WO2019062399A1 - 一种信息传输方法及装置 - Google Patents

一种信息传输方法及装置 Download PDF

Info

Publication number
WO2019062399A1
WO2019062399A1 PCT/CN2018/101813 CN2018101813W WO2019062399A1 WO 2019062399 A1 WO2019062399 A1 WO 2019062399A1 CN 2018101813 W CN2018101813 W CN 2018101813W WO 2019062399 A1 WO2019062399 A1 WO 2019062399A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
reference signal
communication node
parameter
resource
Prior art date
Application number
PCT/CN2018/101813
Other languages
English (en)
French (fr)
Inventor
王瑜新
蒋创新
张淑娟
鲁照华
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18861119.8A priority Critical patent/EP3691164A4/en
Priority to JP2019572114A priority patent/JP6971334B2/ja
Priority to AU2018342485A priority patent/AU2018342485B2/en
Priority to KR1020197038828A priority patent/KR102301559B1/ko
Priority to CA3067089A priority patent/CA3067089C/en
Priority to BR112019025982-1A priority patent/BR112019025982A2/pt
Priority to RU2019143715A priority patent/RU2726150C1/ru
Publication of WO2019062399A1 publication Critical patent/WO2019062399A1/zh
Priority to US16/407,167 priority patent/US10567201B2/en
Priority to US16/793,935 priority patent/US11671141B2/en
Priority to US18/317,001 priority patent/US20240014849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to, but is not limited to, the field of communications.
  • DCI Downlink Control Information
  • LTE Long Term Evolution
  • DCI format is divided into DCI format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, 3A, etc., and later evolved to LTE-ARelease 12 (LTE).
  • DCI format 2B, 2C, 2D has been added to -A version 12) to support a variety of different applications and transmission modes.
  • the base station (e-Node-B, hereinafter referred to as eNB) can configure the terminal (User Equipment, UE for short) through the downlink control information, or the terminal accepts the configuration of the higher layers, which is also referred to as configuring the UE by the high layer signaling.
  • eNB User Equipment
  • the Sounding Reference Signal is a signal used by the UE and the eNB to measure Channel State Information (CSI).
  • the UE periodically transmits the uplink SRS on the last data symbol of the transmission subframe according to parameters such as the frequency band indicated by the eNB, the frequency domain location, the sequence cyclic shift, the period, and the subframe offset.
  • the eNB determines the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling, closed loop power control, and the like according to the obtained CSI.
  • non-precoded SRS that is, antenna-specific SRS
  • physical uplink shared channel Physical Uplink Shared CHannel
  • DMRS De Modulation Reference Signal
  • PUSCH Physical Uplink Shared CHannel
  • the eNB can estimate the original CSI of the uplink by receiving the non-precoded SRS, and the pre-coded DMRS cannot enable the eNB to estimate the original CSI of the uplink.
  • the UE may send the SRS by using the high-level signaling (also referred to as triggered by the trigger type 0) or the downlink control information (also referred to as triggering by the trigger type 1), and the periodic SRS is triggered based on the high-level signaling, and is based on the downlink.
  • the control information triggers a non-periodic SRS.
  • the manner of aperiodic transmission of SRS is added, which improves the utilization of SRS resources to some extent and improves the flexibility of resource scheduling.
  • High-frequency carrier communication has a large available bandwidth and can provide efficient high-speed data communication.
  • a big technical challenge faced by high-frequency carrier communication is that relatively low-frequency signals, the fading of high-frequency signals in space is very large, although it causes the fading loss of high-frequency signals in the outdoor communication space, but because of its With a reduction in wavelength, more antennas can typically be used so that communication can be based on the beam to compensate for fading losses in space.
  • the HF system not only configures a large number of antennas to form a downlink transmission beam to compensate for the spatial fading of high-frequency communication, but also configures the UE.
  • the antenna forms an uplink transmission beam, and the transmission of the SRS will also be transmitted in the form of a beam.
  • the eNB may configure a different bandwidth portion (BWP) for each user, and the bandwidth portion of the user may occupy more than the 20 MHz bandwidth of the LTE or LTE-A system.
  • BWP bandwidth portion
  • the current SRS bandwidth configuration only supports 20MHz, which cannot meet the design requirements of NR.
  • how to determine the starting position of the frequency domain of the SRS and how to implement the antenna switching of the SRS is also a problem to be solved in the SRS design of the NR.
  • the embodiment of the present application provides an information transmission method and device, which implements a transmission configuration of a reference signal in an NR system.
  • an embodiment of the present application provides an information transmission method, including:
  • the first communication node determines a resource or parameter used by the second communication node to send the reference signal
  • the resource or parameter is indicated to the second communication node by signaling.
  • an information transmission method including:
  • the second communication node receives the signaling sent by the first communication node
  • the reference signal is transmitted using the resource or parameter.
  • an information transmission method including:
  • the first level parameter comprises at least one of: a number of time domain symbols continuously transmitted by the reference signal in the same frequency domain unit N1, antenna switching switch function A1 of the reference signal, frequency hopping switch function B1;
  • the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal in one time domain
  • the first communication node receives the reference signal according to the first level parameter and the second level parameter.
  • an information transmission method including:
  • the second communication node determines a first level parameter and a second level parameter of a reference signal resource; wherein the first level parameter includes at least one of: a number of time domain symbols continuously transmitted by the reference signal in the same frequency domain unit N1, antenna switching switch function A1 of the reference signal, frequency hopping switch function B1; the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal in one time domain
  • the second communication node sends the reference signal according to the first level parameter and the second level parameter.
  • an embodiment of the present application provides an information transmission apparatus, which is applied to a first communication node, and includes:
  • a first processing module configured to determine a resource or a parameter used by the second communications node to send the reference signal
  • the first sending module is configured to indicate the resource or parameter to the second communications node by signaling.
  • the embodiment of the present application provides an information transmission apparatus, which is applied to a second communication node, and includes:
  • a first receiving module configured to receive signaling sent by the first communications node
  • a second processing module configured to determine, according to the signaling, or the signaling and a rule agreed with the first communications node, a resource or a parameter used to send the reference signal;
  • the second sending module is configured to send the reference signal by using the resource or parameter.
  • the embodiment of the present application provides an information transmission apparatus, which is applied to a first communication node, and includes:
  • a third processing module configured to determine a first level parameter and a second level parameter of a reference signal resource, where the first level parameter includes at least one of: a time domain in which the reference signal is continuously transmitted in the same frequency domain unit The number of symbols N1, the antenna switching switch function A1 of the reference signal, and the frequency hopping switch function B1; the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal is An antenna switching switch function A2 in a time domain unit, and a frequency hopping switching function B2 in a time domain unit;
  • the second receiving module is configured to receive the reference signal according to the first level parameter and the second level parameter.
  • an embodiment of the present application provides an information transmission apparatus, which is applied to a second communication node, and includes:
  • a fourth processing module configured to determine a first level parameter and a second level parameter of a reference signal resource, where the first level parameter includes at least one of: a time domain in which the reference signal is continuously transmitted in the same frequency domain unit The number of symbols N1, the antenna switching switch function A1 of the reference signal, and the frequency hopping switch function B1; the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal is An antenna switching switch function A2 in a time domain unit, and a frequency hopping switching function B2 in a time domain unit;
  • the third sending module is configured to send the reference signal according to the first level parameter and the second level parameter.
  • the embodiment of the present application provides a communication node, including: a first memory and a first processor, where the first memory is configured to store an information transmission program, where the information transmission program is executed by the first processor The steps of the information transmission method of the above first aspect are implemented.
  • the embodiment of the present application provides a communication node, including: a second memory configured to store an information transmission program, and a second processor configured to be executed by the second processor The steps of the information transmission method of the second aspect described above are implemented.
  • an embodiment of the present application provides a communication node, including: a third memory configured to store an information transmission program, and a third processor, where the information transmission program is used by the third processor
  • the steps of the information transmission method of the above third aspect are implemented at the time of execution.
  • the embodiment of the present application provides a communication node, including: a fourth memory configured to store an information transmission program, and a fourth processor, where the information transmission program is used by the fourth processor
  • a communication node including: a fourth memory configured to store an information transmission program, and a fourth processor, where the information transmission program is used by the fourth processor
  • the embodiment of the present application further provides a computer readable medium storing an information transmission program, where the information transmission program is executed by a processor to implement the steps of the information transmission method of any of the first to fourth aspects.
  • the first communications node determines resources or parameters used by the second communications node to send the reference signal; and indicates resources or parameters to the second communications node by signaling.
  • the design requirements for reference signal transmission in the NR system are implemented.
  • the first communications node receives the reference signal according to the two-level parameter of the reference signal resource, and the second communications node sends the reference signal according to the two-level parameter of the reference signal resource.
  • FIG. 1 is a flowchart of an information transmission method according to an embodiment of the present application
  • FIG. 3 is a flowchart of another information transmission method according to an embodiment of the present application.
  • FIG. 4 is a flowchart of another information transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram 1 of a multi-level bandwidth structure corresponding to a reference signal according to an embodiment of the present application
  • FIG. 6 is a schematic diagram 2 of a multi-level bandwidth structure corresponding to a reference signal according to an embodiment of the present application
  • 7(a) to 7(f) are schematic diagrams showing the frequency domain occupancy of PUCCHs on different time domain symbols
  • FIG. 9 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another information transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another information transmission apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another information transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a communication node according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another communication node according to an embodiment of the present application.
  • FIG. 1 is a flowchart of an information transmission method according to an embodiment of the present application. As shown in FIG. 1, the information transmission method provided in this embodiment includes:
  • the first communications node determines a resource or a parameter used by the second communications node to send the reference signal.
  • the first communication node refers to a node configured to determine a transmission manner of the second communication node and perform signaling indication to the second communication node
  • the second communication node refers to a node configured to receive signaling.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, a sending node in an Internet of Things system, and the like.
  • the two communication nodes may be nodes in a communication system such as a UE, a mobile phone, a portable device, or a car.
  • a base station of a macro cell, a base station or a transmission node of a small cell, a transmitting node in a high frequency communication system, a transmitting node in an Internet of Things system, or the like may serve as a second communication node, and the UE may serve as the first A communication node.
  • the signaling may include at least one of the following: radio resource control (RRC) signaling, media access control control element (MAC CE) signaling, and physical downlink control signaling.
  • RRC radio resource control
  • MAC CE media access control control element
  • Physical downlink control signaling Physical layer dynamic control signaling.
  • the reference signal includes one of the following: an SRS, an uplink demodulation reference signal, a downlink demodulation reference signal, a downlink channel state information reference signal (CSI-RS), an uplink phase tracking reference signal (PTRS), and a downlink PTRS.
  • an SRS an uplink demodulation reference signal
  • a downlink demodulation reference signal a downlink channel state information reference signal (CSI-RS)
  • CSI-RS downlink channel state information reference signal
  • PTRS uplink phase tracking reference signal
  • PTRS downlink phase tracking reference signal
  • the N BWP is a value of a bandwidth part, or an uplink bandwidth part.
  • Downstream bandwidth is a value of a bandwidth part, or an uplink bandwidth part.
  • the resource or parameter includes at least one or more of the following: a frequency domain start location, a frequency domain end location, a transmission bandwidth, a number of segments, a bandwidth configuration index, a bandwidth parameter, and an indication resource.
  • a frequency domain start location a frequency domain end location
  • a transmission bandwidth a number of segments
  • a bandwidth configuration index a bandwidth parameter
  • an indication resource Whether to repeat or the same parameter, the antenna port number or index, the calculation manner of the frequency domain start position of the maximum bandwidth of the reference signal in the multi-level bandwidth structure, and the maximum bandwidth of the reference signal in the multi-level bandwidth structure.
  • the number of segments is the same as N 0 , N 1 , N 2 , N 3 in the bandwidth configuration table 4a in LTE, or the number of segments may be defined as a tree structure bandwidth configuration of the reference signal.
  • the manner of transmitting the reference signal includes at least one of the following: a transmit beam, a transmit antenna, a transmit sector, an origin precoding, a manner indicated by an antenna port, a manner indicated by an antenna weight vector, and an antenna.
  • the receiving manner of the reference signal includes at least one of the following: a receiving beam, a receiving antenna, a receiving antenna panel, a receiving sector, and a first beam resource corresponding manner, where the first beam resource is a beam resource of the first communication node indicated in a quasi co-location of both the reference signal and the antenna port; a manner corresponding to the second beam resource, wherein the second beam resource is at a reference reference signal and an antenna port 2
  • QCL quasi co-location
  • the determining, by the first communications node, the resource or parameter used by the second communications node to transmit the reference signal may include: determining, by the first communications node, the second communications node according to a rule agreed with the second communications node The resource or parameter used to send the reference signal.
  • the first communication node determines a resource or parameter used by the second communication node to transmit the reference signal, including at least one of the following:
  • the first communication node determines a transmission bandwidth or a number of segments of the reference signal according to at least one of a value of a bandwidth portion configured to the second communication node, a bandwidth configuration index, and a bandwidth parameter.
  • the first communication node determines, according to at least one of a value of a bandwidth portion configured to the second communication node and a bandwidth configuration index, a bandwidth configuration index actually used by the second communication node.
  • Determining that the bandwidth configuration index actually used by the second communication node includes at least one of the following:
  • the maximum transmission bandwidth of the reference signal corresponding to the bandwidth configuration index is less than or equal to or or or Under the condition that the maximum bandwidth configuration index is selected, and then the C SRS is subtracted as the bandwidth configuration index actually used by the second communication node;
  • N BWP is the value of the bandwidth portion
  • C SRS is the bandwidth configuration index
  • C SRS and N BWP are configured by the first communication node to the second communication node by signaling.
  • the first communications node determines a set of transmission bandwidths of the reference signal according to a bandwidth configuration index of the reference signal, including:
  • the reference signal bandwidth configuration index is greater than or equal to 17, or the reference signal bandwidth configuration index is less than or equal to 14, or the reference signal bandwidth configuration index is an integer between 0 and 31 or 0 to 63 Determining that the set of transmission bandwidths includes at least one of the following:
  • the first communication node determines a transmission bandwidth of the reference signal or according to at least one of a value of a bandwidth portion configured to the second communication node, a bandwidth configuration index, and a bandwidth parameter.
  • the number of segments, including one of the following, or one or more bandwidth configuration indexes corresponding to the set of transmission bandwidths satisfy one of the following relationships:
  • the number of segments is:
  • the sending bandwidth is:
  • the sending bandwidth is:
  • the sending bandwidth is:
  • d i is 2 i ⁇ 3 j ⁇ 5 l or d i is one or more integers between 1 and 17, including 1 and 17, and the values of i, j, and l are non-negative integers
  • m SRS is the transmission bandwidth of the reference signal
  • floor() is a downward rounding function.
  • i B SRS
  • B SRS is the bandwidth parameter of the reference signal
  • N BWP is the value of the bandwidth part
  • B SRS and N BWP are signaled by the first communication node to the The second communication node performs configuration.
  • the indicating the resource or parameter to the second communication node by signaling includes:
  • the second communication node indicating, by the signaling, the second communication node, the offset unit quantity of the frequency domain start position corresponding to the maximum bandwidth in the multi-level bandwidth structure in which the reference signal is located, relative to the start position of the first frequency domain, where The first frequency domain start position is obtained by the second communication node according to a rule agreed with the first communication node.
  • the manner in which the reference signal is calculated in the frequency domain start position of the maximum bandwidth in the multi-level bandwidth structure includes at least one of the following:
  • the starting position of the first frequency domain is:
  • the starting position of the first frequency domain is:
  • the starting position of the first frequency domain is:
  • An offset unit quantity of a frequency domain start position corresponding to a maximum bandwidth of the multi-stage bandwidth structure in which the reference signal is located, relative to a start position of the first frequency domain Is an integer in units
  • Indicates the bandwidth portion, m SRS, 0 is the frequency domain bandwidth length information corresponding to the maximum bandwidth in the multi-level bandwidth structure.
  • the offset in , p is the port index, The maximum bandwidth length information in one or more multi-level bandwidth structures.
  • the manner in which the reference signal is calculated in the frequency domain start position of the maximum bandwidth in the multi-level bandwidth structure includes one of the following:
  • the bandwidth portion, m SRS, 0 is the frequency domain bandwidth length information corresponding to the maximum bandwidth in the multi-level bandwidth structure in which the reference signal is located, Indicates that the maximum bandwidth is in units
  • p is the port index
  • B SRS is the level information of the bandwidth corresponding to the reference signal in a time domain symbol in the multi-level bandwidth structure
  • N b ' is a bandwidth of the b'-1 level The number of bandwidths included in the b'th level, The maximum bandwidth length information in one or more multi-level bandwidth structures.
  • one of the b-th levels of bandwidths in the multi-stage bandwidth structure in which the reference signal is located includes one or more of the b+1th-level bandwidths, where b is a non-negative integer.
  • the configuration range of the parameter or parameter is obtained according to time domain symbol position information in one time unit; or one reference signal resource is on different time domain symbols in one time unit, or the parameter or The configuration range of the parameters is different.
  • the antenna port number or index remains unchanged in M consecutive time domain symbols, where M is an integer greater than zero.
  • configuration values or parameter values of the plurality of resources in L consecutive time domain symbols are the same, or the plurality of resources are in L consecutive
  • the configuration value or parameter value in the time domain symbol is different, where L is an integer greater than zero.
  • the multiple resources when a plurality of resources are indicated by signaling, the multiple resources constitute one resource set or one resource group, and one parameter under the resource set or resource group is configured to indicate the resource set Or whether multiple resources in the resource group are the same or duplicate.
  • the parameter configuration values of the multiple SRS resources under the resource set or the resource group are the same. Or indicating that the parameter values of the plurality of SRS resources for indicating the transmit beam or the antenna port or the frequency domain resource are the same, or that the plurality of SRS resources use the same transmit beam or antenna port or frequency domain resource.
  • At least one of the following functions is implemented by configuring a plurality of the resources:
  • the reference signal is transmitted on the plurality of time domain resources using the same transmission mode or frequency domain location;
  • the first communication node receives the reference signal sent by the second communication node by using the same receiving manner on multiple time domain resources;
  • FIG. 2 is a flowchart of an information transmission method according to an embodiment of the present application. As shown in FIG. 2, the information transmission method provided in this embodiment includes:
  • the second communications node receives the signaling sent by the first communications node.
  • S202 Determine, according to the signaling, or the signaling, and a rule agreed with the first communications node, a resource or a parameter used to send the reference signal.
  • the first communication node refers to a node configured to determine a transmission manner of the second communication node and perform signaling indication to the second communication node
  • the second communication node refers to a node configured to receive signaling.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, a sending node in an Internet of Things system, and the like
  • the second communication node may be It is a node in a communication system such as a UE, a mobile phone, a portable device, or a car.
  • a base station of a macro cell, a base station or a transmission node of a small cell, a transmitting node in a high frequency communication system, a transmitting node in an Internet of Things system, or the like may serve as a second communication node, and the UE may serve as the first A communication node.
  • the signaling may include at least one of the following: RRC signaling, MAC CE signaling, physical downlink control signaling, and physical layer dynamic control signaling.
  • the reference signal includes one of the following: an SRS, an uplink demodulation reference signal, a downlink demodulation reference signal, a CSI-RS, an uplink PTRS, and a downlink PTRS.
  • the resource or parameter includes at least one of: a frequency domain start location, a frequency domain end location, a transmission bandwidth, a number of segments, a bandwidth configuration index, a bandwidth parameter, configured to indicate whether a resource is duplicated or The same parameter, the antenna port number or index, the calculation manner of the frequency domain start position of the maximum bandwidth of the reference signal in the multi-level bandwidth structure, and the frequency domain of obtaining the maximum bandwidth of the reference signal in the multi-level bandwidth structure The relevant parameter of the starting position and the multi-level bandwidth structure information of the reference signal.
  • the determining, according to the signaling, or the signaling, and a rule agreed with the first communication node, determining a resource or a parameter used to transmit the reference signal including at least one of the following:
  • Determining, by the second communication node, according to at least one of a value of a bandwidth portion of the second communication node configured by the signaling, a bandwidth configuration index, and a bandwidth parameter, and a rule agreed with the first communication node The transmission bandwidth or number of segments of the reference signal.
  • the second communication node according to the signaling configuration, at least one of a value of a bandwidth portion of the second communication node and a bandwidth configuration index, and an agreement with the first communication node
  • the rule determines the bandwidth configuration index actually used by the second communication node, including:
  • Determining that the bandwidth configuration index actually used by the second communication node includes at least one of the following:
  • the maximum transmission bandwidth of the reference signal corresponding to the bandwidth configuration index is less than or equal to or or or Under the condition that the maximum bandwidth configuration index is selected, and then the C SRS is subtracted as the bandwidth configuration index actually used by the second communication node;
  • N BWP is the value of the bandwidth portion
  • C SRS is the bandwidth configuration index
  • C SRS and N BWP are configured by the first communication node to the second communication node by signaling.
  • the determining, by the second communications node, a set of transmission bandwidths of the reference signal according to a bandwidth configuration index of the reference signal and a rule agreed with the first communications node including:
  • the set indicating the transmission bandwidth includes at least one of the following:
  • the second communication node according to the signaling configuration, at least one of a value of a bandwidth portion of the second communication node, a bandwidth configuration index, and a bandwidth parameter, and the first The protocol agreed by the communication node determines the transmission bandwidth or the number of segments of the reference signal, including one of the following:
  • the number of segments is:
  • the sending bandwidth is:
  • the sending bandwidth is:
  • d i is 2 i ⁇ 3 j ⁇ 5 l or d i is one or more integers between 1 and 17, including 1 and 17, and the values of i, j, and l are non-negative integers
  • m SRS is the transmission bandwidth of the reference signal
  • floor() is a downward rounding function.
  • i B SRS
  • B SRS is the bandwidth parameter of the reference signal
  • N BWP is the value of the bandwidth part
  • B SRS and N BWP are signaled by the first communication node to the The second communication node performs configuration.
  • the determining, according to the signaling, or the signaling, and a rule agreed with the first communication node, determining a resource or a parameter used to send the reference signal includes:
  • the manner in which the reference signal is calculated in the frequency domain start position of the maximum bandwidth in the multi-level bandwidth structure includes at least one of the following:
  • the starting position of the first frequency domain is:
  • the starting position of the first frequency domain is:
  • the starting position of the first frequency domain is:
  • An offset unit quantity of a frequency domain start position corresponding to a maximum bandwidth of the multi-stage bandwidth structure in which the reference signal is located, relative to a start position of the first frequency domain Is an integer in units
  • Indicates the bandwidth portion, m SRS, 0 is the frequency domain bandwidth length information corresponding to the maximum bandwidth in the multi-level bandwidth structure.
  • the offset in , p is the port index, The maximum bandwidth length information in one or more multi-level bandwidth structures.
  • the manner in which the reference signal is calculated in the frequency domain start position of the maximum bandwidth in the multi-level bandwidth structure includes one of the following:
  • the bandwidth portion, m SRS, 0 is the frequency domain bandwidth length information corresponding to the maximum bandwidth in the multi-level bandwidth structure in which the reference signal is located, Indicates that the maximum bandwidth is in units
  • p is the port index
  • B SRS is the level information of the bandwidth corresponding to the reference signal in a time domain symbol in the multi-level bandwidth structure
  • N b ' is a bandwidth of the b'-1 level The number of bandwidths included in the b'th level, The maximum bandwidth length information in one or more multi-level bandwidth structures.
  • one of the b-th levels of bandwidths in the multi-stage bandwidth structure in which the reference signal is located includes one or more of the b+1th-level bandwidths, where b is a non-negative integer.
  • the configuration range of the parameter or parameter is obtained according to time domain symbol position information in one time unit; or one reference signal resource is on different time domain symbols in one time unit, or the parameter or The configuration range of the parameters is different.
  • the antenna port number or index remains unchanged in M consecutive time domain symbols, where M is an integer greater than zero.
  • the resources for transmitting the reference signal include multiple
  • the configuration values or parameter values of the plurality of resources in the L consecutive time domain symbols are the same, or the multiple resources are in the L
  • the configuration values or parameter values in consecutive time domain symbols are different, where L is an integer greater than zero.
  • the multiple resources when the resource for transmitting the reference signal includes multiple, the multiple resources constitute one resource set or one resource group, and one parameter under the resource set or resource group is configured to indicate the Whether the resource collection or multiple resources in the resource group are the same or duplicate.
  • the parameter configuration values of the multiple SRS resources under the resource set or the resource group are the same. Or indicating that the parameter values of the plurality of SRS resources for indicating the transmit beam or the antenna port or the frequency domain resource are the same, or that the plurality of SRS resources use the same transmit beam or antenna port or frequency domain resource.
  • FIG. 3 is a flowchart of an information transmission method according to an embodiment of the present application. As shown in FIG. 3, the information transmission method provided in this embodiment includes:
  • the first communications node determines a first level parameter and a second level parameter of a reference signal resource.
  • the first level parameter includes at least one of the following: a time domain symbol continuously transmitted by the reference signal in the same frequency domain unit.
  • the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal in one
  • the first communications node receives the reference signal according to the first level parameter and the second level parameter.
  • the antenna ports in one antenna port group are simultaneously transmitted.
  • the first communications node receives the reference signal according to the first level parameter and the second level parameter, including:
  • N1 time domain symbols are repeatedly received in one frequency domain unit, and then hopped to another frequency domain unit to repeatedly receive N1 time domain symbols.
  • the first communications node receives the reference signal according to the first level parameter and the second level parameter, including:
  • one port group is used to repeatedly receive N2 time domain symbols, and then another port group is repeatedly received N2 time domain symbols.
  • N2 is less than N1.
  • different antenna port groups are time division multiplexed on N1 time domain symbols of one frequency domain unit, and each antenna port group continuously receives N2 time domain symbols.
  • the method of this embodiment may further include:
  • the first communication node indicates, by signaling, a first level parameter and a second level parameter of the reference signal resource to the second communication node.
  • the number of time domain symbols configured in the reference signal resource is N, N1 is less than or equal to N, and N2 is less than or equal to N.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, and a sending node in an Internet of Things system
  • the second communication node may be a node in a communication system such as a UE, a mobile phone, a portable device, or a car.
  • a base station of a macro cell, a base station or a transmission node of a small cell, a transmitting node in a high frequency communication system, a transmitting node in an Internet of Things system, or the like may serve as a second communication node, and the UE may serve as the first A communication node.
  • FIG. 4 is a flowchart of an information transmission method according to an embodiment of the present application. As shown in FIG. 4, the information transmission method provided in this embodiment includes:
  • the second communications node determines a first level parameter and a second level parameter of a reference signal resource.
  • the first level parameter includes at least one of the following: a time domain symbol continuously transmitted by the reference signal in the same frequency domain unit.
  • the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal in one
  • the second communications node sends the reference signal according to the first level parameter and the second level parameter.
  • the antenna ports in one antenna port group are simultaneously transmitted.
  • the second communications node sends the reference signal according to the first level parameter and the second level parameter, including:
  • N1 time domain symbols are repeatedly transmitted in one frequency domain unit, and then hopped to another frequency domain unit to repeatedly transmit N1 time domain symbols.
  • the second communications node sends the reference signal according to the first level parameter and the second level parameter, including:
  • the N2 time domain symbols are repeatedly transmitted by one port group, and then N2 time domain symbols are repeatedly transmitted by another port group.
  • N2 is less than N1.
  • each antenna port group continuously transmits N2 time domain symbols.
  • the method of this embodiment may further include:
  • the second communication node receives signaling used by the first communication node to indicate the first level parameter and the second level parameter of the reference signal resource.
  • the number of time domain symbols configured in the reference signal resource is N, N1 is less than or equal to N, and N2 is less than or equal to N.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, and a sending node in an Internet of Things system
  • the second communication node may be a node in a communication system such as a UE, a mobile phone, a portable device, or a car.
  • a base station of a macro cell, a base station or a transmission node of a small cell, a transmitting node in a high frequency communication system, a transmitting node in an Internet of Things system, or the like may serve as a second communication node, and the UE may serve as the first A communication node.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node predefine the second communication node to use to send the uplink reference signal.
  • the parameter for example, is a formula for calculating the transmission bandwidth or the number of segments of the SRS.
  • the reference signal is described by taking SRS as an example.
  • the parameter may include at least one of the following: a bandwidth configuration index, a transmission bandwidth, and a bandwidth parameter.
  • the second communication node may determine the transmission bandwidth or the number of segments of the SRS based on one of the following ways:
  • the number of segments is:
  • the i-th level transmission bandwidth can be determined according to the total bandwidth and the number of segments.
  • the SRS transmission bandwidth is:
  • the sending bandwidth is:
  • the sending bandwidth is:
  • d i is 2 i ⁇ 3 j ⁇ 5 l or d i is one or more integers between 1 and 17, including 1 and 17, and the values of i, j, and l are non-negative integers
  • m SRS is the transmission bandwidth of the reference signal
  • floor() is a downward rounding function.
  • i B SRS
  • B SRS is the bandwidth parameter of the reference signal
  • N BWP is the value of the bandwidth part
  • B SRS and N BWP are signaled by the first communication node to the The second communication node performs configuration.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node predefine the second communication node to use the uplink reference signal to transmit
  • the parameters for example, the first communication node and the second communication node agree on a configuration table of the transmission bandwidth of the SRS.
  • the reference signal is described by taking SRS as an example.
  • the parameter may include at least one of the following: a bandwidth configuration index, a transmission bandwidth, and a bandwidth parameter.
  • the second communication node may determine the SRS according to at least one of the N BWP , the C SRS, and the B SRS configured by the signaling and the configuration table of the predefined transmission bandwidth. Send bandwidth.
  • the configuration table of the SRS transmission bandwidth can be referred to the following Table 2a or Table 2b or Table 2c or Table 2d, where C SRS is the bandwidth configuration index of the SRS, B SRS is the bandwidth parameter of the SRS, and N BWP is the uplink.
  • C SRS is the bandwidth configuration index of the SRS
  • B SRS is the bandwidth parameter of the SRS
  • N BWP is the uplink.
  • the value of at least one of N BWP , C SRS and B SRS may be configured by the first communication node to the second communication node by signaling.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node predefine the second communication node to use to send the uplink signal.
  • Parameters for example, a configuration table in which both parties agree on the transmission bandwidth of the SRS.
  • the reference signal is described by taking SRS as an example.
  • the parameter may include at least one of the following: a bandwidth configuration index, a transmission bandwidth, and a bandwidth parameter.
  • the second communication node may determine the transmission bandwidth of the SRS according to at least one of the C SRS and the B SRS configured by the signaling and the configuration table of the predefined transmission bandwidth.
  • the configuration table of the transmission bandwidth of the SRS can be referred to the following Table 3a or Table 3b or Table 3c or Table 3d, where C SRS is the bandwidth configuration index of the SRS, and B SRS is the bandwidth parameter of the SRS, by the first
  • the communication node configures the value of at least one of the C SRS and the B SRS to the second communication node by signaling.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node predefine the second communication node to use to send the uplink signal.
  • Parameters for example, a configuration table in which both parties agree on the transmission bandwidth of the SRS.
  • the reference signal is described by taking SRS as an example.
  • the parameter may include at least one of the following: a bandwidth configuration index, a transmission bandwidth, a bandwidth parameter, and a value of an uplink bandwidth part.
  • the second communication node may configure at least one of the value of the uplink bandwidth part, the C SRS , the B SRS , and the predefined transmission bandwidth according to the signaling configuration. Determine the transmission bandwidth of the SRS.
  • the configuration table of the SRS transmission bandwidth of the LTE is adopted, that is, the table 2a or the table 2b or the table 2c or the table 2d is used.
  • Table 4e or Table 4f or Table 4g or Table 4i is used.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, where the parameter may include: a frequency domain start position corresponding to the maximum bandwidth of the SRS in the multi-level bandwidth structure.
  • the calculation method of the frequency domain start position corresponding to the maximum bandwidth in the multi-level bandwidth structure is indicated by 2-bit physical downlink control signaling or higher layer signaling.
  • the calculation of the starting position of the frequency domain includes at least one of the following:
  • B SRS 3
  • b' is the number of bandwidths in the b'th level included in one bandwidth of the b'-1th level
  • p is the port number or port index where the reference signal is located
  • the multi-level bandwidth structure in which the reference signal is located indicates that one bandwidth of the b-th level includes one or more bandwidths in the b+1th stage, and may also be referred to as a tree structure.
  • Bandwidth, the bandwidth of the b-th level included in the bandwidth of the b-th level in FIG. 5 is 2 for the same for different b; FIG. 5 is only an example, and the example does not exclude other cases, such as FIG.
  • the first communication node indicates, by signaling, a parameter used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node predefine the second communication node to use to send the uplink reference signal. parameter.
  • the configuration range of the parameter or the parameter is obtained according to the time domain symbol position information in one time unit; or, the reference signal resource is different in the different time domain symbols in one time unit, and the parameter or parameter configuration range is different.
  • the parameters of the SRS in different time domain symbols in a time slot are different (for example, the parameters may be configured in a time domain symbol level), and the parameters may include one or more of the following: a frequency domain length occupied by the SRS, and an SRS transmission bandwidth.
  • the frequency domain start position, the frequency domain start position of the tree, the end of the frequency domain, the discrete frequency domain resources, the calculation method of the frequency domain start position of the maximum bandwidth of the reference signal in the multi-level bandwidth structure, and the acquisition of the reference signal The relevant parameters of the frequency domain starting position of the maximum bandwidth in the multi-level bandwidth structure, and the configuration information of the multi-level bandwidth structure.
  • the physical uplink control channel (Physical Uplink Control CHannel, abbreviated as PUCCH) has different lengths. Therefore, the frequency domain resources occupied by the PUCCH on different time domain symbols are different. When the time domain symbol positions of the SRS are different, the corresponding parameters are Or the parameter range needs to be adjusted.
  • FIG. 7(a) to FIG. 7(f) show different schematic diagrams of the frequency domain position of the PUCCH occupied by different time domain symbols, and then the parameters of the SRS or the range of the parameters are based on the slot. The location index of the time domain symbol in (slot) is obtained.
  • These parameters may include: the transmission bandwidth of the SRS on a time domain symbol (ie, the transmission bandwidth of the SRS may be different on different time domain symbols, similar to LTE.
  • the frequency domain start position of the SRS transmission bandwidth that is, the frequency domain start position of the SRS transmission bandwidth may be different on different time domain symbols, similar to the parameters in LTE may be different
  • the frequency of the tree The starting position of the domain (similar to the calculation of the frequency domain starting position of the maximum bandwidth of the reference signal in the multi-level bandwidth structure), the end of the frequency domain (such as different time)
  • the frequency domain end position on the domain symbol may be different.
  • Discrete frequency domain resources due to the frequency domain fragmentation caused by PUCCH, the PRB occupied by the SRS on a time domain symbol may be discontinuous, thereby allowing SRS possession on different time domain symbols.
  • the PRB set is different), the relevant parameters of the frequency domain start position of the maximum bandwidth of the reference signal in the multi-level bandwidth structure (such as the change of the time domain symbol as described herein), the configuration of the multi-level bandwidth Information (the tree structure parameters are different, for example, the tree structure corresponding to different time domain symbols is different, wherein the tree structure can be similar to the representation in LTE).
  • the parameters of the reference signal or the range of the parameters may be different in different time domain symbols, where the SRSs in different time domain symbols may belong to different SRS resources, or may belong to one SRS resource.
  • a correspondence between a time domain symbol and a parameter (or a parameter range) may be established, and all SRS resources falling in the corresponding time domain symbol may comply with a parameter or a parameter range corresponding to the time domain symbol, or establish a different time of the SRS resource.
  • the correspondence between domain symbols and parameters (or parameter ranges), different SRS resources of one user falling on the same time domain symbol may be different for the above parameters.
  • the definition of the SRS resource can be well utilized.
  • the base station may configure one or more SRS resources for the user, and each SRS resource includes a plurality of parameters, such as an antenna port number X, a period, a time domain subframe or a time slot offset, a comb index, and a frequency domain start position. Whether it is frequency hopping, whether to perform antenna switching, etc.
  • the SRS resource parameter also includes the number of time domain symbols N occupied by the SRS in one slot and the position of the time domain symbol.
  • the parameter configuration of the SRS resource can newly introduce a two-level parameter configuration.
  • the first level parameter configuration is a number N1 of time domain symbols continuously sent by the SRS in the same frequency domain unit.
  • N1 the number of time domain symbols continuously transmitted by the SRS in the same frequency domain unit.
  • N1 the number of time domain symbols continuously transmitted by the SRS in one frequency domain unit, and the antenna port is not distinguished.
  • the second level configuration parameter is the number of time domain symbols N2 that the port of the SRS continuously transmits repeatedly, and N2 is smaller than N.
  • N2 refers to the number of time domain symbols that an antenna port group continuously transmits repeatedly on one frequency domain unit. All antenna ports in one antenna port group occupy the same time domain symbol resource, and the frequency domain unit or subband may be the same, but the sequence or comb may be different.
  • any SRS transmission configuration can be achieved, so that the flexibility is maximized.
  • one antenna group continuously transmits N2 time domain symbols, and different antenna groups are not simultaneously transmitted. At this time, one or more antenna groups are continuously transmitted on N1 time domain symbols.
  • an antenna port is an antenna port group.
  • the SRS When the frequency hopping is turned on, after the SRS continuously transmits N1 symbols on one subband, it needs to hop to another subband for transmission. If N1 is less than N, the SRS first transmits N1 time domain symbols in one frequency domain unit in one time domain unit, and then performs frequency hopping to another frequency domain unit to repeatedly transmit N1 time domain symbols. If N2 is less than N1, on a N1 symbol in a frequency domain unit, one port group of the SRS is continuously transmitted N2 times, and then another antenna port group is transmitted N2 times until it fills N1 symbols.
  • An antenna port group can be considered as an antenna port group that can be transmitted simultaneously. For example, 4 antenna SRS, port 0, 1 is a group, ports 2, 3 are a group, the user can only transmit one antenna port group at a time, it takes 2 hours to transfer 4 ports.
  • the port group is also configured by the base station.
  • any flexible SRS transmission can be obtained based on the configuration of X, N, N1, N2 and the configuration of the antenna port group.
  • Other examples are shown in Fig. 8(d), Fig. 8(e), and Fig. 8(f).
  • the definition of frequency hopping in LTE 36.211 can be used, and the formula of LTE only needs to be modified simply, that is, Where F is the number of time slots transmitted in total from the time the SRS is first transmitted to the current time.
  • F is the number of time slots transmitted in total from the time the SRS is first transmitted to the current time.
  • n f is the frame number and n sf is the subframe number in a frame, and Is the number of slots included in one subframe, and n s is the sequence number of slots in one subframe.
  • one SRS transmission is N1 symbols
  • one slot (SRS with N symbols configured) contains N/N1 SRS transmissions.
  • n SRS is the number of SRS transmissions contained in the F time slots transmitted.
  • the formula of antenna switching in LTE 36.213 can be used, and only simple modifications are needed.
  • the index formula of the new antenna can be changed as follows:
  • n SRS the formula of a LTE (n SRS ) is a(n SRS ) in the LTE formula.
  • a(n SRS , k) represents the antenna index of the kth group of the N1 symbols in the a(n SRS ) transmission.
  • the four antenna ports are divided into two groups, the port group 0 includes the port 0, 1, and the port group 1 includes the ports 2 and 3.
  • the two-level parameter configuration may further include: the first-level parameter refers to an antenna switching function A1 of the SRS, that is, an inter-slot switching switch. If A1 is turned on, the antenna group switching is only switched between slots and within the slot, and only one antenna group's SRS is transmitted in one slot. If A1 is off, the antenna group does not switch between slots.
  • the second-level parameter refers to the antenna switching function A2 of the SRS in a time domain unit, that is, the antenna port group switching in the time slot. If A2 is turned on, different antenna port groups in one time slot can be alternately transmitted. As shown in Fig. 8(g), both A1 and A2 open two antenna port groups to switch in time slots and switch between time slots. As shown in Figure 8(h), only A1 is open and A2 is not open, then the antenna port group does not switch within the time slot. This can reduce UE complexity.
  • the parameter configuration of the two levels may further include: the first level parameter refers to the frequency hopping switch function B1 of the SRS, that is, the frequency hopping between slots.
  • the second level parameter refers to the frequency hopping switch function B2 in the time slot of the SRS. If both B1 and B2 are turned on, the SRS hops in time slots and between time slots, as shown in Figure 8(i). If B1 is turned on and B2 is turned off, then SRS only hops between time slots, as shown in Figure 8(j). This can reduce UE complexity.
  • N symbols are arranged in one antenna port resource, and different symbols can transmit different antennas.
  • the following configuration may be implemented: configuring one SRS resource set, where the set includes multiple SRS resources, and each resource corresponds to one SRS antenna port or antenna port group, so that the same effect can be achieved.
  • antenna switching is not allowed, and all antenna ports in one resource are simultaneously transmitted.
  • X resources are configured in the SRS resource set, resource 0 represents the antenna port or antenna port group 0, resource 1 represents the antenna port or port group 1, and resource X-1 represents the antenna port or antenna port group X-1.
  • the resource is an ID, then the ID can correspond to the SRS antenna port group.
  • each resource includes X1 antenna ports, then the total antenna port is X*X1 antenna ports.
  • the X1 antenna ports corresponding to each resource are an antenna port group, and the antennas in the group are transmitted on the same time domain symbol.
  • some parameters of all SRS resource configurations are the same, such as the beam ID indicating the SRS transmission (corresponding to an already transmitted SRS resource ID), the number of time domain symbols included in the resource, the period, SRS transmission bandwidth (similar to CSRS in LTE), BSRS, bhop, power control and other parameters.
  • the first communication node indicates, by signaling, the resource or parameter used by the second communication node to transmit the reference signal; or the first communication node and the second communication node predefine the second communication node to use the reference signal to send the reference signal. Resource or parameter.
  • the resource or parameter includes at least one of the following: a parameter for indicating whether the resource is repeated or the same, an antenna port number, or an index.
  • the antenna port number or index remains unchanged in M consecutive time domain symbols, where M is an integer greater than zero.
  • the configuration values or parameter values of the plurality of resources in the L consecutive time domain symbols are the same, or the configuration values or parameter values of the plurality of resources in the L consecutive time domain symbols are different, where L is an integer greater than zero.
  • multiple resources constitute one resource set or one resource group
  • a resource set or a parameter under the resource group may be configured to indicate whether the resource set or multiple resources in the resource group are the same.
  • the first communication node configures a resource set or a resource group to the second communication node, the resource set or the resource group includes one or more resources, and includes a parameter for indicating whether the resource is repeated or the same, and is assumed to be SRS_Resource_Repetition. If the value of the parameter SRS_Resource_Repetition is 1 or the state is on, it means that the SRS resource set or multiple SRS resources in the resource group are the same or repeated; if the parameter SRS_Resource_Repetition takes the value 0 or the state is off (off) When it is, it means that the SRS resource set or the SRS resource in the resource group is different or not repeated.
  • the SRS resource set or the multiple SRS resources in the resource group are the same or repeated, it indicates that all the parameter configuration values of the multiple SRS resources are the same, or that the multiple SRS resources are used to indicate the transmit beam or the antenna port or the frequency domain.
  • the resource has the same parameter value, or indicates that the multiple SRS resources use the same transmit beam or antenna port or frequency domain resource.
  • a resource set or a resource group includes two SRS resources, which are recorded as SRS resource 1 and SRS resource 2.
  • the indication is that the SRS resources are the same, it indicates that all parameter configuration values in SRS resource 1 and SRS resource 2 are the same, or that SRS resource 1 and SRS resource 2 use the same transmit beam or antenna port or frequency domain resource;
  • the SRS resources are different, it indicates that all parameter configuration values in SRS resource 1 and SRS resource 2 are different, or that SRS resource 1 and SRS resource 2 use different transmission beams or antenna ports or frequency domain resources.
  • FIG. 9 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application. As shown in FIG. 9, the information transmission apparatus provided in this embodiment is applied to a first communication node, and includes:
  • the first processing module 901 is configured to determine resources or parameters used by the second communications node to send the reference signal.
  • the first sending module 902 is configured to indicate the resource or parameter to the second communications node by using signaling.
  • the resource or parameter includes at least one of the following: a frequency domain start location, a frequency domain end location, a transmission bandwidth, a number of segments, a bandwidth configuration index, a bandwidth parameter, and is used to indicate whether the resource is duplicated or the same.
  • a parameter an antenna port number or an index, a calculation manner of a frequency domain start position of a maximum bandwidth of the reference signal in a multi-stage bandwidth structure, and a frequency domain start of acquiring a maximum bandwidth of the reference signal in a multi-stage bandwidth structure.
  • FIG. 10 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application. As shown in FIG. 10, the information transmission apparatus provided in this embodiment is applied to a second communication node, and includes:
  • the first receiving module 1001 is configured to receive signaling sent by the first communications node.
  • the second processing module 1002 is configured to determine, according to the signaling, or the signaling and a rule agreed with the first communications node, a resource or a parameter used to send the reference signal;
  • the second sending module 1003 is configured to send the reference signal by using the resource or parameter.
  • the resource or parameter includes at least one of the following: a frequency domain start location, a frequency domain end location, a transmission bandwidth, a number of segments, a bandwidth configuration index, a bandwidth parameter, a parameter used to indicate whether the resource is repeated or the same, and an antenna.
  • a port number or index, a calculation manner of a frequency domain start position of a maximum bandwidth of the reference signal in the multi-level bandwidth structure, and a correlation of a frequency domain start position of acquiring a maximum bandwidth of the reference signal in the multi-level bandwidth structure The parameter and the multi-level bandwidth structure information of the reference signal.
  • FIG. 11 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application. As shown in FIG. 11, the information transmission apparatus provided in this embodiment is applied to a first communication node, and includes:
  • the third processing module 1101 is configured to determine a first level parameter and a second level parameter of a reference signal resource, where the first level parameter includes at least one of the following: when the reference signal is continuously transmitted in the same frequency domain unit The number of domain symbols N1, the antenna switching switch function A1 of the reference signal, and the frequency hopping switch function B1; the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal An antenna switching switch function A2 in a time domain unit, and a frequency hopping switching function B2 in a time domain unit;
  • the second receiving module 1102 is configured to receive the reference signal according to the first level parameter and the second level parameter.
  • the number of time domain symbols configured in the reference signal resource is N, N1 is less than or equal to N, and N2 is less than or equal to N.
  • FIG. 12 is a schematic diagram of an information transmission apparatus according to an embodiment of the present application. As shown in FIG. 12, the information transmission apparatus provided in this embodiment is applied to a second communication node, and includes:
  • the fourth processing module 1201 is configured to determine a first level parameter and a second level parameter of a reference signal resource, where the first level parameter includes at least one of the following: when the reference signal is continuously transmitted in the same frequency domain unit The number of domain symbols N1, the antenna switching switch function A1 of the reference signal, and the frequency hopping switch function B1; the second level parameter includes at least one of the following: the number of time domain symbols continuously transmitted by one antenna port group of the reference signal, and the reference signal An antenna switching switch function A2 in a time domain unit, and a frequency hopping switching function B2 in a time domain unit;
  • the third sending module 1202 is configured to send the reference signal according to the first level parameter and the second level parameter.
  • the number of time domain symbols configured in the reference signal resource is N, N1 is less than or equal to N, and N2 is less than or equal to N.
  • FIG. 13 is a schematic diagram of a communication node according to an embodiment of the present application.
  • the communication node 1300 provided by this embodiment for example, a base station, includes: a first memory 1301 and a first processor 1302.
  • the first memory 1301 is configured to store an information transmission program, and the information transmission program is first.
  • the processor 1302 performs the steps of implementing the information transmission method shown in FIG. 1 when executed.
  • the communication node structure shown in FIG. 13 does not constitute a limitation to the communication node 1300, and the communication node 1300 may include more or less components than those illustrated, or combine some components, or different. Parts layout.
  • the first processor 1302 may include, but is not limited to, a microprocessor (Micro Controller Unit, MCU for short) or a programmable logic device (Field Programmable Gate Array, FPGA for short).
  • the first memory 1301 may be configured as a software program and a module for storing application software, such as program instructions or modules corresponding to the information transmission method in the embodiment, and the first processor 1302 runs the software program stored in the first memory 1301 and The module, thereby performing various function applications and data processing, such as implementing the information transmission method provided by the embodiment.
  • the first memory 1301 may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the first memory 1301 can include memory remotely located relative to the first processor 1302, which can be connected to the communication node 1300 via a network.
  • networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above communication node 1300 may further include a first communication unit 1303; the first communication unit 1303 may receive or transmit data via a network.
  • the first communication unit 1303 can be a Radio Frequency (RF) module configured to communicate with the Internet by wireless.
  • RF Radio Frequency
  • FIG. 14 is a schematic diagram of a communication node according to an embodiment of the present application.
  • the communication node 1400 provided by this embodiment for example, the UE, includes: a second memory 1401 and a second processor 1402.
  • the second memory 1401 is configured to store an information transmission program, and the information transmission program is second.
  • the processor 1402 performs the steps of implementing the information transmission method shown in FIG. 2 when executed.
  • the communication node structure shown in FIG. 14 does not constitute a limitation to the communication node 1400, and the communication node 1400 may include more or less components than those illustrated, or combine some components, or different. Parts layout.
  • the above communication node 1400 may further include a second communication unit 1403; the second communication unit 1403 may receive or transmit data via a network.
  • the descriptions of the second memory, the second processor, and the second communication unit in this embodiment may refer to the descriptions of the first memory, the first processor, and the first communication unit, and thus are not described herein again.
  • the embodiment of the present application further provides a communication node, including: a third memory and a third processor; the third memory is configured to store an information transmission program, and the information transmission program is executed by the third processor to implement the information shown in FIG. The steps of the transfer method.
  • the embodiment of the present application further provides a communication node, including: a fourth memory and a fourth processor; the fourth memory is configured to store an information transmission program, and the information transmission program is executed by the fourth processor to implement the information shown in FIG. The steps of the transfer method.
  • the descriptions of the third memory, the third processor, the fourth memory, and the fourth processor may be referred to the descriptions of the first memory and the first processor, and thus are not described herein again.
  • the embodiment of the present application further provides a computer readable medium storing an information transmission program, which is implemented by the processor to implement the information transmission method shown in FIG. 1 or FIG. 2 or FIG. 3 or FIG. step.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology configured to store information, such as computer readable instructions, data structures, program modules, or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium that is configured to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法,包括:第一通信节点确定第二通信节点发送参考信号所使用的资源或参数;通过信令向第二通信节点指示资源或参数;第二通信节点接收第一通信节点发送的信令;根据信令,或者,信令以及与第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;采用确定的资源或参数,发送参考信号。

Description

一种信息传输方法及装置
相关申请的交叉引用
本申请基于申请号为201710939835.7、申请日为2017年09月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及但不限于通信领域。
背景技术
在长期演进(Long Term Evolution,简称为LTE)中,物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)用于承载上、下行调度信息,以及上行功率控制信息。下行控制信息(Downlink Control Information,简称为DCI)格式(format)分为DCI format 0、1、1A、1B、1C、1D、2、2A、3、3A等,后面演进至LTE-ARelease 12(LTE-A版本12)中又增加了DCI format 2B、2C、2D以支持多种不同的应用和传输模式。基站(e-Node-B,简称为eNB)可以通过下行控制信息配置终端(User Equipment,简称为UE),或者终端接受高层(higher layers)的配置,也称为通过高层信令来配置UE。
测量参考信号(Sounding Reference Signal,简称为SRS)是一种UE与eNB间用来测量无线信道状态信息(Channel State Information,简称为CSI)的信号。在长期演进系统中,UE按照eNB指示的频带、频域位置、序列循环移位、周期和子帧偏置等参数,定时在发送子帧的最后一个数据符号上发送上行SRS。eNB根据接收到的SRS判断UE上行的CSI,并根据得到的CSI进行频域选择调度、闭环功率控制等操作。
在LTE-A Release 10(LTE-A版本10)的研究中提出:在上行通信中, 应该使用非预编码的SRS,即,天线专有的SRS,而对物理上行共享信道(Physical Uplink Shared CHannel,简称为PUSCH)的用于解调的参考信号(De Modulation Reference Signal,简称为DMRS)则进行预编码。eNB通过接收非预编码的SRS,可估计出上行的原始CSI,而经过了预编码的DMRS则不能使eNB估计出上行原始的CSI。此时,当UE使用多天线发送非预编码的SRS时,每个UE所需要的SRS资源都会增加,也就造成了系统内可以同时复用的UE数量下降。UE可通过高层信令(也称为通过trigger type 0触发)或下行控制信息(也称为通过trigger type 1触发)这两种触发方式发送SRS,基于高层信令触发的为周期SRS,基于下行控制信息触发的为非周期SRS。在LTE-A Release 10中增加了非周期发送SRS的方式,一定程度上改善了SRS资源的利用率,提高了资源调度的灵活性。
随着通信技术的发展,数据业务需求量不断增加,可用的低频载波也已经非常稀缺,由此,基于还未充分利用的高频(30GHz至300GHz)载波通信成为解决未来高速数据通信的重要通信手段之一。高频载波通信的可用带宽很大,可以提供有效的高速数据通信。但是,高频载波通信面临的一个很大的技术挑战就是:相对低频信号,高频信号在空间的衰落非常大,虽然会导致高频信号在室外的通信出现空间的衰落损耗问题,但是由于其波长的减小,通常可以使用更多的天线,从而可以基于波束进行通信以补偿在空间的衰落损耗。
但是,当天线数增多时,由于此时需要每个天线都有一套射频链路,基于数字波束成型也带来了增加成本和功率损耗的问题。因此,目前的研究中比较倾向于混合波束赋形,即射频波束和数字波束共同形成最终的波束。
在新的无线接入技术(New Radio Access Technology,简称NR)的研究中,高频通信系统除了eNB会配置大量的天线形成下行传输波束以补偿高频通信的空间衰落,UE同样也会配置大量的天线形成上行传输波束,此时SRS的发送也将会采用波束的形式发送。在未来新的无线接入技术研究中,eNB可为每个用户配置不同的带宽部分(Bandwidth Part,简称为BWP),用户的带宽部分所占带宽可以大于LTE或LTE-A系统的20MHz带宽,而 目前的SRS带宽配置最大只支持20MHz,无法满足NR的设计需求。另外,如何确定SRS的频域起始位置,如何实现SRS的天线切换,也是NR的SRS设计中需要解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种信息传输方法及装置,实现NR系统中参考信号的传输配置。
第一方面,本申请实施例提供一种信息传输方法,包括:
第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,
通过信令向所述第二通信节点指示所述资源或参数。
第二方面,本申请实施例提供一种信息传输方法,包括:
第二通信节点接收第一通信节点发送的信令;
根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
采用所述资源或参数,发送所述参考信号。
第三方面,本申请实施例提供一种信息传输方法,包括:
第一通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号。
第四方面,本申请实施例提供一种信息传输方法,包括:
第二通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号。
第五方面,本申请实施例提供一种信息传输装置,应用于第一通信节点,包括:
第一处理模块,配置为确定第二通信节点发送参考信号所使用的资源或参数;
第一发送模块,配置为通过信令向所述第二通信节点指示所述资源或参数。
第六方面,本申请实施例提供一种信息传输装置,应用于第二通信节点,包括:
第一接收模块,配置为接收第一通信节点发送的信令;
第二处理模块,配置为根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
第二发送模块,配置为采用所述资源或参数,发送所述参考信号。
第七方面,本申请实施例提供一种信息传输装置,应用于第一通信节点,包括:
第三处理模块,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
第二接收模块,配置为根据所述第一级参数和第二级参数,接收所述参考信号。
第八方面,本申请实施例提供一种信息传输装置,应用于第二通信节点,包括:
第四处理模块,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
第三发送模块,配置为根据所述第一级参数和第二级参数,发送所述参考信号。
第九方面,本申请实施例提供一种通信节点,包括:第一存储器以及第一处理器,所述第一存储器配置为存储信息传输程序,所述信息传输程序被所述第一处理器执行时实现上述第一方面的信息传输方法的步骤。
第十方面,本申请实施例提供一种通信节点,包括:第二存储器以及第二处理器,所述第二存储器配置为存储信息传输程序,所述信息传输程序被所述第二处理器执行时实现上述第二方面的信息传输方法的步骤。
第十一方面,本申请实施例提供一种通信节点,包括:第三存储器以及第三处理器,所述第三存储器配置为存储信息传输程序,所述信息传输程序被所述第三处理器执行时实现上述第三方面的信息传输方法的步骤。
第十二方面,本申请实施例提供一种通信节点,包括:第四存储器以及第四处理器,所述第四存储器配置为存储信息传输程序,所述信息传输程序被所述第四处理器执行时实现上述第四方面的信息传输方法的步骤。
此外,本申请实施例还提供一种计算机可读介质,存储有信息传输程序,该信息传输程序被处理器执行时实现上述第一方面至第四方面中任一方面的信息传输方法的步骤。
在本申请实施例中,第一通信节点确定第二通信节点发送参考信号所 使用的资源或参数;通过信令向第二通信节点指示资源或参数。第二通信节点接收第一通信节点发送的信令;根据信令,或者,信令以及与第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;采用确定的资源或参数,发送参考信号。如此,实现NR系统中的对参考信号传输的设计需求。
在本申请实施例中,第一通信节点根据参考信号资源的两级参数,接收参考信号,第二通信节点根据参考信号资源的两级参数,发送参考信号。通过两级参数的配置,实现NR系统中对参考信号的天线切换以及跳频控制。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本申请实施例提供的一种信息传输方法的流程图;
图2为本申请实施例提供的另一种信息传输方法的流程图;
图3为本申请实施例提供的另一种信息传输方法的流程图;
图4为本申请实施例提供的另一种信息传输方法的流程图;
图5为本申请实施例的参考信号对应的多级带宽结构示意图一;
图6为本申请实施例的参考信号对应的多级带宽结构示意图二;
图7(a)至图7(f)为PUCCH在不同时域符号上的频域占有情况的示意图;
图8(a)至图8(j)为本申请示例七的示意图;
图9为本申请实施例提供的一种信息传输装置的示意图;
图10为本申请实施例提供的另一种信息传输装置的示意图;
图11为本申请实施例提供的另一种信息传输装置的示意图;
图12为本申请实施例提供的另一种信息传输装置的示意图;
图13为本申请实施例提供的一种通信节点的示意图;
图14为本申请实施例提供的另一种通信节点的示意图。
具体实施方式
以下结合附图对本申请实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为本申请实施例提供的一种信息传输方法的流程图。如图1所示,本实施例提供的信息传输方法,包括:
S101、第一通信节点确定第二通信节点发送参考信号所使用的资源或参数;
S102、通过信令向第二通信节点指示该资源或参数。
本实施例中,第一通信节点是指配置为确定第二通信节点的发送方式并向第二通信节点进行信令指示的节点,第二通信节点是指配置为接收信令的节点。在一种实现方式中,第一通信节点可以为宏小区的基站、小小区(small cell)的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点,第二通信节点可以为UE、手机、便携设备、汽车等通信系统中的节点。在另一种实现方式中,宏小区的基站、小小区的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等可作为第二通信节点,UE等可作为第一通信节点。
本实施例中,信令可以包括以下至少之一:无线资源控制(RRC,Radio Resource Control)信令、介质访问控制控制单元(MAC CE,Media Access Control Control Element)信令、物理下行控制信令、物理层动态控制信令。
本实施例中,参考信号包括以下之一:SRS、上行解调参考信号、下行解调参考信号、下行信道状态信息参考信号(CSI-RS)、上行相位跟踪参考信号(PTRS)、下行PTRS。
本实施例中,N BWP为带宽部分的取值,或称为上行带宽部分
Figure PCTCN2018101813-appb-000001
或下行带宽部分
Figure PCTCN2018101813-appb-000002
在示例性实施方式中,所述资源或参数至少包括以下一种或多种:频域起始位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
在本实施例中,所述分段数量与LTE中带宽配置表格4a中的N 0、N 1、N 2、N 3含义相同,或者可以将分段数量定义为参考信号的树形结构带宽配置中上一级发送带宽与本级发送带宽的比值。
在本实施例中,所述参考信号的发送方式至少包括以下之一:发送波束、发送天线、发送扇区、发端预编码、通过天线端口指示的方式、通过天线权重矢量指示的方式、通过天线权重矩阵指示的方式、空分复用方式、频域/时域传输分集方式、发送序列、发送的层数、传输模式、调制编码方式、通过参考信号指示的方式。
在本实施例中,所述参考信号的接收方式至少包括以下之一:接收波束;接收天线;接收天线面板;接收扇区;第一波束资源对应的方式,其中,所述第一波束资源是在参考信号和天线端口二者的准共址中指示的所述第一通信节点的波束资源;第二波束资源对应的方式,其中,所述第二波束资源是在基准参考信号和天线端口二者的准共址(QCL)中指示的所述第一通信节点的波束资源。
在示例性实施方式中,第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,可以包括:第一通信节点根据与第二通信节点约定的规则,确定所述第二通信节点发送参考信号所使用的资源或参数。
在示例性实施方式中,第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,包括以下至少之一:
所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项,确定所述第二通信节点实际使用的带宽配置索引;
所述第一通信节点根据所述参考信号的带宽配置索引,确定所述参考 信号的发送带宽的集合;
所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项,确定所述参考信号的发送带宽或分段数量。
在示例性实施方式中,所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项,确定所述第二通信节点实际使用的带宽配置索引,包括:
确定所述第二通信节点实际使用的带宽配置索引包括以下至少之一:
Figure PCTCN2018101813-appb-000003
Figure PCTCN2018101813-appb-000004
Figure PCTCN2018101813-appb-000005
Figure PCTCN2018101813-appb-000006
(5)在带宽配置索引对应的参考信号的最大发送带宽小于或等于
Figure PCTCN2018101813-appb-000007
Figure PCTCN2018101813-appb-000008
Figure PCTCN2018101813-appb-000009
Figure PCTCN2018101813-appb-000010
的条件下,选择出最大的带宽配置索引,再减去C SRS,作为第二通信节点实际使用的带宽配置索引;
其中,
Figure PCTCN2018101813-appb-000011
为向下取整函数,N BWP为带宽部分的取值,C SRS为带宽配置索引,C SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
在示例性实施方式中,所述第一通信节点根据参考信号的带宽配置索引,确定所述参考信号的发送带宽的集合,包括:
所述参考信号带宽配置索引大于或等于17时,或者所述参考信号带宽配置索引小于或等于14时,或者所述参考信号带宽配置索引为0至31或0至63之间的某一整数时,确定所述发送带宽的集合至少包括以下之一:
(1)108、36、12、4;
(2)112、56、28、4;
(3)112、56、8、4;
(4)120、60、20、4;
(5)120、40、20、4;
(6)128、64、32、4;
(7)128、32、16、4;
(8)128、32、8、4;
(9)136、68、4、4;
(10)144、72、24、4;
(11)144、72、36、4;
(12)144、72、12、4;
(13)144、48、24、4;
(14)144、48、12、4;
(15)144、48、16、4;
(16)144、48、8、4;
(17)160、80、40、4;
(18)160、80、20、4;
(19)160、40、20、4;
(20)160、40、8、4;
(21)168、84、28、4;
(22)176、88、44、4;
(23)180、60、20、4;
(24)192、96、32、4;
(25)192、96、48、4;
(26)192、48、24、4;
(27)192、48、16、4;
(28)192、48、12、4;
(29)200、100、20、4;
(30)200、40、20、4;
(31)200、40、8、4;
(32)208、104、52、4;
(33)216、108、36、4;
(34)240、120、60、4;
(35)240、120、40、4;
(36)240、120、20、4;
(37)240、80、40、4;
(38)240、80、20、4;
(39)240、80、8、4;
(40)256、128、64、4;
(41)256、64、32、4;
(42)256、64、16、4;
(43)256、64、8、4;
(44)272、136、68、4。
在示例性实施方式中,所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项,确定所述参考信号的发送带宽或分段数量,包括以下之一,或者说一个或多个带宽配置索引所对应的发送带宽集合满足如下关系之一:
方式一、
Figure PCTCN2018101813-appb-000012
则发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000013
方式二、
Figure PCTCN2018101813-appb-000014
则发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000015
方式三、
分段数量为:
N 0=1;
Figure PCTCN2018101813-appb-000016
方式四、
发送带宽为:
Figure PCTCN2018101813-appb-000017
Figure PCTCN2018101813-appb-000018
方式五、
发送带宽为:
Figure PCTCN2018101813-appb-000019
Figure PCTCN2018101813-appb-000020
方式六、
发送带宽为:
Figure PCTCN2018101813-appb-000021
Figure PCTCN2018101813-appb-000022
其中,d i为2 i×3 j×5 l或者d i为1至17之间的某一个或多个整数,包括1和17,i、j、l的取值为非负整数,m SRS,i为所述参考信号的发送带宽,floor()为向下取整函数,
Figure PCTCN2018101813-appb-000023
为向下取整函数,i=B SRS,B SRS为所述参考信号的带宽 参数,N BWP为带宽部分的取值,B SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
在示例性实施方式中,所述通过信令向所述第二通信节点指示所述资源或参数,包括:
通过所述信令向所述第二通信节点指示所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,其中,所述第一频域起始位置由所述第二通信节点根据与所述第一通信节点约定的规则获取。
在示例性实施方式中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下至少之一:
Figure PCTCN2018101813-appb-000024
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000025
Figure PCTCN2018101813-appb-000026
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000027
Figure PCTCN2018101813-appb-000028
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000029
其中,
Figure PCTCN2018101813-appb-000030
为所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,
Figure PCTCN2018101813-appb-000031
为整数,单位为
Figure PCTCN2018101813-appb-000032
Figure PCTCN2018101813-appb-000033
表示带宽部分,m SRS,0是多级带宽结构中最大带宽对应的频域带宽长度信息,
Figure PCTCN2018101813-appb-000034
表示所述最大带宽在单位
Figure PCTCN2018101813-appb-000035
中的偏移量,p是端口索引,
Figure PCTCN2018101813-appb-000036
为一个或多个多级带宽结构中的最大带宽长度信息。
在示例性实施方式中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下之一:
Figure PCTCN2018101813-appb-000037
Figure PCTCN2018101813-appb-000038
Figure PCTCN2018101813-appb-000039
Figure PCTCN2018101813-appb-000040
Figure PCTCN2018101813-appb-000041
Figure PCTCN2018101813-appb-000042
Figure PCTCN2018101813-appb-000043
Figure PCTCN2018101813-appb-000044
其中,
Figure PCTCN2018101813-appb-000045
为偏移单位量,
Figure PCTCN2018101813-appb-000046
为整数,单位为
Figure PCTCN2018101813-appb-000047
表示带宽部分,m SRS,0是所述参考信号所在的多级带宽结构中最大带宽对应的频域带宽长度信息,
Figure PCTCN2018101813-appb-000048
表示所述最大带宽在单位
Figure PCTCN2018101813-appb-000049
中的偏移量,p是端口索引,B SRS为所述参考信号在一个时域符号上对应的带宽在多级带宽结构中的等级信息;N b′为第b′-1级的一个带宽包括的第b′级中的带宽的个数,
Figure PCTCN2018101813-appb-000050
为一个或多个多级带宽结构中的最大带宽长度信息。
在示例性实施方式中,所述参考信号所在的多级带宽结构中的第b级带宽中的一个带宽包括第b+1级带宽中的一个或者多个带宽,其中,b为非负整数。
在示例性实施方式中,所述参数或参数的配置范围根据一个时间单元中的时域符号位置信息获取;或者,一个参考信号资源在一个时间单元中的不同时域符号上,所述参数或者所述参数的配置范围不同。
在示例性实施方式中,所述天线端口编号或索引在M个连续的时域符号中保持不变,其中,M为大于0的整数。
在示例性实施方式中,在通过信令指示多个资源时,所述多个资源在L个连续的时域符号中的配置值或参数值相同,或者,所述多个资源在L个连续的时域符号中的配置值或参数值不同,其中,L为大于0的整数。
在示例性实施方式中,在通过信令指示多个资源时,所述多个资源构成一个资源集合或一个资源组,且所述资源集合或资源组下的一个参数配置为指示所述资源集合或所述资源组中的多个资源是否相同或重复。
在示例性实施方式中,所述用于指示资源是否重复或相同的参数的取值为1或状态为打开时,则表示资源集合或资源组下的多个SRS资源的所有参数配置值相同,或者表示所述多个SRS资源中用于表示发送波束或天线端口或频域资源的参数值相同,或者表示所述多个SRS资源使用相同的发送波束或天线端口或频域资源。
在示例性实施方式中,通过配置多个所述资源来实现如下功能至少之一:
参考信号的天线切换或发送端口切换;
参考信号在多个时域资源上使用相同的发送方式或频域位置进行发送;
所述第一通信节点在多个时域资源上使用相同的接收方式接收所述第二通信节点发送的参考信号;
在示例性实施方式中,所述分段数量N i<=N j,其中,<=表示小于或等于;i<j。
图2为本申请实施例提供的一种信息传输方法的流程图。如图2所示,本实施例提供的信息传输方法,包括:
S201、第二通信节点接收第一通信节点发送的信令;
S202、根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
S203、采用所述资源或参数,发送所述参考信号。
本实施例中,第一通信节点是指配置为确定第二通信节点的发送方式并向第二通信节点进行信令指示的节点,第二通信节点是指配置为接收信令的节点。在一种实现方式中,第一通信节点可以为宏小区的基站、small cell的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点,第二通信节点可以为UE、手机、便携设备、汽车等通信系统中的节点。在另一种实现方式中,宏小区的基站、小小区的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等可作为第二通信节点,UE等可作为第一通信节点。
本实施例中,信令可以包括以下至少之一:RRC信令、MAC CE信令、物理下行控制信令、物理层动态控制信令。
本实施例中,参考信号包括以下之一:SRS、上行解调参考信号、下行解调参考信号、CSI-RS、上行PTRS、下行PTRS。
在示例性实施方式中,所述资源或参数包括以下至少之一:频域起始 位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、配置为指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
在示例性实施方式中,所述根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数,包括以下至少之一:
所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项以及与所述第一通信节点约定的规则,确定所述第二通信节点实际使用的带宽配置索引;
所述第二通信节点根据所述参考信号的带宽配置索引以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽的集合;
所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽或分段数量。
在示例性实施方式中,所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项以及与所述第一通信节点约定的规则,确定第二通信节点实际使用的带宽配置索引,包括:
确定所述第二通信节点实际使用的带宽配置索引包括以下至少之一:
Figure PCTCN2018101813-appb-000051
Figure PCTCN2018101813-appb-000052
Figure PCTCN2018101813-appb-000053
Figure PCTCN2018101813-appb-000054
(5)在带宽配置索引对应的参考信号的最大发送带宽小于或等于
Figure PCTCN2018101813-appb-000055
Figure PCTCN2018101813-appb-000056
Figure PCTCN2018101813-appb-000057
Figure PCTCN2018101813-appb-000058
的条件下,选择出最大的带宽配置索引,再减去C SRS,作为第二通信节点实际使用的带宽配置索引;
其中,
Figure PCTCN2018101813-appb-000059
为向下取整函数,N BWP为带宽部分的取值,C SRS为带宽配置索引,C SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
在示例性实施方式中,所述第二通信节点根据所述参考信号的带宽配置索引以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽的集合,包括:
所述参考信号带宽配置索引大于或等于17时,或者所述参考信号带宽配置索引小于或等于14时,或者所述参考信号带宽配置索引为0至31或0至63之间的一整数时,指示所述发送带宽的集合至少包括以下之一:
(1)108、36、12、4;
(2)112、56、28、4;
(3)112、56、8、4;
(4)120、60、20、4;
(5)120、40、20、4;
(6)128、64、32、4;
(7)128、32、16、4;
(8)128、32、8、4;
(9)136、68、4、4;
(10)144、72、24、4;
(11)144、72、36、4;
(12)144、72、12、4;
(13)144、48、24、4;
(14)144、48、12、4;
(15)144、48、16、4;
(16)144、48、8、4;
(17)160、80、40、4;
(18)160、80、20、4;
(19)160、40、20、4;
(20)160、40、8、4;
(21)168、84、28、4;
(22)176、88、44、4;
(23)180、60、20、4;
(24)192、96、32、4;
(25)192、96、48、4;
(26)192、48、24、4;
(27)192、48、16、4;
(28)192、48、12、4;
(29)200、100、20、4;
(30)200、40、20、4;
(31)200、40、8、4;
(32)208、104、52、4;
(33)216、108、36、4;
(34)240、120、60、4;
(35)240、120、40、4;
(36)240、120、20、4;
(37)240、80、40、4;
(38)240、80、20、4;
(39)240、80、8、4;
(40)256、128、64、4;
(41)256、64、32、4;
(42)256、64、16、4;
(43)256、64、8、4;
(44)272、136、68、4。
在示例性实施方式中,所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽或分段数量,包括以下之一:
方式一、
Figure PCTCN2018101813-appb-000060
则发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000061
方式二、
Figure PCTCN2018101813-appb-000062
则发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000063
方式三、
分段数量为:
N 0=1;
Figure PCTCN2018101813-appb-000064
方式四、
发送带宽为:
Figure PCTCN2018101813-appb-000065
Figure PCTCN2018101813-appb-000066
方式六、
发送带宽为:
Figure PCTCN2018101813-appb-000067
Figure PCTCN2018101813-appb-000068
其中,d i为2 i×3 j×5 l或者d i为1至17之间的某一个或多个整数,包括1和17,i、j、l的取值为非负整数,m SRS,i为所述参考信号的发送带宽,floor()为向下取整函数,
Figure PCTCN2018101813-appb-000069
为向下取整函数,i=B SRS,B SRS为所述参考信号的带宽参数,N BWP为带宽部分的取值,B SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
在示例性实施方式中,所述根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数,包括:
通过所述信令或者约定规则,获得所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量;其中,所述第一频域起始位置由所述第二通信节点根据与所述第一通信节点约定的规则获取。
在示例性实施方式中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下至少之一:
Figure PCTCN2018101813-appb-000070
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000071
Figure PCTCN2018101813-appb-000072
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000073
Figure PCTCN2018101813-appb-000074
其中,第一频域起始位置为:
Figure PCTCN2018101813-appb-000075
其中,
Figure PCTCN2018101813-appb-000076
为所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,
Figure PCTCN2018101813-appb-000077
为整数,单位为
Figure PCTCN2018101813-appb-000078
Figure PCTCN2018101813-appb-000079
表示带宽部分,m SRS,0是多级带宽结构中最大带宽对应的频域带宽长度信息,
Figure PCTCN2018101813-appb-000080
表示所述最大带宽在单位
Figure PCTCN2018101813-appb-000081
中的偏移量,p是端口索引,
Figure PCTCN2018101813-appb-000082
为一个或多个多级带宽结构中的最大带宽长度信息。
在示例性实施方式中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下之一:
Figure PCTCN2018101813-appb-000083
Figure PCTCN2018101813-appb-000084
Figure PCTCN2018101813-appb-000085
Figure PCTCN2018101813-appb-000086
Figure PCTCN2018101813-appb-000087
Figure PCTCN2018101813-appb-000088
Figure PCTCN2018101813-appb-000089
Figure PCTCN2018101813-appb-000090
其中,
Figure PCTCN2018101813-appb-000091
为偏移单位量,
Figure PCTCN2018101813-appb-000092
为整数,单位为
Figure PCTCN2018101813-appb-000093
表示带宽部分,m SRS,0是所述参考信号所在的多级带宽结构中最大带宽对应的频域带宽长度信息,
Figure PCTCN2018101813-appb-000094
表示所述最大带宽在单位
Figure PCTCN2018101813-appb-000095
中的偏移量,p是端口索引,B SRS为所述参考信号在一个时域符号上对应的带宽在多级带宽结构中的等级信息;N b′为第b′-1级的一个带宽包括的第b′级中的带宽的个数,
Figure PCTCN2018101813-appb-000096
为一个或多个多级带宽结构中的最大带宽长度信息。
在示例性实施方式中,所述参考信号所在的多级带宽结构中的第b级带宽中的一个带宽包括第b+1级带宽中的一个或者多个带宽,其中,b为非负整数。
在示例性实施方式中,所述参数或参数的配置范围根据一个时间单元中的时域符号位置信息获取;或者,一个参考信号资源在一个时间单元中的不同时域符号上,所述参数或者所述参数的配置范围不同。
在示例性实施方式中,所述天线端口编号或索引在M个连续的时域符号中保持不变,其中,M为大于0的整数。
在示例性实施方式中,所述发送参考信号的资源包括多个时,所述多个资源在L个连续的时域符号中的配置值或参数值相同,或者,所述多个资源在L个连续的时域符号中的配置值或参数值不同,其中,L为大于0的整数。
在示例性实施方式中,所述发送参考信号的资源包括多个时,所述多个资源构成一个资源集合或一个资源组,且所述资源集合或资源组下的一个参数配置为指示所述资源集合或所述资源组中的多个资源是否相同或重复。
在示例性实施方式中,所述用于指示资源是否重复或相同的参数的取值为1或状态为打开时,则表示资源集合或资源组下的多个SRS资源的所有参数配置值相同,或者表示所述多个SRS资源中用于表示发送波束或天线端口或频域资源的参数值相同,或者表示所述多个SRS资源使用相同的发送波束或天线端口或频域资源。
图3为本申请实施例提供的一种信息传输方法的流程图。如图3所示,本实施例提供的信息传输方法,包括:
S301、第一通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
S302、第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号。
其中,一个天线端口组内的天线端口同时发送。
在示例性实施方式中,所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号,包括:
针对所述参考信号,先在一个频域单元进行重复接收N1个时域符号,然后跳频到另外一个频域单元重复接收N1个时域符号。
在示例性实施方式中,所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号,包括:
当有多个端口组时,先用一个端口组进行重复接收N2个时域符号,然后用另外一个端口组重复接收N2个时域符号。
在示例性实施方式中,N2小于N1。
在示例性实施方式中,在一个频域单元的N1个时域符号上,不同天线端口组时分复用,且每个天线端口组连续接收N2个时域符号。
在示例性实施方式中,本实施例的方法还可以包括:
所述第一通信节点通过信令向第二通信节点指示所述参考信号资源的第一级参数和第二级参数。
在示例性实施方式中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
本实施例中,在一种实现方式中,第一通信节点可以为宏小区的基站、small cell的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点,第二通信节点可以为UE、手机、便携设备、汽车等通信系统中的节点。在另一种实现方式中,宏小区的基站、小小区的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等可作为第二通信节点,UE等可作为第一通信节点。
图4为本申请实施例提供的一种信息传输方法的流程图。如图4所示,本实施例提供的信息传输方法,包括:
S401、第二通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
S402、第二通信节点根据第一级参数和第二级参数,发送参考信号。
其中,一个天线端口组内的天线端口同时发送。
在示例性实施方式中,所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号,包括:
针对所述参考信号,先在一个频域单元进行重复发送N1个时域符号,然后跳频到另外一个频域单元重复发送N1个时域符号。
在示例性实施方式中,所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号,包括:
当有多个端口组时,先用一个端口组进行重复发送N2个时域符号,然后用另外一个端口组重复发送N2个时域符号。
在示例性实施方式中,N2小于N1。
在示例性实施方式中,在一个频域单元的N1个时域符号上,不同天线端口组时分复用,且每个天线端口组连续发送N2个时域符号。
在示例性实施方式中,本实施例的方法还可以包括:
第二通信节点接收第一通信节点用于指示所述参考信号资源的第一级参数和第二级参数的信令。
在示例性实施方式中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
本实施例中,在一种实现方式中,第一通信节点可以为宏小区的基站、small cell的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点,第二通信节点可以为UE、手机、便携设备、汽车等通信系统中的节点。在另一种实现方式中,宏小区的基站、小小区的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等可作为第二通信节点,UE等可作为第一通信节点。
下面通过多个示例对本申请的方案进行说明。
示例一
本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行参考信号所使用的参数,比如,双方约定SRS的发送带宽或分段数量的计算公式。
本示例中,参考信号以SRS为例进行说明。其中,参数至少可以包括以下之一:带宽配置索引、发送带宽、带宽参数。
在本示例中,第二通信节点接收到第一通信节点发送的信令后,可以基于以下方式之一确定SRS的发送带宽或分段数量:
方式一、
Figure PCTCN2018101813-appb-000097
则SRS的发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000098
方式二、
Figure PCTCN2018101813-appb-000099
则发送带宽为:
m SRS,0=4×k 0
Figure PCTCN2018101813-appb-000100
方式三、
分段数量为:
N 0=1;
Figure PCTCN2018101813-appb-000101
其中,根据总带宽和分段数量可以确定第i级发送带宽。
方式四、
SRS的发送带宽为:
Figure PCTCN2018101813-appb-000102
Figure PCTCN2018101813-appb-000103
方式五、
发送带宽为:
Figure PCTCN2018101813-appb-000104
Figure PCTCN2018101813-appb-000105
方式六、
发送带宽为:
Figure PCTCN2018101813-appb-000106
Figure PCTCN2018101813-appb-000107
其中,d i为2 i×3 j×5 l或者d i为1至17之间的某一个或多个整数,包括1和17,i、j、l的取值为非负整数,m SRS,i为所述参考信号的发送带宽,floor()为向下取整函数,
Figure PCTCN2018101813-appb-000108
为向下取整函数,i=B SRS,B SRS为所述参考信号的带宽参数,N BWP为带宽部分的取值,B SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
示例二
在本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行参考信号所使用的参数,比如,第一通信节点和第二通信节点约定SRS的发送带宽的配置表格。
本示例中,参考信号以SRS为例进行说明。其中,参数至少可以包括以下之一:带宽配置索引、发送带宽、带宽参数。
本示例中,第二通信节点接收到第一通信节点的信令后,可以根据信令配置的N BWP、C SRS和B SRS中至少一项以及预定义的发送带宽的配置表格,确定SRS的发送带宽。
其中,SRS的发送带宽的配置表格可以参照下面的表2a或表2b或表2c或表2d所示,其中,C SRS为SRS的带宽配置索引,B SRS为SRS的带宽参 数,N BWP为上行带宽部分的取值,可以由第一通信节点通过信令向第二通信节点配置N BWP、C SRS和B SRS中至少一项的取值。
表2a
Figure PCTCN2018101813-appb-000109
Figure PCTCN2018101813-appb-000110
表2b
Figure PCTCN2018101813-appb-000111
Figure PCTCN2018101813-appb-000112
表2c
Figure PCTCN2018101813-appb-000113
Figure PCTCN2018101813-appb-000114
表2d
Figure PCTCN2018101813-appb-000115
Figure PCTCN2018101813-appb-000116
示例三
在本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行信号所使用的参数,比如,双方约定SRS的发送带宽的配置表格。
本示例中,参考信号以SRS为例进行说明。其中,参数至少可以包括以下之一:带宽配置索引、发送带宽、带宽参数。
本示例中,第二通信节点接收到第一通信节点的信令后,可以根据信令配置的C SRS和B SRS中至少一项以及预定义的发送带宽的配置表格,确定SRS的发送带宽。
本示例中,SRS的发送带宽的配置表格可以参照下面的表3a或表3b或表3c或表3d所示,其中C SRS为SRS的带宽配置索引,B SRS为SRS的带宽参数,由第一通信节点通过信令向第二通信节点配置C SRS和B SRS中至少一项的取值。
表3a
Figure PCTCN2018101813-appb-000117
Figure PCTCN2018101813-appb-000118
表3b
Figure PCTCN2018101813-appb-000119
Figure PCTCN2018101813-appb-000120
表3c
Figure PCTCN2018101813-appb-000121
Figure PCTCN2018101813-appb-000122
表3d
Figure PCTCN2018101813-appb-000123
Figure PCTCN2018101813-appb-000124
示例四
在本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行信号所使用的参数,比如,双方约定SRS的发送带宽的配置表格。
本示例中,参考信号以SRS为例进行说明。其中,参数至少可以包括以下之一:带宽配置索引、发送带宽、带宽参数、上行带宽部分的取值。
本示例中,第二通信节点接收到第一通信节点的信令后,可以根据信令配置的上行带宽部分的取值、C SRS、B SRS中至少一项以及预定义的发送带宽的配置表格,确定SRS的发送带宽。
当上行带宽部分的取值
Figure PCTCN2018101813-appb-000125
小于或等于110个物理资源块(Physical Resource Block,简称为PRB)时,则采用LTE的SRS发送带宽的配置表格,即采用表2a或表2b或表2c或表2d。
当上行带宽部分的取值大于110个PRB时,则采用表4e或表4f或表4g或表4i。
表4a所示为
Figure PCTCN2018101813-appb-000126
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4a
Figure PCTCN2018101813-appb-000127
表4b所示为
Figure PCTCN2018101813-appb-000128
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4b
Figure PCTCN2018101813-appb-000129
表4c所示为
Figure PCTCN2018101813-appb-000130
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4c
Figure PCTCN2018101813-appb-000131
表4d所示为
Figure PCTCN2018101813-appb-000132
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4d
Figure PCTCN2018101813-appb-000133
表4e所示为
Figure PCTCN2018101813-appb-000134
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4e
Figure PCTCN2018101813-appb-000135
表4f所示为
Figure PCTCN2018101813-appb-000136
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4f
Figure PCTCN2018101813-appb-000137
表4g所示为
Figure PCTCN2018101813-appb-000138
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4g
Figure PCTCN2018101813-appb-000139
表4i所示为
Figure PCTCN2018101813-appb-000140
时,m SRS,b和N b(b=0,1,2,3)的取值。
表4i
Figure PCTCN2018101813-appb-000141
本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,其中,参数可以包括:SRS在多级带宽结构中的最大带宽对应的频域起始位置。
例如,通过2比特的物理下行控制信令或高层信令指示在多级带宽结构中的最大带宽对应的频域起始位置的计算方式。
其中,频域起始位置的计算方式至少包括以下之一:
Figure PCTCN2018101813-appb-000142
Figure PCTCN2018101813-appb-000143
Figure PCTCN2018101813-appb-000144
Figure PCTCN2018101813-appb-000145
Figure PCTCN2018101813-appb-000146
Figure PCTCN2018101813-appb-000147
Figure PCTCN2018101813-appb-000148
Figure PCTCN2018101813-appb-000149
其中,
Figure PCTCN2018101813-appb-000150
为偏移单位量(即相对预定频域起始位置的偏移PRB个数),为整数,
Figure PCTCN2018101813-appb-000151
位为
Figure PCTCN2018101813-appb-000152
(比如为一个PRB中的子载波的个数);
Figure PCTCN2018101813-appb-000153
表示BWP(Bandwidth partial,带宽部分)或者上行系统带宽(单位为PRB);m SRS,0是参考信号所在的多级带宽结构中最大带宽对应的频域带宽长度信息(单位为PRB,比如为树状结构中第0级中的带宽对应的带宽长度);
Figure PCTCN2018101813-appb-000154
表示最大带宽在单位
Figure PCTCN2018101813-appb-000155
中的偏移量(比如为comb索引值);B SRS为参考信号在一个时域符号上对应的带宽在多级带宽结构中的等级信息(如图5所示,B SRS=3);N b′为第b′-1级的一个带宽包括的第b′级中的带宽的个数;p为参考信号所在的端口号或端口索引;
Figure PCTCN2018101813-appb-000156
为一个或多个多级带宽结构中的最大带宽长度信息。
其中,参考信号所在的多级带宽结构表示第b级的一个带宽包括第b+1级中的一个或者多个带宽,也可以称为树状结构。举例而言,如图5所示,第b=0级中的一个带宽包括第b=1级中的2个带宽,第b=1级中的一个带宽包括第b=2级中的2个带宽,图5中第b级的带宽包括的第b+1级的带宽个数对于不同的b是相同的都为2;图5仅为示例,本示例并不排除其他的情况,比如图6的多级带宽结构中,第b=2级中的一个带宽对应第b=3级中的4个带宽。
示例六
本示例中,第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的参数,或者,第一通信节点和第二通信节点双方预定义第二通信节点发送上行参考信号所使用的参数。
其中,参数或者参数的配置范围根据一个时间单元中的时域符号位置信息获取;或者,一个参考信号资源在一个时间单元中的不同时域符号上,参数或者参数的配置范围不同。
其中,一个时隙中不同时域符号上SRS的参数不同(比如这些参数可以是时域符号级别的配置),参数可以包括如下一种或者多种:SRS占有的频域长度、SRS发送带宽的频域起始位置、树的频域起始位置、频域结束 位置、离散的频域资源、参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、多级带宽结构的配置信息。
由于存在不同长度的物理上行控制信道(Physical Uplink Control CHannel,简称为PUCCH),所以不同的时域符号上PUCCH占有的频域资源情况不同,当SRS所在的时域符号位置不同,其对应的参数或者参数范围需要调整,图7(a)至图7(f)所示为PUCCH在不同时域符号上占有的频域位置情况的不同示意图,进而SRS的参数或者参数的范围根据其在一个slot(时隙)中的时域符号的位置索引得到,这些参数可以包括:SRS在一个时域符号上的发送带宽(即在不同的时域符号上,SRS的发送带宽可以不同,类似于LTE中的可以不同)、SRS发送带宽的频域起始位置(即在不同的时域符号上,SRS的发送带宽的频域起始位置可以不同,类似于LTE中的参数可以不同)、树的频域起始位置(类似于本文所述的,即参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式)、频域结束位置(比如不同的时域符号上频域结束位置可以不同)、离散的频域资源(由于PUCCH导致的频域碎片,在一个时域符号上SRS占有的PRB可以是非连续的,从而可以允许不同时域符号上SRS占有的PRB集合不同)、获取参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数(比如本文所述的可以随着时域符号的改变而改变)、多级带宽的配置信息(树状结构参数不同,比如不同的时域符号对应的树状结构不同,其中,树状结构可以通过类似LTE中的表示)。
本实施例中,不同时域符号上参考信号的参数或者参数的范围可以不同,其中,不同时域符号上的SRS可以属于不同的SRS资源,也可以属于一个SRS资源。可以建立时域符号和参数(或者参数范围)之间的对应关系,落在对应时域符号中的所有SRS资源可以遵从这个时域符号对应的参数或者参数范围,或者建立一个SRS资源的不同时域符号和参数(或者参数范围)之间的对应关系,一个用户的落在相同时域符号上的不同SRS资源对于上述参数可以不同。
示例七
本示例中,为了对SRS的参数进行配置,SRS资源的定义可以很好地被利用。基站可配置一个或者多个SRS资源给用户,每个SRS资源包括的参数很多,比如可以包括天线端口数X、周期、时域子帧或者时隙的偏移、comb索引、频域起始位置、是否跳频、是否进行天线切换等。
这些参数在LTE系统中是通过RRC信令配置的。在NR系统中,所有参数可以放置在一个SRS资源参数中配置,也是由RRC信令配置的。但是由于NR系统中一个时隙中的很多个时域符号可以用于SRS传输,所以SRS资源参数中还会包括一个时隙中SRS所占的时域符号个数N以及时域符号的位置。
在LTE中,如果天线切换打开,那么每个时域符号上只能映射一个天线端口。如果跳频开启,那么SRS连续发送时会在不同的子带上。如果在一个时隙内,SRS资源配置了N个时域符号,且配置的天线数小于N,比如N=4,天线个数等于2。如果跳频和天线切换同时打开,此时会导致天线和频率切换太频繁,从而使得UE复杂度增加。如图8(a)所示,SRS传输时天线端口在一个时隙内的4个时域符号上需要切换3次,频域位置也需要切换3次。s0、s1、s2、s3分别代表一个时隙内不同的时域符号。SB0、SB1表示不同的子带或者频域单元。
为了减少切换次数,SRS资源的参数配置可以新引入两级参数配置。其中,第一级参数配置是SRS在相同频域单元内连续发送的时域符号个数N1。一个SRS资源配置的N个符号内(限定在一次周期传输中,即一个时隙内),SRS在一个相同的频域单元上连续传输的符号个数就是N1的值,且不论是SRS的哪个天线端口传输的。如图8(a),由于在一个子带上,SRS每次就连续传输1个时域符号,那么N1=1。而如图8(b)、图8(c),在一个子带上,SRS每次就连续传输2个时域符号,则N1=2。需要注意的是,N1是在一个频域单元内SRS连续发送的时域符号个数,不区分天线端口。
第二级配置参数是SRS的一部分端口连续重复发送的时域符号个数N2,且N2小于N。N2是指一个天线端口组在一个频域单元上连续重复发送的时域符号个数。其中,一个天线端口组内的所有天线端口占用相同的 时域符号资源,且频域单元或者子带也可能一样,只是序列或者comb可能不一样。如图8(b)所示,每个天线是一个天线端口组,N1=2,N2=2,因为在一个子带上每个天线连续发送了2次。而如图8(c)所示,N1=2,N2=1,因为在一个子带上每个天线连续发送的次数是1。
因此,在一个SRS资源配置参数中,通过增加2个参数,即N1、N2,就可以达到任意的SRS发送配置,使得灵活性达到最大化。
在一个频域单元内,在N1个连续的符号上,一个天线组连续发送N2个时域符号,且不同天线组不同时发送。此时一个或者多个天线组连续发送在N1个时域符号上。如图8(c),一个天线端口就是一个天线端口组,此时N1=2,N2=1,即在每个子带内,每个天线端口组发送一次,并且时分复用在N1个时域符号上。
当跳频打开时,SRS在一个子带上连续传输N1个符号后,就需要跳频到另外一个子带上传输。如果N1小于N,在一个时域单元内SRS先在一个频域单元进行重复发送N1个时域符号,然后再进行跳频到另外一个频域单元重复发送N1个时域符号。如果N2小于N1,在一个频域单元内的N1个符号上,SRS的一个端口组先连续传输N2次,然后是另外一个天线端口组再传输N2次,直到占满N1个符号。
值得注意的是,N个时域符号不一定相邻。一个天线端口组可以认为是可以同时发送的天线端口组。比如4天线的SRS,端口0,1是一组,端口2,3是一组,用户每次只能传输一个天线端口组,需要用2个时刻才能传完4个端口。端口组也是基站配置的。
基于X、N、N1、N2的配置以及天线端口组的配置,任意灵活的SRS传输可以获得。其他的例子如图8(d)、图8(e)、图8(f)所示。比如图8(f)所示,由于N2=4,端口组1(包括端口0,1)传输4个符号后,才是端口组2传输。而由于N1=2,则SRS在子带0上传输2个时域符号后就在子带1上传输了。
可选择的,N1,N2的参数配置可以依靠其他参数来隐含的代替,比如引入新的参数G1,G2,使得N1=N/G1,N2=N/G2。或者N2=N1/G2。或者为了简化标准的复杂度,N2可以固定成一个数字,不需要配置,比如 N2=1。
根据N1,N2的参数设定,LTE 36.211中对于跳频的定义就可以沿用,且LTE的公式只需要做简单的修改,即
Figure PCTCN2018101813-appb-000157
其中,F表示是从SRS最开始传输时到当前时刻,总共传输的时隙个数。例如,
Figure PCTCN2018101813-appb-000158
对于一个特定的子载波间隔,其中,n f就是帧序号,n sf是一个帧中的子帧序号,而
Figure PCTCN2018101813-appb-000159
是一个子帧中包含的时隙个数,n s是一个子帧中时隙的序号。这样修改后,一次SRS传输就是N1个符号,一个时隙中(配置了N个符号的SRS)就包含了N/N1次SRS传输。这样n SRS就是传输了F个时隙所包含的SRS传输次数。
同样,根据N1,N2的参数设定,LTE 36.213中的天线切换的公式就可以沿用,只需要做简单的修改。对于总共2个发送天线的SRS,且每次只能发一个天线端口的情况,新天线的索引公式就可以改成如下方式:
a(n SRS,k)=(a LTE(n SRS)+k)mod 2,其中,k=0,...N1/N2-1;
其中,a LTE(n SRS)的公式就是LTE公式中的a(n SRS)。其中,a(n SRS,k)表示的是在第a(n SRS)传输中的N1个符号中,第k组传输的天线索引。这里强调的是,在一次SRS传输中包含N1个时域符号,将这个N1个时域符号分成G2=N1/N2组,每组传输一个天线端口,所以k=0,..G2-1。如果UE一次可以发送2天线端口,且总共4个天线端口,那么一组传输就对应2个天线端口。比如将4个天线端口分为2组,端口组0包含端口0,1,端口组1包含端口2,3,则k=0时,a(n SRS,k)=0是指第k组传输的天线端口组0,a(n SRS,k)=1是指第k组传输的天线端口组1。
两级的参数配置还可以包括:第一级参数是指SRS的天线切换开关功能A1,即时隙间切换开关。如果A1打开,则天线组切换只在时隙间且时隙内不切换,此时一个时隙内只传输一个天线组的SRS。如果A1关闭,则天线组不在时隙间切换。第二级参数是指SRS在一个时域单元内的天线切换开关功能A2,即时隙内天线端口组切换。如果A2打开,则一个时隙内不同天线端口组可以交替传输。如图8(g)所示,A1,A2都打开两个天线端口组在时隙内切换,且在时隙间切换。如图8(h)所示,只有A1打开,A2不开,那么天线端口组在时隙内不切换。这样可以减少UE复杂度。
两级的参数配置还可以包括:第一级参数是指SRS的跳频开关功能B1,即时隙间跳频。第二级参数是指SRS的时隙内跳频开关功能B2。如果B1、B2都打开,那么SRS在时隙内、时隙间都跳频,如图8(i)所示。而如果B1打开,B2关闭,那么SRS只在时隙间跳频,如图8(j)所示。这样可以减少UE复杂度。
以上的方法中,在一个时隙中,一个天线端口资源内配置N个符号,且不同符号可以传输不同天线。为了更方便的进行天线切换,可以进行如下配置:配置一个SRS资源集合,集合内包含多个SRS资源,每个资源对应的是一个SRS天线端口或者天线端口组,这样也能实现相同的效果,此时一个SRS资源内,不允许天线切换,一个资源内所有天线端口同时发送。比如SRS资源集合中配置了X个资源,资源0就代表天线端口或者天线端口组0,资源1就代表天线端口或者端口组1,资源X-1就代表天线端口或者天线端口组X-1。如果资源就ID,那么这个ID就可以和SRS天线端口组对应。如果每个资源包括X1个天线端口,那么总共的天线端口就是X*X1个天线端口。每个资源对应的X1个天线端口就是一个天线端口组,组内的天线传输在相同的时域符号上。
在这个SRS资源集合中,所有的SRS资源配置的一些参数相同,比如指示SRS传输的波束ID(对应的是一个已经传输过的SRS资源ID),资源中包含的时域符号个数,周期,SRS的传输带宽(类似于LTE中的CSRS)、BSRS、bhop、功率控制等参数。
示例八
本示例中,第一通信节点通过信令指示第二通信节点发送参考信号所使用的资源或参数;或者,第一通信节点与第二通信节点双方预定义第二通信节点发送参考信号所使用的资源或参数。
其中,资源或参数至少包括以下之一:用于指示资源是否重复或相同的参数、天线端口编号或索引。
示例性地,天线端口编号或索引在M个连续的时域符号中保持不变,其中,M为大于0的整数。
示例性地,多个资源在L个连续的时域符号中的配置值或参数值相同, 或者,所述多个资源在L个连续的时域符号中的配置值或参数值不同,其中,L为大于0的整数。
示例性地,多个资源构成一个资源集合或一个资源组,可通过配置资源集合或资源组下的一个参数来指示该资源集合或该资源组中的多个资源是否相同。
例如,第一通信节点向第二通信节点配置资源集合或资源组,该资源集合或资源组中包括一个或多个资源,同时包括一个用于指示资源是否重复或相同的参数,假设为SRS_Resource_Repetition。如果参数SRS_Resource_Repetition的取值为1或状态为开(on)时,则表示此SRS资源集合或资源组中的多个SRS资源相同或重复;如果参数SRS_Resource_Repetition的取值为0或状态为关(off)时,则表示此SRS资源集合或资源组中的SRS资源不相同或不重复。SRS资源集合或资源组中的多个SRS资源相同或重复时,则表示这多个SRS资源的所有参数配置值相同,或者表示这多个SRS资源中用于表示发送波束或天线端口或频域资源的参数值相同,或者表示这多个SRS资源使用相同的发送波束或天线端口或频域资源。
例如,资源集合或资源组中包括2个SRS资源,记为SRS资源1和SRS资源2。当指示为SRS资源相同时,则表示SRS资源1和SRS资源2中的所有参数配置值相同,或者表示SRS资源1和SRS资源2使用相同的发送波束或天线端口或频域资源;当指示为SRS资源不相同时,则表示SRS资源1和SRS资源2中的所有参数配置值不相同,或者表示SRS资源1和SRS资源2使用不相同的发送波束或天线端口或频域资源。
图9为本申请实施例提供的一种信息传输装置的示意图。如图9所示,本实施例提供的信息传输装置,应用于第一通信节点,包括:
第一处理模块901,配置为确定第二通信节点发送参考信号所使用的资源或参数;
第一发送模块902,配置为通过信令向所述第二通信节点指示所述资源或参数。
其中,所述资源或参数至少包括以下一种或多种:频域起始位置、频 域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
关于本实施例提供的装置的相关说明可以参照图1对应的实施例描述,故于此不再赘述。
图10为本申请实施例提供的一种信息传输装置的示意图。如图10所示,本实施例提供的信息传输装置,应用于第二通信节点,包括:
第一接收模块1001,配置为接收第一通信节点发送的信令;
第二处理模块1002,配置为根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
第二发送模块1003,配置为采用所述资源或参数,发送所述参考信号。
其中,所述资源或参数包括以下至少之一:频域起始位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
关于本实施例提供的装置的相关说明可以参照图2对应的实施例描述,故于此不再赘述。
图11为本申请实施例提供的一种信息传输装置的示意图。如图11所示,本实施例提供的信息传输装置,应用于第一通信节点,包括:
第三处理模块1101,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
第二接收模块1102,配置为根据所述第一级参数和第二级参数,接收所述参考信号。
其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
关于本实施例提供的装置的相关说明可以参照图3对应的实施例描述,故于此不再赘述。
图12为本申请实施例提供的一种信息传输装置的示意图。如图12所示,本实施例提供的信息传输装置,应用于第二通信节点,包括:
第四处理模块1201,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
第三发送模块1202,配置为根据所述第一级参数和第二级参数,发送所述参考信号。
其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
关于本实施例提供的装置的相关说明可以参照图4对应的实施例描述,故于此不再赘述。
图13为本申请实施例提供的一种通信节点的示意图。如图13所示,本实施例提供的通信节点1300,比如,基站,包括:第一存储器1301和第一处理器1302;第一存储器1301配置为存储信息传输程序,该信息传输程序被第一处理器1302执行时实现图1所示的信息传输方法的步骤。
本领域技术人员可以理解,图13中示出的通信节点结构并不构成对通信节点1300的限定,通信节点1300可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,第一处理器1302可以包括但不限于微处理器(Microcontroller Unit,简称为MCU)或可编程逻辑器件(Field Programmable Gate Array, 简称为FPGA)等的处理装置。第一存储器1301可配置为存储应用软件的软件程序以及模块,如本实施例中的信息传输方法对应的程序指令或模块,第一处理器1302通过运行存储在第一存储器1301内的软件程序以及模块,从而执行各种功能应用以及数据处理,比如实现本实施例提供的信息传输方法。第一存储器1301可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些示例中,第一存储器1301可包括相对于第一处理器1302远程设置的存储器,这些远程存储器可以通过网络连接至通信节点1300。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
示例性地,上述通信节点1300还可以包括第一通信单元1303;第一通信单元1303可以经由一个网络接收或者发送数据。在一个实例中,第一通信单元1303可以为射频(Radio Frequency,简称为RF)模块,其配置为通过无线方式与互联网进行通信。
图14为本申请实施例提供的一种通信节点的示意图。如图14所示,本实施例提供的通信节点1400,比如,UE,包括:第二存储器1401和第二处理器1402;第二存储器1401配置为存储信息传输程序,该信息传输程序被第二处理器1402执行时实现图2所示的信息传输方法的步骤。
本领域技术人员可以理解,图14中示出的通信节点结构并不构成对通信节点1400的限定,通信节点1400可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
示例性地,上述通信节点1400还可以包括第二通信单元1403;第二通信单元1403可以经由一个网络接收或者发送数据。
关于本实施例的第二存储器、第二处理器以及第二通信单元的说明可以参照第一存储器、第一处理器以及第一通信单元的说明,故于此不再赘述。
本申请实施例还提供一种通信节点,包括:第三存储器和第三处理器;第三存储器配置为存储信息传输程序,该信息传输程序被第三处理器执行时实现图3所示的信息传输方法的步骤。
本申请实施例还提供一种通信节点,包括:第四存储器和第四处理器; 第四存储器配置为存储信息传输程序,该信息传输程序被第四处理器执行时实现图4所示的信息传输方法的步骤。
关于第三存储器、第三处理器、第四存储器以及第四处理器的说明可以参照第一存储器和第一处理器的说明,故于此不再赘述。
此外,本申请实施例还提供一种计算机可读介质,存储有信息传输程序,该信息传输程序被处理器执行时实现上述图1或图2或图3或图4所示的信息传输方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块或单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块或单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在配置为存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以配置为存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (65)

  1. 一种信息传输方法,包括:
    第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,
    通过信令向所述第二通信节点指示所述资源或参数。
  2. 根据权利要求1所述的方法,其中,所述第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,包括:第一通信节点根据与第二通信节点约定的规则,确定所述第二通信节点发送参考信号所使用的资源或参数。
  3. 根据权利要求1所述的方法,其中,所述资源或参数至少包括以下一种或多种:频域起始位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一通信节点确定第二通信节点发送参考信号所使用的资源或参数,包括以下至少之一:
    所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项,确定所述第二通信节点实际使用的带宽配置索引;
    所述第一通信节点根据所述参考信号的带宽配置索引,确定所述参考信号的发送带宽的集合;
    所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项,确定所述参考信号的发送带宽或分段数量。
  5. 根据权利要求4所述的方法,其中,所述第一通信节点根据配置 给所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项,确定所述第二通信节点实际使用的带宽配置索引,包括:
    确定所述第二通信节点实际使用的带宽配置索引包括以下至少之一:
    Figure PCTCN2018101813-appb-100001
    Figure PCTCN2018101813-appb-100002
    Figure PCTCN2018101813-appb-100003
    Figure PCTCN2018101813-appb-100004
    (5)在带宽配置索引对应的参考信号的最大发送带宽小于或等于
    Figure PCTCN2018101813-appb-100005
    Figure PCTCN2018101813-appb-100006
    Figure PCTCN2018101813-appb-100007
    Figure PCTCN2018101813-appb-100008
    的条件下,选择出最大的带宽配置索引,再减去C SRS,作为第二通信节点实际使用的带宽配置索引;
    其中,
    Figure PCTCN2018101813-appb-100009
    为向下取整函数,N BWP为带宽部分的取值,C SRS为带宽配置索引,C SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
  6. 根据权利要求4所述的方法,其中,所述第一通信节点根据参考信号的带宽配置索引,确定所述参考信号的发送带宽的集合,包括:
    所述参考信号带宽配置索引大于或等于17时,或者所述参考信号带宽配置索引小于或等于14时,或者所述参考信号带宽配置索引为0至31或0至63之间的一整数时,确定所述发送带宽的集合至少包括以下之一:
    (1)108、36、12、4;
    (2)112、56、28、4;
    (3)112、56、8、4;
    (4)120、60、20、4;
    (5)120、40、20、4;
    (6)128、64、32、4;
    (7)128、32、16、4;
    (8)128、32、8、4;
    (9)136、68、4、4;
    (10)144、72、24、4;
    (11)144、72、36、4;
    (12)144、72、12、4;
    (13)144、48、24、4;
    (14)144、48、12、4;
    (15)144、48、16、4;
    (16)144、48、8、4;
    (17)160、80、40、4;
    (18)160、80、20、4;
    (19)160、40、20、4;
    (20)160、40、8、4;
    (21)168、84、28、4;
    (22)176、88、44、4;
    (23)180、60、20、4;
    (24)192、96、32、4;
    (25)192、96、48、4;
    (26)192、48、24、4;
    (27)192、48、16、4;
    (28)192、48、12、4;
    (29)200、100、20、4;
    (30)200、40、20、4;
    (31)200、40、8、4;
    (32)208、104、52、4;
    (33)216、108、36、4;
    (34)240、120、60、4;
    (35)240、120、40、4;
    (36)240、120、20、4;
    (37)240、80、40、4;
    (38)240、80、20、4;
    (39)240、80、8、4;
    (40)256、128、64、4;
    (41)256、64、32、4;
    (42)256、64、16、4;
    (43)256、64、8、4;
    (44)272、136、68、4。
  7. 根据权利要求4所述的方法,其中,所述第一通信节点根据配置给所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项,确定所述参考信号的发送带宽或分段数量,包括以下之一:
    方式一、
    Figure PCTCN2018101813-appb-100010
    则发送带宽为:
    m SRS,0=4×k 0
    Figure PCTCN2018101813-appb-100011
    方式二、
    Figure PCTCN2018101813-appb-100012
    则发送带宽为:
    m SRS,0=4×k 0
    Figure PCTCN2018101813-appb-100013
    方式三、
    分段数量为:
    N 0=1;
    Figure PCTCN2018101813-appb-100014
    方式四、
    发送带宽为:
    Figure PCTCN2018101813-appb-100015
    Figure PCTCN2018101813-appb-100016
    方式五、
    发送带宽为:
    Figure PCTCN2018101813-appb-100017
    Figure PCTCN2018101813-appb-100018
    方式六、
    发送带宽为:
    Figure PCTCN2018101813-appb-100019
    Figure PCTCN2018101813-appb-100020
    其中,d i为2 i×3 j×5 l或者d i为1至17之间的某一个或多个整数,包括1和17,i、j、l的取值为非负整数,m SRS,i为所述参考信号的发送带宽,floor()为向下取整函数,
    Figure PCTCN2018101813-appb-100021
    为向下取整函数,i=B SRS,B SRS为所述参考信号的带宽参数,N BWP为带宽部分的取值,B SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
  8. 根据权利要求1所述的方法,其中,所述通过信令向所述第二通 信节点指示所述资源或参数,包括:
    通过所述信令向所述第二通信节点指示所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,其中,所述第一频域起始位置由所述第二通信节点根据与所述第一通信节点约定的规则获取。
  9. 根据权利要求3或8所述的方法,其中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下至少之一:
    Figure PCTCN2018101813-appb-100022
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100023
    Figure PCTCN2018101813-appb-100024
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100025
    Figure PCTCN2018101813-appb-100026
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100027
    其中,
    Figure PCTCN2018101813-appb-100028
    为所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,
    Figure PCTCN2018101813-appb-100029
    为整数,单位为
    Figure PCTCN2018101813-appb-100030
    Figure PCTCN2018101813-appb-100031
    表示带宽部分,m SRS,0是多级带宽结构中最大带宽对应的频域带宽长度信息,
    Figure PCTCN2018101813-appb-100032
    表示所述最大带宽在单位
    Figure PCTCN2018101813-appb-100033
    中的偏移量,p是端口索引,
    Figure PCTCN2018101813-appb-100034
    为一个或多个多级带宽结构中的最大带宽长度信息。
  10. 根据权利要求3所述的方法,其中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下之一:
    Figure PCTCN2018101813-appb-100035
    Figure PCTCN2018101813-appb-100036
    Figure PCTCN2018101813-appb-100037
    Figure PCTCN2018101813-appb-100038
    Figure PCTCN2018101813-appb-100039
    Figure PCTCN2018101813-appb-100040
    Figure PCTCN2018101813-appb-100041
    Figure PCTCN2018101813-appb-100042
    其中,
    Figure PCTCN2018101813-appb-100043
    为偏移单位量,
    Figure PCTCN2018101813-appb-100044
    为整数,单位为
    Figure PCTCN2018101813-appb-100045
    表示带宽部分,m SRS,0是所述参考信号所在的多级带宽结构中最大带宽对应的频域带宽长度信息,
    Figure PCTCN2018101813-appb-100046
    表示所述最大带宽在单位
    Figure PCTCN2018101813-appb-100047
    中的偏移量,p是端口索引,B SRS为所述参考信号在一个时域符号上对应的带宽在多级带宽结构中的等级信息;N b′为第b′-1级的一个带宽包括的第b′级中的带宽的个数,
    Figure PCTCN2018101813-appb-100048
    为一个或多个多级带宽结构中的最大带宽长度信息。
  11. 根据权利要求3、8至10中任一项所述的方法,其中,所述参考信号所在的多级带宽结构中的第b级带宽中的一个带宽包括第b+1级带宽中的一个或者多个带宽,其中,b为非负整数。
  12. 根据权利要求3所述的方法,其中,所述参数或参数的配置范围根据一个时间单元中的时域符号位置信息获取;或者,一个参考信号资源在一个时间单元中的不同时域符号上,所述参数或者所述参数的配置范围不同。
  13. 根据权利要求3所述的方法,其中,所述天线端口编号或索引在M个连续的时域符号中保持不变,其中,M为大于0的整数。
  14. 根据权利要求1所述的方法,其中,在通过信令指示多个资源时,所述多个资源在L个连续的时域符号中的配置值或参数值相同,或者,所述多个资源在L个连续的时域符号中的配置值或参数值不同,其中,L为大于0的整数。
  15. 根据权利要求1所述的方法,其中,在通过信令指示多个资源时,所述多个资源构成一个资源集合或一个资源组,且所述资源集合或资源组下的一个参数配置为指示所述资源集合或所述资源组中的多个资源是否相同或重复。
  16. 根据权利要求3所述的方法,其中,所述用于指示资源是否重复或相同的参数的取值为1或状态为打开时,则表示资源集合或资源组下的多个SRS资源的所有参数配置值相同,或者表示所述多个SRS资源中用于表示发送波束或天线端口或频域资源的参数值相同,或者表示所述多个SRS资源使用相同的发送波束或天线端口或频域资源。
  17. 根据权利要求3所述的方法,其中,通过配置多个所述资源来 实现如下功能至少之一:
    参考信号的天线切换或发送端口切换;
    参考信号在多个时域资源上使用相同的发送方式或频域位置进行发送;
    所述第一通信节点在多个时域资源上使用相同的接收方式接收所述第二通信节点发送的参考信号。
  18. 根据权利要求3所述的方法,其中,所述分段数量N i<=N j,其中,i<j。
  19. 一种信息传输方法,包括:
    第二通信节点接收第一通信节点发送的信令;
    根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
    采用所述资源或参数,发送所述参考信号。
  20. 根据权利要求19所述的方法,其中,所述资源或参数包括以下至少之一:频域起始位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
  21. 根据权利要求19或20所述的方法,其中,所述根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数,包括以下至少之一:
    所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项以及与所述第一通信节点约定的规则,确定所述第二通信节点实际使用的带宽配置索引;
    所述第二通信节点根据所述参考信号的带宽配置索引以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽的集合;
    所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部 分的取值、带宽配置索引以及带宽参数中的至少一项以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽或分段数量。
  22. 根据权利要求21所述的方法,其中,所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值和带宽配置索引中至少一项以及与所述第一通信节点约定的规则,确定第二通信节点实际使用的带宽配置索引,包括:
    确定所述第二通信节点实际使用的带宽配置索引包括以下至少之一:
    Figure PCTCN2018101813-appb-100049
    Figure PCTCN2018101813-appb-100050
    Figure PCTCN2018101813-appb-100051
    Figure PCTCN2018101813-appb-100052
    (5)在带宽配置索引对应的参考信号的最大发送带宽小于或等于
    Figure PCTCN2018101813-appb-100053
    Figure PCTCN2018101813-appb-100054
    Figure PCTCN2018101813-appb-100055
    Figure PCTCN2018101813-appb-100056
    的条件下,选择出最大的带宽配置索引,再减去C SRS,作为第二通信节点实际使用的带宽配置索引;
    其中,
    Figure PCTCN2018101813-appb-100057
    为向下取整函数,N BWP为带宽部分的取值,C SRS为带宽配置索引,C SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
  23. 根据权利要求21所述的方法,其中,所述第二通信节点根据所述参考信号的带宽配置索引以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽的集合,包括:
    所述参考信号带宽配置索引大于或等于17时,或者所述参考信号带宽配置索引小于或等于14时,或者所述参考信号带宽配置索引为0至31或0至63之间的一整数时,指示所述发送带宽的集合至少包括以下之一:
    (1)108、36、12、4;
    (2)112、56、28、4;
    (3)112、56、8、4;
    (4)120、60、20、4;
    (5)120、40、20、4;
    (6)128、64、32、4;
    (7)128、32、16、4;
    (8)128、32、8、4;
    (9)136、68、4、4;
    (10)144、72、24、4;
    (11)144、72、36、4;
    (12)144、72、12、4;
    (13)144、48、24、4;
    (14)144、48、12、4;
    (15)144、48、16、4;
    (16)144、48、8、4;
    (17)160、80、40、4;
    (18)160、80、20、4;
    (19)160、40、20、4;
    (20)160、40、8、4;
    (21)168、84、28、4;
    (22)176、88、44、4;
    (23)180、60、20、4;
    (24)192、96、32、4;
    (25)192、96、48、4;
    (26)192、48、24、4;
    (27)192、48、16、4;
    (28)192、48、12、4;
    (29)200、100、20、4;
    (30)200、40、20、4;
    (31)200、40、8、4;
    (32)208、104、52、4;
    (33)216、108、36、4;
    (34)240、120、60、4;
    (35)240、120、40、4;
    (36)240、120、20、4;
    (37)240、80、40、4;
    (38)240、80、20、4;
    (39)240、80、8、4;
    (40)256、128、64、4;
    (41)256、64、32、4;
    (42)256、64、16、4;
    (43)256、64、8、4;
    (44)272、136、68、4。
  24. 根据权利要求21所述的方法,其中,所述第二通信节点根据所述信令配置的所述第二通信节点的带宽部分的取值、带宽配置索引以及带宽参数中的至少一项以及与所述第一通信节点约定的规则,确定所述参考信号的发送带宽或分段数量,包括以下之一:
    方式一、
    Figure PCTCN2018101813-appb-100058
    则发送带宽为:
    m SRS,0=4×k 0
    Figure PCTCN2018101813-appb-100059
    方式二、
    Figure PCTCN2018101813-appb-100060
    则发送带宽为:
    m SRS,0=4×k 0
    Figure PCTCN2018101813-appb-100061
    方式三、
    分段数量为:
    N 0=1;
    Figure PCTCN2018101813-appb-100062
    方式四、
    发送带宽为:
    Figure PCTCN2018101813-appb-100063
    Figure PCTCN2018101813-appb-100064
    方式六、
    发送带宽为:
    Figure PCTCN2018101813-appb-100065
    Figure PCTCN2018101813-appb-100066
    其中,d i为2 i×3 j×5 l或者d i为1至17之间的某一个或多个整数,包括1和17,i、j、l的取值为非负整数,m SRS,i为所述参考信号的发送带宽,floor()为向下取整函数,
    Figure PCTCN2018101813-appb-100067
    为向下取整函数,i=B SRS,B SRS为所述参考信号的带宽参数,N BWP为带宽部分的取值,B SRS和N BWP由所述第一通信节点通过信令向所述第二通信节点进行配置。
  25. 根据权利要求19所述的方法,其中,所述根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数,包括:
    通过所述信令或者约定规则,获得所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量;其中,所述第一频域起始位置由所述第二通信节点根据与所述第一通信节点约定的规则获取。
  26. 根据权利要求20或25所述的方法,其中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下至少之一:
    Figure PCTCN2018101813-appb-100068
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100069
    Figure PCTCN2018101813-appb-100070
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100071
    Figure PCTCN2018101813-appb-100072
    其中,第一频域起始位置为:
    Figure PCTCN2018101813-appb-100073
    其中,
    Figure PCTCN2018101813-appb-100074
    为所述参考信号所在的多级带宽结构中最大带宽对应的频域起始位置相对第一频域起始位置的偏移单位量,
    Figure PCTCN2018101813-appb-100075
    为整数,单位为
    Figure PCTCN2018101813-appb-100076
    Figure PCTCN2018101813-appb-100077
    表示带宽部分,m SRS,0是多级带宽结构中最大带宽对应的频域带宽长度信息,
    Figure PCTCN2018101813-appb-100078
    表示所述最大带宽在单位
    Figure PCTCN2018101813-appb-100079
    中的偏移量,p是端口索引,
    Figure PCTCN2018101813-appb-100080
    为一个或多个多级带宽结构中的最大带宽长度信息。
  27. 根据权利要求20所述的方法,其中,所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式,包括以下之一:
    Figure PCTCN2018101813-appb-100081
    Figure PCTCN2018101813-appb-100082
    Figure PCTCN2018101813-appb-100083
    Figure PCTCN2018101813-appb-100084
    Figure PCTCN2018101813-appb-100085
    Figure PCTCN2018101813-appb-100086
    Figure PCTCN2018101813-appb-100087
    Figure PCTCN2018101813-appb-100088
    其中,
    Figure PCTCN2018101813-appb-100089
    为偏移单位量,
    Figure PCTCN2018101813-appb-100090
    为整数,单位为
    Figure PCTCN2018101813-appb-100091
    表示带宽部分,m SRS,0是所述参考信号所在的多级带宽结构中最大带宽对应的频域带宽长度信息,
    Figure PCTCN2018101813-appb-100092
    表示所述最大带宽在单位
    Figure PCTCN2018101813-appb-100093
    中的偏移量,p是端口索引,B SRS为所述参考信号在一个时域符号上对应的带宽在多级带宽结构中的等级信息;N b′为第b′-1级的一个带宽包括的第b′级中的带宽的个数,
    Figure PCTCN2018101813-appb-100094
    为一个或多个多级带宽结构中的最大带宽长度信息。
  28. 根据权利要求20、25至27中任一项所述的方法,其中,所述参考信号所在的多级带宽结构中的第b级带宽中的一个带宽包括第b+1级带宽中的一个或者多个带宽,其中,b为非负整数。
  29. 根据权利要求20所述的方法,其中,所述参数或参数的配置范围根据一个时间单元中的时域符号位置信息获取;或者,一个参考信号资源在一个时间单元中的不同时域符号上,所述参数或者所述参数的配置范围不同。
  30. 根据权利要求20所述的方法,其中,所述天线端口编号或索引在M个连续的时域符号中保持不变,其中,M为大于0的整数。
  31. 根据权利要求19所述的方法,其中,所述发送参考信号的资源包括多个时,所述多个资源在L个连续的时域符号中的配置值或参数值相同,或者,所述多个资源在L个连续的时域符号中的配置值或参数值不同,其中,L为大于0的整数。
  32. 根据权利要求19所述的方法,其中,所述发送参考信号的资源包括多个时,所述多个资源构成一个资源集合或一个资源组,且所述资源集合或资源组下的一个参数配置为指示所述资源集合或所述资源组中的多个资源是否相同或重复。
  33. 根据权利要求20所述的方法,其中,所述配置为指示资源是否重复或相同的参数的取值为1或状态为打开时,则表示资源集合或资源 组下的多个SRS资源的所有参数配置值相同,或者表示所述多个SRS资源中用于表示发送波束或天线端口或频域资源的参数值相同,或者表示所述多个SRS资源使用相同的发送波束或天线端口或频域资源。
  34. 根据权利要求20所述的方法,其中,所述第二通信节点通过接收第一通信节点配置的多个所述资源来实现如下功能至少之一:
    参考信号的天线切换或发送端口切换;
    参考信号在多个时域资源上使用相同的发送方式或频域位置进行发送;
    所述第一通信节点在多个时域资源上使用相同的接收方式接收所述第二通信节点发送的参考信号。
  35. 根据权利要求20所述的方法,其中,所述分段数量N i<=N j,其中,i<j。
  36. 一种信息传输方法,包括:
    第一通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
    所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号。
  37. 根据权利要求36所述的方法,其中,所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号,包括:
    针对所述参考信号,先在一个频域单元进行重复接收N1个时域符号,然后跳频到另外一个频域单元重复接收N1个时域符号。
  38. 根据权利要求36所述的方法,其中,所述第一通信节点根据所述第一级参数和第二级参数,接收所述参考信号,包括:
    当有多个端口组时,先用一个端口组进行重复接收N2个时域符号, 然后用另外一个端口组重复接收N2个时域符号。
  39. 根据权利要求36至38中任一项所述的方法,其中,N2小于N1。
  40. 根据权利要求39所述的方法,其中,在一个频域单元的N1个时域符号上,不同天线端口组时分复用,且每个天线端口组连续接收N2个时域符号。
  41. 根据权利要求36所述的方法,其中,所述方法还包括:
    所述第一通信节点通过信令向第二通信节点指示所述参考信号资源的第一级参数和第二级参数。
  42. 根据权利要求36所述的方法,其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
  43. 一种信息传输方法,包括:
    第二通信节点确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
    所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号。
  44. 根据权利要求43所述的方法,其中,所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号,包括:
    针对所述参考信号,先在一个频域单元进行重复发送N1个时域符号,然后跳频到另外一个频域单元重复发送N1个时域符号。
  45. 根据权利要求43所述的方法,其中,所述第二通信节点根据所述第一级参数和第二级参数,发送所述参考信号,包括:
    当有多个端口组时,先用一个端口组进行重复发送N2个时域符号,然后用另外一个端口组重复发送N2个时域符号。
  46. 根据权利要求43至45中任一项所述的方法,其中,N2小于N1。
  47. 根据权利要求46所述的方法,其中,在一个频域单元的N1个时域符号上,不同天线端口组时分复用,且每个天线端口组连续发送N2个时域符号。
  48. 根据权利要求43所述的方法,其中,所述方法还包括:
    所述第二通信节点接收第一通信节点用于指示所述参考信号资源的第一级参数和第二级参数的信令。
  49. 根据权利要求43所述的方法,其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
  50. 一种信息传输装置,应用于第一通信节点,包括:
    第一处理模块,配置为确定第二通信节点发送参考信号所使用的资源或参数;
    第一发送模块,配置为通过信令向所述第二通信节点指示所述资源或参数。
  51. 根据权利要求50所述的装置,其中,所述资源或参数至少包括以下一种或多种:频域起始位置、频域结束位置、发送带宽、分段数量、带宽配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
  52. 一种信息传输装置,应用于第二通信节点,包括:
    第一接收模块,配置为接收第一通信节点发送的信令;
    第二处理模块,配置为根据所述信令,或者,所述信令以及与所述第一通信节点约定的规则,确定发送参考信号所使用的资源或参数;
    第二发送模块,配置为采用所述资源或参数,发送所述参考信号。
  53. 根据权利要求52所述的装置,其中,所述资源或参数包括以下至少之一:频域起始位置、频域结束位置、发送带宽、分段数量、带宽 配置索引、带宽参数、用于指示资源是否重复或相同的参数、天线端口编号或索引、所述参考信号在多级带宽结构中的最大带宽的频域起始位置的计算方式、获取所述参考信号在多级带宽结构中的最大带宽的频域起始位置的相关参数、所述参考信号所在的多级带宽结构信息。
  54. 一种信息传输装置,应用于第一通信节点,包括;
    第三处理模块,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
    第二接收模块,配置为根据所述第一级参数和第二级参数,接收所述参考信号。
  55. 根据权利要求54所述的装置,其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
  56. 一种信息传输装置,应用于第二通信节点,包括;
    第四处理模块,配置为确定一个参考信号资源的第一级参数和第二级参数;其中,所述第一级参数包括以下至少之一:参考信号在相同频域单元内连续发送的时域符号个数N1、参考信号的天线切换开关功能A1、跳频开关功能B1;第二级参数包括以下至少之一:参考信号的一个天线端口组连续发送的时域符号个数N2、参考信号在一个时域单元内的天线切换开关功能A2、参考信号在一个时域单元内的跳频开关功能B2;
    第三发送模块,配置为根据所述第一级参数和第二级参数,发送所述参考信号。
  57. 根据权利要求56所述的装置,其中,所述参考信号资源中配置的时域符号个数为N,N1小于或等于N,N2小于或等于N。
  58. 一种通信节点,包括:第一存储器以及第一处理器,所述第一存储器配置为存储信息传输程序,所述信息传输程序被所述第一处理器 执行时实现如权利要求1至18中任一项所述的信息传输方法的步骤。
  59. 一种通信节点,包括:第二存储器以及第二处理器,所述第二存储器配置为存储信息传输程序,所述信息传输程序被所述第二处理器执行时实现如权利要求19至35中任一项所述的信息传输方法的步骤。
  60. 一种通信节点,包括:第三存储器以及第三处理器,所述第三存储器配置为存储信息传输程序,所述信息传输程序被所述第三处理器执行时实现如权利要求36至42中任一项所述的信息传输方法的步骤。
  61. 一种通信节点,包括:第四存储器以及第四处理器,所述第四存储器配置为存储信息传输程序,所述信息传输程序被所述第四处理器执行时实现如权利要求43至49中任一项所述的信息传输方法的步骤。
  62. 一种计算机可读介质,存储有信息传输程序,所述信息传输程序被处理器执行时实现如权利要求1至18中任一项所述的信息传输方法的步骤。
  63. 一种计算机可读介质,存储有信息传输程序,所述信息传输程序被处理器执行时实现如权利要求19至35中任一项所述的信息传输方法的步骤。
  64. 一种计算机可读介质,存储有信息传输程序,所述信息传输程序被处理器执行时实现如权利要求36至42中任一项所述的信息传输方法的步骤。
  65. 一种计算机可读介质,存储有信息传输程序,所述信息传输程序被处理器执行时实现如权利要求43至49中任一项所述的信息传输方法的步骤。
PCT/CN2018/101813 2017-09-30 2018-08-22 一种信息传输方法及装置 WO2019062399A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP18861119.8A EP3691164A4 (en) 2017-09-30 2018-08-22 INFORMATION TRANSFER METHOD AND DEVICE
JP2019572114A JP6971334B2 (ja) 2017-09-30 2018-08-22 情報伝送方法及び装置
AU2018342485A AU2018342485B2 (en) 2017-09-30 2018-08-22 Information transmission method and apparatus
KR1020197038828A KR102301559B1 (ko) 2017-09-30 2018-08-22 정보 송신 방법 및 장치
CA3067089A CA3067089C (en) 2017-09-30 2018-08-22 Information transmission method and apparatus
BR112019025982-1A BR112019025982A2 (pt) 2017-09-30 2018-08-22 método e a aparelho de transmissão de informações
RU2019143715A RU2726150C1 (ru) 2017-09-30 2018-08-22 Способ и оборудование передачи информации
US16/407,167 US10567201B2 (en) 2017-09-30 2019-05-08 Information transmission method and apparatus
US16/793,935 US11671141B2 (en) 2017-09-30 2020-02-18 Information transmission method and apparatus
US18/317,001 US20240014849A1 (en) 2017-09-30 2023-05-12 Information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710939835.7 2017-09-30
CN201710939835.7A CN108111282B (zh) 2017-09-30 2017-09-30 一种无线通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/407,167 Continuation US10567201B2 (en) 2017-09-30 2019-05-08 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019062399A1 true WO2019062399A1 (zh) 2019-04-04

Family

ID=62206769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101813 WO2019062399A1 (zh) 2017-09-30 2018-08-22 一种信息传输方法及装置

Country Status (10)

Country Link
US (3) US10567201B2 (zh)
EP (1) EP3691164A4 (zh)
JP (1) JP6971334B2 (zh)
KR (1) KR102301559B1 (zh)
CN (2) CN108111282B (zh)
AU (1) AU2018342485B2 (zh)
BR (1) BR112019025982A2 (zh)
CA (1) CA3067089C (zh)
RU (1) RU2726150C1 (zh)
WO (1) WO2019062399A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3039934C (en) * 2016-11-04 2021-06-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, terminal, and network device
US11652522B2 (en) * 2017-08-11 2023-05-16 Qualcomm Incorporated Methods and apparatus for SRS antenna switching in carrier aggregation
CN108111280B (zh) * 2017-09-11 2023-07-14 中兴通讯股份有限公司 参考信号配置、信息的发送、信息的接收方法及装置
CN108111282B (zh) 2017-09-30 2020-11-24 中兴通讯股份有限公司 一种无线通信方法及装置
WO2019074266A1 (ko) * 2017-10-10 2019-04-18 엘지전자 주식회사 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
CN109802792B (zh) 2017-11-17 2021-09-21 华为技术有限公司 接收参考信号的方法和发送参考信号的方法
CN110475352B (zh) * 2018-05-11 2022-06-28 华为技术有限公司 一种参考信号传输方法及通信设备
CN116722959A (zh) * 2018-07-19 2023-09-08 中兴通讯股份有限公司 信号的传输方法、装置、设备及计算机存储介质
CN110838903B (zh) * 2018-08-17 2022-01-04 大唐移动通信设备有限公司 一种上行传输指示的方法、终端、基站及计算机存储介质
CN111147211B (zh) * 2018-11-02 2022-04-05 华为技术有限公司 一种信息传输方法、装置和设备
KR20210096271A (ko) * 2018-12-07 2021-08-04 후아웨이 테크놀러지 컴퍼니 리미티드 Srs 전송 방법, srs 수신 방법 및 기기
CN111294101B (zh) * 2018-12-10 2022-02-25 华为技术有限公司 Csi测量方法及装置
CN111130741B (zh) 2019-02-15 2022-05-17 华为技术有限公司 通信方法和设备
CN111726207A (zh) * 2019-03-18 2020-09-29 成都华为技术有限公司 干扰随机化的方法和装置
CN111865543B (zh) * 2019-04-30 2022-11-25 华为技术有限公司 一种信号传输方法及装置
CN111835488B (zh) * 2019-08-15 2022-12-23 维沃移动通信有限公司 一种确定天线端口映射方法和终端
US11438196B2 (en) * 2019-08-26 2022-09-06 Qualcomm Incorporated Configuration constraints for sounding reference signals (SRS) for positioning
CN112449429B (zh) * 2019-09-05 2023-11-21 成都华为技术有限公司 信号传输方法及通信装置
CN110545168A (zh) * 2019-09-12 2019-12-06 中兴通讯股份有限公司 上行传输方法和装置
CN111092711A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 参考信号的位置确定方法、装置、通信节点和存储介质
CN111092708A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质
CN113162874B (zh) * 2020-01-22 2023-06-27 维沃移动通信有限公司 一种参考信号发送方法、设备及系统
US20230030823A1 (en) * 2020-02-13 2023-02-02 Qualcomm Incorporated Enhanced sounding reference signal resource configurations
CN111314039B (zh) * 2020-02-14 2022-09-13 展讯通信(上海)有限公司 部分带宽探测时的带宽指示方法、系统、设备及介质
CN111278070B (zh) * 2020-02-21 2021-09-17 展讯通信(上海)有限公司 邻区的测量方法、系统、电子设备和存储介质
CN111865545A (zh) * 2020-04-14 2020-10-30 中兴通讯股份有限公司 Srs的传输方法、装置、系统、存储介质及电子装置
WO2021178985A2 (en) * 2020-08-05 2021-09-10 Futurewei Technologies, Inc. Methods and apparatus for communicating sounding reference signals
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
CN114765489A (zh) * 2020-12-31 2022-07-19 维沃移动通信有限公司 定位信号的测量方法、发送方法、网络侧设备和终端
WO2022151433A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种传输信号的方法及装置
CN115474275A (zh) * 2021-06-10 2022-12-13 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
CN115941145A (zh) * 2021-12-14 2023-04-07 中兴通讯股份有限公司 参考信号传输、接收方法、通信节点及存储介质
CN115191138A (zh) * 2022-06-10 2022-10-14 北京小米移动软件有限公司 一种传输时域资源配置信息的方法、装置及可读存储介质
CN115529110A (zh) * 2022-09-30 2022-12-27 潍柴动力股份有限公司 数据处理方法及装置
WO2024103352A1 (zh) * 2022-11-17 2024-05-23 华为技术有限公司 一种通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102986275A (zh) * 2010-11-03 2013-03-20 联发科技股份有限公司 载波聚合环境下的探测机制和设定
US20130156014A1 (en) * 2010-05-12 2013-06-20 Lg Electronics Inc. Method for transmitting an srs-triggering-based srs in a wireless communication system
CN106411375A (zh) * 2015-07-31 2017-02-15 中兴通讯股份有限公司 Srs的指示发送方法、srs的发送方法和装置
CN108111282A (zh) * 2017-09-30 2018-06-01 中兴通讯股份有限公司 一种信息传输方法及装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2294771T3 (da) * 2008-03-20 2013-10-07 Nokia Siemens Networks Oy Frekvensspringsmønster og anordning til sounding-referencesignal
RU2010148434A (ru) * 2008-04-29 2012-06-10 Квэлкомм Инкорпорейтед (US) Назначение ресурса аск в системе беспроводной связи
US8531962B2 (en) 2008-04-29 2013-09-10 Qualcomm Incorporated Assignment of ACK resource in a wireless communication system
CN103051437B (zh) * 2008-08-01 2015-08-12 中兴通讯股份有限公司 一种时分双工系统上行信道测量参考信号的发送方法
KR101639810B1 (ko) * 2009-01-13 2016-07-25 엘지전자 주식회사 무선통신 시스템에서 사운딩 참조신호의 전송방법
CN102362441B (zh) * 2009-03-22 2016-12-21 Lg电子株式会社 使用多个天线的信道探测方法以及用于其的装置
KR101294815B1 (ko) * 2009-05-15 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
US8837394B2 (en) * 2010-06-18 2014-09-16 Mediatek Inc. Sounding mechanism under carrier aggregation
CN102595436B (zh) * 2011-01-13 2015-05-27 华为技术有限公司 一种干扰检测方法、装置和系统
US8797988B2 (en) * 2012-03-02 2014-08-05 Nokia Siemens Networks Oy Resource allocation methods and use thereof for sounding reference signals in uplink
CN103906120A (zh) * 2012-12-27 2014-07-02 上海贝尔股份有限公司 多点协作测量集的配置方法与装置
KR20150100832A (ko) * 2013-01-21 2015-09-02 후지쯔 가부시끼가이샤 채널 상태 정보 기준 신호의 전송 방법, 기지국, 단말기, 시스템, 기계 판독가능 프로그램 및 기계 판독가능 프로그램을 저장하는 기억 매체
KR101805744B1 (ko) * 2013-06-26 2017-12-07 후아웨이 테크놀러지 컴퍼니 리미티드 참조 신호를 전송하는 방법 및 장치
CN104518845B (zh) * 2013-09-27 2020-08-04 中兴通讯股份有限公司 一种时分双工系统中测量参考信号功率控制参数配置方法和系统
US10555309B2 (en) * 2014-07-17 2020-02-04 Lg Electronics Inc. Method and device for transmitting downlink signal in wireless communication system
JP2017208582A (ja) * 2014-09-26 2017-11-24 シャープ株式会社 端末装置、基地局装置、および通信方法
WO2016186044A1 (ja) * 2015-05-15 2016-11-24 シャープ株式会社 端末装置、基地局装置および方法
US10798728B2 (en) * 2015-09-21 2020-10-06 Lg Electronics Inc. Method for transceiving data in unlicensed band and apparatus for same
CN107925534A (zh) * 2015-11-06 2018-04-17 华为技术有限公司 一种参考信号的传输方法、用户设备、基站及系统
KR20170078530A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비면허 대역의 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 장치, 그리고 사운딩 참조 신호의 전송을 트리거하는 방법 및 장치
WO2017132969A1 (zh) * 2016-02-04 2017-08-10 华为技术有限公司 传输参考信号的方法和装置
KR20230152821A (ko) * 2016-03-30 2023-11-03 주식회사 윌러스표준기술연구소 비인가 대역에서 채널 엑세스 방법, 장치 및 시스템
US9820281B1 (en) * 2016-05-13 2017-11-14 Telefonaktiebolaget L M Ericsson (Publ) Multi-subcarrier system with multiple numerologies
KR102174831B1 (ko) * 2017-01-08 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
CN108632005B (zh) * 2017-03-24 2023-12-15 华为技术有限公司 一种参考信号传输方法、装置及系统
WO2019013512A1 (ko) * 2017-07-12 2019-01-17 엘지전자 주식회사 Nrs를 수신하는 방법 및 nb-iot 기기
WO2019028836A1 (en) * 2017-08-11 2019-02-14 Nokia Technologies Oy IMPROVED SURVEY REFERENCE SIGNAL TRANSMISSION
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US10820338B2 (en) * 2017-09-08 2020-10-27 Sharp Kabushiki Kaisha User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130156014A1 (en) * 2010-05-12 2013-06-20 Lg Electronics Inc. Method for transmitting an srs-triggering-based srs in a wireless communication system
CN102986275A (zh) * 2010-11-03 2013-03-20 联发科技股份有限公司 载波聚合环境下的探测机制和设定
CN106411375A (zh) * 2015-07-31 2017-02-15 中兴通讯股份有限公司 Srs的指示发送方法、srs的发送方法和装置
CN108111282A (zh) * 2017-09-30 2018-06-01 中兴通讯股份有限公司 一种信息传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Coexistence of Different UE Types on a Wideband Carrier", 3GPP TSG RAN WGI MEETING #90 R1-1713733, 25 August 2017 (2017-08-25), pages 1 - 6, XP051316532 *
See also references of EP3691164A4 *

Also Published As

Publication number Publication date
EP3691164A1 (en) 2020-08-05
CA3067089A1 (en) 2019-04-04
RU2726150C1 (ru) 2020-07-09
US20240014849A1 (en) 2024-01-11
AU2018342485B2 (en) 2021-08-05
EP3691164A4 (en) 2020-12-02
US11671141B2 (en) 2023-06-06
CN108111282A (zh) 2018-06-01
JP6971334B2 (ja) 2021-11-24
KR102301559B1 (ko) 2021-09-13
US10567201B2 (en) 2020-02-18
JP2020526960A (ja) 2020-08-31
BR112019025982A2 (pt) 2020-07-07
AU2018342485A1 (en) 2020-01-02
CN108111282B (zh) 2020-11-24
CN113225170A (zh) 2021-08-06
CA3067089C (en) 2022-10-25
US20200186393A1 (en) 2020-06-11
KR20200012965A (ko) 2020-02-05
US20190268185A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019062399A1 (zh) 一种信息传输方法及装置
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
US11916820B2 (en) Reference signal configuration, information transmission, and information receiving methods and device
WO2021208779A1 (zh) Srs的传输方法、装置、系统、存储介质及电子装置
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
CN110495232A (zh) 用于无线通信系统的资源配置的方法和系统
CN108260219B (zh) 一种参考信号的接收和发送方法、设备及计算机可读存储介质
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
KR20130122572A (ko) 단말 대 단말 통신을 위한 송수신 방법
WO2012019412A1 (zh) 一种测量参考信号的配置方法及系统
WO2022022502A1 (en) Wireless communication method and user equipment for performing repetition-based uplink transmissions
WO2019095785A1 (zh) 通信方法、系统及存储介质和处理器
CN110622459A (zh) 信道状态信息参考信号(csi-rs)的方法和设备
US11469871B2 (en) Signaling of SRS resources for PUSCH rate matching
WO2020030158A1 (zh) 上行信号的资源确定方法、设备和计算机可读存储介质
KR102504455B1 (ko) 무선 셀룰라 통신 시스템에서 비주기적 srs 전송 타이밍 결정 방법 및 장치
CN108112081B (zh) 通信方法及系统
CN108631835B (zh) 一种传输方式的信令指示方法及装置
WO2018228339A1 (zh) 参考信号的信令指示、参考信号的发送方法及装置
CN117121414A (zh) 用于传输参考信号的方法和装置
WO2017041729A1 (zh) 传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3067089

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025982

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019572114

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038828

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018342485

Country of ref document: AU

Date of ref document: 20180822

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861119

Country of ref document: EP

Effective date: 20200430

ENP Entry into the national phase

Ref document number: 112019025982

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191209