WO2019062786A1 - 随机接入方法、装置、设备、存储介质和程序产品 - Google Patents

随机接入方法、装置、设备、存储介质和程序产品 Download PDF

Info

Publication number
WO2019062786A1
WO2019062786A1 PCT/CN2018/107789 CN2018107789W WO2019062786A1 WO 2019062786 A1 WO2019062786 A1 WO 2019062786A1 CN 2018107789 W CN2018107789 W CN 2018107789W WO 2019062786 A1 WO2019062786 A1 WO 2019062786A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
lch
random access
uplink data
triggered
Prior art date
Application number
PCT/CN2018/107789
Other languages
English (en)
French (fr)
Inventor
李小仙
方平
程勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711138282.1A external-priority patent/CN109600860B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019062786A1 publication Critical patent/WO2019062786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to communication technologies, and in particular, to a random access method, apparatus, device, storage medium, and program product.
  • the 5th Generation (5G) mobile communication technology is an extension of the 4th generation (4G) mobile communication technology. Therefore, the 5G communication system is referred to as "Super 4G Network” or “Long Term Evolution (LTE) System” or “New Radio (NR)".
  • LTE Long Term Evolution
  • NR New Radio
  • the user equipment User Equipment, UE
  • the base station sends the random access response returned by the base station along with the preamble, and acquires uplink synchronization according to the random access response to complete the random access procedure.
  • the UE may be configured with multiple logical channels (LCHs).
  • LCHs logical channels
  • PUSCH physical uplink shared channel
  • the triggering UE sends an SR message on the time-frequency resource of the SR configuration corresponding to the LCH.
  • Each SR Configuration corresponds to a maximum number of transmissions drs-TransMax.
  • the UE internally maintains a counter SR_COUNTER.
  • TTI Transmission Time Interval
  • SR_COUNTER is less than drs-TransMax, then SR_COUNTER is incremented by one and the SR is sent. Each time SR or SR bundle is sent, SR_COUNTER is incremented by 1.
  • SR_COUNTER reaches drs-TransMax, the UE considers that an SR failure SR failure has occurred. Then, the UE will perform random access.
  • RACH random access channel
  • the random access configuration includes a backoff parameter and/or a power ramping parameter for the UE to perform random access.
  • random access using the RACH parameter corresponding to the LCH that triggers SR failure may not meet the requirements of services on other LCHs.
  • the present application provides a random access method, apparatus, device, storage medium, and program product for optimizing a scheme for a UE to perform random access.
  • the application provides a random access method, including at least the following embodiments:
  • a random access method comprising:
  • the UE If the UE is not configured to send an uplink resource of the SR, or the UE fails to generate an SR, the UE performs random access using the first random access configuration;
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE a random access configuration that can provide the highest QoS in the associated random access configuration; or a random access configuration corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE; or the UE a random access configuration capable of providing the highest QoS in the random access configuration associated with the corresponding first SR configuration set;
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the UE fails to generate an SR, including:
  • the SR counter in any one of the SR configurations of the UE reaches the maximum number of times
  • the SR counter in the plurality of SR configurations in the SR configuration of the UE reaches a maximum number of times.
  • the first random access configuration comprising power information and/or backoff parameters.
  • the LCH of the SR is triggered in the LCH of the UE.
  • the LCH corresponding to the SR configuration that is released by the UE after the failure of the SR has uplink data to be sent by the LCH;
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs;
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR is configured to be triggered has uplink data to be sent;
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be sent;
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the first LCH set includes the LCH channel that triggers the SR failure.
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the UE performs random access according to the first random access configuration, and includes:
  • the UE sends a random access preamble to the network device by using the power information and/or the backoff parameter, where the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power, where the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power
  • the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the application further provides a user equipment (UE), including at least the following embodiments:
  • a UE comprising: a storage module, configured to store a computer instruction; and a processing module, configured to invoke a computer instruction stored in the memory, such that the user equipment performs the following operations:
  • the UE If the UE is not configured to send an uplink resource of the scheduling request SR, or the UE fails to generate an SR, the UE performs random access using the first random access configuration;
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE a random access configuration that can provide the highest QoS in the associated random access configuration; or a random access configuration corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE; or the UE a random access configuration capable of providing the highest QoS in the random access configuration associated with the corresponding first SR configuration set;
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the UE fails to generate an SR, including:
  • the SR counter in any one of the SR configurations of the UE reaches the maximum number of times
  • the SR counter in the plurality of SR configurations in the SR configuration of the UE reaches a maximum number of times.
  • the first random access configuration comprising power information and/or backoff parameters.
  • the LCH of the SR is triggered in the LCH of the UE.
  • the LCH corresponding to the SR configuration that is released by the UE after the failure of the SR has uplink data to be sent by the LCH;
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs;
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR is configured to be triggered has uplink data to be sent;
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be sent;
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the UE performs random access according to the first random access configuration, and includes:
  • the UE sends a random access preamble to the network device by using the power information and/or the backoff parameter, where the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power, where the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power
  • the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the application further provides a user equipment (UE), including at least the following embodiments:
  • a UE comprising: a memory for storing computer instructions; and a processor for invoking computer instructions stored in the memory to cause the user equipment to perform the following operations:
  • the processor performs random access using the first random access configuration
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE a random access configuration that can provide the highest QoS in the associated random access configuration; or a random access configuration corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE; or the UE a random access configuration capable of providing the highest QoS in the random access configuration associated with the corresponding first SR configuration set;
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the UE according to the embodiment 13 that the UE fails to generate an SR including:
  • the SR counter in any one of the SR configurations of the UE reaches the maximum number of times
  • the SR counter in the plurality of SR configurations in the SR configuration of the UE reaches a maximum number of times.
  • the first random access configuration comprising power information and/or backoff parameters.
  • the UE according to any one of the embodiments 13 to 15, wherein the at least two LCHs that have uplink data to be transmitted include:
  • the LCH of the SR is triggered in the LCH of the UE.
  • the LCH corresponding to the SR configuration that is released by the UE after the failure of the SR has uplink data to be sent by the LCH;
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs;
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR is configured to be triggered has uplink data to be sent;
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be sent;
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the SR configuration released by the UE after the failure of the SR includes:
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the UE performs random access according to the first random access configuration, and includes:
  • the UE sends a random access preamble to the network device by using the power information and/or the backoff parameter, where the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power, where the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power
  • the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the UE may further include a transceiver, where the transceiver is configured to receive and send data.
  • the number of the processors is at least one, and the computer instructions for performing the memory storage, that is, the computer program, enable the user equipment to perform the random access method provided by any of the embodiments of the first aspect, optionally
  • the memory can also be integrated inside the processor.
  • the present application further provides a chip, including: a processing module and a communication interface coupled to each other, and the processing module (which may be one or more, specifically a processor) is used to execute the embodiment of the first aspect.
  • a memory for storing instructions and/or data may be integrated into the chip for the processing module to call.
  • the chip may be a SoC (System-on-a-Chip), and the SoC may be referred to as a system-on-chip or a system-on-chip.
  • the present application further provides a readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to perform any of Embodiments 1 to 6 of the first aspect The random access method.
  • the application further provides a program product, the program product comprising a computer program, the computer program being stored in a readable storage medium, the at least one processor of the user device reading from the readable storage medium
  • the computer program is executed such that the user equipment performs the random access method of any of embodiments 1 to 6 of the first aspect.
  • the random access method, the device, the device, the storage medium, and the program product provided by the present application when the UE is not configured to send an uplink resource of the SR, or when the UE fails to generate the SR, the UE uses the LCH with the highest priority.
  • Corresponding random access configuration, or using the random access configuration corresponding to the highest priority SR configuration, or using the random access configuration that provides the highest QoS for random access so that the UE can preferentially achieve high priority or
  • the access transmission of services with high QoS requirements optimizes the reliability of service transmission.
  • FIG. 1 is a schematic diagram of an NR system architecture
  • FIG. 2 is a schematic diagram of a random access performed by a UE that fails to generate a scheduling request according to the present application
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a user equipment provided by the present application.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a user equipment provided by the present application.
  • the internal protocol stack of the UE includes a Radio Resource Control (RRC) layer, a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a medium access control (Medium).
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MDAP medium access control
  • the Access Control (MAC) layer and the Physical (PHY) layer, above the PDCP layer, may also include a Service Data Adaptation Protocol (SDAP) layer.
  • SDAP Service Data Adaptation Protocol
  • the UE may be configured with multiple LCHs. When there is data on a certain LCH to be sent, if the UE does not have a Physical Uplink Shared Channel (PUSCH) resource available, the UE may be configured to configure the SR configuration in the SR corresponding to the LCH.
  • the SR message is sent on the time-frequency resource.
  • PUSCH Physical Uplink Shared Channel
  • the scheduling request fails SR failure, and further, when the scheduling request fails SR failure, the UE All PUCCH resources are released and random access is performed.
  • the specific process can refer to the process described in 3GPP TS 36.321.
  • the UE can be configured with multiple SR Configurations, each SR Configuration corresponding to a maximum number of transmissions, such as drs-TransMax.
  • the UE internally configures a counter for each SR Configuration, denoted as SR_COUNTER.
  • SR_COUNTER When there is data to be sent on the LCH of the UE and there is no PUSCH resource in the current time slot or Transmission Time Interval (TTI), the UE is triggered to generate a pending SR.
  • TTI Transmission Time Interval
  • the SR_COUNTER corresponding to one or more SR Configurations reaches the drs-TransMax corresponding to the SR Configuration, the UE considers that the SR failure SR failure occurs.
  • the uplink data of one or more LCHs of the UE needs to be sent to the base station, but the UE does not transmit data for the PUSCH resource allocated for transmitting data, and the UE needs to request the PUSCH resource from the base station.
  • the UE can only request the PUSCH resource from the base station by means of initiating random access (either transmitting a random access preamble (RA preamble)).
  • the UE will perform random access when the SR fails or the UE is not configured to send the uplink resource of the scheduling request SR.
  • random access configuration corresponding to the LCH that triggers SR failure is used for random access.
  • the solution provides an optimized random access scheme, which enables the UE to complete random access as soon as possible when the UE fails to occur, and preferentially meets the transmission of the LCH with high priority or the service data with high QoS requirements. Business reliability.
  • FIG. 1 is a schematic diagram of an NR system architecture.
  • a core network such as an NGC/5GC or an EPC, and an access network of a new air interface may be included in the NR scenario.
  • Access Network The functional entity is mainly a network device, and a user equipment connected to the network device in the new air interface access network, such as the user equipment 1 shown in FIG.
  • a relay device and a relay connection User equipment, such as user equipment 2 shown in FIG.
  • the relay device and the network device establish a connection through the link 2, so the relay device can also be regarded as a user device with respect to the network device; the relay device establishes a connection with the user device 2 through the link 3, and thus is relative to the user device.
  • the relay device can also be regarded as a network device. Therefore, those skilled in the art can understand that the network device described in this application may also include a relay device, and the user equipment described in this application may also include a relay device.
  • the network device may be specifically a gNB, a new radio eNB, a transmission and reception point (TRP), a macro base station, a micro base station, a high frequency base station, an LTE macro or a micro eNB, and a customer premises equipment (Customer).
  • TRP transmission and reception point
  • a macro base station a micro base station
  • a high frequency base station an LTE macro or a micro eNB
  • Customer customer premises equipment
  • the network device is a combination of the gNB and the TRP.
  • the resource configuration function of the network device in the present application is completed by the gNB, and the TRP performs the function of sending and receiving the network device in the present application, which is not limited thereto.
  • the user equipment can be a mobile phone, a tablet, a smart car, a sensing device, an Internet Of Things (IOT) device, a CPE, a relay base station, a UE, an NR-UNIT, and the like.
  • IOT Internet Of Things
  • the system architecture diagram shown in FIG. 1 is used as an example to describe the random access method provided by the present application.
  • the UE if the UE is not configured to send an uplink resource of the scheduling request SR or the UE fails to generate a scheduling request, the UE fails. Random access using the first random access configuration;
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE A random access configuration that can provide the highest quality of service (QoS) in the associated random access configuration; or a random connection corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE Or the configuration of the random access configuration associated with the first set of SR configurations corresponding to the UE can provide the highest QoS random access configuration.
  • the first LCH set corresponding to the UE includes an LCH set owned by the UE, or an LCH set configured for the UE, or an LCH set associated with the UE.
  • the first SR configuration set corresponding to the UE also includes an SR configuration set owned by the UE, or an SR configuration set configured for the UE, or an SR configuration set associated with the UE. There are no restrictions on this program.
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the program In the program,
  • the scenario in which the UE fails to generate the scheduling request includes: when the UE fails to generate the scheduling request, or after the UE fails to generate the scheduling request, etc., the solution is not limited.
  • the scheduling request counter may be configured for each LCH, or may be configured for each SR configuration, regardless of the configuration mode, when any one or more (or all) scheduling request counters associated with the UE If the count value reaches the preset maximum value, it is determined that the UE fails to send the SR.
  • the first implementation manner is that when the UE is not configured to send the uplink resource of the scheduling request SR or the UE determines that the SR fails to perform random access, the selected first random access configuration is that the LCH configured by the UE has data to be sent.
  • the highest priority LCH corresponds to the random access configuration.
  • the data to be sent may be sent with uplink data, or may be sent by a BSR, or cached data in a cache corresponding to the MAC layer. That is, the UE selects a random access configuration corresponding to the LCH with a higher priority according to the priority of the LCH to perform random access, that is, preferentially guarantees the service of the logical channel with a high priority, and ensures the reliability of the service.
  • each LCH can be configured with a corresponding random access configuration, which indicates a RACH parameter used for performing random access request uplink resources for the LCH, such as a backoff parameter, a power ramping parameter, and the like.
  • the second implementation manner is that when the UE is not configured to send the uplink resource of the scheduling request SR or the UE determines that the SR fails to perform random access, the selected first random access configuration is that the LCH configured by the UE has data to be sent.
  • the highest access QoS random access configuration can be provided. That is, the UE determines which random access configuration to perform random access according to the QoS level that all RACHs associated with the LCH associated with the data transmission can be selected.
  • the highest QoS random access configuration is selected to perform random access, that is, priority. Guarantee the reliability of the service with the highest quality of service.
  • the selected first random access configuration is released after the UE fails to generate the SR.
  • the random access configuration is corresponding to the SR configuration.
  • each LCH may correspond to 0 or 1 SR configuration.
  • the corresponding random access configuration is configured for each SR. Therefore, in the implementation manner, the UE selects the random access configuration corresponding to the SR configuration with the highest priority to perform random access, and preferentially ensures the service transmission of the SR with the higher priority. Guarantee the reliability of the business.
  • the granularity of the random access configuration may be one-to-one corresponding to the LCH, or may be one-to-one corresponding to the SR configuration.
  • the selected first random access configuration is released after the UE fails to generate the SR.
  • the random access method if the UE is not configured to send the uplink resource of the scheduling request SR or the scheduling request of the UE fails, the random access is triggered, and the UE selects a suitable random access configuration according to the foregoing solution to perform random access. Into, the random access can be completed as soon as possible, and the highest priority LCH or the highest QoS requirement is preferentially met to ensure the reliability of the service.
  • the UE can be configured with multiple SR configurations and multiple LCHs.
  • the network device such as a gNB, a cell, a transmission point, and a receiving end (TRP), may perform downlink control through an RRC message or a MAC CE or a physical downlink control channel (PDCCH).
  • the information indicates the configuration information of each SR Configuration and LCH to the UE.
  • the configuration information of the SR Configuration may include the PUCCH time-frequency resource of a certain SR Configuration, the drs_TransMax of the SR Configuration, the sr_ProhibitTimer, and the SR Configuration.
  • the network device may further configure the priority of the SR Configuration, the random access configuration associated with the SR Configuration (also referred to as random access configuration information, RACH configuration, etc.) , this program does not limit).
  • the random access configuration may be a configuration parameter used for the random access after the SR failure, for example, a backoff parameter, power information, and the like.
  • the backoff parameter may include the UE receiving the random access response during the random access process ( After the random access response (RAR), the backoff time segment of the Preamble is retransmitted, and the power information may include a transmit power step (PowerRampingStep) and/or an initial transmit power used by the UE when retransmitting the preamble.
  • RAR random access response
  • the power information may include a transmit power step (PowerRampingStep) and/or an initial transmit power used by the UE when retransmitting the preamble.
  • the random access configuration may further include one or more of a time-frequency resource used for performing random access, a maximum number of Preamble transmissions, a Preamble format or length information, a contention resolution timer, and the like.
  • the configuration parameters in the foregoing random access configuration may be indicated in the same message, or may be indicated by multiple messages.
  • each parameter in the random access configuration may pass the same RRC message or MAC CE.
  • the PDCCH DCI or the like carries or is carried by a combination of two or more of RRC signaling or MAC CE or PDCCH DCI.
  • the power information may be indicated by RRC signaling
  • the backoff parameter may be indicated by an RAR carried by the MAC CE.
  • the configuration parameters included in the foregoing random access configuration may be indicated in an explicit or implicit manner.
  • the random access configuration may be carried by a configuration index, or may be carried by a direct description, or by a configuration level indication, or by a priority indication, or by a combination of two or more of the foregoing manners.
  • the network device indicates that the random access configuration only carries the corresponding configuration index value, and the UE determines the specific random access configuration by using the configuration index value, by the configuration index value corresponding to the specific configuration parameter.
  • the configuration parameter in the specific random access configuration may be determined by the network device by using the configuration level or the priority indication configured by the network device, and the configuration parameter may be determined by the network device.
  • the backoff indicator corresponding to the SR Configuration may be determined according to the backoff indicator indicated in the RAR and its own priority.
  • the configuration information of the LCH may include one or more of the priority of the LCH, the service information of the LCH, and the like. Further, the network device may also configure the random access parameter associated with the LCH, and the random access parameter.
  • the specific configuration parameters included are described in the foregoing description. For example, when the LCH is configured with a certain priority, when it receives the RAR, it can determine the backoff parameter corresponding to the LCH by combining the backoff indicator indicated in the RAR with its own priority.
  • An LCH can be mapped to 0 or 1 or more SR Configurations, ie one SR Configuration can correspond to one or more LCHs. For example, in a single carrier scenario, one LCH can be mapped into zero or one SR Configuration.
  • an LCH can be mapped to an SR Configuration on multiple cells.
  • the SR Configuration on the multiple cells can be referred to as an SR Configuration Set or an SR Configuration Group.
  • the SR Configuration Group can be configured with the same drs_TransMax.
  • An SR_COUNTER can be maintained for this SR Configuration Group.
  • UE is in SR Configuration. Sending SR on any SR Configuration in the Group will increment SR_COUNTER by 1. Therefore, the network device may also indicate the mapping relationship between the LCH and the SR configuration to the UE.
  • mapping relationship may be carried in the configuration information of the SR configuration or the configuration information of the LCH, or carried by other configuration information, and the mapping relationship may be adopted through the RRC.
  • One or more of the methods of signaling, MAC CE, and DCI are indicated, and the application is not limited.
  • the configuration information of the foregoing SR Configuration and the LCH may be indicated in an explicit or implicit manner, and may be carried in the same RRC message or MAC CE or PDCCH DCI, or through RRC signaling or MAC CE or PDCCH DCI. Carrying in two or more combinations.
  • the partial configuration information of the LCH and the partial configuration information of the SR Configuration may have a certain relationship.
  • the priority of the SR Configuration may be determined by the priority of its corresponding LCH, for example, SR Configuration.
  • the priority may be determined by the highest priority of the corresponding LCH, or the priority of the SR Configuration may be determined by the highest priority among the LCHs of the corresponding LCH in the corresponding LCH. Therefore, the network may not It explicitly configures the priority of the SR Configuration, which is implicitly indicated by the priority of its corresponding LCH.
  • the SR When the UE has uplink data to be sent on a certain LCH, if there is no uplink transmission resource available in the current transmission time slot, such as a PUSCH resource, the SR may be triggered, and the SR is sent in the PUCCH resource of the SR Configuration corresponding to the LCH.
  • the current transmission time slot may be one of a TTI, a slot, a mini slot, a frame, a subframe, and the like.
  • the BSR when there is data on a certain LCH to be sent, the BSR may be triggered.
  • the type of the BSR may be one or more of a regular BSR or a padding BSR or a Periodic BSR.
  • the SR is triggered when the BSR does not have an uplink grant.
  • the data to be transmitted in the text, the uplink data to be transmitted, the data to be sent, and the like have the same meaning, and may be sent with uplink data, or may be sent by the BSR, or
  • the cache corresponding to the MAC layer has cached data and the like.
  • the LCH that triggers the SR may be the LCH of the first data to be transmitted on the SR Configuration corresponding to the LCH.
  • the LCH corresponding to the SR Configuration has no data to be transmitted.
  • the first LCH with data to be transmitted appears in all LCHs corresponding to the SR Configuraiton, and the SR is triggered by the LCH, and the PUCCH resource of the SR Configuration is used for transmission.
  • the LCH that triggers the SR may be the LCH with the highest priority of the data to be transmitted in the LCH corresponding to the SR configuration corresponding to the LCH, for example, the LCH corresponding to the SR Configuration at time t0. There is no data to be transmitted. At time t1, the first LCH with the data to be transmitted appears in all LCHs corresponding to the SR Configuraiton, which is denoted as LCH1. Since LCH1 is the LCH with the highest priority of the data to be transmitted, it is triggered by LCH1.
  • the SR at time t2, the LCH of the second data to be transmitted appears in all LCHs corresponding to the SR Configuraiton, denoted as LCH2, and the LCH2 priority is higher than LCH1, then the SR is triggered by LCH2 and the PUCCH of the SR Configuration is used. Resources are transferred.
  • the LCH that triggers the SR may be the LCH that finally generates the data to be transmitted in the LCH corresponding to the SR configuration corresponding to the LCH.
  • the LCH corresponding to the SR Configuration is not pending.
  • the data is transmitted.
  • the first LCH of the data to be transmitted appears in all LCHs corresponding to the SR Configuraiton, and is recorded as LCH1. Therefore, the SR is triggered by LCH1, and at time t2, all LCHs corresponding to the SR Configuraiton appear.
  • the LCH of the second data to be transmitted denoted as LCH2, triggers the SR by LCH2.
  • the third LCH of the data to be transmitted appears in all LCHs corresponding to the SR Configuraiton, and is recorded as LCH3, which is triggered by LCH3.
  • the SR uses the PUCCH resource of the SR Configuration for transmission, and so on.
  • SR_COUNTER is incremented by 1 each time the UE sends an SR or SR bundle on the PUCCH resource of the SR Configuration.
  • SR_COUNTER reaches drs_TransMax, SR failure can be considered to occur.
  • SR failure can have different definitions:
  • the SR_COUNTER is configured for each SR configuration, the SR counter in any one of the SR configurations of the UE reaches the maximum number of times; or the SR configuration of the UE If the SR counter in multiple or all of the SR configurations reaches the maximum number of times, it is considered that the UE has SR failure.
  • SR_COUNTER reaching drs_TransMax may be SR_COUNTER equal to drs_TransMax, or SR_COUNTER may be greater than or greater than drx_TransMax, which is specific
  • the setting is related to the setting criterion of the set SR failure, and the embodiment of the present application defines the specific meaning of the SR_COUNTER to reach drs_TransMax according to the determination criterion.
  • SR_COUNTER is configured for each SR configuration, if one or more or all of the SR_COUNTERs on the SR_configuration of the SR Pending SR to be transmitted reach the drs_TransMax of the SR Configuration corresponding to the SR_COUNTER If SR_COUTNER reaches drs_TransMax of its corresponding SR Configuration, SR_COUNTER of another SR Configuration with Pending SR does not reach drs_TransMax, or another LCH with higher priority is triggered.
  • the SR_COUNTER of the SR Configuration of the Pending SR does not reach drs_TransMax, the SR can continue to be sent without random access until the SR_COUNTER of the SR Configuration with the Pending SR reaches drs_TransMax, and SR failure is considered to occur;
  • the specific meaning of SR_COUNTER reaching drs_TransMax is described with reference to the foregoing first possible embodiment.
  • the SR_COUNTER is configured for the MAC entity, if the SR_COUNTER reaches the drs_TransMax of the SR Configuration corresponding to the LCH of the last triggering SR, the SR failure is considered to occur; it should be noted that the SR_COUNTER reaches the drs_TransMax
  • the specific meaning is referred to the description of the first possible embodiment described above.
  • SR_COUNTER is configured for the MAC entity, if the SR_COUNTER reaches the minimum or maximum drs_TransMax of the corresponding SR Configuration in the LCH that triggers the pending SR, the SR failure is considered to occur;
  • drs_TransMax The specific meaning of SR_COUNTER reaching drs_TransMax is described with reference to the foregoing first possible embodiment.
  • the SR_COUNTER is configured for the UE, if the SR_COUNTER reaches the drs_TransMax of the SR Configuration corresponding to the LCH of the last triggering SR, the SR failure is considered to occur; it should be noted that the SR_COUNTER reaches the drs_TransMax
  • the specific meaning refers to the description of the first possible embodiment described above.
  • SR_COUNTER if the SR_COUNTER is configured for the UE, if the SR_COUNTER reaches the minimum or maximum drs_TransMax of the corresponding SR Configuration in the LCH that triggers the pending SR, the SR failure is considered to occur; it should be noted that, The specific meaning of SR_COUNTER reaching drs_TransMax is described with reference to the foregoing first possible embodiment.
  • the first random access configuration includes at least one of power information and backoff parameters.
  • the power information may include a transmit power step size PowerRampingStep and/or an initial transmission power used by the UE when retransmitting the Preamble
  • the backoff parameter may include the UE retransmitting after receiving the RAR in the random access procedure. a backoff time segment of the preamble.
  • the first random access configuration may further include: a time-frequency resource used for performing random access, a maximum number of Preamble transmissions, a Preamble format or length information, a contention resolution timer, and the like. One or more.
  • the initiating a random access procedure based on the first random access configuration may initiate a random access procedure by using the first random access configuration, and specifically, may send and/or receive a random in the process of initiating a random access.
  • the configuration parameter in the first random access configuration is used.
  • the first random access configuration includes a PowerRampingStep for transmitting a preamble
  • the step value indicated by the PowerRampingStep is used, that is, the transmission power of the retransmission Preamble is set to the transmission power of the previous transmission Preamble plus the step value; when the first random access configuration is used.
  • the backoff information of the preamble is transmitted, the backoff time of the retransmission preamble is determined according to the backoff information after receiving the RAR.
  • specific parameters represented by the first random access configuration are different, specifically:
  • the first random access configuration is a random access configuration corresponding to the LCH with the highest priority among the first LCH sets corresponding to the UE.
  • the scheme ensures that the random access request of the LCH with the highest priority to be transmitted by the data ensures the reliability of the service.
  • the first random access configuration is a random access configuration that can provide the highest quality of service QoS in a random access configuration associated with the first LCH set corresponding to the UE. This scheme ensures the highest QoS that can be achieved to complete the random access triggered by SR failure, ensuring the reliability of the service.
  • the first LCH set refers to at least two LCHs that have uplink data to be sent by the UE, and specifically includes the following situations:
  • the LCH of the SR is triggered in the LCH of the UE, which means that the first LCH set includes all LCHs that trigger the SR in the LCH configured by the UE. or,
  • the LCH corresponding to the SR configuration released by the UE after the occurrence of the SR failure has an LCH to which uplink data needs to be transmitted.
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs. or,
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR failure occurs is triggered to have an LCH to which uplink data needs to be transmitted.
  • the LCH in which the SR is triggered in the LCH corresponding to the SR configuration configured on the cell/BWP in which the SR configuration in which the SR failure occurs is triggered.
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be transmitted.
  • the LCH of the SR is triggered in the LCH corresponding to the SR configuration on all the serving cells of the UE. or,
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the first LCH set includes at least the LCH that triggered the SR failure.
  • the released SR Configuration may be an SR configuration that triggers SR failure or an SR configuration configured on a cell/bandwidth part (BWP) in which the SR configuration in which SR failure occurs is triggered or all serving cells (serving) SR Configuration on cell), etc., is not limited in this application. Therefore, the random access using the first random access configuration can meet the QoS requirements of the LCH with the highest priority among the first LCH set of the UE, and the reliability of the service is ensured.
  • BWP cell/bandwidth part
  • the QoS level of the random access configuration can be determined by the configuration parameters of the random access configuration, for example, the backoff parameter indicates that the backoff time is shorter and/or the power information indicates that the PowerRampingStep is larger, It is inferred that the QoS level of the random access configuration parameter is higher when the random access procedure is configured; or the QoS level of the random access configuration may be determined by the level indication information included in the random access configuration, as shown in the following table. Show:
  • the network device may indicate a priority order Priority Order corresponding to the random access configuration, and therefore, the UE may determine, as the foregoing, a random access configuration of the highest priority of the Priority Order in the random access configuration associated with the first LCH set.
  • the first random access configuration may indicate a priority order Priority Order corresponding to the random access configuration, and therefore, the UE may determine, as the foregoing, a random access configuration of the highest priority of the Priority Order in the random access configuration associated with the first LCH set.
  • the random access using the first random access configuration may apply a random access configuration that can provide the highest QoS associated with the first LCH set of the user equipment, and ensure the reliability of the service as much as possible.
  • the first random access configuration is a random access configuration associated with the highest priority SR Configuration in the first SR configuration set of the UE.
  • the first random access configuration is a random access configuration that is associated with the highest QoS level associated with the first set of SR configurations of the UE.
  • the first set of SR configurations includes at least one of the SR configurations that are released by the UE after the failure of the SR, and specifically includes the following situations:
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the released SR Configuration may be an SR that triggers an SR failure.
  • the configuration or the SR Configuration configured on the cell/BWP where the SR configuration in which the SR failure occurs is triggered, or the SR configuration on all the serving cells, etc., is not limited in this application.
  • the SR Configuration that triggers the occurrence of the SR failure may be the SR configuration of the last SR sent or the SR Configuraion of the first SR sent. Or, the SR Configuration in which the SR of the SR_COUNTER reaches the drs_TransMax is triggered, or the SR Configuration in which the SR that increments the SR_COUNTER starts to be triggered, or the SR Configuration in which the SR that increments the SR_COUNTER is located, etc., is not limited in this application.
  • the SR Configuration in which SR failure occurs may be an SR Configuration that needs to be released, or an SR Configuration that triggers SR failure, or an SR that triggers SR failure.
  • the SR configuration on the cell/BWP where the configuration is located corresponds to the SR Configuration of the data to be transmitted on the LCH, or the SR Configuration on the corresponding LCH on the cell/BWP where the SR failure is triggered, or the SR that triggers the SR failure. All SR configurations on the /BWP of the Configuration, or all SR Configurations on all the serving cells of the UE, etc., are not limited in this application;
  • the first SR Configuration set is an SR Configuration configured on a cell part/bandwidth part bandwidth part BWP in which the SR Configuration in which the SR failure occurs is triggered.
  • the random access using the first random access configuration may meet the QoS requirement of the highest priority SR Configuration in the first SR Configuration set of the user equipment, thereby ensuring service reliability.
  • the random access using the first random access configuration may apply a random access configuration that can provide the highest QoS associated in the first SR Configuration set of the user equipment, and ensure the reliability of the service as much as possible.
  • FIG. 2 is a schematic diagram of the UE performing the scheduling request failure to perform random access according to the present application; as shown in FIG. 2, it is assumed that the UE is configured with LCH1 and LCH2, where LCH1 is used for eMBB service and LCH2 is used for URLLC service.
  • the priority of the LCH2 is greater than the priority of the LCH1, and the service data to be transmitted on both LCHs triggers the scheduling request.
  • the SR on the LCH1 is sent multiple times, and the response of the network device is still not received, and the SR counter reaches the preset maximum value, triggering the SR failure of the UE, and the UE initiates random access.
  • the UE may select Random access is performed using a random access configuration corresponding to a higher priority LCH2. If there is still data to be transmitted on the LCH with higher priority than LCH2, such as LCH3, the random access configuration corresponding to LCH3 is used as the random access configuration for random access.
  • the random access configuration corresponding to the LCH2 is determined as the random access for performing random access.
  • the random access configuration corresponding to the LCH2 may still be used as the random access. Random access configuration.
  • LCH1 and LCH2 trigger the SR, and LCH2 has a higher priority than LCH1, determine a random access configuration corresponding to LCH2 as a random access configuration for performing random access. If there is still data to be transmitted on the LCH with higher priority than LCH2, such as LCH3, if LCH3 also triggers the pending SR, the random access configuration corresponding to LCH3 can be used as the random access configuration for random access. If LCH3 does not trigger the pending SR, the random access configuration corresponding to LCH2 can still be used as the random access configuration for random access.
  • the random access configuration corresponding to the LCH2 is determined as the random access for performing random access. Into the configuration.
  • the UE may also select a random access configuration that can provide the highest QoS as a random access configuration for performing random access.
  • the random access method provided in this example implements the random access of the LCH with a higher priority, which ensures the service requirements of the LCH and improves the reliability of the service.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a user equipment provided by the present application. As shown in FIG. 3, the user equipment 10 includes:
  • the storage module 11 is configured to store computer instructions; and the processing module 12 is configured to invoke computer instructions stored in the memory, so that the user equipment performs the following operations:
  • the UE If the UE is not configured to send an uplink resource of the SR, or the UE fails to generate an SR, the UE performs random access using the first random access configuration;
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE a random access configuration that can provide the highest QoS in the associated random access configuration; or a random access configuration corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE; or the UE a random access configuration capable of providing the highest QoS in the random access configuration associated with the corresponding first SR configuration set;
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the user performs the random access method provided in the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the UE fails to generate an SR, including:
  • the SR counter in any one of the SR configurations of the UE reaches the maximum number of times
  • the SR counter in the plurality of SR configurations in the SR configuration of the UE reaches a maximum number of times.
  • the first random access configuration includes power information and/or backoff parameters.
  • the at least two LCHs that have uplink data to be sent include:
  • the LCH of the SR is triggered in the LCH of the UE.
  • the LCH corresponding to the SR configuration that is released by the UE after the failure of the SR has uplink data to be sent by the LCH;
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs;
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR is configured to be triggered has uplink data to be sent;
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be sent;
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the SR configuration that is released by the UE after the failure of the SR includes:
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the performing random access by the UE according to the first random access configuration includes:
  • the UE sends a random access preamble to the network device by using the power information and/or the backoff parameter, where the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power, where the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power
  • the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the application further provides a user equipment (UE), including at least the following embodiments:
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a user equipment provided by the present application.
  • the user equipment includes: a memory for storing computer instructions; and a processor for invoking computer instructions stored in the memory, such that the user equipment performs the following operations:
  • the processor performs random access using the first random access configuration
  • the first random access configuration is any one of the following: a random access configuration corresponding to the highest priority LCH in the first LCH set corresponding to the UE; or a first LCH set corresponding to the UE a random access configuration that can provide the highest QoS in the associated random access configuration; or a random access configuration corresponding to the highest priority SR configuration in the first SR configuration set corresponding to the UE; or the UE a random access configuration capable of providing the highest QoS in the random access configuration associated with the corresponding first SR configuration set;
  • the first LCH set includes at least two LCHs in the LCH of the UE that have uplink data to be sent; the first SR configuration set includes at least one of the SR configurations released by the UE after the SR failure occurs. .
  • the user equipment may further include a transceiver for receiving and sending data.
  • the SR failure of the UE includes:
  • the SR counter in any one of the SR configurations of the UE reaches the maximum number of times
  • the SR counter in the plurality of SR configurations in the SR configuration of the UE reaches a maximum number of times.
  • the first random access configuration includes power information and/or backoff parameters.
  • the at least two LCHs that have uplink data to be sent include:
  • the LCH of the SR is triggered in the LCH of the UE.
  • the LCH corresponding to the SR configuration that is released by the UE after the failure of the SR has uplink data to be sent by the LCH;
  • the LCH of the SR is triggered by the UE in the LCH corresponding to the SR configuration released after the SR failure occurs;
  • the LCH corresponding to the SR configuration configured on the cell/bandwidth segment BWP on which the SR configuration in which the SR is configured to be triggered has uplink data to be sent;
  • the LCH corresponding to the SR configuration on all the serving cells of the UE has an LCH to which uplink data needs to be sent;
  • the LCH corresponding to the SR configuration that triggers the occurrence of the SR failure has an LCH in which uplink data needs to be transmitted.
  • the SR configuration that is released by the UE after the failure of the SR includes:
  • the SR configuration configured on the cell/BWP where the SR configuration in which the scheduling request fails is triggered.
  • the performing random access by the UE according to the first random access configuration includes:
  • the UE sends a random access preamble to the network device by using the power information and/or the backoff parameter, where the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power, where the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the power information includes a step size of the transmit power used by the UE when retransmitting the random access preamble and/or Or initial transmission power
  • the backoff parameter includes a backoff time segment in which the UE retransmits the random access preamble after receiving the RAR in the random access procedure.
  • the number of the processors is at least one, and the computer program for performing the memory storage, that is, the computer program, is configured to enable the user equipment to perform the random access method provided by any of the embodiments of the first aspect, optionally
  • the memory can also be integrated inside the processor.
  • the present application further provides a chip, including: a processing module and a communication interface coupled to each other, and the processing module is configured to execute the random access method provided by the method embodiment.
  • the communication interface is configured to communicate with other devices under the control of the processing module.
  • a memory for storing instructions and/or data may be integrated into the chip for the processing module to call.
  • the chip may be a SoC (System-on-a-Chip), and the SoC may be referred to as a system-on-chip or a system-on-chip.
  • the present application also provides a readable storage medium having stored thereon a computer program that, when executed on a computer, causes the computer to perform the random access method provided by the method embodiments.
  • the application also provides a program product, the program product comprising a computer program, the computer program being stored in a readable storage medium, the at least one processor of the user device reading and executing the computer from the readable storage medium
  • the program causes the user equipment to perform the random access method provided by the method embodiment.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processor, digital signal processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory referred to in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM). SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (ESDRAM), Synchronous Connection Dynamic Random Access Memory (Synchlink DRAM, SLDRAM) ) and direct memory bus random access memory (DR RAM).
  • memories described herein are intended to comprise, without being limited to, these and any other suitable types of memory.

Abstract

本申请提供一种随机接入方法、装置、设备、存储介质和程序产品,该方法包括:如果UE没有被配置用于发送SR的上行资源,或者该UE发生SR失败,则UE使用优先级最高的LCH对应的随机接入配置,或者,使用优先级最高的SR配置所对应的随机接入配置,或者,使用能提供最高QoS的随机接入配置进行随机接入,优先实现高优先级或者高QoS要求的业务的接入传输,优化了传输的可靠性。

Description

随机接入方法、装置、设备、存储介质和程序产品
本申请要求于2017年9月30日提交中国国家知识产权局、申请号为201710938993.0、申请名称为“一种发起随机接入的方法”的中国专利申请的优先权,以及于2017年11月16日提交中国国家知识产权局、申请号为201711138282.1、申请名称为“随机接入方法、装置、设备、存储介质和程序产品”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种随机接入方法、装置、设备、存储介质和程序产品。
背景技术
第五代(5th Generation,5G)移动通信技术(mobile communication technology)是对第四代(the 4Generation,4G)移动通讯技术的延伸。因此,5G通信系统被称为“超4G网络”或“后长期演进(Long Term Evolution,LTE)系统”或者“新空口(New Radio,NR)”。在现有的LTE中,当发生调度请求失败(Scheduling Request,SR)failure时,用户设备(User Equipment,UE)进行随机接入,其具体过程可以对待3GPP TS 36.321中所描述的过程,UE向基站发送随前导码,接收基站返回的随机接入响应,并根据随机接入响应获取上行同步,以完成随机接入过程。
在NR中,UE可以被配置多个逻辑信道(Logical Channel,LCH),当某个LCH上有数据需要发送时,如果UE没有可用的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,可以触发UE在该LCH对应的SR配置(SR Configuration)的时频资源上发送SR消息。每个SR Configuration对应一个传输最大次数drs-TransMax。UE内部维持一个计数器SR_COUNTER。当UE的LCH上有数据且当前时隙或者传输时间间隔(Transmission Time Interval,TTI)中没有PUSCH资源时,会触发UE产生pending SR。若SR_COUNTER小于drs-TransMax时,则SR_COUNTER加1,并发送SR。SR或者SR bundle每发送一次就会使SR_COUNTER加1。当SR_COUNTER到达drs-TransMax时,UE认为发生SR失败SR failure。随后,UE将进行随机接入,目前NR中,UE使用触发SR failure的LCH对应的随机接入信道(Random Access Channel,RACH)配置来进行随机接入。其中随机接入配置包括UE进行随机接入的退避(backoff)参数和/或功率攀升(power ramping)参数。
然而,采用触发SR failure的LCH对应的RACH参数进行随机接入可能无法满足其他LCH上的业务的要求。
发明内容
本申请提供一种随机接入方法、装置、设备、存储介质和程序产品,用于优化UE进行随机接入的方案。
第一方面,本申请提供一种随机接入方法,至少包括以下实施例:
1、一种随机接入方法,所述方法包括:
如果UE没有被配置用于发送SR的上行资源,或者所述UE发生SR失败,则所述UE使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
2、根据实施例1所述的方法,所述UE发生SR失败,包括:
所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
3、根据实施例1或2所述的方法,所述第一随机接入配置包括功率信息和/或退避参数。
4、根据实施例1至3任一所述的方法,所述至少两个有上行数据需要发送的LCH包括:
所述UE的LCH中触发了SR的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
在本方案中,若UE发生SR失败,应理解第一LCH集合中包括了触发SR失败的LCH信道。
5、根据实施例1至4任一所述的方法,所述UE在发生所述SR失败后释放的SR配置包括:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
6、根据实施例3所述的方法,所述UE根据所述第一随机接入配置进行随机接入,包括:
所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
第二方面,本申请还提供一种用户设备(UE),至少包括以下实施例:
7、一种UE,包括:存储模块,用于存储计算机指令;和处理模块,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
如果UE没有被配置用于发送调度请求SR的上行资源,或者所述UE发生SR失败,则所述UE使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
8、根据实施例7所述的UE,所述UE发生SR失败,包括:
所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
9、根据实施例7或8所述的UE,所述第一随机接入配置包括功率信息和/或退避参数。
10、根据实施例7至9任一所述的UE,所述至少两个有上行数据需要发送的LCH包括:
所述UE的LCH中触发了SR的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
11、根据实施例7至10任一所述的UE,所述UE在发生所述SR失败后释放的SR配置包括:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
12、根据实施例9所述的UE,所述UE根据所述第一随机接入配置进行随机接入,包括:
所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
第三方面,本申请还提供一种用户设备(UE),至少包括以下实施例:
13、一种UE,包括:存储器,用于存储计算机指令;和处理器,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
如果UE没有被配置用于发送调度请求SR的上行资源,或者所述UE发生SR失败,则所述处理器使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
14、根据实施例13所述的UE,所述UE发生SR失败,包括:
所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
15、根据实施例13或14所述的UE,所述第一随机接入配置包括功率信息和/或退避 参数。
16、根据实施例13至15任一所述的UE,所述至少两个有上行数据需要发送的LCH包括:
所述UE的LCH中触发了SR的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
17、根据实施例13至16任一所述的UE,所述UE在发生所述SR失败后释放的SR配置包括:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
18、根据实施例15所述的UE,所述UE根据所述第一随机接入配置进行随机接入,包括:
所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
在上述任一实施例提供的UE的实施例的基础上,该UE还可以包括收发器,所述收发器用于接收和发送数据。
在上述UE的具体实现中,处理器的数量为至少一个,用来执行存储器存储的计算机指令,即计算机程序,使得用户设备执行第一方面任一实施例提供的随机接入方法,可选的,存储器还可以集成在处理器内部。
第四方面,本申请还提供一种芯片,包括:相互耦合的处理模块与通信接口,所述处理模块(可以为一个或多个,具体可以是处理器)用于执行第一方面的实施例1至6任一所述的随机接入方法,所述通信接口用于在所述处理模块的控制下,与其他设备进行通信。 所述芯片内可以集成有用于存储指令和/或数据的存储器,以供所述处理模块调用。所述芯片可以是SoC(System-on-a-Chip),SoC可称为系统级芯片,也有称片上系统。
第五方面,本申请还提供一种可读存储介质,其上存储有计算机程序,该计算机程序在计算机上执行时,将会使所述计算机执行如第一方面的实施例1至6任一所述的随机接入方法。
第六方面,本申请还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,用户设备的至少一个处理器从所述可读存储介质读取并执行所述计算机程序,使得用户设备执行第一方面的实施例1至6任一所述的随机接入方法。
本申请提供的随机接入方法、装置、设备、存储介质和程序产品,在UE没有被配置用于发送SR的上行资源,或者所述UE发生SR失败时,通过让UE使用优先级最高的LCH对应的随机接入配置,或者,使用优先级最高的SR配置所对应的随机接入配置,或者,使用能提供最高QoS的随机接入配置进行随机接入,使得UE能够优先实现高优先级或者高QoS要求的业务的接入传输,优化业务传输的可靠性。
附图说明
图1为一种NR系统架构示意图;
图2为本申请提供的UE发生调度请求失败进行随机接入的示意图;
图3为本申请提供的用户设备的实施例一的结构示意图;
图4为本申请提供的用户设备的实施例二的结构示意图。
具体实施方式
UE的内部协议栈包含无线资源控制(Radio Resource Control,RRC)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、介质访问控制(Medium Access Control,MAC)层和物理(Physical,PHY)层,在PDCP层之上,还可以包含服务数据适应协议(Service Data Adaptation Protocol,SDAP)层。UE可以被配置多个LCH,当某个LCH上有数据需要发送时,如果UE没有可用的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,可以触发UE在该LCH对应的SR配置SR Configuration的时频资源上发送SR消息。在现有的LTE中,如果UE发送SR消息达到传输最大次数drs-TransMax而仍没有被分配上行传输资源时,认为发生调度请求失败SR failure,进一步地,当发生调度请求失败SR failure时,UE释放所有的PUCCH资源,并进行随机接入,其具体过程可以参考3GPP TS 36.321中所描述的过程。
在NR中,UE可以被配置多个SR Configuration,每个SR Configuration对应一个传输最大次数,如drs-TransMax。UE内部针对每个SR Configuration配置一个计数器,记为SR_COUNTER。当UE的LCH上有数据需要发送且当前时隙或者传输时间间隔(Transmission Time Interval,TTI)中没有PUSCH资源时,会触发UE产生pending SR。当某一个或者多个SR Configuration对应的SR_COUNTER到达该SR Configuration对应的drs-TransMax时,UE认为发生SR失败SR failure。UE的一个或者多个LCH中有上行数 据需要发送给基站,但是UE没有被分配用于传输数据的PUSCH资源发送数据,UE需要向基站请求PUSCH资源。在UE没有被配置用于发送调度请求SR的上行资源的情况下,UE只能通过发起随机接入的方式(既发送随机接入前导(RA preamble))向基站请求PUSCH资源。在上述的SR失败或者UE没有被配置用于发送调度请求SR的上行资源,UE将进行随机接入,现有技术中提出使用触发SR failure的LCH对应的随机接入配置来进行随机接入。然而,如果有优先级更高的LCH上有数据,或者有更高的服务质量要求的业务数据待传输,那么直接采用触发SR failure的LCH对应的随机接入配置进行随机接入可能无法满足更高优先级的LCH的QoS要求。据此,本方案提供一种优化的随机接入方案,在UE出现SR失败时,使UE能够尽快完成随机接入,优先满足优先级较高的LCH或者QoS要求高的业务数据的传输,保证业务可靠性。
本申请可以应用于无线通信系统中,例如新空口(New Radio,NR)场景、LTE下一代场景、无线局域网(Wireless Local Area Network,WLAN)场景、蓝牙通信、3GPP定义的通信系统等场景中。为描述方便,实施例以新空口场景为例进行说明。图1为一种NR系统架构示意图,如图1所示,在NR场景中可以包含核心网,如NGC/5GC或者EPC,新空口的接入网,为描述方便,说明书中统一称为核心网、接入网。其中的功能实体主要为网络设备,及连接新空口接入网中的网络设备的用户设备,如图1所示的用户设备1,更多地,还可以包括中继设备及与中继连接的用户设备,如图1所示的用户设备2。中继设备与网络设备通过链路2建立连接,因此相对于网络设备,中继设备也可以视为一种用户设备;中继设备与用户设备2通过链路3建立连接,因此相对于用户设备,中继设备也可以视为一种网络设备。因此,本领域的技术人员可以理解,本申请中所述的网络设备也可以包含中继设备,本申请所述的用户设备也可以包含中继设备。其中,网络设备具体可以为gNB、新型无线电基站(New radio eNB)、传输点(transmission and reception point,TRP)、宏基站、微基站、高频基站、LTE宏或微eNB、用户驻地设备(Customer-premises equipment,CPE)、WLAN AP、WLAN GO等中的任一种或者某几种的组合,例如,网络设备可以为一个gNB,由该gNB完成本申请中网络设备所涉及的功能,或者,网络设备为gNB与TRP的组合,如由gNB完成本申请中网络设备的资源配置功能,由TRP完成本申请中网络设备的发送接收功能,本申请并不以此为限。用户设备可以为手机、平板、智能汽车、传感设备、物联网(Internet Of Things,IOT)设备、CPE、中继基站、UE、NR-UNIT等。
以上述图1所示的系统架构示意图为例,对本申请提供的随机接入方法进行说明,本方案中,如果UE没有被配置用于发送调度请求SR的上行资源或者UE发生调度请求失败,UE使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的服务质量(Quality of Service,QoS)的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置。在该方案中,应理解UE对应的第一LCH集合包括UE内部拥有的LCH集合, 或者为UE配置的LCH集合,或者与该UE关联的LCH集合。同样的,UE对应的第一SR配置集合也包括UE内部拥有的SR配置集合,或者为UE配置的SR配置集合,或者与该UE关联的SR配置集合。对此本方案不做限制。
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。该方案中,
本方案中应理解,UE发生调度请求失败的情况包括:UE发生调度请求失败时,或者,UE发生调度请求失败之后等情况,对此本方案不做限制。
调度请求计数器可以是针对每个LCH进行配置的,也可以是针对每个SR配置进行配置的,无论是何种配置方式,当与该UE关联的任一个或者多个(或者全部)调度请求计数器的计数值达到预设的最大值,则确定UE发送SR失败。
上述方案中提供至少四种实现方式:
第一种实现方式,在UE没有被配置用于发送调度请求SR的上行资源或者UE确定发生SR失败进行随机接入时,选择的第一随机接入配置是UE配置的LCH中有数据要发送的多个LCH中,优先级最高的LCH对应的随机接入配置。所述有数据要发送可以为有上行数据要发送,或者有BSR需要发送,或者在MAC层对应的缓存中有缓存数据等情况。即UE根据LCH的优先级选择优选级高的LCH对应的随机接入配置进行随机接入,即优先保证优先级高的逻辑信道的业务,保证业务的可靠性。
对于UE来说,可以被配置多个LCH,每个LCH可用于不同的业务。每个LCH可配置相应的随机接入配置,该随机接入配置表明了针对该LCH进行随机接入请求上行资源时所使用的RACH参数,例如backoff参数、power ramping参数等。
第二种实现方式,在UE没有被配置用于发送调度请求SR的上行资源或者UE确定发生SR失败进行随机接入时,选择的第一随机接入配置是UE配置的LCH中有数据要发送的多个LCH所关联的RACH中,能够提供最高的QoS的随机接入配置。即UE根据有数据传输的LCH关联的所有RACH能够提供的QoS的高低确定选择哪个随机接入配置进行随机接入,本方案中选择能够提供最高的QoS随机接入配置进行随机接入,即优先保证服务质量要求最高的业务的可靠性。
第三种实现方式,在UE没有被配置用于发送调度请求SR的上行资源或者UE确定发生SR失败进行随机接入时,选择的第一随机接入配置为UE发生所述SR失败后释放的SR配置中优先级最高的SR配置所对应的随机接入配置。
该方案中,随机接入配置是与SR配置对应的,对UE的多个LCH来说,每个LCH可以对应0个或者1个SR配置。为每个SR配置对应的随机接入配置,因此UE在该实现方式中,选择优先级最高的SR配置对应的随机接入配置进行随机接入,优先保证优先级高的SR配置的业务传输,保证业务的可靠性。
应理解随机接入配置粒度的可以是与LCH一一对应的,也可以是与SR配置一一对应的。
第四种实现方式,在UE没有被配置用于发送调度请求SR的上行资源或者UE确定发生SR失败进行随机接入时,选择的第一随机接入配置为UE发生所述SR失败后释放 的SR配置中能提供最高QoS的SR配置所对应的随机接入配置。选择能够提供最高的QoS随机接入配置进行随机接入,即优先保证服务质量要求最高的业务的可靠性。
上述实施例提供的随机接入方法,如果UE没有被配置用于发送调度请求SR的上行资源或者UE发生调度请求失败,触发随机接入,UE根据上述方案选择合适的随机接入配置进行随机接入,能够尽快完成随机接入,并优先满足最高优先级的LCH或者最高QoS的要求,保证业务的可靠性。
在上述方案的基础上,可以理解,UE可以被配置多个SR配置(SR Configuration)和多个LCH。具体地,可以由网络设备,如gNB、cell、发送点和接收端(Transmission and Reception Point,TRP)等通过RRC消息或者MAC CE或者物理下行链路控制信道(Physical Downlink Control Channel,PDCCH)下行控制信息(Downlink Control Information,DCI)等方式向UE指示每个SR Configuration及LCH的配置信息,SR Configuration的配置信息可以包括某个SR Configuration的PUCCH时频资源、SR Configuration的drs_TransMax、sr_ProhibitTimer、SR Configuration对应Numerology、TTI时长等中的一种或者多种,进一步地,网络设备还可以配置该SR Configuration的优先级、该SR Configuration关联的随机接入配置(也称为随机接入配置信息,RACH配置等,对此本方案不做限制)。该随机接入配置可以为SR failure后进行随机接入时所使用的配置参数,例如,退避参数、功率信息等,具体地,退避参数可以包括UE在随机接入过程中接收随机接入响应(Random access response,RAR)后重发Preamble的退避时间区段,功率信息可以包括UE在重发前导码(Preamble)时所使用的发射功率攀升步长(PowerRampingStep)和/或初始传输功率等。
进一步地,随机接入配置还可以包括进行随机接入时使用的时频资源、Preamble传输最大次数、Preamble格式或长短信息、竞争解决计时器等中的一个或者多个。前述的随机接入配置中的配置参数可以在同一个消息中进行指示,也可以通过多次消息进行指示,例如,所述随机接入配置中的各项参数可以通过同一个RRC消息或者MAC CE或者PDCCH DCI等方式携带或者通过RRC信令或者MAC CE或者PDCCH DCI等方式中的两种或者两种以上的结合的方式携带。例如,所述功率信息可以通过RRC信令进行指示,而所述退避参数可以通过MAC CE携带的RAR进行指示。前述的随机接入配置中包含的所述配置参数可以通过显式或者隐式的方式进行指示。所述随机接入配置可以通过配置索引来携带,也可以通过直接描述携带,或者通过配置等级指示,或者通过优先级指示,或者通过前述方式中两种或者多种方式的结合方式携带。例如,通过将配置索引值与具体的配置参数进行对应,网络设备向UE指示所述随机接入配置时只携带相应的配置索引值,UE通过所述配置索引值来确定具体的随机接入配置中的配置参数;或者,将配置等级或者优先级指示与具体的配置参数进行对应,UE可以通过网络设备向其配置的配置等级或者优先级指示来确定具体的随机接入配置中的配置参数,举例说明,当SR Configuration被配置了一定的优先级时,当其接收到RAR后,可以结合RAR中指示的backoff indicator和自身的优先级确定该SR Configuration所对应的退避参数。
其中,LCH的配置信息可以包括LCH的优先级、该LCH对应业务信息等中的一种或者多种,进一步地,网络设备还可以配置该LCH关联的随机接入参数等,随机接入参数所具体包含的配置参数参考前述的描述。举例说明,当LCH被配置了一定的优先级时,当其接 收到RAR后,可以结合RAR中指示的backoff indicator和自身的优先级确定该LCH所对应的退避参数。
一个LCH可以映射到0个或者1个或者多个SR Configuration,即一个SR Configuration可以对应一个或者多个LCH。例如,在单载波场景下,一个LCH可以被映射到0个或者1个SR Configuration中。
在载波聚合(Carrier Aggregation,CA)场景下,一个LCH可以映射到多个Cell上的SR Configuration中,对于该LCH这多个cell上的SR Configuration可以称为一个SR Configuration集合或者SR Configuration Group,该SR Configuration Group可以被配置同一个drs_TransMax。对于该SR Configuration Group可以维持一个SR_COUNTER。UE在SR Configuration。Group内的任何一个SR Configuration上发送SR都会使SR_COUNTER加1。因此网络设备还可以向UE指示LCH与SR Configuration的映射关系,具体地,该映射关系可以在SR Configuration的配置信息或者LCH的配置信息中携带,或者通过其他配置信息携带,该映射关系可以通过RRC信令、MAC CE、DCI等方法中的一种或者多种进行指示,本申请不作限制。
前述的SR Configuration及LCH的配置信息可以通过显式或者隐式的方式进行指示,可以通过同一个RRC消息或者MAC CE或者PDCCH DCI等方式携带或者通过RRC信令或者MAC CE或者PDCCH DCI等方式中的两种或者两种以上的结合的方式携带。例如,在某些情况下,LCH的部分配置信息和SR Configuration的部分配置信息可以存在一定的关联关系,例如,SR Configuration的优先级可以通过其对应的LCH的优先级确定,例如,SR Configuration的优先级可以由其对应的LCH中优先级最高的一个来确定,或者SR Configuration的优先级可以由其对应的LCH中当前有数据的LCH中优先级最高的一个来确定,因此,网络可以不向其显式配置SR Configuration的优先级,其由其对应的LCH的优先级来隐式指示。
当UE在某个LCH上有上行数据要发送时,如果当前的传输时隙内没有可用的上行传输资源,如PUSCH资源,则可以触发SR,并在该LCH对应的SR Configuration的PUCCH资源发送SR,当前的传输时隙可以为TTI、slot、mini slot、frame、subframe等中的一种。具体地,当某个LCH上有数据要发送时,可以触发生成BSR,该BSR的类型可以为regular BSR或者padding BSR或者Periodic BSR等中的一种或者多种,当UE判定logicalChannelSR-ProhibitTimer没有运行且该BSR没有uplink grant时,触发SR。且在具体实施例中,应理解,文中的有待传输数据,有上行数据要传输,有数据要发送等描述均是相同的含义,可以为有上行数据要发送,或者有BSR需要发送,或者在MAC层对应的缓存中有缓存数据等情况。
在第一种可能的实施方式中,触发SR的LCH可以为该LCH对应的SR Configuration上最先有待传输数据的LCH,例如,在t0时刻,该SR Configuration所对应的LCH均没有待传输数据,在t1时刻,该SR Configuraiton对应的所有LCH中出现了第一个有待传输数据的LCH,则由该LCH触发SR,并使用该SR Configuration的PUCCH资源进行传输。
在第二种可能的实施方式中,触发SR的LCH可以为该LCH对应的SR Configuration所 对应的LCH中有待传输数据的优先级最高的LCH,例如,在t0时刻,该SR Configuration所对应的LCH均没有待传输数据,在t1时刻,该SR Configuraiton对应的所有LCH中出现了第一个有待传输数据的LCH,记为LCH1,由于LCH1为有待传输数据的优先级最高的LCH,因此由LCH1触发SR,在t2时刻,该SR Configuraiton对应的所有LCH中出现了第二个有待传输数据的LCH,记为LCH2,且LCH2优先级高于LCH1,则由LCH2触发SR该并使用该SR Configuration的PUCCH资源进行传输。
在第三种可能的实施方式中,触发SR的LCH可以该LCH对应的SR Configuration所对应的LCH中最后产生待传输数据的LCH,例如,在t0时刻,该SR Configuration所对应的LCH均没有待传输数据,在t1时刻,该SR Configuraiton对应的所有LCH中出现了第一个有待传输数据的LCH,记为LCH1,因此由LCH1触发SR,在t2时刻,该SR Configuraiton对应的所有LCH中出现了第二个有待传输数据的LCH,记为LCH2,则由LCH2触发SR,在t3时刻,该SR Configuraiton对应的所有LCH中出现了第三个有待传输数据的LCH,记为LCH3,则由LCH3触发SR该并使用该SR Configuration的PUCCH资源进行传输,依此类推。
当UE在SR Configuration的PUCCH资源上每发送一次SR或者SR bundle,会使SR_COUNTER加1。当SR_COUNTER达到drs_TransMax时,可以认为发生SR failure。具体地,根据不同的SR_COUNTER配置,发生SR failure可以有不同的定义:
例如,在第一种可能的实施方式中,如果SR_COUNTER是针对每个SR配置进行配置的,则UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,所述UE的SR配置中多个或者全部的SR配置中的SR计数器达到最大次数,则认为该UE发生SR failure。其含义是如果任意一个或者多个SR_configuration上的SR_COUNTER达到drs_TransMax,则认为发生SR failure;本领域的技术人员可以理解,SR_COUNTER达到drs_TransMax可能为SR_COUNTER等于drs_TransMax,也可能为SR_COUNTER超过或者大于drx_TransMax,其具体设定与设置的SR failure的判定标准有关,本申请实施例遵照该判定标准来定义SR_COUNTER达到drs_TransMax的具体含义。
在第二种可能的实施方式中,如果SR_COUNTER是针对每个SR configuration配置的,如果某一个或者多个或者全部的有待传输SR Pending SR的SR_configuration上的SR_COUNTER达到所述SR_COUNTER对应的SR Configuration的drs_TransMax,则认为发生SR failure;例如,当一个SR_COUTNER达到其对应的SR Configuration的drs_TransMax,若还有另一个有Pending SR的SR Configuration的SR_COUNTER未达到drs_TransMax,或者,有另外一个优先级更高的LCH触发的Pending SR的SR Configuration的SR_COUNTER未达到drs_TransMax,则可以继续发送SR而不进行随机接入,直到所述另一个有Pending SR的SR Configuration的SR_COUNTER达到drs_TransMax,则认为发生SR failure;需要说明的是,SR_COUNTER达到drs_TransMax的具体含义参考前述第一种可能的实施方式的描述。
在第三种可能的实施方式中,如果SR_COUNTER是针对MAC实体配置的,如果SR_COUNTER达到最后一个触发发送SR的LCH对应的SR Configuration的drs_TransMax,则认为发生SR failure;需要说明的是,SR_COUNTER达到drs_TransMax的具体含义参考前述第一种可能的实施方式的描述。
在第四种可能的实施方式中:如果SR_COUNTER是针对MAC实体配置的,如果SR_COUNTER达到所有触发pending SR的LCH中对应的SR Configuration的最小或者最大的drs_TransMax,则认为发生SR failure;需要说明的是,SR_COUNTER达到drs_TransMax的具体含义参考前述第一种可能的实施方式的描述。
在第五种可能的实施方式中,如果SR_COUNTER是针对UE配置的,如果SR_COUNTER达到最后一个触发发送SR的LCH对应的SR Configuration的drs_TransMax,则认为发生SR failure;需要说明的是,SR_COUNTER达到drs_TransMax的具体含义参考前述第一种可能的实施方式的描述。
在第六种可能的实施方式中:如果SR_COUNTER是针对UE配置的,如果SR_COUNTER达到所有触发pending SR的LCH中对应的SR Configuration的最小或者最大的drs_TransMax,则认为发生SR failure;需要说明的是,SR_COUNTER达到drs_TransMax的具体含义参考前述第一种可能的实施方式的描述。
需要说明的是,发生SR failure还可以有其他的定义,本申请不作限制。
如果发生SR failure,则基于第一随机接入配置发起随机接入过程。所述第一随机接入配置包括功率信息和退避参数中的至少一种。具体地,所述功率信息可以包括UE在重发Preamble时所使用的发射功率攀升步长PowerRampingStep和/或初始传输功率等,所述退避参数可以包括UE在随机接入过程中接收RAR后重发Preamble的退避时间区段,进一步地,所述第一随机接入配置还可以包括进行随机接入时使用的时频资源、Preamble传输最大次数、Preamble格式或长短信息、竞争解决计时器等中的一个或者多个。
所述基于第一随机接入配置发起随机接入过程可以为使用所述第一随机接入配置发起随机接入过程,具体地,可以为,在发起随机接入过程中发送和/或接收随机接入过程中的相关消息时采用所述第一随机接入配置中的配置参数,例如,当所述第一随机接入配置中包含发送preamble的PowerRampingStep时,UE在进行随机接入时,如果需要重发Preamble,则采用所述PowerRampingStep所指示的步长值,即重发Preamble的传输功率设置为前一次发送Preamble的传输功率加所述步长值;当所述第一随机接入配置中包含发送preamble的退避信息时,则在接收RAR后依据所述退避信息确定重发preamble的退避时间。
在不同的实施方式中,所述第一随机接入配置所表示的具体参数不同,具体地:
在第一种可能的实施方式中,所述第一随机接入配置为所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置。该方案确保有数据要传输的优先级最高的LCH的随机接入请求,保证了业务的可靠性。
在第二种可能的实施方式中,所述第一随机接入配置为所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的服务质量QoS的随机接入配置。该方案确保了可以达到的最高的QoS完成SR failure触发的随机接入,保证了业务的可靠性。
具体地,所述第一LCH集合指的是UE对应的至少两个有上行数据需要发送的LCH,具体的包括以下情况:
所述UE的LCH中触发了SR的LCH,其含义是第一LCH集合包括UE配置的LCH中所有触发了SR的LCH。或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送 的LCH。或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH。或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH。或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH。或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH。或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH。或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
上述方案中,应理解,如果UE发生SR失败,则该第一LCH集合种至少包括触发了SR失败的LCH。另外,释放的SR Configuration可以为触发发生SR failure的SR Configuration或者触发发生SR failure的的SR Configuration所在的小区(cell)/带宽片段(bandwidth part,BWP)上配置的SR Configuration或者所有服务小区(serving cell)上的SR Configuration等,本申请不作限制。因此,使用第一随机接入配置进行随机接入可以满足UE的第一LCH集合中优先级最高的LCH的QoS要求,保证了业务的可靠性。
本领域的技术人员可以理解,随机接入配置的QoS等级可以通过该随机接入配置的配置参数来确定,例如,退避参数指示的退避时间更短和/或功率信息指示的PowerRampingStep更大,可以推断出该随机接入配置的配置参数进行随机接入过程时的QoS等级更高;或者,随机接入配置的QoS等级可以通过该随机接入配置中包含的等级指示信息来确定,如下表所示:
Figure PCTCN2018107789-appb-000001
网络设备可以对应随机接入配置指示相应的优先级排序Priority Order,因此,UE可以确定所述第一LCH集合中所关联的随机接入配置中Priority Order最靠前的随机接入配置作为所述第一随机接入配置。
因此,使用所述第一随机接入配置进行随机接入可以应用所述用户设备的第一LCH集合中关联的可以提供最高QoS的随机接入配置,尽可能地保证了业务的可靠性。
在第三种可能的实施方式中,所述第一随机接入配置为所述UE的第一SR配置集合中优先级最高的SR Configuration所关联的随机接入配置。
在第四种可能的实施方式中,所述第一随机接入配置为所述UE的第一SR配置集合中所关联的能提供最高QoS等级的随机接入配置。
具体地,所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至 少一个,具体包括以下情况:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;或者,
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
上述几种情况的具体实现中,若所述第一SR Configuration集合为所述UE在发生所述SR failure后释放的SR Configuration,具体地,所述释放的SR Configuration可以为触发发生SR failure的SR Configuration或者触发发生所述SR failure的的SR Configuration所在的cell/BWP上配置的SR Configuration或者所有serving cell上的SR Configuration等,本申请不作限制。
若所述第一SR Configuration集合为触发发生所述SR failure的SR Configuration,具体地,触发发生所述SR failure的SR Configuration可以为最后一个发送SR的SR Configuration或者为第一个发送SR的SR Configuraion,或者触发SR_COUNTER达到drs_TransMax的SR所在的SR Configuration,或者触发SR_COUNTER开始加1的SR所在的SR Configuration,或者使得SR_COUNTER加1的SR所在的SR Configuration等,本申请不作限制。
若所述第一SR Configuration集合为发生SR failure的SR Configuration,具体地,发生SR failure的SR Configuration可以为需要被释放的SR Configuration,或者触发发生SR failure的SR Configuration,或者触发发生SR failure的SR Configuration所在的cell/BWP上其对应LCH上有待传输数据的SR Configuration,或者触发发生SR failure的SR Configuration所在的cell/BWP上其对应LCH上有待传输SR的SR Configuration,或者触发发生SR failure的SR Configuration所有的/BWP上所有的SR Configuration,或者UE的所有serving cell上的所有SR Configuration等,本申请不作限制;
所述第一SR Configuration集合为触发发生所述SR failure的SR Configuration所在的小区cell/带宽部分bandwidth part BWP上配置的SR Configuration。
通过上述方式,使用所述第一随机接入配置进行随机接入可以满足所述用户设备的第一SR Configuration集合中优先级最高的SR Configuration的QoS要求,保证了业务的可靠性。
因此,使用所述第一随机接入配置进行随机接入可以应用所述用户设备的第一SR Configuration集合中关联的可以提供最高QoS的随机接入配置,尽可能地保证了业务的可靠性。
在上述方案的基础上,下面以以具体实例对本申请提供的随机接入方法进行说明。
图2为本申请提供的UE发生调度请求失败进行随机接入的示意图;如图2所示,假设UE被配置了LCH1和LCH2,其中LCH1用于eMBB业务,LCH2用于URLLC业务。LCH2的优先级大于LCH1的优先级,且两LCH上均有业务数据待传输,触发了调度请求。LCH1上的SR发送多次,仍未接收到网络设备的响应,且SR计数器达到了预设的最大值,触发了UE的SR失败,UE发起随机接入,根据前述的技术方案,UE可选择 使用优先级更高的LCH2对应的随机接入配置进行随机接入。如果还有比LCH2优先级更高的LCH上有待传输数据,如LCH3,则使用LCH3所对应的随机接入配置作为进行随机接入的随机接入配置。
可选的,根据前述方案,如果UE释放了SR配置1和SR配置2对应的PUCCH资源,且LCH2的优先级高于LCH1,因此确定LCH2对应的随机接入配置作为进行随机接入的随机接入配置。如果还有比LCH2优先级更高的LCH上有待传输数据,如LCH3,但是LCH3所对应的SR配置的PUCCH资源没有被释放,则可以仍然使用LCH2所对应的随机接入配置作为进行随机接入的随机接入配置。
可选的,根据前述方案,如果仅有LCH1和LCH2触发了SR,且LCH2的优先级高于LCH1,因此确定LCH2对应的随机接入配置作为进行随机接入的随机接入配置。如果还有比LCH2优先级更高的LCH上有待传数据,如LCH3,若LCH3也会触发pending SR,则可以使用LCH3所对应的随机接入配置作为进行随机接入的随机接入配置。若LCH3不触发pending SR,则可以仍然使用LCH2所对应的随机接入配置作为进行随机接入的随机接入配置。
可选的,根据前述方案,如果UE释放了SR配置1和SR配置2对应的PUCCH资源,且LCH2的优先级高于LCH1,因此确定LCH2对应的随机接入配置作为进行随机接入的随机接入配置。
除此之外,UE还可以选择能够提供最高QoS的随机接入配置作为进行随机接入的随机接入配置,具体方案参考前述描述,在此不再赘述。
本实例提供的随机接入方法,实现了UE保证优先级较高的LCH进行随机接入,即保证了LCH的业务要求,提高了业务的可靠性。
图3为本申请提供的用户设备的实施例一的结构示意图,如图3所示,该用户设备10包括:
存储模块11,用于存储计算机指令;和处理模块12,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
如果UE没有被配置用于发送SR的上行资源,或者所述UE发生SR失败,则所述UE使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
本实施例提供的用户设备,用户执行前述方法实施例提供的随机接入方法,其实现原理和技术效果类似,在此不再赘述。
在上述实施例的基础上,所述UE发生SR失败,包括:
所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
可选的,所述第一随机接入配置包括功率信息和/或退避参数。
可选的,所述至少两个有上行数据需要发送的LCH包括:
所述UE的LCH中触发了SR的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
可选的,所述UE在发生所述SR失败后释放的SR配置包括:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
可选的,所述UE根据所述第一随机接入配置进行随机接入,包括:
所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
第三方面,本申请还提供一种用户设备(UE),至少包括以下实施例:
图4为本申请提供的用户设备的实施例二的结构示意图。如图4所示,该用户设备包括:存储器,用于存储计算机指令;和处理器,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
如果UE没有被配置用于发送SR的上行资源,或者所述UE发生SR失败,则所述处理器使用第一随机接入配置进行随机接入;
其中,所述第一随机接入配置为以下任一种:所述UE对应的第一LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;或者,所述UE对应的第一SR配置集 合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
可选的,该用户设备还可以包括收发器,用于数据的接收和发送。
可选的,UE发生SR失败包括:
所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
可选的,所述第一随机接入配置包括功率信息和/或退避参数。
可选的,所述至少两个有上行数据需要发送的LCH包括:
所述UE的LCH中触发了SR的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
可选的,所述UE在发生所述SR失败后释放的SR配置包括:
所述UE的所有SR配置;或者,
触发了SR的SR配置;或者,
有待传输数据的SR配置;或者,
触发发生所述SR失败的SR配置;或者,
发生调度请求失败的SR配置;
触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
可选的,所述UE根据所述第一随机接入配置进行随机接入,包括:
所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
在上述UE的具体实现中,处理器的数量为至少一个,用来执行存储器存储的计算机指令,即计算机程序,使得用户设备执行第一方面任一实施例提供的随机接入方法, 可选的,存储器还可以集成在处理器内部。
本申请还提供一种芯片,包括:相互耦合的处理模块与通信接口,所述处理模块用于执行方法实施例提供的随机接入方法。所述通信接口用于在所述处理模块的控制下,与其他设备进行通信。所述芯片内可以集成有用于存储指令和/或数据的存储器,以供所述处理模块调用。所述芯片可以是SoC(System-on-a-Chip),SoC可称为系统级芯片,也有称片上系统。
本申请还提供一种可读存储介质,其上存储有计算机程序,该计算机程序在计算机上执行时,将会使所述计算机执行方法实施例提供的随机接入方法。
本申请还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,用户设备的至少一个处理器从所述可读存储介质读取并执行所述计算机程序,使得用户设备执行方法实施例提供的随机接入方法。
在用户设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。

Claims (18)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    如果用户设备UE没有被配置用于发送调度请求SR的上行资源,或者所述UE发生SR失败,则所述UE使用第一随机接入配置进行随机接入;
    其中,所述第一随机接入配置为以下任一种:所述UE对应的第一逻辑信道LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的服务质量QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
    所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
  2. 根据权利要求1所述的方法,其特征在于,所述UE发生SR失败,包括:
    所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
    所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一随机接入配置包括功率信息和/或退避参数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述至少两个有上行数据需要发送的LCH包括:
    所述UE的LCH中触发了SR的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
    触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述UE在发生所述SR失败后释放的SR配置包括:
    所述UE的所有SR配置;或者,
    触发了SR的SR配置;或者,
    有待传输数据的SR配置;或者,
    触发发生所述SR失败的SR配置;或者,
    发生调度请求失败的SR配置;
    触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
  6. 根据权利要求3所述的方法,其特征在于,所述UE根据所述第一随机接入配置进行随机接入,包括:
    所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收随机接入响应RAR后重发随机接入前导码的退避时间区段。
  7. 一种用户设备UE,包括:存储模块,用于存储计算机指令;和处理模块,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
    如果UE没有被配置用于发送调度请求SR的上行资源,或者所述UE发生SR失败,则所述UE使用第一随机接入配置进行随机接入;
    其中,所述第一随机接入配置为以下任一种:所述UE对应的第一逻辑信道LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的服务质量QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
    所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
  8. 根据权利要求7所述的UE,所述UE发生SR失败,包括:
    所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
    所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
  9. 根据权利要求7或8所述的UE,所述第一随机接入配置包括功率信息和/或退避参数。
  10. 根据权利要求7至9任一所述的UE,所述至少两个有上行数据需要发送的LCH包括:
    所述UE的LCH中触发了SR的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
    触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
  11. 根据权利要求7至10任一所述的UE,所述UE在发生所述SR失败后释放的SR配置包括:
    所述UE的所有SR配置;或者,
    触发了SR的SR配置;或者,
    有待传输数据的SR配置;或者,
    触发发生所述SR失败的SR配置;或者,
    发生调度请求失败的SR配置;
    触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
  12. 根据权利要求9所述的UE,所述UE根据所述第一随机接入配置进行随机接入,包括:
    所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
  13. 一种用户设备UE,包括:存储器,用于存储计算机指令;和处理器,用于调用所述存储器中存储的计算机指令,使得所述用户设备执行如下操作:
    如果UE没有被配置用于发送调度请求SR的上行资源,或者所述UE发生SR失败,则所述处理器使用第一随机接入配置进行随机接入;
    其中,所述第一随机接入配置为以下任一种:所述UE对应的第一逻辑信道LCH集合中优先级最高的LCH对应的随机接入配置;或者,所述UE对应的第一LCH集合所关联的随机接入配置中能够提供最高的服务质量QoS的随机接入配置;或者,所述UE对应的第一SR配置集合中优先级最高的SR配置所对应的随机接入配置;或者,所述UE对应的第一SR配置集合所关联的随机接入配置中能够提供最高的QoS的随机接入配置;
    所述第一LCH集合包括所述UE的LCH中至少两个有上行数据需要发送的LCH;所述第一SR配置集合包括所述UE在发生所述SR失败后释放的SR配置中的至少一个。
  14. 根据权利要求13所述的UE,所述UE发生SR失败,包括:
    所述UE的SR配置中任一SR配置中的SR计数器达到最大次数;或者,
    所述UE的SR配置中多个SR配置中的SR计数器达到最大次数。
  15. 根据权利要求13或14所述的UE,所述第一随机接入配置包括功率信息和/或退避参数。
  16. 根据权利要求13至15任一所述的UE,所述至少两个有上行数据需要发送的LCH包括:
    所述UE的LCH中触发了SR的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE在发生所述SR失败后释放的SR配置所对应的LCH中触发了SR的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/带宽片段BWP上配置的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    触发发生所述SR失败的SR配置所在的小区/BWP上配置的SR配置所对应的LCH中触发了SR的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中有上行数据需要发送的LCH;或者,
    所述UE的所有服务小区上的SR配置所对应的LCH中触发SR的LCH,或者,
    触发发生所述SR失败的SR配置所对应的LCH中有上行数据需要发送的LCH。
  17. 根据权利要求13至16任一所述的UE,所述UE在发生所述SR失败后释放的SR配置包括:
    所述UE的所有SR配置;或者,
    触发了SR的SR配置;或者,
    有待传输数据的SR配置;或者,
    触发发生所述SR失败的SR配置;或者,
    发生调度请求失败的SR配置;
    触发发生所述调度请求失败的SR配置所在的小区/BWP上配置的SR配置。
  18. 根据权利要求15所述的UE,所述UE根据所述第一随机接入配置进行随机接入,包括:
    所述UE使用功率信息和/或退避参数向网络设备发送随机接入前导码;其中,所述功率信息包括所述UE在重发随机接入前导码时所使用的发射功率攀升步长和/或初始传输功率,所述退避参数包括所述UE在随机接入过程中接收RAR后重发随机接入前导码的退避时间区段。
PCT/CN2018/107789 2017-09-30 2018-09-27 随机接入方法、装置、设备、存储介质和程序产品 WO2019062786A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710938993 2017-09-30
CN201710938993.0 2017-09-30
CN201711138282.1 2017-11-16
CN201711138282.1A CN109600860B (zh) 2017-09-30 2017-11-16 随机接入方法、装置、设备、存储介质和程序产品

Publications (1)

Publication Number Publication Date
WO2019062786A1 true WO2019062786A1 (zh) 2019-04-04

Family

ID=65900782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107789 WO2019062786A1 (zh) 2017-09-30 2018-09-27 随机接入方法、装置、设备、存储介质和程序产品

Country Status (1)

Country Link
WO (1) WO2019062786A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167981A1 (en) * 2014-04-28 2015-11-05 Intel IP Corporation Simultaneous scheduling request transmission in dual connectivity
CN107211414A (zh) * 2015-01-28 2017-09-26 夏普株式会社 终端装置、集成电路及通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167981A1 (en) * 2014-04-28 2015-11-05 Intel IP Corporation Simultaneous scheduling request transmission in dual connectivity
CN107211414A (zh) * 2015-01-28 2017-09-26 夏普株式会社 终端装置、集成电路及通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Further discussion on differentiation for SR-triggered Random Access", 3GPP TSG-RAN WG2 NR #99BIS. R2-1711428, 29 September 2017 (2017-09-29), XP051343413 *
HUAWEI: "Support of multiple SR configurations", 3GPP TSG-RAN2 MEETING #NR AHS. R2-1706900, 17 June 2017 (2017-06-17), XP051301397 *

Similar Documents

Publication Publication Date Title
EP3576452B1 (en) Information transmission method and apparatus for power headroom reporting in a multi-numerology or multi-beam scenario
ES2945234T3 (es) Control de las transmisiones de radio de enlace ascendente en recursos asignados de manera semipersistente
US11464040B2 (en) Data transmission method and apparatus
WO2017166141A1 (zh) 数据传输的方法、终端及基站
WO2019213971A1 (zh) 上行信号的发送方法和终端设备
WO2018126839A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020191637A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020200273A1 (zh) 发送数据的方法和通信装置
WO2020259662A1 (zh) 一种随机接入的方法及通信装置
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
US11363644B2 (en) Methods and apparatus for indicating channel access
TWI672067B (zh) 處理排程請求的裝置及方法
WO2020156180A1 (zh) 通信方法及终端设备、接入网设备
WO2017049425A1 (zh) 上行数据的传输方法和用户设备
JP2022550411A (ja) 繰返しを伴う設定済みul
WO2020172777A1 (zh) 随机接入的方法和设备
WO2020124598A1 (zh) 随机接入的方法和设备
CN109600860B (zh) 随机接入方法、装置、设备、存储介质和程序产品
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2019076183A1 (zh) 传输调度请求的方法和终端设备
CN114342535B (zh) 上行信号的发送和接收方法以及装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2021056209A1 (zh) 无线通信的方法和设备
US20220159685A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862796

Country of ref document: EP

Kind code of ref document: A1