WO2019062884A1 - Led light bulb - Google Patents

Led light bulb Download PDF

Info

Publication number
WO2019062884A1
WO2019062884A1 PCT/CN2018/108545 CN2018108545W WO2019062884A1 WO 2019062884 A1 WO2019062884 A1 WO 2019062884A1 CN 2018108545 W CN2018108545 W CN 2018108545W WO 2019062884 A1 WO2019062884 A1 WO 2019062884A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
led module
stand
voltage
Prior art date
Application number
PCT/CN2018/108545
Other languages
French (fr)
Inventor
Yehua Wan
Xuchu Ge
Jinxiang Shen
Original Assignee
Zhejiang Shenghui Lighting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Shenghui Lighting Co., Ltd. filed Critical Zhejiang Shenghui Lighting Co., Ltd.
Publication of WO2019062884A1 publication Critical patent/WO2019062884A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to the field of illumination and, in particular, to a light-emitting diode (LED) light bulb.
  • LED light-emitting diode
  • Lighting is using various light sources to illuminate work and living areas or individual objects.
  • a light bulb can be regarded as an apparatus with a lighting function.
  • a light-emitting diode (LED) light bulb is a bulb that using an LED as a light source.
  • the LED is a solid-state semiconductor device capable of converting electrical energy into visible light, i.e., directly converting electricity into light.
  • An existing LED light bulb includes an LED filament light bulb.
  • the LED filament light bulb uses an LED light bar instead of a traditional filament to emit light.
  • the LED light bar can realize a 360-degree illumination in the circumferential direction.
  • the existing LED light bulb also includes an LED light bulb using an LED module to emit light.
  • the LED module is arranged on a substrate to achieve the 360-degree illumination in the circumferential direction.
  • the existing LED light bulb regardless of the LED filament light bulb or the light bulb using the LED module to emit light, can emit light to 360 degrees of the circumferential direction.
  • the irradiation region needs to be limited to a certain targeted region.
  • the existing LED light bulb cannot have illumination to the targeted region, resulting in a low light emitting/extraction efficiency with respect to the targeted region.
  • the LED light bulb includes an LED module configured to emit light, a stand configured to house the LED module, and a glass cover.
  • the glass cover can accommodate the stand and the LED module.
  • the glass cover includes an open end and a light-exiting side opposite to the open end. The open end of the glass cover is connected to a first end of the stand.
  • the LED module emits light toward the light-exiting side of the glass cover.
  • the LED light bulb further includes a heat sink disposed between the LED module and a second end of the stand.
  • the heat sink includes a heat sink body and an extension extending from an outer periphery of the heat sink body.
  • the LED module is disposed on a top surface of the heat sink body.
  • the extension extends from an outer periphery of a bottom surface of the heat sink body.
  • the stand can support and fixate the heat sink and the LED module on the heat sink.
  • the stand includes a main body and a fastener. A first end of the main body is connected to the open end of the glass cover. A first end of the fastener is connected to the main body of the stand. A second end of the fastener is connected to the heat sink.
  • an inner wall of the glass cover includes a first portion and second portion.
  • the first portion corresponds to the light-exiting side of the glass cover.
  • the second portion of the inner wall of the glass cover is partially or completely coated with a first coating layer.
  • the first coating layer can reflect light.
  • the LED module includes a substrate and a planar light source disposed on a first side of the substrate.
  • the planar light source facing toward the light-exiting side of the glass cover.
  • the LED light bulb further includes a driving power supply and a conductive line.
  • the driving power supply is disposed at the first end of the stand.
  • the conductive line passes through the stand and is respectively connected to the LED module and the driving power supply.
  • the conductive line includes a first line section and a second line section.
  • the first line section partially or completely disposed inside the stand.
  • the second line section is disposed outside the stand.
  • a first end of the first line section is connected to the driving power supply.
  • a second end of the first line section is connected to a first end of the second line section.
  • a second end of the second line section is connected to the LED module.
  • the stand is configured to support and fixate the LED module through the second line section.
  • the driving power supply includes a rectifier circuit and a voltage regulation driving circuit, an input terminal of the rectifier circuit is connected to an external power supply through a lamp head of the LED light bulb, and an output terminal of the rectifier circuit is connected to the voltage regulation driving circuit.
  • the rectifier circuit is configured to rectify the external power supply and supply the rectified power supply to the voltage regulation driving circuit.
  • the voltage regulation driving circuit is configured to use the supplied power to drive the LED module to emit light.
  • the voltage regulation driving circuit is a linear voltage regulator circuit.
  • the voltage regulation driving circuit includes a voltage-current conversion sub-circuit and a first resistor.
  • An output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor, an input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit, a sampling terminal of the voltage-current conversion sub-circuit is connected to a second terminal of the first resistor, and the second terminal of the first resistor is connected to the LED module.
  • the voltage regulation driving circuit is a switching voltage regulator circuit.
  • the voltage regulation driving circuit includes a voltage-current conversion sub-circuit, a first resistor, a first diode, a first inductor, and a first capacitor.
  • An output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor.
  • An input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit.
  • An output terminal of the first diode and the first terminal of the first resistor are connected to the output terminal of the voltage-current conversion sub-circuit.
  • a first terminal of the first inductor and a second terminal of the first resistor are connected to a sampling terminal of the voltage-current conversion sub-circuit.
  • a first capacitor is connected in parallel with both terminals of the LED module.
  • a first terminal of the first capacitor is further connected to a second terminal of the first inductor.
  • a second terminal of the first capacitor, an output terminal of the LED module, and an input terminal of the first diode are grounded.
  • the first end of the stand is sealed with the open end of the glass cover.
  • the LED module can emit light toward the light-exiting side of the glass cover.
  • the light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation. As such, a non-360-degree illumination angle can be obtained, and illumination for a targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
  • FIG. 1 is a structural diagram of a light-emitting diode (LED) light bulb according to some embodiments of the present disclosure
  • FIG. 2 is a structural diagram of an LED light bulb according to some other embodiments of the present disclosure.
  • FIG. 3 is a structural diagram of a glass cover according to some embodiments of the present disclosure.
  • FIG. 4 is a circuit diagram of a driving power supply according to some embodiments of the present disclosure.
  • FIG. 5 is a circuit diagram of a driving power supply according to some other embodiments of the present disclosure.
  • FIG. 1 is a structural diagram of a light-emitting diode (LED) light bulb according to some embodiments of the present disclosure.
  • LED light-emitting diode
  • FIG. 2 is a structural diagram of an LED light bulb according to some other embodiments of the present disclosure.
  • the LED light bulb includes a glass cover 1, a stand 5 and an LED module 2.
  • the stand 5 and the LED module 2 are both disposed inside the glass cover 1.
  • An open end 11 of the glass cover 1 is connected to and contacts a first end (e.g., a bottom end) of the stand 5.
  • the first end of the stand 5 may be a bottom end of the stand 5, and a second end of the stand 5 may be a top end of the stand 5.
  • the stand 5 is configured to fixate the LED module 2.
  • the LED module 2 faces the light-exiting side 10 of the glass cover 1.
  • the light-exiting side 10 is a side of the glass cover 1 opposite to the open end 11.
  • a top surface of the glass cover 1 is a surface where the light emitted from the LED module 2 exits, which is considered as the light-exiting side 10 of the glass cover 1.
  • the bottom end of the glass cover 1, i.e., located opposite to the light-exiting side 10 is the open end of the glass cover 1.
  • the glass cover 1 can be a cover made of glass, which is transparent and can realize light transmission.
  • a material and a structure of the glass cover 1 can be designed to further optically process the emitted light.
  • the stand 5 can be a structure that is relatively fixed with respect to the position of the glass cover 1.
  • the stand 5 can be configured to fixate the position of the LED module 2 directly or indirectly.
  • the function of the stand 5 may include not only fixating the position of the LED module 2, but also fixating the position of other parts, such as a heat sink 3 and a conductive line 4.
  • the LED module 2 can be any module that faces toward the light-exiting side 10 and that includes one or more LEDs as a light source.
  • the orientation can be towards a desired illumination region.
  • the LED module can emit light toward the light-exiting side of the glass cover.
  • the light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation. As such, a non-360-degree illumination angle can be obtained, and illumination for a targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
  • the LED light bulb further includes a heat sink 3 disposed between the LED module 2 and the stand 5.
  • the heat sink 3 can be configured to dissipate heat from the LED module 2 by heat conduction.
  • the heat sink 3 may be made of a metal material or a non-metal material.
  • the heat sink 3 may be an integrally formed structure or a non-integrally formed structure.
  • the heat sink 3 includes a heat sink body 31 and an extension 32 extending from an outer periphery of the heat sink body 31.
  • the LED module 2 is disposed on a first side surface (e.g., top surface) of the heat sink body 31.
  • the heat sink body 31 may be a plate or a disk.
  • the extension 32 extends from an outer periphery of a second side surface (e.g., bottom surface) of the heat sink body 31.
  • the extension 32 may have a hollow cylindrical shape.
  • the stand 5 can be connected to the second side surface of the heat sink body 31, and the extension 32 is located at an outer side the stand 5.
  • the extension 32 and the heat sink body 31 may be integrally formed to improve the efficiency of heat conduction in the heat sink 3.
  • the heat dissipation area can be effectively increased, thereby improving the heat dissipation effect.
  • the extension 32 can be perpendicular to the heat sink body 31, and the heat sink body 31 can have a circular shape to achieve a uniform heat dissipation effect.
  • the extension 32 can also include a notch.
  • the heat sink body 31 may also include one or more through holes, and the conductive line 4 can pass through the through hole.
  • a thickness of the heat sink body 31 may be the same as or different from a thickness of the extension 32.
  • the first end of the stand 5 is sealed with the open end 11 of the glass cover 1, such that the connection between the stand 5 and the glass cover 1 is stable and firm, and, the seal the glass cover 1 can be secured.
  • the stand 5 may include a main body 52 and a fastener 51.
  • a first end (e.g., a bottom end) of the main body 52 is connected to the open end 11 of the glass cover 1.
  • a first end (e.g., a bottom end) of the fastener 51 is connected to a second end (e.g., a top end) of the main body 52.
  • a second end (e.g., a top end) of the fastener 51 is connected to the heat sink 3 to support and fixate the heat sink 3 and the LED module 2 on the heat sink 3.
  • the fastener 51 can be connected to the second side surface (e.g., a bottom surface) of the heat sink body 31.
  • the main body 52 may be made of a glass material.
  • the main body 52 can be sealed with the glass cover 1.
  • a size of the main body 52 of the stand 5 is compatible with the open end 11 of the glass cover 1, and the open end 11 can be sealed onto the main body 52 of the stand 5 (e.g., by melting) .
  • the fastener 51 may be made of a non-glass material or a glass material.
  • the extension 32 of the heat sink 3 can cover the outer side of the fastener 51.
  • the first end of the fastener 51 can also be movably connected to the main body 52 to achieve a positional adjustment of the fastener 51 relative to the main body 52.
  • the LED module 2 includes a substrate 22 and a planar light source 21 disposed on a first side of the substrate 22.
  • the planar light source 21 faces toward the light-exiting side 10.
  • the number of the substrates 22 in the LED module 2 may be one.
  • the substrate 22 may be made of a non-transparent material.
  • the substrate 22 may be a metal substrate or a ceramic substrate.
  • the number of the planar light sources 21 may be one or more than one.
  • the planar light source 21 may include a plurality of LED particles/chips connected in series.
  • FIG. 3 is a structural diagram of a glass cover according to some embodiments of the present disclosure.
  • the inner wall of the glass cover 1 may include a first portion corresponding to the light-existing side 10 and a second portion.
  • the second portion 9 is the remaining inner wall of the glass cover 1 except the inner wall of the light-exiting side 10.
  • the second portion 9 can be partially or completely coated with a first coating layer 9 having a light reflective effect.
  • the inner wall of the light-exiting side 10 may be coated with a second coating layer.
  • a configuration of second coating layer of the light-exiting side 10 may be different from a configuration of the first coating layer 9, and a reflection effect of the second coating layer may also be different from the reflection effect of the first coating layer 9.
  • the light output to the first coating layer 9 can be reflected to the light-exiting side 10 to achieve a guided output emission of the light, thereby improving the light emitting/extraction efficiency of the LED light bulb for the targeted illumination region.
  • the above method provided by the present disclosure can further improve the light emitting/extraction efficiency.
  • the first coating layer 9 has a function of reflecting light and may be one layer or a plurality of layers. In some embodiment, the first coating layer 9 may have other functions, such as facilitating heat dissipation, etc., which is not limited by the present disclosure.
  • the LED light bulb further includes a driving power supply 7 and a conductive line 4.
  • the driving power supply 7 is disposed at the first end of the stand 5.
  • the conductive line 4 can pass through the stand 5 and can be respectively connected to the LED module 2 and the driving power supply 7.
  • the bottom surface of the main body 52 may include an elongated rod extending downwards.
  • the circuit board 6 may include a center hole.
  • the elongated rod on the bottom surface of the main body 52 can pass through the center hole of the circuit board 6.
  • the circuit board 6 can be sleeved onto the main body 52.
  • the circuit board 6 can be fixedly connected to the main body 52.
  • the circuit board 6 may be movably connected to the main body 52. After the lamp had 8 is screwed to the open end 11 of the casing structure 1, the circuit board 67 and the driving power supply 7 can be fixedly accommodated inside the lamp head 8.
  • the conductive line 4 can be any line structure that can be conductive. At least a part of the conductive line 4 can include a rigid structure, such as a conductive rod. The rigid structure of the conductive line 4 can provide support to parts that contact the conductive line 4, such as the heat sink body 31 and/or the LED module 2. The conductive line 4 can pass through the main body 52 of the stand 5 and the through hole of the heat sink body 31 to connect the LED module 2.
  • the LED module 2 can also include a conductive member to connect the conductive line 4.
  • the conductive line 4 may include a first line section 41 and a second line section 42.
  • a first terminal of the first line section 41 is connected to the driving power supply 7.
  • a second terminal of the first line section 41 is connected to a first terminal of the second line section 42.
  • a second terminal of the second line section 42 is connected to the LED module 2.
  • both the first line section 41 and the second line section 42 can be rigid lines.
  • the second line section 41 is a rigid line, while a part of or all of the first line section may be any suitable type of wire.
  • the first line section 41 is partially or completely sleevedly disposed in the stand 5, and the second line section 42 is located outside the stand 5.
  • the LED module 2 is supported and fixed by the stand 5 through the second line section 42.
  • the shapes of the first line section 41 and the second line section 42 may vary depending on the requirements of the structure and the material.
  • the first line section 41 and the second line section 42 may also be integral.
  • the stand 5 can indirectly fixate the position of the LED module 2.
  • the fastener 51 of the stand can support and fixate the heat sink 3 and the LED module 2 on the heat sink 3.
  • the second line section 42 can support and fixate the heat sink 2 and/or the LED module 2.
  • the second line section and the fastener 51 can support and fixate the LED module 2, thereby ensuring the stability of the LED module 2.
  • the fastener 51 can support the heat sink 3 by interacting on the second side surface of the heat sink 3.
  • the fastener 51 can be fixedly mounted to the heat sink 3, or may not be fixedly mounted to the heat sink 3.
  • the second line section 42 can be fixedly mounted to the heat sink 3 and/or the LED module 2.
  • the number of the second line sections 42 may be two.
  • the two second line sections 42 may be respectively connected to different positions of the LED module 2, not only realizing a connection loop, but also providing a multi-point support to ensure a stable positioning of LED mode 2.
  • the LED light bulb further includes a lamp head 8.
  • the lamp head 8 is connected to the open end 11 of the glass cover 1.
  • the lamp head 8 can be configured to enable conduction between the inner circuit of the LED light bulb and the external power source U0. Inside of the LED light bulb, the lamp head 8 can be electrically connected to the driving power supply 7. Outside the LED light bulb, the lamp head 8 can be connected to the external power source U0.
  • FIG. 4 is a circuit diagram of a driving power supply according to some embodiments of the present disclosure.
  • FIG. 5 is a circuit diagram of a driving power supply according to some other embodiments of the present disclosure.
  • the driving power supply 7 includes a rectifier circuit U1 and a voltage regulation driving circuit.
  • An input terminal of the rectifier circuit U1 is connected to an external power source U0 through a lamp head 8.
  • An output terminal of the rectifier circuit U1 is connected to the voltage regulation driving circuit.
  • the rectifier circuit U1 is configured to rectify the external power source U0 and supply the rectified voltage to the voltage regulation driving circuit.
  • a first terminal of the rectifier circuit U1 may be connected in parallel with a third capacitor C3; and the second terminal of the rectifier circuit U1 may be connected in parallel with the second capacitor C2, so as to achieve voltage regulation.
  • the voltage regulation driving circuit can be configured to drive the LED module 2 to emit light by using the rectified electric power, which can drive the planar light emitting source 21 of the LED module 2 to emit light.
  • the planar light emitting source 21 may include LED particles/chips connected in series. A connection between different planar light sources 21 may be in series or in parallel.
  • the voltage regulation driving circuit can be a linear voltage regulating circuit.
  • the voltage regulation driving circuit includes a voltage-current conversion sub-circuit U2 and a first resistor R1.
  • An output terminal of the voltage-current conversion sub-circuit U2 is connected to the first terminal of the first resistor R1.
  • An input terminal of the voltage-current conversion sub-circuit U2 is connected to the rectifier circuit U1.
  • a sampling terminal of the voltage-current conversion sub-circuit U2 is connected to a second terminal of the first resistor R1.
  • the second terminal of the first resistor R1 is connected to the LED module 2.
  • the voltage-current conversion sub-circuit U2 can be configured to utilize the supplied electrical power to output a constant current source.
  • the constant current source can be supplied to the LED module 2 after being divided by the first resistor R1.
  • the voltage-current conversion sub-circuit U2 may include a controller and a switch. An input terminal of the switch is connected to the rectifier circuit U1. An output terminal of the switch is connected to the first terminal of the first resistor R1. A control terminal of the switch is connected to an output terminal of the controller. A power supply terminal of the controller is connected to the rectifier circuit U1. An enabling terminal of the controller may be input with a high voltage to drive the controller to operate, and the sampling terminal of the voltage-current conversion sub-circuit U2 may be connected to the second terminal of the first resistor R1. The sampling terminal of the voltage-current conversion sub-circuit U2 can be a signal input terminal of the first resistor. The second terminal of the first resistor R1 may also be connected to the LED module 2. The controller can be configured to control the operation of the switch device based on the electrical signal collected by the sampling terminal.
  • the voltage regulation driving circuit may be a switching voltage regulator circuit.
  • the voltage regulation driving circuit is a switching voltage regulator circuit and may also include one of a buck converter circuit (Buck circuit) ; a switching DC boost circuit (Boost circuit) ; and a flyback converter circuit (Flyback circuit) .
  • Boost circuit switching DC boost circuit
  • Flyback circuit flyback converter circuit
  • the output voltage can be lower than the input voltage, and the output current is continuous.
  • the voltage regulation driving circuit includes a voltage-current conversion sub-circuit U2, a first resistor R1, a first diode D1, a first inductor T1, and a first capacitor C1.
  • the voltage-current conversion sub-circuit U2 can be configured to utilize the supplied electrical power to output current.
  • the voltage-current conversion sub-circuit U2 may include a controller and a switch. An input terminal of the switch is connected to the rectifier circuit U1. An output terminal of the switch is connected to the first terminal of the first resistor R1. A control terminal of the switch is connected to an output terminal of the controller. A power supply terminal of the controller is connected to the rectifier circuit U1. An enabling terminal of the controller may be input with a high voltage to drive the controller to operate, and the sampling terminal of the voltage-current conversion sub-circuit U2 may be connected to the second terminal of the first resistor R1. The sampling terminal of the voltage-current conversion sub-circuit U2 can be a signal input terminal of the first resistor. The second terminal of the first resistor R1 may also be connected to the LED module 2. The controller can be configured to control the operation of the switch device based on the electrical signal collected by the sampling terminal.
  • the voltage-current conversion sub-circuit U2 can output a low-voltage direct current through the first resistor R1, the first inductor T1, the first diode D1, and the first capacitor C1, so as to supply the direct current to the LED module 2.
  • An input terminal of the first diode D1 is connected to an output terminal of the LED module 2.
  • An output terminal of the first diode D1 is connected to the first terminal of the first resistor R1, i.e. the output terminal of the voltage-current conversion sub-circuit U2.
  • a first terminal of the first inductor T1 is connected to the second terminal of the first resistor R1, i.e. connected to the sampling terminal of the voltage-current conversion sub-circuit U2.
  • the first capacitor C1 is connected in parallel with two terminals of the LED module 2. A first terminal of the first capacitor C1 is connected to the second terminal of the inductor T1. The second terminal of the first capacitor C1, the output terminal of the LED module 2 and the input terminal of the first diode D1 are all grounded.
  • a working principle of the voltage-current conversion sub-circuit U2 of the LED light bulb can be briefly described as follows.
  • the switch can be configured to turn on and turn off the circuit of the voltage-current conversion sub-circuit U2.
  • the voltage-current conversion sub-circuit U2 is turned on, the first inductor T1 is magnetized, the current flowing through the first inductor T1 can be linearly increased, and the first capacitor C1 can be charged to provide the LED module 2 with the electrical energy.
  • the first inductor T1 When the voltage-current conversion sub-circuit U2 is turned off, the first inductor T1 can be controlled to discharge through the first diode D1, the current of the first inductor T1 can be linearly reduced, and the output voltage is maintained by the discharge of the first capacitor C1 and the reduced inductor current.
  • the LED module can emit light toward the light-exiting side of the glass cover.
  • the light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation.
  • the non-360-degree illumination angle can be obtained, and illumination for the targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
  • first component when a first component is referred to as “connecting” to a second component, it is intended that the first component may be fixedly connected or detachably connected to the second component, or the first component and the second component may be integrally formed.
  • a connection between the first component and the second component may be mechanical connection, electrical connection or communicating connection.
  • the first component may be directly attached to the second component or may be indirectly attached to the second component via an intermedia component.
  • the first component can be internally connected to the second component, or the first component and the component may interact with each other. Specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

An LED light bulb includes an LED module configured to emit light, a stand configured to house the LED module, and a glass cover. The glass cover can accommodate the stand and the LED module. The glass cover includes an open end and a light-exiting side opposite to the open end. The open end of the glass cover is connected to a first end of the stand. The LED module emits light toward the light-exiting side of the glass cover.

Description

LED LIGHT BULB
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application No. 201710906227.6, filed on September 29, 2017, the entire contents of which are incorporated herein by reference.
FIELD OF THE TECHNOLOGY
The present disclosure relates to the field of illumination and, in particular, to a light-emitting diode (LED) light bulb.
BACKGROUND
Lighting is using various light sources to illuminate work and living areas or individual objects. A light bulb can be regarded as an apparatus with a lighting function. A light-emitting diode (LED) light bulb is a bulb that using an LED as a light source. The LED is a solid-state semiconductor device capable of converting electrical energy into visible light, i.e., directly converting electricity into light.
An existing LED light bulb includes an LED filament light bulb. The LED filament light bulb uses an LED light bar instead of a traditional filament to emit light. The LED light bar can realize a 360-degree illumination in the circumferential direction. The existing LED light bulb also includes an LED light bulb using an LED module to emit light. The LED module is arranged on a substrate to achieve the 360-degree illumination in the circumferential direction.
However, the existing LED light bulb, regardless of the LED filament light bulb or the light bulb using the LED module to emit light, can emit light to 360 degrees of the circumferential direction. To achieve a non-360-degree illumination, the irradiation region needs to be limited to a certain targeted region. The existing LED light bulb cannot have illumination to the targeted region, resulting in a low light emitting/extraction efficiency with respect to the targeted region.
SUMMARY
To solve the above technical problem, the present disclosure provides a  light-emitting diode (LED) light bulb. The LED light bulb includes an LED module configured to emit light, a stand configured to house the LED module, and a glass cover. The glass cover can accommodate the stand and the LED module. The glass cover includes an open end and a light-exiting side opposite to the open end. The open end of the glass cover is connected to a first end of the stand. The LED module emits light toward the light-exiting side of the glass cover.
In some embodiments, the LED light bulb further includes a heat sink disposed between the LED module and a second end of the stand.
In some embodiments, the heat sink includes a heat sink body and an extension extending from an outer periphery of the heat sink body. The LED module is disposed on a top surface of the heat sink body. The extension extends from an outer periphery of a bottom surface of the heat sink body.
In some embodiments, the stand can support and fixate the heat sink and the LED module on the heat sink. The stand includes a main body and a fastener. A first end of the main body is connected to the open end of the glass cover. A first end of the fastener is connected to the main body of the stand. A second end of the fastener is connected to the heat sink.
In some embodiments, an inner wall of the glass cover includes a first portion and second portion. The first portion corresponds to the light-exiting side of the glass cover. The second portion of the inner wall of the glass cover is partially or completely coated with a first coating layer. The first coating layer can reflect light.
In some embodiments, the LED module includes a substrate and a planar light source disposed on a first side of the substrate. The planar light source facing toward the light-exiting side of the glass cover.
In some embodiments, the LED light bulb further includes a driving power supply and a conductive line. The driving power supply is disposed at the first end of the stand. The conductive line passes through the stand and is respectively connected to the LED module and the driving power supply.
In some embodiments, the conductive line includes a first line section and a second line section. The first line section partially or completely disposed inside the stand. The second line section is disposed outside the stand. A first end of the first line section is  connected to the driving power supply. A second end of the first line section is connected to a first end of the second line section. A second end of the second line section is connected to the LED module. The stand is configured to support and fixate the LED module through the second line section.
In some embodiments, the driving power supply includes a rectifier circuit and a voltage regulation driving circuit, an input terminal of the rectifier circuit is connected to an external power supply through a lamp head of the LED light bulb, and an output terminal of the rectifier circuit is connected to the voltage regulation driving circuit. The rectifier circuit is configured to rectify the external power supply and supply the rectified power supply to the voltage regulation driving circuit. The voltage regulation driving circuit is configured to use the supplied power to drive the LED module to emit light.
In some embodiments, the voltage regulation driving circuit is a linear voltage regulator circuit.
In some embodiments, the voltage regulation driving circuit includes a voltage-current conversion sub-circuit and a first resistor. An output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor, an input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit, a sampling terminal of the voltage-current conversion sub-circuit is connected to a second terminal of the first resistor, and the second terminal of the first resistor is connected to the LED module.
In some embodiments, the voltage regulation driving circuit is a switching voltage regulator circuit.
In some embodiments, the voltage regulation driving circuit includes a voltage-current conversion sub-circuit, a first resistor, a first diode, a first inductor, and a first capacitor. An output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor. An input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit. An output terminal of the first diode and the first terminal of the first resistor are connected to the output terminal of the voltage-current conversion sub-circuit. A first terminal of the first inductor and a second terminal of the first resistor are connected to a sampling terminal of the voltage-current conversion sub-circuit. A first capacitor is connected in parallel with both terminals of the LED module. A first  terminal of the first capacitor is further connected to a second terminal of the first inductor. A second terminal of the first capacitor, an output terminal of the LED module, and an input terminal of the first diode are grounded.
In some embodiments, the first end of the stand is sealed with the open end of the glass cover.
Using the LED light bulb provided by the present disclosure, the LED module can emit light toward the light-exiting side of the glass cover. The light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation. As such, a non-360-degree illumination angle can be obtained, and illumination for a targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
BRIEF DESCRIPTION OF THE DRAWINGS
To more clearly explain the embodiments of the present disclosure or the technical solutions in a conventional technology, the drawings used in the description of the embodiments or the conventional technology are briefly described below. Obviously, the drawings described below illustrate only some embodiments of the present disclosure. For those skilled in the art, other drawings may also be obtained based on these drawings without creative efforts.
FIG. 1 is a structural diagram of a light-emitting diode (LED) light bulb according to some embodiments of the present disclosure;
FIG. 2 is a structural diagram of an LED light bulb according to some other embodiments of the present disclosure;
FIG. 3 is a structural diagram of a glass cover according to some embodiments of the present disclosure;
FIG. 4 is a circuit diagram of a driving power supply according to some embodiments of the present disclosure; and
FIG. 5 is a circuit diagram of a driving power supply according to some other embodiments of the present disclosure.
Reference numerals in the drawings: 1-glass cover; 10-light-exiting side; 11-open end; 2-LED module; 21-planar light source; 22-substrate; 3-heat sink; 31-heat sink body;  32-extension; 4-conductive line; 41-first line section; 42-second line section; 5-stand; 51-fastener; 52-main body; 6-circuit board; 7-driving power supply; 8-lamp head; 9-first coating layer; U0-external power supply; U1-rectifier circuit; U2-voltage-current conversion sub-circuit; C1-first capacitor; C2-second capacitor; C3-third capacitor; R1-first resistor; L1-first inductor; and D1-first diode.
DETAILED DESCRIPTION
The following clearly describes the technical solutions according to embodiments of the present disclosure with reference to the accompanying drawings. Apparently, described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by those skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the scope of the present disclosure.
Some terms “first” , “second” , “third” , “fourth” , and the like, if any, in the specification and claims of the present disclosure and in the above drawings are used to distinguish similar objects and are not necessarily for describing a specific order or sequence. It should be understood that these terms may be interchanged where appropriate, so that the embodiments of the disclosure described herein can be implemented, for example, in other sequences than those illustrated or described herein. In addition, terms “include” and “have” and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or apparatus that includes a series of steps or units is not limited to some steps or units that are clearly listed but may include other steps or units that are not explicitly listed or inherent to the process, method, system, product, or apparatus.
The technical solutions of the present disclosure are described in detail with specific embodiments below. The following embodiments can be combined with each other, and some same or similar concepts or processes may not be repeated in some embodiments.
FIG. 1 is a structural diagram of a light-emitting diode (LED) light bulb according to some embodiments of the present disclosure.
FIG. 2 is a structural diagram of an LED light bulb according to some other embodiments of the present disclosure.
Referring to FIG. 1 and FIG. 2, the LED light bulb includes a glass cover 1, a  stand 5 and an LED module 2. The stand 5 and the LED module 2 are both disposed inside the glass cover 1.
An open end 11 of the glass cover 1 is connected to and contacts a first end (e.g., a bottom end) of the stand 5. The first end of the stand 5 may be a bottom end of the stand 5, and a second end of the stand 5 may be a top end of the stand 5. The stand 5 is configured to fixate the LED module 2. The LED module 2 faces the light-exiting side 10 of the glass cover 1. The light-exiting side 10 is a side of the glass cover 1 opposite to the open end 11. For example, a top surface of the glass cover 1 is a surface where the light emitted from the LED module 2 exits, which is considered as the light-exiting side 10 of the glass cover 1. Accordingly, the bottom end of the glass cover 1, i.e., located opposite to the light-exiting side 10, is the open end of the glass cover 1.
The glass cover 1 can be a cover made of glass, which is transparent and can realize light transmission. In some embodiments, a material and a structure of the glass cover 1 can be designed to further optically process the emitted light.
The stand 5 can be a structure that is relatively fixed with respect to the position of the glass cover 1. The stand 5 can be configured to fixate the position of the LED module 2 directly or indirectly. In addition, the function of the stand 5 may include not only fixating the position of the LED module 2, but also fixating the position of other parts, such as a heat sink 3 and a conductive line 4.
The LED module 2 can be any module that faces toward the light-exiting side 10 and that includes one or more LEDs as a light source.
For the light-exiting side 10, the orientation can be towards a desired illumination region.
Using the LED light bulb provided by the present disclosure, the LED module can emit light toward the light-exiting side of the glass cover. The light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation. As such, a non-360-degree illumination angle can be obtained, and illumination for a targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
In some embodiments, the LED light bulb further includes a heat sink 3 disposed between the LED module 2 and the stand 5. The heat sink 3 can be configured to dissipate  heat from the LED module 2 by heat conduction.
The heat sink 3 may be made of a metal material or a non-metal material. The heat sink 3 may be an integrally formed structure or a non-integrally formed structure.
In some embodiments, the heat sink 3 includes a heat sink body 31 and an extension 32 extending from an outer periphery of the heat sink body 31. The LED module 2 is disposed on a first side surface (e.g., top surface) of the heat sink body 31. The heat sink body 31 may be a plate or a disk. The extension 32 extends from an outer periphery of a second side surface (e.g., bottom surface) of the heat sink body 31. The extension 32 may have a hollow cylindrical shape.
In some embodiments, the stand 5 can be connected to the second side surface of the heat sink body 31, and the extension 32 is located at an outer side the stand 5.
The extension 32 and the heat sink body 31 may be integrally formed to improve the efficiency of heat conduction in the heat sink 3. In additions, through the extension 32 and the heat sink body 31, the heat dissipation area can be effectively increased, thereby improving the heat dissipation effect.
The extension 32 can be perpendicular to the heat sink body 31, and the heat sink body 31 can have a circular shape to achieve a uniform heat dissipation effect. The extension 32 can also include a notch. The heat sink body 31 may also include one or more through holes, and the conductive line 4 can pass through the through hole.
Further, a thickness of the heat sink body 31 may be the same as or different from a thickness of the extension 32.
In some embodiment, the first end of the stand 5 is sealed with the open end 11 of the glass cover 1, such that the connection between the stand 5 and the glass cover 1 is stable and firm, and, the seal the glass cover 1 can be secured.
In some embodiments, the stand 5 may include a main body 52 and a fastener 51. A first end (e.g., a bottom end) of the main body 52 is connected to the open end 11 of the glass cover 1. A first end (e.g., a bottom end) of the fastener 51 is connected to a second end (e.g., a top end) of the main body 52. A second end (e.g., a top end) of the fastener 51 is connected to the heat sink 3 to support and fixate the heat sink 3 and the LED module 2 on the heat sink 3. Specifically, the fastener 51 can be connected to the second side surface (e.g., a bottom surface) of the heat sink body 31. The main body 52 may be made of a glass  material. The main body 52 can be sealed with the glass cover 1. In other words, a size of the main body 52 of the stand 5 is compatible with the open end 11 of the glass cover 1, and the open end 11 can be sealed onto the main body 52 of the stand 5 (e.g., by melting) . The fastener 51 may be made of a non-glass material or a glass material. The extension 32 of the heat sink 3 can cover the outer side of the fastener 51.
The first end of the fastener 51 can also be movably connected to the main body 52 to achieve a positional adjustment of the fastener 51 relative to the main body 52.
In some embodiments, the LED module 2 includes a substrate 22 and a planar light source 21 disposed on a first side of the substrate 22. The planar light source 21 faces toward the light-exiting side 10.
The number of the substrates 22 in the LED module 2 may be one. The substrate 22 may be made of a non-transparent material. Specifically, the substrate 22 may be a metal substrate or a ceramic substrate. The number of the planar light sources 21 may be one or more than one. The planar light source 21 may include a plurality of LED particles/chips connected in series.
FIG. 3 is a structural diagram of a glass cover according to some embodiments of the present disclosure.
Referring to FIG. 3, the inner wall of the glass cover 1 may include a first portion corresponding to the light-existing side 10 and a second portion. The second portion 9 is the remaining inner wall of the glass cover 1 except the inner wall of the light-exiting side 10. The second portion 9 can be partially or completely coated with a first coating layer 9 having a light reflective effect. In some embodiments, the inner wall of the light-exiting side 10 may be coated with a second coating layer. A configuration of second coating layer of the light-exiting side 10 may be different from a configuration of the first coating layer 9, and a reflection effect of the second coating layer may also be different from the reflection effect of the first coating layer 9.
By the reflection of the first coating layer 9, the light output to the first coating layer 9 can be reflected to the light-exiting side 10 to achieve a guided output emission of the light, thereby improving the light emitting/extraction efficiency of the LED light bulb for the targeted illumination region. Compared with shielding of the remaining inner wall by a shielding structure, such as a plastic casing, etc., the above method provided by the present  disclosure can further improve the light emitting/extraction efficiency.
Further, the first coating layer 9 has a function of reflecting light and may be one layer or a plurality of layers. In some embodiment, the first coating layer 9 may have other functions, such as facilitating heat dissipation, etc., which is not limited by the present disclosure.
In some embodiments, the LED light bulb further includes a driving power supply 7 and a conductive line 4. The driving power supply 7 is disposed at the first end of the stand 5. The conductive line 4 can pass through the stand 5 and can be respectively connected to the LED module 2 and the driving power supply 7.
In some embodiments, the bottom surface of the main body 52 may include an elongated rod extending downwards. The circuit board 6 may include a center hole. The elongated rod on the bottom surface of the main body 52 can pass through the center hole of the circuit board 6. As such the circuit board 6 can be sleeved onto the main body 52. In some embodiments, the circuit board 6 can be fixedly connected to the main body 52. In some other embodiments, the circuit board 6 may be movably connected to the main body 52. After the lamp had 8 is screwed to the open end 11 of the casing structure 1, the circuit board 67 and the driving power supply 7 can be fixedly accommodated inside the lamp head 8.
The conductive line 4 can be any line structure that can be conductive. At least a part of the conductive line 4 can include a rigid structure, such as a conductive rod. The rigid structure of the conductive line 4 can provide support to parts that contact the conductive line 4, such as the heat sink body 31 and/or the LED module 2. The conductive line 4 can pass through the main body 52 of the stand 5 and the through hole of the heat sink body 31 to connect the LED module 2. The LED module 2 can also include a conductive member to connect the conductive line 4.
In some embodiments, the conductive line 4 may include a first line section 41 and a second line section 42. A first terminal of the first line section 41 is connected to the driving power supply 7. A second terminal of the first line section 41 is connected to a first terminal of the second line section 42. A second terminal of the second line section 42 is connected to the LED module 2.
In some embodiments, both the first line section 41 and the second line section 42 can be rigid lines. In some other embodiment, the second line section 41 is a rigid line,  while a part of or all of the first line section may be any suitable type of wire.
The first line section 41 is partially or completely sleevedly disposed in the stand 5, and the second line section 42 is located outside the stand 5. The LED module 2 is supported and fixed by the stand 5 through the second line section 42. Further, the shapes of the first line section 41 and the second line section 42 may vary depending on the requirements of the structure and the material. The first line section 41 and the second line section 42 may also be integral.
The stand 5 can indirectly fixate the position of the LED module 2. In some embodiments, the fastener 51 of the stand can support and fixate the heat sink 3 and the LED module 2 on the heat sink 3. In some other embodiments, the second line section 42 can support and fixate the heat sink 2 and/or the LED module 2. In some further other embodiments, the second line section and the fastener 51 can support and fixate the LED module 2, thereby ensuring the stability of the LED module 2. For example, the fastener 51 can support the heat sink 3 by interacting on the second side surface of the heat sink 3. The fastener 51 can be fixedly mounted to the heat sink 3, or may not be fixedly mounted to the heat sink 3. The second line section 42 can be fixedly mounted to the heat sink 3 and/or the LED module 2.
In some embodiments, the number of the second line sections 42 may be two. The two second line sections 42 may be respectively connected to different positions of the LED module 2, not only realizing a connection loop, but also providing a multi-point support to ensure a stable positioning of LED mode 2.
Referring to FIG. 1 and FIG. 2, the LED light bulb further includes a lamp head 8. The lamp head 8 is connected to the open end 11 of the glass cover 1. The lamp head 8 can be configured to enable conduction between the inner circuit of the LED light bulb and the external power source U0. Inside of the LED light bulb, the lamp head 8 can be electrically connected to the driving power supply 7. Outside the LED light bulb, the lamp head 8 can be connected to the external power source U0.
FIG. 4 is a circuit diagram of a driving power supply according to some embodiments of the present disclosure. FIG. 5 is a circuit diagram of a driving power supply according to some other embodiments of the present disclosure.
Referring to FIG. 4 and FIG. 5, the driving power supply 7 includes a rectifier  circuit U1 and a voltage regulation driving circuit. An input terminal of the rectifier circuit U1 is connected to an external power source U0 through a lamp head 8. An output terminal of the rectifier circuit U1 is connected to the voltage regulation driving circuit.
The rectifier circuit U1 is configured to rectify the external power source U0 and supply the rectified voltage to the voltage regulation driving circuit. A first terminal of the rectifier circuit U1 may be connected in parallel with a third capacitor C3; and the second terminal of the rectifier circuit U1 may be connected in parallel with the second capacitor C2, so as to achieve voltage regulation.
The voltage regulation driving circuit can be configured to drive the LED module 2 to emit light by using the rectified electric power, which can drive the planar light emitting source 21 of the LED module 2 to emit light. The planar light emitting source 21 may include LED particles/chips connected in series. A connection between different planar light sources 21 may be in series or in parallel.
Referring to FIG. 4, the voltage regulation driving circuit can be a linear voltage regulating circuit.
In some embodiment, the voltage regulation driving circuit includes a voltage-current conversion sub-circuit U2 and a first resistor R1. An output terminal of the voltage-current conversion sub-circuit U2 is connected to the first terminal of the first resistor R1. An input terminal of the voltage-current conversion sub-circuit U2 is connected to the rectifier circuit U1. A sampling terminal of the voltage-current conversion sub-circuit U2 is connected to a second terminal of the first resistor R1. The second terminal of the first resistor R1 is connected to the LED module 2. The voltage-current conversion sub-circuit U2 can be configured to utilize the supplied electrical power to output a constant current source. The constant current source can be supplied to the LED module 2 after being divided by the first resistor R1. In some embodiments, the voltage-current conversion sub-circuit U2 may include a controller and a switch. An input terminal of the switch is connected to the rectifier circuit U1. An output terminal of the switch is connected to the first terminal of the first resistor R1. A control terminal of the switch is connected to an output terminal of the controller. A power supply terminal of the controller is connected to the rectifier circuit U1. An enabling terminal of the controller may be input with a high voltage to drive the controller to operate, and the sampling terminal of the voltage-current  conversion sub-circuit U2 may be connected to the second terminal of the first resistor R1. The sampling terminal of the voltage-current conversion sub-circuit U2 can be a signal input terminal of the first resistor. The second terminal of the first resistor R1 may also be connected to the LED module 2. The controller can be configured to control the operation of the switch device based on the electrical signal collected by the sampling terminal.
Referring to FIG. 5, the voltage regulation driving circuit may be a switching voltage regulator circuit.
If the voltage regulation driving circuit is a switching voltage regulator circuit and may also include one of a buck converter circuit (Buck circuit) ; a switching DC boost circuit (Boost circuit) ; and a flyback converter circuit (Flyback circuit) .
When the voltage regulation driving circuit is the Buck circuit, the output voltage can be lower than the input voltage, and the output current is continuous.
In some embodiments, the voltage regulation driving circuit includes a voltage-current conversion sub-circuit U2, a first resistor R1, a first diode D1, a first inductor T1, and a first capacitor C1. The voltage-current conversion sub-circuit U2 can be configured to utilize the supplied electrical power to output current.
In some embodiments, the voltage-current conversion sub-circuit U2 may include a controller and a switch. An input terminal of the switch is connected to the rectifier circuit U1. An output terminal of the switch is connected to the first terminal of the first resistor R1. A control terminal of the switch is connected to an output terminal of the controller. A power supply terminal of the controller is connected to the rectifier circuit U1. An enabling terminal of the controller may be input with a high voltage to drive the controller to operate, and the sampling terminal of the voltage-current conversion sub-circuit U2 may be connected to the second terminal of the first resistor R1. The sampling terminal of the voltage-current conversion sub-circuit U2 can be a signal input terminal of the first resistor. The second terminal of the first resistor R1 may also be connected to the LED module 2. The controller can be configured to control the operation of the switch device based on the electrical signal collected by the sampling terminal.
In some embodiments, the voltage-current conversion sub-circuit U2 can output a low-voltage direct current through the first resistor R1, the first inductor T1, the first diode D1, and the first capacitor C1, so as to supply the direct current to the LED module 2. An input  terminal of the first diode D1 is connected to an output terminal of the LED module 2. An output terminal of the first diode D1 is connected to the first terminal of the first resistor R1, i.e. the output terminal of the voltage-current conversion sub-circuit U2. A first terminal of the first inductor T1 is connected to the second terminal of the first resistor R1, i.e. connected to the sampling terminal of the voltage-current conversion sub-circuit U2. The first capacitor C1 is connected in parallel with two terminals of the LED module 2. A first terminal of the first capacitor C1 is connected to the second terminal of the inductor T1. The second terminal of the first capacitor C1, the output terminal of the LED module 2 and the input terminal of the first diode D1 are all grounded.
In some embodiments, a working principle of the voltage-current conversion sub-circuit U2 of the LED light bulb can be briefly described as follows. The switch can be configured to turn on and turn off the circuit of the voltage-current conversion sub-circuit U2. When the voltage-current conversion sub-circuit U2 is turned on, the first inductor T1 is magnetized, the current flowing through the first inductor T1 can be linearly increased, and the first capacitor C1 can be charged to provide the LED module 2 with the electrical energy. When the voltage-current conversion sub-circuit U2 is turned off, the first inductor T1 can be controlled to discharge through the first diode D1, the current of the first inductor T1 can be linearly reduced, and the output voltage is maintained by the discharge of the first capacitor C1 and the reduced inductor current.
Using the LED light bulb provided by the present disclosure, the LED module can emit light toward the light-exiting side of the glass cover. The light-exiting side is the side of the glass cover opposite to the open end of the glass cover, and the LED module has a single orientation. As such, the non-360-degree illumination angle can be obtained, and illumination for the targeted illumination region can be achieved, thereby improving the light emitting/extraction efficiency for the targeted illumination region.
In the description of the present disclosure, it should be understood that terms like “center” , “length” , “width” , “thickness” , “top” , “bottom” , “upper” , “lower” , “left” “right” , “front” , “back” , “vertical” , “horizontal” , “inner” , “outer” , “axial” , “circumferential” , etc., are intended to indicate orientations or positional relationships shown in the accompany drawings. Those terms are merely for the convenience of the description of the present disclosure and to simplify the description of the present disclosure. They are not intended to indicate or imply  that a position or a component must have a specific orientation, a specific configuration to operate, and therefore cannot limit the present disclosure.
In the present disclosure, unless otherwise defined, the terms like “installation” , “connecting” , “mounted to” , “fixed to” , etc., should be understood broadly. For example, when a first component is referred to as “connecting” to a second component, it is intended that the first component may be fixedly connected or detachably connected to the second component, or the first component and the second component may be integrally formed. A connection between the first component and the second component may be mechanical connection, electrical connection or communicating connection. The first component may be directly attached to the second component or may be indirectly attached to the second component via an intermedia component. The first component can be internally connected to the second component, or the first component and the component may interact with each other. Specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present disclosure, rather than limiting the present disclosure. Although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that: it is possible to modify the technical solutions described in the foregoing embodiments or equivalently replace some or all the technical features; however, these modifications or replacements do not deviate the scope of the present disclosure.

Claims (14)

  1. A light-emitting diode (LED) light bulb, comprising:
    an LED module configured to emit light,
    a stand configured to house the LED module; and
    a glass cover configured to accommodate the stand and the LED module, the glass cover including an open end and a light-exiting side opposite to the open end,
    wherein:
    the open end of the glass cover is connected to a first end of the stand, and
    the LED module emits light toward the light-exiting side of the glass cover.
  2. The LED light bulb according to claim 1, further comprising: a heat sink disposed between the LED module and a second end of the stand.
  3. The LED light bulb according to claim 2, wherein:
    the heat sink comprises a heat sink body and an extension extending from an outer periphery of the heat sink body; and
    the LED module is disposed on a top surface of the heat sink body; and
    the extension extends from an outer periphery of a bottom surface of the heat sink body.
  4. The LED light bulb according to claim 2, wherein the stand is configured to support and fixate the heat sink and the LED module on the heat sink, and the stand comprises:
    a main body, a first end of the main body being connected to the open end of the glass cover; and
    a fastener, a first end of the fastener being connected to the main body of the stand, and a second end of the fastener being connected to the heat sink.
  5. The LED light bulb according to claim 1, wherein:
    an inner wall of the glass cover comprises a first portion corresponding to the light-exiting side of the glass cover, and a second portion;
    the second portion of the inner wall of the glass cover is partially or completely coated with a first coating layer; and
    the first coating layer is configured to reflect light.
  6. The LED light bulb according to claim 1, wherein the LED module comprises a substrate and a planar light source disposed on a first side of the substrate, the planar light  source facing toward the light-exiting side of the glass cover.
  7. The LED light bulb according to claim 1, further comprising: a driving power supply and a conductive line, wherein:
    the driving power supply is disposed at the first end of the stand, and
    the conductive line passes through the stand and is respectively connected to the LED module and the driving power supply.
  8. The LED light bulb according to claim 7, wherein:
    the conductive line comprises a first line section partially or completely disposed inside the stand, and a second line section disposed outside the stand;
    a first end of the first line section is connected to the driving power supply;
    a second end of the first line section is connected to a first end of the second line section;
    a second end of the second line section is connected to the LED module; and
    the stand is configured to support and fixate the LED module through the second line section.
  9. The LED light bulb according to claim 7, wherein:
    the driving power supply comprises a rectifier circuit and a voltage regulation driving circuit, an input terminal of the rectifier circuit is connected to an external power supply through a lamp head of the LED light bulb, and an output terminal of the rectifier circuit is connected to the voltage regulation driving circuit;
    the rectifier circuit is configured to rectify the external power supply and supply the rectified power supply to the voltage regulation driving circuit; and
    the voltage regulation driving circuit is configured to use the supplied power to drive the LED module to emit light.
  10. The LED light bulb according to claim 9, wherein the voltage regulation driving circuit is a linear voltage regulator circuit.
  11. The LED light bulb according to claim 9, wherein:
    the voltage regulation driving circuit comprises a voltage-current conversion sub-circuit and a first resistor; and
    an output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor, an input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit, a sampling terminal of the voltage-current conversion  sub-circuit is connected to a second terminal of the first resistor, and the second terminal of the first resistor is connected to the LED module.
  12. The LED light bulb according to claim 9, wherein the voltage regulation driving circuit is a switching voltage regulator circuit.
  13. The LED light bulb according to claim 9, wherein:
    the voltage regulation driving circuit comprises a voltage-current conversion sub-circuit, a first resistor, a first diode, a first inductor, and a first capacitor; and
    an output terminal of the voltage-current conversion sub-circuit is connected to a first terminal of the first resistor,
    an input terminal of the voltage-current conversion sub-circuit is connected to the rectifier circuit,
    an output terminal of the first diode and the first terminal of the first resistor are connected to the output terminal of the voltage-current conversion sub-circuit,
    a first terminal of the first inductor and a second terminal of the first resistor are connected to a sampling terminal of the voltage-current conversion sub-circuit,
    a first capacitor is connected in parallel with both terminals of the LED module,
    a first terminal of the first capacitor is further connected to a second terminal of the first inductor, and
    a second terminal of the first capacitor, an output terminal of the LED module, and an input terminal of the first diode are grounded.
  14. The LED light bulb according to claim 1 wherein the first end of the stand is sealed with the open end of the glass cover.
PCT/CN2018/108545 2017-09-29 2018-09-29 Led light bulb WO2019062884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710906227.6 2017-09-29
CN201710906227.6A CN107559622A (en) 2017-09-29 2017-09-29 LED bulb

Publications (1)

Publication Number Publication Date
WO2019062884A1 true WO2019062884A1 (en) 2019-04-04

Family

ID=60984470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108545 WO2019062884A1 (en) 2017-09-29 2018-09-29 Led light bulb

Country Status (2)

Country Link
CN (1) CN107559622A (en)
WO (1) WO2019062884A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060739A (en) * 2022-01-14 2022-02-18 深圳市沃特沃德信息有限公司 Intelligent bulb lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107559622A (en) * 2017-09-29 2018-01-09 浙江生辉照明有限公司 LED bulb

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202056621U (en) * 2011-05-28 2011-11-30 卓科特实业(深圳)有限公司 Self-transformation energy-saving halogen PAR (Parabolic Aluminum Reflector) lamp
CN105979661A (en) * 2016-06-24 2016-09-28 浙江生辉照明有限公司 Time delay illumination circuit and device
CN107135571A (en) * 2017-05-12 2017-09-05 浙江生辉照明有限公司 Intelligent lamp
CN107559622A (en) * 2017-09-29 2018-01-09 浙江生辉照明有限公司 LED bulb
CN207455210U (en) * 2017-09-29 2018-06-05 浙江生辉照明有限公司 LED bulb

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153281B1 (en) * 2010-08-02 2012-06-12 홍삼표 Light emitting diode bulb
CN103644468B (en) * 2013-10-29 2015-09-23 达亮电子(苏州)有限公司 Dismountable type bulb
CN203744114U (en) * 2013-12-20 2014-07-30 比亚迪股份有限公司 Lampshade and LED lamp bulb
CN106523945A (en) * 2016-11-09 2017-03-22 宁波亚茂光电股份有限公司 LED lamp adopting glass shell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202056621U (en) * 2011-05-28 2011-11-30 卓科特实业(深圳)有限公司 Self-transformation energy-saving halogen PAR (Parabolic Aluminum Reflector) lamp
CN105979661A (en) * 2016-06-24 2016-09-28 浙江生辉照明有限公司 Time delay illumination circuit and device
CN107135571A (en) * 2017-05-12 2017-09-05 浙江生辉照明有限公司 Intelligent lamp
CN107559622A (en) * 2017-09-29 2018-01-09 浙江生辉照明有限公司 LED bulb
CN207455210U (en) * 2017-09-29 2018-06-05 浙江生辉照明有限公司 LED bulb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060739A (en) * 2022-01-14 2022-02-18 深圳市沃特沃德信息有限公司 Intelligent bulb lamp

Also Published As

Publication number Publication date
CN107559622A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US10890311B2 (en) Retrofit LED lighting system for replacement of fluorescent lamp
US9243757B2 (en) Retrofit LED lighting system for replacement of fluorescent lamp
US7488097B2 (en) LED lamp module
US9482396B2 (en) Integrated linear light engine
KR100759054B1 (en) Led light
US8937432B2 (en) Light source having LED arrays for direct operation in alternating current network and production method therefor
SG132609A1 (en) Led replacement bulb
JP5793050B2 (en) Power supply module, LED lighting unit, LED lighting device, and LED lighting system
JP2015056377A (en) Light source of lighting and lighting device
KR101427121B1 (en) Lighting fixture using lighting emitting diode
CN2713301Y (en) Spotlight radiator and spotlight
WO2019062884A1 (en) Led light bulb
US10900653B2 (en) LED mini-linear light engine
CN102812286A (en) Lighting apparatus using pn junction light-emitting element
KR100958604B1 (en) Led lighting apparatus
CN212390187U (en) Intelligent lamp
KR100936783B1 (en) Led lighting apparatus
CN101101090A (en) Luminaire
US20130163237A1 (en) Led recessed light
WO2019114694A1 (en) Led emergency light bulb
CN207471304U (en) A kind of LED panel lamp
JP2015222731A (en) LED lighting device
CN204285161U (en) A kind of LED spotlight
CN203147351U (en) Light-emitting diode (LED) stereo light-emitting device
CN208011463U (en) Floodlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863263

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18863263

Country of ref document: EP

Kind code of ref document: A1