, the time required for cooling the battery is always accurate, and at the same time, the cooling power of the vehicle air conditioner can be utilized more efficiently, without having to configure the vehicle air conditioner with a large cooling power, resulting in waste of cooling power.
  • the cooling time of the battery is affected by the cooling efficiency. Since the cooling efficiency is affected by the external ambient temperature and the current temperature of the battery, the efficiency of the temperature regulating system is constantly changing during the cooling of the first battery 61, so the cooling efficiency cannot be 100. Therefore, it is necessary to detect the actual power P2 of the first battery 61 only based on the fact that P1 cannot accurately adjust the cooling time of the first battery 61. In the present disclosure, the actual power P2 of the first battery 62 can be calculated by the formula (3), that is, ⁇ T2*c*m.
  • P2 can also be actually cooled by the battery, which can be calculated by the formula (4), that is, ⁇ T3*C*m1, where ⁇ T3 is the temperature change of the first battery 61 in a certain period of time, and C is the first battery 61.
  • the specific heat capacity, m1 is the mass of the first battery 61.
  • the actual power P2 is generally calculated according to formula (3).
  • the required power P1 and the actual power P2 are acquired in the same manner as the first battery 61 described above, and are not described herein again.
  • the actual power P2 is hardly equal to the required power P1.
  • a battery management controller is further configured to detect a temperature of a plurality of batteries connected in parallel, and control temperature adjustment when a temperature of at least one of the plurality of parallel batteries 6 is greater than a first temperature threshold
  • the system enters a cooling mode, and when the temperature of at least one of the plurality of parallel batteries 6 is less than the second temperature threshold, the temperature control system is controlled to enter the heating mode.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of each battery 6 in real time and makes a determination. If the temperature of one of the batteries 6 is higher than 40 ° C, the temperature of the battery 6 is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery 6, the battery 6 needs to be cooled, and the battery management controller controls The temperature adjustment system enters the cooling mode, and sends a battery cooling function startup information to the vehicle air conditioner controller, and the vehicle air conditioner controller controls the second electronic valve 43 to open after receiving the battery cooling function activation information, so that the coolant and the battery 6 are heated. Exchange to lower the temperature of the battery 6. As shown in FIG.
  • the flow directions of the coolants in the corresponding first pipe and the second pipe in the circuit where the first battery 61 is located are: compressor 1 - condenser 2 - Two electronic valve 43 - second expansion valve 42 - heat exchanger 41 - compressor 1; medium container 52 - heat exchanger 41 - heater 53 (closed) - pump 51 - valve 58 - first temperature sensor 55 - first
  • the battery 61 - the second temperature sensor 56 - the flow rate sensor 57 - the medium container 52, is circulated, heat exchange is performed at the heat exchanger 41, and the temperature of the first battery 61 is lowered.
  • the flow directions of the coolant in the first pipe and the second pipe in the circuit where the second battery 62 is located are: compressor 1 - condenser 2 - second electronic valve 43 - second expansion valve 42 - heat exchanger 41 - compressor 1; medium container 52 - heat exchanger 41 - heater 53 (closed) - pump 51 - valve 58 - first temperature sensor 55 - second battery 62 - second temperature sensor 56 - flow rate sensor 57 - medium container 52, The cycle, heat exchange at the heat exchanger 41, achieves a temperature drop of the second battery 62.
  • the battery management controller controls The temperature adjustment system enters the heating mode and sends a battery heating function start message to the vehicle air conditioner controller.
  • the vehicle air conditioner controller controls the second electronic valve 43 to be turned off after receiving the battery heating function activation information, and the battery thermal management controller controls the heater 53 to be turned on to provide heating power to the temperature adjustment system.
  • the flow directions of the coolant in the first battery 61 and the second battery 62 are: medium container 52 - heat exchanger 41 - heater 53 (on) - pump 51 - valve 58 - First temperature sensor 55 - first battery 61 - second temperature sensor 56 - flow rate sensor 57 - medium container 52; medium container 52 - heat exchanger 41 - heater 53 (on) - pump 51 - first temperature sensor 55 -
  • the second battery 62 - the second temperature sensor 56 - the flow rate sensor 57 - the medium container 52 is circulated to achieve the temperature rise of the battery 6. It will be appreciated that by adjusting the opening of the valve 58, the flow of coolant into each of the cells 6 can be adjusted to adjust the heating/cooling power of each battery.
  • the vehicle air conditioning controller acquires the required power P1 of the battery and the actual The power difference between the powers P2, and the power of the compressor for cooling the battery 6 is increased according to the power difference, or the coolant flow rate of the battery 6 is increased to increase the cooling power of the battery 6, and the required power at a certain battery 6.
  • P1 is less than or equal to the actual power P2
  • the power of the compressor is reduced or the power of the compressor is kept constant, or the coolant flow rate of the battery is reduced to reduce the cooling power of the battery 6.
  • the battery management controller acquires the required power P1 of the battery, and the battery thermal management controller acquires the actual power P2 of the battery, and the vehicle air conditioning control
  • the device judges according to the required power P1 and the actual power P2. If the required power P1 of one of the batteries 6 is greater than the actual power P2, it means that if the cooling of the battery 6 cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller acquires the demand of the battery.
  • the greater the power difference between the required power P1 and the actual power P2 the more the power of the compressor 1 and the coolant flow rate of the battery are increased, so that the temperature of the battery is lowered to the target temperature within the preset time t.
  • the vehicle air conditioner controller can keep the power of the compressor 1 constant or appropriately reduce the power of the compressor 1, or reduce the coolant flow rate of the battery.
  • the opening degree of the second expansion valve 42 is reduced to reduce the cooling power of the battery.
  • the battery management controller transmits information for turning off the temperature adjustment function to the vehicle air conditioner via CAN communication, and the vehicle air conditioner controller controls the second electronic valve 43 to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery 6 is higher than 35 ° C, the cooling power of the battery is appropriately increased to allow the battery to complete the cooling as soon as possible.
  • the battery thermal management controller acquires between the required power P1 of the battery and the actual power P2.
  • the power difference is increased, and the power of the heater 53 for heating the battery is increased according to the power difference, or the coolant flow rate of the battery is increased to increase the heating power of the battery, and the required power P1 of a certain battery is less than or equal to the actual power.
  • the power is reduced, or the power of the heater 53 is kept constant, or the cooling liquid flow of the battery is adjusted to reduce the heating power of the battery.
  • the battery management controller acquires the required power P1 of the battery when the temperature adjustment system operates in the heating mode, and the battery thermal management controller acquires the actual power P2 of the battery. If the required power P1 of one of the batteries 6 is greater than the actual power P2, it means that if the heating of the battery 6 cannot be completed within the target time according to the current heating power or the coolant flow rate, the battery thermal management controller acquires the battery.
  • the power difference between P1 and P2 and the power for heating the heater 53 of the battery 6 is increased according to the power difference, or the coolant flow rate of the battery is increased, for example, the rotation speed of the pump 51 can be increased so that the battery can be at the target The temperature adjustment is completed within the time.
  • the battery thermal management controller may appropriately reduce the power of the heater 53, or keep the power of the heater 53 unchanged, or adjust the cooling liquid of the battery circuit. Flow to reduce the heating power of the battery.
  • the battery management controller sends the information of the temperature adjustment function to the vehicle air conditioner through the CAN communication, and the battery thermal management controller controls the heater 53 to be turned off. .
  • the battery thermal management controller can appropriately increase the power of the heater 53 and the rotation speed of the pump 51 to Allow the battery to warm up as quickly as possible.
  • the battery thermal management controller is further configured to reduce the rotation speed of the pump 51 when the required power P1 of a certain battery is less than the corresponding actual power P2, and the required power P1 of the certain battery is greater than the corresponding When the actual power P2 is increased, the rotational speed of the pump 51 is increased.
  • the battery thermal management controller controls the rotation speed of the pump 51 to be reduced to save electric energy. If the required power P1 of a certain battery 6 is greater than the actual power P2, the battery thermal management controller controls the speed of the pump 51 in addition to controlling the power of the heater 53, the compressor 1, or the coolant flow rate of the circuit in which the battery is located. Increasing, the mass of the coolant flowing through the cross section of the cooling flow path per unit time can be increased, thereby increasing the actual power P2 of the battery to achieve temperature adjustment within the target time t.
  • a plurality of compressors 1 can be provided to provide cooling power to the batteries 6.
  • the controller is further configured to determine the activated according to the required power P1 of each battery and the maximum cooling power P of each compressor. The number of compressors, and when the temperature regulation system is in the cooling mode, controls the corresponding number of compressors 1 to start.
  • the battery management controller can generate the total required power Pz according to the required power P1 of each battery, and the vehicle air conditioner controller controls the plurality of compressors 1 to start simultaneously when determining that the total required power Pz is greater than the maximum cooling power P of the single compressor.
  • the battery management controller acquires P1 of each battery 6, and P1 of each battery. The summation calculates the total required power Pz of the entire temperature regulation system. If Pz is less than or equal to the maximum cooling power of the single compressor 1, the vehicle air conditioner controller controls one compressor 1 to start. And if Pz is greater than the maximum cooling power of the single compressor 1, the vehicle air conditioner controller controls the two compressors 1 to start the operation at the same time to meet the cooling and cooling power demand of the battery 6.
  • the sum of the required power of the battery 62 (total required power Pz).
  • Pf P21 + P22, P21 is the actual power of the battery 61, P22 is the actual power of the battery 62, and Pf is the sum of the actual powers of the first battery 61 and the second battery 62.
  • the temperature regulation system of the vehicle battery When the temperature of a certain battery is greater than the first temperature threshold (for example, 40 ° C), the temperature regulation system of the vehicle battery operates in the cooling mode, if the sum of the total required power Pz and the in-vehicle cooling demand power P4 is smaller than the maximum cooling power of the compressor P That is, Pz+P4 ⁇ P, the compressor 1 is controlled to operate according to the Pz+P4 cooling power. It can be understood that Pz ⁇ P, P4 ⁇ P in this case.
  • the cooling power is preferentially provided for battery cooling, and the vehicle air conditioner controller controls the compressor 1 according to the maximum cooling.
  • the power P operates, the cooling power of the battery cooling branch 4 is Pz, and the cooling power of the in-vehicle cooling branch 3 is equal to P-Pz.
  • the cooling power is preferentially provided for the interior of the vehicle, the compressor 1 is operated according to the maximum cooling power P, and the cooling power of the cooling branch of the vehicle is P4.
  • the cooling power of the battery cooling branch is equal to P-P4.
  • the first battery 61 cooling branch and the second battery 62 cooling branch scale down the cooling power. The ratio can be: (P-P4) / (P11 + P12). If the temperature inside the vehicle has reached the set temperature, the cooling power of the battery is preferentially satisfied.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the cooling power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the second battery 62 is increased by Pc2.
  • the cooling power is preferentially provided for the vehicle, the compressor operates according to the maximum cooling power P, the rotation speed of the pump 51 is increased, and the cooling of the cooling branch in the vehicle is performed.
  • the power is P4, and the cooling power of the battery cooling branch is equal to P-P4.
  • the first battery 61 cooling branch and the second battery 62 cooling branch scale down the cooling power.
  • the ratio can be: (P-P4) / (P11 + P12).
  • the cooling power of the first battery 61 is P11*(P-P4)/(P11+P12)
  • the cooling power of the second battery 62 is P12*(P-P4)/(P11+P12).
  • the compressor operates at the maximum power P
  • the opening degree of the second expansion valve 42 is increased
  • the rotation speed of the pump 51 is increased
  • the cooling power of the battery cooling branch circuit is increased.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the cooling power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the second battery 62 is increased by Pc2.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the battery 62 is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery 61 is kept constant, or the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is decreased, so that the cooling power of the first battery 61 is reduced.
  • the battery cooling power adjustment may be:
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the cooling power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the second battery 62 is increased by Pc2.
  • the cooling power is preferentially provided for battery cooling, the compressor operates according to the maximum cooling power, and the rotation speed of the water pump is increased, the cooling power of the battery cooling branch is increased by Pc, and the cooling power of the vehicle is reduced by Pc.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the cooling power of the battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the second battery 62 is increased by Pc2.
  • the cooling power is preferentially provided for the vehicle. All the compressors are operated according to the maximum cooling power, and the pump speed is increased.
  • the first battery 61 cooling branch and the second battery 62 cooling branch scale down the cooling power. The ratio can be: (P5-P4) / (P11 + P12).
  • the cooling power of the first battery 61 is P11*(P5-P4)/(P11+P12), and the cooling power of the second battery 62 is P12*(P5-P4)/(P11+P12).
  • the cooling power of the battery is preferentially satisfied, all the compressors are operated at the maximum power, the opening degree of the second expansion valve is increased, and the rotation speed of the water pump is increased, so that the cooling power of the battery cooling branch circuit is increased by Pc.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the cooling power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the second battery 62 is increased by Pc2.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the cooling power of the battery 62 is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery 61 is kept constant, or the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is decreased, so that the cooling power of the first battery 61 is reduced.
  • the second temperature threshold for example, 0 ° C
  • the heater The heating power of 53 increases Pc, increasing the rotational speed of the pump 51.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the heating power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the heating power of the second battery 62 is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the heating power of the first battery 61 is kept constant, or the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is decreased, so that the heating power of the first battery 61 is reduced.
  • P12 ⁇ P22 and P22 - P12 Pc2
  • the cooling power of the second battery 62 is kept constant, or the opening degree of the regulating valve 58 of the circuit in which the second battery 62 is controlled is decreased, so that the heating power of the second battery 62 is reduced.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the heating power of the first pool 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the heating power of the second battery 62 is increased by Pc2.
  • the temperature value is a preset value, that is, if T61-T62>3 ° C. Then, the battery thermal management controller controls the opening degree of the regulating valve 58 in the cooling branch of the first battery 61 to increase, and controls the opening degree of the regulating valve 58 in the cooling branch of the second battery 62 to decrease so as to make the cooling power of the first battery 61 Increasing, the cooling power of the second battery 62 is reduced, thereby achieving temperature equalization of the first battery 61 and the second battery 62.
  • the battery thermal management controller controls the opening degree of the regulating valve 58 in the cooling branch of the second battery 62 to increase, and controls the opening degree of the regulating valve 58 in the cooling branch of the first battery 61 to decrease, In order to increase the cooling power of the second battery 62, the cooling power of the first battery 61 is reduced, thereby achieving temperature equalization of the first battery 61 and the second battery 62.
  • the battery thermal management controller controls the battery 61 in the cooling branch
  • the opening degree of the regulating valve 58 is decreased, and the opening degree of the regulating valve 58 in the cooling branch of the control battery 62 is increased to reduce the heating power of the first battery 61, and the heating power of the second battery 62 is increased, thereby realizing the first battery.
  • the temperature of 61 and second battery 62 is equalized.
  • the battery thermal management controller controls the opening of the regulating valve 58 in the cooling branch of the battery 62 to decrease, and controls the opening degree of the regulating valve 58 in the cooling branch of the battery 61 to increase The heating power of one battery 61 is increased, and the heating power of the second battery 62 is decreased, thereby achieving temperature equalization of the first battery 61 and the second battery 62.
  • the required power and the actual power of the plurality of parallel batteries are obtained by the battery temperature adjustment device, and are respectively connected in parallel according to the required power and the actual power of the plurality of parallel batteries.
  • the temperature of the battery is adjusted. Therefore, the system can precisely control the heating power and cooling power of each battery according to the actual state of each battery, and adjust the temperature when the battery temperature is too high or too low, so that the temperature of the battery is maintained at a preset range. To avoid the situation where the performance of the vehicle battery is affected by temperature.
  • FIG. 10 is a flowchart of a temperature adjustment method of a vehicle battery according to a sixth embodiment of the present disclosure.
  • the vehicle battery comprises a plurality of batteries connected in parallel, as shown in FIG. 10, the method for adjusting the temperature of the vehicle battery comprises the following steps:
  • separately acquiring the required power P1 of the plurality of batteries in parallel includes: respectively acquiring a first parameter when the opening temperature of each battery is adjusted, and generating a first of each battery according to the first parameter. Demand power. A second parameter of each battery during temperature adjustment is separately obtained, and a second required power of each battery is generated according to the second parameter. The required power P1 of each battery is generated according to the first required power of each battery and the second required power of each battery, respectively.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature, and the first required power of each battery is generated according to the first parameter.
  • the first temperature difference ⁇ T 1 between the initial temperature and the target temperature is obtained.
  • the first required power P1 is generated based on the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is the average current I of each battery cell within a preset time
  • the second required power of each battery is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • respectively acquiring the actual power P2 of the plurality of batteries in parallel includes: obtaining an inlet temperature and an outlet temperature of a flow path for adjusting each battery temperature, and acquiring a flow rate v of the coolant inflow path. .
  • a second temperature difference ⁇ T 2 is generated according to the inlet temperature and the outlet temperature of the flow path of each battery.
  • the actual power P2 is generated based on the second temperature difference ⁇ T 2 and the flow rate v of each battery.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the battery temperature adjusting device is controlled according to the required power P1 and the actual power P2 to adjust the temperature of the battery within the target time t to reach the target temperature.
  • the initial temperature ie, the current temperature
  • the target temperature ie, the target temperature
  • the target time t can be preset according to actual conditions
  • the first required power is calculated according to formula (1).
  • the average current I of each battery in a preset time is respectively obtained, and the second required power of each battery is separately calculated according to formula (2).
  • the required power P1 of each battery is calculated according to the first required power and the second required power of each battery, respectively.
  • the control method can accurately control the heating power and the cooling power of each battery according to the actual state of each battery, and adjust the temperature when the battery temperature is too high or too low, so that the temperature of the battery is maintained at a preset. Scope to avoid the situation where the performance of the vehicle battery is affected by temperature.
  • the battery temperature adjustment device is controlled according to the required power P1 and the actual power P2 of the plurality of parallel batteries, respectively. Adjusting the temperature of the battery may further include: generating the total required power Pz according to the required power P1 of the plurality of parallel batteries. It is judged whether or not the total required power Pz matches the maximum cooling power P of the vehicle air conditioner. If there is a match, the plurality of batteries connected in parallel are cooled according to the required power P1 of the plurality of batteries connected in parallel. If there is no match, the plurality of parallel batteries are cooled according to the maximum cooling power P of the air conditioner and the required power P1 of the plurality of parallel batteries.
  • the total required power Pz of the entire temperature adjustment system can be calculated according to the required power P1 of each battery, that is, the required power P1 of each battery is added to obtain the total required power Pz. Then, according to the total demand power Pz, it is judged whether Pz matches the maximum cooling power P of the vehicle air conditioner, that is, whether Pz is less than or equal to P, and if so, the coolant flowing into each battery is controlled according to the required power P1 of each battery. The flow rate and the power to control the compressor cool each battery.
  • the vehicle air conditioner controller adjusts the coolant flow rate flowing into each battery according to the maximum cooling power P of the air conditioner and the required power P1 of each battery.
  • the coolant flow distribution is scaled so that each battery can be cooled down with maximum efficiency.
  • the temperature adjustment method of the battery may further include the step of detecting the temperatures of the plurality of batteries in parallel.
  • the temperature adjustment system enters a cooling mode when the temperature of at least one of the plurality of paralleled batteries is greater than the first temperature threshold.
  • the temperature adjustment system enters a heating mode when the temperature of at least one of the plurality of paralleled batteries is less than a second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the temperature of each battery is detected in real time and judged. If the temperature of one of the batteries is higher than 40 ° C, indicating that the temperature of the battery is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery, the battery needs to be cooled, and the temperature adjustment system enters the cooling mode. And send the battery cooling function start information to the air conditioning system.
  • the temperature adjustment system enters the heating mode. Control the battery cooling branch to turn off and control the heater to turn on to provide heating power to the battery.
  • the battery thermal management controller controls the opening of the regulating valve in the first battery cooling branch to increase, controlling the second battery cooling branch The opening degree of the regulating valve is reduced so that the cooling power of the first battery is increased, and the cooling power of the second battery is decreased, thereby achieving temperature equalization of the first battery and the second battery.
  • the opening of the regulating valve in the second battery cooling branch is controlled to increase, and the opening degree of the regulating valve in the first battery cooling branch is controlled to decrease, so that the cooling power of the second battery is increased.
  • the cooling power of the first battery is reduced, thereby achieving temperature equalization of the first battery and the second battery.
  • the battery thermal management controller controls the adjustment in the first battery cooling branch
  • the valve opening degree is decreased, and the opening degree of the regulating valve in the second battery cooling branch is controlled to increase, so that the heating power of the first battery is increased, and the heating power of the second battery is decreased, thereby realizing the first battery and the second battery.
  • the temperature is balanced. If T62-T61>3° C., the opening of the regulating valve in the second battery cooling branch is controlled to decrease, and the opening degree of the regulating valve in the first battery cooling branch is controlled to increase the heating power of the second battery. Increasing, the heating power of the first battery is reduced, thereby achieving temperature equalization of the first battery and the second battery.
  • the temperature of the plurality of parallel batteries is adjusted according to the required power P1 and the actual power P2 of the plurality of parallel batteries, respectively, including: determining each Whether the required power P1 of each battery is greater than the actual power P2 corresponding to each battery. If the required power P1 of a battery is greater than the actual power P2 corresponding to the battery, the power difference between the required power P1 of the battery and the actual power P2 is obtained, and the power of the compressor for cooling the battery is increased according to the power difference, or Adjust the coolant flow rate of the battery to increase the cooling power of the battery.
  • the required power P1 of a certain battery is less than or equal to the actual power P2 corresponding to the battery, the power of the compressor is reduced or the power of the compressor is kept constant, or the cooling liquid flow of the battery is adjusted to reduce the cooling power of the battery.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the compressor 1 or increases the coolant flow rate of the battery to increase the cooling power of the battery. The greater the power difference between P1 and P2, the more the power of the compressor and the coolant flow rate of the battery increase. More so that the temperature of the battery is lowered to the target temperature within the preset time t.
  • the power of the compressor 1 can be kept constant or the power of the compressor can be appropriately reduced, or the coolant flow rate of the battery can be reduced, and the cooling power of the battery can be reduced.
  • the temperature of all the batteries is lower than 35 ° C
  • the battery cooling is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the battery cooling branch is controlled to be turned off. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is higher than 35 ° C, the cooling power of the d battery is appropriately increased, so that the battery is cooled as soon as possible.
  • the temperature of the plurality of parallel batteries is adjusted according to the required power P1 and the actual power P2 of the plurality of parallel batteries, respectively, including: determining each Whether the required power P1 of each battery is greater than the actual power P2 corresponding to each battery. If the required power P1 of a battery is greater than the actual power P2 corresponding to the battery, the power difference between the required power P1 of the battery and the actual power P2 is obtained, and the power of the heater for cooling the battery is increased according to the power difference, or Adjust the coolant flow rate of the battery to increase the heating power of the battery.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the heating temperature of the battery cannot be completed within the target time t according to the current heating power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained. And increasing the power of the heater for heating the battery according to the power difference, or adjusting the coolant flow rate of the battery so that the battery can complete the temperature adjustment within the target time t. Among them, the greater the difference between P1 and P2, the more the power of the heater and the coolant flow of the battery circuit increase.
  • the power of the heater may be appropriately reduced, or the power of the heater may be kept constant, or the flow rate of the coolant of the battery circuit may be adjusted to reduce the heating power of the battery.
  • the preset temperature for example, 10 ° C
  • the battery heating is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the heater is turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery is lower than 10 ° C, the power of the heater and the rotation speed of the pump are appropriately increased to complete the temperature rise as soon as possible.
  • the temperature adjustment method of the vehicle battery may further include: if the required power P1 of a certain battery is less than the corresponding actual power P2, reducing the rotation speed of the pump; if the required power P1 of a certain battery is greater than the corresponding The actual power P2 increases the speed of the pump.
  • the rotation speed of the control pump is lowered to save electric energy. If the P1 of a certain battery is greater than P2, in addition to controlling the power of the heater or the compressor or increasing the coolant flow rate of the circuit in which the battery is located, the rotation speed of the pump can be controlled to increase the flow through the cooling flow path per unit time. The coolant mass in cross section, thereby increasing the actual power P2 of the battery to achieve temperature regulation during the target time t.
  • Pf P21+P22, P21 is the actual power of the battery, P22 is the actual power of the battery, and Pf is the sum of the actual power of the first battery and the second battery.
  • the temperature regulation system of the vehicle battery When the temperature of a battery is greater than the first temperature threshold (for example, 40 ° C), the temperature regulation system of the vehicle battery operates in the cooling mode, if the sum of the total battery cooling demand power Pz and the interior cooling demand power P4 is less than the maximum refrigeration of the compressor
  • the power P that is, Pz + P4 ⁇ P, controls the compressor 1 to operate in accordance with the Pz + P4 cooling power. It can be understood that Pz ⁇ P, P4 ⁇ P in this case.
  • the cooling power is preferentially provided for the vehicle, the compressor operates according to the maximum cooling power P, and the cooling power of the cooling branch in the vehicle is P4, the battery The cooling power of the cooling branch is equal to P-P4.
  • the first battery cooling branch and the second battery cooling branch scale down the cooling power. The ratio can be: (P-P4) / (P11 + P12). If the temperature inside the vehicle has reached the set temperature, the cooling power of the battery is preferentially satisfied.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening of the regulating valve that controls the circuit in which the first battery is located is increased, so that the cooling power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first electric power is kept constant, or the opening degree of the regulating valve of the circuit in which the first battery is located is controlled to decrease, so that the cooling power of the first battery is reduced.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery is kept constant, or the opening of the regulating valve that controls the circuit in which the first battery is located is reduced, so that the cooling power of the battery is reduced.
  • P12 ⁇ P22, and P22 - P12 Pc2
  • the cooling power is preferentially provided for the vehicle.
  • the compressor operates according to the maximum cooling power P, increasing the speed of the pump and the cooling power of the cooling branch in the vehicle.
  • the cooling power of the battery cooling branch is equal to P-P4.
  • the first battery 61 cooling branch and the second battery 62 cooling branch scale down the cooling power.
  • the ratio can be: (P-P4) / (P11 + P12).
  • the cooling power of the first battery is P11*(P-P4)/(P11+P12)
  • the cooling power of the second battery is P12*(P-P4)/(P11+P12).
  • the compressor operates at the maximum power P
  • the opening degree of the second expansion valve is increased
  • the rotation speed of the pump is increased
  • the cooling power of the battery cooling branch circuit is increased.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening of the regulating valve that controls the circuit in which the first battery is located is increased, so that the cooling power of the first battery is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery is kept constant, or the opening of the regulating valve that controls the circuit in which the first battery is located is reduced, so that the cooling power of the battery is reduced.
  • the second temperature threshold for example, 0 ° C
  • the heater The heating power increases Pc and increases the speed of the pump.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening of the regulating valve that controls the circuit in which the first battery is located is increased, so that the heating power of the first battery is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the heating power of the second battery is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery is kept constant, or the opening of the regulating valve that controls the circuit in which the first battery is located is reduced, so that the heating power of the first battery is reduced.
  • P11 ⁇ P21, and P11-P21 Pc1
  • the opening of the regulating valve that controls the circuit in which the first battery is located is increased, so that the heating power of the first cell is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the heating power of the second battery is increased by Pc2.
  • P11 ⁇ P12 and P21 - P11 Pc1
  • the heating power of the first battery is kept constant, or the opening of the regulating valve that controls the circuit in which the first battery is located is reduced, so that the heating power of the first battery is reduced.
  • P12 ⁇ P22 and P22 - P12 Pc2
  • the temperature adjustment method of the battery may further include: determining to start according to the required power P1 of each battery and the maximum cooling power of each compressor The number of compressors. When the temperature regulation system is in the cooling mode, a corresponding number of compressors are controlled to start.
  • Determining the number of compressors to be started according to the required power P1 of each battery and the maximum cooling power P of each compressor specifically includes: generating a total actual power P Z according to the required power P1 of each battery; determining whether the total required power P Z is It is greater than the maximum cooling power P of a single compressor; if it is greater than the maximum cooling power P of a single compressor, then multiple compressors are controlled to start at the same time.
  • the in-vehicle cooling branches and battery cooling branches there are a plurality of in-vehicle cooling branches and battery cooling branches.
  • P1 of each battery when there are two compressors for supplying refrigerant to the battery, and two of the in-vehicle cooling branch and the battery cooling branch, respectively, when the temperature adjustment system enters the cooling mode, respectively, P1 of each battery is obtained.
  • the total required power P Z of the entire temperature regulation system can be calculated by adding P1 of each battery. If P Z is less than or equal to the maximum cooling power P of a single compressor, then it is sufficient to control one compressor to start. And if Pz is greater than the maximum cooling power P of a single compressor, then the two compressors are controlled to start working simultaneously to meet the cooling and cooling power requirements of the battery.
  • the battery cooling power adjustment may be:
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening of the regulating valve that controls the circuit in which the first battery is located is increased, so that the cooling power of the first battery is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the cooling power of the first battery is kept constant, or the opening of the regulating valve that controls the circuit in which the first battery is located is reduced, so that the cooling power of the first battery is reduced.
  • P12 ⁇ P22 and P22 - P12 Pc2
  • the cooling power is preferentially provided for battery cooling, the compressor operates according to the maximum cooling power, and the rotation speed of the water pump is increased, the cooling power of the battery cooling branch is increased by Pc, and the cooling power of the vehicle is reduced by Pc.
  • P11 ⁇ P21, and P11-P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery is located is increased, so that the cooling power of the battery is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12 and P21 - P11 Pc1
  • the cooling power is preferentially provided for the vehicle. All the compressors are operated according to the maximum cooling power, and the pump speed is increased.
  • the first battery cooling branch and the second battery cooling branch scale down the cooling power. The ratio can be: (P5-P4) / (P11 + P12).
  • the cooling power of the first battery 61 is P11*(P5-P4)/(P11+P12), and the cooling power of the second battery 62 is P12*(P5-P4)/(P11+P12).
  • the cooling power of the battery is preferentially satisfied, all the compressors are operated at the maximum power, the opening degree of the second expansion valve is increased, and the rotation speed of the water pump is increased, so that the cooling power of the battery cooling branch circuit is increased by Pc.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery is located is increased, so that the cooling power of the first battery is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening of the regulating valve that controls the circuit in which the second battery is located is increased, so that the cooling power of the second battery is increased by Pc2.
  • P11 ⁇ P12 and P21 - P11 Pc1
  • the cooling power of the first battery is kept constant, or the opening degree of the regulating valve 58 that controls the circuit in which the first battery is located is reduced, so that the cooling power of the first battery is reduced.
  • P12 ⁇ P22 and P22 - P12 Pc2
  • the second temperature threshold for example, 0 ° C
  • the heater The heating power of 53 increases Pc, increasing the rotational speed of the pump 51.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the heating power of the first battery 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the heating power of the second battery 62 is increased by Pc2.
  • P11 ⁇ P12, and P21 - P11 Pc1
  • the heating power of the first battery 61 is kept constant, or the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is decreased, so that the heating power of the first battery 61 is reduced.
  • P12 ⁇ P22 and P22 - P12 Pc2
  • the cooling power of the second battery 62 is kept constant, or the opening degree of the regulating valve 58 of the circuit in which the second battery 62 is controlled is decreased, so that the heating power of the second battery 62 is reduced.
  • P11 ⁇ P21, and P11 - P21 Pc1
  • the opening degree of the regulating valve 58 that controls the circuit in which the first battery 61 is located is increased, so that the heating power of the first pool 61 is increased by Pc1.
  • P12 ⁇ P22, and P12 - P22 Pc2
  • the opening degree of the regulating valve 58 that controls the circuit in which the second battery 62 is located is increased, so that the heating power of the second battery 62 is increased by Pc2.
  • the temperature adjustment method of the vehicle battery according to the embodiment of the present disclosure, first, respectively, the required powers of the plurality of parallel batteries are respectively acquired, and then the actual powers of the plurality of parallel batteries are respectively obtained, and finally, according to the requirements of the plurality of parallel batteries respectively. Power and actual power regulate the temperature of multiple parallel cells. Therefore, the method can accurately control the heating power and the cooling power of each battery according to the actual state of each battery, and adjust the temperature when the battery temperature is too high or too low, so that the temperature of the battery is maintained at a preset range. To avoid the situation where the performance of the vehicle battery is affected by temperature.
  • the present disclosure also proposes another temperature regulation system for the vehicle battery.
  • the temperature adjustment system includes a plurality of compressors 1, a plurality of condensers 2, a plurality of battery cooling branches 4, and a plurality of battery temperature adjusting devices 5.
  • the plurality of condensers 2 are connected to the plurality of compressors 1, the plurality of battery cooling branches 4 are connected between the plurality of compressors 1 and the plurality of condensers 2, and the plurality of battery cooling branches 4 are connected to each other.
  • the battery temperature adjusting device 5 is respectively connected to the plurality of batteries 6 and the plurality of battery cooling branches 4 for respectively acquiring the required power P1 and the actual power P2 of the plurality of batteries, and the temperature of the battery according to the required power P1 and the actual power P2. The adjustment is performed, and the cooling capacity of the plurality of compressors 1 to the battery cooling branch 4 corresponding to the battery 6 is adjusted according to the required power P1 and the actual power P2, thereby adjusting the corresponding cooling power.
  • adjusting the temperature of the battery according to the required power and P1 and the actual power P2 specifically includes: adjusting the temperature of the battery within the target time t according to the required power P1 and the actual power P2 to achieve the target. temperature.
  • the battery temperature adjusting device 5 performs temperature adjustment for each battery 6 according to the required power P1 and the actual power P2, it is ensured that the heating power of the vehicle battery is accurately controlled according to the actual state of each battery 6 within the target time t. And cooling power to adjust the temperature when the vehicle battery temperature is too high or too low.
  • the battery cooling branch 4 may include a first battery cooling branch 401 and a second battery cooling branch.
  • the path 402 corresponds to the first battery 61 and the second battery 62, respectively.
  • the battery cooling branch 4 has two pipes, the first pipe is connected to the compressor 1, and the second pipe is connected to the battery temperature adjusting device 5, wherein The first pipe and the second pipe are adjacent to each other independently.
  • first battery cooling branch 401 where the first battery 61 is located as an example, when the temperature of the first battery 61 is too high, the vehicle air conditioning refrigeration function is turned on, the battery cooling function is activated, and the coolant in the first pipeline and the second pipeline (
  • the flow directions of the refrigerant are: compressor 1 - condenser 2 - first battery cooling branch 401 - compressor 1; first battery cooling branch 401 - battery temperature adjusting device 5 - first battery 61 - battery temperature Adjustment device 5 - first battery cooling branch 401.
  • each battery temperature adjusting device 5 can adjust the cooling power/heating power of the battery by adjusting the flow rate of the coolant flowing into the corresponding battery cooling branch 4 according to the required power of the corresponding battery and P1 and the actual power P2, thereby It is ensured that the temperature of the battery is adjusted according to the actual state of each battery within the target time t.
  • the battery temperature adjusting device 5 can ensure the temperature between the batteries by adjusting the power of the battery cooling branch 4 corresponding to the battery according to the temperature of each battery. balanced.
  • the temperature can be adjusted within the target time when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the situation that the performance of the vehicle battery is affected by the temperature, and each can be guaranteed.
  • the temperature between the batteries is balanced.
  • the battery cooling branch 4 may include a heat exchanger 41 including a first duct and a second duct, and the second duct is connected to the battery temperature adjusting device 5,
  • the first pipe is in communication with the compressor 1, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 may include a flow path (not specifically shown) that regulates the temperature of the battery, and the flow path is disposed in the battery 6.
  • a pump 51, a medium container 52, a heater 53, and a controller (not specifically shown) are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the plurality of batteries 6 and the actual power P2 of the battery, and adjusts the temperature of the battery 6 according to the required power P1 and the actual power P2 of each battery.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the first battery cooling branch 401 may further include a first regulating valve 411 and a third regulating valve 413; the second battery cooling branch 402 may further include a second regulating valve 412 and a fourth regulating valve 414,
  • first regulating valve 411 and a third regulating valve 413
  • second battery cooling branch 402 may further include a second regulating valve 412 and a fourth regulating valve 414,
  • FIG. 11A For the connection manner of each regulating valve, refer to FIG. 11A, which is not described herein.
  • the compressor 11 controls the flow rate of the refrigerant flowing to the 401 branch and the 402 branch, respectively, through the first regulating valve 411 and the second regulating valve 412.
  • the compressor 12 controls the flow rates of the refrigerants of the flow rate 401 branch and the 402 branch, respectively, through the third regulator 413 valve and the fourth regulator valve 414.
  • the cooling power of the battery cooling branch 401 is related to the refrigerant flow rates of the first regulator valve 411 and the third regulator valve 413.
  • the cooling power of the battery cooling branch 402 is related to the refrigerant flow rates of the second regulator valve 412 and the fourth regulator valve 414.
  • the battery cooling branch 4 may not be provided with the heat exchanger 41.
  • the refrigerant flowing in the battery cooling branch 4 is the refrigerant. If the heat exchanger 41 is provided, the refrigerant flows in the first pipe in the battery cooling branch 4, and the coolant flows in the second pipe.
  • the battery temperature adjusting device 5 may further include a first temperature sensor 55 disposed at an inlet of the flow path, a second temperature sensor 56 disposed at an outlet of the flow path, and a flow rate Sensor 57. It will be appreciated that the inlet and outlet locations of the flow path are not absolute, but are determined based on the steering of the pump 51.
  • the heat exchanger 41 may be a plate heat exchanger, and the plate heat exchanger may be installed inside the vehicle air conditioner, so that the entire refrigerant circuit is inside the vehicle air conditioner, facilitating the commissioning of the vehicle air conditioner, and the vehicle air conditioner can be separately supplied. And assembly, at the same time, the car air conditioner only needs to be refilled once during the installation process.
  • the coolant flows into the inside of the battery 6 from the inlet of the flow path, and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery 6 and the cooling liquid.
  • the pump 51 is primarily used to provide power.
  • the media container 52 is primarily used to store coolant and accept coolant added to the temperature regulation system.
  • the coolant in the media container 52 is automatically replenished as the coolant in the temperature regulation system is reduced.
  • the heater 53 can be a PTC heater that can communicate with the controller in CAN to provide heating power to the on-board battery temperature regulation system and is controlled by the controller. Moreover, the heater 53 is not directly in contact with the battery 6, and has high safety, reliability, and practicality.
  • the first temperature sensor 55 is for detecting the temperature of the flow path inlet coolant
  • the second temperature sensor 56 is for detecting the temperature of the flow path outlet coolant.
  • the flow rate sensor 57 is used to detect the flow rate information of the coolant in the corresponding pipe.
  • the second electronic valve 43 is used to control the opening and closing of the respective battery cooling branch 4, and the second expansion valve 42 can be used to control the flow of coolant in the responsive battery cooling branch 4.
  • the controller can adjust the temperature of the two batteries by adjusting the opening degrees of the first to fourth regulating valves 411-414 while controlling the coolant flow rates of the two cooling branch circuits of the first battery 61 and the second battery 62.
  • the controller can also perform CAN communication with the vehicle air conditioner and the heater 53, and can control the rotation speed of the pump 51 and monitor the temperature and flow rate information of the coolant, and can also manage the battery 6 to detect the voltage and temperature information of the battery 6. Controls the on/off of the temperature regulation system of the vehicle battery.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioning controller.
  • the battery thermal management controller may be electrically connected to the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57.
  • the battery thermal management controller performs CAN communication with the pump 51 and the heater 53, and according to the specific heat capacity and medium of the medium. The density, the cross-sectional area of the flow path, the actual power P2, the rotational speed of the pump 51, and the power of the control heater 53 are obtained.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected to the expansion valve and the electronic valve, and the vehicle air conditioner controller can perform CAN communication with the battery management controller and the battery thermal management controller and the compressor 1 to obtain the required power P1 according to the battery management controller and
  • the actual power P2 obtained by the battery thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the battery management controller may be configured to respectively acquire a first parameter when each battery is turned on, and generate a first required power of each battery according to the first parameter, and acquire each battery separately. a second parameter at the time of temperature adjustment, and generating a second required power of each battery according to the second parameter, and generating a required power of each battery according to the first required power of each battery and the second required power of each battery P1.
  • the first parameter is the initial temperature and the target temperature when the battery 6 is turned on, and the target time t from the initial temperature to the target temperature, and the battery management controller acquires the first between the initial temperature and the target temperature.
  • a temperature difference ⁇ T 1 and generating a first required power according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery 6
  • M is the mass of the battery 6.
  • the second parameter is the average current I of each battery 6 within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery 6.
  • the battery thermal management controller generates a second temperature difference of each battery according to an inlet temperature detected by the first temperature sensor 55 of the loop in which each battery 6 is located and an outlet temperature detected by the second temperature sensor 56, respectively.
  • ⁇ T 2 and the actual power P2 of each battery is generated based on the second temperature difference ⁇ T 2 of each battery and the flow rate v detected by the flow rate sensor 57.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle needs temperature adjustment, the temperature adjustment function is turned on, and the low speed information is sent to the pump 51, and the pump is at a default speed (such as a low speed). )start working. Then, the battery thermal management controller acquires an initial temperature (ie, current temperature) of each battery 6, a target temperature, and a target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions. And calculating the first required power of each battery according to formula (1).
  • the battery management controller separately obtains the average current I of each battery 6 for a preset time, and calculates the second required power of each battery according to formula (2). Then, the battery management controller calculates the required power P1 according to the first required power and the second required power of each battery 6 (that is, the required power of the battery 6 is adjusted to the target temperature within the target time). Moreover, the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 corresponding to each battery to detect the temperature information, and respectively obtains the flow rate information detected by the flow rate sensor 57, and calculates each according to formula (3). The actual power P2 of the battery 6.
  • the vehicle air conditioner controller can adjust the cooling power of the battery by adjusting the flow rate of the coolant flowing into the corresponding battery cooling branch 4 according to the required power of the corresponding battery and the P1 and the actual power P2, or by adjusting the heating of the heater.
  • the power can thus be adjusted to ensure that the temperature of the battery is adjusted according to the actual state of each battery during the target time t.
  • the battery management controller may be configured to generate a total required power Pz according to the required power P1 of each battery, and generate a total maximum cooling power of the plurality of compressors according to the maximum cooling power P of the plurality of compressors.
  • the vehicle air conditioning controller determines whether the total required power P Z is greater than the total maximum cooling power P5 of the plurality of compressors, wherein when the total required power P Z is greater than the total maximum cooling power P5 of the plurality of compressors, the vehicle air conditioning controller will be multiple The power of the compressor 1 to the battery cooling branch 4 corresponding to the battery is adjusted to the maximum; when the total required power Pz is less than or equal to the total maximum cooling power P5 of the plurality of compressors, the vehicle air conditioning controller is based on the total required power Pz and the total maximum The difference between the cooling power P5 adjusts the power of the battery cooling branch 4 corresponding to the battery 6.
  • the battery management controller can calculate the total required power Pz of the entire temperature adjustment system according to the required power P1 of each battery, that is, the required power P1 of each battery.
  • the total required power Pz can be obtained by adding, and the vehicle air conditioner controller calculates the total maximum cooling power P5 of the plurality of compressors according to the maximum cooling power P of each compressor 1, that is, the maximum cooling power P of each compressor 1 Add the total maximum cooling power P5.
  • the vehicle air conditioner controller determines whether Pz>P5, and if so, the vehicle air conditioner controller controls to adjust the opening degree of each of the second expansion valves 42 to the maximum to increase the inflow to each of the batteries; the cooling of the cooling circuit 4 The flow rate allows the battery to cool down within the target time. And if Pz ⁇ P5, the vehicle air conditioner controller adjusts the opening degree of each second expansion valve 42 according to the difference between Pz and P5, wherein the larger the absolute value of the difference between Pz and P5, the second expansion The smaller the opening degree of the valve 42, the purpose of saving energy.
  • the battery management controller is further configured to: further detect a temperature of the plurality of batteries, and control the temperature adjustment system to enter when the temperature of any one of the plurality of batteries 6 is greater than the first temperature threshold
  • the cooling mode and when the temperature of any one of the plurality of batteries is less than the second temperature threshold, controls the temperature adjustment system to enter the heating mode.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of each battery 6 in real time and makes a determination. If the temperature of one of the batteries 6 is higher than 40 ° C, the temperature of the battery 6 is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery 6, the battery 6 needs to be cooled, and the battery management controller controls The temperature adjustment system enters the cooling mode, and sends battery cooling function activation information to the air conditioning system, and controls the corresponding second electronic valve 43 to open, so that the coolant exchanges heat with the battery 6 to lower the temperature of the battery 6.
  • the battery management controller controls The temperature regulating system enters the heating mode, controls the second electronic valve 43 to close, and controls the corresponding heater 53 to open to provide heating power to the temperature regulating system.
  • the heater 53 provides heating power to heat the first battery 61.
  • the flow direction of the coolant in the circuit where the first battery 61 is located is: the medium container 52 - the heat exchanger 41 - heating
  • the unit 53 (open) - the pump 51 - the first temperature sensor 55 - the first battery 61 - the second temperature sensor 56 - the flow rate sensor 57 - the medium container 52, circulates in such a manner that the temperature rise of the battery first battery 61 is achieved.
  • the vehicle air conditioning controller acquires the required power P1 and the actual power of the battery.
  • the power difference between P2, and the power of the compressor 1 for cooling the battery is increased according to the power difference, or the coolant flow rate of the battery cooling branch 4 corresponding to the battery 6 is increased to increase the cooling power of the battery, and at some When the required power P1 of the battery is less than or equal to the actual power P2 corresponding to the battery, the power of the compressor is reduced or the power of the compressor is kept constant, or the coolant flow rate of the battery cooling branch 4 corresponding to the battery 6 is adjusted to Reduce the cooling power of the battery.
  • the vehicle air conditioner controller when operating in the cooling mode, acquires P1 and P2 of each battery 6, respectively, and makes a determination. If the P1 of one of the batteries 6 is greater than P2, it means that if the cooling of the battery 6 cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller obtains the P1 and P2 of the battery.
  • the power difference is increased, and the power of the compressor 1 for cooling the battery is increased according to the power difference, or the coolant flow rate of the battery cooling branch 4 where the battery is located is increased to increase the cooling power of the battery, wherein P1 and P2
  • P1 and P2 The greater the power difference, the more the power of the corresponding compressor 1 and the coolant flow rate of the battery increase, so that the temperature of the battery is lowered to the target temperature within a preset time t.
  • P1 of one of the batteries 6 is less than or equal to P2
  • the power of the compressor 1 for cooling the battery may be kept constant or the power of the compressor 1 may be appropriately reduced, or the battery cooling branch where the battery is located may be reduced 4
  • the coolant flow reduces the cooling power of the battery.
  • the battery management controller transmits information for turning off the temperature adjustment function to the vehicle air conditioner via CAN communication, and the vehicle air conditioner controller controls all of the second electronic valves 43 to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery 6 is higher than 35 ° C, the vehicle air conditioner controller appropriately increases the power of the corresponding compressor 1 or the rotation speed of the pump to make the The battery is cooled as soon as possible.
  • the battery thermal management controller acquires the required power P1 and the actual power P2 of the battery.
  • the power difference between the two increases the power of the heater 53 for heating the battery according to the power difference to increase the heating power of the battery, and decreases the heater 53 when the required power P1 of a certain battery is less than or equal to the actual power P2. The power, or keep the power of the heater 53 unchanged.
  • the battery thermal management controller and the battery management controller respectively acquire P1 and P2 of each battery 6, and make a determination. If the P1 of one of the batteries 6 is greater than P2, it means that if the heating of the battery 6 cannot be completed within the target time according to the current heating power or the coolant flow rate, the battery thermal management controller acquires the P1 and P2 of the battery. The power difference between them is increased, and the power for heating the heater 53 of the battery 6 is increased in accordance with the power difference so that the battery can complete the temperature adjustment within the target time. Among them, the larger the difference between P1 and P2, the more the power of the heater 53 is increased.
  • the battery thermal management controller can appropriately reduce the power of the heater 53 to save power or keep the power of the heater 53 unchanged.
  • a preset temperature for example, 10 ° C
  • the heating of the battery 6 is completed, and the battery thermal management controller controls the heater 53 to be turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery 6 is still lower than 10 ° C, the battery thermal management controller appropriately increases the power of the heater 53 so that the battery is warmed up as soon as possible. .
  • the heating functions of the first battery 61 and the second battery 62 are independent of each other, the first battery 61 and the second battery 62 are respectively heated by one heater, so only the first battery 61 is used.
  • the power adjustment of the battery heating function is explained. (Assume that P11 is the required power of the first battery 61, P21 is the actual power of the first battery 61, and the power difference between P11 and P21 is P31)
  • the heating power of the heater 53 is increased by P31
  • the rotation speed of the pump 51 is increased.
  • the battery thermal management controller is further configured to reduce the rotation speed of the pump 51 when the required power P1 of a certain battery is less than the corresponding actual power P2, and the required power P1 of the certain battery is greater than the corresponding When the actual power P2 is increased, the rotational speed of the pump 51 is increased.
  • the battery thermal management controller controls the rotation speed of the corresponding pump 51 to be reduced to save electric energy. If the P1 of a certain battery 6 is greater than P2, the battery thermal management controller controls the speed of the pump 51 to increase, in addition to controlling the power of the corresponding heater 53 or the compressor 1, or increasing the coolant flow rate of the circuit in which the battery is located. The mass of the coolant flowing through the cross section of the cooling flow path per unit time can be increased, thereby increasing the actual power P2 of the battery to achieve temperature regulation within the target time t.
  • the controller is further configured to determine the activated according to the required power P1 of each battery and the maximum cooling power P of each compressor. The number of compressors, and when the temperature regulation system is in the cooling mode, controls the corresponding number of compressors 1 to start.
  • the battery management can generate the total required power Pz according to the required power P1 of each battery, and the controller controls the plurality of compressors 1 to start simultaneously when determining that the total required power Pz is greater than the maximum cooling power P of the single compressor.
  • the controller acquires P1 of each battery 6, actual power P2 of each battery, and a single compressor.
  • the maximum cooling power P, and the P1 of each battery is added to calculate the total demand power Pz of the entire temperature regulation system, and the actual power P2 of each battery is added to obtain the total actual power Pf, which will be used for each compressor.
  • the sum of the maximum cooling powers can be calculated as the sum of the maximum cooling powers of all the compressors, P5.
  • the required power of the first battery 61 is P11, and the required power of the second battery 62 is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • the maximum cooling power P of each compressor is equal.
  • Pz ⁇ P only one compressor 1 needs to be controlled to provide cooling power, and two compressors 1 can also be controlled to work together. If P ⁇ Pz ⁇ P5, two compressors 1 are required to work together, and the initial cooling power of each compressor is Pz/2. If Pz ⁇ P5, the compressor 1 is controlled to operate according to the Pz cooling power, and by adjusting the opening degrees of the first to fourth regulating valves, the initial cooling power of the first battery cooling branch 401 is cooled according to the P11 cooling power, The initial cooling power of the two-cell cooling branch 402 is cooled according to the P21 cooling power.
  • each compressor operates according to the maximum cooling power P, and the initial cooling power of the first battery cooling branch 401 can be cooled according to the P5*[P11/(P11+P12)] cooling power, the second battery The initial cooling power of the cooling branch 402 can be cooled according to the P5*[P12/(P11+P12)] cooling power.
  • the battery management controller is further configured to increase the cooling of the battery 6 with a higher temperature when the temperature difference between the batteries 6 exceeds a set value when the temperature adjustment system is in the cooling mode.
  • the power is such that the temperature difference between the batteries 6 is reduced; when the temperature adjustment system is in the heating mode, when the temperature difference between the batteries exceeds a set value, the heating power of the battery 6 having a lower temperature is increased.
  • the battery management controller can calculate the required power P1 of the first battery 61 and the second battery 62, respectively, and then according to the P1 and the respectively of each battery.
  • the maximum cooling power P of the compressor adjusts the opening degree of the corresponding second expansion valve 42.
  • the battery management controller continues to adjust the opening degree of the second expansion valve 42 according to the actual power P2 of each battery.
  • the battery management controller adjusts the first battery cooling branch 401 and the second battery by adjusting the opening degrees of the first to fourth regulating valves 411-414 according to the temperature condition between the first battery 61 and the second battery 62.
  • the coolant flow rate of the cooling branch 402 is distributed so as to control the equalization of the temperatures of the first battery 61 and the second battery 62. Wherein, when the temperature of the first battery 61 is higher than the temperature of the second battery 62 and the difference exceeds the set value, the opening degrees of the first regulating valve 411 and the third regulating valve 413 may be increased, and the second regulating valve 412 may be decreased.
  • the temperature adjustment system of the on-vehicle battery can also be illustrated in FIGS. 11B and 11C.
  • 11B is a plurality of compressors (ie, the first compressor 11 and the second compressor 12 in FIG. 11B) are connected in parallel and share one expansion valve, and each battery cooling branch increases the regulating valve (ie, the first regulating valve 411).
  • the second regulating valve 412) adjusts the flow rate of the coolant flowing into each of the battery cooling branches through the regulating valve to adjust the cooling power of each battery.
  • 11C is a plurality of compressors (ie, the first compressor 11 and the second compressor 12 in FIG. 11C) are connected in parallel and share a condenser 2, and each of the battery cooling branches is provided with a second expansion valve 42 and an electron.
  • the valve adjusts the flow rate of the coolant flowing into each of the battery cooling branches by adjusting the opening degree of the second expansion valve 42 to adjust the cooling power of each battery, and controls the opening and closing of each of the battery cooling branches through the electronic valve.
  • the sum of the required power of the two batteries (total demand power Pz).
  • Pf P21+P22, P21 is the actual power of the battery, P22 is the actual power of the battery, and Pf is the sum of the actual power of the first battery and the second battery.
  • P is the maximum cooling power of the compressor
  • Pz ⁇ P only one compressor is needed to provide cooling power, or two compressors work together; if P ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor It is Pz/2; if Pz>P5, two compressors are required to work together, and each compressor operates at the maximum cooling power P.
  • the compressor When Pz ⁇ P5, the compressor operates according to the Pz cooling power, the initial cooling power of the first battery 61 cooling branch is cooled according to the P11 cooling power, and the second battery 62 cooling branch initial cooling power is cooled according to the P21 cooling power.
  • Pz>P5 each compressor operates at the maximum cooling power P.
  • the initial cooling power of the cooling branch of the first battery 61 is cooled according to the cooling power of P5*[P11/(P11+P12)]; the initial cooling power of the cooling branch of the second battery 62 is cooled according to P5*[P12/(P11+P12)] The power is cooled.
  • the cooling power of the battery needs to be adjusted, as follows:
  • the cooling power of the first battery 61 is kept constant, or the opening degree of the expansion valve 8 of the circuit in which the first battery 61 is controlled is decreased, and the rotation speed of the pump in which the circuit is controlled is lowered.
  • the cooling power of the first battery 61 is reduced.
  • the expansion valve opening of the road is such that the cooling power of the cooling branch of the second battery 62 is cooled according to the cooling power of P5*[P12/(P11+P12)].
  • the cooling power of the second battery 62 is kept unchanged, or the opening degree of the expansion valve of the circuit in which the second battery 62 is controlled is decreased, and the rotation speed of the pump of the circuit in which the circuit is controlled is lowered, so that The cooling power of the second battery 62 is reduced.
  • the first battery 61 and the second battery 62 respectively perform heating demand power of the first battery 61 with one heater, and P21 is the actual heating power of the second battery 61.
  • the temperature value is a preset value, that is, if T61-T62>3 ° C. Then, the battery thermal management controller controls the opening degree of the second expansion valve 42 in the cooling branch of the first battery 61 to increase, or simultaneously controls the rotation speed of the pump in the branch where the first battery 61 is located, and controls the cooling branch of the second battery 62.
  • the opening degree of the second expansion valve 42 is reduced, or at the same time, the rotation speed of the pump in the branch where the second battery 62 is located is lowered, so that the cooling power of the first battery 61 is increased, and the cooling power of the second battery 62 is reduced, thereby realizing The temperatures of the first battery 61 and the second battery 62 are equalized.
  • the battery thermal management controller controls the opening degree of the second expansion valve 42 in the cooling branch of the second battery 62 to increase, or simultaneously controls the rotation speed of the pump in the branch where the second battery 62 is located, Controlling the decrease in the opening degree of the second expansion valve 42 in the cooling branch of the first battery 61, or simultaneously controlling the decrease in the rotational speed of the pump in the branch in which the first battery 61 is located, so as to increase the cooling power of the second battery 62, the first battery The cooling power of 61 is reduced, thereby achieving temperature equalization of the first battery 61 and the second battery 62.
  • the battery thermal management controller controls the heating of the first battery 61.
  • the heating power of the heater 53 in the circuit is reduced, and the rotation speed of the pump 51 of the circuit is lowered, and the heating power of the heater 53 in the heating circuit of the second battery 62 is controlled to increase, and the rotation speed of the circuit pump is increased to make the first
  • the heating power of the battery 61 is increased, and the heating power of the second battery 62 is decreased, thereby achieving temperature equalization of the first battery 61 and the second battery 62.
  • the battery thermal management controller controls the heating power of the heater 53 in the heating circuit in which the first battery 61 is located to increase, and increases the rotational speed of the pump 51 of the circuit, and controls the heating circuit of the second battery 62.
  • the heating power of the heater 53 is reduced, and the circuit pump rotation speed is lowered to reduce the heating power of the first battery 61, and the heating power of the second battery 62 is increased, thereby realizing the first battery 61 and the second battery 62.
  • the temperature is balanced.
  • FIG. 11B differs from FIG. 11C in that FIG. 11B is the cooling power between the first battery cooling branch 401 where the first battery 61 is located and the second battery cooling branch 402 where the second battery 62 is located.
  • the regulating valve realizes power regulation; the two battery cooling branches of Fig. 11C are regulated by the expansion power to achieve cooling power of the two cooling branches.
  • the temperature adjustment system can accurately control the heating power and the cooling power of each battery according to the actual state of each battery, and adjust the temperature when the battery temperature is too high or too low to maintain the temperature of the battery. In the preset range, the situation that the performance of the vehicle battery is affected by the temperature is avoided, and since the plurality of battery cooling branches are connected to each other, the battery temperature adjusting device can adjust the power of the battery cooling branch corresponding to each battery to ensure The temperature is balanced between the individual batteries.
  • FIG. 12a is a flowchart of a temperature adjustment method of a vehicle battery according to a sixth embodiment of the present disclosure.
  • the vehicle battery temperature regulation system includes a plurality of compressors and a plurality of battery cooling branches corresponding to the plurality of compressors, a plurality of batteries, and a plurality of battery temperature adjustments connected between the plurality of batteries and the plurality of battery cooling branches Device.
  • the method for adjusting the temperature of the vehicle battery includes the following steps:
  • separately acquiring the required power P1 of the plurality of batteries specifically includes:
  • the required power P1 of each battery is generated according to the first required power of each battery and the second required power of each battery.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature, and the first required power of each battery is generated according to the first parameter. Specifically, the first temperature difference ⁇ T 1 between the initial temperature and the target temperature is obtained. The first required power is generated based on the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is the average current I of each battery for a preset time
  • the second required power of each battery is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • acquiring the actual power P2 of the plurality of batteries separately includes:
  • a second temperature difference ⁇ T 2 is generated according to an inlet temperature and an outlet temperature of a flow path of each battery.
  • the actual power P2 of each battery is generated according to the second temperature difference ⁇ T 2 and the flow rate v of each battery.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the area of the flow path.
  • the corresponding battery temperature adjustment device of each battery is controlled according to the required power P1 and the actual power P2 to adjust the temperature of the battery, specifically: according to the required power P1 and the actual power P2 at the target
  • the corresponding battery temperature adjustment device of each battery is controlled during time t to adjust the temperature of the battery to reach the target temperature.
  • the initial temperature ie, the current temperature
  • the target temperature ie, the target temperature
  • the target time t can be preset according to actual conditions
  • the first required power is calculated according to formula (1).
  • the average current I of each battery in a preset time is respectively obtained, and the second required power of each battery is separately calculated according to formula (2).
  • the required power P1 of each battery is calculated according to the first required power and the second required power of each battery, respectively.
  • the inlet temperature and the outlet temperature of each battery are respectively obtained, and the flow velocity information is acquired, and the actual power P2 of each battery is calculated according to the formula (3).
  • the cooling power/heating power of the battery can be adjusted by adjusting the flow rate of the coolant flowing into the corresponding battery cooling branch or the corresponding heater power, thereby ensuring The temperature of the battery is adjusted according to the actual state of each battery during the target time t.
  • the temperature of each battery can be balanced by adjusting the cooling power of the battery cooling branch corresponding to the battery according to the temperature of each battery. Therefore, the temperature can be adjusted within the target time when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the situation that the performance of the vehicle battery is affected by the temperature.
  • the temperature adjustment method of the vehicle battery may further include:
  • the total maximum cooling power P5 of the plurality of compressors is generated based on the maximum cooling power P of the plurality of compressors.
  • the battery cooling branch corresponding to the battery is determined according to the difference between the required power P Z of the total battery and the total maximum cooling power P5 The cooling power is adjusted.
  • the required power P Z of the total battery of the entire temperature adjustment system can be calculated according to the required power P1 of the battery of each battery, that is, the required power P1 of the battery of each battery is added to obtain the required power of the total battery.
  • the total maximum cooling power P5 of the plurality of compressors is calculated according to the maximum cooling power P of each compressor, that is, the maximum cooling power P of each compressor is added to obtain the total maximum cooling power P5.
  • the control adjusts the opening degree of each of the second expansion valves to the maximum to adjust the coolant flow rate of the plurality of compressors to the battery cooling branch corresponding to the battery to the maximum, So that the battery can complete the cooling within the target time t.
  • the opening degree of the second expansion valve is adjusted according to the difference between P Z and P5, wherein the larger the absolute value of the difference between P Z and P5 is, the opening degree of the second expansion valve The smaller, the goal of saving energy.
  • the temperature adjustment method of the battery may further include the following steps:
  • the temperature of the battery is detected and it is judged whether the temperature is greater than the first temperature threshold or less than the second temperature threshold (S10"-S20").
  • the temperature adjustment system enters a cooling mode (S30"), wherein the first preset temperature threshold may be preset according to actual conditions, for example, may be 40 ° C.
  • the temperature adjustment system enters a heating mode (S40"-S50").
  • the second preset temperature threshold may be preset according to actual conditions, for example, may be 0 ° C.
  • the temperature of each battery is detected in real time and judged. If the temperature of one of the batteries is higher than 40 ° C, indicating that the temperature of the battery is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery, the battery needs to be cooled, and the temperature adjustment system enters the cooling mode. And send the battery cooling function start information to the air conditioning system. If the temperature of a battery is lower than 0 ° C, the temperature of the battery is too low at this time, in order to avoid the influence of low temperature on the performance of the battery, the battery needs to be heated, and the temperature adjustment system enters the heating mode. Control the corresponding battery cooling branch to turn off and control the heater to turn on to provide heating power to the battery.
  • the corresponding battery temperature adjustment device of each battery is controlled according to the required power P1 of the battery and the actual power P2 of the battery.
  • the required power P1 of the battery of a battery is greater than the actual power P2 of the battery corresponding to the battery, the power difference between the required power P1 of the battery of the battery and the actual power P2 of the battery is obtained, and is increased according to the power difference.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference is increased by the power of the compressor for cooling the battery, or the coolant flow rate of the battery cooling branch where the battery is located to increase the cooling power of the battery, wherein the power difference between P1 and P2 is larger, correspondingly The more the power of the compressor and the coolant flow rate of the battery are increased, so that the temperature of the battery is lowered to the target temperature within a preset time t.
  • the power of the compressor for cooling the battery can be kept constant or the power of the compressor can be appropriately reduced, or the coolant flow of the battery cooling branch where the battery is located can be reduced. , reduce the cooling power of the battery.
  • the temperature of all the batteries is lower than 35 ° C
  • the battery cooling is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the second electronic valve is controlled to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is still higher than 35 ° C, then the power of the corresponding compressor is appropriately increased, so that the battery is cooled as soon as possible.
  • the corresponding battery temperature adjustment device of each battery is controlled according to the required power P1 of the battery and the actual power P2 of the battery.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the heating temperature of the battery cannot be completed within the target time according to the current heating power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the heater used to heat the battery so that the battery can complete temperature regulation within the target time. If the P1 of a battery is less than or equal to P2, the power of the heater can be appropriately reduced to save power or keep the power of the heater unchanged.
  • the battery heating is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the heater is turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery is lower than 10 ° C, the power of the heater is appropriately increased to complete the temperature rise as soon as possible.
  • the first battery and the second battery are respectively heated by one heater, so only the first battery is taken as an example to describe the battery heating. Power adjustment of the function. (Assume that P11 is the required power of the first battery, P21 is the actual power of the first battery, and the power difference between P11 and P21 is P31)
  • the temperature adjustment method of the vehicle battery may further include: if the required power P1 of a certain battery is less than the corresponding actual power P2, reducing the rotation speed of the pump; if the required power P1 of a certain battery is greater than the corresponding The actual power P2 increases the speed of the pump.
  • the rotation speed of the control pump is lowered to save electric energy. If the P1 of a certain battery is greater than P2, in addition to controlling the power of the heater or the compressor or increasing the coolant flow rate of the circuit in which the battery is located, the rotation speed of the pump can be controlled to increase the flow through the cooling flow path per unit time. The coolant mass in cross section, thereby increasing the actual power P2 of the battery to achieve temperature regulation during the target time t.
  • the temperature adjustment method of the battery may further include: determining to start according to the required power P1 of each battery and the maximum cooling power of each compressor The number of compressors. When the temperature regulation system is in the cooling mode, a corresponding number of compressors are controlled to start.
  • Determining the number of compressors to be started according to the required power P1 of each battery and the maximum cooling power P of each compressor specifically includes: generating a total actual power Pz according to the required power P1 of each battery; determining whether the total required power Pz is greater than a single The maximum cooling power P of the compressor; if it is greater than the maximum cooling power P of the single compressor, the multiple compressors are controlled to start at the same time.
  • the temperature adjustment system enters the cooling mode
  • P1 of each battery is separately acquired, and P1 of each battery is added to calculate the total required power P Z of the entire temperature adjustment system. If the Pz is greater than the maximum cooling power of the single compressor, then the plurality of compressors are controlled to start the operation at the same time, and the flow rate of the coolant flowing into each of the battery cooling branches is adjusted by adjusting the opening degree of the corresponding regulating valve to satisfy the corresponding battery. Cooling cooling power demand.
  • the controller acquires P1 of each battery, actual power P2 of each battery, and a single compressor.
  • the maximum cooling power P, and the P1 of each battery is added to calculate the total required power P Z of the entire temperature regulating system, and the actual power P2 of each battery is added to obtain the total actual power Pf, which will be used for each compressor.
  • the sum of the maximum cooling powers can be calculated as the sum of the maximum cooling powers of all the compressors, P5.
  • the required power of the first battery is P11, and the required power of the second battery is P12.
  • the actual power of the first battery is P21, and the actual power of the second battery is P22.
  • the maximum cooling power P of each compressor is equal.
  • Pz ⁇ P only one compressor needs to be controlled to provide cooling power, and two compressors can also be controlled to work together. If P ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor is Pz/2. If Pz ⁇ P5, the compressor is controlled to operate according to the Pz cooling power, and by adjusting the opening degrees of the first to fourth regulating valves, the initial cooling power of the first battery cooling branch is cooled according to the P11 cooling power, and the second battery The cooling branch initial cooling power is cooled according to the P21 cooling power.
  • each compressor operates according to the maximum cooling power P, and the initial cooling power of the first battery cooling branch can be cooled according to P5*[P11/(P11+P12)] cooling power, and the second battery is cooled.
  • the initial cooling power of the branch can be cooled according to the P5*[P12/(P11+P12)] cooling power.
  • the cooling power of the battery having a higher temperature is increased to reduce the between the batteries.
  • Temperature difference when the temperature adjustment system is in the heating mode, when the temperature difference between the batteries exceeds a set value, the heating power of the battery having a lower temperature is increased.
  • the required power P1 of the first battery and the second battery can be separately calculated, and then the corresponding adjustment is made according to the P1 of each battery and the maximum cooling power P of the corresponding compressor, respectively.
  • the opening degree of the second expansion valve 42 is continuously adjusted according to the actual power P2 of each battery.
  • the coolant flow distribution of the first battery cooling branch and the second battery cooling branch is adjusted by adjusting the opening degrees of the first to fourth regulating valves, thereby A balance is achieved to control the temperature of the first battery and the second battery.
  • the opening degrees of the first regulating valve and the third regulating valve may be increased, and the second regulating valve and the fourth regulating valve may be decreased
  • the opening degree is to increase the cooling power of the first battery; when the temperatures of the first battery and the second battery are equal, the opening degrees of the first to fourth regulating valves can be controlled to be the same.
  • the temperature adjustment system is in the heating mode, when the temperature of the first battery is lower than the temperature of the second battery and the difference exceeds the set value, the heating power of the heater corresponding to the first battery is increased. Thereby, the temperature balance between the two batteries can be maintained.
  • the heating power and the cooling power of each battery can be precisely controlled according to the actual state of each battery, and the temperature can be adjusted when the battery temperature is too high or too low.
  • the temperature of the battery is maintained within a preset range, and the temperature balance between the individual batteries can be ensured.
  • the temperature regulation of the vehicle includes temperature regulation of the battery and temperature regulation within the cabin.
  • the temperature regulation of the vehicle includes temperature regulation of the battery and temperature regulation within the cabin.
  • embodiments of the present disclosure propose a temperature adjustment system for a vehicle. A temperature adjustment method and a temperature adjustment system of a vehicle proposed by an embodiment of the present disclosure will be described below with reference to the accompanying drawings.
  • the temperature adjustment system includes a compressor 1, a condenser 2, an in-vehicle cooling branch 3, a battery cooling branch 4, and a battery temperature adjusting device 5.
  • the condenser 2 is connected to the compressor 1
  • the in-vehicle cooling branch 3 is connected between the compressor 1 and the condenser 2
  • the battery cooling branch 4 is connected between the compressor 1 and the condenser 2.
  • the battery temperature adjusting device 5 is connected to the battery cooling branch 4 for acquiring the required power P1 and the actual power P2 of the battery 6, and acquiring the in-vehicle temperature T of the vehicle and the air-conditioning set temperature Ts, and the power P1 according to the demand.
  • the interior temperature T and the air-conditioning set temperature Ts adjust the opening degrees of the in-vehicle cooling branch 3 and the battery cooling branch 4.
  • the battery temperature adjusting device 5 acquires the required power P1 of the battery 6, the actual power P2 of the battery 6, the in-vehicle temperature T of the vehicle, and the air-conditioning set temperature Ts, and adjusts the in-vehicle cooling branch according to P1, P2, T, and Ts.
  • the opening of the road 3 and the battery cooling branch 4 is to distribute the cooling capacity.
  • the flow direction of the coolant is: compressor 1 - condenser 2 - interior cooling branch 3 - compressor 1.
  • the battery cooling branch 4 has two pipes, the first pipe is in communication with the compressor 1, and the second pipe is in communication with the battery temperature regulating device 5, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the battery cooling function is started, and the flow directions of the coolant in the first pipe and the second pipe are: compressor 1 - condenser 2 - battery cooling branch 4 - compressor 1; battery cooling branch 4—Battery temperature adjustment device 5—Battery 6—Battery temperature adjustment device 5—Battery cooling branch 4.
  • the battery temperature adjusting device 5 starts the battery heating function, and the flow direction of the cooling liquid in the second pipe is: the battery cooling branch 4 - the battery temperature adjusting device 5 - the battery 6 - the battery temperature adjusting device 5—Battery cooling branch 4.
  • the cooling power of the battery temperature adjusting device 5 is provided by the vehicle air conditioner, and the cooling capacity is shared with the in-vehicle refrigeration system, thereby reducing the volume of the temperature regulating system and making the distribution of the coolant flow more flexible. Therefore, the system adjusts the power of the in-vehicle cooling branch and the battery cooling branch, and can quickly adjust the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained at a preset.
  • the range is to avoid the situation that the performance of the vehicle battery is affected by the temperature, and the temperature inside the vehicle can be satisfied if the temperature of the battery meets the requirements.
  • the battery temperature adjusting device 5 is specifically configured to: according to the required power P1, the actual power P2, the interior temperature T, and the air conditioning set temperature Ts, to the in-vehicle cooling branch 3 and the battery cooling branch 4 The power is adjusted so that the battery 6 reaches the target temperature within the target time t.
  • the battery temperature adjusting device 5 adjusts the power of the in-vehicle cooling branch 3 and the battery cooling branch 4 according to P1, P2, T, and Ts, it can be ensured that the actual state of the battery 6 is accurate within the target time t.
  • the heating power and the cooling power of the vehicle battery are controlled so that the temperature is adjusted when the temperature of the vehicle battery is too high or too low, and the temperature inside the vehicle is satisfied when the temperature of the battery satisfies the requirement.
  • the battery cooling branch 4 includes a heat exchanger 41 including a first duct and a second duct, and the second duct is connected to the battery temperature adjusting device 5,
  • a pipe is in communication with the compressor 1, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 includes a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is provided in the battery 6.
  • a pump 51, a medium container 52, a heater 53, and a controller are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the battery 6 and the actual power P2 of the battery, and adjusts the temperature of the battery 6 according to the required power P1 and the actual power P2, and the controller according to the required power P1, the actual power P2, and the interior temperature.
  • T and the air conditioning set temperature Ts adjust the power of the in-vehicle cooling branch 3 and the battery cooling branch 4 so that the interior temperature satisfies the demand if the temperature of the battery satisfies the requirements.
  • the in-vehicle cooling branch 3 may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioning controller.
  • the battery thermal management controller may be electrically connected to the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57.
  • the battery thermal management controller performs CAN communication with the pump 51 and the heater 53, and according to the specific heat capacity and medium of the medium. The density, the cross-sectional area of the flow path, the actual power P2, the rotational speed of the pump 51, and the power of the control heater 53 are obtained.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected to the expansion valve and the electronic valve, and the vehicle air conditioner controller can perform CAN communication with the battery management controller and the battery thermal management controller and the compressor 1 to obtain the required power P1 according to the battery management controller and
  • the actual power P2 obtained by the battery thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the following describes how the battery temperature adjusting device 5 adjusts the power of the in-vehicle cooling branch 3 and the battery cooling branch 4 according to P1, P2, T and Ts in combination with specific embodiments, so that when the temperature of the battery satisfies the requirements, Make the interior temperature meet the demand.
  • the controller may reduce the in-vehicle cooling branch 4 when the required power P1 is greater than the actual power P2 and the battery temperature is greater than the third temperature threshold T3. Power and increase the power of the battery cooling branch 4.
  • the third temperature threshold is greater than the first temperature threshold.
  • the third preset threshold may be 45 °C.
  • the battery management controller controls the temperature adjustment system to enter the cooling mode to cool the battery 6.
  • the vehicle air conditioner controller acquires P1 and P2, and when it is judged that the required power P1 is greater than the actual power P2, it is further determined whether the battery temperature is greater than 45 °C.
  • the vehicle air conditioner preferentially meets the cooling requirement of the battery 6, and the vehicle air conditioner controller controls to reduce the opening degree of the first expansion valve 32 and increase the opening degree of the second expansion valve 42 to The coolant flow rate of the cooling branch 3 in the vehicle is reduced, and the coolant flow rate of the battery cooling branch 4 is increased, so that the battery 6 is cooled as soon as possible.
  • the vehicle air conditioner controller controls the battery cooling branch 4 to be turned off. Thereby, it is possible to make the interior temperature satisfy the demand when the battery temperature satisfies the requirement.
  • the vehicle air conditioner controller may further be configured to increase the power of the in-vehicle cooling branch 4 when the battery temperature is less than the third temperature threshold and the in-vehicle temperature T is greater than the air conditioner set temperature Ts, and Reduce the power of the battery cooling branch 3.
  • the vehicle air conditioner controller further determines whether the interior temperature T is greater than the air conditioner set temperature Ts when determining that the battery temperature is less than 45 °C. If T>Ts, it means that the temperature T in the vehicle does not reach the set temperature, and the temperature inside the vehicle is high. In order to prevent the user from feeling uncomfortable, the in-vehicle refrigeration demand is preferentially satisfied, and the vehicle air conditioner controller increases the opening degree of the first expansion valve 32. The opening degree of the second expansion valve 42 is reduced.
  • the on-board air conditioner controller increases the opening degree of the second expansion valve 42 to increase the cooling power of the battery 6.
  • the battery temperature is lowered to 35 ° C, the battery 6 is cooled, and the vehicle air conditioner controller controls the second electronic valve 33 to be closed.
  • the battery temperature is processed hierarchically here, and the thresholds of temperature control are 40 ° C, 45 ° C and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery 6 is cooled.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2
  • the cooling demand in the vehicle is still prioritized. If the cooling power in the vehicle is sufficient and reaches equilibrium, the controller increases the battery cooling branch. 4 power to increase the cooling power of the battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • the controller acquires the power difference between the required power P1 and the actual power P2 when the required power P1 is greater than the actual power P2, and increases according to the power difference.
  • the vehicle may include a single battery 6, or may be composed of a plurality of batteries 6 connected in series, in parallel, or in a mixture.
  • the pump corresponds to two, and two pumps are The forward pump 511 and the one are the reverse pump 522.
  • the flow direction of the coolant in the second conduit is: the medium container 52 - the heat exchanger 41 - the heater 53 - the forward pump 511 - the first temperature sensor 55 - the first A battery 61 - a second battery 62 - a second temperature sensor 56 - a flow rate sensor 57 - a media container 52.
  • the medium container 52 the heat exchanger 41 - the heater 53 - the forward pump 511 - the first temperature sensor 55 - the first A battery 61 - a second battery 62 - a second temperature sensor 56 - a flow rate sensor 57 - a media container 52.
  • the flow direction of the coolant in the second conduit is: the medium container 52 - the flow rate sensor 57 - the second temperature sensor 56 - the second battery 62 - the first battery 61 - the first A temperature sensor 55 - a reverse pump 512 - a heater 53 - a heat exchanger 41 - a media container 52.
  • the controller acquires P1 of each battery, actual power P2 of each battery, and maximum cooling of a single compressor, respectively.
  • the power P, and the P1 of each battery is added, the total required power P Z of the entire temperature regulation system can be calculated, and the actual power P2 of each battery is added to obtain the total actual power Pf.
  • the required power of the first battery is P11, and the required power of the second battery is P12.
  • the actual power of the first battery is P21, and the actual power of the second battery is P22.
  • the maximum cooling power P of the compressor is the maximum cooling power P of the compressor.
  • the cooling power is preferentially provided for battery cooling, and the vehicle air conditioner controller controls the compressor 1 according to the maximum cooling.
  • the power P operates, the cooling power of the battery cooling branch 4 is Pz, and the cooling power of the in-vehicle cooling branch 3 is equal to P-Pz.
  • the cooling power is preferentially provided for the interior of the vehicle, the compressor 1 is operated according to the maximum cooling power P, and the cooling power of the cooling branch of the vehicle is P4.
  • the cooling power of the battery cooling branch is equal to P-P4.
  • the cooling power of the battery cooling branch is Pz.
  • the forward pump 511 When Pc1 is greater than the set value, the forward pump 511 is controlled to be turned on, and the reverse pump 512 is turned off, so that the cooling power of the first battery 61 is increased.
  • Pc2 When Pc2 is greater than the set value, the control reverse pump 512 is turned on, and the forward pump 511 is turned off, so that the cooling power of the second battery 62 is increased.
  • Pc1>Pc2 the forward pump 511 is controlled to be turned on, and the reverse pump 512 is turned off, so that the cooling power of the first battery 61 is increased.
  • Pc1 ⁇ Pc2 the control reverse pump 512 is turned on, and the forward pump 511 is turned off, so that the cooling power of the second battery 62 is increased.
  • the forward pump 511 is controlled to be turned on, and the reverse pump 512 is turned off, so that the cooling power of the first battery 61 is increased.
  • the control reverse pump 512 is turned on, and the forward pump 511 is turned off, so that the cooling power of the battery 62 is increased.
  • P21-P11 Pc1
  • P22-P12 Pc2
  • the forward pump 511 When Pc1 is greater than the set value, the forward pump 511 is controlled to be turned off, and the reverse pump 512 is turned on, so that the cooling power of the first battery 61 is reduced.
  • the reverse pump 512 When Pc2 is greater than the set value, the reverse pump 512 is controlled to be turned off, and the forward pump 511 is turned on, so that the cooling power of the second battery 62 is reduced.
  • Pc1>Pc2 the forward pump 511 is controlled to be turned off, and the reverse pump 512 is turned on, so that the cooling power of the first battery 61 is reduced.
  • Pc1 ⁇ Pc2 the reverse pump 512 is controlled to be turned off, and the forward pump 511 is turned on, so that the cooling power of the second battery 62 is reduced.
  • the forward pump 511 is controlled to be turned on, and the reverse pump 512 is turned off, so that the cooling power of the first battery 61 is increased.
  • the control reverse pump 512 is turned on, and the forward pump 511 is turned off, so that the cooling power of the battery 62 is increased.
  • the battery thermal management The controller controls the forward pump 511 to operate so that the coolant first flows through the first battery 61 and then flows through the second battery 62, thereby causing the first battery 61 to complete the cooling as soon as possible.
  • the battery thermal management controller controls the reverse pump 512 to operate, so that the coolant first flows through the second battery 62, The first battery 61 is again passed, so that the second battery 62 is cooled as soon as possible. Thereby, the temperature difference between the first battery 61 and the second battery 62 can be reduced by changing the flow direction of the cooling liquid.
  • the battery thermal management controller can control the forward direction.
  • the pump 511 or the reverse pump 512 is activated to cause the coolant in the battery cooling branch 4 to flow, thereby equalizing the temperatures of the first battery 61 and the second battery 62.
  • the battery management controller When the pump 51 is rotating forward and the maximum value of the temperature difference between the respective batteries acquired by the battery management controller exceeds a preset value, the battery management controller sends a message for controlling the pump reversal to the battery thermal management controller to make the battery
  • the thermal manager controls the pump reversal (the flow direction of the loop is counterclockwise) so that the temperature of each series battery is less than the difference.
  • the temperature adjustment system of the vehicle acquires the required power and actual power of the battery through the battery temperature adjustment device, and acquires the interior temperature of the vehicle and the set temperature of the air conditioner, and according to the required power, the actual The power, interior temperature, and air conditioning set temperature adjust the power of the in-vehicle cooling branch and the battery cooling branch. Therefore, the system adjusts the power of the in-vehicle cooling branch and the battery cooling branch, and can quickly adjust the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained at a preset.
  • the range is to avoid the situation that the performance of the vehicle battery is affected by the temperature, and the temperature inside the vehicle can be satisfied if the battery temperature meets the requirements.
  • the temperature adjustment method of the vehicle includes the following steps:
  • acquiring the required power P1 of the battery specifically includes:
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • generating the first required power according to the first parameter specifically includes: acquiring a first temperature difference ⁇ T 1 between the initial temperature and the target temperature; the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is an average current I of the battery within a preset time
  • the second required power is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • the actual power P2 of the battery is specifically included:
  • the actual power P2 is generated according to the second temperature difference ⁇ T 2 and the flow velocity v.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • S3' adjusts the power of the in-vehicle cooling branch and the battery cooling branch according to the required power P1, the actual power P2, the interior temperature T, and the air-conditioning set temperature Ts.
  • the power of the in-vehicle cooling branch and the battery cooling branch is adjusted according to the required power P1, the actual power P2, the in-vehicle temperature T, and the air-conditioning set temperature Ts, including: according to the required power P1.
  • the actual power P2, the interior temperature T, and the air conditioning set temperature Ts adjust the power of the in-vehicle cooling branch and the battery cooling branch so that the battery reaches the target temperature within the target time t.
  • the initial temperature of the battery ie, the current temperature
  • the target temperature ie, the target temperature
  • the target time t from the initial temperature to the target temperature, where the target temperature and the target time are obtained.
  • t can be preset according to the actual situation, and the first required power is calculated according to formula (1).
  • the average current I of the battery in the preset time is obtained, and the second demand power is calculated according to the formula (2).
  • the required power P1 (that is, the required power of the battery is adjusted to the target temperature) is calculated based on the first required power and the second required power.
  • the inlet temperature and the outlet temperature of the battery are obtained, and the flow rate information is acquired, and the actual power P2 is calculated according to the formula (3). And obtain the interior temperature T and the air conditioner set temperature Ts. Finally, the power of the in-vehicle cooling branch and the battery cooling branch are adjusted according to P1, P2, T and Ts, so that the battery reaches the target temperature within the target time t. Therefore, the method adjusts the power of the in-vehicle cooling branch and the battery cooling branch, and can quickly adjust the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained at a preset. The range is to avoid the situation that the performance of the vehicle battery is affected by the temperature, and the temperature inside the vehicle can be satisfied if the temperature of the battery meets the requirements.
  • the temperature adjustment method of the vehicle may further include:
  • the temperature of the battery is detected and it is judged whether the temperature is greater than the first temperature threshold or less than the second temperature threshold (S10'-S20').
  • the temperature adjustment system enters a cooling mode (S30').
  • the first preset temperature threshold may be preset according to actual conditions, for example, may be 40 ° C.
  • the temperature adjustment system enters a heating mode (S40'-S50' ).
  • the second preset temperature threshold may be preset according to actual conditions, for example, may be 0 ° C.
  • the temperature of the battery is detected in real time and judged. If the temperature of the battery is higher than 40 ° C, it means that the temperature of the battery is too high. In order to avoid the impact of high temperature on the performance of the battery, the battery needs to be cooled.
  • the temperature adjustment system enters the cooling mode and controls the compressor to start. The coolant is exchanged with the battery to reduce the temperature of the battery. If the temperature of the battery is lower than 0 ° C, the temperature of the battery is too low. In order to avoid the influence of low temperature on the performance of the battery, the battery needs to be heated, the temperature adjustment system enters the heating mode, and the heater is turned on. To provide heating power.
  • the interior temperature T and the air conditioning set temperature Ts are adjusted by adjusting the power of the in-vehicle cooling branch and the battery cooling branch, and the battery can meet the temperature requirement. At the same time, the interior temperature is made to meet the demand. Also, the required power P1 and the actual power P2 are easily acquired.
  • P1 is composed of two parts, taking a cooling battery as an example.
  • the initial temperature of the battery is 45 ° C
  • the target temperature of the battery cooling is 35 ° C
  • the battery is lowered from 45 ° C to
  • the heat that needs to be dissipated at 35 ° C is fixed and can be directly calculated by the formula (1), ⁇ T 1 *C*M/t.
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • This part of the heat can also be directly obtained by detecting the current.
  • the formula (3) ie I 2 *R, directly calculates the current battery heat. Power, the second demand power. Where I is the average current and R is the internal resistance of the battery.
  • the required power P1 ⁇ T 1 *C*M/tI 2 *R, that is, the larger the battery discharge or the charging current is during the heating of the battery, the more the required heating power, that is, the required power P1 small.
  • the cooling power also varies with the current average discharge of the battery or the charging current. And change. If the car air conditioner cools the battery and the car at the same time, when the discharge current of the battery is small, the I 2 *R will decrease, and at this time, the car air conditioner can allocate more cooling power to the car, so that the car is faster. The set temperature is reached. At the same time, when the battery discharge or charging current is large, I 2 * R will be larger, and the vehicle air conditioner can allocate more cooling power to the battery. Through such adjustment, the time required for cooling the battery is always accurate, and at the same time, the cooling power of the vehicle air conditioner can be utilized more efficiently, without having to configure an air conditioner with a large cooling power, resulting in waste of cooling power.
  • the cooling time of the battery is affected by the cooling efficiency
  • the cooling efficiency is affected by the external ambient temperature and the current temperature of the battery, so the efficiency of the temperature regulating system is constantly changing during the cooling of the battery, so the cooling efficiency cannot be 100%. Therefore, it is necessary to detect the actual power P2 of the battery only because P1 cannot accurately adjust the cooling time of the battery.
  • the actual power P2 of the battery can be calculated by the formula (3), that is, ⁇ T2*c*m.
  • P2 can also be calculated by the actual cooling power P2 of the battery.
  • P2 Due to the cooling efficiency, P2 is difficult to be completely equal to P1.
  • P1 In order to make the battery cooling target time t more accurate, it needs to be adjusted according to the power difference between P1 and P2 in real time to ensure the required power P1 of the battery and the actual power P2 of the battery. equal.
  • How to adjust the power of the in-vehicle cooling branch and the battery cooling branch according to the required power P1, the actual power P2, the interior temperature T, and the air-conditioning set temperature Ts to describe the temperature of the vehicle will be described below with reference to specific embodiments. Adjustment.
  • the in-vehicle cooling branch is determined according to the required power P1, the actual power P2, the interior temperature T, and the air-conditioning set temperature Ts.
  • the adjustment of the power of the battery cooling branch includes:
  • the battery temperature T is greater than a third temperature threshold.
  • the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the temperature control system is controlled to enter a cooling mode to cool the battery.
  • P1 and P2 are obtained.
  • the battery temperature is greater than 45 °C. If the battery temperature is greater than 45 °C, the battery temperature is too high, the car air conditioner preferentially meets the cooling demand of the battery 6, the control reduces the power of the cooling branch in the vehicle, and increases the power of the cooling branch of the battery to reduce the cooling branch of the vehicle.
  • the coolant flow rate increases the coolant flow rate of the battery cooling branch to allow the battery to cool down as quickly as possible.
  • the battery temperature drops to 35 ° C the battery cooling is completed and the control battery cooling branch is turned off. Thereby, the temperature inside the vehicle can be made to satisfy the demand if the temperature of the battery satisfies the requirement.
  • the temperature adjustment method of the vehicle may further include:
  • the interior temperature T is greater than the air-conditioning set temperature Ts. If T>Ts, it means that the temperature T in the car does not reach the set temperature, and the temperature inside the car is high. In order to prevent the user from feeling uncomfortable, the indoor cooling demand is preferentially satisfied, the power of the cooling branch in the car is increased, and the battery cooling is reduced. The power of the branch. If the temperature T of the vehicle reaches the set temperature Ts of the air conditioner, and the cooling power in the vehicle is sufficient and reaches equilibrium, the power of the cooling branch of the battery is increased to increase the cooling power of the battery. When the battery temperature drops to 35 ° C, the battery cooling is completed and the control battery cooling branch is turned off. Thereby, it is possible to make the interior temperature satisfy the demand when the battery temperature satisfies the requirement.
  • the battery temperature is processed hierarchically here, and the thresholds of temperature control are 40 ° C, 45 ° C and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery cooling is completed.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2
  • the in-vehicle refrigeration demand is first satisfied. If the in-vehicle cooling power is sufficient and reaches equilibrium, the power of the battery cooling branch is increased to increase The cooling power of a large battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • adjusting the temperature of the battery according to the required power P1 and the actual power P2 specifically includes:
  • the heater when the temperature adjustment system enters the heating mode, the heater is turned on, and the power of the heater is adjusted according to P1 and P2. If P1 is greater than P2, it means that if the heater is heated at the current power, the temperature of the battery cannot be raised to the target temperature within the target time t. Therefore, the power difference between P1 and P2 is continuously obtained, and the power of the heater is increased according to the power difference, wherein the larger the difference between P1 and P2, the more the power of the heater is increased. And if P1 is less than or equal to P2, the power of the heater can be kept constant.
  • the battery When the temperature of the battery is higher than the preset temperature, for example, 10 ° C, the battery is heated, and the information of the temperature adjustment function is turned off to the vehicle air conditioner through the CAN communication, and the heater is turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, the temperature of the battery is still lower than 10 ° C, the power of the heater is appropriately increased to allow the battery to complete the temperature rise as soon as possible. Thereby, the temperature adjustment power can be precisely controlled according to the actual state of the battery, and the battery can be temperature-regulated within the target time.
  • the preset temperature for example, 10 ° C
  • the temperature adjustment method of the vehicle described above may further include: if the required power P1 is smaller than the actual power P2, reducing the rotation speed of the pump. If the required power P1 is greater than the actual power P2, the pump speed is increased.
  • the control can control the power increase of the heater or control the power increase of the battery cooling branch, and also control the increase of the rotation speed of the pump, which can increase the quality of the coolant flowing through the cross section of the cooling flow path per unit time. Thereby, the actual power P2 is increased to achieve temperature regulation of the battery within the target time t.
  • the vehicle may comprise a single battery or it may consist of a plurality of batteries connected in series, in parallel or in combination. As shown in FIG. 14A-14B, taking two batteries as an example, when the battery is two (first battery and second battery), the pump corresponds to two, and one of the two pumps is a forward pump, and the other is Reverse pump.
  • the controller When the temperature regulation system enters the cooling mode, the controller separately obtains P1 of each battery, actual power P2 of each battery, and maximum cooling power P of a single compressor, and adds P1 of each battery to calculate the entire temperature.
  • the total required power P Z of the system is adjusted, and the actual power P2 of each battery is added to obtain the total actual power Pf.
  • the required power of the first battery is P11, and the required power of the second battery is P12.
  • the actual power of the first battery is P21, and the actual power of the second battery is P22.
  • the maximum cooling power P of the compressor The maximum cooling power P of the compressor.
  • the compressor operates at a cooling power of P Z + P4.
  • the cooling power of the battery cooling branch 4 is Pz
  • the cooling power of the in-vehicle cooling branch 3 is equal to P-Pz.
  • the cooling power is preferentially provided for the interior of the vehicle, the compressor 1 is operated according to the maximum cooling power P, and the cooling power of the cooling branch of the vehicle is P4.
  • the cooling power of the battery cooling branch is equal to P-P4.
  • the cooling power of the battery cooling branch is Pz.
  • the forward pump When Pc1 is greater than the set value, the forward pump is controlled to be turned on, and the reverse pump is turned off, so that the cooling power of the first battery is increased.
  • Pc2 When Pc2 is greater than the set value, the reverse pump is controlled to be turned on, and the forward pump is turned off, so that the cooling power of the second battery is increased.
  • Pc1>Pc2 the forward pump is controlled to be turned on, and the reverse pump is turned off, so that the cooling power of the first battery is increased.
  • Pc1 ⁇ Pc2 the reverse pump is controlled to be turned on, and the forward pump is turned off, so that the cooling power of the second battery is increased.
  • the forward pump is controlled to be turned on, and the reverse pump is turned off, so that the cooling power of the first battery is increased.
  • the reverse pump is controlled to be turned on, and the forward pump is turned off, so that the cooling power of the battery is increased.
  • P21-P11 Pc1
  • P22-P12 Pc2
  • the forward pump When Pc1 is greater than the set value, the forward pump is controlled to be turned off, and the reverse pump is turned on, so that the cooling power of the first battery is reduced.
  • Pc2 When Pc2 is greater than the set value, the reverse pump is controlled to be turned off, and the forward pump is turned on, so that the cooling power of the second battery is reduced.
  • Pc1>Pc2 the forward pump is controlled to be turned off, and the reverse pump is turned on, so that the cooling power of the first battery is reduced.
  • Pc1 ⁇ Pc2 the reverse pump is controlled to be turned off, and the forward pump is turned on, so that the cooling power of the second battery is reduced.
  • the forward pump is controlled to be turned on, and the reverse pump is turned off, so that the cooling power of the first battery is increased.
  • the reverse pump is controlled to be turned on, and the forward pump is turned off, so that the cooling power of the battery is increased.
  • the forward pump is controlled to operate.
  • the coolant is first passed through the first battery and then passed through the second battery, so that the first battery is cooled as soon as possible.
  • controlling the reverse pump to operate so that the coolant first flows through the second battery and then flows through the first battery, thereby The second battery is cooled as soon as possible.
  • the forward pump or the reverse pump can be controlled to be activated.
  • the coolant in the battery cooling branch flows to equalize the temperatures of the first battery and the second battery.
  • the temperature adjustment method of the vehicle according to the embodiment of the present disclosure, first, the required power of the battery is acquired, and then the actual power of the battery is obtained, and finally, the cooling branch and the battery are inspected according to the required power, the actual power, the interior temperature, and the set temperature of the air conditioner.
  • the power of the cooling branch is adjusted. Therefore, the method adjusts the power of the in-vehicle cooling branch and the battery cooling branch, and can quickly adjust the temperature when the vehicle battery temperature is too high or too low, so that the temperature of the vehicle battery is maintained at a preset.
  • the range is to avoid the situation that the performance of the vehicle battery is affected by the temperature, and the temperature inside the vehicle can be satisfied if the temperature of the battery meets the requirements.
  • the temperature regulation system of the vehicle battery includes: a plurality of cooling branches, a plurality of in-vehicle cooling branches, and a plurality of battery cooling branches And battery temperature adjustment device.
  • each refrigeration branch comprises a compressor 1 and a condenser 2 connected to the compressor 1.
  • a plurality of in-vehicle cooling branches are respectively connected to a plurality of cooling branches.
  • the battery temperature adjusting device 5 is connected to the battery cooling branch for acquiring the required power P1 and the actual power P2, and acquiring the regional temperature Tq and the air conditioning set temperature Ts of the plurality of regions in the vehicle, and the power P1 according to the demand, and the actual power P2.
  • the plurality of zone temperatures Tq and the air conditioner set temperature Ts adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches. Specifically, the adjustment of the respective powers is achieved, for example, by adjusting the opening of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches.
  • the battery may be a battery pack or a battery module.
  • Each battery cooling branch corresponds to a plurality of batteries connected in parallel or in series.
  • the battery temperature adjusting device 5 pairs the plurality of in-vehicle cooling branches within the target time t according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts.
  • the power of the battery cooling branch and the plurality of cooling branches are adjusted to reach the target temperature.
  • the batteries are the first battery 61 and the second battery 62, respectively.
  • the roads are respectively a first cooling branch 11 and a second cooling branch 12
  • the battery cooling branches are a first battery cooling branch 401 and a second battery cooling branch 402, respectively
  • the in-vehicle cooling branch is respectively the first interior.
  • Cooling branch 301 and second in-vehicle cooling branch 302. 19A and 19B show the batteries connected in series
  • Fig. 20 shows the batteries connected in parallel.
  • the battery temperature adjusting device 5 obtains the required power P1 and the actual power P2, adjusts the power of the plurality of battery cooling branches according to P1 and P2 to adjust the cooling power of the battery, and the battery temperature adjusting device 5 acquires the plurality of regional temperatures Tq and the air conditioning device.
  • the temperature Ts is fixed, and the power of each battery cooling branch is controlled according to Tq and Ts. For example, if the Tq of a certain area is higher and the Tq of the other area is larger, the battery temperature adjusting device 5 controls the area for cooling the area.
  • the cooling power of the in-vehicle cooling branch is increased, and the power of the corresponding battery cooling branch is controlled to be reduced.
  • the battery temperature adjusting device 5 controls the cooling branch of the other vehicle.
  • the power is reduced while controlling the power increase of the corresponding battery cooling branch. Therefore, the system allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery, the temperature of the plurality of areas in the vehicle, and the set temperature of the air conditioner, not only when the battery temperature is too high or too low.
  • the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • the cooling power of the battery temperature adjusting device 5 is provided by the vehicle air conditioner, and the cooling capacity is shared with the in-vehicle refrigeration system, thereby reducing the volume of the temperature regulating system and making the distribution of the coolant flow more flexible.
  • the battery cooling branch may include a heat exchanger 41 connected to the battery temperature adjusting device 5.
  • the heat exchanger 41 may include a first conduit and a second conduit, the second conduit being connected to the battery temperature regulating device 5, the first conduit being in communication with the compressor 1, wherein the first conduit and the second conduit are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 includes a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is disposed in the battery.
  • a pump 51, a medium container 52, a heater 53, and a controller are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the battery and the actual power P2 of the battery, and adjusts the temperature of the battery according to the required power P1 and the actual power P2.
  • the in-vehicle cooling branch may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • a valve 58 is also provided at the flow path inlet of each battery.
  • the controller can control the flow rate of the coolant flowing into each of the batteries through the control valve 58 according to the corresponding valves P1 and P2 of each battery, so that the heating power/cooling power of each battery can be precisely controlled.
  • the plurality of batteries when there are a plurality of batteries, and the flow paths are connected in series, the plurality of batteries correspond to a plurality of pumps that regulate the coolant flow rate of the batteries, and the pumps are bidirectional. Pump.
  • the pump corresponds to two, and two pumps are The forward pump 511 and the one are the reverse pump 522.
  • the flow direction of the coolant in the second conduit is: medium container 52 - heat exchanger 41 - heater 53 - forward pump 511 - first temperature sensor 55 - A battery 61 - a second battery 62 - a second temperature sensor 56 - a flow rate sensor 57 - a media container 52.
  • medium container 52 heat exchanger 41 - heater 53 - forward pump 511 - first temperature sensor 55 -
  • the flow direction of the coolant in the second conduit is: the medium container 52 - the flow rate sensor 57 - the second temperature sensor 56 - the second battery 62 - the first battery 61 - the first A temperature sensor 55 - a reverse pump 512 - a heater 53 - a heat exchanger 41 - a media container 52.
  • the battery thermal management controller controls the positive The pump 511 is operated to allow the coolant to flow through the first battery 61 and then through the second battery 62, thereby causing the first battery 61 to complete the cooling as soon as possible.
  • the battery thermal management controller controls the reverse pump 512 to operate, so that the coolant first flows through the second battery 62, The first battery 61 is again passed, so that the second battery 62 is cooled as soon as possible. Thereby, the temperature difference between the first battery 61 and the second battery 62 can be reduced by changing the flow direction of the cooling liquid.
  • the battery thermal management controller can control the forward direction.
  • the pump 511 is activated to cause the coolant in the battery cooling branch 4 to flow, thereby equalizing the temperatures of the first battery 61 and the second battery 62.
  • the battery management controller may be configured to respectively acquire a first parameter when each battery is turned on, and generate a first required power of each battery according to the first parameter, and acquire each battery separately. a second parameter at the time of temperature adjustment, and generating a second required power of each battery according to the second parameter, and generating a required power of each battery according to the first required power of each battery and the second required power of each battery P1.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • the battery management controller acquires the first between the initial temperature and the target temperature.
  • the temperature difference ⁇ T 1 , and the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery 6
  • M is the mass of the battery.
  • the second parameter is the average current I of each battery within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • the battery management controller generates a second temperature difference ⁇ T 2 of each battery according to an inlet temperature detected by the first temperature sensor 55 of each circuit in which the battery is located and an outlet temperature detected by the second temperature sensor 56, respectively. And generating the actual power P2 of each battery based on the second temperature difference ⁇ T 2 of each battery and the flow rate v detected by the flow rate sensor 57.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle needs temperature adjustment, the temperature adjustment function is turned on, and the low rotation speed information is sent to the pump 51. The pump starts operating at the default speed (eg low speed).
  • the battery management controller can acquire an initial temperature (ie, current temperature) of each battery, a target temperature, and a target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions, and according to the formula (1) Calculate the first required power of each battery.
  • the battery management controller obtains the average current I of each battery for a preset time, and calculates the second required power of each battery according to formula (2). Then, the battery management controller calculates the required power P1 according to the first required power and the second required power of each battery, respectively.
  • the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 to detect the temperature information, and respectively obtains the flow rate information detected by the flow rate sensor, according to the formula ( 3) Calculate the actual power P2 of the battery. As shown in FIG.
  • the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 corresponding to each battery to detect the temperature information, and respectively acquires the flow rate information detected by the flow rate sensor 57.
  • the actual power P2 of each battery 6 is calculated according to formula (3).
  • plurality of battery cooling branches (401 and 30) for a plurality of in-vehicle cooling branches (30 and 30) according to the required power P1, the actual power P2, the plurality of zone temperatures Tq, and the air-conditioning set temperature Ts will be described below with reference to specific embodiments (401). And 402) and the power of the plurality of cooling branches (11 and 12) are adjusted.
  • the battery management controller is further configured to generate a total required power Pz according to the required power P1 of the plurality of batteries, and determine whether the total required power Pz matches the maximum cooling power P of the vehicle air conditioner, wherein Matching, the vehicle air conditioner controller cools the battery according to the total required power P1 of the plurality of parallel batteries; if not, the controller according to the maximum cooling power P of the compressor and the required power P1 of the plurality of battery cooling branches is The battery is cooled.
  • the battery management controller can calculate the total required power Pz of the entire temperature adjustment system according to the required power P1 of each battery, that is, the required power P1 of each battery. Add the total demand power Pz. Then, according to the total demand power Pz, it is judged whether P Z matches the maximum cooling power P of the vehicle air conditioner, that is, whether Pz is less than or equal to P, and if so, the controller passes the control valve 58 for each battery according to the required power P1 of each battery. The battery is cooled.
  • the vehicle air conditioner controller performs proportionally by adjusting the power of the valve 58 according to the maximum cooling power P of the air conditioner and the required power P1 of each battery.
  • the coolant flow is distributed so that each battery can be cooled down with maximum efficiency.
  • the plurality of cooling branches respectively correspond to the plurality of air outlets, and the plurality of area temperatures are the temperatures of the plurality of air outlets.
  • four air outlets which are an air outlet 1 - an air outlet 4, can be provided in the vehicle compartment.
  • the corresponding region temperature Tq is detected by detecting the tuyere temperature Tc. It is assumed that the air outlet 1 and the air outlet 2 are supplied with the cooling power by the first cooling branch 11, and the outlet 3 and the outlet 4 are provided with the cooling power by the second cooling branch 12.
  • a battery management controller controller is further configured to detect a temperature of the plurality of batteries, and control the temperature adjustment system to enter cooling when the temperature of any one of the plurality of parallel batteries is greater than the first temperature threshold The mode, and controlling the temperature adjustment system to enter the heating mode when the temperature of any of the plurality of batteries is less than the second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of each battery in real time and makes a determination. If the temperature of one of the batteries is higher than 40 °C, the temperature of the battery is too high at this time. In order to avoid the influence of high temperature on the performance of the battery, the battery needs to be cooled, and the battery management controller controls the temperature adjustment system to enter.
  • the cooling mode transmits a battery cooling function activation information to the air conditioning system, and controls the second electronic valve 43 to open to exchange heat between the coolant and the battery to lower the temperature of the battery.
  • the battery management controller controls the temperature adjustment system to enter.
  • the second electronic valve 43 is controlled to be closed, and the heater 53 is controlled to be turned on to provide heating power to the temperature adjustment system.
  • the controller when the temperature adjustment system is in the cooling mode, the controller is further configured to determine, when the required power P1 of the battery cooling branch is greater than the actual power P2, whether the battery temperature is greater than a third temperature threshold, wherein, if the battery temperature is greater than the third temperature threshold, the vehicle air conditioner controller reduces the power of the plurality of in-vehicle cooling branches and increases the power of the plurality of battery cooling branches, wherein the power of the plurality of battery cooling branches passes
  • the valves ie, the second expansion valve 42
  • the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the battery management controller determines whether the temperature of the battery is greater than 45 °C. If the temperature of any of the batteries is greater than 45 ° C, indicating that the current temperature of the battery is too high, the vehicle air conditioner controller reduces the opening degree of the first expansion valve 32 to reduce the coolant flow rate of the cooling branch in the vehicle and increase the second expansion. The opening of the valve 42 increases the flow of coolant in the battery cooling branch.
  • the vehicle air conditioner controller when the temperature adjustment system is in the cooling mode, is further configured to acquire the required power P1 and the actual power of the battery when the required power P1 of the battery is greater than the actual power P2 of the battery.
  • the required power P1 is less than or equal to the actual power P2 of the battery, reducing the power of the compressor or keeping the power of the compressor constant, or adjusting the coolant flow rate of the circulating branch circuit of the battery to reduce the cooling power of the battery.
  • the battery management controller and the battery thermal management controller acquire P1 and P2 of each battery, respectively, and make a judgment. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller obtains the power between the battery P1 and P2.
  • the battery management controller transmits information for turning off the temperature adjustment function to the vehicle air conditioner through CAN communication, and controls the second electronic valve 43 to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is still higher than 35 ° C, the vehicle air conditioner controller appropriately increases the power of the compressor to complete the cooling of the battery as soon as possible.
  • the vehicle air conditioner controller is further configured to reduce the power of the plurality of in-vehicle cooling branches when the temperature of the battery is less than the third temperature threshold and the temperature of the vehicle is equal to the set temperature Ts of the air conditioner. And increase the power of multiple battery cooling branches.
  • the vehicle air conditioner controller determines whether the temperature inside the vehicle reaches the air conditioner set temperature Ts. If so, the vehicle air conditioner controller reduces the opening degree of the first expansion valve 32 and increases the opening degree of the second expansion valve 42 to increase the coolant flow rate of the battery cooling branch and reduce the cooling branch of the vehicle. Coolant flow, complete the battery cooling as soon as possible. On the other hand, if the temperature inside the vehicle does not reach the air-conditioning set temperature Ts, the cooling demand in the vehicle is preferentially satisfied, and the vehicle air-conditioning controller increases the opening degree of the first expansion valve 32 and reduces the opening degree of the second expansion valve 42.
  • the battery temperature is also processed hierarchically, and the temperature control thresholds are 40 ° C, 45 ° C and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery cooling is completed.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2, if the battery temperature does not exceed 45 ° C, the cooling demand in the vehicle is still prioritized. If the cooling power in the vehicle is sufficient and reaches equilibrium, the vehicle air conditioner controller increases the battery cooling. The power of the branch to increase the cooling power of the battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • the vehicle air conditioner controller is further configured to acquire a temperature difference between the plurality of regional temperatures, and when the temperature difference is greater than the fourth temperature threshold, the vehicle corresponding to the cooling branch where the high temperature air outlet is located The power of the internal cooling branch is increased, and the power of the battery cooling branch corresponding to the cooling branch where the high temperature outlet is located is lowered.
  • the fourth temperature threshold may be preset according to actual conditions, for example, may be 3 ° C.
  • the vehicle air conditioner controller is further configured to reduce the power of the in-vehicle cooling branch corresponding to the cooling branch where the low temperature air outlet is located, and the battery corresponding to the cooling branch where the low temperature air outlet is located The power of the cooling branch is increased.
  • the air conditioner needs to be turned on in the vehicle, the ambient temperature in the vehicle compartment needs to be monitored and controlled, so that the ambient temperature throughout the vehicle is balanced, and at the same time, the battery cooling requirement can be met.
  • the first in-vehicle cooling branch 301 is controlled.
  • the opening degree of the first expansion valve 32 is increased while controlling the opening degree of the second expansion valve 42 in the first battery cooling branch 401 to be decreased to increase the cooling power in the first in-vehicle cooling branch 301.
  • the vehicle air conditioner controller also controls the opening degree of the first expansion valve 32 in the second in-vehicle cooling branch 302 to decrease, and the opening degree of the second expansion valve 42 in the second battery cooling branch 402 increases to enable the The cooling power in the two in-vehicle cooling branch 302 is small. Thereby, the cooling power of the first battery cooling 301 and the second battery cooling branch 302 can be made constant, and at the same time, the temperature in the vicinity of the air outlets in the vehicle is equalized.
  • the vehicle air conditioner controller controls the first interior cooling branch 301
  • the opening degree of the first expansion valve 32 in the second in-vehicle cooling branch 302 is the same to ensure that the cooling powers of the first in-vehicle cooling branch 301 and the second in-vehicle cooling branch 302 are the same.
  • the battery thermal management controller acquires the required power P1 and the actual power P2 of the battery. The power difference between them, and increases the power of the heater for heating the battery according to the power difference, or adjusts the coolant flow rate of the circulating branch circuit of the battery to increase the heating power of the battery, and at a certain battery
  • the required power P1 is less than or equal to the actual power P2 of the battery
  • the power of the heater is reduced or the power of the heater is kept constant, or the coolant flow rate of the circulating branch circuit of the battery is adjusted to reduce the heating power of the battery.
  • the battery management controller and the battery thermal management controller respectively acquire P1 and P2 of each battery, and make a determination. If P1 of one of the batteries is greater than P2, it means that if the heating of the battery cannot be completed within the target time according to the current heating power or the flow rate of the coolant, the battery thermal management controller acquires between P1 and P2 of the battery. The power is poor, and the power of the heater 53 for heating the battery is increased according to the power difference, or by adjusting the rotation speed of the corresponding pump 51 to increase the coolant flow rate of the circulating branch circuit of the battery, so that the battery can be at the target The temperature adjustment is completed within time t.
  • the battery thermal management controller may appropriately reduce the power of the heater 53 to save electric energy, or reduce the circulating branch circuit of the battery by adjusting the corresponding rotation speed of the pump 51.
  • the coolant flow rate is used to reduce the heating power or to keep the power of the heater 53 constant.
  • the battery management controller transmits information for turning off the temperature adjustment function to the vehicle air conditioner through CAN communication, and controls the heater 53 to be turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery is still lower than 10 ° C, the battery thermal management controller appropriately increases the power of the heater 53 to complete the temperature rise as soon as possible.
  • the battery thermal management controller is further configured to reduce the rotation speed of the pump 51 when the required power P1 of a certain battery is less than the corresponding actual power P2, and the required power P1 of the certain battery is greater than the corresponding When the actual power P2 is increased, the rotational speed of the pump 51 is increased.
  • the battery thermal management controller controls the rotation speed of the corresponding pump 51 to be reduced to save electric energy. If the P1 of a certain battery 6 is greater than P2, the battery thermal management controller controls the speed of the pump 51 to increase, in addition to controlling the power of the corresponding heater 53 or the compressor 1, or increasing the coolant flow rate of the circuit in which the battery is located. The mass of the coolant flowing through the cross section of the cooling flow path per unit time can be increased, thereby increasing the actual power P2 of the battery to achieve temperature regulation within the target time t.
  • a plurality of batteries are connected in parallel, and the battery thermal management controller is further configured to: when the temperature adjustment system is in a cooling mode, when a temperature difference between the batteries exceeds a setting When the value is increased, the cooling power of the battery having a higher temperature is increased; when the temperature adjustment system is in the heating mode, when the temperature difference between the batteries exceeds the set value, the heating power of the battery having a lower temperature is increased.
  • the set value can be 3 °C.
  • a valve 58 is further provided at the flow path inlet of each battery, and when the temperature adjustment system is in the cooling mode, when the temperature difference between the batteries exceeds 3 ° C At this time, the battery thermal management controller increases the cooling power of the higher temperature battery by increasing the opening degree of the valve 58 in the battery cooling branch where the higher temperature battery is located.
  • the battery thermal management controller increases the opening degree of the valve 58 in the battery cooling branch where the lower temperature battery is located, to increase Larger temperature lower battery heating power.
  • a plurality of batteries are connected in parallel, and when the temperature adjustment system is in a cooling mode, the vehicle air conditioner controller individually controls the coolant flow rate of each branch flow path, and may be The required power of each battery adjusts the coolant flow of each battery pack flow path so that the actual power and temperature demand power of each battery are equal.
  • the vehicle air conditioner controller may respectively control the first battery cooling branch 401 and the second battery cooling branch by controlling the opening degree of the second expansion valve 42.
  • the coolant flow rate of the road 402, and the flow rate of the coolant flowing into the flow paths of the first battery 61 and the second battery 62, respectively, can be controlled by controlling the opening degree of the valve 58, so that the actual power P1 and the temperature demand power P2 of each battery are made. Equal to complete the battery temperature adjustment as soon as possible.
  • the plurality of batteries when there are a plurality of batteries, and the flow paths are connected in series, the plurality of batteries correspond to a plurality of pumps that regulate the coolant flow rate of the batteries, and the pumps are bidirectional pumps.
  • Fig. 19 The main difference between Fig. 19 and Fig. 14A is that an increase in a compressor refrigeration branch is added, and at the same time, the temperature balance between the air conditioner outlet of the vehicle and the power adjustment between the compressors is increased. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires P1 of each battery 6, actual power P2 of each battery, and maximum cooling power P of a single compressor, respectively, and Adding the P1 of each battery to calculate the total required power Pz of the entire temperature regulation system, adding the actual power P2 of each battery to obtain the total actual power Pf, and adding the maximum cooling power of each compressor can be calculated.
  • the sum of the maximum cooling powers of all compressors is P5.
  • P51 is the maximum cooling power of the compressor 11
  • P52 is the maximum cooling power of the compressor 12
  • P5 is the sum of the maximum cooling power of all the compressors
  • P5 P51 + P52.
  • the required power of the first battery 61 is P11, and the required power of the second battery 62 is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • Pz ⁇ P51 only one compressor 1 needs to be controlled to provide cooling power, and two compressors 1 can also be controlled to work together. If P51 ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor may be Pz/2, or other power combinations such that the sum of the cooling powers of the two compressors is Pz. If Pz > P5, two compressors are required to work together, and each compressor operates at maximum cooling power.
  • the required power of the in-vehicle cooling branch is P4, that is, P4 is the power required to adjust the interior temperature to the set temperature.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor 11 is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the cooling branch of the first compressor 11 is controlled to be reduced, and the expansion of the cooling branch in the vehicle is controlled.
  • the opening of the valve is increased, or the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is simultaneously increased, and the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the cooling branch of the first compressor 11 is controlled, and the opening degree of the expansion valve controlling the in-vehicle cooling branch is increased, so that all the cooling power of the first compressor 11 is used for in-vehicle cooling.
  • the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is accelerated to decrease, and at the same time satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • Fig. 20 and Fig. 9 The main difference between Fig. 20 and Fig. 9 is that an increase in a compressor refrigeration branch is added, and at the same time, the temperature balance between the air conditioner outlet and the power adjustment between the compressors is increased. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires P1 of each battery 6, actual power P2 of each battery, and maximum cooling power P of a single compressor, respectively, and Adding the P1 of each battery to calculate the total required power Pz of the entire temperature regulation system, adding the actual power P2 of each battery to obtain the total actual power Pf, and adding the maximum cooling power of each compressor can be calculated.
  • the sum of the maximum cooling powers of all compressors is P5.
  • P51 is the maximum cooling power of the compressor 11
  • P52 is the maximum cooling power of the compressor 12
  • P5 is the sum of the maximum cooling power of all the compressors
  • P5 P51 + P52.
  • the required power of the first battery 61 is P11, and the required power of the second battery 62 is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • Pz ⁇ P51 only one compressor 1 needs to be controlled to provide cooling power, and two compressors 1 can also be controlled to work together. If P51 ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor may be Pz/2, or other power combinations such that the sum of the cooling powers of the two compressors is Pz. If Pz > P5, two compressors are required to work together, and each compressor operates at maximum cooling power.
  • the required power of the in-vehicle cooling branch is P4, that is, P4 is the power required to adjust the interior temperature to the set temperature.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor 11 is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the cooling branch of the first compressor 11 is controlled to be reduced, and the expansion of the cooling branch in the vehicle is controlled.
  • the opening of the valve is increased, or the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is simultaneously increased, and the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the cooling branch of the first compressor 11 is controlled, and the opening degree of the expansion valve controlling the in-vehicle cooling branch is increased, so that all the cooling power of the first compressor 11 is used for in-vehicle cooling.
  • the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is accelerated to decrease, and at the same time satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • the cooling capacity of each area in the battery and the vehicle compartment can be allocated according to the actual state of each battery and the temperature of the plurality of zones in the vehicle and the air conditioning set temperature, not only in When the battery temperature is too high or too low, the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each area of the vehicle can be equalized.
  • the method for adjusting the temperature of the vehicle battery includes the following steps:
  • S1"' obtains the required power P1 and the actual power P2 of the plurality of batteries in the plurality of battery cooling branches, respectively, wherein the battery cooling branch is used for temperature adjustment of the corresponding battery.
  • respectively acquiring the required power of the plurality of batteries specifically includes:
  • the required power P1 of the battery cooling branch is generated according to the first required power and the second required power of each battery.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • generating the first required power according to the first parameter specifically includes: acquiring a first temperature difference ⁇ T 1 between the initial temperature and the target temperature; the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is an average current I of the battery within a preset time
  • the second required power is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • acquiring the actual power P2 of the plurality of batteries specifically includes:
  • the actual power P2 of the plurality of batteries is generated according to the second temperature difference ⁇ T 2 of the plurality of batteries and the flow velocity v.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • S2"' acquires the area temperature Tq and the air-conditioning set temperature Ts of the plurality of areas in the vehicle, respectively.
  • S3"' adjusts the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts.
  • a plurality of in-vehicle cooling branches and a plurality of battery cooling branches are performed within a target time t according to the required power P1, the actual power P2, the plurality of the area temperatures Tq, and the air-conditioning set temperature Ts.
  • the power of multiple cooling branches is adjusted to reach the target temperature.
  • each battery cooling branch corresponds to multiple batteries in parallel or in series.
  • the batteries are a first battery and a second battery, respectively
  • the cooling branches are respectively a first cooling branch and a second
  • the cooling branch circuit and the battery cooling branch are respectively a first battery cooling branch and a second battery cooling branch
  • the in-vehicle cooling branch is a first in-vehicle cooling branch and a second in-vehicle cooling branch, respectively.
  • Each battery cools the branch power. For example, if the Tq of a certain area is higher and the Tq of the other areas is larger, the power of the in-vehicle cooling branch that controls cooling of the area is increased, and the corresponding battery cooling is controlled. The power of the branch is reduced. At the same time, in order to ensure that the cooling power of the battery is constant, the power of controlling the cooling branch of the other vehicle is reduced, and the power of the corresponding battery cooling branch is controlled to increase.
  • the method allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low.
  • the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • the above-described method for adjusting the temperature of the vehicle battery may further include :
  • the total required power Pz of the entire temperature adjustment system can be calculated according to the required power P1 of each battery, that is, the required power P1 of each battery is added to obtain the total required power Pz. Then, according to the total demand power Pz, it is judged whether Pz matches the maximum cooling power P of the vehicle air conditioner, that is, whether P Z is less than or equal to P, and if so, the valve in the battery cooling branch is controlled according to the required power P1 of each battery. Cool each battery.
  • the ratio of the opening of the valve in the cooling branch of the battery is adjusted proportionally. Coolant flow distribution is performed so that each battery can be cooled down with maximum efficiency.
  • the temperature adjustment method of the battery may further include the step of detecting the temperatures of the plurality of batteries.
  • the temperature adjustment system enters a cooling mode when the temperature of any of the plurality of batteries is greater than a first temperature threshold.
  • the temperature adjustment system enters a heating mode when the temperature of any of the plurality of batteries is less than a second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the temperature of each battery is detected in real time and judged. If the temperature of one of the batteries is higher than 40 ° C, indicating that the temperature of the battery is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery, the battery needs to be cooled, and the temperature adjustment system enters the cooling mode. And send the battery cooling function start information to the air conditioning system. If the temperature of a battery is lower than 0 ° C, the temperature of the battery is too low at this time, in order to avoid the influence of low temperature on the performance of the battery, the battery needs to be heated, and the temperature adjustment system enters the heating mode. Control the corresponding battery cooling branch to turn off and control the heater to turn on to provide heating power to the battery.
  • a plurality of cooling branches respectively correspond to a plurality of air outlets, and the plurality of district temperatures are temperatures of the plurality of air outlets.
  • four air outlets which are an air outlet 1 - an air outlet 4, can be provided in the vehicle compartment.
  • the corresponding region temperature Tq is detected by detecting the tuyere temperature Tc. It is assumed that the air outlet 1 and the air outlet 2 are supplied with the cooling power by the first cooling branch 11, and the outlet 3 and the outlet 4 are provided with the cooling power by the second cooling branch 12.
  • the plurality of in-vehicle cooling branches, the plurality of in-vehicle cooling branches, according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts The power of the battery cooling branch and the plurality of cooling branches are adjusted, specifically: determining whether the battery temperature is greater than a third temperature threshold when the required power P1 of the battery cooling branch is greater than the actual power P2.
  • the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the power of the plurality of in-vehicle cooling branches is reduced and the power of the plurality of battery cooling branches is increased.
  • the power of the plurality of battery cooling branches is separately controlled by corresponding valves.
  • the temperature adjustment system when the temperature adjustment system is in the cooling mode, if P1 is greater than P2, it is determined whether the temperature of the battery is greater than 45 °C. If the temperature of any of the batteries is greater than 45 ° C, the current temperature of the battery is too high, and the opening degree of the first expansion valve 32 is reduced to reduce the coolant flow rate of the cooling branch in the vehicle while increasing the opening of the second expansion valve 42. Degree to increase the coolant flow rate of the battery cooling branch.
  • the temperature adjustment of the battery can be completed within the target time when the battery temperature is too high.
  • the plurality of in-vehicle cooling branches, the plurality of in-vehicle cooling branches, according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts The power of the battery cooling branch and the plurality of cooling branches are adjusted, further comprising: determining whether the required power P1 of each battery is greater than the actual power P2 of the battery; if the required power P1 of a battery is greater than the actual power P2 of the battery, then Obtaining the power difference between the required power P1 of the battery and the actual power P2, and adding the power difference to increase the power of the compressor used for cooling the battery, or adjusting the coolant flow rate of the circulating branch circuit of the battery to increase the battery Cooling power; if the required power P1 of a battery is less than or equal to the actual power P2 of the battery, reduce the power of the compressor or keep the power of the compressor unchanged, or adjust the coolant
  • the temperature adjustment system when the temperature adjustment system operates in the cooling mode, if there are a plurality of batteries, P1 and P2 of each battery are respectively acquired, and judgment is made. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the compressor 1, or increases the coolant flow rate of the circulating branch circuit of the battery to increase the cooling power of the battery, wherein the power difference between P1 and P2 is greater, the power of the compressor and the cooling of the battery The more the liquid flow rate is increased, so that the temperature of the battery is lowered to the target temperature within a preset time t.
  • the power of the compressor can be kept constant or the power of the compressor can be appropriately reduced, or the coolant flow rate of the circulating branch circuit of the battery can be reduced, and the cooling power of the battery can be reduced.
  • the temperature of all the batteries is lower than 35 °C
  • the battery cooling is completed, the information of the temperature adjustment function is turned off to the vehicle air conditioner through CAN communication, and the second electronic valve is controlled to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is still higher than 35 ° C, then the power of the compressor is appropriately increased to allow the battery to complete the cooling as soon as possible.
  • the battery temperature is less than the third temperature threshold, it is further determined whether the in-vehicle temperature is equal to the air-conditioning set temperature Ts; if the in-vehicle temperature is equal to the air-conditioning set temperature Ts, the plurality of in-vehicles are lowered Cool the power of the branch and increase the power of the multiple battery cooling branches.
  • the vehicle air conditioner controller determines whether the temperature inside the vehicle reaches the air conditioner set temperature Ts. If it is reached, increase the coolant flow rate of the battery cooling branch, reduce the coolant flow rate of the cooling branch in the vehicle, and complete the cooling of the battery as soon as possible. If the temperature inside the vehicle does not reach the set temperature Ts of the air conditioner, the cooling demand in the vehicle is preferentially satisfied, and the vehicle air conditioner controller increases the coolant flow rate of the cooling branch in the vehicle and reduces the coolant flow rate of the battery cooling branch.
  • the battery temperature was processed hierarchically, and the temperature control thresholds were 40 ° C, 45 ° C, and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery cooling is completed.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2, if the battery temperature does not exceed 45 ° C, the cooling demand in the vehicle is still prioritized. If the cooling power in the vehicle is sufficient and reaches equilibrium, the power of the battery cooling branch is increased. To increase the cooling power of the battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • reducing the power of the plurality of in-vehicle cooling branches specifically includes: acquiring a temperature difference between the plurality of zone temperatures. It is determined whether the temperature difference is greater than a fourth temperature threshold. If the temperature difference is greater than the fourth temperature threshold, the power of the in-vehicle cooling branch corresponding to the cooling branch where the high temperature air outlet is located is increased, and the battery cooling branch corresponding to the cooling branch where the high temperature air outlet is located may be The power of the road is reduced.
  • the fourth temperature threshold may be preset according to actual conditions, for example, may be 3 ° C.
  • the method for adjusting the temperature of the vehicle battery further includes: reducing the power of the in-vehicle cooling branch corresponding to the cooling branch where the low temperature air outlet is located, and correspondingly the cooling branch where the low temperature air outlet is located The power of the battery cooling branch is increased.
  • the air conditioner needs to be turned on in the vehicle, the ambient temperature in the vehicle compartment needs to be monitored and controlled, so that the ambient temperature throughout the vehicle is balanced, and at the same time, the battery cooling requirement can be met.
  • the first in-vehicle cooling branch is increased. The power is reduced to reduce the power of the first battery cooling branch so that the cooling power in the first in-vehicle cooling branch is large.
  • the cooling power of the first battery cooling and the second battery cooling branch can be made constant, and at the same time, the temperature in the vicinity of the air outlets in the vehicle is equalized.
  • the vehicle air conditioner detects the air outlet 1, the air temperature Tq in the vicinity of the air outlet 2, and the temperature Tq in the vicinity of the air outlet 3 and the air outlet 4 are within 3 ° C, the first in-vehicle cooling branch and the second in-vehicle are controlled.
  • the first expansion valve in the cooling branch has the same opening degree to ensure that the cooling power of the first in-vehicle cooling branch and the second in-vehicle cooling branch are the same.
  • the method when the temperature adjustment system is in the heating mode, the method further includes: determining whether the required power P1 of the certain battery is greater than the actual power P2 of the battery. If the required power P1 of a battery is greater than the actual power P2 corresponding to the battery, the power difference between the required power P1 of the battery and the actual power P2 is obtained, and the power of the heater for cooling the battery is increased according to the power difference, or Adjust the coolant flow rate of the circulating branch circuit of the battery to increase the heating power of the battery.
  • the power of the heater is reduced or the power of the heater is kept constant, or the coolant flow rate of the circulating branch circuit of the battery is adjusted to reduce the battery. Heating power.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the heating temperature of the battery cannot be completed within the target time according to the current heating power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the heater used to heat the battery, or by adjusting the speed of the corresponding pump to increase the coolant flow of the circulating branch circuit of the battery so that the battery can complete the temperature adjustment within the target time t. Among them, the greater the difference between P1 and P2, the more the power of the heater increases.
  • the power of the heater can be appropriately reduced to save power, or the coolant flow rate of the circulating branch circuit of the battery can be reduced by adjusting the rotation speed of the corresponding pump to reduce the flow rate of the circulating branch circuit of the battery. Heat the power or keep the power of the heater constant.
  • the preset temperature for example, 10 ° C
  • the battery heating is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the heater is turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery is lower than 10 ° C, the power of the heater is appropriately increased to complete the temperature rise as soon as possible.
  • the temperature adjustment method of the vehicle battery may further include: if the required power P1 of a certain battery is less than the corresponding actual power P2, reducing the rotation speed of the pump in the flow path of the battery; When the power P1 is greater than the corresponding actual power P2, the rotational speed of the pump in the flow path of the battery is increased.
  • the rotation speed of the corresponding pump is controlled to be reduced to save electric energy.
  • the controller controls the increase of the power of the corresponding heater or the compressor or the coolant flow of the circuit in which the battery is located, and also controls the increase of the rotation speed of the pump, which can increase the flow per unit time.
  • the coolant mass of the cross section of the flow path is cooled, thereby increasing the actual power P2 of the battery to achieve temperature regulation within the target time t.
  • the plurality of batteries when there are a plurality of batteries and the flow paths are connected in series, the plurality of batteries correspond to a plurality of pumps that regulate the coolant flow rate of the batteries, and the pumps are bidirectional pumps.
  • the pump corresponds to two, and one of the two pumps is a forward pump. One for the reverse pump.
  • the flow direction of the coolant in the second pipe is: medium container - heat exchanger - heater - forward pump - first temperature sensor - first battery - second battery - Second temperature sensor - flow rate sensor - media container.
  • the reverse pump when the reverse pump is started, the flow direction of the coolant in the second pipe is: medium container - flow rate sensor - second temperature sensor - second battery - first battery - first temperature sensor - reverse Pump-heater-heat exchanger-media container.
  • the forward pump is controlled to operate so that the coolant flows first.
  • the first battery is then passed through the second battery, so that the first battery is cooled as soon as possible.
  • controlling the reverse pump to operate, so that the coolant first flows through the second battery and then flows through the first battery, thereby The second battery is cooled as soon as possible.
  • the forward pump or the reverse pump can be controlled to be activated.
  • the coolant in the battery cooling branch flows to equalize the temperatures of the first battery and the second battery.
  • Fig. 19 The main difference between Fig. 19 and Fig. 14A is that an increase in a compressor refrigeration branch is added, and at the same time, the temperature balance between the air conditioner outlet of the vehicle and the power adjustment between the compressors is increased. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires P1 of each battery, actual power P2 of each battery, and maximum cooling power P of a single compressor, respectively, and The P1 of each battery is added to calculate the total required power P Z of the entire temperature regulation system, and the actual power P2 of each battery is added to obtain the total actual power Pf, and the maximum cooling power of each compressor can be calculated.
  • the sum of the maximum cooling powers of all compressors is P5.
  • P51 is the maximum cooling power of the compressor 11
  • P52 is the maximum cooling power of the compressor 12
  • P5 is the sum of the maximum cooling power of all the compressors
  • P5 P51 + P52.
  • the required power of the first battery is P11, and the required power of the second battery is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • Pz ⁇ P51 only one compressor needs to be controlled to provide cooling power, and two compressors can also be controlled to work together. If P51 ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor may be Pz/2, or other power combinations such that the sum of the cooling powers of the two compressors is Pz. If Pz > P5, two compressors are required to work together, and each compressor operates at maximum cooling power.
  • the required power of the in-vehicle cooling branch is P4, that is, P4 is the power required to adjust the interior temperature to the set temperature.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor 11 is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the first compressor refrigeration branch is controlled to be decreased, and the expansion valve for controlling the cooling branch of the vehicle is controlled.
  • the opening degree is increased, or the expansion valve of the battery cooling branch in the second compressor refrigeration branch is controlled to increase, and the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying the battery. Cooling power demand to achieve a balanced internal temperature of the car.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the refrigeration branch of the first compressor is controlled, and the opening degree of the expansion valve controlling the cooling branch in the vehicle is increased, so that all the cooling power of the first compressor is used for interior cooling.
  • the expansion valve of the battery cooling branch in the refrigeration branch of the second compressor is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is rapidly decreased, and the battery is satisfied at the same time.
  • the cooling power demand is to achieve a balanced internal temperature of the vehicle.
  • Fig. 20 and Fig. 9 The main difference between Fig. 20 and Fig. 9 is that an increase in a compressor refrigeration branch is added, and at the same time, the temperature balance between the air conditioner outlet and the power adjustment between the compressors is increased. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires P1 of each battery 6, actual power P2 of each battery, and maximum cooling power P of a single compressor, respectively, and Adding the P1 of each battery to calculate the total required power Pz of the entire temperature regulation system, adding the actual power P2 of each battery to obtain the total actual power Pf, and adding the maximum cooling power of each compressor can be calculated.
  • the sum of the maximum cooling powers of all compressors is P5.
  • P51 is the maximum cooling power of the compressor 11
  • P52 is the maximum cooling power of the compressor 12
  • P5 is the sum of the maximum cooling power of all the compressors
  • P5 P51 + P52.
  • the required power of the first battery 61 is P11, and the required power of the second battery 62 is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • Pz ⁇ P51 only one compressor 1 needs to be controlled to provide cooling power, and two compressors 1 can also be controlled to work together. If P51 ⁇ Pz ⁇ P5, two compressors are required to work together, and the initial cooling power of each compressor may be Pz/2, or other power combinations such that the sum of the cooling powers of the two compressors is Pz. If Pz > P5, two compressors are required to work together, and each compressor operates at maximum cooling power.
  • the required power of the in-vehicle cooling branch is P4, that is, P4 is the power required to adjust the interior temperature to the set temperature.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor 11 is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the cooling branch of the first compressor 11 is controlled to be reduced, and the expansion of the cooling branch in the vehicle is controlled.
  • the opening of the valve is increased, or the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is simultaneously increased, and the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the cooling branch of the first compressor 11 is controlled, and the opening degree of the expansion valve controlling the in-vehicle cooling branch is increased, so that all the cooling power of the first compressor 11 is used for in-vehicle cooling.
  • the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is accelerated to decrease, and at the same time satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • the temperature adjustment method of the vehicle battery first, the required powers of the plurality of batteries in the plurality of battery cooling branches are respectively acquired, and then the regional temperature and the air conditioning set temperature of the plurality of regions in the vehicle are respectively acquired, and then The power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches is adjusted according to required power, actual power, multiple zone temperatures, and air conditioning set temperatures. Therefore, the method allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low. The temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • the temperature regulation system of the vehicle battery includes: a plurality of cooling branches, a plurality of in-vehicle cooling branches, a plurality of battery cooling branches, and a battery. Temperature adjustment device 5.
  • each refrigeration branch comprises a compressor 1 and a condenser 2 connected to the compressor 1.
  • a plurality of in-vehicle cooling branches are respectively connected to a plurality of cooling branches.
  • a plurality of battery cooling branches are connected to the plurality of cooling branches, and a plurality of battery cooling branches are connected to each other.
  • the battery temperature adjusting device 5 is respectively connected to the plurality of batteries and the plurality of battery cooling branches for acquiring the required power P1 and the actual power P2, and acquiring the regional temperature Tq and the air conditioning set temperature Ts of the plurality of regions in the vehicle, and according to The required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air conditioning set temperature Ts adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches, and according to the demand of the battery
  • the power P1 and the actual power P2 regulate the amount of cooling power provided by the plurality of compressors 1 to the battery cooling branch corresponding to the battery.
  • the battery can be a battery pack or a battery module.
  • the battery temperature adjusting device 5 pairs the plurality of in-vehicle cooling branches within the target time t according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts.
  • the power of the battery cooling branch and the plurality of cooling branches are adjusted to reach the target temperature.
  • the battery is a first battery 61 and a second battery 62, respectively, and the first battery 61
  • the second battery 62 is disposed independently of each other.
  • the cooling branches are respectively a first cooling branch 11 and a second cooling branch 12
  • the battery cooling branches are a first battery cooling branch 401 and a second battery cooling branch 402, respectively
  • the in-vehicle cooling branch is respectively the first The in-vehicle cooling branch 301 and the second in-vehicle cooling branch 302.
  • the battery temperature adjusting device 5 obtains the required power P1 and the actual power P2, adjusts the power of the plurality of battery cooling branches according to P1 and P2 to adjust the cooling power of the battery, and the battery temperature adjusting device 5 acquires the plurality of regional temperatures Tq and the air conditioning device.
  • the temperature Ts is fixed, and the power of each battery cooling branch is controlled according to Tq and Ts. For example, if the Tq of a certain area is high and the Tq of the other area is large, the battery temperature adjusting device 5 controls the car that cools the area.
  • the power of the internal cooling branch is increased, and the power of the corresponding battery cooling branch is controlled to be reduced, and at the same time, to ensure that the cooling power of the battery is constant, the battery temperature adjusting device 5 controls the power reduction of the other in-vehicle cooling branch. . Therefore, the system allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low. The temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized. At the same time, since the plurality of battery cooling branches communicate with each other, the battery temperature adjusting device 5 can ensure the temperature balance between the batteries by adjusting the cooling power of the battery cooling branch corresponding to the battery according to the temperature of each battery. .
  • the cooling power of the battery temperature adjusting device 5 is provided by the vehicle air conditioner, and the cooling capacity is shared with the in-vehicle refrigeration system, thereby reducing the volume of the temperature regulating system and making the distribution of the coolant flow more flexible.
  • the battery cooling branch may include a heat exchanger 41 including a first duct and a second duct, and the second duct is connected to the battery temperature adjusting device 5, A pipe is in communication with the compressor 1, wherein the first pipe and the second pipe are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 includes a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is disposed in the battery.
  • a pump 51, a medium container 52, a heater 53, and a controller (not specifically shown) are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the battery and the actual power P2 of the battery, and adjusts the temperature of the battery according to the required power P1 and the actual power P2.
  • the in-vehicle cooling branch may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the first battery cooling branch 401 may further include a first regulating valve 411 and a third regulating valve 413; the second battery cooling branch 402 may further include a second regulating valve 412 and a fourth regulating valve 414,
  • the amount of refrigeration per compressor 1 can be distributed to the first battery cooling branch 401 or the second battery cooling branch 402 by adjusting the first to fourth regulating valves 411-414.
  • the compressor 1 of the first cooling branch 11 can distribute the refrigerant to the first battery cooling branch 401 through the first regulating valve 411, and distribute the refrigerant to the second battery cooling branch 402 through the second regulating valve 412.
  • the compressor 1 in the second cooling branch 12 can distribute the refrigerant to the first battery cooling branch 401 through the third regulating valve 413, and distribute the refrigerant to the second battery cooling branch 402 through the fourth regulating valve 414.
  • the battery temperature adjusting device 5 may further include a first temperature sensor 55 disposed at an inlet of the flow path, a second temperature sensor 56 disposed at an outlet of the flow path, and a flow rate Sensor 57. It will be appreciated that the inlet and outlet locations of the flow path are not absolute, but are determined based on the steering of the pump 51.
  • the heat exchanger 41 may be a plate heat exchanger, and the plate heat exchanger may be installed inside the vehicle air conditioner, so that the entire refrigerant circuit is inside the vehicle air conditioner, facilitating the commissioning of the vehicle air conditioner, and the vehicle air conditioner can be separately supplied. And assembly, at the same time, the car air conditioner only needs to be refilled once during the installation process.
  • the coolant flows into the interior of the battery from the inlet of the flow path and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery and the cooling liquid.
  • the pump 51 is primarily used to provide power.
  • the media container 52 is primarily used to store coolant and accept coolant added to the temperature regulation system.
  • the coolant in the media container 52 is automatically replenished as the coolant in the temperature regulation system is reduced.
  • the heater 53 can be a PTC heater that can communicate with the controller in CAN to provide heating power to the on-board battery temperature regulation system and is controlled by the controller. Moreover, the heater 53 is not directly in contact with the battery 6, and has high safety, reliability, and practicality.
  • the first temperature sensor 55 is for detecting the temperature of the flow path inlet coolant
  • the second temperature sensor 56 is for detecting the temperature of the flow path outlet coolant.
  • the flow rate sensor 57 is used to detect the flow rate information of the coolant in the corresponding pipe.
  • the second electronic valve 43 is used to control the opening and closing of the respective battery cooling branch 4, and the second expansion valve 42 can be used to control the flow of coolant in the responsive battery cooling branch 4.
  • the controller can adjust the temperature of the two batteries by adjusting the opening degrees of the first to fourth regulating valves 411-414 while controlling the coolant flow rates of the two cooling branch circuits of the first battery 61 and the second battery 62.
  • the controller can also perform CAN communication with the vehicle air conditioner and the heater 53, and can control the rotation speed of the pump 51 and monitor the temperature and flow rate information of the coolant, and can also manage the battery, detect the voltage and temperature information of the battery, and control the vehicle.
  • the temperature regulation system of the battery is turned on and off, and the controllers can communicate with each other.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioning controller.
  • the battery thermal management controller may be electrically connected to the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57.
  • the battery thermal management controller performs CAN communication with the pump 51 and the heater 53, and according to the specific heat capacity and medium of the medium. The density, the cross-sectional area of the flow path, the actual power P2, the rotational speed of the pump 51, and the power of the control heater 53 are obtained.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected to the expansion valve and the electronic valve, and the vehicle air conditioner controller can perform CAN communication with the battery management controller and the battery thermal management controller and the compressor 1 to obtain the required power P1 according to the battery management controller and
  • the actual power P2 obtained by the battery thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the battery management controller may be configured to respectively acquire a first parameter when each battery is turned on, and generate a first required power of each battery according to the first parameter, and acquire each battery separately. a second parameter at the time of temperature adjustment, and generating a second required power of each battery according to the second parameter, and generating a required power of each battery according to the first required power of each battery and the second required power of each battery P1.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • the battery management controller acquires the first between the initial temperature and the target temperature.
  • the temperature difference ⁇ T 1 , and the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is the average current I of each battery within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • the battery thermal management controller generates a second temperature difference ⁇ T of each battery according to an inlet temperature detected by the first temperature sensor 55 of each circuit in which the battery is located and an outlet temperature detected by the second temperature sensor 56, respectively. 2 , and the actual power P2 of each battery is generated according to the second temperature difference ⁇ T 2 of each battery and the flow rate v detected by the flow rate sensor 57.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • s is the cross-sectional area of the flow path.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle needs temperature adjustment, the temperature adjustment function is turned on, and the low speed information is sent to the pump 51, and the pump is at a default speed (such as a low speed). )start working. Then, the battery thermal management controller acquires an initial temperature (ie, current temperature) of each battery, a target temperature, and a target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions, and The first required power of each battery is calculated according to formula (1).
  • the battery thermal management controller obtains the average current I of each battery for a preset time, and calculates the second required power of each battery according to formula (2). Then, the controller calculates the required power P1 according to the first required power and the second required power of each battery 6 (that is, the required power of the battery is adjusted to the target temperature within the target time). Moreover, the battery thermal management controller acquires the first temperature sensor 55 and the second temperature sensor 56 corresponding to each battery to detect the temperature information, and respectively obtains the flow rate information detected by the flow rate sensor 57, and calculates each according to formula (3). The actual power of the battery is P2.
  • plurality of battery cooling branches (401 and 30) for a plurality of in-vehicle cooling branches (30 and 30) according to the required power P1, the actual power P2, the plurality of zone temperatures Tq, and the air-conditioning set temperature Ts will be described below with reference to specific embodiments (401). And 402) and the power of the plurality of cooling branches (11 and 12) are adjusted.
  • the battery management controller may be configured to generate a total required power P Z according to the required power P1 of each battery, and determine whether the total required power P Z is greater than a total maximum cooling power P5 of the plurality of compressors (or Total rated cooling power), wherein when the total required power P Z is greater than the total maximum cooling power P5 (or the total rated cooling power) of the plurality of compressors, the vehicle air conditioning controller cools the plurality of compressors 1 to the battery corresponding to the battery The cooling power of the branch 4 is adjusted to the maximum; when the total required power P Z is less than or equal to the total maximum cooling power P5 (or the total rated cooling power) of the plurality of compressors, the vehicle air conditioning controller is based on the total required power P Z and the total The difference between the maximum cooling power P5 (or the total rated cooling power) is adjusted for the cooling power of the battery cooling branch 4 corresponding to the battery 6.
  • the battery management controller can calculate the total required power P Z of the entire temperature adjustment system according to the required power P1 of each battery, that is, the required power P1 of each battery.
  • the total required power P Z can be obtained by adding, and the vehicle air conditioner controller calculates the total maximum cooling power P5P5 of the plurality of compressors according to the maximum cooling power P of each compressor 1, that is, the maximum cooling power of each compressor 1. P is added to obtain the total maximum cooling power P5P5.
  • the vehicle air conditioner controller determines whether P Z > P5P5, and if so, the vehicle air conditioner controller controls to adjust the opening degree of each of the second expansion valves 42 to the maximum to increase the inflow to each battery; the cooling circuit 4
  • the coolant flow allows the battery to cool down within the target time.
  • P Z ⁇ P5P5 two compressors are required to work together, and the initial cooling power of each compressor can be Pz/2, or other power combinations, so that the sum of the cooling powers of the two compressors is Pz, and
  • the opening degree of each second expansion valve 42 is adjusted according to the difference between P Z and P5, wherein the larger the absolute value of the difference between P Z and P5 is, the smaller the opening degree of the second expansion valve 42 is To achieve the goal of saving energy.
  • the battery management controller is further configured to detect a temperature of the plurality of batteries, and when the temperature of any one of the plurality of batteries 6 is greater than the first temperature threshold And controlling the temperature regulation system to enter the cooling mode, and controlling the temperature adjustment system to enter the heating mode when the temperature of any one of the plurality of batteries is less than the second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of each battery in real time and makes a determination. If the temperature of one of the batteries is higher than 40 °C, the temperature of the battery is too high at this time. In order to avoid the influence of high temperature on the performance of the battery, the battery needs to be cooled, and the battery management controller controls the temperature adjustment system to enter.
  • the cooling mode is sent, and the battery cooling function activation information is sent to the air conditioning system, and the corresponding second electronic valve 43 is controlled to be turned on to exchange heat between the cooling liquid and the battery to lower the temperature of the battery.
  • the battery management controller controls the temperature adjustment system to enter.
  • the second electronic valve 43 is controlled to be closed, and the corresponding heater 53 is controlled to be turned on to provide heating power to the temperature regulating system.
  • the heater 53 provides heating power to heat the first battery 61.
  • the flow direction of the coolant in the circuit where the first battery 61 is located is: the medium container 52 - the heat exchanger 41 - heating
  • the unit 53 (open) - the pump 51 - the first temperature sensor 55 - the first battery 61 - the second temperature sensor 56 - the flow rate sensor 57 - the medium container 52, circulates in such a manner that the temperature rise of the battery first battery 61 is achieved.
  • the controller when the temperature adjustment system is in the cooling mode, the controller is further configured to determine whether the battery temperature is when the required power P1 of the battery cooling branch is greater than the actual power P2. More than a third temperature threshold, wherein if the battery temperature is greater than the third temperature threshold, the vehicle air conditioning controller increases the power of the corresponding battery cooling branch, wherein the power of the battery cooling branch passes through the corresponding valve (ie, the second expansion valve 42)
  • the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the vehicle air conditioner controller determines whether the temperature of the battery is greater than 45 °C. If the temperature of any one of the batteries is greater than 45 ° C, indicating that the current temperature of the battery is too high, the vehicle air conditioner controller reduces the opening degree of the corresponding first expansion valve 32 to reduce the coolant flow rate of the cooling branch in the vehicle, and increase the number of The opening of the expansion valve 42 is to increase the flow rate of the coolant in the battery cooling branch.
  • the temperature adjustment of the battery can be completed within the target time when the battery temperature is too high.
  • the controller when the temperature adjustment system is in the cooling mode, is further configured to acquire the required power of the battery when the required power P1 of the battery is greater than the actual power P2 of the battery.
  • the power difference between P1 and the actual power P2 and increase the power of the compressor 1 for cooling the battery according to the power difference, or adjust the coolant flow rate of the circulating branch circuit of the battery to increase the cooling power of the battery, or
  • the required power P1 of a certain battery is less than or equal to the actual power P2 of the battery, the power of the compressor is reduced or the power of the compressor is kept constant, or the cooling liquid flow of the circulating branch circuit of the battery is adjusted to reduce the cooling power of the battery. .
  • the vehicle air conditioner controller when operating in the cooling mode, if there are a plurality of batteries, the vehicle air conditioner controller acquires P1 and P2 of each battery, respectively, and makes a judgment. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller obtains the power between the battery P1 and P2.
  • the battery management controller transmits information for turning off the temperature adjustment function to the vehicle air conditioner through CAN communication, and controls the second electronic valve 43 to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is still higher than 35 ° C, the vehicle air conditioner controller appropriately increases the power of the compressor to complete the cooling of the battery as soon as possible.
  • the vehicle air conditioner controller is further configured to reduce a plurality of vehicles when the temperature of a certain battery is less than a third temperature threshold and the temperature inside the vehicle is equal to the air conditioning set temperature Ts. Internally cools the power of the branch and increases the power of the multiple battery cooling branches.
  • the vehicle air conditioner controller determines whether the temperature inside the vehicle reaches the air conditioner set temperature Ts. If so, the vehicle air conditioner controller reduces the opening degree of the first expansion valve 32 and increases the opening degree of the second expansion valve 42 to increase the coolant flow rate of the battery cooling branch and reduce the cooling branch of the vehicle. Coolant flow, complete the battery cooling as soon as possible. On the other hand, if the temperature inside the vehicle does not reach the air-conditioning set temperature Ts, the cooling demand in the vehicle is preferentially satisfied, and the vehicle air-conditioning controller increases the opening degree of the first expansion valve 32 and reduces the opening degree of the second expansion valve 42.
  • the battery temperature is also processed hierarchically, and the temperature control thresholds are 40 ° C, 45 ° C and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery cooling is completed.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2, if the battery temperature does not exceed 45 ° C, the cooling demand in the vehicle is still prioritized. If the cooling power in the vehicle is sufficient and reaches equilibrium, the controller increases the battery cooling branch. The power to increase the cooling power of the battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • the plurality of cooling branches respectively correspond to the plurality of air outlets, and the plurality of area temperatures are the temperatures of the plurality of air outlets.
  • four air outlets which are an air outlet 1 - an air outlet 4, can be provided in the vehicle compartment.
  • the corresponding region temperature Tq is detected by detecting the tuyere temperature Tc. It is assumed that the air outlet 1 and the air outlet 2 are supplied with the cooling power by the first cooling branch 11, and the outlet 3 and the outlet 4 are provided with the cooling power by the second cooling branch 12.
  • the vehicle air conditioner controller is further configured to acquire a temperature difference between a plurality of regional temperatures, and when the temperature difference is greater than the fourth temperature threshold, the air outlet having a high temperature is located.
  • the power of the in-vehicle cooling branch corresponding to the cooling branch is increased, and the power of the battery cooling branch corresponding to the cooling branch where the high temperature outlet is located is lowered.
  • the fourth temperature threshold may be preset according to actual conditions, for example, may be 3 ° C.
  • the vehicle air conditioner controller is further configured to reduce the power of the in-vehicle cooling branch corresponding to the cooling branch where the low temperature air outlet is located, and the battery corresponding to the cooling branch where the low temperature air outlet is located The power of the cooling branch is increased.
  • the air conditioner needs to be turned on in the vehicle, the ambient temperature in the vehicle compartment needs to be monitored and controlled, so that the ambient temperature throughout the vehicle is balanced, and at the same time, the battery cooling requirement can be met.
  • the first in-vehicle cooling branch 301 is controlled.
  • the opening degree of the first expansion valve 32 is increased while controlling the opening degree of the second expansion valve 42 in the first battery cooling branch 401 to be decreased to increase the cooling power in the first in-vehicle cooling branch 301.
  • the vehicle air conditioner controller also controls the opening degree of the first expansion valve 32 in the second in-vehicle cooling branch 302 to decrease, and the opening degree of the second expansion valve 42 in the second battery cooling branch 402 increases to enable the The cooling power in the two in-vehicle cooling branch 302 is small. Thereby, the cooling power of the first battery cooling 301 and the second battery cooling branch 302 can be made constant, and at the same time, the temperature in the vicinity of the air outlets in the vehicle is equalized.
  • the vehicle air conditioner controller controls the first interior cooling branch 301
  • the opening degree of the first expansion valve 32 in the second in-vehicle cooling branch 302 is the same to ensure that the cooling powers of the first in-vehicle cooling branch 301 and the second in-vehicle cooling branch 302 are the same.
  • the battery thermal management controller acquires the required power P1 and the actual power P2 of the battery when the required power P1 of a certain battery is greater than the actual power P2 of the battery.
  • the power difference between them and increases the power of the heater for heating the battery according to the power difference, or adjusts the coolant flow rate of the circulating branch circuit of the battery to increase the heating power of the battery, and at a certain battery
  • the required power P1 is less than or equal to the actual power P2 of the battery
  • the power of the heater is reduced or the power of the heater is kept constant, or the coolant flow rate of the circulating branch circuit of the battery is adjusted to reduce the heating power of the battery.
  • the battery thermal management controller acquires P1 and P2 of each battery, respectively, and makes a determination. If P1 of one of the batteries is greater than P2, it means that if the heating of the battery cannot be completed within the target time according to the current heating power or the flow rate of the coolant, the battery thermal management controller acquires between P1 and P2 of the battery. The power is poor, and the power of the heater 53 for heating the battery is increased according to the power difference, or by adjusting the rotation speed of the corresponding pump 51 to increase the coolant flow rate of the circulating branch circuit of the battery, so that the battery can be at the target The temperature adjustment is completed within time t.
  • the battery thermal management controller may appropriately reduce the power of the heater 53 to save electric energy, or reduce the circulating branch circuit of the battery by adjusting the corresponding rotation speed of the pump 51.
  • the coolant flow rate is used to reduce the heating power or to keep the power of the heater 53 unchanged.
  • the battery thermal management controller is further configured to reduce the rotation speed of the pump 51 in the battery flow path when the required power P1 of a certain battery is less than the corresponding actual power P2, and the demand of the battery When the power P1 is greater than the corresponding actual power P2, the rotational speed of the pump 51 in the battery flow path is increased.
  • the battery thermal management controller controls the rotation speed of the corresponding pump 51 to be reduced to save electric energy. If the P1 of a certain battery is greater than P2, the battery thermal management controller controls the speed of the corresponding heater 53 or the compressor 1 to increase or the coolant flow rate of the circuit in which the battery is located increases, and also controls the rotation speed of the pump 51 to increase. The mass of the coolant flowing through the cross section of the cooling flow path per unit time is increased, thereby increasing the actual power P2 of the battery to achieve temperature regulation within the target time t.
  • the battery management controller can calculate the required power P1 of the first battery 61 and the second battery 62, respectively, and then according to the P1 and the respectively of each battery.
  • the maximum cooling power P of the corresponding compressor adjusts the opening of the corresponding second expansion valve 42.
  • the battery thermal management controller also continues to adjust the opening of the second expansion valve 42 based on the actual power P2 of each battery.
  • the battery thermal management controller adjusts the first battery cooling branch 401 and the second by adjusting the opening degrees of the first to fourth regulating valves 411-414 according to the temperature condition between the first battery 61 and the second battery 62.
  • the coolant flow rate of the battery cooling branch 402 is distributed so as to control the equalization of the temperatures of the first battery 61 and the second battery 62.
  • the opening degrees of the first regulating valve 411 and the third regulating valve 413 may be increased, and the second regulating valve 412 may be decreased.
  • the battery thermal management controller increases the heating corresponding to the first battery 61.
  • the heating power of the device 53 Thereby, the temperature balance between the two batteries can be maintained.
  • Figure 24 increases the in-vehicle cooling branch as compared to the temperature regulation system shown in Figures 11A-11B. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires each battery 6 when the temperature adjustment system enters the cooling mode.
  • P1 the actual power P2 of each battery and the maximum cooling power P of a single compressor, and add P1 of each battery to calculate the total required power P Z of the entire temperature regulation system
  • the actual power of each battery P2 is added to obtain the total actual power Pf
  • the maximum cooling power of each compressor is added to calculate the sum P5 of the maximum cooling powers of all the compressors.
  • the required power of the first battery 61 is P11
  • the required power of the second battery 62 is P12.
  • the actual power of the first battery 61 is P21, and the actual power of the second battery 62 is P22.
  • P51 is the maximum cooling power of the first compressor 11
  • P52 is the maximum cooling power of the second compressor 12.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor 11 is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the cooling branch of the first compressor 11 is controlled to be reduced, and the expansion of the cooling branch in the vehicle is controlled.
  • the opening of the valve is increased, or the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is simultaneously increased, and the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the cooling branch of the first compressor 11 is controlled, and the opening degree of the expansion valve controlling the in-vehicle cooling branch is increased, so that all the cooling power of the first compressor 11 is used for in-vehicle cooling.
  • the expansion valve of the battery cooling branch in the cooling branch of the second compressor 12 is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is accelerated to decrease, and at the same time satisfying The cooling power requirement of the battery is to achieve a balanced internal temperature of the vehicle.
  • the temperature adjustment system of the vehicle battery acquires the required power of the battery and the actual power of the battery through the battery temperature adjustment device, and acquires the regional temperature and the air conditioner set temperature of the plurality of regions in the vehicle. And adjusting the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches according to the required power of the battery, the actual power of the battery, the plurality of regional temperatures, and the set temperature of the air conditioner, and according to the battery
  • the required power and the actual power of the battery dictate the cooling power provided by the plurality of compressors to the battery cooling branch corresponding to the battery.
  • the system allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low.
  • the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature of each zone in the compartment and the temperature between the cells can be equalized.
  • the temperature regulation system of the vehicle battery includes a plurality of cooling branches and a plurality of battery cooling branches corresponding to the plurality of cooling branches, a plurality of in-vehicle cooling branches, a plurality of batteries, and a plurality of batteries and a plurality of batteries
  • the temperature adjusting method of the vehicle battery includes the following steps:
  • separately acquiring the required power of the plurality of batteries specifically includes: acquiring a first parameter when each battery is turned on, and generating a first required power of each battery according to the first parameter.
  • a second parameter of each battery during temperature adjustment is separately obtained, and a second required power of each battery is generated according to the second parameter.
  • the required power P1 of the battery cooling branch is generated based on the first required power and the second required power of each battery.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • generating the first required power according to the first parameter specifically includes: acquiring a first temperature difference ⁇ T 1 between the initial temperature and the target temperature; the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the first demand power is generated by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is an average current I of the battery within a preset time
  • the second required power is generated by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • acquiring the actual power P2 of the plurality of batteries specifically includes: obtaining an inlet temperature and an outlet temperature of a flow path for adjusting a plurality of battery temperatures, and acquiring a flow velocity v of the coolant inflow path.
  • a second temperature difference ⁇ T 2 of the plurality of batteries is generated based on the flow path inlet temperature and the outlet temperature of the plurality of batteries.
  • the actual power P2 of the plurality of batteries is generated based on the second temperature difference ⁇ T 2 of the plurality of batteries and the flow rate v.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • S3" adjusts the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts.
  • the plurality of battery cooling branches communicate with each other, and the cooling power provided by the plurality of compressors to the battery cooling branch corresponding to the battery is adjusted according to the required power P1 of the battery and the actual power P2.
  • a plurality of in-vehicle cooling branches and a plurality of battery cooling branches are performed within a target time t according to the required power P1, the actual power P2, the plurality of the area temperatures Tq, and the air-conditioning set temperature Ts.
  • the power of multiple cooling branches is adjusted to reach the target temperature.
  • the battery can be a battery pack or a battery module. Each battery is set independently of each other.
  • the batteries are a first battery and a second battery, respectively
  • the cooling branches are respectively a first cooling branch and a second
  • the cooling branch circuit and the battery cooling branch are respectively a first battery cooling branch and a second battery cooling branch
  • the in-vehicle cooling branch is a first in-vehicle cooling branch and a second in-vehicle cooling branch, respectively.
  • the temperature adjustment of the first battery and/or the second battery is required.
  • Obtaining the required power P1 and the actual power P2 adjusting the power of the plurality of battery cooling branches according to P1 and P2, adjusting the cooling power of the battery, and acquiring the plurality of regional temperatures Tq and the air conditioning set temperature Ts, and controlling according to Tq and Ts
  • Each battery cools the branch power. For example, if the Tq of a certain area is higher and the Tq of the other areas is larger, the power of the in-vehicle cooling branch that controls cooling of the area is increased, and the corresponding battery cooling is controlled. The power of the branch is reduced.
  • the method allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low.
  • the temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • the plurality of battery cooling branches are connected to each other, the temperature of each battery can be balanced by adjusting the cooling power of the battery cooling branch corresponding to the battery according to the temperature of each battery.
  • the temperature adjustment method of the above-described vehicle battery may further include:
  • the required power P1 of the battery generates the total required power P Z .
  • the total maximum cooling power P5 of the plurality of compressors is generated based on the maximum cooling power P of the plurality of compressors. It is judged whether or not the total required power P Z is greater than the total maximum cooling power P5 of the plurality of compressors.
  • the cooling power of the plurality of compressors to the corresponding battery cooling branch of the battery is adjusted to a maximum. If the total required power P Z is less than or equal to the total maximum cooling power P5 of the plurality of compressors, the cooling power of the battery cooling branch corresponding to the battery is adjusted according to the difference between the total required power P Z and the total maximum cooling power P5.
  • the total required power P Z of the entire temperature adjustment system can be calculated according to the required power P1 of each battery, that is, the required power P1 of each battery is added to obtain the total required power P Z , and according to each compressor
  • the maximum cooling power P calculates the total maximum cooling power P5 of the plurality of compressors, that is, the maximum cooling power P of each compressor is added to obtain the total maximum cooling power P5.
  • P Z >P5 the control adjusts the opening degree of each of the second expansion valves to the maximum to adjust the coolant flow rate of the plurality of compressors to the battery cooling branch corresponding to the battery to the maximum, So that the battery can complete the cooling within the target time t.
  • the opening degree of the second expansion valve is adjusted according to the difference between P Z and P5, wherein the larger the absolute value of the difference between P Z and P5 is, the opening degree of the second expansion valve The smaller, the goal of saving energy.
  • the temperature adjustment method of the battery may further include the step of detecting the temperatures of the plurality of batteries.
  • the temperature adjustment system enters a cooling mode when the temperature of any of the plurality of batteries is greater than a first temperature threshold.
  • the temperature adjustment system enters a heating mode when the temperature of any of the plurality of batteries is less than a second temperature threshold.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the temperature of each battery is detected in real time and judged. If the temperature of one of the batteries is higher than 40 ° C, indicating that the temperature of the battery is too high at this time, in order to avoid the influence of the high temperature on the performance of the battery, the battery needs to be cooled, and the temperature adjustment system enters the cooling mode. And send the battery cooling function start information to the air conditioning system. If the temperature of a battery is lower than 0 ° C, the temperature of the battery is too low at this time, in order to avoid the influence of low temperature on the performance of the battery, the battery needs to be heated, and the temperature adjustment system enters the heating mode. Control the corresponding battery cooling branch to turn off and control the heater to turn on to provide heating power to the battery.
  • the plurality of in-vehicle cooling branches, the plurality of in-vehicle cooling branches, according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts The adjustment of the power of the battery cooling branch and the plurality of cooling branches specifically includes: determining whether the battery temperature is greater than a third temperature threshold when the required power P1 of the battery cooling branch is greater than the actual power P2, wherein if the battery temperature is greater than the third The temperature threshold, the controller reduces the power of the plurality of in-vehicle cooling branches, and increases the power of the plurality of battery cooling branches, wherein the power of the plurality of battery cooling branches passes through the corresponding valves (ie, the second expansion valves) respectively Control, the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the temperature adjustment system when the temperature adjustment system is in the cooling mode, if P1 is greater than P2, it is determined whether the temperature of the battery is greater than 45 °C. If the temperature of any of the batteries is greater than 45 ° C, the current temperature of the battery is too high, and the opening degree of the first expansion valve 32 is reduced to reduce the coolant flow rate of the cooling branch in the vehicle while increasing the opening of the second expansion valve 42. Degree to increase the coolant flow rate of the battery cooling branch.
  • the temperature adjustment of the battery can be completed within the target time when the battery temperature is too high.
  • the temperature adjustment method of the battery when the temperature adjustment system is in the cooling mode, further includes: determining whether the required power P1 of each battery is greater than the actual power P2 corresponding to each battery. If the required power P1 of a battery is greater than the actual power P2 of the battery, the power difference between the required power P1 of the battery and the actual power P2 is obtained, and the power of the compressor for cooling the battery is increased according to the power difference, or Adjust the coolant flow rate of the circulating branch circuit of the battery to increase the cooling power of the battery.
  • the required power P1 of a battery is less than or equal to the actual power P2 of the battery, reduce the power of the compressor or keep the power of the compressor unchanged, or adjust the coolant flow rate of the circulating branch circuit of the battery to reduce the battery Cooling power.
  • P1 and P2 of each battery are respectively acquired, and judgment is made. If the P1 of one of the batteries is greater than P2, it means that if the cooling of the battery cannot be completed within the target time according to the current cooling power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the compressor, or increases the coolant flow rate of the circulating branch circuit of the battery to increase the cooling power of the battery, wherein the power difference between P1 and P2 is greater, the power of the compressor and the coolant of the battery The more the flow rate is increased, so that the temperature of the battery is lowered to the target temperature within a preset time t.
  • the power of the compressor can be kept constant or the power of the compressor can be appropriately reduced, or the coolant flow rate of the circulating branch circuit of the battery can be reduced, and the cooling power of the battery can be reduced.
  • the temperature of all the batteries is lower than 35 ° C
  • the battery cooling is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the second electronic valve is controlled to be closed. If the temperature adjustment system enters the cooling mode for a long time, for example, after 1 hour, if the temperature of the battery is still higher than 35 ° C, then the power of the compressor is appropriately increased to allow the battery to complete the cooling as soon as possible.
  • the battery temperature is less than the third temperature threshold, it is further determined whether the in-vehicle temperature is equal to the air-conditioning set temperature Ts; if the in-vehicle temperature is equal to the air-conditioning set temperature Ts, the plurality of in-vehicles are lowered Cool the power of the branch and increase the power of the multiple battery cooling branches.
  • the battery thermal management controller determines whether the temperature inside the vehicle reaches the air conditioning set temperature Ts. If it is reached, increase the coolant flow rate of the battery cooling branch, reduce the coolant flow rate of the cooling branch in the vehicle, and complete the cooling of the battery as soon as possible. If the temperature inside the vehicle does not reach the set temperature Ts of the air conditioner, the cooling demand in the vehicle is preferentially satisfied, and the battery thermal management controller increases the coolant flow rate of the cooling branch in the vehicle and reduces the coolant flow rate of the cooling branch of the battery. .
  • the battery temperature is also processed hierarchically, and the temperature control thresholds are 40 ° C, 45 ° C and 35 ° C, respectively.
  • the battery cooling function is activated, and when the battery temperature is lowered to 35 ° C, the battery cooling is completed.
  • the battery temperature reaches 45 ° C, the battery cooling needs are preferentially met.
  • the required power P1 is greater than the actual power P2, if the battery temperature does not exceed 45 ° C, the cooling demand in the vehicle is still prioritized. If the cooling power in the vehicle is sufficient and reaches equilibrium, the power of the battery cooling branch is increased. To increase the cooling power of the battery. If the required power P1 is less than or equal to the actual power P2, the in-vehicle refrigeration demand can be preferentially satisfied.
  • reducing the power of the plurality of in-vehicle cooling branches specifically includes: acquiring a temperature difference between the plurality of zone temperatures. It is determined whether the temperature difference is greater than a fourth temperature threshold. If the temperature difference is greater than the fourth temperature threshold, the power of the in-vehicle cooling branch corresponding to the cooling branch where the high temperature air outlet is located is increased, and the battery cooling branch corresponding to the cooling branch where the high temperature air outlet is located The power is reduced.
  • the fourth temperature threshold may be preset according to actual conditions, for example, may be 3 ° C.
  • the method for adjusting the temperature of the vehicle battery further includes: reducing the power of the in-vehicle cooling branch corresponding to the cooling branch where the low temperature air outlet is located, and correspondingly the cooling branch where the low temperature air outlet is located The power of the battery cooling branch is increased.
  • the air conditioner needs to be turned on in the vehicle, the ambient temperature in the vehicle compartment needs to be monitored and controlled, so that the ambient temperature throughout the vehicle is balanced, and at the same time, the battery cooling requirement can be met.
  • the first in-vehicle cooling branch is increased. The power is reduced in the first battery cooling branch to make the cooling power in the first in-vehicle cooling branch larger.
  • the power in the second in-vehicle cooling branch is also reduced, and the power of the second battery cooling branch is increased to make the cooling power in the second in-vehicle cooling branch smaller.
  • the cooling power of the first battery cooling and the second battery cooling branch can be made constant, and at the same time, the temperature in the vicinity of the air outlets in the vehicle is equalized.
  • the vehicle air conditioner detects the air outlet 1, the air temperature Tq in the vicinity of the air outlet 2, and the temperature Tq in the vicinity of the air outlet 3 and the air outlet 4 are within 3 ° C
  • the first in-vehicle cooling branch and the second in-vehicle are controlled.
  • the first expansion valve in the cooling branch has the same opening degree to ensure that the cooling power of the first in-vehicle cooling branch and the second in-vehicle cooling branch are the same.
  • the method when the temperature adjustment system is in the heating mode, the method further includes: determining whether the required power P1 of the certain battery is greater than the actual power P2 of the battery. If the required power P1 of a battery is greater than the actual power P2 corresponding to the battery, the power difference between the required power P1 of the battery and the actual power P2 is obtained, and the power of the heater for cooling the battery is increased according to the power difference, or Adjust the coolant flow rate of the circulating branch circuit of the battery to increase the heating power of the battery.
  • the power of the heater is reduced or the power of the heater is kept constant, or the coolant flow rate of the circulating branch circuit of the battery is adjusted to reduce the battery. Heating power.
  • P1 and P2 of each battery are respectively acquired and judged. If the P1 of one of the batteries is greater than P2, it means that if the heating temperature of the battery cannot be completed within the target time according to the current heating power or the coolant flow rate, the power difference between P1 and P2 of the battery is obtained, and according to The power difference increases the power of the heater used to heat the battery, or by adjusting the speed of the corresponding pump to increase the coolant flow of the circulating branch circuit of the battery so that the battery can complete the temperature adjustment within the target time t. Among them, the greater the difference between P1 and P2, the more the power of the heater increases.
  • the power of the heater can be appropriately reduced to save power, or the coolant flow rate of the circulating branch circuit of the battery can be reduced by adjusting the rotation speed of the corresponding pump to reduce the flow rate of the circulating branch circuit of the battery. Heat the power or keep the power of the heater constant.
  • the preset temperature for example, 10 ° C
  • the battery heating is completed, the information of turning off the temperature adjustment function is sent to the vehicle air conditioner through CAN communication, and the heater is turned off. If the temperature adjustment system enters the heating mode for a long time, for example, after 1 hour, if the temperature of the battery is lower than 10 ° C, the power of the heater is appropriately increased to complete the temperature rise as soon as possible.
  • the temperature adjustment method of the vehicle battery may further include: if the required power P1 of a certain battery is less than the corresponding actual power P2, reducing the rotation speed of the pump in the flow path of the battery; if the demand of a certain battery When the power P1 is greater than the corresponding actual power P2, the rotational speed of the pump in the flow path of the battery is increased.
  • the rotation speed of the corresponding pump is controlled to be reduced to save electric energy.
  • the controller controls the increase of the power of the corresponding heater or the compressor or the coolant flow of the circuit in which the battery is located, and also controls the increase of the rotation speed of the pump, which can increase the flow per unit time.
  • the coolant mass of the cross section of the flow path is cooled, thereby increasing the actual power P2 of the battery to achieve temperature regulation within the target time t.
  • Figure 24 adds an in-vehicle cooling circuit as compared to the temperature regulation system shown in Figures 11A-11B. Only the differences are listed below, and the rest are not to be described.
  • the controller acquires P1 of each battery when the temperature adjustment system enters the cooling mode.
  • the actual power P2 of each battery and the maximum cooling power P of a single compressor, and the P1 of each battery are added to calculate the total required power P Z of the entire temperature regulation system, and the actual power P2 of each battery is added.
  • the total actual power Pf is obtained, and the maximum cooling power of each compressor is added to calculate the sum P5 of the maximum cooling powers of all the compressors.
  • the required power of the first battery is P11, and the required power of the second battery is P12.
  • the actual power of the first battery is P21, and the actual power of the second battery is P22.
  • P51 is the maximum cooling power of the first compressor 11
  • P52 is the maximum cooling power of the second compressor.
  • T51-T52 ⁇ Tc and Tc is 3 ° C, proceed as follows:
  • the cooling power of the first compressor is controlled to be increased, or the opening degree of the expansion valve of the battery cooling branch in the first compressor refrigeration branch is controlled to be decreased, and the expansion valve for controlling the cooling branch of the vehicle is opened.
  • the degree of increase, or the expansion of the expansion valve of the battery cooling branch in the second compressor refrigeration branch is increased, and the opening of the expansion valve for controlling the cooling branch of the vehicle is reduced, so that the temperature of the T51 is rapidly decreased while satisfying the cooling of the battery. Power demand to achieve a balanced environment temperature inside the car.
  • controlling the first compressor 11 and the second compressor 12 to operate at the maximum cooling power, while controlling the expansion valve opening degree of the battery cooling branch in the refrigeration branch of the first compressor 11 to decrease The opening of the expansion valve for controlling the cooling branch in the vehicle is increased, or the expansion valve of the battery cooling branch in the cooling branch of the second compressor is controlled to increase, and the opening of the expansion valve for controlling the cooling branch of the vehicle is reduced, so that T51 is The temperature is accelerated to decrease, and at the same time, the cooling power requirement of the battery is satisfied, and the temperature in the interior of the vehicle is balanced.
  • T51-T52 ⁇ Tc and Tc is 3°C, the following processing can also be performed:
  • the closing of the battery cooling branch in the refrigeration branch of the first compressor is controlled, and the opening degree of the expansion valve controlling the cooling branch in the vehicle is increased, so that all the cooling power of the first compressor is used for interior cooling.
  • the expansion valve of the battery cooling branch in the refrigeration branch of the second compressor is controlled to increase, the opening degree of the expansion valve for controlling the cooling branch in the vehicle is reduced, and the cooling power of the battery is increased, so that the temperature of the T51 is rapidly decreased, and the battery is satisfied at the same time.
  • the cooling power demand is to achieve a balanced internal temperature of the vehicle.
  • the temperature adjustment method of the vehicle battery first, the required power and the actual power of the plurality of batteries are separately acquired, and then the regional temperature and the air conditioning set temperature of the plurality of regions in the vehicle are respectively acquired, and then according to the required power, The actual power, the plurality of zone temperatures, and the air conditioning set temperature adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches. Therefore, the method allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of each battery and the temperature of the plurality of areas in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or too low. The temperature is adjusted to maintain the temperature of the battery within a preset range, and the temperature of each zone in the compartment and the temperature between the cells can be equalized.
  • the temperature regulation system of the vehicle battery includes: a plurality of cooling branches, a plurality of in-vehicle cooling branches, and a plurality of batteries Cooling branch and battery temperature adjustment device 5.
  • each of the cooling branches includes a compressor 1 and a condenser 2 connected to the compressor 1.
  • a plurality of in-vehicle cooling branches are respectively connected to a plurality of cooling branches.
  • the battery temperature adjusting device 5 is connected to the battery 6 and the battery cooling branch for acquiring the required power P1 and the actual power P2, and acquiring the regional temperature Tq and the air conditioning set temperature Ts of the plurality of regions in the vehicle, and the power P1 according to the demand.
  • the actual power P2, the plurality of zone temperatures Tq, and the air conditioner set temperature Ts adjust the power of the plurality of in-vehicle cooling branches, the plurality of battery cooling branches, and the plurality of cooling branches.
  • the battery can be a battery pack or a battery module.
  • the battery temperature adjusting device 5 pairs the plurality of in-vehicle cooling branches within the target time t according to the required power P1, the actual power P2, the plurality of regional temperatures Tq, and the air-conditioning set temperature Ts.
  • the power of the battery cooling branch and the plurality of cooling branches are adjusted to reach the target temperature.
  • the battery temperature adjusting device 5 acquires the required power P1 and the actual power P2 of the battery 6, adjusts the power of the plurality of battery cooling branches according to P1 and P2 to adjust the cooling power of the battery, and the battery temperature adjusting device 5 acquires the plurality of regional temperatures Tq.
  • the air conditioner sets the temperature Ts, and controls the power of each battery cooling branch according to Tq and Ts. For example, if the Tq of a certain area is higher and the Tq of the other area is larger, the battery temperature adjusting device 5 controls the cooling. The power of the in-vehicle cooling branch of the area is increased, and the power of the corresponding battery cooling branch is controlled to be reduced. Meanwhile, in order to ensure that the cooling power of the battery is constant, the battery temperature adjusting device 5 controls the cooling branch of the other vehicle. The power is reduced while controlling the power increase of the corresponding battery cooling branch.
  • the system allocates the cooling capacity of the battery and each area in the vehicle according to the actual state of the battery and the temperature of the plurality of zones in the vehicle and the set temperature of the air conditioner, not only when the battery temperature is too high or when the temperature is too low. Adjustments are made to maintain the temperature of the battery within a preset range, and the temperature in each zone of the compartment can be equalized.
  • the cooling power of the battery temperature adjusting device 5 is provided by the vehicle air conditioner, and the cooling capacity is shared with the in-vehicle refrigeration system, thereby reducing the volume of the temperature regulating system and making the distribution of the coolant flow more flexible.
  • the battery cooling branch may include a heat exchanger 41 connected to the battery temperature adjusting device 5.
  • the heat exchanger 41 may include a first conduit and a second conduit, the second conduit being connected to the battery temperature regulating device 5, the first conduit being in communication with the compressor 1, wherein the first conduit and the second conduit are disposed adjacent to each other independently.
  • the battery temperature adjusting device 5 includes a flow path (not specifically shown) for adjusting the temperature of the battery, and the flow path is disposed in the battery.
  • a pump 51, a medium container 52, a heater 53, and a controller are connected between the flow path and the heat exchanger 41.
  • the controller acquires the required power P1 of the battery and the actual power P2 of the battery, and adjusts the temperature of the battery according to the required power P1 and the actual power P2.
  • the in-vehicle cooling branch may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the battery cooling branch 4 may also include a second expansion valve 42 and a second electronic valve 43.
  • the heat exchanger 41 may be a plate heat exchanger, and the plate heat exchanger may be installed inside the vehicle air conditioner, so that the entire refrigerant circuit is inside the vehicle air conditioner, facilitating the commissioning of the vehicle air conditioner, and the vehicle air conditioner can be separately supplied. And assembly, at the same time, the car air conditioner only needs to be refilled once during the installation process.
  • the coolant flows into the interior of the battery from the inlet of the flow path and flows out from the outlet of the flow path, thereby achieving heat exchange between the battery and the cooling liquid.
  • the pump 51 is primarily used to provide power
  • the media container 52 is primarily used to store coolant and receive coolant added to the temperature regulation system.
  • the coolant in the media container 52 is automatically replenished as the coolant in the temperature regulation system is reduced.
  • the heater 53 can be a PTC heater that can communicate with the controller in CAN to provide heating power to the on-board battery temperature regulation system and is controlled by the controller. Moreover, the heater 53 is not directly in contact with the battery 6, and has high safety, reliability, and practicality.
  • the first temperature sensor 55 is for detecting the temperature of the flow path inlet coolant
  • the second temperature sensor 56 is for detecting the temperature of the flow path outlet coolant.
  • the flow rate sensor 57 is used to detect the flow rate information of the coolant in the corresponding pipe.
  • the second electronic valve 43 is used to control the opening and closing of the respective battery cooling branch, and the second expansion valve 42 can be used to control the flow of coolant in the responsive battery cooling branch.
  • the controller may include a battery management controller, a battery thermal management controller, and a vehicle air conditioning controller.
  • the battery thermal management controller may be electrically connected to the first temperature sensor 51, the second temperature sensor 52, and the flow rate sensor 57.
  • the battery thermal management controller performs CAN communication with the pump 51 and the heater 53, and according to the specific heat capacity and medium of the medium. The density, the cross-sectional area of the flow path, the actual power P2, the rotational speed of the pump 51, and the power of the control heater 53 are obtained.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is electrically connected to the expansion valve and the electronic valve, and the vehicle air conditioner controller can perform CAN communication with the battery management controller and the battery thermal management controller and the compressor 1 to obtain the required power P1 according to the battery management controller and
  • the actual power P2 obtained by the battery thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery management controller may be, for example, a DSP chip having a battery management function.
  • the battery thermal management controller may be, for example, a DSP chip having a battery thermal management function.
  • the vehicle air conditioner controller may be, for example, a car air conditioner DSP chip.
  • the battery management controller may be configured to respectively acquire a first parameter when the battery is turned on, and generate a first required power of the battery according to the first parameter, and obtain a first time when the battery is adjusted in temperature.
  • the second parameter generates a second required power of the battery according to the second parameter, and generates a required power P1 of the battery according to the first required power of the battery and the second required power of the battery.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time t from the initial temperature to the target temperature
  • the battery management controller acquires the first between the initial temperature and the target temperature.
  • the temperature difference ⁇ T 1 , and the first required power is generated according to the first temperature difference ⁇ T 1 and the target time t.
  • the battery management controller generates the first demand power by the following formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery 6
  • M is the mass of the battery.
  • the second parameter is the average current I of the battery within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery 6.
  • the battery thermal management controller generates a second temperature difference ⁇ T 2 of the battery according to the inlet temperature detected by the first temperature sensor 55 and the outlet temperature detected by the second temperature sensor 56, respectively, and according to the second of the battery
  • the temperature difference ⁇ T 2 and the flow rate v detected by the flow rate sensor 57 generate the actual power P2 of the battery.
  • the actual power P2 is generated according to the following formula (3):
  • ⁇ T 2 is the second temperature difference
  • c is the specific heat capacity of the coolant in the flow path
  • m is the mass of the coolant flowing through the cross section of the flow path per unit time
  • m is cooling
  • is the density of the coolant
  • the battery management controller determines whether the battery 6 needs to perform temperature adjustment. If it is determined that the battery 6 requires temperature adjustment, the temperature adjustment function is turned on, and the low rotation speed information is sent to the pump 51. The pump starts operating at the default speed (eg low speed).
  • the battery management controller can obtain the initial temperature (ie, the current temperature) of the 6 battery, the target temperature, and the target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions, and according to the formula ( 1) Calculate the first required power of the 6 battery.
  • the battery management controller acquires the average current I of the battery 6 for a preset time, and calculates the second required power of the battery 6 according to the formula (2). Then, the battery management controller calculates the required power P1 according to the first required power and the second required power of the battery, respectively. Moreover, the battery management controller acquires the first temperature sensor 55 and the second temperature sensor 56 to detect the temperature information, and separately obtains the flow rate information detected by the flow rate sensor, and calculates the actual power P2 of the battery according to the formula (3).
  • plurality of battery cooling branches (401 and 30) for a plurality of in-vehicle cooling branches (30 and 30) according to the required power P1, the actual power P2, the plurality of zone temperatures Tq, and the air-conditioning set temperature Ts will be described below with reference to specific embodiments (401). And 402) and the power of the plurality of cooling branches (11 and 12) are adjusted.
  • the vehicle air conditioner controller is further configured to generate a total maximum cooling power P5 of the plurality of compressors according to the maximum cooling power P of the plurality of compressors, and determine whether the required power P1 is greater than the plurality of compressions.
  • the total maximum cooling power P5 of the machine wherein when the required power P1 is greater than the total maximum cooling power P5 of the plurality of compressors, the vehicle air conditioning controller adjusts the cooling power of the plurality of battery cooling branches to the maximum; when the required power P1 is less than Or equal to the total maximum cooling power P5 of the plurality of compressors, the vehicle air conditioner controller adjusts the cooling power of the battery cooling branch according to the difference between the required power P1 and the total maximum cooling power P5.
  • the vehicle air conditioner controller can calculate the total maximum cooling power P5 of the plurality of compressors according to the maximum cooling power P of each compressor, that is, add the maximum cooling power P of each compressor.
  • the total maximum cooling power P5 is available.
  • the vehicle air conditioner controller determines whether P1>P5, and if so, the vehicle air conditioner controller adjusts the opening degree of each of the second expansion valves 42 to the maximum to connect the plurality of compressors 1 to the battery corresponding branch of the battery.
  • the coolant flow rate is adjusted to the maximum so that the battery 6 can be cooled down within the target time t.
  • the vehicle air conditioner controller adjusts the opening degree of the second expansion valve 42 according to the difference between P1 and P5, wherein the larger the absolute value of the difference between P1 and P5, the second expansion valve 42 The smaller the opening, the purpose of saving energy.
  • a battery management controller is further configured to detect a temperature of the battery, and when the temperature of the battery is greater than the first temperature threshold, control the temperature adjustment system to enter a cooling mode, and the temperature of the battery is less than the second temperature At the threshold, the temperature control system is controlled to enter the heating mode.
  • the first temperature threshold and the second temperature threshold may be preset according to actual conditions. For example, the first temperature threshold may be 40 ° C, and the second temperature threshold may be 0 ° C.
  • the battery management controller detects the temperature of the battery in real time and makes a determination. If the temperature of the battery is higher than 40 ° C, indicating that the temperature of the battery 6 is too high, in order to avoid the influence of high temperature on the performance of the battery 6, the battery 6 needs to be cooled, and the battery management controller controls the temperature adjustment system to enter the cooling.
  • the mode transmits a battery cooling function activation information to the air conditioning system, and controls the second electronic valve 43 to open to exchange heat between the coolant and the battery to lower the temperature of the battery.
  • the battery management controller controls the temperature adjustment system to enter the heating.
  • the second electronic valve 43 is controlled to be closed, and the heater 53 is controlled to be turned on to provide heating power to the temperature adjustment system.
  • the vehicle air conditioner controller when the temperature adjustment system is in the cooling mode, is further configured to determine whether the battery temperature is greater than the third temperature when the required power P1 of the battery cooling branch is greater than the actual power P2. a threshold, wherein, if the battery temperature is greater than the third temperature threshold, the vehicle air conditioner controller reduces the power of the plurality of in-vehicle cooling branches and increases the power of the plurality of battery cooling branches, wherein the power of the battery cooling branch passes
  • the valves ie, the second expansion valve 42
  • the third temperature threshold is greater than the first temperature threshold, for example, the third temperature threshold may be 45 °C.
  • the vehicle air conditioner controller determines whether the temperature of the battery is greater than 45 °C. If the temperature of the battery is greater than 45 ° C, the current temperature of the battery 6 is too high, and the vehicle air conditioner controller reduces the opening degree of the first expansion valve 32 to reduce the coolant flow rate of the cooling branch in the vehicle and increase the second expansion valve. The opening of 42 to increase the coolant flow rate of the battery cooling branch.
  • the vehicle air conditioner controller when the temperature adjustment system is in the cooling mode, is further configured to acquire the required power P1 and the actual power P2 of the battery when the required power P1 of the battery is greater than the actual power P2 of the battery.
  • the vehicle air conditioner controller acquires P1 and P2 of the battery 6, and makes a judgment. If P1 is greater than P2, it means that if the cooling of the battery 6 cannot be completed within the target time according to the current cooling power or the coolant flow rate, the vehicle air conditioner controller obtains the power difference between the P1 and the P2 of the battery 6, and according to the power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

本公开公开了一种车载电池的温度调节方法和温度调节系统,所述方法包括以下步骤:分别获取电池的需求功率和电池的实际功率;分别获取车辆中多个区域的区域温度和空调设定温度;根据电池的需求功率、电池的实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。

Description

车载电池的温度调节方法和温度调节系统
相关申请的交叉引用
本公开要求比亚迪股份有限公司于2017年09月30日提交的、发明名称为“车载电池的温度调节方法和温度调节系统”的、中国专利申请号“201710922755.0的优先权。
技术领域
本公开涉及汽车技术领域,特别涉及一种车载电池的温度调节方法和一种车载电池的温度调节系统。
背景技术
目前,电动汽车的车载电池的性能受气候环境影响较大,环境温度过高或者过低都会影响车载电池的性能,因此需要对车载电池的温度进行调节,以使其温度维持在预设范围内。
相关技术中,对于气候环境炎热的地区,需要在电动汽车中增加电池冷却系统,以在车载电池温度过高时降低其温度;对于气候环境寒冷的地区,需要在电动汽车中增加电池加热系统,以在车载电池温度过低时升高其温度。
然而,对于夏天炎热、冬天又寒冷的地区,上述方法无法兼顾解决车载电池温度过高和温度过低的问题,且对车载电池温度的调节方法较为粗糙,无法根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,也无法在进行电池温度调节时均衡车厢内各区域的温度。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出一种车载电池的温度调节方法,该方法根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度。
本公开还提出一种车载电池的温度调节系统。
本公开还提供一种设备。
本公开一方面实施例提出了一种车载电池的温度调节方法,包括以下步骤:分别获取 所述电池的需求功率和电池的实际功率;分别获取车辆中多个区域的区域温度和空调设定温度;根据所述电池的需求功率、所述电池的实际功率、多个所述区域温度和所述空调设定温度对所述多个车内冷却支路、所述多个电池冷却支路和所述多个制冷支路的功率进行调整。
根据本公开实施例的车载电池的温度调节方法,首先,分别获取电池的需求功率和电池的实际功率,然后,分别获取车辆中多个区域的区域温度和空调设定温,再根据电池的需求功率、电池的实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该方法根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度。
本公开另一方面实施例提出了一种车载电池的温度调节系统,包括:多个制冷支路,其中,每个制冷支路包括压缩机、与所述压缩机相连的冷凝器;与所述多个制冷支路相连的多个车内冷却支路;与所述多个制冷支路相连的多个电池冷却支路;分别与电池和所述多个电池冷却支路相连的电池温度调节装置,用于获取电池的需求功率和电池的实际功率,并获取车辆中多个区域的区域温度和空调设定温度,以及根据所述电池的需求功率、所述电池的实际功率、多个所述区域温度和所述空调设定温度对所述多个车内冷却支路、所述多个电池冷却支路和所述多个制冷支路的功率进行调整。
根据本公开实施例的车载电池的温度调节系统,通过电池温度调节装置获取电池的需求功率和电池的实际功率,并获取车辆中多个区域的区域温度和空调设定温度,以及根据电池的需求功率、电池的实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该系统根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度。
本公开第三方面的实施例还提供了一种设备,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行本公开上述实施例的车载电池的温度调节方法。本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1A是根据本公开第一个实施例的车载电池的温度调节系统流路结构的示意图;
图1B是根据本公开第二个实施例的车载电池的温度调节系统流路结构的示意图;
图2是根据本公开第三个实施例的车载电池的温度调节系统流路结构的示意图;
图3是根据本公开第四个实施例的车载电池的温度调节系统流路结构的示意图;
图3A是根据本公开一个实施例的控制器的工作原理示意图;
图4是根据本公开第一个实施例的车载电池的温度调节方法的流程图;
图5是根据本公开第二个实施例的车载电池的温度调节方法的流程图;
图6是根据本公开第三个实施例的车载电池的温度调节方法的流程图;
图7是根据本公开第四个实施例的车载电池的温度调节方法的流程图;
图8是根据本公开第五个实施例的车载电池的温度调节方法的流程图;
图9是根据本公开第四个实施例的车载电池的温度调节系统流路结构的示意图;
图10是根据本公开第六个实施例的车载电池的温度调节方法的流程图;
图11A是根据本公开第七个实施例的车载电池的温度调节系统流路结构的示意图;
图11B是根据本公开第八个实施例的车载电池的温度调节系统流路结构的示意图;
图11C是根据本公开第九个实施例的车载电池的温度调节系统流路结构的示意图;
图12a是根据本公开第七个实施例的车载电池的温度调节方法的流程图;
图12b是根据本公开第八个实施例的车载电池的温度调节方法的流程图;
图13是根据本公开第九个实施例的车载电池的温度调节方法的流程图;
图14A是根据本公开第十个实施例的车辆的温度调节方法的流程图;
图14B是根据本公开第十一个实施例的车辆的温度调节方法的流程图;
图15是根据本公开第一个实施例的车辆的温度调节方法的流程图;
图16是根据本公开第二个实施例的车辆的温度调节方法的流程图;
图17是根据本公开第三个实施例的车辆的温度调节方法的流程图;
图18是根据本公开第四个实施例的车辆的温度调节方法的流程图;
图19A是根据本公开第八个实施例的车载电池的温度调节系统流路结构的示意图;
图19B是根据本公开第九个实施例的车载电池的温度调节系统流路结构的示意图;
图20是根据本公开第九个实施例的车载电池的温度调节系统流路结构的示意图;
图21是根据本公开一个实施例的出风口分布位置示意图;
图22是根据本公开第八个实施例的车载电池的温度调节方法的流程图;
图23是根据本公开第九个实施例的车载电池的温度调节方法的流程图;
图24是根据本公开第十个实施例的车载电池的温度调节系统流路结构的示意图;
图25是根据本公开第十个实施例的车载电池的温度调节方法的流程图;
图26是根据本公开第十一个实施例的车载电池的温度调节系统流路结构的示意图;
图26A是根据本公开第十二个实施例的车载电池的温度调节系统流路结构的示意图;
图26B是根据本公开第十三个实施例的车载电池的温度调节系统流路结构的示意图;
图27是根据本公开第十一个实施例的车载电池的温度调节方法的流程图;
图28是根据本公开第十四个实施例的车载电池的温度调节系统流路结构的示意图;
图29是根据本公开一个实施例的设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
当车辆的电池的数量为1个时,如图1A和图1B所示,车载电池的温度调节系统包括:压缩机1、冷凝器2、电池冷却支路4和电池温度调节装置5。
其中,冷凝器2与压缩机1相连,电池冷却支路4连接在压缩机1和冷凝器2之间。电池温度调节装置5与电池冷却支路4相连,用于获取电池6的需求功率P1和电池6的实际功率P2,并根据需求功率P1和实际功率P2对电池6的温度进行调节。压缩机1和冷凝器2构成制冷支路。
具体地,电池6的需求功率P1和电池6的实际功率P2用于对电池的温度进行调节。需求功率P1即将电池的温度调节至目标温度时,电池需要的温度调节功率。电池实际功率P2即当前对电池进行温度调节时,电池实际获取的温度调节功率。目标温度为设定值,可以根据车载电池的实际情况进行预设,例如,当为冬季时,室外环境温度很低,需对电池进行加热,目标温度可以设置在10℃左右,当为夏季时,需对电池进行冷却,目标温度可以设置在35℃左右。电池温度调节装置5获取电池6的需求功率P1和电池6的实际功率P2,并根据需求功率P1和实际功率P2调节压缩机1和加热器的功率以对电池6的温度进行调节。如图1A所示,当空调的冷却液不接入到电池温度调节装置5时,电池冷却支路4中具有两个管道,第一管道与压缩机1相连通,第二管道与电池温度调节装置5相连通,其中,第一管道与第二管道相互独立的临近设置,以使得介质(冷媒、水、油、空气等流动介质或相变材料等介质或其他化学制品)相互独立。在电池6的温度过高时,车载空调制冷功能开启,电池冷却功能启动,第一管道与第二管道中冷却液(如冷媒)的流动方向分别为:压缩机1—冷凝器2—电池冷却支路4—压缩机1;电池冷却支路4—电池温度调 节装置5—电池6—电池温度调节装置5—电池冷却支路4。
如图1B所示,当空调的冷却液接入到电池温度调节装置5时,则冷却液的流动方向为:压缩机1—冷凝器2—电池冷却支路4—电池温度调节装置5—电池6—电池温度调节装置5—压缩机1。
在上述两个实施例中,车载空调仅用于对电池6进行冷却及加热,温度调节系统也可以通过车载空调对车厢和电池6均进行冷却。当该系统通过车载空调对车厢和电池6均进行冷却时,如图2所示,温度调节系统还可以包括车内冷却支路3,车内冷却支路3连接在压缩机1和冷凝器2之间。
当车内温度过高时,车内冷却功能启动,冷却液的流动方向为:压缩机1—冷凝器2—车内冷却支路3—压缩机1。当电池6的温度过高时,电池冷却功能启动,第一管道和第二管道中冷却液的流动方向为:压缩机1—冷凝器2—电池冷却支路4—压缩机1;电池冷却支路4—电池温度调节装置5—电池6—电池温度调节装置5—电池冷却支路4。由此,可以根据电池的实际状态精确控制车载电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,并且,还可以在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,如图3所示,电池冷却支路4可以包括换热器41,换热器41包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。在本公开的实施例中,换热器41物理位置可以位于车载空调压缩机1所在的回路,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次介质。换热器41的物理位置也可以位于电池6所在的回路,换热器41的物理位置也可以独立于车载空调压缩机1所在的回路和电池6所在的回路设置。
如图3所示,电池温度调节装置5可以包括:调节电池温度的流路(图中未具体示出),流路设置在电池6之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取电池6的需求功率P1和电池的实际功率P2,并根据电池的需求功率P1和实际功率P2对电池6的温度进行调节。车内冷却支路3可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
可以理解的是,电池冷却支路4也可以不设置换热器41,当没有换热器41时,电池冷却支路4内流的就是冷媒。如果设置换热器41,那么电池冷却支路4的第一管道中流的是冷媒,第二管道中流的是冷却液,车内冷却支路3中流的是冷媒。
根据本公开的一个实施实例,如图3所示,电池温度调节装置5还包括设置在流路的入口的第一温度传感器55,设置在流路的出口的第二温度传感器56,以及流速传感器57。可以理解,流路的入口和出口位置不是绝对的,而是根据泵51的转向确定的。
具体地,如图3A所示,控制器可以包括电池管理控制器、电池热管理控制器和车载空调控制器。其中,电池热管理控制器可以与第一温度传感器51、第二温度传感器52和流速传感器57电连接,电池热管理控制器与泵51和加热器53进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵51的转速和控制加热器53的功率。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R得到需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器分别与膨胀阀及电子阀电连接,且车载空调控制器可以分别与电池管理控制器、电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器得到需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是车载空调DSP芯片。
换热器41可以为板式换热器,板式换热器可以安装在车载空调内部,使得整个制冷剂回路均在车载空调内部,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次制冷剂。
冷却液从流路的入口流入电池6的内部,从流路的出口流出,从而实现电池6与冷却液之间的热交换。
泵51主要用于提供动力,介质容器52主要用于存储冷却液和接受向温度调节系统添加的冷却液,当温度调节系统中的冷却液减少时,介质容器52中的冷却液可自动补充。加热器53可以为PTC(Positive Temperature Coefficient,正的温度系数,泛指正温度系数很大的半导体材料或元器件)加热器,可以与电池热管理控制器进行CAN(Controller Area Network,控制器局域网络)通信,为车载电池的温度调节系统提供加热功率,受控电池热管理控制器控制,加热器53可以设置在介质容器52与第一温度传感器55之间任意位置。即加热器53不直接与电池6接触,具有较高的安全性、可靠性和实用性。
第一温度传感器55用以检测流路入口冷却液的温度,第二温度传感器56用以检测流路出口冷却液的温度。流速传感器57用以检测温度调节系统中管道内冷却液的流速信息。第一电子阀33用以控制车内冷却支路3的开通和关闭,第一膨胀阀32可用以控制车内冷却支路3中的冷却液流量。第二电子阀43用以控制电池冷却支路4的开通和关闭,第二膨 胀阀42可用于控制电池冷却支路4中的冷却液流量。
可以理解,如图1B所示,当空调的冷却液接入到电池温度调节装置5时,则无需设置换热器41、泵51及介质容器52。此种车载空调回路和电池冷却支路4连通的方式,可以提高冷却效率,避免了换热器41处换热不完全的问题,即杜绝了因换热器的换热效率带来的换热损耗。在车载空调回路和电池冷却支路的冷却液相互独立的方式中,车载空调回路中压缩机的功率是在考虑换热器41等的换热效率后,得到的压缩机用于冷却电池的实际功率,且后续描述的压缩机功率P为此处所述的压缩机用于冷却电池的功率,可以理解的,后续描述的压缩机的最大(或者额定)制冷功率为压缩机的最大(或者额定)功率乘以换热效率。其中,该换热效率可以是设置的一个定值,在整个系统搭建好后测出来的;也可以是实时获取的,可以通过在换热器的前后增加温度传感器以及在换热器所在回路增加流速传感器,可以知晓实际换热功率,电池的实际功率P2与实际换热功率的比值即为换热效率。
下面结合具体实施例描述电池温度调节装置5如何获取电池6的需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于获取电池开启温度调节时的第一参数,并根据第一参数生成电池的第一需求功率,以及获取电池在温度调节时的第二参数,并根据第二参数生成电池的第二需求功率,并根据电池的第一需求功率和电池的第二需求功率生成电池的需求功率P1。
具体的,根据本公开的一个实施例,第一参数为电池6开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池6的比热容,M为电池6的质量。
第二参数为电池6在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池6的内阻。
当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池热管理控制器分别根据第一温度传感器55检测的入口 温度和第二温度传感器56检测的出口温度生成第二温度差ΔT 2,并根据每个电池的第二温度差ΔT 2和流速传感器57检测的流速v生成电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*s*ρ,s为流路的横截面积,v为冷却液的流速,ρ为冷却液的密度。
另外,流速传感器也可由流量传感器替代,m=Q*ρ,Q为流量传感器测得的单位时间内流经流路横截面积的冷却液流量。
具体地,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,例如,电池6的温度过高,则通过CAN通信向车载空调控制器发送开启温度调节功能的信息,车载空调控制器开启温度调节功能后发送热交换信息给电池热管理控制器,同时车载空调控制器控制第二电子阀43开启,电池热管理控制器控制泵51以默认转速(如低转速)开始工作。
同时,电池管理控制器获取电池6的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出电池的第一需求功率。电池管理控制器还获取电池6在预设时间内的平均电流I,并根据公式(2)计算电池的第二需求功率。然后,电池管理控制器根据电池6的第一需求功率和第二需求功率计算需求功率P1(即将电池6的温度在目标时间内调节至目标温度的需求功率),其中,当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R,当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
并且,电池热管理控制器获取第一温度传感器55和第二温度传感器56检测温度信息,并获取流速传感器57检测的流速信息,根据公式(3)计算出电池6的实际功率P2。
最后,车载空调控制器根据电池6的需求功率P1、实际功率P2控制压缩机的输出功率及第二膨胀阀42的开度,电池热管理控制器调节泵51的转速。如,若需求功率P1大于实际功率P2时,则根据需求功率P1和实际功率P2的差值,增加压缩机的功率及增大第二膨胀阀42的开度,可增加泵51的转速;若需求功率P1小于实际功率P2时,则根据需求功率P1和实际功率P2的差值,减小压缩机的功率及减小第二膨胀阀42的开度,可减小泵51的转速。
举例说明,由上述实施例可知,需求功率P1由两部分组成,当电池6需要冷却时,电池6初始温度为45℃,目标温度为35℃,则电池从45℃下降到35℃需要散发的热量是固定,通过公式(1)即ΔT 1*C*M/t直接计算可以获得,即第一需求功率。同时,电池6在冷 却过程中,存在放电和充电过程,此过程会产生热量,由于电池6的放电或者是充电电流是变化的,这部分的热量也可以通过检测电池的平均电流I直接获得,通过公式(3)即I 2*R,直接计算出当前电池6的发热功率,即第二需求功率。本公开的冷却完成时间是基于目标时间t设定的(t可以根据用户需求或者是车辆实际设计情况改变)。在确定了冷却完成所需要的目标时间t后,就可以预估出当前电池6冷却需要的需求功率P1,P1=ΔT 1*C*M/t+I 2*R。而如果是加热功能启动,则需求功率P1=ΔT 1*C*M/t-I 2*R,即在电池6在加热过程中,电池6的放电或者充电电流越大,所需要的加热功率即需求功率P1越小。
下面将结合具体地实施例描述如何根据根据每个电池6的需求功率P1和实际功率P2对电池6的温度进行调节。
根据本公开的一个实施例,电池管理控制器,还用于检测电池的温度,并在电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,第一温度阈值一般大于第二温度阈值,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器实时检测电池6的温度,并进行判断。如果电池6的温度高于40℃,说明此时电池6的温度过高,为避免高温对该电池6的性能产生影响,需要对电池6进行降温处理,控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给车载空调控制器。车载空调控制器在接收到电池冷却功能启动信息后控制第二电子阀43开启,以使冷却液与电池6进行热交换以降低电池6的温度。如图3所示,当温度调节系统工作在冷却模式时,电池6所在回路中对应的第一管道和第二管道中冷却液的流动方向分别为:压缩机1—冷凝器2—第二电子阀43—第二膨胀阀42—换热器41—压缩机1;介质容器52—换热器41—加热器53(关闭)—泵51—阀门58—第一温度传感器55—电池6—第二温度传感器56—流速传感器57—介质容器52,如此循环,在换热器41处换热,实现电池6的降温。
而如果电池6的温度低于0℃,说明此时电池6的温度过低,为避免低温对电池6的性能产生影响,需要对电池6进行升温处理,电池管理控制器控制温度调节系统进入加热模式,并发送电池加热功能启动信息至车载空调控制器。车载空调控制器在接收到电池加热功能启动信息后控制第二电子阀43关闭,同时电池热管理控制器控制加热器53开启,以为温度调节系统提供加热功率。当温度调节系统工作在加热模式时,冷却液的流动方向为:介质容器52—换热器41—加热器53(开启)—泵51—第一温度传感器55—电池6—第二温度传感器56—流速传感器57—介质容器52;如此循环,实现电池6的升温。
根据本公开的一个实施例,当温度调节系统工作在冷却模式且在电池6的需求功率P1 大于电池对应的实际功率P2时,控制器则获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池6的压缩机的功率,或者增加电池6的冷却液流量,以增加电池6的冷却功率,以及在电池6的需求功率P1小于或等于实际功率P2时,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的冷却液流量,以减少电池6的冷却功率。
具体地,当温度调节系统工作在冷却模式时,电池管理控制器获取电池的需求功率P1,电池热管理控制器获取电池的实际功率P2,车载空调控制器根据需求功率P1和实际功率P2进行判断。如果电池6的需求功率P1大于实际功率P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池6的降温,所以,车载空调控制器获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加电池的冷却液流量,即增加第二膨胀阀42的开度,以增加该电池的冷却功率,其中,实际功率P1与实际功率P2的功率差越大,压缩机1的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温度。而如果其中电池6的实际功率P1小于或等于实际功率P2,车载空调控制器可以保持压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池的冷却液流量,即减小第二膨胀阀42的开度,以减少电池的冷却功率。当电池6的温度低于35℃时,则电池6冷却完成,电池管理控制器通过CAN通信向车载空调控制器发送关闭温度调节功能的信息,车载空调控制器控制第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池6的温度高于35℃,则车载空调控制器适当增加压缩机1的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,当温度调节系统工作在加热模式且在电池的需求功率P1大于实际功率P2时,控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,或者调节增加电池的冷却液流量,以增加电池的加热功率,以及在电池的需求功率P1小于或等于实际功率P2时,减小的功率,或保持加热器53的功率不变,或者调节减少电池的冷却液流量,以减少电池的加热功率。
具体地,当温度调节系统工作在加热模式时,电池管理控制器获取电池的P1,电池热管理控制器获取电池的实际功率P2。如果电池6的需求功率P1大于实际功率P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池6的升温,所以,电池热管理控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池6的加热器53的功率,或者调节增加电池的冷却液流量,例如可以增泵51的转速,以使该电池可以在目标时间内完成温度调节。其中,需求功率P1和实际功率P2的差值越大,加热器53的功率和该电池回路的冷却液流量增加的越多。而如果电池的需求功率P1小于或等于实际功率P2,电池热管理控制器可以适当减小加热器53的功率, 或保持加热器53的功率不变,或者调节减少该电池回路的冷却液流量,以减少电池的加热功率。当电池6的温度高于预设温度,例如10℃时,电池6加热完成,电池管理控制器通过CAN通信向电池热管理控制器发送关闭温度调节功能的信息,电池热管理控制器控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池6的温度低于10℃,则电池热管理控制器再适当增加加热器53的功率,以使电池6尽快完成升温。
根据本公开的一个实施例,电池热管理控制器还用于在电池的需求功率P1小于或者等于对应的实际功率P2时,降低泵51的转速或者保持泵51的转速不变,并在电池的需求功率P1大于对应的实际功率P2时,提高泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果电池6的需求功率P1小于实际功率P2,电池热管理控制器控制泵51的转速降低,以节省电能,或者保持泵51的转速不变。而如果电池6的需求功率P1大于实际功率P2,控制器用于控制加热器53、压缩机1的功率增加或该电池所在回路的冷却液流量增加外,还用于控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高电池的实际功率P2,以在目标时间t内实现温度调节。而如果电池6的需求功率P1等于于实际功率P2,那么控制泵51的转速保持在当前转速不变即可。
总结而言,当温度调节系统工作在冷却模式时,如果电池6的需求功率P1和车内冷却需求功率P4的和小于压缩机最大制冷功率P,即P1+P4≤P,则车载空调控制器控制压缩机1按照P1+P4制冷功率运行。如果P1+P4>P,则电池管理控制器判断电池6的温度是否大于设定温度(如45℃),如果大于45℃,则优先为电池6提供冷却功率,车载空调控制器控制压缩机1按照最大制冷功率运行,车载空调控制器通过对第一膨胀阀32和第二膨胀阀42的开度进行控制,使电池冷却支路4的冷却功率等于电池需求功率P1,车内冷却支路的功率P4等于P减去P1。而如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,控制压缩机1按照最大制冷功率运行,车内冷却支路3的冷却功率为P4,电池冷却支路4的冷却功率为P-P4。如果车内温度已经达到设定温度,则又优先满足电池6的冷却。
当电池6的P1>P2,电池6需要调节的功率为P3(P3=P1-P2)时,如果P1+P4+P3≤P,则压缩机1需要增加的制冷功率为P3,可以通过增大第二膨胀阀42的开度和/或者提高泵51的转速以使P1=P2。而如果P1+P4+P3>P,则电池管理控制器判断电池温度是否大于设定温度,例如,设定温度可以为45℃,如果电池的温度大于45℃,则优先为电池6提供冷却功率,车载空调控制器控制压缩机1按照最大制冷功率运行,通过调节第一膨胀阀32和第二膨胀阀42的开度,使电池冷却支路4的冷却功率增加P3,以使P1=P2,车内冷却支 路3的冷却功率减少。而如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,控制压缩机1按照最大制冷功率运行,车内冷却支路3的冷却功率为P4,电池冷却支路4的冷却功率为P-P4。如果车内温度已经达到设定温度,则又优先满足电池6的冷却,电池冷却支路4的冷却功率增加P3。
而如果P1≤P2,那么车载空调控制器维持压缩机的功率不变,或者降低压缩机的功率,或者减少第二膨胀阀42的开度,或者降低泵51的转速,使得电池冷却支路4的冷却功率下降。
当温度调节系统工作在加热模式时,P1与P2的功率差为P3,即P1-P2=P3。如果P1>P2,则电池热管理控制器控制加热器53的加热功率增加P3,并提高泵51转速。如果P1≤P2,电池热管理可以加热器53的功率保持不变,或者将加热器53功率减少P3,以节省电能,或者降低泵51的转速。
如果冷却功能开启预设时间后,例如1个小时之后,电池6的温度仍然高于35℃,则增大电池的冷却功率。如果加热功能开启1个小时之后,电池平均温度仍然低于10℃,则电池热管理控制器可以适当增大加热器53的功率。
如果单个压缩机1无法满足冷却电池6时所需的功率,则可设置多个压缩机1为电池6提供冷却功率。如在大巴车上,通常有4个压缩机,此时可以将这4个压缩机都用于为电池6提供冷却功率。
根据本公开的一个实施例,用于为电池提供制冷剂的压缩机1为多个,车内冷却支路3和电池冷却支路4均为多个,车载空调控制器还用于根据电池的需求功率P1和每个压缩机的最大制冷功率P判断启动的压缩机的数量,并在温度调节系统为冷却模式时,控制相应数量的压缩机1启动。
具体地,当压缩机1为多个时,相应的,车内冷却支路3和电池冷却支路4为多个。举例而言,当为电池6提供制冷剂的压缩机1为2个,车内冷却支路3和电池冷却支路4均为2个时,在温度调节系统进入冷却模式时,电池管理控制器获取电池6的需求功率P1,如果电池6的需求功率P1小于等于单个压缩机1的最大制冷功率,那么车载空调控制器控制一个压缩机1启动即可。而如果电池6的需求功率P1大于单个压缩机1的最大制冷功率,那么车载空调控制器控制两个压缩机1同时启动工作,以满足电池6的降温制冷功率需求。
压缩机1为多个的工作原理与上述的压缩机1为一个的相同,为避免冗余,此处不再赘述。
根据本公开实施例的车载电池的温度调节系统可以根据电池的实际状态精确控制电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
图4是根据本公开第一个实施例的车载电池的温度调节方法的流程图。如图4所示,车载电池的温度调节方法包括以下步骤:
S1,获取电池的需求功率P1。
如图5所示,在本公开的实施例中,获取电池的需求功率具体包括:
S11,获取电池开启温度调节时的第一参数,并根据第一参数生成第一需求功率。
S12,获取电池在温度调节时的第二参数,并根据第二参数生成第二需求功率。
S13,根据第一需求功率和第二需求功率生成需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1。根据第一温度差ΔT 1和目标时间t生成第一需求功率P1。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为电池在预设时间内的平均电流I,通过以下公式(2)生成第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
S2,获取电池的实际功率P2。
根据本公开的一个实施例,如图5所示,获取电池的实际功率具体包括:
S21,获取用于调节电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。
S22,根据入口温度和出口温度生成第二温度差ΔT 2
S23,根据第二温度差ΔT 2和流速v生成实际功率P2。
根据本公开的一个实施例,进根据通过以下公式(3)生成实际功率P2:
ΔT 2*C*m,  (3)
其中,ΔT 2为第二温度差,C为电池的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
另外,流速传感器也可由流量传感器替代,m=Q*ρ,Q为流量传感器测得的单位时间内流经流路横截面积的冷却液流量。
S3,根据需求功率P1和实际功率P2对电池的温度进行调节。
其中,在本公开的实施例中,根据需求功率P1和实际功率P2在目标时间内对电池的温度进行调节,以达到目标温度。
具体地,车辆上电后,判断电池是否需要进行温度调节,如果需要则获取电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据车载电池的实际情况进行预设,然后,根据公式(1)计算出第一需求功率。同时,获取电池在预设时间内的平均电流I,并根据公式(2)计算第二需求功率。然后,根据第一需求功率和第二需求功率计算需求功率P1(即将电池的温度调节至目标温度的需求功率)。并且,获取电池的入口温度和出口温度,并获取流流速信息,根据公式(3)计算出实际功率P2。最后,根据需求功率P1和实际功率P2控制压缩机或者加热器以不同的功率运行。由此,该控制方法可以精确控制电池温度调节所需要的时间,且电池实际功率实时可调,可以确保在目标时间内完成车载电池的温度调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
根据本公开的一个实施例,如图6所示,上述的车载电池的温度调节方法还可以包括:检测电池的温度,并判断温度是否大于第一温度阈值或者小于第二温度阈值(S10-S20)。当电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式(S30)。其中,第一预设温度阈值可以根据实际情况进行预设,例如可以为40℃。当电池的温度小于等于第一温度阈值时,进一步地判断电池的温度是否小于第二温度阈值,当电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式(S40-S50)。其中,第二预设温度阈值可以根据实际情况进行预设,例如可以为0℃。
具体地,车辆上电后,实时检测电池的温度,并进行判断。如果电池的温度高于40℃,说明此时电池的温度过高,为避免高温对电池的性能产生影响,需要对电池进行降温处理,所述温度调节系统进入冷却模式,控制压缩机启动,以使冷却液与电池进行热交换以降低电池的温度。而如果电池的温度低于0℃,说明此时电池的温度过低,为避免低温对电池的性能产生影响,需要对电池进行升温处理,所述温度调节系统进入加热模式,控制加热器开启,以提供加热功率。可以理解的是,根据电池的需求功率P1和实际功率P2对电池6进行温度调节,可以精确控制电池温度调节所需要的时间,且P2实时可调,可以确保在目标时间t内完成电池的温度调节。并且,需求功率P1和实际功率P2容易获取。
由上述实施例可知,P1由两部分组成,以冷却电池为例,当电池需要冷却时,电池初始温度为45℃,电池冷却目标温度为35℃,则电池从45℃下降到35℃需要散发的热量是固定,通过公式(1)即ΔT 1*C*M/t直接计算可以获得。其中,ΔT 1为所述初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为所述电池的质量。同时,电池在冷却过程中,存在放电和充电过程,此过程会产生热量,这部分的热量也可以通过 检测电流直接获得,通过公式(3)即I 2*R,直接计算出当前电池的发热功率,即第二需求功率。其中,I为平均电流,R为电池的内阻。本公开的关键点之一是冷却时间可调,且冷却完成时间可精确确定,本公开是基于目标时间t设定的(t可以根据用户需求或者是车辆实际设计情况改变)。在确定了冷却完成所需要的目标时间t后,就可以预估出当前电池冷却需要的需求功率P1,P1=ΔT 1*C*M/t+I 2*R。而如果是加热功能启动,则需求功率P1=ΔT 1*C*M/t-I 2*R,即在电池在加热过程中,电池放电或者充电电流越大,所需要的加热功率即需求功率P1越小。
由于电池的放电或者是充电电流是变化的,所以I 2*R是变化的,因此为了更好的确保冷却时间的准确性,冷却功率也要随着电池当前的平均放电或者是充电电流的变化而变化。如果车载空调同时给电池和车厢冷却,那么当电池的放电电流较小的时候,I 2*R就会减小,此时车载空调可以分配更多的制冷功率给到车厢,使得车厢较快的达到设定气温。同时,当电池的放电或者充电电流较大时,I 2*R就会较大,此时车载空调可以分配更多的制冷功率给到电池。通过这样的调节,使得电池冷却所需时间始终准确,同时又可以更高效的合理利用车载空调的制冷功率,而不必配置冷却功率较大的空调,造成制冷功率的浪费。
由于电池冷却时间受冷却效率的影响,由于冷却效率受外部环境温度和电池当前温度的影响,在电池冷却的过程中,温度调节系统的效率也是不断变化的,所以冷却效率不可能是100%,因此只根据需求功率P1是无法准确调节电池冷却所需时间的,有必要检测电池的实际功率P2。在本公开中,电池的实际功率P2可以通过公式(3)即ΔT2*C*m计算得出。P2也可以通过电池实际冷却功率P2也就可以通过公式(4)即ΔT3*C*m1计算得出,其中ΔT3为电池在某一时间段内的温度变化,C为电池的比热容,m1为电池质量。但由于电池的质量较大,所以单位时间内温度变化不明显,需要较长时间才看可以检测出温差,不符合实时性要求,所以一般按照公式(3)计算实际功率P2。
受冷却效率的影响,实际功率P2很难完全等于需求功率P1,为了使得电池冷却目标时间t更准确,需要实时根据需求功率P1与实际功率P2之间的功率差值进行调节,以确保电池的需求功率P1与电池的实际功率P2相等。
下面将结合具体地实施例描述如何根据需求功率P1和实际功率P2对电池的温度进行调节。
根据本公开的一个实施例,当当前的工作模式为冷却模式时,如图7所示,根据需求功率P1和实际功率P2对电池的温度进行调节具体包括:
S31,判断需求功率P1是否大于实际功率P2。
S32,如果需求功率P1大于实际功率P2,则获取需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的压缩机的功率。
S33,如果需求功率小于或等于实际功率,则减小压缩机的功率或保持压缩机的功率不变。
具体地,当所述温度调节系统进入冷却模式时,根据需求功率P1和实际功率P2调节压缩机1的功率。如果需求功率P1大于实际功率P2,说明如果压缩机按照当前功率运行,无法使电池的温度在目标时间t内降低至目标温度。因此继续获取需求功率P1和实际功率P2之间的功率差,并根据功率差增加压缩机的功率,需求功率P1与实际功率P2的功率差越大,压缩机的功率增加越多,以使电池的温度在预设时间内降低至目标温度。而如果需求功率P1小于等于实际功率P2,可以保持压缩机的功率不变或者适当减小压缩机的功率。当电池的温度低于35℃时,电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息。如果所述温度调节系统进入冷却模式较长时间后,例如1小时后,电池的温度仍然高于35℃,则适当增加压缩机的功率,以使电池尽快完成降温。
根据本公开的一个实施例,如图7所示,当当前的工作模式为加热模式时,根据需求功率和实际功率对电池的温度进行调节具体包括:
S34,判断所需求功率P1是否大于实际功率P2。
S35,如果需求功率P1大于实际功率P2,则获取需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率。
S36,如果需求功率P1小于或等于实际功率P2,则保持加热器的功率不变。
具体地,当所述温度调节系统进入加热模式时,加热器开启,根据需求功率P1和实际功率P2调节加热器的功率。如果需求功率P1大于实际功率P2,说明如果加热器按照当前功率加热,那么无法使电池的温度在预设时间内上升至目标温度。因此继续获取需求功率P1与P2之间的功率差,并根据功率差增加加热器的功率,其中,需求功率P1与实际功率P2的差值越大,加热器的功率增加的越多。而如果需求功率P1小于等于实际功率P2,可以保持加热器的功率不变。当电池的温度高于预设温度,例如10℃时,电池加热完成,电池管理控制器通过CAN通信向电池热管理控制器发送关闭温度调节功能的信息,并控制加热器关闭。如果所述温度调节系统进入加热模式较长时间后,例如1小时后,电池的温度仍然低于10℃,则适当增加加热器的功率,以使电池尽快完成升温。
根据本公开的一个实施例,如图8所示,上述的车载电池的温度调节方法还可以包括:
S37,如果需求功率P1小于或等于实际功率P2,则降低泵的转速或者保持泵的转速不变。
S38,如果需求功率P1大于实际功率P2,则提高泵的转速。
具体地,当所述温度调节系统进入加热模式或者制冷模式时,如果需求功率P1小于或等于实际功率P2,则控制泵的转速降低,以节省电能或者保持泵的转速不变。而如果需求 功率P1大于实际功率P2,除控制加热器或压缩机的功率增加外,还控制泵的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高实际功率P2,以在目标时间内实现电池的温度调节。
根据本公开的一个实施例,当用于为电池提供制冷剂的压缩机为多个,上述的方法还可以包括:根据需求功率P1和每个压缩机的最大制冷功率判断启动的压缩机的数量。在所述温度调节系统为冷却模式时,控制相应数量的压缩机启动。
根据需求功率P1和每个压缩机的最大制冷功率判断启动的压缩机的数量具体包括:判断电池的需求功率P1是否大于单个压缩机的最大制冷功率。如果大于单个压缩机的最大制冷功率,则控制多个压缩机同时启动。
举例而言,当为电池提供制冷剂的压缩机1为2个时,在进入制冷模式时,根据需求功率P1和每个压缩机的最大制冷功率判断启动的压缩机的数量,如果需求功率P1小于等于单个压缩机的最大制冷功率,那么控制一个压缩机启动即可。而如果度调节需求功率P1大于单个压缩机的最大制冷功率,那么控制两个压缩机同时启动工作,以满足电池的降温制冷功率需求。
需要说明的是,在本公开的实施例中,电池可以是单个电池包(由多个电池单体构成),也可以是由多个电池包串联、并联或混联组成。当电池包括多个并联的电池包时,需要对各个电池包之间进行温度调节功率分配,这需要通过阀来进行功率分配。
总结而言,当温度调节系统工作在制冷模式时,如果电池的需求功率P1和车内冷却需求功率P4的和小于压缩机的最大制冷功率P,即P1+P4≤P5,则控制压缩机按照P1+P4制冷功率运行。如果P1+P4>P,则判断电池的温度是否大于设定温度(如45℃),如果大于45℃,则优先为电池提供冷却功率,控制压缩机按照最大制冷功率运行,通过对电池冷却支路和车内冷却支路的冷媒流量进行控制,使电池冷却支路的冷却功率等于电池需求功率P1,车内冷却支路的功率P4等于P减去P1。而如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,控制压缩机按照最大制冷功率运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率为P-P4。而如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,控制压缩机1按照最大制冷功率运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率为P-P4。如果车内温度已经达到设定温度,则又优先满足电池的冷却。
当电池的P1>P2,电池需要调节的功率为P3(P3=P1-P2)时,如果P1+P4+P3≤P5,则压缩机1需要增加的制冷功率为P3,可以通过增大电池冷却支路的冷媒流量和/或者提高泵的转速以使P1=P2。而如果P1+P4+P3>P,则电池管理控制器判断电池温度是否大于设定温度,例如,设定温度可以为45℃,如果电池的温度大于45℃,则优先为电池提供冷却 功率,控制压缩机按照最大制冷功率运行,使电池冷却支路的冷却功率增加,车内冷却支路的冷却功率减少。而如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,控制压缩机按照最大制冷功率运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率为P-P4。如果车内温度已经达到设定温度,则优先满足电池的冷却,电池冷却支路的冷却功率增加P3。
而如果P1≤P2,那么维持压缩机的功率不变,或者降低压缩机的功率,或者减少电池冷却制冷的冷媒流量,或者降低泵的转速,使得电池冷却支路的冷却功率下降。
当温度调节系统工作在加热模式时,P1与P2的功率差为P3,即P1-P2=P3。如果P1>P2,则控制加热器的加热功率增加P3,并提高泵转速。如果P1≤P2,可以加热器的功率保持不变,或者将加热器功率减少P3,以节省电能,或者降低泵的转速。
如果冷却功能开启预设时间后,例如1个小时之后,电池的温度仍然高于35℃,则增大电池冷却功率需求。如果加热功能开启1个小时之后,电池平均温度仍然低于10℃,则电池热管理控制器可以适当增大加热器的功率。
根据本公开实施例的车载电池的温度调节方法,首先获取电池的需求功率,再获取电池的实际功率,最后根据需求功率和实际功率在目标时间对电池的温度进行调节,以达到目标温度。由此,该方法可以精确控制电池的温度调节时间,且电池的实际功率实时可调,可以确保在目标时间内根据车载电池的实际状态精确控制车载的电池的加热功率和冷却功率,在车载电池温度过高时或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
此外,本公开还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的车载电池的温度调节方法。
根据本公开实施例的非临时性计算机可读存储介质,首先获取电池的需求功率,再获取电池的实际功率,最后根据电池的需求功率和电池的实际功率在对电池的温度进行调节,从而可以在车载电池温度过高时或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
而当车辆的电池6的数量为多个,且多个电池6并联连接时,例如,电池6的数量为2个,分别为第一电池61和第二电池62,如图9所示,车载电池的温度调节系统包括:压缩机1、冷凝器2、电池冷却支路4和电池温度调节装置5。
其中,冷凝器2与压缩机1相连,电池冷却支路4连接在压缩机1和冷凝器2之间。电池温度调节装置5与多个并联的电池6和电池冷却支路4相连,获取多个并联的电池的需求功率P1和实际功率P2,并分别根据多个并联的电池的需求功率P1和实际功率P2对多个并联的电池的温度进行调节。
根据本公开的一个实施例,分别根据多个并联的电池的需求功率P1和实际功率P2对多个并联的电池的温度进行调节,具体包括:分别根据多个并联的电池的需求功率P1和实际功率P2在目标时间t内对多个并联的电池的温度进行调节,以达到目标温度。
也就是说,电池温度调节装置5在根据每个电池的P1和P2对每个电池6进行温度调节时,可以确保在目标时间t内根据每个电池6的实际状态精确控制车载电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节。
当车内温度过高时,车内冷却功能启动,冷却液的流动方向为:压缩机1—冷凝器2—车内冷却支路3—压缩机1。当第一电池61的温度过高时,电池冷却功能启动,第一管道和第二管道中冷却液的流动方向为:压缩机1—冷凝器2—电池冷却支路4—压缩机1;电池冷却支路4—电池温度调节装置5—第一电池61—电池温度调节装置5—电池冷却回支路4。当第二电池62的温度过高时,第一管道和第二管道中冷却液的流动方向为:压缩机1—冷凝器2—电池冷却支路4—压缩机1;电池冷却回支路路4—电池温度调节装置5—第二电池62—电池温度调节装置5—电池冷却支路4。
电池温度调节装置5的制冷功率由车载空调提供,与车内制冷系统共用制冷量,从而可以减少温度调节系统的体积,并使冷却液流量的分配更加灵活。由此,可以根据每个电池的实际状态精确控制每个电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
根据本公开的一个实施例,如图4和图5所示,电池冷却支路4可以包括换热器41,换热器41包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。
电池温度调节装置5可以包括:调节电池温度的流路(图中未具体示出),流路设置在电池6之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器分别获取多个并联的电池6的需求功率P1和电池的实际功率P2,并分别根据每个电池的需求功率P1和实际功率P2对每个电池6的温度进行调节。车内冷却支路3可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
可以理解的是,电池冷却支路4也可以不设置换热器41,当没有换热器41时,电池冷却支路4内流的就是冷媒。如果设置换热器41,那么电池冷却支路4内第一管道内流的是冷媒,第二管道内流的是冷却液,车内冷却支路中流的就是冷媒。
根据本公开的一个实施实例,如图9所示,电池温度调节装置5还包括设置在流路的入口的第一温度传感器55,设置在流路的出口的第二温度传感器56,以及流速传感器57。 可以理解,流路的入口和出口位置不是绝对的,而是根据泵51的转向确定的。
具体地,控制器可以包括电池管理控制器、电池热管理控制器、车载空调控制器。其中,电池热管理控制器可以与泵51、第一温度传感器51、第二温度传感器52和流速传感器57电连接,并根据介质的比热容、介质的密度,获取多个并联电池的实际功率P2、并控制泵51的转速。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与压缩机1、膨胀阀及电子阀电连接以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是车载空调DSP芯片。
换热器41可以为板式换热器,板式换热器可以安装在车载空调内部,使得整个制冷剂回路均在车载空调内部,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次制冷剂。
冷却液从流路的入口流入电池6的内部,从流路的出口流出,从而实现电池6与冷却液之间的热交换。
泵51主要用于提供动力,介质容器52主要用于存储冷却液和接受向温度调节系统添加的冷却液,当温度调节系统中的冷却液减少时,介质容器52中的冷却液可自动补充。加热器53可以为PTC(Positive Temperature Coefficient,正的温度系数,泛指正温度系数很大的半导体材料或元器件)加热器,可以与电池热管理控制器进行CAN(Controller Area Network,控制器局域网络)通信,为车载电池的温度调节系统提供加热功率,受电池热管理控制器控制。即加热器53不直接与电池6接触,具有较高的安全性、可靠性和实用性。
第一温度传感器55用以检测流路入口冷却液的温度,第二温度传感器56用以检测流路出口冷却液的温度。流速传感器57用以检测温度调节系统中管道内冷却液的流速信息。第一电子阀33用以控制车内冷却支路3的开通和关闭,第一膨胀阀32可用以控制车内冷却支路3中的冷却液流量。第二电子阀43用以控制电池冷却支路4的开通和关闭,第二膨胀阀42可用于控制电池冷却支路4中的冷却液流量。每个电池6的流路入口处还设置有阀门58。车载空调控制器可以根据每个电池6对应的P1和P2通过控制阀门58分别控制流入每个电池6的冷却液流量,从而可以精确控制每个电池6的加热功率/制冷功率。根据本公开的一个实施例,电池管理控制器还用于根据多个并联的电池的需求功率P1生成总需求功率Pz,并判断总需求功率Pz是否与车载空调的最大制冷功率P匹配,其中,如果匹配, 则车载空调控制器根据多个并联的电池的需求功率P1为多个并联的电池6进行冷却。如果不匹配,则车载空调控制器根据空调的最大制冷功率P和多个并联的电池的需求功率P1为多个并联的电池6进行冷却。
具体地,如图9所示,电池管理控制器可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率Pz,即将每个电池的需求功率P1相加即可得到总需求功率Pz。然后根据总需求功率Pz判断Pz是否与车载空调的最大制冷功率P匹配,即判断Pz是否小于或等于P,如果是,则车载空调控制器根据每个电池的需求功率P1通过控制阀门58或者控制压缩机1的功率对每个电池进行冷却。而如果P Z与车载空调的最大制冷功率P不匹配,即Pz大于P,则控制器根据空调的最大制冷功率P和每个电池的需求功率P1,通过调节阀门58的开度按比例进行冷却液流量分配,从而可以以最大效率使每个电池6完成降温。
下面结合具体实施例描述电池温度调节装置5如何获取每个电池6的需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率,以及分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率,并根据每个电池的第一需求功率和每个电池的第二需求功率生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池6开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
,电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池6的比热容,M为电池6的质量。
第二参数为每个电池6在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池6的内阻。
当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池热管理控制器分别根据第一温度传感器55检测的入口温度和第二温度传感器56检测的出口温度生成第二温度差ΔT 2,并根据每个电池的第二温度差ΔT 2和流速传感器57检测的流速v生成每个电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
具体地,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,例如,电池6的温度过高,则通过CAN通信向车载空调发送开启温度调节功能的信息,车载空调控制器开启温度调节功能后发送热交换信息给电池热管理控制器,同时车载空调控制器控制第二电子阀43开启,电池热管理控制器控制泵51以默认转速(如低转速)开始工作。
同时,电池管理控制器获取每个电池6的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出每个电池的第一需求功率。同时,电池管理控制器还分别获取电池6在预设时间内的平均电流I,并根据公式(2)计算每个电池第二需求功率。然后,电池管理控制器根据每个电池6的第一需求功率和第二需求功率计算需求功率P1(即将电池6的温度在目标时间内调节至目标温度的需求功率),其中,当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R,当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
并且,电池热管理控制器分别获取每个电池对应设置的第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器57检测的流速信息,根据公式(3)分别计算出每个电池6的实际功率P2。
最后,车载空调控制器根据每个电池6对应的需求功率P1、实际功率P2通过控制阀门58分别控制流入每个电池6的冷却液流量,从而可以精确控制每个电池6的加热功率/制冷功率。例如,如果第一电池61的需求功率P1大于第二电池62的需求功率P1,则车载空调控制器可以控制增大第一电池61所在回路的阀门58的开度,减小第二电池62所在回路的阀门58的开度。
而如果电池6的温度较低,车载空调控制器控制第二电子阀43关闭,电池热管理控制器控制加热器53启动,且电池热管理控制器根据需求功率P1和实际功率P2控制加热器53的加热功率,以在目标时间t内将电池6的温度升高至目标温度,防止温度过高影响电池6的工作性能。由此,可以确保在目标时间内根据每个电池的实际状态精确控制每个电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节。
具体而言,由上述实施例可知,需求功率P1由两部分组成,以第一电池61为例,当第一电池61需要冷却时,第一电池61初始温度为45℃,目标温度为35℃,则电池从45℃ 下降到35℃需要散发的热量是固定,通过公式(1)即ΔT 1*C*M/t直接计算可以获得。同时,第一电池61在冷却过程中,存在放电和充电过程,此过程会产生热量,这部分的热量也可以通过检测第一电池的平均电流I直接获得,通过公式(3)即I 2*R,直接计算出当前第一电池61的发热功率,即第二需求功率。本公开的冷却完成时间是基于目标时间t设定的(t可以根据用户需求或者是车辆实际设计情况改变)。在确定了冷却完成所需要的目标时间t后,就可以预估出当前第一电池61冷却需要的需求功率P1,P1=ΔT 1*C*M/t+I 2*R。而如果是加热功能启动,则需求功率P1=ΔT 1*C*M/t-I 2*R,即在第一电池61在加热过程中,第一电池61的放电或者充电电流越大,所需要的加热功率即需求功率P1越小。
由于电第一电池61的放电或者是充电电流是变化的,所以I 2*R是变化的,因此为了更好的确保冷却时间的准确性,冷却功率也要随着第一电池61当前的平均放电或者是充电电流的变化而变化。如果车载空调同时给第一电池61和车厢冷却,那么当第一电池61的放电电流较小的时候,I 2*R就会减小,此时可以分配更多的制冷功率给到车厢,使得车厢较快的达到设定气温。同时,当第一电池61的放电或者充电电流较大时,I 2*R就会较大,此时车载空调可以分配更多的制冷功率给到第一电池61。通过这样的调节,使得电池冷却所需时间始终准确,同时又可以更高效的合理利用车载空调的制冷功率,而不必配置冷却功率较大的车载空调,造成制冷功率的浪费。
电池冷却时间受冷却效率的影响,由于冷却效率受外部环境温度和电池当前温度的影响,在第一电池61冷却的过程中,温度调节系统的效率也是不断变化的,所以冷却效率不可能是100%,因此只根据P1是无法准确调节第一电池61的冷却的时间的,有必要检测第一电池61的实际功率P2。在本公开中,第一电池62的实际功率P2可以通过公式(3)即ΔT2*c*m计算得出。P2也可以通过电池实际冷却功率,也就可以通过公式(4)即ΔT3*C*m1计算得出,其中ΔT3为第一电池61在某一时间段内的温度变化,C为第一电池61的比热容,m1为第一电池61质量。但由于一般电池的质量较大,所以单位时间内温度变化不明显,需要较长时间才可以检测出温差,所以一般按照公式(3)计算实际功率P2。
当第二电池62需要进行温度调节时,其需求功率P1和实际功率P2获取方式与上述的第一电池61的原理相同,此处不再赘述。
受冷却效率的影响,实际功率P2很难完全等于需求功率P1,为了使得每个电池6的冷却目标时间t更准确,需要实时根据需求功率P1与实际功率P2之间的功率差值进行调节,以确保电池6的需求功率P1与电池的实际功率P2相等。
下面将结合具体地实施例描述如何根据每个电池6的需求功率P1和实际功率P2对每个电池6的温度进行调节。
根据本公开的一个实施例,电池管理控制器,还用于检测多个并联的电池的温度,并 在多个并联的电池6中有至少一个电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在多个并联电池6中有至少一个电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器实时检测每个电池6的温度,并进行判断。如果其中某个电池6的温度高于40℃,说明此时该电池6的温度过高,为避免高温对该电池6的性能产生影响,需要对该电池6进行降温处理,电池管理控制器控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给车载空调控制器,车载空调控制器在接收到电池冷却功能启动信息后控制第二电子阀43开启,以使冷却液与电池6进行热交换以降低该电池6的温度。如图9所示,当温度调节系统工作在冷却模式时,第一电池61所在回路中对应的第一管道和第二管道中冷却液的流动方向分别为:压缩机1—冷凝器2—第二电子阀43—第二膨胀阀42—换热器41—压缩机1;介质容器52—换热器41—加热器53(关闭)—泵51—阀门58—第一温度传感器55—第一电池61—第二温度传感器56—流速传感器57—介质容器52,如此循环,在换热器41处换热,实现第一电池61的降温。第二电池62所在回路中第一管道和第二管道中冷却液的流动方向分别为:压缩机1—冷凝器2—第二电子阀43—第二膨胀阀42—换热器41—压缩机1;介质容器52—换热器41—加热器53(关闭)—泵51—阀门58—第一温度传感器55—第二电池62—第二温度传感器56—流速传感器57—介质容器52,如此循环,在换热器41处换热,实现第二电池62的降温。
而如果某个电池6的温度低于0℃,说明此时该电池6的温度过低,为避免低温对该电池6的性能产生影响,需要对该电池6进行升温处理,电池管理控制器控制温度调节系统进入加热模式,并发送电池加热功能启动信息至车载空调控制器。车载空调控制器在接收到电池加热功能启动信息后控制第二电子阀43关闭,并且电池热管理控制器控制加热器53开启,以为温度调节系统提供加热功率。当温度调节系统工作在加热模式时,第一电池61和第二电池62中冷却液的流动方向分别为:介质容器52—换热器41—加热器53(开启)—泵51—阀门58-第一温度传感器55—第一电池61—第二温度传感器56—流速传感器57—介质容器52;介质容器52—换热器41—加热器53(开启)—泵51—第一温度传感器55—第二电池62—第二温度传感器56—流速传感器57—介质容器52,如此循环,实现电池6的升温。可以理解,通过调节阀门58的开度可以调节流入每个电池6的冷却液流量,从而调节每个电池的加热/冷却功率。
根据本公开的一个实施例,当温度调节系统工作在冷却模式时,在某个电池6的需求功率P1大于该电池对应的实际功率P2时,车载空调控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池6的压缩机的功率,或者增加电 池6的冷却液流量,以增加电池6的冷却功率,以及在某个电池6的需求功率P1小于或等于实际功率P2时,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的冷却液流量,以减少电池6的冷却功率。
具体地,如果电池6为多个且并联连接时,当温度调节系统工作在冷却模式时,电池管理控制器获取电池的需求功率P1,电池热管理控制器获取电池的实际功率P2,车载空调控制器根据需求功率P1和实际功率P2进行判断。如果其中某一个电池6的需求功率P1大于实际功率P2,说明如果按照当前的冷却功率或者冷却液流量,无法在目标时间内完成该电池6的降温,所以,车载空调控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的冷却液流量,即增加第二膨胀阀42的开度,以增加该电池的冷却功率,其中,需求功率P1和实际功率P2的功率差越大,压缩机1的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池6的需求功率P1小于或等于实际功率P2,车载空调控制器可以保持压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池的冷却液流量,即减小第二膨胀阀42的开度,以减少电池的冷却功率。当所有电池6的温度低于35℃时,则电池6冷却完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,车载空调控制器控制第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池6的温度高于35℃,则再适当增加电池的冷却功率,以使该电池尽快完成降温。
根据本公开的一个实施例,当温度调节系统工作在加热模式时,在某个电池的需求功率P1大于实际功率P2时,电池热管理控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,或者调节增加电池的冷却液流量,以增加电池的加热功率,以及在某个电池的需求功率P1小于或等于实际功率P2时,减小的功率,或保持加热器53的功率不变,或者调节减少电池的冷却液流量,以减少电池的加热功率。
具体地,如果电池为多个且并联连接时,当温度调节系统工作在加热模式时电池管理控制器获取电池的需求功率P1,电池热管理控制器获取电池的实际功率P2。如果其中某一个电池6的需求功率P1大于实际功率P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池6的升温,所以,电池热管理控制器获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池6的加热器53的功率,或者调节增加电池的冷却液流量,例如可以增加泵51的转速,以使该电池可以在目标时间内完成温度调节。其中,需求功率P1和实际功率P2的差值越大,加热器53的功率和该电池回路的冷却液流量增加的越多。而如果某个电池的需求功率P1小于或等于实际功率P2,电池热管理控制 器可以适当减小加热器53的功率,或保持加热器53的功率不变,或者调节减少该电池回路的冷却液流量,以减少该电池的加热功率。当所有电池6的温度高于预设温度,例如10℃时,电池6加热完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,电池热管理控制器控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池6的温度低于10℃,则电池热管理控制器可以再适当增加加热器53的功率和泵51的转速,以使该电池尽快完成升温。
根据本公开的一个实施例,电池热管理控制器,还用于在某个电池的需求功率P1小于对应的实际功率P2时,降低泵51的转速,并在某个电池的需求功率P1大于对应的实际功率P2时,提高泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池6的需求功率P1小于实际功率P2,电池热管理控制器控制泵51的转速降低,以节省电能。而如果某个电池6的需求功率P1大于实际功率P2,电池热管理控制器除控制加热器53、压缩机1的功率增加或该电池所在回路的冷却液流量增加外,还控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
如果单个压缩机1无法满足冷却多个电池6时所需的功率,则可设置多个压缩机1为电池6提供冷却功率。如在大巴车上,通常有4个压缩机,此时可以将这4个压缩机都用于为电池6提供冷却功率。
根据本公开的一个实施例,如果用于为电池提供制冷剂的压缩机1为多个,控制器还用于根据每个电池的需求功率P1和每个压缩机的最大制冷功率P判断启动的压缩机的数量,并在温度调节系统为冷却模式时,控制相应数量的压缩机1启动。
电池管理控制器可以根据每个电池的需求功率P1生成总需求功率Pz,车载空调控制器在判断总需求功率Pz大于单个压缩机的最大制冷功率P时,控制多个压缩机1同时启动。
举例而言,当为多个电池6提供制冷剂的压缩机1为2个,在温度调节系统进入冷却模式时,电池管理控制器分别获取每个电池6的P1,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率Pz。如果Pz小于等于单个压缩机1的最大制冷功率,那么车载空调控制器控制一个压缩机1启动即可。而如果Pz大于单个压缩机1的最大制冷功率,那么车载空调控制器控制两个压缩机1同时启动工作,以满足电池6的降温制冷功率需求。
为使本领域技术人员更清楚地理解本公开,下面结合具体地实施例描述图9所示的车载电池的温度调节系统的工作过程。
电池6包括第一电池61和第二电池62,Pz=P11+P12,P11为第一电池61的需求功率,P12为第二电池62温度调节的需求功率,Pz为第一电池61和第二电池62的需求功率之和 (总需求功率Pz)。Pf=P21+P22,P21为电池61的实际功率,P22为电池62的实际功率,Pf为第一电池61和第二电池62的实际功率之和。
当某个电池的温度大于第一温度阈值时(例如40℃),车载电池的温度调节系统工作在冷却模式,如果总需求功率Pz与车内冷却需求功率P4的和小于压缩机最大制冷功率P,即Pz+P4≤P,则控制压缩机1按照Pz+P4制冷功率运行。可以理解,该情况下Pz<P,P4<P。
如果Pz+P4>P,则判断第一电池61或者第二电池62的温度是否大于45℃,如果大于45℃,则优先为电池冷却提供冷却功率,车载空调控制器控制压缩机1按照最大制冷功率P运行,电池冷却支路4的冷却功率为Pz,车内冷却支路3的冷却功率等于P-Pz。
如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机1按照最大制冷功率P运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。第一电池61冷却支路和第二电池62冷却支路按照比例缩小冷却功率。比例可以为:(P-P4)/(P11+P12)。如果车内温度已经达到设定温度,则优先满足电池的冷却功率。
第一电池61和第二电池62的实际功率的和为Pf,当Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)。如果Pz+P4+Pc≤P,则压缩机需要增大的制冷功率为Pc,增大第二膨胀阀42的开度,提高泵51的转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
如果Pz+P4+Pc>P(且Pz+Pc≤P),则进行如下判断:
判断第一电池61和第二电池62的温度是否大于45℃。如果大于45℃,则优先为电池冷却提供冷却功率,压缩机按照最大制冷功率运行,同时提高泵51的转速,电池冷却支路的冷却功率增加Pc,车内冷却支路功率减少Pc。如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷 却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
如果电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机按照最大制冷功率P运行,提高泵51的转速,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。第一电池61冷却支路和第二电池62冷却支路按照比例缩小冷却功率。比例可以为:(P-P4)/(P11+P12)。第一电池61的冷却功率为P11*(P-P4)/(P11+P12),第二电池62的冷却功率为P12*(P-P4)/(P11+P12)。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率,压缩机以最大功率P运行,增大第二膨胀阀42的开度,提高泵51转速,使得电池冷却分支回路冷却功率增加Pc。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
当Pz≤Pf时,需要调节的功率为Pc(Pc=Pf-Pz)时,则维持压缩机制冷功率不变,或者降低压缩机的制冷功率,或者减少第二膨胀阀42的开度,或者降低泵51的转速。如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
当用于为电池提供制冷功率的压缩机1为多个,多个压缩机的最大制冷功率的和为P5,那么,电池冷却功率调节可以为:
(1)当Pz>Pf时,需要调节的功率为Pc(Pc=Pz-Pf),如果Pz+P4+Pc≤P5,则压缩机需要增大的制冷功率为Pc,增大第二膨胀阀开度,提高泵转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池 62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得电池62的冷却功率减少。
如果Pz+P4+Pc>P5(且Pz+Pc≤P5),则进行如下判断:
判断电池温度是否大于45℃。如果大于45℃,则优先为电池冷却提供冷却功率,压缩机按照最大制冷功率运行,同时提高水泵的转速,电池冷却支路的冷却功率增加Pc,车内冷却支路功率减少Pc。
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
如果电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,所有压缩机按照最大制冷功率运行,提高水泵转速,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率=P5-P4。第一电池61冷却支路和第二电池62冷却支路按照比例缩小冷却功率。比例可以为:(P5-P4)/(P11+P12)。第一电池61的冷却功率为P11*(P5-P4)/(P11+P12),第二电池62的冷却功率为P12*(P5-P4)/(P11+P12)。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率,所有压缩机以最大功率运行,增大第二膨胀阀开度,提高水泵转速,使得电池冷却分支回路冷却功率增加Pc。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得电池62的冷却功率减少。
(2)当Pz≤Pf,需要调节的功率为Pc(Pc=Pf-Pz)时,则维持压缩机制冷功率不变, 或者降低压缩机的制冷功率,或者减少第二膨胀阀42的开度,或者降低泵51的转速。如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的冷却功率减少。
当车载电池的温度小于第二温度阈值(例如0℃),当车载电池的温度调节系统工作的加热模式,如果Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器53的加热功率增加Pc,提高泵51的转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的加热功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的加热功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的加热功率减少。
如果Pz≤Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器的功率保持不变,或者减少加热功率Pc,或者降低泵转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一池61的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的加热功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得电池62的加热功率减少。
为使第一电池61和第二电池62的温度保持均衡,可以进行如下处理:
在进行电池冷却过程中,如果第一电池61的温度T61和第二电池62的温度T62之间的电池温度差异超过3℃,该温度值为预设值,即如果T61-T62>3℃,则电池热管理控制器控制第一电池61冷却支路中的调节阀58开度增加,控制第二电池62冷却支路中的调节阀58的开度减少,以便使得第一电池61的冷却功率增加,第二电池62的冷却功率减少, 从而实现第一电池61和第二电池62的温度均衡。而如果T62-T61>3℃,则电池热管理控制器控制第二电池62冷却支路中的调节阀58开度增加,控制第一电池61冷却支路中的调节阀58的开度减少,以便使得第二电池62的冷却功率增加,第一电池61的冷却功率减少,从而实现第一电池61和第二电池62的温度均衡。
在进行电池加热过程中,如第一电池61和第二电池62之间的电池温度差异超过3℃,即如果T61-T62>3℃,则电池热管理控制器控制电池61冷却支路中的调节阀58开度减小,控制电池62冷却支路中的调节阀58的开度增大,以便使得第一电池61的加热功率减少,第二电池62的加热功率增加,从而实现第一电池61和第二电池62的温度均衡。如果T62-T61>3℃,则电池热管理控制器控制电池62冷却支路中的调节阀58开度减小,控制电池61冷却支路中的调节阀58的开度增大,以便使得第一电池61的加热功率增加,第二电池62的加热功率减小,从而实现第一电池61和第二电池62的温度均衡。
根据本公开实施例的车载电池的温度调节系统,通过电池温度调节装置获获取多个并联的电池的需求功率和实际功率,并分别根据多个并联的电池的需求功率和实际功率对多个并联的电池的温度进行调节。由此,该系统可以根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
图10是根据本公开第六个实施例的车载电池的温度调节方法的流程图。其中,车载电池包括多个并联的电池,如图10所示,车载电池的温度调节方法包括以下步骤:
s1,分别获取多个并联的电池的需求功率P1。
,根据本公开的一个实施例,分别获取多个并联的电池的需求功率P1具体包括:分别获取每个电池的开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率。分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率。根据每个电池的第一需求功率和每个电池的第二需求功率分别生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成每个电池的第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1。根据第一温度差ΔT 1和目标时间t生成第一需求功率P1。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为每个电池电池在预设时间内的平均电流I,通过以下公式(2)生成每个电池的第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
s2,分别获取多个并联的电池的实际功率P2。
根据本公开的一个实施例,分别获取多个并联的电池的实际功率P2具体包括:获取用于调节每个电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。根据每个电池的流路的入口温度和出口温度生成第二温度差ΔT 2。根据每个电池的第二温度差ΔT 2和流速v生成实际功率P2。
根据本公开的一个实施例,进根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
s3,分别根据多个并联的电池的需求功率P1和实际功率P2对多个并联的电池的温度进行调节。
根据本公开的一个实施例,根据需求功率P1和实际功率P2对电池温度调节装置进行控制以在目标时间t内对所电池的温度进行调节,以达到目标温度。
具体地,车辆上电后,判断电池是否需要进行温度调节,如果判断需要,则分别获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算分别出第一需求功率。同时,分别获取每个电池在预设时间内的平均电流I,并根据公式(2)分别计算每个电池的第二需求功率。然后,分别根据每个电池第一需求功率和第二需求功率,分别计算每个电池的需求功率P1(即将电池的温度调节至目标温度的需求功率)。并且,分别获取每个电池的入口温度和出口温度,并获取流流速信息,根据公式(3)分别计算出每个电池的实际功率P2。最后,分别根据每个电池的P1和P2对电池进行温度调节。由此,该控制方法可以根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
下面结合具体实施例描述如何根据电池的需求功率P1和实际功率P2对电池的温度进行调节。
当车载电池包括多个并联的电池时,根据本公开的一个实施例,如图8所示,分别根 据多个并联的电池的需求功率P1和实际功率P2对电池温度调节装置进行控制以对电池的温度进行调节还可以包括:根据多个并联的电池的需求功率P1生成总需求功率Pz。判断总需求功率Pz是否与车载空调的最大制冷功率P匹配。如果匹配,则根据多个并联的电池的需求功率P1为多个并联的电池进行冷却。如果不匹配,则根据空调的最大制冷功率P和多个并联的电池的需求功率P1为多个并联的电池进行冷却。
具体地,可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率Pz,即将每个电池的需求功率P1相加即可得到总需求功率Pz。然后根据总需求功率Pz,判断Pz是否与车载空调的最大制冷功率P匹配,即判断Pz是否小于或等于P,如果是,则根据每个电池的需求功率P1通过控制流入每个电池的冷却液流量以及控制压缩机的功率对每个电池进行冷却。而如果Pz与车载空调的最大制冷功率P不匹配,即Pz大于P,则车载空调控制器根据空调的最大制冷功率P和每个电池的需求功率P1,通过调节流入每个电池的冷却液流量按比例进行冷却液流量分配,从而可以以最大效率使每个电池完成降温。
当电池的数量为多个并联时,根据本公开的一个实施例,电池的温度调节方法还可以包括以下步骤:检测多个并联的电池的温度。当多个并联的电池中有至少一个电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式。当多个并联的电池中有至少一个电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,所述温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统。
而如果某个电池的温度低于0℃,说明此时该电池的温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,所述温度调节系统进入加热模式,控制电池冷却支路关闭,并控制加热器开启,以为电池提供加热功率。
为使第一电池和第二电池的温度保持均衡,可以进行如下处理:
举例而言,如图9所示,当电池包括第一电池和第二电池时,在进行电池冷却过程中,如果第一电池的温度T61和第二电池的温度T62之间的电池温度差异超过3℃,该温度值为预设值,即如果T61-T62>3℃,则电池热管理控制器控制第一电池冷却支路中的调节阀开度增加,控制第二电池冷却支路中的调节阀的开度减少,以便使得第一电池的冷却功率增加,第二电池的冷却功率减少,从而实现第一电池和第二电池的温度均衡。
而如果T62-T61>3℃,则控制第二电池冷却支路中的调节阀开度增加,控制第一电池 冷却支路中的调节阀的开度减少,以便使得第二电池的冷却功率增加,第一电池的冷却功率减少,从而实现第一电池和第二电池的温度均衡。
在进行电池加热过程中,如第一电池和第二电池之间的电池温度差异超过3℃,即如果T61-T62>3℃,则电池热管理控制器控制第一电池冷却支路中的调节阀开度减小,控制第二电池冷却支路中的调节阀的开度增大,以便使得第一电池的加热功率增加,第二电池的加热功率减少,从而实现第一电池和第二电池的温度均衡。如果T62-T61>3℃,则控制第二电池冷却支路中的调节阀开度减小,控制第一电池冷却支路中的调节阀的开度增大,以便使得第二电池的加热功率增加,第一电池的加热功率减少,从而实现第一电池和第二电池的温度均衡。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,分别根据多个并联的电池的需求功率P1和实际功率P2对多个并联的电池的温度进行调节,具体包括:判断每个电池的需求功率P1是否大于每个电池对应的实际功率P2。如果某个电池的需求功率P1大于电池对应的实际功率P2,则获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的压缩机的功率,或者调节增加电池的冷却液流量,以增加电池的冷却功率。如果某个电池的需求功率P1小于或等于电池对应的实际功率P2,则减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的冷却液流量,以减少电池的冷却功率。
具体地,当所述温度调节系统工作在冷却模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持压缩机1的功率不变或适当减小压缩机的功率,或者减少该电池的冷却液流量,减少电池的冷却功率。当所有电池的温度低于35℃时,则电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制电池冷却支路关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则适当增加d电池的冷却功率,以使该电池尽快完成降温。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,分别根据多个并联的电池的需求功率P1和实际功率P2对多个并联的电池的温度进行调节,具体包括:判断每个电池的需求功率P1是否大于每个电池对应的实际功率P2。如果某个电池的需求功率P1大于电池对应的实际功率P2,则获取该电池的需求功率P1和实际功率P2之间的功率差, 并根据功率差增加用于冷却电池的加热器的功率,或者调节增加电池的冷却液流量,以增加电池的加热功率。
具体地,当所述温度调节系统为加热模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间t内完成该电池的升温,所以,控获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者调节增加电池的冷却液流量,以使该电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器的功率和该电池回路的冷却液流量增加的越多。而如果某个电池的P1小于或等于P2,可以适当减小加热器的功率,或保持加热器的功率不变,或者调节减少该电池回路的冷却液流量,以减少该电池的加热功率。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则再适当增加加热器的功率和泵的转速,以使该电池尽快完成升温。
根据本公开的一个实施例,车载电池的温度调节方法还可以包括:如果某个电池的需求功率P1小于对应的实际功率P2,则降低泵的转速;如果某个电池的需求功率P1大于对应的实际功率P2,则提高泵的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,控制泵的转速降低,以节省电能。而如果某个电池的P1大于P2,除控制加热器、压缩机的功率增加或该电池所在回路的冷却液流量增加外,还可以控制泵的转速提高,以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
为使本领域技术人员更清楚地理解本公开,下面结合具体地实施例描述车载电池系统的温度调节方法。
如图9所示,电池可以包括第一电池和第二电池,Pz=P11+P12,P11为第一电池的需求功率,P12为第二电池温度调节的需求功率,Pz为第一电池和第二电池的需求功率之和(总需求功率Pz)。Pf=P21+P22,P21为电池的实际功率,P22为电池的实际功率,Pf为第一电池和第二电池的实际功率之和。
当某个电池的温度大于第一温度阈值时(例如40℃),车载电池的温度调节系统工作在冷却模式,如果总电池冷却需求功率Pz与车内冷却需求功率P4的和小于压缩机最大制冷功率P,即Pz+P4≤P,则控制压缩机1按照Pz+P4制冷功率运行。可以理解,该情况下Pz<P,P4<P。
如果Pz+P4>P,则判断第一电池或者第二电池的温度是否大于45℃,如果大于45℃, 则优先为电池冷却提供冷却功率,车载空调控制器控制压缩机按照最大制冷功率P运行,电池冷却支路的冷却功率为Pz,车内冷却支路的冷却功率等于P-Pz。
如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机按照最大制冷功率P运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。第一电池冷却支路和第二电池冷却支路按照比例缩小冷却功率。比例可以为:(P-P4)/(P11+P12)。如果车内温度已经达到设定温度,则优先满足电池的冷却功率。
第一电池和第二电池的实际功率的和为Pf,当Pz>PF,需要调节的功率为Pc(Pc=Pz-Pf)。如果Pz+P4+Pc≤P,则压缩机需要增大的制冷功率为,增大第二膨胀阀的开度,提高泵51的转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀58开度减少,使得第二电池的冷却功率减少。
如果Pz+P4+Pc>P(且Pz+Pc≤P),则进行如下判断:
判断第一电池和第二电池的温度是否大于45℃。如果大于45℃,则优先为电池冷却提供冷却功率,压缩机按照最大制冷功率运行,同时提高泵的转速,电池冷却支路的冷却功率增加Pc,车内冷却支路功率减少Pc。如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得第二电池的冷却功率减少。
如果电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机按照最大制冷功率P运行,提高泵的转速,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。第一电池61冷却支路和第二电池62冷却支路按照比例缩小冷却功率。比例可以为:(P-P4)/(P11+P12)。第一电池的冷却功率为P11*(P-P4)/(P11+P12),第二电池的冷却功率为P12*(P-P4)/(P11+P12)。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率,压缩机以最大功率P 运行,增大第二膨胀阀的开度,提高泵的转速,使得电池冷却分支回路冷却功率增加Pc。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得第二电池的冷却功率减少。
当Pz≤Pf时,需要调节的功率为Pc(Pc=Pf-Pz)时,则维持压缩机制冷功率不变,或者降低压缩机的制冷功率,或者减少第二膨胀阀的开度,或者降低泵的转速。如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀58开度增大,使得电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节开度减少,使得第二电池的冷却功率减少。
当车载电池的温度小于第二温度阈值(例如0℃),车载电池的温度调节系统工作的加热模式时,如果Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器的加热功率增加Pc,提高泵的转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的加热功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得第二电池的加热功率减少。
如果Pz≤Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器的功率保持不变,或者减少加热功率Pc,或者降低泵转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一池的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的加热功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的加热功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变, 或者控制第二电池所在回路的调节阀开度减少,使得电池的加热功率减少。
根据本公开的一个实施例,用于为电池提供制冷剂的压缩机为多个,电池的温度调节方法还可以包括:根据每个电池的需求功率P1和每个压缩机的最大制冷功率判断启动的压缩机的数量。在所述温度调节系统为冷却模式时,控制相应数量的压缩机启动。
根据每个电池的需求功率P1和每个压缩机的最大制冷功率P判断启动的压缩机的数量具体包括:根据每个电池的需求功率P1生成总实际功率P Z;判断总需求功率P Z是否大于单个压缩机的最大制冷功率P;如果大于单个压缩机的最大制冷功率P,则控制多个压缩机同时启动。
具体地,当压缩机为多个时,相应的,车内冷却支路和电池冷却支路为多个。举例而言,当为电池提供制冷剂的压缩机为2个,车内冷却支路和电池冷却支路均为2个时,在温度调节系统进入冷却模式时,分别获取每个电池的P1,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z。如果P Z小于等于单个压缩机的最大制冷功率P,那么控制一个压缩机启动即可。而如果Pz大于单个压缩机的最大制冷功率P,那么控制两个压缩机同时启动工作,以满足电池的降温制冷功率需求。
当用于为电池提供制冷剂的压缩机为多个,多个压缩机的最大制冷功率的和为P5,那么,电池冷却功率调节可以为:
(1)当Pz>Pf时,需要调节的功率为Pc(Pc=Pz-Pf),如果Pz+P4+Pc≤P5,则压缩机需要增大的制冷功率为Pc,增大第二膨胀阀开度,提高泵转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得电池的冷却功率减少。
如果Pz+P4+Pc>P5(且Pz+Pc≤P5),则进行如下判断:
判断电池温度是否大于45℃。如果大于45℃,则优先为电池冷却提供冷却功率,压缩机按照最大制冷功率运行,同时提高水泵的转速,电池冷却支路的冷却功率增加Pc,车内冷却支路功率减少Pc。
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀58开度增大,使得电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电 池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得第二电池的冷却功率减少。
如果电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,所有压缩机按照最大制冷功率运行,提高水泵转速,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率=P5-P4。第一电池冷却支路和第二电池冷却支路按照比例缩小冷却功率。比例可以为:(P5-P4)/(P11+P12)。第一电池61的冷却功率为P11*(P5-P4)/(P11+P12),第二电池62的冷却功率为P12*(P5-P4)/(P11+P12)。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率,所有压缩机以最大功率运行,增大第二膨胀阀开度,提高水泵转速,使得电池冷却分支回路冷却功率增加Pc。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀58开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得第二电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀58开度减少,使得第一电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得电池的冷却功率减少。
(2)当Pz≤Pf,需要调节的功率为Pc(Pc=Pf-Pz)时,则维持压缩机制冷功率不变,或者降低压缩机的制冷功率,或者减少第二膨胀阀的开度,或者降低泵的转速。如果P11≥P21,且P11-P21=Pc1,则控制第一电池所在回路的调节阀开度增大,使得第一电池的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池所在回路的调节阀开度增大,使得电池的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池的冷却功率不变,或者控制第一电池所在回路的调节阀开度减少,使得第一电池的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池的冷却功率不变,或者控制第二电池所在回路的调节阀开度减少,使得第二电池的冷却功率减少。
当车载电池的温度小于第二温度阈值(例如0℃),当车载电池的温度调节系统工作的加热模式,如果Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器53的加热功率增加Pc,提高泵51的转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一电池61的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的加热功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的加热功率减少。如果P12<P22,且P22-P12=Pc2, 则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得第二电池62的加热功率减少。
如果Pz≤Pf,需要调节的功率为Pc(Pc=Pz-Pf)时,加热器的功率保持不变,或者减少加热功率Pc,或者降低泵转速。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的调节阀58开度增大,使得第一池61的加热功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的调节阀58开度增大,使得第二电池62的加热功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的调节阀58开度减少,使得第一电池61的加热功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的调节阀58开度减少,使得电池62的加热功率减少。根据本公开实施例的车载电池的温度调节方法,首先,分别获取多个并联的电池的需求功率,然后,分别获取多个并联的电池的实际功率,最后,分别根据多个并联的电池的需求功率和实际功率对多个并联的电池的温度进行调节。由此,该方法可以根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
当车载电池的数量为多个时,且各电池之间独立设置时,本公开还提出另一种车载电池的温度调节系统。
具体而言,如图11A所示,该温度调节系统包括:多个压缩机1、多个冷凝器2、多个电池冷却支路4和多个电池温度调节装置5。
其中,多个冷凝器2与多个压缩机1相连,多个电池冷却支路4连接在多个压缩机1和多个冷凝器2之间,且多个电池冷却支路4之间相互连通。电池温度调节装置5分别与多个电池6和多个电池冷却支路4相连,用于分别获取多个电池的需求功率P1和实际功率P2,并根据需求功率P1和实际功率P2对电池的温度进行调节,以及根据需求功率P1和实际功率P2调节多个压缩机1向电池6对应的电池冷却支路4提供的制冷量开度,进而实现对相应制冷功率的调节。
根据本公开的一个实施例,根据需求功率和P1和实际功率P2对电池的温度进行调节,具体包括:根据需求功率P1和实际功率P2在目标时间t内对电池的温度进行调节,以达到目标温度。
也就是说,电池温度调节装置5在根据需求功率P1和实际功率P2对每个电池6进行温度调节时,可以确保在目标时间t内根据每个电池6的实际状态精确控制车载电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节。
如图11A所示,以压缩机1、电池冷却支路4、电池温度调节装置5电池6为2个为例,电池冷却支路4可以包括第一电池冷却支路401和第二电池冷却支路402,分别对应第一电池61和第二电池62。
当空调的冷却液不接入到电池温度调节装置5时,电池冷却支路4中具有两个管道,第一管道与压缩机1相连通,第二管道与电池温度调节装置5相连通,其中,第一管道与第二管道相互独立的临近设置。以第一电池61所在的第一电池冷却支路401为例,在第一电池61的温度过高时,车载空调制冷功能开启,电池冷却功能启动,第一管道与第二管道中冷却液(如冷媒)的流动方向分别为:压缩机1—冷凝器2—第一电池冷却支路401—压缩机1;第一电池冷却支路401—电池温度调节装置5—第一电池61—电池温度调节装置5—第一电池冷却支路401。
可以理解,每个电池温度调节装置5可以根据对应电池的需求功率和P1和实际功率P2,通过调节流入到相应的电池冷却支路4的冷却液的流量调节电池的制冷功率/加热功率,从而可以确保在目标时间t内根据每个电池的实际状态对电池的温度进行调节。同时,由于多个电池冷却支路4之间相互连通,因此电池温度调节装置5可以根据每个电池的温度,通过调节电池对应的电池冷却支路4的功率,可以保证各个电池之间温度的均衡。由此,可以在车载电池温度过高时或者过低时在目标时间内对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,且可以保证各个电池之间温度的均衡。
根据本公开的一个实施例,如图11A所示,电池冷却支路4可以包括换热器41,换热器41包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。
电池温度调节装置5可以包括调节电池温度的流路(图中未具体示出),流路设置在电池6之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取多个电池6的需求功率P1和电池的实际功率P2,并根据每个电池的需求功率P1和实际功率P2对电池6的温度进行调节。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
如图11所示,第一电池冷却支路401还可以包括第一调节阀411和第三调节阀413;第二电池冷却支路402还可以包括第二调节阀412和第四调节阀414,各调节阀的连接方式具体可参照图11A,此处不做赘述。
如图11A所示,压缩机11通过第一调节阀411和第二调节阀412分别控制流向401支路和402支路的冷媒流量。压缩机12通过第三调节413阀和第四调节阀414分别控制流量401支路和402支路的冷媒流量。电池冷却支路401的冷却功率与第一调节阀411和第三 调节阀413的冷媒流量有关。电池冷却支路402的冷却功率与第二调节阀412和第四调节阀414的冷媒流量有关。
可以理解的是,电池冷却支路4也可以不设置换热器41,当没有换热器41时,电池冷却支路4内流的就是冷媒。如果设置换热器41,那么电池冷却支路4内第一管道中流的是冷媒,第二管道中流的是冷却液。
根据本公开的一个实施实例,如图11A所示,电池温度调节装置5还可以包括设置在流路的入口的第一温度传感器55,设置在流路的出口的第二温度传感器56,以及流速传感器57。可以理解,流路的入口和出口位置不是绝对的,而是根据泵51的转向确定的。
具体地,换热器41可以为板式换热器,板式换热器可以安装在车载空调内部,使得整个制冷剂回路均在车载空调内部,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次制冷剂。冷却液从流路的入口流入电池6的内部,从流路的出口流出,从而实现电池6与冷却液之间的热交换。
泵51主要用于提供动力,介质容器52主要用于存储冷却液和接受向温度调节系统添加的冷却液,当温度调节系统中的冷却液减少时,介质容器52中的冷却液可自动补充。加热器53可以为PTC加热器,可以与控制器进行CAN通信,为车载电池的温度调节系统提供加热功率,受控制器控制。且加热器53不直接与电池6接触,具有较高的安全性、可靠性和实用性。
第一温度传感器55用以检测流路入口冷却液的温度,第二温度传感器56用以检测流路出口冷却液的温度。流速传感器57用以检测对应管道内冷却液的流速信息。第二电子阀43用以控制相应的电池冷却支路4的开通和关闭,第二膨胀阀42可用于控制响应的电池冷却支路4中的冷却液流量。控制器可以通过调节第一至第四调节阀411-414的开度,同时控制第一电池61和第二电池62两个冷却分支回路的冷却液流量,从而使均衡两个电池的温度。同时控制器还可与车载空调和加热器53进行CAN通信,并且可以控制泵51的转速和监控冷却液的温度和流量信息,还可以对电池6进行管理,检测电池6的电压和温度信息,控制车载电池的温度调节系统的通断。
具体地,控制器可以包括电池管理控制器、电池热管理控制器、车载空调控制器。其中,电池热管理控制器可以与第一温度传感器51、第二温度传感器52和流速传感器57电连接,电池热管理控制器与泵51和加热器53进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵51的转速和控制加热器53的功率。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与膨胀阀及电子阀电连接,且车载空调控 制器可以与电池管理控制器和电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是车载空调DSP芯片。
下面结合具体实施例描述每个电池温度调节装置5如何获取相应电池6的需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率,以及分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率,并根据每个电池的第一需求功率和每个电池的第二需求功率生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池6开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池6的比热容,M为电池6的质量。
第二参数为每个电池6在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池6的内阻。
当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池热管理控制器分别根据每个电池6所在回路的第一温度传感器55检测的入口温度和第二温度传感器56检测的出口温度生成每个电池的第二温度差ΔT 2,并根据每个电池的第二温度差ΔT 2和流速传感器57检测的流速v生成每个电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横 截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
具体地,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,则开启温度调节功能,并发送低转速信息给泵51,泵以默认转速(如低转速)开始工作。然后,电池热管理控制器获取每个电池6的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出每个电池的第一需求功率。同时,电池管理控制器分别获取每个电池6在预设时间内的平均电流I,并根据公式(2)计算每个电池第二需求功率。然后,电池管理控制器分别根据每个电池6的第一需求功率和第二需求功率计算需求功率P1(即将电池6的温度在目标时间内调节至目标温度的需求功率)。并且,电池热管理控制器分别获取每个电池对应设置的第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器57检测的流速信息,根据公式(3)分别计算出每个电池6的实际功率P2。最后,车载空调控制器可以根据对应电池的需求功率和P1和实际功率P2,通过调节流入到相应的电池冷却支路4的冷却液的流量调节电池的制冷功率,或者通过调节加热器的调节加热功率,从而可以以确保在目标时间t内根据每个电池的实际状态对电池的温度进行调节。
下面将结合具体地实施例描述如何根据根据每个电池6的需求功率P1和实际功率P2对每个电池6的温度进行调节。
根据本公开的一个实施例,电池管理控制器可以用于根据每个电池的需求功率P1生成总需求功率Pz,并根据多个压缩机的最大制冷功率P生成多个压缩机的总最大制冷功率P5,以及判断总需求功率P Z是否大于多个压缩机的总最大制冷功率P5,其中,当总需求功率P Z大于多个压缩机的总最大制冷功率P5时,车载空调控制器将多个压缩机1向电池对应的电池冷却支路4的功率调整至最大;当总需求功率Pz小于或等于多个压缩机的总最大制冷功率P5时,车载空调控制器根据总需求功率Pz与总最大制冷功率P5之差对电池6对应的电池冷却支路4的功率进行调整。
具体地,如图11A所示,当对电池进行冷却时,电池管理控制器可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率Pz,即将每个电池的需求功率P1相加即可得到总需求功率Pz,同时车载空调控制器根据每个压缩机1的最大制冷功率P计算出多个压缩机的总最大制冷功率P5,即将每个压缩机1的最大制冷功率P相加即可得到总最大制冷功率P5。然后,车载空调控制器判断是否Pz>P5,如果是,则车载空调控制器控制将每个第二膨胀阀42的开度调节至最大,以增大流入到每个电池;冷却回路4的冷却液流量,使电池可以在目标时间内完成降温。而如果Pz≤P5,则车载空调控制器根据Pz与P5 之间的差值对每个第二膨胀阀42的开度进行调整,其中,Pz与P5差值的绝对值越大,第二膨胀阀42的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,电池管理控制器还用于,还用于检测多个电池的温度,并在多个电池6中任一个电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在多个电池中任一个电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器分别实时检测每个电池6的温度,并进行判断。如果其中某个电池6的温度高于40℃,说明此时该电池6的温度过高,为避免高温对该电池6的性能产生影响,需要对该电池6进行降温处理,电池管理控制器控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统,以及控制对应的第二电子阀43开启,以使冷却液与电池6进行热交换以降低该电池6的温度。
而如果某个电池6的温度低于0℃,说明此时该电池6的温度过低,为避免低温对该电池6的性能产生影响,需要对该电池6进行升温处理,电池管理控制器控制温度调节系统进入加热模式,控制第二电子阀43关闭,并控制相应的加热器53开启,以为温度调节系统提供加热功率。当温度调节系统工作在加热模式时,加热器53提供加热功率,以加热第一电池61为例,第一电池61所在回路中冷却液的流动方向为:介质容器52—换热器41—加热器53(开启)—泵51—第一温度传感器55—第一电池61—第二温度传感器56—流速传感器57—介质容器52,如此循环,实现电池第一电池61的升温。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,在某个电池的需求功率P1大于电池对应的实际功率P2时,车载空调控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的压缩机1的功率,或者调节增加电池6对应的电池冷却支路4的冷却液流量,以增加电池的冷却功率,以及在某个电池的需求功率P1小于或等于电池对应的实际功率P2时,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池6对应的电池冷却支路4的冷却液流量,以减少电池的冷却功率。
具体地,当工作在冷却模式时,车载空调控制器分别获取每个电池6的P1和P2,并进行判断。如果其中某一个电池6的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池6的降温,所以,车载空调控制器获取该电池的P1和P2之间的功率差,并根据功率差增加用于冷却该电池的压缩机1的功率,或者增加该电池所在的电池冷却支路4的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,相应的压缩机1的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池6的P1小于或等于P2,可以保持用于 冷却该电池的压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池所在的电池冷却支路4的冷却液流量,减少电池的冷却功率。当所有电池6的温度低于35℃时,则电池6冷却完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,车载空调控制器控制所有的第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池6的温度高于35℃,则车载空调控制器适当增加相应的压缩机1的功率或者泵的转速,以使该电池尽快完成降温。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,在某个电池的需求功率P1大于实际功率P2时,电池热管理控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,以增加电池的加热功率,以及在某个电池的需求功率P1小于或等于实际功率P2时,减小加热器53的功率,或保持加热器53的功率不变。
具体地,当所述温度调节系统为加热模式时,电池热管理控制器和电池管理控制器分别获取每个电池6的P1和P2,并进行判断。如果其中某一个电池6的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池6的升温,所以,电池热管理控制器获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池6的加热器53的功率,以使该电池可以在目标时间内完成温度调节。其中,P1与P2的差值越大,加热器53的功率增加的越多。而如果某个电池的P1小于或等于P2,电池热管理控制器可以适当减小加热器53的功率,以节省电能,或保持加热器53的功率不变。当所有电池6的温度高于预设温度,例如10℃时,电池6加热完成,电池热管理控制器控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池6的温度低于10℃,则电池热管理控制器再适当增加加热器53的功率,以使该电池尽快完成升温。
举例而言,如图11A所示,由于第一电池61和第二电池62的加热功能相互独立,第一电池61和第二电池62分别用一个加热器进行加热,所以只以第一电池61为例说明电池加热功能的功率调节。(假设P11为第一电池61的需求功率,P21为第一电池61的实际功率,P11与P21的功率差为P31)
如果P11>P21,需要调节的功率为P31(P31=P11-P21)时,加热器53的加热功率增加P31,并提高泵51的转速。
如果P11≤P21,需要调节的功率为P31(P31=P11-P21)时,加热器53的功率保持不变,或者将加热器53的功率减少P31,或者降低泵51的转速。
根据本公开的一个实施例,电池热管理控制器,还用于在某个电池的需求功率P1小于对应的实际功率P2时,降低泵51的转速,并在某个电池的需求功率P1大于对应的实际功 率P2时,提高泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池6的P1小于P2,电池热管理控制器控制相应的泵51的转速降低,以节省电能。而如果某个电池6的P1大于P2,电池热管理控制器除控制相应的加热器53或压缩机1的功率增加或该电池所在回路的冷却液流量增加外,还控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
根据本公开的一个实施例,如果用于为电池提供制冷剂的压缩机1为多个,控制器还用于根据每个电池的需求功率P1和每个压缩机的最大制冷功率P判断启动的压缩机的数量,并在温度调节系统为冷却模式时,控制相应数量的压缩机1启动。
电池管理可以根据每个电池的需求功率P1生成总需求功率Pz,控制器在判断总需求功率Pz大于单个压缩机的最大制冷功率P时,控制多个压缩机1同时启动。
具体地,如图11A所示,以压缩机1为两个为例,在温度调节系统进入冷却模式时,控制器分别获取每个电池6的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率Pz,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。其中,第一电池61的需求功率为P11,第二电池62的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。每个压缩机的最大制冷功率P相等。
如果Pz≤P,那么只需要控制一个压缩机1工作,提供制冷功率,也可以控制两个压缩机1一同工作。如果P<Pz≤P5,则需要两个压缩机1一起工作,每个压缩机的初始制冷功率为Pz/2。如果Pz≤P5,则控制压缩机1按照Pz制冷功率运行,且通过调节第一至第四调节阀的开度,使第一电池冷却支路401的初始冷却功率按照P11制冷功率进行冷却,第二电池冷却支路402初始冷却功率按照P21制冷功率进行冷却。如果Pz>P5,则每个压缩机按照最大制冷功率P运行,且第一电池冷却支路401的初始冷却功率可以按照P5*[P11/(P11+P12)]制冷功率进行冷却,第二电池冷却支路402的初始冷却功率可以按照P5*[P12/(P11+P12)]制冷功率进行冷却。
根据本公开的一个实施例,电池管理控制器还用于,在所述温度调节系统为冷却模式时,当电池6之间的温度差超过设定值时,增大温度较高电池6的冷却功率,以使减小电池6之间的温度差异;在所述温度调节系统为加热模式时,当电池之间的温度差超过设定值时,增大温度较低的电池6的加热功率。
可以理解,当温度调节系统工作在冷却模式时,如图11A所示,电池管理控制器可以分别计算出第一电池61和第二电池62的需求功率P1,然后分别根据每个电池的P1和压 缩机的最大制冷功率P调节相应的第二膨胀阀42的开度。在冷却过程中,电池管理控制器分别根据每个电池的实际功率P2继续调整第二膨胀阀42的开度。同时,电池管理控制器根据第一电池61和第二电池62之间的温度情况,通过调节第一至第四调节阀411-414的开度,调节第一电池冷却支路401和第二电池冷却支路402的冷却液流量分配,从而达到控制第一电池61和第二电池62温度的均衡。其中,当第一电池61的温度比第二电池62的温度高且差值超过设定值时,可增大第一调节阀411和第三调节阀413的开度,减少第二调节阀412和第四调节阀414的开度,以增大第一电池61的冷却功率;当第一电池61和第二电池62的温度相等时,如果两个压缩机1的提供的冷却功率相等,可控制第一至第四调节阀411-414的开度相同;而如果两个压缩机1提供的冷却功率不相等,那么可以控制第一调节阀411和第二调节阀412开度相等,且控制第三调节阀413和第四调节阀414开度相等。而当温度调节系统工作在加热模式时,当第一电池61的温度比第二电池62的温度低且差值超过设定值时,则电池热管理控制器增大第一电池61对应的加热器53的加热功率。由此,可以保持两个电池之间的温度均衡。根据本公开的一个实施例,车载电池的温度调节系统还可以图11B和图11C所示。其中,图11B为多个压缩机(即图11B中的第一压缩机11和第二压缩机12)并联且共用一个膨胀阀,每个电池冷却支路增加调节阀(即第一调节阀411和第二调节阀412),通过调节阀调节流入每个电池冷却支路的冷却液流量,以调节每个电池的冷却功率。图11C为多个压缩机(即图11C中的第一压缩机11和第二压缩机12)并联且共用一个冷凝器2,每个电池冷却支路中都设置有第二膨胀阀42和电子阀(,通过调节第二膨胀阀42的开度调节流入每个电池冷却支路的冷却液流量,以调节每个电池的冷却功率,通过电子阀控制每个电池冷却支路的开闭。
下面结合具体地实施例描述图11C所示的系统的温度调节过程。
如图11C所示,电池可以包括第一电池和第二电池,Pz=P11+P12,P11为第一电池的需求功率,P12为第二电池温度调节的需求功率,Pz为第一电池和第二电池的需求功率之和(总需求功率Pz)。Pf=P21+P22,P21为电池的实际功率,P22为电池的实际功率,Pf为第一电池和第二电池的实际功率之和。P为压缩机最大制冷功率,P5为所有压缩机的最大制冷功率之和,P5=2*P。
压缩机功率初始分配:
如果Pz≤P,则只需要一个压缩机工作,提供制冷功率,又或者两个压缩机一同工作;如果P<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率为Pz/2;如果Pz>P5,则需要两个压缩机一起工作,每个压缩机按照最大制冷功率P运行。
当Pz≤P5时,压缩机按照Pz制冷功率运行,第一电池61冷却支路初始冷却功率按照P11制冷功率进行冷却;第二电池62冷却支路初始冷却功率按照P21制冷功率进行冷却。 当Pz>P5时,则每个压缩机按照最大制冷功率P运行。第一电池61冷却支路初始冷却功率按照P5*[P11/(P11+P12)]制冷功率进行冷却;第二电池62冷却支路初始冷却功率按照P5*[P12/(P11+P12)]制冷功率进行冷却。
在对电池冷却的过程中,需对电池的冷却功率进行调节,具体如下:
当Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)。如果Pz+Pc≤P5,则压缩机需要增大的制冷功率为Pc,。同时进行如下处理:
如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的膨胀阀开度增大,并控制所在回路的泵的转速提高,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的膨胀阀开度增大,并控制所在回路的泵的转速提高,使得第二电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的膨胀阀8开度减少,并控制所在回路的泵的转速降低,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的膨胀阀开度减少,并控制所在回路的泵的转速降低,使得第二电池62的冷却功率减少。
P5如果Pz+Pc>P5,则每个压缩机按照最大制冷功率P运行,提高水泵转速。同时进行如下处理:
控制第一电池61所在冷却支路的膨胀阀开度,使得第一电池61冷却支路冷却功率按照P5*[P11/(P11+P12)]制冷功率进行冷却;控制第二电池62所在冷却支路的膨胀阀开度,使得第二电池62冷却支路冷却功率按照P5*[P12/(P11+P12)]制冷功率进行冷却。
当Pz≤Pf时,需要调节的功率为Pc(Pc=Pf-Pz)时,则维持压缩机制冷功率不变,或者降低压缩机的制冷功率,同时进行如下处理。如果P11≥P21,且P11-P21=Pc1,则控制第一电池61所在回路的膨胀阀开度增大,并控制所在回路的泵的转速提高,使得第一电池61的冷却功率增加Pc1。如果P12≥P22,且P12-P22=Pc2,则控制第二电池62所在回路的膨胀阀开度增大,并控制所在回路的泵的转速提高,使得电池62的冷却功率增加Pc2。如果P11<P12,且P21-P11=Pc1,则保持第一电池61的冷却功率不变,或者控制第一电池61所在回路的膨胀阀开度减少,并控制所在回路的泵的转速降低,使得第一电池61的冷却功率减少。如果P12<P22,且P22-P12=Pc2,则保持第二电池62的冷却功率不变,或者控制第二电池62所在回路的膨胀阀开度减少,并控制所在回路的泵的转速降低,使得第二电池62的冷却功率减少。
加热功率调整:
由于第一电池61和第二电池62的加热功能相互独立,第一电池61和第二电池62分别用一个加热器进行第一电池61的加热需求功率,P21为第二电池61的实际加热功率, 功率差为P31)如果P11>P21,需要调节的功率为P31(P31=P11-P21),加热器的加热功率增加P31,并提高泵的转速。如果P11≤P21,需要调节的功率为P31(P31=P11-P21)时,加热器的功率保持不变,或者减少加热功率P31,或者降低泵的转速。
电池温度均衡:
在进行电池冷却过程中,如果第一电池61的温度T61和第二电池62的温度T62之间的电池温度差异超过3℃,该温度值为预设值,即如果T61-T62>3℃,则电池热管理控制器控制第一电池61冷却支路中的第二膨胀阀42的开度增加,或者同时控制第一电池61所在支路中泵的转速提高,控制第二电池62冷却支路中的第二膨胀阀42的开度减少,或者同时控制第二电池62所在支路中泵的转速降低,以便使得第一电池61的冷却功率增加,第二电池62的冷却功率减少,从而实现第一电池61和第二电池62的温度均衡。
而如果T62-T61>3℃,则电池热管理控制器控制第二电池62冷却支路中的第二膨胀阀42开度增加,或者同时控制第二电池62所在支路中泵的转速提高,控制第一电池61冷却支路中的第二膨胀阀42的开度减少,或者同时控制第一电池61所在支路中泵的转速降低,以便使得第二电池62的冷却功率增加,第一电池61的冷却功率减少,从而实现第一电池61和第二电池62的温度均衡。
在进行电池加热过程中,如第一电池61和第二电池62之间的电池温度差异超过3℃,即如果T61-T62>3℃,则电池热管理控制器控制控制第一电池61所在加热回路中的加热器53的加热功率减少,并降低该回路的泵51转速,并控制第二电池62加热回路中的加热器53的加热功率增大,并提高该回路泵转速,以便使得第一电池61的加热功率增加,第二电池62的加热功率减少,从而实现第一电池61和第二电池62的温度均衡。如果T62-T61>3℃,则电池热管理控制器控制第一电池61所在加热回路中的加热器53的加热功率增加,并增加该回路的泵51转速,并且控制第二电池62加热回路中的加热器53的加热功率减小,并降低该回路泵转速,以便使得第一电池61的加热功率减小,第二电池62的加热功率增加,从而实现第一电池61和第二电池62的温度均衡。
可以理解的是,图11B与图11C的区别在于,图11B是通过第一电池61所在第一电池冷却支路401和第二电池62所在第二电池冷却支路402的之间的冷却功率由调节阀实现功率调节;图11C的两个电池冷却支路是通过膨胀阀实现2个冷却支路的冷却功率调节的。图11B的具体调节过程可参照上述实施例,此处不再赘述。
根据本公开实施例的温度调节系统可以根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,并且,由于多个电池冷却支路之间相互连通,电池温度调节装置可以通过调节每个电池对应的电池冷却支路的功率, 保证各个电池之间温度的均衡。
图12a是根据本公开第六个实施例的车载电池的温度调节方法的流程图。车载电池的温度调节系统包括多个压缩机及与多个压缩机对应的多个电池冷却支路、多个电池和连接在多个电池和多个电池冷却支路之间的多个电池温度调节装置。如图12a所示,车载电池的温度调节方法包括以下步骤:
S1”,分别获取多个电池的需求功率P1。
,根据本公开的一个实施例,如图12b所示,分别获取多个电池的需求功率P1具体包括:
S11”,分别获取每个电池的开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率。
S12”,分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率。
S13”,根据每个电池的第一需求功率和每个电池的第二需求功率分别生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成每个电池的第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1。根据第一温度差ΔT 1和目标时间t生成第一需求功率。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为每个电池在预设时间内的平均电流I,通过以下公式(2)生成每个电池的第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
其中,当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
S2”,分别获取多个电池的实际功率P2。
根据本公开的一个实施例,如图12b所示,分别获取多个电池的实际功率P2具体包括:
S21”,获取用于调节每个电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。
S22”,根据每个电池的流路的入口温度和出口温度生成第二温度差ΔT 2
S23”,根据每个电池的第二温度差ΔT 2和流速v生成每个电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的面积。
S3”,根据需求功率P1和实际功率P2对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节。其中,多个电池冷却支路之间相互连通,且根据电池的需求功率P1和实际功率P2调节多个压缩机向电池对应的电池冷却支路提供的制冷功率。
在本公开的实施例中,根据需求功率P1和实际功率P2对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节,具体包括:根据需求功率P1和实际功率P2在目标时间t内对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节,以达到目标温度。
根据电池的需求功率P1和实际功率P2调节多个压缩机向电池对应的电池冷却支路提供的制冷功率,具体包括:判断每个电池的需求功率P1是否大于电池的实际功率P2;如果电池的需求功率P1大于电池的实际功率P2,则提高多个压缩机或者单个压缩机的制冷功率,或者增大向电池对应的电池冷却支路提供的制冷功率。
具体地,车辆上电后,判断电池是否需要进行温度调节,如果判断需要,则分别获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算分别出第一需求功率。同时,分别获取每个电池在预设时间内的平均电流I,并根据公式(2)分别计算每个电池的第二需求功率。然后,分别根据每个电池第一需求功率和第二需求功率,分别计算每个电池的需求功率P1(即将电池的温度调节至目标温度的需求功率)。并且,分别获取每个电池的入口温度和出口温度,并获取流流速信息,根据公式(3)分别计算出每个电池的实际功率P2。然后,可以根据对应电池的需求功率和P1和实际功率P2,通过调节流入到相应的电池冷却支路的冷却液的流量或者相应的加热器功率调节电池的制冷功率/加热功率,从而可以以确保在目标时间t内根据每个电池的实际状态对电池的温度进行调节。同时,由于多个电池冷却支路之间相互连通,因此可以根据每个电池的温度,通过调节电池对应的电池冷却支路的制冷功率,可以保证各个电池之间温度的均衡。由此,可以在车载电池温度过高时或者过低时在目标时间内对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
下面将结合具体的实施例描述如何根据需求功率P1和实际功率P2对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节。
根据本公开的一个实施例,如图12b所示,车载电池的温度调节方法还可以包括:
S31”,根据每个电池的电池的需求功率P1生成总电池的需求功率P Z
S32”,根据多个压缩机的最大制冷功率P生成多个压缩机的总最大制冷功率P5。
S33”,判断总电池的需求功率P Z是否大于多个压缩机的总最大制冷功率P5。
S34”,如果总电池的需求功率P Z大于多个压缩机的总最大制冷功率P5,则将多个压缩机向电池对应的电池冷却支路的制冷功率调整至最大。
S35”,如果总电池的需求功率P Z小于或等于多个压缩机的总最大制冷功率P5,则根据总电池的需求功率P Z与总最大制冷功率P5之差对电池对应的电池冷却支路的制冷功率进行调整。
具体地,可以根据每个电池的电池的需求功率P1计算出整个温度调节系统的总电池的需求功率P Z,即将每个电池的电池的需求功率P1相加即可得到总电池的需求功率P Z,同时根据每个压缩机的最大制冷功率P计算出多个压缩机的总最大制冷功率P5,即将每个压缩机的最大制冷功率P相加即可得到总最大制冷功率P5。然后,判断是否P Z>P5,如果是,则控制将每个第二膨胀阀的开度调节至最大,以将多个压缩机向电池对应的电池冷却支路的冷却液流量调整至最大,以使电池可以在目标时间t内完成降温。而如果P Z≤P5,则根据P Z与P5之间的差值对第二膨胀阀的开度进行调整,其中,P Z与P5差值的绝对值越大,第二膨胀阀的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,如图13所示,电池的温度调节方法还可以包括以下步骤:
检测电池的温度,并判断温度是否大于第一温度阈值或者小于第二温度阈值(S10”-S20”)。当电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式(S30”)。其中,第一预设温度阈值可以根据实际情况进行预设,例如可以为40℃。当电池的温度小于等于第一温度阈值时,进一步地判断电池的温度是否小于第二温度阈值,当电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式(S40”-S50”)。其中,第二预设温度阈值可以根据实际情况进行预设,例如可以为0℃。
具体地,车辆上电后,实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,所述温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统。而如果某个电池的温度低于0℃,说明此时该电池的温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,所述温度调节系统进入加热模式,控制相应的电池冷却支路关闭,并控制加热器开启,以为电池提供加热功率。
根据本公开的一个实施例,如图13所示,当所述温度调节系统为冷却模式时,根据电池的需求功率P1和电池的实际功率P2对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节,具体包括:
S36”,判断每个电池的电池的需求功率P1是否大于每个电池对应的电池的实际功率P2。
S37”,如果某个电池的电池的需求功率P1大于电池对应的电池的实际功率P2,则获取该电池的电池的需求功率P1和电池的实际功率P2之间的功率差,并根据功率差增加用于冷却电池的压缩机的功率,或者调节增加电池对应的电池冷却支路的冷却液流量,以增加电池的冷却功率。
S38”,如果某个电池的电池的需求功率P1小于或等于电池对应的电池的实际功率P2,则减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池对应的电池冷却支路的冷却液流量,以减少电池的冷却功率。
具体地,当所述温度调节系统工作在冷却模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加用于冷却该电池的压缩机的功率,或者增加该电池所在的电池冷却支路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,相应的压缩机的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持用于冷却该电池的压缩机的功率不变或适当减小压缩机的功率,或者减少该电池所在的电池冷却支路的冷却液流量,减少电池的冷却功率。当所有电池的温度低于35℃时,则电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则再适当增加相应的压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,如图13所示,当所述温度调节系统为加热模式时,根据电池的需求功率P1和电池的实际功率P2对每个电池的对应的电池温度调节装置进行控制以对电池的温度进行调节,具体包括:
S39”,判断每个电池的温度调节需求P1功率是否大于每个电池对应的实际功率P2。
S310”,如果某个电池的需求功率P1大于电池对应的实际功率P2,则获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加加热器的功率,以增加该电池的加热功率。
S311”,如果某个电池的需求功率P1小于或等于电池对应的实际功率P2,则减小加热 器的功率,或保持加热器的功率不变。
具体地,当所述温度调节系统为加热模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池的升温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,以使该电池可以在目标时间内完成温度调节。而如果某个电池的P1小于或等于P2,可以适当减小加热器的功率,以节省电能,或保持加热器的功率不变。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则再适当增加热器的功率,以使该电池尽快完成升温。
举例而言,如图11A所示,由于第一电池和第二电池的加热功能相互独立,第一电池和第二电池分别用一个加热器进行加热,所以只以第一电池为例说明电池加热功能的功率调节。(假设P11为第一电池的需求功率,P21为第一电池的实际功率,P11与P21的功率差为P31)
如果P11>P21,需要调节的功率为P31(P31=P11-P21)时,加热器的加热功率增加P31,并提高泵的转速。
如果P11≤P21,需要调节的功率为P31(P31=P11-P21)时,加热器的功率保持不变,或者将加热器的功率减少P31,或者降低泵的转速。
根据本公开的一个实施例,车载电池的温度调节方法还可以包括:如果某个电池的需求功率P1小于对应的实际功率P2,则降低泵的转速;如果某个电池的需求功率P1大于对应的实际功率P2,则提高泵的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,控制泵的转速降低,以节省电能。而如果某个电池的P1大于P2,除控制加热器、压缩机的功率增加或该电池所在回路的冷却液流量增加外,还可以控制泵的转速提高,以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
根据本公开的一个实施例,用于为电池提供制冷剂的压缩机为多个,电池的温度调节方法还可以包括:根据每个电池的需求功率P1和每个压缩机的最大制冷功率判断启动的压缩机的数量。在所述温度调节系统为冷却模式时,控制相应数量的压缩机启动。
根据每个电池的需求功率P1和每个压缩机的最大制冷功率P判断启动的压缩机的数量具体包括:根据每个电池的需求功率P1生成总实际功率Pz;判断总需求功率Pz是否大于单个压缩机的最大制冷功率P;如果大于单个压缩机的最大制冷功率P,则控制多个压缩机 同时启动。
具体地,在温度调节系统进入冷却模式时,分别获取每个电池的P1,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z。如果Pz大于单个压缩机的最大制冷功率,那么控制多个压缩机同时启动工作,并通过调节相应的调节阀的开度调节流入每个电池冷却支路的冷却液流量,以满足相应的电池的降温制冷功率需求。
具体地,如图11A所示,以压缩机1为两个为例,在温度调节系统进入冷却模式时,控制器分别获取每个电池的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。其中,第一电池的需求功率为P11,第二电池的需求功率为P12。第一电池的实际功率为P21,第二电池的实际功率为P22。每个压缩机的最大制冷功率P相等。
如果Pz≤P,那么只需要控制一个压缩机工作,提供制冷功率,也可以控制两个压缩机一同工作。如果P<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率为Pz/2。如果Pz≤P5,则控制压缩机按照Pz制冷功率运行,且通过调节第一至第四调节阀的开度,使第一电池冷却支路的初始冷却功率按照P11制冷功率进行冷却,第二电池冷却支路初始冷却功率按照P21制冷功率进行冷却。如果Pz>P5,则每个压缩机按照最大制冷功率P运行,且第一电池冷却支路的初始冷却功率可以按照P5*[P11/(P11+P12)]制冷功率进行冷却,第二电池冷却支路的初始冷却功率可以按照P5*[P12/(P11+P12)]制冷功率进行冷却。
根据本公开的一个实施例,在所述温度调节系统为冷却模式时,当电池之间的温度差超过设定值时,增大温度较高电池的冷却功率,以使减小电池之间的温度差异;在所述温度调节系统为加热模式时,当电池之间的温度差超过设定值时,增大温度较低的电池的加热功率。
可以理解,当所述温度调节系统为冷却模式时,可以分别计算出第一电池和第二电池的需求功率P1,然后分别根据每个电池的P1和相应的压缩机的最大制冷功率P调节相应的第二膨胀阀的开度。并且分别根据每个电池的实际功率P2继续调整第二膨胀阀42的开度。同时,根据第一电池和第二电池之间的温度情况,通过调节第一至第四调节阀的开度,调节第一电池冷却支路和第二电池冷却支路的冷却液流量分配,从而达到控制第一电池和第二电池温度的均衡。其中,当第一电池的温度比第二电池的温度高且差值超过设定值时,可增大第一调节阀和第三调节阀的开度,减少第二调节阀和第四调节阀的开度,以增大第一电池的冷却功率;当第一电池和第二电池的温度相等时,可控制第一至第四调节阀的开 度相同。而所述温度调节系统为加热模式时,当第一电池的温度比第二电池的温度低且差值超过设定值时,则增大第一电池对应的加热器的加热功率。由此,可以保持两个电池之间的温度均衡。
根据本公开实施例的车载电池的温度调节方法,可以根据每个电池的实际状态精确控制每个的电池的加热功率和冷却功率,在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,并且可以保证各个电池之间温度的均衡。
车辆的温度调节包括电池的温度调节和车厢内的温度调节。为在电池的温度满足要求的情况下,使车内温度满足需求,需要对电池冷却支路和车内冷却支路的冷却液流量进行合理分配。为此,本公开实施例提出了一种车辆的温度调节系统。下面参考附图来描述本公开实施例提出的车辆的温度调节方法和温度调节系统。
图2是根据本公开一个实施例的车辆的温度调节系统的方框示意图。如图2所示,该温度调节系统包括:压缩机1、冷凝器2、车内冷却支路3、电池冷却支路4和电池温度调节装置5。
其中,冷凝器2与压缩机1相连,车内冷却支路3连接在压缩机1和冷凝器2之间,电池冷却支路4连接在压缩机1和冷凝器2之间。电池温度调节装置5与电池冷却支路4相连,用于获取电池6的需求功率P1和实际功率P2,并获取车辆的车内温度T和空调设定温度Ts,以及根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路3和电池冷却支路4的开度进行调整。
具体地,电池温度调节装置5获取电池6的需求功率P1、电池6的实际功率P2、车辆的车内温度T和空调设定温度Ts,并根据P1、P2、T和Ts调节车内冷却支路3和电池冷却支路4的开度,以分配制冷量。如图1所示,当车载空调制冷功能开启时,冷却液的流动方向为:压缩机1—冷凝器2—车内冷却支路3—压缩机1。电池冷却支路4中具有两个管道,第一管道与压缩机1相连通,第二管道与电池温度调节装置5相连通,其中,第一管道与第二管道相互独立的临近设置。当电池温度过高时,电池冷却功能启动,第一管道和第二管道中冷却液的流动方向分别为:压缩机1—冷凝器2—电池冷却支路4—压缩机1;电池冷却支路4—电池温度调节装置5—电池6—电池温度调节装置5—电池冷却支路4。而在电池6的温度过低时,电池温度调节装置5启动电池加热功能,第二管道中冷却液的流动方向为:电池冷却支路4—电池温度调节装置5—电池6—电池温度调节装置5—电池冷却支路4。
可以理解,电池温度调节装置5的制冷功率由车载空调提供,与车内制冷系统共用制冷量,从而可以减少温度调节系统的体积,并使冷却液流量的分配更加灵活。由此,该系 统通过对车内冷却支路和电池冷却支路的功率进行调整,既可以在车载电池温度过高时或者过低时对温度进行快速调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,还可以在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,电池温度调节装置5具体用于:根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路3和电池冷却支路4的功率进行调整,以使电池6在目标时间t内达到目标温度。
具体地,电池温度调节装置5在根据P1、P2、T和Ts对车内冷却支路3和电池冷却支路4的功率进行调整时,可以确保在目标时间t内根据电池6的实际状态精确控制车载电池的加热功率和冷却功率,从而在车载电池温度过高时或者过低时对温度进行调节,并且在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,如图3所示,电池冷却支路4包括换热器41,换热器41包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。电池温度调节装置5包括:调节电池温度的流路(图中未具体示出),流路设置在电池6之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取电池6的需求功率P1和电池的实际功率P2,并根据需求功率P1和实际功率P2对电池6的温度进行调节,并且控制器根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路3和电池冷却支路4的功率进行调整,从而在电池的温度满足要求的情况下,使车内温度满足需求。车内冷却支路3可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
具体地,控制器可以包括电池管理控制器、电池热管理控制器、车载空调控制器。其中,电池热管理控制器可以与第一温度传感器51、第二温度传感器52和流速传感器57电连接,电池热管理控制器与泵51和加热器53进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵51的转速和控制加热器53的功率。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与膨胀阀及电子阀电连接,且车载空调控制器可以与电池管理控制器和电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是 车载空调DSP芯片。
如何获取电池6的需求功率P1和实际功率P2可参照上述实施例,为避免冗余,此处不再赘述。
下面结合具体的实施例描述电池温度调节装置5如何根据P1、P2、T和Ts对车内冷却支路3和电池冷却支路4的功率进行调整,从而在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,控制器可以在需求功率P1大于实际功率P2,且电池温度大于第三温度阈值T3时,降低车内冷却支路4的功率,并提高电池冷却支路4的功率。其中,第三温度阈值大于第一温度阈值,例如,第三预设阈值可以为45℃。
具体地,车辆上电后,如果电池6的温度高于40℃,则电池管理控制器控制温度调节系统进入冷却模式,以对电池6进行冷却。在电池6冷却的过程中,车载空调控制器获取P1和P2,在判断需求功率P1大于实际功率P2时,则进一步判断电池温度是否大于45℃。如果电池温度大于45℃,说明电池温度过高,车载空调优先满足电池6的冷却需求,车载空调控制器控制减少第一膨胀阀32的开度,增大第二膨胀阀42的开度,以减少车内冷却支路3的冷却液流量,增加电池冷却支路4的冷却液流量,以使电池6尽快完成降温。在电池温度降低至35℃时,电池6冷却完成,车载空调控制器控制电池冷却支路4关闭。由此,可以在电池温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,车载空调控制器还可以用于在电池温度小于第三温度阈值,且车内温度T大于空调设定温度Ts时,增大车内冷却支路4的功率,并降低电池冷却支路3的功率。
具体地,在电池6冷却的过程中,车载空调控制器在判断电池温度小于45℃时,进一步判断车内温度T是否大于空调设定温度Ts。如果T>Ts,则说明车内温度T没有达到设定温度,车内温度较高,为防止用户感到不适,优先满足车内制冷需求,车载空调控制器增大第一膨胀阀32的开度,减小第二膨胀阀42的开度。而如果车内温度T达到空调设定温度Ts,车内制冷功率已经充足,并达到平衡,则车载空调控制器增大第二膨胀阀42的开度,以增大电池6的冷却功率。在电池温度降低至35℃时,电池6冷却完成,车载空调控制器控制第二电子阀33关闭。由此,可以在电池温度满足要求的情况下,使车内温度满足需求。
也就是说,此处对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池6冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时, 如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则控制器增大电池冷却支路4的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,控制器在需求功率P1大于实际功率P2时,获取需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池6的加热器53的功率,以及在需求功率P1小于或等于实际功率P2时,保持加热器53的功率不变。
具体地,车辆可以包括单个电池6,也可以由多个电池6串联、并联或混联组成。如图14A-14B所示,以电池为2个为例,当电池为2个(第一电池61和第二电池62),且串联连接时,泵对应为2个,且两个泵一个为正向泵511,一个为反向泵522。
如图14A所示,当正向泵511启动时,第二管道中冷却液的流动方向为:介质容器52—换热器41—加热器53—正向泵511—第一温度传感器55—第一电池61—第二电池62—第二温度传感器56—流速传感器57—介质容器52。如图14B所述,当反向泵522启动时,第二管道中冷却液的流动方向为:介质容器52—流速传感器57—第二温度传感器56—第二电池62—第一电池61—第一温度传感器55—反向泵512—加热器53—换热器41—介质容器52。
例如,在第一电池61和第二电池62冷却功能开启时,在温度调节系统进入冷却模式时,控制器分别获取每个电池的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf。其中,第一电池的需求功率为P11,第二电池的需求功率为P12。第一电池的实际功率为P21,第二电池的实际功率为P22。压缩机的最大制冷功率P。
如果总需求功率P Z与车内冷却需求功率P4的和小于等于压缩机的最大制冷功率P,即Pz+P4≤P,则压缩机按照P Z+P4制冷功率运行。且Pz<P,P4<P。
如果Pz+P4>P,则判断第一电池61或者第二电池62的温度是否大于45℃,如果大于45℃,则优先为电池冷却提供冷却功率,车载空调控制器控制压缩机1按照最大制冷功率P运行,电池冷却支路4的冷却功率为Pz,车内冷却支路3的冷却功率等于P-Pz。
如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机1按照最大制冷功率P运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率。电池冷却支路的冷却功率为Pz。
第一电池61和第二电池62的实际功率的和为Pf,当Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)。如果Pz+P4+Pc≤P,则压缩机需要增大的制冷功率为Pc,增大第二膨胀阀42的开度,提高泵51的转速。同时进行如下处理:
如果P11-P21=Pc1,P12-P22=Pc2,P11>P21,P12>P22:
当Pc1大于设定值时,控制正向泵511开启,反向泵512关闭,使得第一电池61的冷却功率增大。当Pc2大于设定值时,控制反向泵512开启,正向泵511关闭,使得第二电池62的冷却功率增大。当Pc1>Pc2时,控制正向泵511开启,反向泵512关闭,使得第一电池61的冷却功率增大。当Pc1≤Pc2时,控制反向泵512开启,正向泵511关闭,使得第二电池62的冷却功率增大。
并且,当第一电池61的温度T61大于第二电池62的温度T62时,控制正向泵511开启,反向泵512关闭,使得第一电池61的冷却功率增大。当第一电池61的温度T61小于等于第二电池62的温度T62时,控制反向泵512开启,正向泵511关闭,使得电池62的冷却功率增大。
如果P21-P11=Pc1,P22-P12=Pc2,P11≤P21,P12≤P22,则可以按照如下处理:
当Pc1大于设定值时,控制正向泵511关闭,反向泵512开启,使得第一电池61的冷却功率减少。当Pc2大于设定值时,控制反向泵512关闭,正向泵511开启,使得第二电池62的冷却功率减少。当Pc1>Pc2时,控制正向泵511关闭,反向泵512开启,使得第一电池61的冷却功率减少。当Pc1≤Pc2时,控制反向泵512关闭,正向泵511开启,使得第二电池62的冷却功率减少。
并且,当第一电池61的温度T61大于第二电池62的温度T62时,控制正向泵511开启,反向泵512关闭,使得第一电池61的冷却功率增大。当第一电池61的温度T61小于等于第二电池62的温度T62时,控制反向泵512开启,正向泵511关闭,使得电池62的冷却功率增大。另外,也可以是,在第一电池61和第二电池62的冷却功能启动时,如果第一电池61的温度高于第二电池62的温度,且差值超过预设值,则电池热管理控制器控制正向泵511工作,以使冷却液先流过第一电池61,再流过第二电池62,从而使第一电池61尽快完成降温。而如果第二电池62的温度高于第一电池61的温度,且差值超过预设值,则电池热管理控制器控制反向泵512工作,以使冷却液先流过第二电池62,再流过第一电池61,从而使第二电池62尽快完成降温。由此,通过改变冷却液的流向,可以减少第一电池61和第二电池62的温度差。
而在第一电池61和第二电池62的冷却功能和加热功能都没有启动时,如果第一电池61和第二电池62的温度差超过预设值,则电池热管理控制器可以控制正向泵511或反向泵512启动,以使电池冷却支路4中的冷却液流动,从而均衡第一电池61和第二电池62 的温度。
当泵51正转且电池管理控制器获取到的各个电池相互的温差中的最大值超过预设值时,则电池管理控制器发送控制泵反转的信息至电池热管理控制器,以使电池热管理器控制泵反转(回路的流向为逆时针方向),以使各串联电池的温度相差较少。
综上所述,根据本公开实施例的车辆的温度调节系统,通过电池温度调节装置获取电池的需求功率和实际功率,并获取车辆的车内温度和空调设定温度,以及根据需求功率、实际功率、车内温度和空调设定温度对车内冷却支路和电池冷却支路的功率进行调整。由此,该系统通过对车内冷却支路和电池冷却支路的功率进行调整,既可以在车载电池温度过高时或者过低时对温度进行快速调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,还可以在电池温度满足要求的情况下,使车内温度满足需求。
图15是根据本公开第一个实施例的车辆的温度调节方法的流程图。如图15所示,车辆的温度调节方法包括以下步骤:
S1’,获取电池的需求功率P1和实际功率P2。
如图16所示,在本公开的实施例中,获取电池的需求功率P1具体包括:
S11’,获取电池开启温度调节时的第一参数,并根据第一参数生成第一需求功率。
S12’,获取电池在温度调节时的第二参数,并根据第二参数生成第二需求功率。
S13’,根据第一需求功率和第二需求功率生成需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1;根据第一温度差ΔT 1和目标时间t生成第一需求功率。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为电池在预设时间内的平均电流I,通过以下公式(2)生成第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,如图16所示,获取电池的实际功率P2具体包括:
S14’,获取用于调节电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。
S15’,根据入口温度和出口温度生成第二温度差ΔT 2
S16’,根据第二温度差ΔT 2和流速v生成实际功率P2。
根据本公开的一个实施例,进根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
S2’,获取车辆的车内温度T和空调设定温度Ts。
S3’,根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路和电池冷却支路的功率进行调整。
根据本公开的一个实施例,据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路和电池冷却支路的功率进行调整,包括:根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路和电池冷却支路的功率进行调整,以使电池在目标时间t内达到目标温度。
具体地,车辆上电后,判断车辆是否需要进行温度调节,如果需要则获取电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出第一需求功率。同时,获取电池在预设时间内的平均电流I,并根据公式(2)计算第二需求功率。然后,根据第一需求功率和第二需求功率计算需求功率P1(即将电池的温度调节至目标温度的需求功率)。并且,获取电池的入口温度和出口温度,并获取流流速信息,根据公式(3)计算出实际功率P2。并获取车内温度T和空调设定温度Ts。最后,根据P1、P2、T和Ts对车内冷却支路和电池冷却支路的功率进行调整,使电池在目标时间t内达到目标温度。由此,该方法通过对车内冷却支路和电池冷却支路的功率进行调整,既可以在车载电池温度过高时或者过低时对温度进行快速调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,还可以在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,如图17所示,上述的车辆的温度调节方法还可以包括:
检测电池的温度,并判断温度是否大于第一温度阈值或者小于第二温度阈值(S10’-S20’)。当电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式(S30’)。其中,第一预设温度阈值可以根据实际情况进行预设,例如可以为40℃。当电池的温度小于等于第一温度阈值时,进一步地判断电池的温度是否小于第二温度阈值,当电池的温度小 于第二温度阈值时,所述温度调节系统进入加热模式(S40’-S50’)。其中,第二预设温度阈值可以根据实际情况进行预设,例如可以为0℃。
具体地,车辆上电后,实时检测电池的温度,并进行判断。如果电池的温度高于40℃,说明此时电池的温度过高,为避免高温对电池的性能产生影响,需要对电池进行降温处理,所述温度调节系统进入冷却模式,控制压缩机启动,以使冷却液与电池进行热交换以降低电池的温度。而如果电池的温度低于0℃,说明此时电池的温度过低,为避免低温对电池的性能产生影响,需要对电池进行升温处理,所述温度调节系统进入加热模式,控制加热器开启,以提供加热功率。
可以理解的是,根据电池的需求功率P1、实际功率P2、车内温度T和空调设定温度Ts通过调节车内冷却支路和电池冷却支路的功率进行调节,可以在电池满足温度要求的同时,使车内温度满足需求。并且,需求功率P1和实际功率P2容易获取。
具体而言,由上述实施例可知,P1由两部分组成,以冷却电池为例,当电池需要冷却时,电池初始温度为45℃,电池冷却目标温度为35℃,则电池从45℃下降到35℃需要散发的热量是固定,通过公式(1)即ΔT 1*C*M/t直接计算可以获得。其中,ΔT 1为所述初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。同时,电池在冷却过程中,存在放电和充电过程,此过程会产生热量,这部分的热量也可以通过检测电流直接获得,通过公式(3)即I 2*R,直接计算出当前电池的发热功率,即第二需求功率。其中,I为平均电流,R为电池的内阻。本公开的关键点之一是冷却时间可调,且冷却完成时间可精确确定,本公开是基于目标时间t设定的(t可以根据用户需求或者是车辆实际设计情况改变)。在确定了冷却完成所需要的目标时间t后,就可以预估出当前电池冷却需要的需求功率P1,P1=ΔT 1*C*M/t+I 2*R。而如果是加热功能启动,则需求功率P1=ΔT 1*C*M/t-I 2*R,即在电池在加热过程中,电池放电或者充电电流越大,所需要的加热功率即需求功率P1越小。
由于电池的放电或者是充电电流是变化的,所以I 2*R是变化的,因此为了更好的确保冷却时间的准确性,冷却功率也要随着电池当前的平均放电或者是充电电流的变化而变化。如果车载空调同时给电池和车厢冷却,那么当电池的放电电流较小的时候,I 2*R就会减小,此时车载空调可以分配更多的制冷功率给到车厢,使得车厢较快的达到设定气温。同时,当电池的放电或者充电电流较大时,I 2*R就会较大,此时车载空调可以分配更多的制冷功率给到电池。通过这样的调节,使得电池冷却所需时间始终准确,同时又可以更高效的合理利用车载空调的制冷功率,而不必配置冷却功率较大的空调,造成制冷功率的浪费。
由于电池冷却时间受冷却效率的影响,由于冷却效率受外部环境温度和电池当前温度的影响,在电池冷却的过程中,温度调节系统的效率也是不断变化的,所以冷却效率不可 能是100%,因此只根据P1是无法准确调节电池的冷却的时间的,有必要检测电池的实际功率P2。在本公开中,电池的实际功率P2可以通过公式(3)即ΔT2*c*m计算得出。P2也可以通过电池实际冷却功率P2也就可以通过公式(4)即ΔT3*C*m1计算得出,其中ΔT3为电池在某一时间段内的温度变化,C为电池的比热容,m1为电池质量。但由于电池的质量较大,所以单位时间内温度变化不明显,需要较长时间才可以检测出温差,不符合实时性要求,所以一般按照公式(3)计算P2功率。
受冷却效率的影响,P2很难完全等于P1,为了使得电池冷却目标时间t更准确需要实时根据P1与P2之间的功率差值进行调节,以确保电池的需求功率P1与电池的实际功率P2相等。下面将结合具体地实施例描述如何根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路和电池冷却支路的功率进行调整,以对车辆的温度进行调节。
根据本公开的一个实施例,如图18所示,当所述温度调节系统为冷却模式时,根据需求功率P1、实际功率P2、车内温度T和空调设定温度Ts对车内冷却支路和电池冷却支路的功率进行调整具体包括:
S31’,当需求功率P1大于实际功率P2时,判断电池温度T是否大于第三温度阈值。其中,第三温度阈值大于第一温度阈值,例如,第三温度阈值可以为45℃。
S32’,如果电池温度T大于第三温度阈值,则降低车内冷却支路的功率,并提高电池冷却支路的功率。
具体地,车辆上电后,如果电池的温度高于40℃,则控制温度调节系统进入冷却模式,以对电池进行冷却。在电池冷却的过程中,获取P1和P2,在判断需求功率P1大于实际功率P2时,则进一步判断电池温度是否大于45℃。如果电池温度大于45℃,说明电池温度过高,车载空调优先满足电池6的冷却需求,控制减少车内冷却支路的功率,增大电池冷却支路的功率,以减少车内冷却支路的冷却液流量,增加电池冷却支路的冷却液流量,以使电池尽快完成降温。在电池温度降低至35℃时,电池冷却完成,控制电池冷却支路关闭。由此,可以在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,如图18所示,上述的车辆的温度调节方法还可以包括:
S33’,如果电池温度小于第三温度阈值,则进一步判断车内温度T是否大于空调设定温度Ts。
S34’,如果车内温度T大于空调设定温度Ts,则增大车内冷却支路的功率,并降低电池冷却支路的功率。
具体地,在电池冷却的过程中,在判断电池温度小于45℃时,进一步判断车内温度T是否大于空调设定温度Ts。如果T>Ts,则说明车内温度T没有达到设定温度,车内温度 较高,为防止用户感到不适,优先满足车内制冷需求,增大车内冷却支路的功率,减小电池冷却支路的功率。而如果车内温度T达到空调设定温度Ts,车内制冷功率已经充足,并达到平衡,则增大电池冷却支路的功率,以增大电池的冷却功率。在电池温度降低至35℃时,电池冷却完成,控制电池冷却支路关闭。由此,可以在电池温度满足要求的情况下,使车内温度满足需求。
也就是说,此处对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度小于45℃,则先满足车内制冷需求,如果车内制冷功率已经充足,并达到平衡,则增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,如图18所示,当所述温度调节系统为加热模式时,根据需求功率P1和实际功率P2对电池的温度进行调节具体包括:
S35’,判断需求功率P1是否大于实际功率P2。
S36’,如果需求功率P1大于实际功率P2,则获取需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率。
S37’,如果需求功率P1小于或等于实际功率P2,则保持加热器的功率不变。
具体地,当所述温度调节系统进入加热模式时,加热器开启,根据P1和P2调节加热器的功率。如果P1大于P2,说明如果加热器按照当前功率加热,那么无法使电池的温度在目标时间t内上升至目标温度。因此继续获取P1与P2之间的功率差,并根据功率差增加加热器的功率,其中,P1与P2的差值越大,加热器的功率增加的越多。而如果P1小于等于P2,可以保持加热器的功率不变。当电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果所述温度调节系统进入加热模式较长时间后,例如1小时后,电池的温度仍然低于10℃,则适当增加加热器的功率,以使电池尽快完成升温。由此,可以根据电池的实际状态精确控制温度调节功率,可以使电池在目标时间内完成温度调节。
根据本公开的一个实施例,上述的车辆的温度调节方法还可以包括:如果需求功率P1小于实际功率P2,则降低泵的转速。如果需求功率P1大于实际功率P2,则提高泵的转速。
具体地,当温度调节系统所述温度调节系统进入加热模式或者冷却模式时,如果P1小于P2,控制泵的转速降低,以节省电能。而如果P1大于P2,控除可以控制加热器的功率增加或控制电池冷却支路的功率增大外,还控制泵的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高实际功率P2,以在目标时间t内实现电池的温度 调节。
车辆可以包括单个电池,也可以由多个电池串联、并联或混联组成。如图14A-14B所示,以电池为2个为例,当电池为2个(第一电池和第二电池)时,泵对应为两个,且两个泵一个为正向泵,一个为反向泵。
在温度调节系统进入冷却模式时,控制器分别获取每个电池的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf。其中,第一电池的需求功率为P11,第二电池的需求功率为P12。第一电池的实际功率为P21,第二电池的实际功率为P22。压缩机的最大制冷功率P。
如果总需求功率P Z与车内冷却需求功率P4的和小于等于压缩机的最大制冷功率P,即Pz+P4≤P,则压缩机按照P Z+P4制冷功率运行。
如果Pz+P4>P,则判断第一电池或者第二电池的温度是否大于45℃,如果大于45℃,则优先为电池冷却提供冷却功率,车载空调控制器控制压缩机1按照最大制冷功率P运行,电池冷却支路4的冷却功率为Pz,车内冷却支路3的冷却功率等于P-Pz。
如果判定电池温度不大于45℃,且车内温度还未达到设定温度,则优先为车内提供冷却功率,压缩机1按照最大制冷功率P运行,车内冷却支路的冷却功率为P4,电池冷却支路的冷却功率等于P-P4。
如果车内温度已经达到设定温度,则优先满足电池的冷却功率。电池冷却支路的冷却功率为Pz。
第一电池和第二电池的实际功率的和为Pf,当Pz>Pf,需要调节的功率为Pc(Pc=Pz-Pf)。如果Pz+P4+Pc≤P,则压缩机需要增大的制冷功率为Pc,增大第二膨胀阀的开度,提高泵的转速。同时进行如下处理:
如果P11-P21=Pc1,P12-P22=Pc2,P11>P21,P12>P22:
当Pc1大于设定值时,控制正向泵开启,反向泵关闭,使得第一电池的冷却功率增大。当Pc2大于设定值时,控制反向泵开启,正向泵关闭,使得第二电池的冷却功率增大。当Pc1>Pc2时,控制正向泵开启,反向泵关闭,使得第一电池的冷却功率增大。当Pc1≤Pc2时,控制反向泵开启,正向泵关闭,使得第二电池的冷却功率增大。
并且,当第一电池的温度T61大于第二电池的温度T62时,控制正向泵开启,反向泵关闭,使得第一电池的冷却功率增大。当第一电池的温度T61小于等于第二电池的温度T62时,控制反向泵开启,正向泵关闭,使得电池的冷却功率增大。
如果P21-P11=Pc1,P22-P12=Pc2,P11≤P21,P12≤P22,则可以按照如下处理:
当Pc1大于设定值时,控制正向泵关闭,反向泵开启,使得第一电池的冷却功率减少。 当Pc2大于设定值时,控制反向泵关闭,正向泵开启,使得第二电池的冷却功率减少。当Pc1>Pc2时,控制正向泵关闭,反向泵开启,使得第一电池的冷却功率减少。当Pc1≤Pc2时,控制反向泵关闭,正向泵开启,使得第二电池的冷却功率减少。
并且,当第一电池的温度T61大于第二电池的温度T62时,控制正向泵开启,反向泵关闭,使得第一电池的冷却功率增大。当第一电池的温度T61小于等于第二电池的温度T62时,控制反向泵开启,正向泵关闭,使得电池的冷却功率增大。
另外,也可以是,在第一电池和第二电池的冷却功能启动时,如果第一电池的温度高于第二电池的温度,且差值超过预设值,则控制正向泵工作,以使冷却液先流过第一电池,再流过第二电池,从而使第一电池尽快完成降温。而如果第二电池的温度高于第一电池的温度,且差值超过预设值,则控制反向泵工作,以使冷却液先流过第二电池,再流过第一电池,从而使第二电池尽快完成降温。由此,通过改变冷却液的流向,可以减少第一电池和第二电池的温度差。
而在第一电池和第二电池的冷却功能和加热功能都没有启动时,如果第一电池和第二电池的温度差超过预设值,则可以控制正向泵或反向泵启动,以使电池冷却支路中的冷却液流动,从而均衡第一电池和第二电池的温度。
根据本公开实施例的车辆的温度调节方法,首先获取电池的需求功率,再获取电池的实际功率,最后根据需求功率、实际功率、车内温度和空调设定温度对车内冷却支路和电池冷却支路的功率进行调整。由此,该方法通过对车内冷却支路和电池冷却支路的功率进行调整,既可以在车载电池温度过高时或者过低时对温度进行快速调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况,还可以在电池的温度满足要求的情况下,使车内温度满足需求。
当电池、制冷支路、车内冷却支路和电池冷却支路为多个时,车载电池的温度调节系统包括:多个制冷支路、多个车内冷却支路、多个电池冷却支路和电池温度调节装置。
其中,每个制冷支路包括压缩机1、与压缩机1相连的冷凝器2。多个车内冷却支路分别与多个制冷支路相连。电池温度调节装置5与电池冷却支路相连,用于获取需求功率P1和实际功率P2,并获取车辆中多个区域的区域温度Tq和空调设定温度Ts,以及根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。具体地,例如通过调节多个车内冷却支路、多个电池冷却支路和多个制冷支路中阀门的开度来实现对各自对应功率的调节。
其中,在本公开的实施中,电池可以电池包或电池模组。每个电池冷却支路对应并联或串联的多个电池。
根据本公开的一个实施例,电池温度调节装置5根据所需求功率P1、实际功率P2、多 个区域温度Tq和空调设定温度Ts对在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。
举例而言,如图19-20所示,以制冷支路、电池冷却支路、车内冷却支路和电池为两个为例,电池分别为第一电池61和第二电池62,制冷支路分别为第一制冷支路11和第二制冷支路12,电池冷却支路分别为第一电池冷却支路401和第二电池冷却支路402,车内冷却支路分别为第一车内冷却支路301和第二车内冷却支路302。图19A和图19B为电池串联连接,图20为电池并联连接。当第一电池61和/或第二电池62的温度过高/过低时,需要对第一电池61和/或第二电池62进行温度调节。电池温度调节装置5获取需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且电池温度调节装置5获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则电池温度调节装置5控制用于冷却该区域的车内冷却支路的制冷功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,电池温度调节装置5控制另一个车内冷却支路的功率减小,同时控制相应的电池冷却支路的功率增大。由此,该系统根据每个电池的实际状态、车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
可以理解,电池温度调节装置5的制冷功率由车载空调提供,与车内制冷系统共用制冷量,从而可以减少温度调节系统的体积,并使冷却液流量的分配更加灵活。
根据本公开的一个实施例,电池冷却支路可以包括换热器41,换热器41与电池温度调节装置5相连。换热器41可以包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。电池温度调节装置5包括:调节电池温度的流路(图中未具体示出),流路设置在电池之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取电池的需求功率P1和电池的实际功率P2,并根据需求功率P1和实际功率P2对电池的温度进行调节。车内冷却支路可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
如图20所示,当电池为多个并联时,每个电池的流路入口处还设置有阀门58。控制器可以根据每个电池对应的P1和P2通过控制阀门58分别控制流入每个电池的冷却液流量,从而可以精确控制每个电池的加热功率/制冷功率。
根据本公开的一个实施例,如图19-20所示,当电池为多个,且流路为串联连接,多个电池对应多个调节电池的冷却液流量的泵,且所述泵为双向泵。
如图19-20所示,以电池为2个为例,当电池为2个(第一电池61和第二电池62),且串联连接时,泵对应为2个,且两个泵一个为正向泵511,一个为反向泵522。
如图19A所示,当正向泵511启动时,第二管道中冷却液的流动方向为:介质容器52—换热器41—加热器53—正向泵511—第一温度传感器55—第一电池61—第二电池62—第二温度传感器56—流速传感器57—介质容器52。如图19B所示,当反向泵522启动时,第二管道中冷却液的流动方向为:介质容器52—流速传感器57—第二温度传感器56—第二电池62—第一电池61—第一温度传感器55—反向泵512—加热器53—换热器41—介质容器52。
另外,在第一电池61和第二电池62的冷却功能启动时,如果第一电池61的温度高于第二电池62的温度,且差值超过预设值,则电池热管理控制器控制正向泵511工作,以使冷却液先流过第一电池61,再流过第二电池62,从而使第一电池61尽快完成降温。而如果第二电池62的温度高于第一电池61的温度,且差值超过预设值,则电池热管理控制器控制反向泵512工作,以使冷却液先流过第二电池62,再流过第一电池61,从而使第二电池62尽快完成降温。由此,通过改变冷却液的流向,可以减少第一电池61和第二电池62的温度差。而在第一电池61和第二电池62的冷却功能和加热功能都没有启动时,如果第一电池61和第二电池62的温度差超过预设值,则电池热管理控制器可以控制正向泵511启动,以使电池冷却支路4中的冷却液流动,从而均衡第一电池61和第二电池62的温度。
下面结合具体的实施例说明如何获取需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率,以及分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率,并根据每个电池的第一需求功率和每个电池的第二需求功率生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池6的比热容,M为电池的质量。
第二参数为每个电池在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池管理控制器分别根据每个电池所在回路的第一温度传感器55检测的入口温度和第二温度传感器56检测的出口温度生成每个电池的第二温度差ΔT 2,并根据每个电池的第二温度差ΔT 2和流速传感器57检测的流速v生成每个电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
具体地,如图19-20所示,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,则开启温度调节功能,并发送低转速信息给泵51,泵以默认转速(如低转速)开始工作。电池管理控制器可以获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出每个电池的第一需求功率。同时,电池管理控制器获分别获取每个电池在预设时间内的平均电流I,并根据公式(2)计算每个电池第二需求功率。然后,电池管理控制器分别根据每个电池的第一需求功率和第二需求功率计算需求功率P1。并且,如图19-20所示,当电池串联连接时,电池热管理控制器获取第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器检测的流速信息,根据公式(3)计算出电池的实际功率P2。如图20所示,当电池并联连接时,电池热管理控制器分别获取每个电池对应设置的第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器57检测的流速信息,根据公式(3)分别计算出每个电池6的实际功率P2。
下面将结合具体地实施例描述如何根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路(30和30)多个电池冷却支路(401和402)和多个制冷支路(11和12)的功率进行调整。
根据本公开的一个实施例,电池管理控制器还用于,根据多个电池的需求功率P1生成总需求功率Pz,并判断总需求功率Pz是否与车载空调的最大制冷功率P匹配,其中,如果匹配,则车载空调控制器根据多个并联的电池的总需求功率P1为电池进行冷却;如果不匹配,则控制器根据压缩机的最大制冷功率P和多个电池冷却支路的需求功率P1为电池进行冷却。
具体地,如图20所示,在电池冷却功能开启时,电池管理控制器可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率Pz,即将每个电池的需求功率P1相加即可得到总需求功率Pz。然后根据总需求功率Pz判断P Z是否与车载空调的最大制冷功率P匹配,即判断Pz是否小于或等于P,如果是,则控制器根据每个电池的需求功率P1通过控制阀门58对每个电池进行冷却。而如果P Z与车载空调的最大制冷功率P不匹配,即Pz大于P,则车载空调控制器根据空调的最大制冷功率P和每个电池的需求功率P1,通过调节阀门58的功率按比例进行冷却液流量分配,从而可以以最大效率使每个电池完成降温。
根据本公开的一个实施例,多个制冷支路分别对应多个出风口,多个区域温度为多个出风口的温度。
举例而言,如图21所示,可在车厢内设置4个出风口,分别为出风口1-出风口4。通过检测出风口温度Tc检测对应的区域温度Tq。假设出风口1和出风口2由第一制冷支路11提供制冷功率,设出风口3和出风口4由第二制冷支路12提供制冷功率。
根据本公开的一个实施例,电池管理控制器控制器,还用于检测多个电池的温度,并在多个并联电池中任一个电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在多个电池中任一个电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,电池管理控制器控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统,以及控制第二电子阀43开启,以使冷却液与电池进行热交换以降低该电池的温度。
而如果某个电池的温度低于0℃,说明此时该电池6温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,电池管理控制器控制温度调节系统进入加热模式,控制第二电子阀43关闭,并控制加热器53开启,以为温度调节系统提供加热功率。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,控制器还用于,在电池冷却支路的需求功率P1大于实际功率P2时,判断电池温度是否大于第三温度阈值,其中,如果电池温度大于第三温度阈值,则车载空调控制器降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率,其中,多个电池冷却支路的功率通过对应的阀门(即第二膨胀阀42)分别控制,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则电池管理控制器判断电池的温度是否大于45℃。如果任一个电池的温度大于45℃,说明当前电池的温度过高, 车载空调控制器减少第一膨胀阀32的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,所述温度调节系统为冷却模式时,车载空调控制器还用于在某个电池的需求功率P1大于电池的实际功率P2时,获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于电池的冷却的压缩机1的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的冷却功率,或者在某个电池的需求功率P1小于或等于电池的实际功率P2,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当工作在冷却模式时,如果电池为多个,电池管理控制器和电池热管理控制器分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,车载空调控制器获取该电池的P1和P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机1的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池的循环分支回路的冷却液流量,减少电池的冷却功率。当所有电池的温度低于35℃时,则电池冷却完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则车载空调控制器再适当增加压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,车载空调控制器,还用于在某个电池的温度小于第三温度阈值,且车内温度等于空调设定温度Ts时,降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果每个电池的温度都小于45℃,车载空调控制器判断车内温度是否达到空调设定温度Ts。如果达到,则车载空调控制器减少第一膨胀阀32的开度,并增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,车载空调控制器增大第一膨胀阀32的开度,并减小第二膨胀阀42的开度。
此外,还对对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。 当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则车载空调控制器增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,车载空调控制器还用于获取多个区域温度之间的温度差,并在温度差大于第四温度阈值时,将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
根据本公开的一个实施例,车载空调控制器还用于将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,控制第一车内冷却支路301中的第一膨胀阀32的开度增大,同时控制第一电池冷却支路401中的第二膨胀阀42的开度减小,以使第一车内冷却支路301中的冷却功率增加。车载空调控制器还控制第二车内冷却支路302中的第一膨胀阀32的开度减小,第二电池冷却支路402中的第二膨胀阀42的开度增大,以使第二车内冷却支路302中的冷却功率较小。由此,可以使第一电池冷却301和第二电池冷却支路302的冷却功率不变,同时又使得车内各处出风口附近区域气温均衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,车载空调控制器控制第一车内冷却支路301和第二车内冷却支路302中的第一膨胀阀32开度相同,以保证第一车内冷却支路301和第二车内冷却支路302的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,在某个电池的需求功率P1大于电池的实际功率P2时,电池热管理控制器获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者调节增加所述电池的循环分支回路的冷却液流量,以增加所述电池的加热功率,以及在某个电池的需求功率P1小于或等于电池的实际功率P2时,减小加热器的功率或保持加热器的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,电池管理控制器和电池热管理控制器分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池的升温,所以,电池 热管理控制器获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,或者通过调节对应的泵51的转速提高,以增加该电池的循环分支回路的冷却液流量,以使该电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器53的功率增加的越多。而如果某个电池的P1小于或等于P2,电池热管理控制器可以适当减小加热器53的功率,以节省电能,或者通过调节对应的泵51的转速降低减小该电池的循环分支回路的冷却液流量,以减小加热功率,或保持加热器53的功率不变。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则电池热管理控制器再适当增加加热器53的功率,以使该电池尽快完成升温。
根据本公开的一个实施例,电池热管理控制器,还用于在某个电池的需求功率P1小于对应的实际功率P2时,降低泵51的转速,并在某个电池的需求功率P1大于对应的实际功率P2时,提高泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,电池热管理控制器控制相应的泵51的转速降低,以节省电能。而如果某个电池6的P1大于P2,电池热管理控制器除控制相应的加热器53或压缩机1的功率增加或该电池所在回路的冷却液流量增加外,还控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
根据本公开的一个实施例,如图20所示,多个电池并联连接,电池热管理控制器还用于,在所述温度调节系统为冷却模式时,当电池之间的温度差超过设定值时,增大温度较高电池的冷却功率;在所述温度调节系统为加热模式时,当电池之间的温度差超过设定值时,增大温度较低的电池的加热功率。其中,设定值可以为3℃。
具体地,如图20所示,当电池并联连接时,每个电池的流路入口处还设置有阀门58,在所述温度调节系统为冷却模式时,当电池之间的温度差超过3℃时,则电池热管理控制器通过增大温度较高电池所在的电池冷却支路中的阀门58的开度,以增大温度较高电池的冷却功率。所述温度调节系统为加热模式时,当电池之间的温度差超过3℃时,则电池热管理控制器增大温度较低电池所在的电池冷却支路中的阀门58的开度,以增大温度较低电池的加热功率。
根据本公开的一个实施例,如图20所示,多个电池并联连接,在所述温度调节系统为冷却模式时,车载空调控制器单独控制每个分支流路的冷却液流量,且可根据每个电池的需求功率,调节各个电池组流路的冷却液流量,以使每个电池的实实际功率和温度需求功率相等。
具体地,如图20所示,在所述温度调节系统为冷却模式时,车载空调控制器可以通过控制第二膨胀阀42的开度分别控制第一电池冷却支路401和第二电池冷却支路402的冷却液流量,并可以通过控制阀门58的开度分别控制流入第一电池61和第二电池62流路的冷却液流量,从而使每个电池的实实际功率P1和温度需求功率P2相等,以尽快完成电池的温度调节。
根据本公开的一个实施例,如图19-20所示,当电池为多个,且流路为串联连接,多个电池对应多个调节电池的冷却液流量的泵,且泵为双向泵。
为使本领域技术人员更清楚地理解本公开,下面结合具体示例描述车载电池的温度调节系统的工作过程。
图19与图14A的主要区别是增加了增加了一个压缩机制冷支路,同时增加了车内空调出风口的温度均衡与压缩机之间的功率调节问题。以下仅列出不同点,其余不做絮述。
如图19所示,当电池为多个,在温度调节系统进入冷却模式时,控制器分别获取每个电池6的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率Pz,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。P51为压缩机11最大制冷功率,P52为压缩机12的最大制冷功率,P5为所有压缩机的最大制冷功率之和,P5=P51+P52。其中,第一电池61的需求功率为P11,第二电池62的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。
如果Pz≤P51,那么只需要控制一个压缩机1工作,提供制冷功率,也可以控制两个压缩机1一同工作。如果P51<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率可为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则需要两个压缩机一起工作,每个压缩机按照最大制冷功率运行。车内冷却支路的需求功率为P4,即P4为将车内温度调节至设定温度需要的功率。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风口3、出风口4区域温度为T52。
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机11的制冷功率提高,或者控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机11和第二压缩机12的以最大制冷功率运行,同 时控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机11制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机11的所有制冷功率都用于车内冷却。同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
图20与图9的主要区别是增加了增加了一个压缩机制冷支路,同时增加了车内空调出风口的温度均衡与压缩机之间的功率调节问题。以下仅列出不同点,其余不做絮述。
如图20所示,当电池为多个,在温度调节系统进入冷却模式时,控制器分别获取每个电池6的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率Pz,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。P51为压缩机11最大制冷功率,P52为压缩机12的最大制冷功率,P5为所有压缩机的最大制冷功率之和,P5=P51+P52。其中,第一电池61的需求功率为P11,第二电池62的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。
如果Pz≤P51,那么只需要控制一个压缩机1工作,提供制冷功率,也可以控制两个压缩机1一同工作。如果P51<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率可为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则需要两个压缩机一起工作,每个压缩机按照最大制冷功率运行。车内冷却支路的需求功率为P4,即P4为将车内温度调节至设定温度需要的功率。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风口3、出风口4区域温度为T52。
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机11的制冷功率提高,或者控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机11和第二压缩机12的以最大制冷功率运行,同时控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机11制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机11的所有制冷功率都用于车内冷却。同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。根据本公开实施例的车载电池的温度调节系统,可以根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
车载电池的温度调节系统包括多个电池冷却支路、多个车内冷却支路和多个制冷支路时,如图22所示,车载电池的温度调节方法包括以下步骤:
S1”’,分别获取多个电池冷却支路中多个电池的需求功率P1和实际功率P2。其中,电池冷却支路用于为对应的电池进行温度调节。
根据本公开的一个实施例,如图23所示,分别获取多个电池的需求功率具体包括:
S11”’,分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率。
S12”’,获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率。
S13”’,根据每个电池的第一需求功率和第二需求功率生成电池冷却支路的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1;根据第一温度差ΔT 1和目标时间t生成第一需求功率。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为电池在预设时间内的平均电流I,通过以下公式(2)生成第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,如图23所示,获取多个电池的实际功率P2具体包括:
S14”’,获取用于调节多个电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。
S15’,根据多个电池的流路入口温度和出口温度生成多个电池的第二温度差ΔT 2
S16’,根据多个电池的第二温度差ΔT 2和流速v生成多个电池的实际功率P2。
根据本公开的一个实施例,进根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
S2”’,分别获取车辆中多个区域的区域温度Tq和空调设定温度Ts。
S3”’,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
根据本公开的一个实施例,根据需求功率P1、实际功率P2、多个所述区域温度Tq和空调设定温度Ts在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。
如图19-20所示,每个电池冷却支路对应并联或串联的多个电池。
具体地,以制冷支路、电池冷却支路、车内冷却支路和电池为两个为例,电池分别为第一电池和第二电池,制冷支路分别为第一制冷支路和第二制冷支路,电池冷却支路分别为第一电池冷却支路和第二电池冷却支路,车内冷却支路分别为第一车内冷却支路和第二车内冷却支路。当第一电池和/或第二电池的温度过高/过低时,需要对第一电池和/或第二电池进行温度调节。获取需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则控制冷却该区域的车内冷却支路的功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,控制另一个车内冷却支路的功率减小,同时控制相应的电池冷却支路的功率增大。由此,该方法根据每个电池的实际状态和车厢 内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
下面将结合具体实施例说明如何根据根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
根据本公开的一个实施,如图23所示,车载电池为多个,且车内冷却支路、电池冷却支路和制冷支路为多个时,上述的车载电池的温度调节方法还可以包括:
S31”’,根据每个电池的需求功率P1生成总需求功率P Z
S32”’,判断总需求功率P Z是否与车载空调的最大制冷功率P匹配。
S33”’,如果匹配,则根据多个电池的需求功率为电池进行冷却。
S34”,如果不匹配,则根据压缩机的最大制冷功率P和多个电池冷却支路的需求功率P1为电池进行冷却。
具体地,当电池为多个并联时,可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率Pz,即将每个电池的需求功率P1相加即可得到总需求功率Pz。然后根据总需求功率Pz判断Pz是否与车载空调的最大制冷功率P匹配,即判断P Z是否小于或等于P,如果是,则根据每个电池的需求功率P1通过控制电池冷却支路中的阀门对每个电池进行冷却。而如果Pz与车载空调的最大制冷功率P不匹配,即Pz大于P,则根据空调的最大制冷功率P和每个电池的需求功率P1,通过调节电池冷却支路中的阀门的开度按比例进行冷却液流量分配,从而可以以最大效率使每个电池完成降温。
根据本公开的一个实施例,电池的温度调节方法还可以包括以下步骤:检测多个电池的温度。当多个电池中任一个电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式。当多个电池中任一个电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,所述温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统。而如果某个电池的温度低于0℃,说明此时该电池的温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,所述温度调节系统进入加热模式,控制相应的电池冷却支路关闭,并控制加热器开启,以为电池提供加热功率。
根据本公开的一个实施例,如图21所示,多个制冷支路分别对应多个出风口,所述多 个区域温度为所述多个出风口的温度。
举例而言,如图21所示,可在车厢内设置4个出风口,分别为出风口1-出风口4。通过检测出风口温度Tc检测对应的区域温度Tq。假设出风口1和出风口2由第一制冷支路11提供制冷功率,设出风口3和出风口4由第二制冷支路12提供制冷功率。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,具体包括:当电池冷却支路的需求功率P1大于实际功率P2时,判断电池温度是否大于第三温度阈值。其中,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。如果电池温度大于所述第三温度阈值,则降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。其中,多个电池冷却支路的功率通过对应的阀门分别控制。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则判断电池的温度是否大于45℃。如果任一个电池的温度大于45℃,说明当前电池的温度过高,减少第一膨胀阀32的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,还包括:判断每个电池的需求功率P1是否大于电池的实际功率P2;如果某个电池的需求功率P1大于电池的实际功率P2,则获取电池的需求功率P1和实际功率P2之间的功率差,并根述功率差增加用于电池的冷却的压缩机的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的冷却功率;如果某个电池的需求功率P1小于或等于电池的实际功率P2,则减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当所述温度调节系统工作在冷却模式时,如果电池为多个,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持压缩机的功率不变或适当减小压缩机的功率,或者减少该电池的循环分支回路的冷却液流量,减少电池的冷却功率。当所有电池的 温度低于35℃时,则电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则再适当增加压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,如果电池温度小于第三温度阈值,则进一步判断所述车内温度是否等于空调设定温度Ts;如果车内温度等于空调设定温度Ts,则降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果每个电池的温度都小于45℃,车载空调控制器判断车内温度是否达到空调设定温度Ts。如果达到,则增大电池冷却支路的冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,车载空调控制器增大车内冷却支路的冷却液流量,并减小电池冷却支路的冷却液流量。
此外,还对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,降低多个车内冷却支路的功率具体包括:获取多个区域温度之间的温度差。判断温度差是否大于第四温度阈值。如果温度差大于第四温度阈值时,则将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并可将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
根据本公开的一个实施例,车载电池的温度调节方法还包括:将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,增大第一车内冷却支路中的功率,减小第一电池冷却支路的功率,以使第一车内冷却支路中的冷却功率较大。还可减小第二车内冷却支路中的功率,增大第二电池冷却支路的功率,以使第二车内冷却支路中的冷却功率较小。由此,可以使第一电池冷却和第二电池冷却支路的冷却功率不变,同时又使得车内各处出风口附近区域气温均 衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,控制第一车内冷却支路和第二车内冷却支路中的第一膨胀阀开度相同,以保证第一车内冷却支路和第二车内冷却支路的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,还包括:判断某个电池的需求功率P1是否大于电池的实际功率P2。如果某个电池的需求功率P1大于电池对应的实际功率P2,则获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的加热器的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的加热功率。如果某个电池的需求功率P1小于或等于电池对应的实际功率P2,则减小加热器的功率或保持加热器的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池的升温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者通过调节对应的泵的转速提高,以增加该电池的循环分支回路的冷却液流量,以使该电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器的功率增加的越多。而如果某个电池的P1小于或等于P2,可以适当减小加热器的功率,以节省电能,或者通过调节对应的泵的转速降低减小该电池的循环分支回路的冷却液流量,以减小加热功率,或保持加热器的功率不变。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则再适当增加加热器的功率,以使该电池尽快完成升温。
根据本公开的一个实施例,车载电池的温度调节方法还可以包括:如果某个电池的需求功率P1小于对应的实际功率P2,则降低电池的流路中泵的转速;如果某个电池的需求功率P1大于对应的实际功率P2,则提高电池的流路中泵的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,控制相应的泵的转速降低,以节省电能。而如果某个电池的P1大于P2,控制器除控制相应的加热器或压缩机的功率增加或该电池所在回路的冷却液流量增加外,还控制泵的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
根据本公开的一个实施例,当电池为多个,且流路为串联连接,多个电池对应多个调节电池的冷却液流量的泵,且泵为双向泵。
如图19-20所示,以电池为2个为例,当电池为个(第一电池和第二电池),且串联连接时,泵对应为2个,且两个泵一个为正向泵,一个为反向泵。
如图19A所示,当正向泵启动时,第二管道中冷却液的流动方向为:介质容器—换热器—加热器—正向泵—第一温度传感器—第一电池—第二电池—第二温度传感器—流速传感器—介质容器。如图19B所示,当反向泵启动时,第二管道中冷却液的流动方向为:介质容器—流速传感器—第二温度传感器—第二电池—第一电池—第一温度传感器—反向泵—加热器—换热器—介质容器。
在第一电池和第二电池的冷却功能启动时,如果第一电池的温度高于第二电池的温度,且差值超过预设值,则控制正向泵工作,以使冷却液先流过第一电池,再流过第二电池,从而使第一电池尽快完成降温。而如果第二电池的温度高于第一电池的温度,且差值超过预设值,则控制反向泵工作,以使冷却液先流过第二电池,再流过第一电池,从而使第二电池尽快完成降温。由此,通过改变冷却液的流向,可以减少第一电池和第二电池的温度差。而在第一电池和第二电池的冷却功能和加热功能都没有启动时,如果第一电池和第二电池的温度差超过预设值,则可以控制正向泵或反向泵启动,以使电池冷却支路中的冷却液流动,从而均衡第一电池和第二电池的温度。
为使本领域技术人员更清楚地理解本公开,下面结合具体示例描述车载电池的温度调节系统的工作过程。
图19与图14A的主要区别是增加了增加了一个压缩机制冷支路,同时增加了车内空调出风口的温度均衡与压缩机之间的功率调节问题。以下仅列出不同点,其余不做絮述。
如图19所示,当电池为多个,在温度调节系统进入冷却模式时,控制器分别获取每个电池的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。P51为压缩机11最大制冷功率,P52为压缩机12的最大制冷功率,P5为所有压缩机的最大制冷功率之和,P5=P51+P52。其中,第一电池的需求功率为P11,第二电池的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。
如果Pz≤P51,那么只需要控制一个压缩机工作,提供制冷功率,也可以控制两个压缩机一同工作。如果P51<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率可为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则需要两个压缩机一起工作,每个压缩机按照最大制冷功率运行。车内冷却支路的需求功率为P4,即P4为将车内温度调节至设定温度需要的功率。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风 口3、出风口4区域温度为T52。
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机11的制冷功率提高,或者控制第一压缩机制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机和第二压缩机的以最大制冷功率运行,同时控制第一压缩机制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机的所有制冷功率都用于车内冷却。同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
图20与图9的主要区别是增加了增加了一个压缩机制冷支路,同时增加了车内空调出风口的温度均衡与压缩机之间的功率调节问题。以下仅列出不同点,其余不做絮述。
如图20所示,当电池为多个,在温度调节系统进入冷却模式时,控制器分别获取每个电池6的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率Pz,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。P51为压缩机11最大制冷功率,P52为压缩机12的最大制冷功率,P5为所有压缩机的最大制冷功率之和,P5=P51+P52。其中,第一电池61的需求功率为P11,第二电池62的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。
如果Pz≤P51,那么只需要控制一个压缩机1工作,提供制冷功率,也可以控制两个压缩机1一同工作。如果P51<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率可为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则需要两个压缩机一起工作,每个压缩机按照最大制冷功率运行。车内冷却支路的需求功率为P4,即P4为将车内温度调节至设定温度需要的功率。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风口3、出风口4区域温度为T52。
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机11的制冷功率提高,或者控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机11和第二压缩机12的以最大制冷功率运行,同时控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机11制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机11的所有制冷功率都用于车内冷却。同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
根据本公开实施例的车载电池的温度调节方法,首先,分别获取多个电池冷却支路中多个电池的需求功率,然后,分别获取车辆中多个区域的区域温度和空调设定温,再根据需求功率、实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该方法根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
当电池为多个,且多个电池独立设置时,如图24所示,车载电池的温度调节系统包括:多个制冷支路、多个车内冷却支路、多个电池冷却支路和电池温度调节装置5。
其中,每个制冷支路包括压缩机1、与压缩机1相连的冷凝器2。多个车内冷却支路分别与多个制冷支路相连。多个电池冷却支路与多个制冷支路相连,多个电池冷却支路之间相互连通。电池温度调节装置5分别与多个电池和多个电池冷却支路相连,用于获取需求功率P1和实际功率P2,并获取车辆中多个区域的区域温度Tq和空调设定温度Ts,以及根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,且根据电池的需求功率P1和实际功率 P2调节多个压缩机1向电池对应的电池冷却支路提供的制冷量功率。
其中,电池可以电池包或电池模组。
根据本公开的一个实施例,电池温度调节装置5根据所需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。
举例而言,如图24所示,以制冷支路、电池冷却支路、车内冷却支路和电池为两个为例,电池分别为第一电池61和第二电池62,第一电池61和第二电池62相互独立设置。制冷支路分别为第一制冷支路11和第二制冷支路12,电池冷却支路分别为第一电池冷却支路401和第二电池冷却支路402,车内冷却支路分别为第一车内冷却支路301和第二车内冷却支路302。
当第一电池61和/或第二电池62的温度过高/过低时,需要对第一电池61和/或第二电池62进行温度调节。电池温度调节装置5获取需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且电池温度调节装置5获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则电池温度调节装置5控制冷却该区域的车内冷却支路的功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,电池温度调节装置5控制另一个车内冷却支路的功率减小。由此,该系统根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。同时,由于多个电池冷却支路之间相互连通,因此电池温度调节装置5可以根据每个电池的温度,通过调节电池对应的电池冷却支路的制冷功率,可以保证各个电池之间温度的均衡。
可以理解,电池温度调节装置5的制冷功率由车载空调提供,与车内制冷系统共用制冷量,从而可以减少温度调节系统的体积,并使冷却液流量的分配更加灵活。
根据本公开的一个实施例,如图24所示,电池冷却支路可以包括换热器41,换热器41包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。
电池温度调节装置5包括:调节电池温度的流路(图中未具体示出),流路设置在电池之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取电池的需求功率P1和电池的实际功率P2,并根据需求功率P1和实际功率P2对电池的温度进行调节。车内冷却支路可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
如图24所示,第一电池冷却支路401还可以包括第一调节阀411和第三调节阀413;第二电池冷却支路402还可以包括第二调节阀412和第四调节阀414,各调节阀的连接方式具体可参照图24,此处不做赘述。如图24所示,每个压缩机1的制冷量都可以通过调节第一至第四调节阀411-414分配给第一电池冷却支路401或者第二电池冷却支路402。例如第一制冷支路11的压缩机1,可以通过第一调节阀411将冷媒分配给第一电池冷却支路401,通过第二调节阀412将冷媒分配给第二电池冷却支路402。第二制冷支路12中的压缩机1,可以通过第三调节阀413将冷媒分配给第一电池冷却支路401,通过第四调节阀414将冷媒分配给第二电池冷却支路402。
根据本公开的一个实施实例,如图24所示,电池温度调节装置5还可以包括设置在流路的入口的第一温度传感器55,设置在流路的出口的第二温度传感器56,以及流速传感器57。可以理解,流路的入口和出口位置不是绝对的,而是根据泵51的转向确定的。
具体地,换热器41可以为板式换热器,板式换热器可以安装在车载空调内部,使得整个制冷剂回路均在车载空调内部,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次制冷剂。冷却液从流路的入口流入电池的内部,从流路的出口流出,从而实现电池与冷却液之间的热交换。
泵51主要用于提供动力,介质容器52主要用于存储冷却液和接受向温度调节系统添加的冷却液,当温度调节系统中的冷却液减少时,介质容器52中的冷却液可自动补充。加热器53可以为PTC加热器,可以与控制器进行CAN通信,为车载电池的温度调节系统提供加热功率,受控制器控制。且加热器53不直接与电池6接触,具有较高的安全性、可靠性和实用性。
第一温度传感器55用以检测流路入口冷却液的温度,第二温度传感器56用以检测流路出口冷却液的温度。流速传感器57用以检测对应管道内冷却液的流速信息。第二电子阀43用以控制相应的电池冷却支路4的开通和关闭,第二膨胀阀42可用于控制响应的电池冷却支路4中的冷却液流量。控制器可以通过调节第一至第四调节阀411-414的开度,同时控制第一电池61和第二电池62两个冷却分支回路的冷却液流量,从而使均衡两个电池的温度。同时控制器还可与车载空调和加热器53进行CAN通信,并且可以控制泵51的转速和监控冷却液的温度和流量信息,还可以对电池进行管理,检测电池的电压和温度信息,控制车载电池的温度调节系统的通断,且控制器之间可以相互进行通信。
具体地,控制器可以包括电池管理控制器、电池热管理控制器、车载空调控制器。其中,电池热管理控制器可以与第一温度传感器51、第二温度传感器52和流速传感器57电连接,电池热管理控制器与泵51和加热器53进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵51的转速和控制加热器53的功率。 电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与膨胀阀及电子阀电连接,且车载空调控制器可以与电池管理控制器和电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是车载空调DSP芯片。
下面结合具体实施例描述每个电池温度调节装置5如何获取相应电池6的需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率,以及分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率,并根据每个电池的第一需求功率和每个电池的第二需求功率生成每个电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
第二参数为每个电池在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池热管理控制器分别根据每个电池所在回路的第一温度传感器55检测的入口温度和第二温度传感器56检测的出口温度生成每个电池的第二温度差ΔT 2,并根据每个电池的第二温度差ΔT 2和流速传感器57检测的流速v生成每个电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
具体地,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,则开启温度调节功能,并发送低转速信息给泵51,泵以默认转速(如低转速)开始工作。然后,电池热管理控制器获取每个电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出每个电池的第一需求功率。同时,电池热管理控制器获分别获取每个电池在预设时间内的平均电流I,并根据公式(2)计算每个电池第二需求功率。然后,控制器分别根据每个电池6的第一需求功率和第二需求功率计算需求功率P1(即将电池的温度在目标时间内调节至目标温度的需求功率)。并且,电池热管理控制器分别获取每个电池对应设置的第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器57检测的流速信息,根据公式(3)分别计算出每个电池的实际功率P2。
下面将结合具体地实施例描述如何根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路(30和30)多个电池冷却支路(401和402)和多个制冷支路(11和12)的功率进行调整。
根据本公开的一个实施例,电池管理控制器可以用于根据每个电池的需求功率P1生成总需求功率P Z,判断总需求功率P Z是否大于多个压缩机的总最大制冷功率P5(或总额定制冷功率),其中,当总需求功率P Z大于多个压缩机的总最大制冷功率P5(或总额定制冷功率)时,车载空调控制器将多个压缩机1向电池对应的电池冷却支路4的制冷功率调整至最大;当总需求功率P Z小于或等于多个压缩机的总最大制冷功率P5(或总额定制冷功率)时,车载空调控制器根据总需求功率P Z与总最大制冷功率P5(或总额定制冷功率)之差对电池6对应的电池冷却支路4的制冷功率进行调整。
具体地,如图24所示,当对电池进行冷却时,电池管理控制器可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率P Z,即将每个电池的需求功率P1相加即可得到总需求功率P Z,同时车载空调控制器根据每个压缩机1的最大制冷功率P计算出多个压缩机的总最大制冷功率P5P5,即将每个压缩机1的最大制冷功率P相加即可得到总最大制冷功率P5P5。然后,车载空调控制器判断是否P Z>P5P5,如果是,则车载空调控制器控制将每个第二膨胀阀42的开度调节至最大,以增大流入到每个电池;冷却回路4的冷却液流量,使电池可以在目标时间内完成降温。而如果P Z≤P5P5,需要两个压缩机一起工作,每个压缩机的初始制冷功率可为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷 功率之和为Pz,且根据P Z与P5之间的差值对每个第二膨胀阀42的开度进行调整,其中,P Z与P5差值的绝对值越大,第二膨胀阀42的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,如图24所示,电池管理控制器还用于,还用于检测多个电池的温度,并在多个电池6中任一个电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在多个电池中任一个电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器分别实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,电池管理控制器控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统,以及控制对应的第二电子阀43开启,以使冷却液与电池进行热交换以降低该电池的温度。
而如果某个电池的温度低于0℃,说明此时该电池的温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,电池管理控制器控制温度调节系统进入加热模式,控制第二电子阀43关闭,并控制相应的加热器53开启,以为温度调节系统提供加热功率。当温度调节系统工作在加热模式时,加热器53提供加热功率,以加热第一电池61为例,第一电池61所在回路中冷却液的流动方向为:介质容器52—换热器41—加热器53(开启)—泵51—第一温度传感器55—第一电池61—第二温度传感器56—流速传感器57—介质容器52,如此循环,实现电池第一电池61的升温。
根据本公开的一个实施例,如图24所示,当所述温度调节系统为冷却模式时,控制器还用于,在电池冷却支路的需求功率P1大于实际功率P2时,判断电池温度是否大于第三温度阈值,其中,如果电池温度大于第三温度阈值,则车载空调控制器提高相应的电池冷却支路的功率,其中,电池冷却支路的功率通过对应的阀门(即第二膨胀阀42)分别控制,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则车载空调控制器判断电池的温度是否大于45℃。如果任一个电池的温度大于45℃,说明当前电池的温度过高,车载空调控制器减少相应的第一膨胀阀32的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,如图24所示,所述温度调节系统为冷却模式时,控制器还用于在某个电池的需求功率P1大于电池的实际功率P2时,获取电池的需求功率P1和实际 功率P2之间的功率差,并根据功率差增加用于电池的冷却的压缩机1的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的冷却功率,或者在某个电池的需求功率P1小于或等于电池的实际功率P2,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当工作在冷却模式时,如果电池为多个,车载空调控制器分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,车载空调控制器获取该电池的P1和P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机1的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池的循环分支回路的冷却液流量,减少电池的冷却功率。当所有电池的温度低于35℃时,则电池冷却完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则车载空调控制器再适当增加压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,如图24所示,车载空调控制器,还用于在某个电池的温度小于第三温度阈值,且车内温度等于空调设定温度Ts时,降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果每个电池的温度都小于45℃,车载空调控制器判断车内温度是否达到空调设定温度Ts。如果达到,则车载空调控制器减少第一膨胀阀32的开度,并增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,车载空调控制器增大第一膨胀阀32的开度,并减小第二膨胀阀42的开度。
此外,还对对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则控制器增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
在本公开的一个实施例中,多个制冷支路分别对应多个出风口,多个区域温度为多个 出风口的温度。
举例而言,如图21所示,可在车厢内设置4个出风口,分别为出风口1-出风口4。通过检测出风口温度Tc检测对应的区域温度Tq。假设出风口1和出风口2由第一制冷支路11提供制冷功率,设出风口3和出风口4由第二制冷支路12提供制冷功率。
根据本公开的一个实施例,如图24所示,车载空调控制器还用于获取多个区域温度之间的温度差,并在温度差大于第四温度阈值时,将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
根据本公开的一个实施例,车载空调控制器还用于将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,控制第一车内冷却支路301中的第一膨胀阀32的开度增大,同时控制第一电池冷却支路401中的第二膨胀阀42的开度减小,以使第一车内冷却支路301中的冷却功率增加。车载空调控制器还控制第二车内冷却支路302中的第一膨胀阀32的开度减小,第二电池冷却支路402中的第二膨胀阀42的开度增大,以使第二车内冷却支路302中的冷却功率较小。由此,可以使第一电池冷却301和第二电池冷却支路302的冷却功率不变,同时又使得车内各处出风口附近区域气温均衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,车载空调控制器控制第一车内冷却支路301和第二车内冷却支路302中的第一膨胀阀32开度相同,以保证第一车内冷却支路301和第二车内冷却支路302的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,电池热管理控制器在某个电池的需求功率P1大于电池的实际功率P2时,获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者调节增加所述电池的循环分支回路的冷却液流量,以增加所述电池的加热功率,以及在某个电池的需求功率P1小于或等于电池的实际功率P2时,减小加热器的功率或保持加热器的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,电池热管理控制器分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池的升温,所以,电池热管理控制器获取该 电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,或者通过调节对应的泵51的转速提高,以增加该电池的循环分支回路的冷却液流量,以使该电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器53的功率增加的越多。而如果某个电池的P1小于或等于P2,电池热管理控制器可以适当减小加热器53的功率,以节省电能,或者通过调节对应的泵51的转速降低以减小该电池的循环分支回路的冷却液流量,以减小加热功率,或保持加热器53的功率不变。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则电池热管理控制器再适当增加加热器53的功率,以使该电池尽快完成升温。
根据本公开的一个实施例,电池热管理控制器,还用于在某个电池的需求功率P1小于对应的实际功率P2时,降低电池流路中泵51的转速,并在某个电池的需求功率P1大于对应的实际功率P2时,提高电池流路中泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,电池热管理控制器控制相应的泵51的转速降低,以节省电能。而如果某个电池的P1大于P2,电池热管理控制器除控制相应的加热器53或压缩机1的功率增加或该电池所在回路的冷却液流量增加外,还控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
可以理解,当温度调节系统工作在冷却模式时,如图24所示,电池管理控制器可以分别计算出第一电池61和第二电池62的需求功率P1,然后分别根据每个电池的P1和相应的压缩机的最大制冷功率P调节相应的第二膨胀阀42的开度。在冷却过程中,电池热管理控制器还分别根据每个电池的实际功率P2继续调整第二膨胀阀42的开度。同时,电池热管理控制器根据第一电池61和第二电池62之间的温度情况,通过调节第一至第四调节阀411-414的开度,调节第一电池冷却支路401和第二电池冷却支路402的冷却液流量分配,从而达到控制第一电池61和第二电池62温度的均衡。其中,当第一电池61的温度比第二电池62的温度高且差值超过设定值时,可增大第一调节阀411和第三调节阀413的开度,减少第二调节阀412和第四调节阀414的开度,以增大第一电池61的冷却功率;当第一电池61和第二电池62的温度相等时,可控制第一至第四调节阀411-414的开度相同。而当温度调节系统工作在加热模式时,当第一电池61的温度比第二电池62的温度低且差值超过设定值时,则电池热管理控制器增大第一电池61对应的加热器53的加热功率。由此,可以保持两个电池之间的温度均衡。
为使本领域技术人员更清楚地理解本公开,下面结合具体示例描述车载电池的温度调 节系统的工作过程。
图24与图11A-11B所示的温度调节系统相比,增加了车内冷却支路。以下仅列出不同点,其余不做絮述。
如图24所示,当电池、车内冷却支路3、电池冷却支路4为多个,且多个电池独立设置时,在温度调节系统进入冷却模式时,控制器分别获取每个电池6的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。其中,第一电池61的需求功率为P11,第二电池62的需求功率为P12。第一电池61的实际功率为P21,第二电池62的实际功率为P22。P51为第一压缩机11最大制冷功率,P52为第二压缩机12的最大制冷功率。
如果Pz≤P51,那么只需要控制一个压缩机1工作,提供制冷功率,也可以控制两个压缩机1一同工作。如果P51<Pz≤P5,则需要两个压缩机1一起工作,每个压缩机的初始制冷功率为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则每个压缩机按照最大制冷功率运行。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风口3、出风口4区域温度为T52,则进行如下判断:
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机11的制冷功率提高,或者控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机11和第二压缩机12的以最大制冷功率运行,同时控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机11制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机11的所有制冷功率都用于车内冷却。同时控制第二压缩机12制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池 冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
综上所述,根据本公开实施例的车载电池的温度调节系统,通过电池温度调节装置获取电池的需求功率和电池的实际功率,并获取车辆中多个区域的区域温度和空调设定温度,以及根据电池的需求功率、电池的实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,且根据电池的需求功率和电池的实际功率调述多个压缩机向电池对应的电池冷却支路提供的制冷功率。由此,该系统根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度和各个电池之间的温度。
当车载电池的温度调节系统包括多个制冷支路及与多个制冷支路对应的多个电池冷却支路、多个车内冷却支路、多个电池和连接在多个电池和多个电池冷却支路之间的多个电池温度调节装置时,如图25所示,车载电池的温度调节方法包括以下步骤:
S1””,分别获取多个电池的需求功率P1和实际功率P2。
根据本公开的一个实施例,分别获取多个电池的需求功率具体包括:分别获取每个电池开启温度调节时的第一参数,并根据第一参数生成每个电池的第一需求功率。分别获取每个电池在温度调节时的第二参数,并根据第二参数生成每个电池的第二需求功率。根据每个电池的第一需求功率和第二需求功率生成电池冷却支路的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1;根据第一温度差ΔT 1和目标时间t生成第一需求功率。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为电池在预设时间内的平均电流I,通过以下公式(2)生成第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,获取多个电池的实际功率P2具体包括:获取用于调节多个 电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。根据多个电池的流路入口温度和出口温度生成多个电池的第二温度差ΔT 2。根据多个电池的第二温度差ΔT 2和流速v生成多个电池的实际功率P2。
根据本公开的一个实施例,进根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度。
S2””,分别获取车辆中多个区域的区域温度Tq和空调设定温度Ts。
S3””,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。其中,多个电池冷却支路之间相互连通,且根据电池的需求功率P1和实际功率P2调节多个压缩机向电池对应的电池冷却支路提供的制冷功率。
根据本公开的一个实施例,根据需求功率P1、实际功率P2、多个所述区域温度Tq和空调设定温度Ts在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。
其中,电池可以电池包或电池模组。每个电池相互独立设置。
具体地,以制冷支路、电池冷却支路、车内冷却支路和电池为两个为例,电池分别为第一电池和第二电池,制冷支路分别为第一制冷支路和第二制冷支路,电池冷却支路分别为第一电池冷却支路和第二电池冷却支路,车内冷却支路分别为第一车内冷却支路和第二车内冷却支路。
当第一电池和/或第二电池的温度过高/过低时,需要对第一电池和/或第二电池进行温度调节。获取需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则控制冷却该区域的车内冷却支路的功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,控制另一个车内冷却支路的功率减小,同时控制相应的电池冷却支路的功率增大。由此,该方法根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。同时,由于多个电池冷却支路之间相互连通,因此可以根据每个电池的温度,通过调节电池对应的电池冷却支路的制冷功率,可以保证各个电池之间温度的均衡。
下面将结合具体实施例说明如何根据根据需求功率P1、实际功率P2、多个区域温度 Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
根据本公开的一个实施,车载电池为多个且独立设置,且车内冷却支路、电池冷却支路和制冷支路为多个时,上述的车载电池的温度调节方法还可以包括:根据每个电池的需求功率P1生成总需求功率P Z。根据多个压缩机的最大制冷功率P生成多个压缩机的总最大制冷功率P5。判断总需求功率P Z是否大于多个压缩机的总最大制冷功率P5。如果总需求功率P Z大于多个压缩机的总最大制冷功率P5,则将多个压缩机向电池对应的电池冷却支路的制冷功率调整至最大。如果总需求功率P Z小于或等于多个压缩机的总最大制冷功率P5,则根据总需求功率P Z与总最大制冷功率P5之差对电池对应的电池冷却支路的制冷功率进行调整。
具体地,可以根据每个电池的需求功率P1计算出整个温度调节系统的总需求功率P Z,即将每个电池的需求功率P1相加即可得到总需求功率P Z,同时根据每个压缩机的最大制冷功率P计算出多个压缩机的总最大制冷功率P5,即将每个压缩机的最大制冷功率P相加即可得到总最大制冷功率P5。然后,判断是否P Z>P5,如果是,则控制将每个第二膨胀阀的开度调节至最大,以将多个压缩机向电池对应的电池冷却支路的冷却液流量调整至最大,以使电池可以在目标时间t内完成降温。而如果P Z≤P5,则根据P Z与P5之间的差值对第二膨胀阀的开度进行调整,其中,P Z与P5差值的绝对值越大,第二膨胀阀的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,电池的温度调节方法还可以包括以下步骤:检测多个电池的温度。当多个电池中任一个电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式。当多个电池中任一个电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,实时检测每个电池的温度,并进行判断。如果其中某个电池的温度高于40℃,说明此时该电池的温度过高,为避免高温对该电池的性能产生影响,需要对该电池进行降温处理,所述温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统。而如果某个电池的温度低于0℃,说明此时该电池的温度过低,为避免低温对该电池的性能产生影响,需要对该电池进行升温处理,所述温度调节系统进入加热模式,控制相应的电池冷却支路关闭,并控制加热器开启,以为电池提供加热功率。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整具体包括:在电池冷却支路的需求功率P1大于实际功率 P2时,判断电池温度是否大于第三温度阈值,其中,如果电池温度大于第三温度阈值,则控制器降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率,其中,多个电池冷却支路的功率通过对应的阀门(即第二膨胀阀)分别控制,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则判断电池的温度是否大于45℃。如果任一个电池的温度大于45℃,说明当前电池的温度过高,减少第一膨胀阀32的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,所述温度调节系统为冷却模式时,电池的温度调节方法还包括:判断每个电池的需求功率P1是否大于每个电池对应的实际功率P2。如果某个电池的需求功率P1大于电池的实际功率P2时,则获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于电池的冷却的压缩机的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的冷却功率。如果某个电池的需求功率P1小于或等于电池的实际功率P2,则减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当工作在冷却模式时,如果电池为多个,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加压缩机的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果其中某一个电池的P1小于或等于P2,可以保持压缩机的功率不变或适当减小压缩机的功率,或者减少该电池的循环分支回路的冷却液流量,减少电池的冷却功率。当所有电池的温度低于35℃时,则电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则再适当增加压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,如果电池温度小于第三温度阈值,则进一步判断所述车内温度是否等于空调设定温度Ts;如果车内温度等于空调设定温度Ts,则降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果每个电池的温度都小于45℃,电池热管理控制器判断车内温度是否达到空调设定温度Ts。如果达到,则增大电池冷却支路的 冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,电池热管理控制器增大车内冷却支路的冷却液流量,并减小电池冷却支路的冷却液流量。
此外,还对对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,降低多个车内冷却支路的功率具体包括:获取多个区域温度之间的温度差。判断温度差是否大于第四温度阈值。如果温度差大于第四温度阈值时,则将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
根据本公开的一个实施例,车载电池的温度调节方法还包括:将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,增大第一车内冷却支路中的功率,减小第一电池冷却支路中的功率,以使第一车内冷却支路中的冷却功率较大。还减小第二车内冷却支路中的功率,增大第二电池冷却支路的功率,以使第二车内冷却支路中的冷却功率较小。由此,可以使第一电池冷却和第二电池冷却支路的冷却功率不变,同时又使得车内各处出风口附近区域气温均衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,控制第一车内冷却支路和第二车内冷却支路中的第一膨胀阀开度相同,以保证第一车内冷却支路和第二车内冷却支路的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,还包括:判断某个电池的需求功率P1是否大于电池的实际功率P2。如果某个电池的需求功率P1大于电池对应的实际功率P2,则获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的加热器的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的加热功率。如果某个电池的需求功率P1小于或等于电池对应的实际功率P2, 则减小加热器的功率或保持加热器的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,分别获取每个电池的P1和P2,并进行判断。如果其中某一个电池的P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成该电池的升温,所以,获取该电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者通过调节对应的泵的转速提高,以增加该电池的循环分支回路的冷却液流量,以使该电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器的功率增加的越多。而如果某个电池的P1小于或等于P2,可以适当减小加热器的功率,以节省电能,或者通过调节对应的泵的转速降低减小该电池的循环分支回路的冷却液流量,以减小加热功率,或保持加热器的功率不变。当所有电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有电池的温度低于10℃,则再适当增加加热器的功率,以使该电池尽快完成升温。
据本公开的一个实施例,车载电池的温度调节方法还可以包括:如果某个电池的需求功率P1小于对应的实际功率P2,则降低电池的流路中泵的转速;如果某个电池的需求功率P1大于对应的实际功率P2,则提高电池的流路中泵的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果某个电池的P1小于P2,控制相应的泵的转速降低,以节省电能。而如果某个电池的P1大于P2,控制器除控制相应的加热器或压缩机的功率增加或该电池所在回路的冷却液流量增加外,还控制泵的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高该电池的实际功率P2,以在目标时间t内实现温度调节。
图24与图11A-11B所示的温度调节系统相比,增加了车内冷却回路。以下仅列出不同点,其余不做絮述。
如图24所示,当电池、车内冷却支路、电池冷却支路为多个,且多个电池独立设置时,在温度调节系统进入冷却模式时,控制器分别获取每个电池的P1、每个电池的实际功率P2和单个压缩机的最大制冷功率P,并将每个电池的P1相加可计算出整个温度调节系统的总需求功率P Z,将每个电池的实际功率P2相加得到总实际功率Pf,将每个压缩机的最大制冷功率相加可计算出所有压缩机的最大制冷功率之和P5。其中,第一电池的需求功率为P11,第二电池的需求功率为P12。第一电池的实际功率为P21,第二电池的实际功率为P22。P51为第一压缩机11最大制冷功率,P52为第二压缩机的最大制冷功率。
如果Pz≤P51,那么只需要控制一个压缩机工作,提供制冷功率,也可以控制两个压缩 机一同工作。如果P51<Pz≤P5,则需要两个压缩机一起工作,每个压缩机的初始制冷功率为Pz/2,或者其他的功率组合形式,使得2个压缩机的制冷功率之和为Pz。如果Pz>P5,则每个压缩机按照最大制冷功率运行。
在车内冷却和电池冷却同时开启时,假设出风口1、出风口2区域的温度为T51,出风口3、出风口4区域温度为T52,则进行如下判断:
如果T51-T52≥Tc,Tc为3℃,则进行如下处理:
如果Pz+P4≤P5,则控制第一压缩机的制冷功率提高,或者控制第一压缩机制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果Pz+P4>P5,则控制第一压缩机11和第二压缩机12的以最大制冷功率运行,同时控制第一压缩机11制冷支路中电池冷却支路的膨胀阀开度减小,控制车内冷却支路的膨胀阀开度增大,或者同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
如果T51-T52≥Tc,Tc为3℃,也可以进行如下处理:
控制第一压缩机制冷支路中电池冷却支路的关闭,控制车内冷却支路的膨胀阀开度增大,使得第一压缩机的所有制冷功率都用于车内冷却。同时控制第二压缩机制冷支路中的电池冷却支路的膨胀阀增加,控制车内冷却支路的膨胀阀开度减少,增大对电池冷却功率,使得T51温度加快下降,同时又满足电池的冷却功率需求,实现车内环境温度均衡。
根据本公开实施例的车载电池的温度调节方法,首先,分别获取多个电池的需求功率和实际功率,然后,分别获取车辆中多个区域的区域温度和空调设定温,再根据需求功率、实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该方法根据每个电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度和各个电池之间的温度。
当电池为一个,且制冷支路、车内冷却支路和电池冷却支路为多个时,车载电池的温度调节系统包括:多个制冷支路、多个车内冷却支路、多个电池冷却支路和电池温度调节装置5。
其中,如图26所示,每个制冷支路包括压缩机1、与压缩机1相连的冷凝器2。多个车内冷却支路分别与多个制冷支路相连。电池温度调节装置5与电池6和电池冷却支路相 连,用于获取需求功率P1和实际功率P2,并获取车辆中多个区域的区域温度Tq和空调设定温度Ts,以及根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
其中,电池可以电池包或电池模组。
根据本公开的一个实施例,电池温度调节装置5根据所需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。当电池的温度过高或者过低时,需要对电池进行温度调节。电池温度调节装置5获取电池6的需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且电池温度调节装置5获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则电池温度调节装置5控制冷却该区域的车内冷却支路的功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,电池温度调节装置5控制另一个车内冷却支路的功率减小,同时控制相应的电池冷却支路的功率增大。由此,该系统根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
可以理解,电池温度调节装置5的制冷功率由车载空调提供,与车内制冷系统共用制冷量,从而可以减少温度调节系统的体积,并使冷却液流量的分配更加灵活。
根据本公开的一个实施例,电池冷却支路可以包括换热器41,换热器41与电池温度调节装置5相连。换热器41可以包括第一管道和第二管道,第二管道与电池温度调节装置5相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。电池温度调节装置5包括:调节电池温度的流路(图中未具体示出),流路设置在电池之中。连接在流路和换热器41之间的泵51、介质容器52、加热器53,以及控制器(图中未具体示出)。其中,控制器获取电池的需求功率P1和电池的实际功率P2,并根据需求功率P1和实际功率P2对电池的温度进行调节。车内冷却支路可以包括:蒸发器31、第一膨胀阀32和第一电子阀33。电池冷却支路4还可以包括第二膨胀阀42和第二电子阀43。
具体地,换热器41可以为板式换热器,板式换热器可以安装在车载空调内部,使得整个制冷剂回路均在车载空调内部,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次制冷剂。冷却液从流路的入口流入电池的内部,从流路的出口流出,从而实现电池与冷却液之间的热交换。
泵51主要用于提供动力,介质容器52主要用于存储冷却液和接受向温度调节系统添 加的冷却液,当温度调节系统中的冷却液减少时,介质容器52中的冷却液可自动补充。加热器53可以为PTC加热器,可以与控制器进行CAN通信,为车载电池的温度调节系统提供加热功率,受控制器控制。且加热器53不直接与电池6接触,具有较高的安全性、可靠性和实用性。
第一温度传感器55用以检测流路入口冷却液的温度,第二温度传感器56用以检测流路出口冷却液的温度。流速传感器57用以检测对应管道内冷却液的流速信息。第二电子阀43用以控制相应的电池冷却支路的开通和关闭,第二膨胀阀42可用于控制响应的电池冷却支路中的冷却液流量。
具体地,控制器可以包括电池管理控制器、电池热管理控制器、车载空调控制器。其中,电池热管理控制器可以与第一温度传感器51、第二温度传感器52和流速传感器57电连接,电池热管理控制器与泵51和加热器53进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵51的转速和控制加热器53的功率。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与膨胀阀及电子阀电连接,且车载空调控制器可以与电池管理控制器和电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,需要理解的是,电池管理控制器例如可以是具有电池管理功能的DSP芯片。电池热管理控制器例如可以是具有电池热管理功能的DSP芯片。车载空调控制器例如可以是车载空调DSP芯片。
下面结合具体的实施例说明如何获取需求功率P1和实际功率P2。
根据本公开的一个实施例,电池管理控制器可以用于分别获取电池开启温度调节时的第一参数,并根据第一参数生成电池的第一需求功率,以及分别获取电池在温度调节时的第二参数,并根据第二参数生成电池的第二需求功率,并根据电池的第一需求功率和电池的第二需求功率生成电池的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间t,电池管理控制器获取初始温度和目标温度之间的第一温度差ΔT 1,并根据第一温度差ΔT 1和目标时间t生成第一需求功率。
电池管理控制器通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t  (1),
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池6的比 热容,M为电池的质量。
第二参数为电池在预设时间内的平均电流I,电池管理控制器通过以下公式(2)生成第二需求功率:
I 2*R,  (2),
其中,I为平均电流,R为电池6的内阻。
当对电池6进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池6进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,电池热管理控制器分别根据第一温度传感器55检测的入口温度和第二温度传感器56检测的出口温度生成电池的第二温度差ΔT 2,并根据电池的第二温度差ΔT 2和流速传感器57检测的流速v生成电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度。
具体地,如图26所示,车辆上电后,电池管理控制器判断电池6是否需要进行温度调节,如果判断电池6需要温度调节,则开启温度调节功能,并发送低转速信息给泵51,泵以默认转速(如低转速)开始工作。电池管理控制器可以获取6电池的初始温度(即当前温度)、目标温度和从初始温度达到目标温度的目标时间t,其中目标温度和目标时间t可以根据实际情况进行预设,并根据公式(1)计算出6电池的第一需求功率。同时,电池管理控制器获取电池6在预设时间内的平均电流I,并根据公式(2)计算电池6的第二需求功率。然后,电池管理控制器分别根据电池的第一需求功率和第二需求功率计算需求功率P1。并且,电池管理控制器获取第一温度传感器55和第二温度传感器56检测温度信息,并分别获取流速传感器检测的流速信息,根据公式(3)计算出电池的实际功率P2。
下面将结合具体地实施例描述如何根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路(30和30)多个电池冷却支路(401和402)和多个制冷支路(11和12)的功率进行调整。
根据本公开的一个实施例,车载空调控制器还用于,用于根据多个压缩机的最大制冷功率P生成多个压缩机的总最大制冷功率P5,以及判断需求功率P1是否大于多个压缩机的总最大制冷功率P5,其中,当需求功率P1大于多个压缩机的总最大制冷功率P5时,车载空调控制器将多个电池冷却支路的制冷功率调整至最大;当需求功率P1小于或等于多个压缩机的总最大制冷功率P5时,车载空调控制器根据需求功率P1与总最大制冷功率P5之差对电池冷却支路的制冷功率进行调整。
具体地,如图26所示,车载空调控制器可以根据每个压缩机的最大制冷功率P计算出多个压缩机的总最大制冷功率P5,即将每个压缩机的最大制冷功率P相加即可得到总最大制冷功率P5。然后,车载空调控制器判断是否P1>P5,如果是,则车载空调控制器将每个第二膨胀阀42的开度调节至最大,以将多个压缩机1向电池对应的电池冷却支路的冷却液流量调整至最大,以使电池6可以在目标时间t内完成降温。而如果P1≤P5,则车载空调控制器根据P1与P5之间的差值对第二膨胀阀42的开度进行调整,其中,P1与P5差值的绝对值越大,第二膨胀阀42的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,电池管理控制器,还用于检测电池的温度,并在电池的温度大于第一温度阈值时,控制温度调节系统进入冷却模式,以及在电池的温度小于第二温度阈值时,控制温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,电池管理控制器实时检测电池的温度,并进行判断。如果其中电池的温度高于40℃,说明此时电池6的温度过高,为避免高温对电池6的性能产生影响,需要对该电池6进行降温处理,电池管理控制器控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统,以及控制第二电子阀43开启,以使冷却液与电池进行热交换以降低该电池的温度。
而如果电池的温度低于0℃,说明此时电池6的温度过低,为避免低温对该电池的性能产生影响,需要对该电池6进行升温处理,电池管理控制器控制温度调节系统进入加热模式,控制第二电子阀43关闭,并控制加热器53开启,以为温度调节系统提供加热功率。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,车载空调控制器还用于,在电池冷却支路的需求功率P1大于实际功率P2时,判断电池温度是否大于第三温度阈值,其中,如果电池温度大于第三温度阈值,则车载空调控制器降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率,其中,电池冷却支路的功率通过对应的阀门(即第二膨胀阀42)分别控制,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则车载空调控制器判断电池的温度是否大于45℃。如果电池的温度大于45℃,说明当前电池6的温度过高,车载空调控制器减少第一膨胀阀32的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,所述温度调节系统为冷却模式时,车载空调控制器还用于在电池的需求功率P1大于电池的实际功率P2时,获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于电池的冷却的压缩机1的功率,或者调节增加电池 的循环分支回路的冷却液流量,以增加电池的冷却功率,或者在电池的需求功率P1小于或等于电池的实际功率P2,减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当所述温度调节系统工作在冷却模式时,车载空调控制器获取电池6的P1和P2,并进行判断。如果P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成电池6的降温,所以,车载空调控制器获取电池6的P1和P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机的功率和该电池的冷却液流量增加越多,以使该电池的温度在预设时间t内降低至目标温。而如果电池6的P1小于或等于P2,可以保持压缩机的功率不变或适当减小压缩机的功率,或者减少电池的循环分支回路的冷却液流量,减少电池的冷却功率。当电池的温度低于35℃时,则电池冷却完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀43关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,电池的温度仍然高于35℃,则车载空调控制器再适当增加压缩机的功率,以使电池6尽快完成降温。
根据本公开的一个实施例,车载空调控制器,还用于在电池的温度小于第三温度阈值,且车内温度等于空调设定温度Ts时,降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果电池的温度小于45℃,控制器判断车内温度是否达到空调设定温度Ts。如果达到,则车载空调控制器减少第一膨胀阀32的开度,并增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,车载空调控制器增大第一膨胀阀32的开度,并减小第二膨胀阀42的开度。
此外,还对对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则车载空调控制器增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
在本公开的一个实施例中,多个制冷支路分别对应多个出风口,多个区域温度为多个出风口的温度。
举例而言,如图21所示,可在车厢内设置4个出风口,分别为出风口1-出风口4。通 过检测出风口温度Tc检测对应的区域温度Tq。假设出风口1和出风口2由第一制冷支路11提供制冷功率,设出风口3和出风口4由第二制冷支路12提供制冷功率。
根据本公开的一个实施例,车载空调控制器还用于获取多个区域温度之间的温度差,并在温度差大于第四温度阈值时,将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
根据本公开的一个实施例,车载空调控制器还用于将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,控制第一车内冷却支路301中的第一膨胀阀32的开度增大,同时控制第一电池冷却支路401中的第二膨胀阀42的开度减小,以使第一车内冷却支路301中的冷却功率增加。车载空调控制器还控制第二车内冷却支路302中的第一膨胀阀32的开度减小,第二电池冷却支路402中的第二膨胀阀42的开度增大,以使第二车内冷却支路302中的冷却功率较小。由此,可以使第一电池冷却301和第二电池冷却支路302的冷却功率不变,同时又使得车内各处出风口附近区域气温均衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,车载空调控制器控制第一车内冷却支路301和第二车内冷却支路302中的第一膨胀阀32开度相同,以保证第一车内冷却支路301和第二车内冷却支路302的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,控制器在电池的需求功率P1大于电池的实际功率P2时,获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热电池的加热器53的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的加热功率,以及在电池的需求功率P1小于或等于电池的实际功率P2时,减小加热器53的功率或保持加热器53的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,电池热管理控制器获取电池6的P1和P2,并进行判断。如果P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成电池6的升温,所以,电池热管理控制器获取电池6的P1和P2之间的功率差,并根据功率差增加用于加热电池6的加热器53的功率,或者通过调节泵51的转速提高,以增加该电池的循环分支回路的冷却液流量,以使该电池可以在目标时间t内完 成温度调节。其中,P1与P2的差值越大,加热器53的功率增加的越多。而如果电池6的P1小于或等于P2,电池热管理控制器可以适当减小加热器53的功率,以节省电能,或者通过调节泵51的转速降低减小该电池6的循环分支回路的冷却液流量,以减小加热功率,或保持加热器53的功率不变。当电池的温度高于预设温度,例如10℃时,电池6加热完成,电池管理控制器通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器53关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,电池6的温度仍然低于10℃,则电池热管理控制器再适当增加加热器53的功率,以使电池6尽快完成升温。
根据本公开的一个实施例,电池热管理控制器,还用于在某个电池的需求功率P1小于对应的实际功率P2时,降低泵51的转速,并在某个电池的需求功率P1大于对应的实际功率P2时,提高泵51的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果电池6的P1小于P2,电池热管理控制器控制泵51的转速降低,以节省电能。而如果电池6的P1大于P2,电池热管理控制器除控制相应的加热器53或压缩机1的功率增加或电池6所在回路的冷却液流量增加外,还控制泵51的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高电池6的实际功率P2,以在目标时间t内实现温度调节。
可以理解,图26所示的系统的电池温度调节装置5的调节方式与图19A-19B类似,不同点为图26单个电池包,图19A-19B为2个电池包串联,对于本公开的实施例中中图26所示的系统的温度调节过程未披露的细节,具体可参照上述实施例,为避免冗余,此处不再赘述。
根据本公开实施例的车载电池的温度调节系统,通过电池温度调节装置获取需求功率和实际功率,并获取车辆中多个区域的区域温度和空调设定温度,以及根据需求功率、实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该系统根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度。
图27是根据本公开第十一个实施例的车载电池的温度调节方法的流程图。其中,如图26所示,车载电池的温度调节系统包括多个制冷支路及与多个制冷支路对应的多个电池冷却支路、多个车内冷却支路、电池和连接在所述电池和多个电池冷却支路之间的电池温度调节装置,每个电池冷却支路包括一个换热器;如图27所示,该温度调节方法包括以下步骤:
S1””’,分别获取电池的需求功率P1和实际功率P2。
根据本公开的一个实施例,获取电池的需求功率具体包括:获取电池开启温度调节时的第一参数,并根据第一参数生成电池的第一需求功率。获取电池在温度调节时的第二参数,并根据第二参数生成电池的第二需求功率。根据第一需求功率和第二需求功率生成电池冷却支路的需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到所述目标温度的目标时间t,根据第一参数生成第一需求功率具体包括:获取初始温度和目标温度之间的第一温度差ΔT 1;根据第一温度差ΔT 1和目标时间t生成第一需求功率。
根据本公开的一个实施例,通过以下公式(1)生成第一需求功率:
ΔT 1*C*M/t,  (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
根据本公开的一个实施例,第二参数为电池在预设时间内的平均电流I,通过以下公式(2)生成第二需求功率:
I 2*R,  (2)
其中,I为平均电流,R为电池的内阻。
当对电池进行冷却时,P1=ΔT 1*C*M/t+I 2*R;当对电池进行加热时,P1=ΔT 1*C*M/t-I 2*R。
根据本公开的一个实施例,获取电池的实际功率P2具体包括:获取用于调节电池温度的流路的入口温度和出口温度,并获取冷却液流入流路的流速v。根据电池的流路入口温度和出口温度生成电池的第二温度差ΔT 2。根据电池的第二温度差ΔT 2和流速v生成电池的实际功率P2。
根据本公开的一个实施例,根据通过以下公式(3)生成实际功率P2:
ΔT 2*c*m,  (3)
其中,ΔT 2为第二温度差,c为流路中冷却液的比热容,m为单位时间内流过流路的横截面的冷却液质量,其中,m=v*ρ*s,v为冷却液的流速,ρ为冷却液的密度,s为流路的横截面积。
S2””’,分别获取车辆中多个区域的区域温度Tq和空调设定温度Ts。
S3””’,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
根据本公开的一个实施例,根据需求功率P1、实际功率P2、多个所述区域温度Tq和空调设定温度Ts在目标时间t内对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整,以达到目标温度。
其中,电池可以电池包或电池模组。
具体地,以制冷支路、电池冷却支路、车内冷却支路和电池为两个为例,制冷支路分别为第一制冷支路和第二制冷支路,电池冷却支路分别为第一电池冷却支路和第二电池冷却支路,车内冷却支路分别为第一车内冷却支路和第二车内冷却支路。
当电池的温度过高或者过低时,需要对电池进行温度调节。电获取电池的需求功率P1和实际功率P2,根据P1和P2调节多个电池冷却支路的功率,以调节电池的冷却功率,且获取多个区域温度Tq和空调设定温度Ts,并根据Tq和Ts控制每个电池冷却支路功率,例如,如果某个区域的Tq较高且于其它区域的Tq相差较大,则控制冷却该区域的车内冷却支路的功率增大,同时控制相应的电池冷却支路的功率减小,同时,为保证电池的冷却功率不变,控制另一个车内冷却支路的功率减小,同时控制相应的电池冷却支路的功率增大。由此,该方法根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域的温度。
基于图26,下面将结合具体实施例说明如何根据根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。
根据本公开的一个实施,车载电池为一个,且车内冷却支路、电池冷却支路和制冷支路为多个时,上述的车载电池的温度调节方法还可以包括:根据多个压缩机的最大制冷功率P生成多个压缩机的总最大制冷功率P5。判断需求功率P1是否大于多个压缩机的总最大制冷功率P5。如果需求功率P1大于多个压缩机的总最大制冷功率P5,则将多个压缩机向电池冷却支路的制冷功率调整至最大。如果需求功率P1小于或等于多个压缩机的总最大制冷功率P5,则根据需求功率P1与总最大制冷功率P5之差对电池对应的电池冷却支路的制冷功率进行调整。
具体地,可以根据每个压缩机的最大制冷功率P计算出多个压缩机的总最大制冷功率P5,即将每个压缩机的最大制冷功率P相加即可得到总最大制冷功率P5。然后,判断是否P1>P5,如果是,则将每个电池冷却支路中第二膨胀阀的开度调节至最大,以将多个压缩机向电池对应的电池冷却支路的冷却液流量调整至最大,以使电池可以在目标时间t内完成降温。而如果P1≤P5,则根据P1与P5之间的差值对电池冷却支路中的第二膨胀阀的开度进行调整,其中,P1与P5差值的绝对值越大,第二膨胀阀的开度越小,以达到节约能源的目的。
根据本公开的一个实施例,电池的温度调节方法还可以包括以下步骤:检测电池的温度。当电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式。当电池的温度 小于第二温度阈值时,所述温度调节系统进入加热模式。其中,第一温度阈值和第二温度阈值可以根据实际情况进行预设,例如,第一温度阈值可以为40℃,第二温度阈值可以为0℃。
具体地,车辆上电后,实时检测电池的温度,并进行判断。如果电池的温度高于40℃,说明此时电池的温度过高,为避免高温对电池的性能产生影响,需要对电池进行降温处理,所述温度调节系统进入冷却模式,并发送电池冷却功能启动信息给空调系统。而如果电池的温度低于0℃,说明此时电池的温度过低,为避免低温对电池的性能产生影响,需要对电池进行升温处理,所述温度调节系统进入加热模式,控制电池冷却支路关闭,并控制加热器开启,以为电池提供加热功率。
根据本公开的一个实施例,当所述温度调节系统为冷却模式时,根据需求功率P1、实际功率P2、多个区域温度Tq和空调设定温度Ts对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整具体包括:在电池冷却支路的需求功率P1大于实际功率P2时,判断电池温度是否大于第三温度阈值,其中,如果电池温度大于第三温度阈值,则降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率,其中,多个电池冷却支路的功率通过对应的阀门(即第二膨胀阀)分别控制,第三温度阈值大于第一温度阈值,例如第三温度阈值可以为45℃。
具体地,当所述温度调节系统为冷却模式时,如果P1大于P2,则判断电池的温度是否大于45℃。如果电池的温度大于45℃,说明当前电池的温度过高,减少第一膨胀阀的开度,以减少车内冷却支路的冷却液流量,同时增大第二膨胀阀42的开度,以增大电池冷却支路的冷却液流量。由此,通过调整车内冷却支路和电池冷却支路的制冷量分配,可以在电池温度过高时在目标时间内完成电池的温度调节。
根据本公开的一个实施例,电池的温度调节方法还包括:判断电池的需求功率P1是否大于实际功率P2。如果电池的需求功率P1大于电池的实际功率P2时,则获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于电池的冷却的压缩机的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的冷却功率。如果电池的需求功率P1小于或等于电池的实际功率P2,则减小压缩机的功率或保持压缩机的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的冷却功率。
具体地,当所述温度调节系统工作在冷却模式时,分别获取电池的P1和P2,并进行判断。如果P1大于P2,说明如果按照当前的制冷功率或者冷却液流量,无法在目标时间内完成该电池的降温,所以,获取电池的P1和P2之间的功率差,并根据功率差增加压缩机的功率,或者增加该电池的循环分支回路的冷却液流量,以增加该电池的冷却功率,其中,P1与P2的功率差越大,压缩机的功率和该电池的冷却液流量增加越多,以使电池的 温度在预设时间t内降低至目标温。而如果电池的P1小于或等于P2,可以保持压缩机的功率不变或适当减小压缩机的功率,或者减少该电池的循环分支回路的冷却液流量,减少电池的冷却功率。当电池的温度低于35℃时,则电池冷却完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制第二电子阀关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有电池的温度高于35℃,则再适当增加压缩机的功率,以使该电池尽快完成降温。
根据本公开的一个实施例,如果电池温度小于第三温度阈值,则进一步判断所述车内温度是否等于空调设定温度Ts;如果车内温度等于空调设定温度Ts,则降低多个车内冷却支路的功率,并提高多个电池冷却支路的功率。
具体地,当所述温度调节系统为冷却模式时,如果电池的温度都小于45℃,电池热管理控制器判断车内温度是否达到空调设定温度Ts。如果达到,则增大电池冷却支路的冷却液流量,减小车内冷却支路的冷却液流量,尽快完成电池的降温。而如果车内温度没有达到空调设定温度Ts,则优先满足车内的制冷需求,电池热管理控制器增大车内冷却支路的冷却液流量,并减小电池冷却支路的冷却液流量。
此外,还对电池温度做了分层次处理,温度控制的阈值分别为40℃、45℃和35℃。当电池温度高于40℃时,电池冷却功能启动,当电池温度降低至35℃,则电池冷却完成。当电池温度达到45℃时,优先满足电池冷却需求。另外,需求功率P1大于实际功率P2时,如果电池温度不超过45℃,则仍然优先车内的制冷需求,如果车内的制冷功率已经充足,并达到平衡,则增大电池冷却支路的功率,以增大电池的冷却功率。而如果需求功率P1小于等于实际功率P2时,可优先满足车内制冷需求。
根据本公开的一个实施例,降低多个车内冷却支路的功率具体包括:获取多个区域温度之间的温度差。判断温度差是否大于第四温度阈值。如果温度差大于第四温度阈值时,则将温度高的出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低。其中,第四温度阈值可以根据实际情况进行预设,例如可以为3℃。
在本公开的一个实施例中,多个制冷支路分别对应多个出风口,多个区域温度为多个出风口的温度。
举例而言,如图21所示,可在车厢内设置4个出风口,分别为出风口1-出风口4。通过检测出风口温度Tc检测对应的区域温度Tq。假设出风口1和出风口2由第一制冷支路11提供制冷功率,设出风口3和出风口4由第二制冷支路12提供制冷功率。
根据本公开的一个实施例,车载电池的温度调节方法还包括:将温度低的出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池 冷却支路的功率提高。
具体地,在电池冷却过程中,如果车内需要开启空调,则需要对车厢内的环境温度进行监测和控制,使得车内各处的环境温度保持均衡,同时又能满足电池冷却的要求。如图21所示,当检测到出风口1和出风口2处区域温度Tq比出风口3和出风口4处附近区域温度Tq高3℃以上时,增大第一车内冷却支路中的功率,减小第一电池冷却支路的功率,以使第一车内冷却支路中的冷却功率较大。还减小第二车内冷却支路的功率,增大第二电池冷却支路的功率,以使第二车内冷却支路中的冷却功率较小。由此,可以使第一电池冷却和第二电池冷却支路的冷却功率不变,同时又使得车内各处出风口附近区域气温均衡。当车载空调检测到出风口1、出风口2处附近区域气温Tq和出风口3、出风口4处附近区域气温Tq差异在3℃以内时,控制第一车内冷却支路和第二车内冷却支路中的第一膨胀阀开度相同,以保证第一车内冷却支路和第二车内冷却支路的冷却功率相同。
根据本公开的一个实施例,当所述温度调节系统为加热模式时,还包括:判断电池的需求功率P1是否大于实际功率P2。如果电池的需求功率P1大于实际功率P2,则获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于冷却电池的加热器的功率,或者调节增加电池的循环分支回路的冷却液流量,以增加电池的加热功率。如果电池的需求功率P1小于或等于实际功率P2,则减小加热器的功率或保持加热器的功率不变,或者调节减少电池的循环分支回路的冷却液流量,以减少电池的加热功率。
具体地,当所述温度调节系统为加热模式时,分别获取电池的P1和P2,并进行判断。如果其中P1大于P2,说明如果按照当前的加热功率或者冷却液流量,无法在目标时间内完成电池的升温,所以,获取电池的P1和P2之间的功率差,并根据功率差增加用于加热电池的加热器的功率,或者通过调节对应的泵的转速提高,以增加该电池的循环分支回路的冷却液流量,以使电池可以在目标时间t内完成温度调节。其中,P1与P2的差值越大,加热器的功率增加的越多。而如果电池的P1小于或等于P2,可以适当减小加热器的功率,以节省电能,或者通过调节对应的泵的转速降低减小该电池的循环分支回路的冷却液流量,以减小加热功率,或保持加热器的功率不变。当电池的温度高于预设温度,例如10℃时,电池加热完成,通过CAN通信向车载空调发送关闭温度调节功能的信息,并控制加热器关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,电池的温度仍然低于10℃,则再适当增加加热器的功率,以使该电池尽快完成升温。
据本公开的一个实施例,车载电池的温度调节方法还可以包括:如果电池的需求功率P1小于实际功率P2,则降低电池的流路中泵的转速;如果电池的需求功率P1大于实际功率P2,则提高电池的流路中泵的转速。
具体地,当温度调节系统进入加热模式或者冷却模式时,如果电池的P1小于P2,控 制相应的泵的转速降低,以节省电能。而如果电池的P1大于P2,电池热管理控制器除控制相应的加热器或压缩机的功率增加或电池的循环分支回路的冷却液流量增加外,还控制泵的转速提高,可以增加单位时间内流经冷却流路横截面的冷却液质量,从而提高电池的实际功率P2,以在目标时间t内实现温度调节。
综上所述,根据本公开实施例的车载电池的温度调节方法,首先,分别获取电池的需求功率和实际功率,然后,分别获取车辆中多个区域的区域温度和空调设定温,再根据需求功率、实际功率、多个区域温度和空调设定温度对多个车内冷却支路、多个电池冷却支路和多个制冷支路的功率进行调整。由此,该方法根据电池的实际状态和车厢内多个区域温度和空调设定温度,对电池和车厢内各区域的制冷量进行分配,不仅可以在电池温度过高时或者过低时对温度进行调节,使电池的温度维持在预设范围,还可以均衡车厢内各区域温度。
当电池提供制冷剂的压缩机1可以为多个且相互独立,车内冷却支路3和电池冷却回支路4可以均为1个。
举例而言,如图28所示,以压缩机为两个为例,包括第一压缩机11和第二压缩机12。控制器可以根据需求功率P1和实际功率P2控制压缩机的启动数量。
具体地,当对电池6进行冷却时,如果P1大于P2,控制一个压缩机启动即可,而如果P1小于P2,控制两个压缩机均启动。
本公开的进一步实施例还提出了一种设备。
图29是根据本公开一个实施例的设备的结构示意图。如图29所示,该设备100包括:一个或者多个处理器110、存储器120和一个或多个程序130。一个或者多个程序130存储在存储器120中,当被一个或者多个处理器110执行时,执行如本发明上述任意一个实施例所描述的车载电池的温度调节方法。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术 语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种车载电池的温度调节方法,其特征在于,车载电池的温度调节系统包括多个制冷支路及与所述多个制冷支路对应的多个电池冷却支路、多个车内冷却支路、电池和连接在所述电池和所述多个电池冷却支路之间的电池温度调节装置,其中,每个电池冷却支路包括一个换热器,所述电池温度调节装置均与所述多个电池冷却支路中的换热器相连,所述方法包括以下步骤:
    分别获取所述电池的需求功率和电池的实际功率;
    分别获取车辆中多个区域的区域温度和空调设定温度;
    根据所述电池的需求功率、所述电池的实际功率、多个所述区域温度和所述空调设定温度对所述多个车内冷却支路的功率、所述多个电池冷却支路的功率和所述多个制冷支路的功率进行调整,以使所述电池在目标时间内达到目标温度。
  2. 如权利要求1所述的车载电池的温度调节方法,其特征在于,还包括:
    获取每个压缩机的额定制冷功率;
    根据所述每个压缩机的额定制冷功率生成所述多个压缩机的总额定制冷功率;
    判断所述电池的需求功率是否大于所述多个压缩机的总额定制冷功率;
    如果所述电池的需求功率大于所述多个压缩机的总额定制冷功率,则将所述多个压缩机向所述电池冷却支路的制冷功率调整至最大;
    如果所述电池的需求功率小于或等于所述多个压缩机的总额定制冷功率,则根据所述电池的需求功率对所述电池冷却支路的功率进行调整。
  3. 如权利要求1或2所述的车载电池的温度调节方法,其特征在于,所述获取所述电池的需求功率具体包括:
    获取所述电池开启温度调节时的第一参数,并根据所述第一参数生成电池的第一需求功率;
    获取所述电池在温度调节时的第二参数,并根据所述第二参数生成电池的第二需求功率;
    根据所述第一需求功率和所述第二需求功率生成所述电池的需求功率。
  4. 如权利要求3所述的车载电池的温度调节方法,其特征在于,所述第一参数为所述电池开启温度调节时的初始温度和目标温度以及从所述初始温度达到所述目标温度的目标时间,所述根据所述第一参数生成第一需求功率具体包括:
    获取所述初始温度和所述目标温度之间的第一温度差;
    根据所述第一温度差和所述目标时间生成第一需求功率
    通过以下公式生成所述第一需求功率:
    ΔT 1*C*M/t,
    其中,ΔT 1为所述初始温度和所述目标温度之间的第一温度差,t为所述目标时间,C为所述电池的比热容,M为所述电池的质量;
    所述第二参数为所述电池在预设时间内的平均电流,通过以下公式生成所述第二温度条件需求功率:
    I 2*R,
    其中,I为所述平均电流,R为所述电池的内阻;
    当对电池进行冷却时,通过以下公式生成所述电池的需求功率:
    P1=ΔT 1*C*M/t+I 2*R;
    当对电池进行加热时,通过以下公式生成所述电池的需求功率:
    P1=ΔT 1*C*M/t-I 2*R,
    其中,P1为所述电池的需求功率。
  5. 如权利要求1-4任一项所述的车载电池的温度调节方法,其特征在于,还包括:
    检测所述电池的温度;
    当所述电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式;
    当所述电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。
  6. 如权利要求5所述的车载电池的温度调节方法,其特征在于,当所述温度调节系统为冷却模式时,所述根据所述电池的需求功率、所述电池的实际功率、多个所述区域温度和所述空调设定温度对所述多个车内冷却支路的功率、所述多个电池冷却支路的功率和所述多个制冷支路的功率进行调整具体包括:
    当所述电池的需求功率大于所述电池的实际功率时,判断所述电池温度是否大于第三温度阈值,其中,所述第三温度阈值大于所述第一温度阈值;
    如果所述电池温度大于所述第三温度阈值,则降低所述多个车内冷却支路的功率,并提高所述多个电池冷却支路的功率;
    如果所述电池温度小于所述第三温度阈值,则进一步判断所述车内温度是否大于所述空调设定温度;
    如果所述车内温度大于所述空调设定温度,则提高所述多个车内冷却支路的功率,并降低所述多个电池冷却支路的功率。
  7. 如权利要求6所述的车载电池的温度调节方法,其特征在于,还包括:
    判断所述电池的需求功率是否大于所述电池的实际功率;
    如果所述电池的需求功率大于所述电池的实际功率,则获取所述电池的需求功率和所 述电池的实际功率之间的功率差,并根据所述功率差增加用于冷却所述电池的压缩机的功率,或者调节增加所述电池冷却支路的冷却液流量,以增加所述电池的冷却功率;
    如果所述电池的需求功率小于或等于所述电池的实际功率,则减小所述压缩机的功率或保持所述压缩机的功率不变,或者调节减少所述电池对应的电池冷却支路的冷却液流量,以减少所述电池的冷却功率。
  8. 如权利要求6-7任一项所述的车载电池的温度调节方法,其特征在于,所述降低所述多个车内冷却支路的功率具体包括:
    获取所述多个区域温度之间的温度差;
    判断所述温度差是否大于第四温度阈值;如果大于所述第四温度阈值,则将温度高的所述出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低;
    将温度低的所述出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
  9. 如权利要求5-8任一项所述的车载电池的温度调节方法,其特征在于,当所述温度调节系统为加热模式时,还包括:
    判断所述电池的需求功率是否大于所述电池的实际功率;
    如果所述电池的需求功率大于所述电池的实际功率,则获取所述电池的需求功率和所述电池的实际功率之间的功率差,并根据所述功率差增加用于加热所述电池的加热器的功率,或者调节增加所述电池的循环分支回路的冷却液流量,以增加所述电池的加热功率;
    如果所述电池的需求功率小于或等于所述电池的实际功率,则减小用于加热所述电池的所述加热器的功率,或保持所述加热器的功率不变,或者调节减少所述电池的循环分支回路的冷却液流量,以减少所述电池的加热功率。
  10. 如权利要求5-9任一项所述的车载电池的温度调节方法,其特征在于,还包括:
    如果所述电池的需求功率小于所述电池的实际功率,则降低所述电池的流路中水泵的转速;
    如果所述电池的需求功率大于所述电池的实际功率,则提高所述电池的流路中所述水泵的转速。
  11. 如权利要求1-10任一项所述的车载电池的温度调节方法,其特征在于,所述获取所述电池的实际功率具体包括:
    获取用于调节所述电池温度的流路的入口温度和出口温度,并获取冷却液流入所述流路的流速;
    根据所述电池的流路入口温度和出口温度生成电池的第二温度差;
    根据所述电池的第二温度差和所述流速生成所述电池的实际功率;
    其中,通过以下公式生成所述电池的实际功率:
    ΔT 2*c*m,
    其中,所述ΔT 2为所述第二温度差,c为所述流路中冷却液的比热容,m为单位时间内流过所述流路的横截面积的冷却液质量,其中,m=v*ρ*s,v为所述冷却液的流速,ρ为所述冷却液的密度,s为所述流路的横截面积。
  12. 一种车载电池的温度调节系统,其特征在于,包括:
    多个制冷支路,其中,每个制冷支路包括压缩机、与所述压缩机相连的冷凝器;
    与所述多个制冷支路相连的多个车内冷却支路;
    与所述多个制冷支路相连的多个电池冷却支路;
    分别与电池和所述多个电池冷却支路相连的电池温度调节装置,用于获取电池的需求功率和电池的实际功率,并获取车辆中多个区域的区域温度和空调设定温度,以及根据所述电池的需求功率、所述电池的实际功率、多个所述区域温度和所述空调设定温度对所述多个车内冷却支路、所述多个电池冷却支路和所述多个制冷支路的功率进行调整,以使所述电池在目标时间内达到目标温度。
  13. 如权利要求12所述的车载电池的温度调节系统,其特征在于,所述电池冷却支路包括换热器,所述换热器与所述电池温度调节装置相连,所述电池温度调节装置包括:调节所述多个电池温度的多个流路,所述多个流路设置在所述电池之中,连接在所述流路和所述换热器之间的水泵、介质容器、加热器,以及与所述水泵和加热器电连接的控制器,其中,所述控制器获取所述多个电池的需求功率和实际功率,并根据所述电池的需求功率和所述电池的实际功率对所述电池的温度进行调节,所述电池温度调节装置还包括:
    分别设置在所述多个流路上的多个第一温度传感器、多个第二温度传感器以及多个流速传感器,所述多个第一温度传感器分别设置在所述多个流路的入口,所述多个第二温度传感器分别设置在所述多个流路的出口,所述第一温度传感器、第二温度传感器以及流速传感器均与所述控制器电连接;
    所述电池温度调节装置还包括:多个阀门,所述多个阀门的一端分别与所述水泵的出口相连,所述多个阀门的另一端分别与所述多个第一温度传感器相连。
  14. 如权利要求13所述的车载电池的温度调节系统,其特征在于,所述控制器还用于获取每个压缩机的额定制冷功率,并根据所述每个压缩机的额定制冷功率生成所述多个压缩机的总额定制冷功率,以及判断所述电池的需求功率是否大于所述多个压缩机的总额定制冷功率,其中,
    当所述电池的需求功率大于所述多个压缩机的总额定制冷功率时,所述控制器将所述 多个电池冷却支路的制冷功率调整至最大;
    当所述电池的需求功率小于或等于所述多个压缩机的总额定制冷功率时,所述控制器根据所述电池的需求功率对所述电池冷却支路的功率进行调整。
  15. 如权利要求13所述的车载电池的温度调节系统,其特征在于,所述控制器用于分别获取所述电池开启温度调节时的第一参数,并根据所述第一参数生成电池的第一需求功率,以及分别获取所述电池在温度调节时的第二参数,并根据所述第二参数生成电池的第二需求功率,并根据第一需求功率和所述第二需求功率生成所述电池的需求功率;
    其中,所述第一参数为所述电池开启温度调节时的初始温度和目标温度以及从所述初始温度达到所述目标温度的目标时间,所述控制器获取所述初始温度和所述目标温度之间的第一温度差,并根据所述第一温度差和所述目标时间生成第一需求功率;
    其中,所述控制器通过以下公式生成所述第一需求功率:
    ΔT 1*C*M/t,
    其中,ΔT 1为所述每个电池初始温度和所述目标温度之间的第一温度差,t为所述目标时间,C为所述电池的比热容,M为所述电池的质量;
    所述第二参数为所述电池在预设时间内的平均电流,所述控制器通过以下公式生成所述电池的第二需求功率:
    I 2*R,
    其中,I为所述平均电流,R为所述电池的内阻;
    当对电池进行冷却时,通过以下公式生成所述电池的需求功率:
    P1=ΔT 1*C*M/t+I 2*R;
    当对电池进行加热时,通过以下公式生成所述电池的需求功率:
    P1=ΔT 1*C*M/t-I 2*R,
    其中,P1为所述电池的需求功率;
    所述控制器用于分别根据所述第一温度传感器检测的入口温度和第二温度传感器检测的出口温度生成电池的第二温度差,并根据所述电池的第二温度差和所述流速传感器检测的流速生成所述电池的实际功率;
    其中,通过以下公式生成所述电池的实际功率:
    ΔT 2*c*m,
    其中,所述ΔT 2为所述第二温度差,c为所述流路中的冷却液的比热容,m为单位时间内流过所述流路的横截面积的冷却液质量,其中,m=v*ρ*s,v为所述冷却液的流速,ρ为所述冷却液的密度,s为所述流路的横截面积。
  16. 如权利要求12-15中任一项所述的车载电池的温度调节系统,其特征在于,所述 控制器,还用于检测所述电池的温度,并在所述电池的温度大于第一温度阈值时,控制所述温度调节系统进入冷却模式,以及在所述电池的温度小于第二温度阈值时,控制所述温度调节系统进入加热模式。
  17. 如权利要求16所述的车载电池的温度调节系统,其特征在于,所述控制器用于,在所述电池冷却支路的所述电池的需求功率大于所述电池的实际功率时,判断所述电池温度是否大于第三温度阈值,其中,如果所述电池温度大于所述第三温度阈值,则所述控制器降低所述多个车内冷却支路的功率,并提高所述多个电池冷却支路的功率,其中,所述多个电池冷却支路的功率通过对应的阀门分别控制,所述第三温度阈值大于所述第一温度阈值;
    所述控制器还用于在所述电池温度小于所述第三温度阈值,且所述车内温度大于所述空调设定温度时,提高所述多个车内冷却支路的功率,并降低所述多个电池冷却支路的功率,所述控制器还用于获取所述多个区域温度之间的温度差,并在所述温度差大于第四温度阈值时,将温度高的所述出风口所在制冷支路对应的车内冷却支路的功率增大,并将温度高的出风口所在制冷支路对应的电池冷却支路的功率降低,所述控制器还用于将温度低的所述出风口所在制冷支路对应的车内冷却支路的功率降低,并将温度低的出风口所在制冷支路对应的电池冷却支路的功率提高。
  18. 如权利要求13所述的车载电池的温度调节系统,其特征在于,所述控制器,还用于在所述电池的需求功率小于所述电池的实际功率时,降低水泵的转速,并在所述电池的需求功率大于所述电池的实际功率时,提高所述水泵的转速。
  19. 如权利要求12所述的车载电池的温度调节系统,其特征在于,所述电池为电池包或电池模组。
  20. 一种设备,其特征在于,包括:
    一个或者多个处理器;
    存储器;
    一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如权利要求1-11任一项所述的车载电池的温度调节方法。
PCT/CN2018/108747 2017-09-30 2018-09-29 车载电池的温度调节方法和温度调节系统 WO2019062943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710922755.0A CN109599609B (zh) 2017-09-30 2017-09-30 车载电池的温度调节方法和温度调节系统
CN201710922755.0 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062943A1 true WO2019062943A1 (zh) 2019-04-04

Family

ID=65901028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108747 WO2019062943A1 (zh) 2017-09-30 2018-09-29 车载电池的温度调节方法和温度调节系统

Country Status (3)

Country Link
CN (1) CN109599609B (zh)
TW (1) TWI666809B (zh)
WO (1) WO2019062943A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592321A (zh) * 2018-03-16 2018-09-28 珠海格力电器股份有限公司 空调控制方法及系统、空调、传感器
FR3097310A1 (fr) * 2019-06-14 2020-12-18 Valeo Systemes Thermiques Procédé de gestion d’un dispositif de gestion thermique pour véhicule automobile et dispositif de gestion thermique associé.
CN113363624A (zh) * 2020-03-04 2021-09-07 郑州宇通客车股份有限公司 一种新能源车辆热管理控制方法、装置和系统
CN112810393B (zh) * 2020-04-17 2024-01-26 株式会社电装 空调系统及其制冷控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098081A (ja) * 2011-11-02 2013-05-20 Toyota Industries Corp 電池温度調節システム
CN105932354A (zh) * 2016-05-10 2016-09-07 北京长安汽车工程技术研究有限责任公司 一种汽车动力电池冷却系统和电动汽车
CN206148573U (zh) * 2016-10-11 2017-05-03 比亚迪股份有限公司 一种电池包热管理系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4297105B2 (ja) * 2005-10-14 2009-07-15 トヨタ自動車株式会社 蓄電装置の冷却構造
CN202923336U (zh) * 2012-07-26 2013-05-08 上海汽车集团股份有限公司 车用空调及电池热管理系统和设有该系统的车辆
CN102853932B (zh) * 2012-08-28 2014-06-11 奇瑞汽车股份有限公司 一种车用电机控制器的温度检测诊断方法
US20170087957A1 (en) * 2015-09-24 2017-03-30 Ford Global Technologies, Llc Hybrid vehicle with multi-zone cabin cooling and integrated battery cooling
CN105337002B (zh) * 2015-11-13 2019-11-15 湖南南车时代电动汽车股份有限公司 一种整车热管理系统
CN106314110A (zh) * 2016-09-12 2017-01-11 法乐第(北京)网络科技有限公司 电动汽车组件冷却系统、冷却方法及应用该系统的电动汽车

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098081A (ja) * 2011-11-02 2013-05-20 Toyota Industries Corp 電池温度調節システム
CN105932354A (zh) * 2016-05-10 2016-09-07 北京长安汽车工程技术研究有限责任公司 一种汽车动力电池冷却系统和电动汽车
CN206148573U (zh) * 2016-10-11 2017-05-03 比亚迪股份有限公司 一种电池包热管理系统

Also Published As

Publication number Publication date
CN109599609A (zh) 2019-04-09
TW201916455A (zh) 2019-04-16
TWI666809B (zh) 2019-07-21
CN109599609B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
TWI674695B (zh) 車輛的溫度調節方法和溫度調節系統
TWI680606B (zh) 車載電池的溫度調節方法和溫度調節系統
CN109599604B (zh) 车载电池的温度调节系统
TWI667827B (zh) 車載電池的溫度調節方法和溫度調節系統
CN109599607B (zh) 车载电池的温度调节系统
CN109599622B (zh) 车载电池的温度调节方法和温度调节系统
CN109599634B (zh) 车载电池的温度调节方法和温度调节系统
WO2019062943A1 (zh) 车载电池的温度调节方法和温度调节系统
WO2019062942A1 (zh) 车载电池的温度调节方法和温度调节系统
TWI666850B (zh) 車載電池的溫度調節系統
CN109599613B (zh) 车载电池的温度调节方法和温度调节系统
TWI666808B (zh) 車載電池的溫度調節系統
WO2019062988A1 (zh) 车载电池的温度调节方法和温度调节系统
CN109599624B (zh) 车载电池的温度调节方法和温度调节系统
CN109599629B (zh) 车载电池的温度调节方法和温度调节系统
TWI672845B (zh) 車載電池的溫度調節系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862705

Country of ref document: EP

Kind code of ref document: A1