WO2019062339A1 - 一种csi-rs的传输方法及装置 - Google Patents

一种csi-rs的传输方法及装置 Download PDF

Info

Publication number
WO2019062339A1
WO2019062339A1 PCT/CN2018/099265 CN2018099265W WO2019062339A1 WO 2019062339 A1 WO2019062339 A1 WO 2019062339A1 CN 2018099265 W CN2018099265 W CN 2018099265W WO 2019062339 A1 WO2019062339 A1 WO 2019062339A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
csi
pilot
ports
port csi
Prior art date
Application number
PCT/CN2018/099265
Other languages
English (en)
French (fr)
Inventor
李辉
高秋彬
拉盖施
陈润华
苏昕
黄秋萍
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2019062339A1 publication Critical patent/WO2019062339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a CSI-RS transmission method and apparatus.
  • CSI-RS Channel State Information Reference Signal
  • Figure 1 Four basic member CSI-RS RE patterns, four basic member CSI-RS RE patterns in a PRB are shown in Figure 1:
  • a 1-port member CSI-RS RE pattern consists of one resource element (Resource Element, RE);
  • a 2-port member CSI-RS RE pattern consists of two REs adjacent to each other in the frequency domain on one OFDM symbol;
  • the 4-port member CSI-RS RE pattern consists of two patterns, one is composed of four REs adjacent to each other in the frequency domain of one OFDM symbol (pattern a), and the other is composed of two time-domain adjacent OFDM symbols. Four REs adjacent to each other are formed (pattern b).
  • the pattern for the higher port CSI-RS is obtained by the four basic member CSI-RS RE pattern aggregations, as shown in Table 1:
  • X indicates the number of ports
  • N indicates the number of OFDM symbols occupied by the X port CSI-RS
  • (Y, Z) indicates that one member CSI-RS RE pattern occupies Y REs in the frequency domain and occupies in the time domain.
  • Z REs indicates the pilot multiplexing mode of the resource block RE
  • FD-CDM2 indicates that the two REs in the frequency domain are code division multiplexed.
  • the corresponding time-frequency resource is occupied and mapped to the corresponding antenna port for transmission.
  • the time-frequency resources will be occupied, resulting in excessive overhead of pilot resources and waste of resources.
  • the port density is 1RE/PRB/Port
  • the present application provides a CSI-RS transmission method and apparatus, which are used to solve the technical problem of large overhead of pilot resources when the number of CSI-RS resources configured in the prior art is large.
  • the application provides a CSI-RS transmission method, including:
  • the network side device determines a pilot configuration of the X port channel state information reference signal CSI-RS; X is a positive integer;
  • Ports of the X port CSI-RS are numbered according to the pilot configuration of the X port CSI-RS, and the CSI-RS of each port in the X port CSI-RS is mapped to the antenna port having the same number for transmission. ;
  • the ports of all the code division multiplexing CDM groups included in the X port CSI-RS are sequentially numbered in the order of the pre-frequency domain and the time domain, and the numbers of the ports in the same CDM group have continuity.
  • the pilot configuration of the X-port CSI-RS includes a configuration of a pilot multiplexing manner, where the pilot multiplexing manner includes 2-port frequency domain code division multiplexing (FD- CDM2), 4-port code division multiplexing CDM4 or 8-port code division multiplexing (CDM8).
  • FD- CDM2 2-port frequency domain code division multiplexing
  • CDM4 4-port code division multiplexing
  • CDM8 8-port code division multiplexing
  • the X port CSI-RS when the pilot multiplexing mode is configured as FD-CDM2, and the X port CSI-RS occupies 4 OFDM symbols, the X port CSI-RS includes
  • the port time domain number of all CDM groups includes:
  • the third OFDM symbol, and the last OFDM symbol of the second OFDM symbol are numbered sequentially.
  • the ports of the X port CSI-RS are numbered according to the pilot configuration of the X port CSI-RS, including:
  • the p (i) is the number of each port in the i-th CDM group in the entire CDM group, and N is the number of OFDM symbols occupied by the X-port CSI-RS. Indicates the number of ports in a CDM group.
  • p 0 is the starting number of the port
  • mod(x, y) means that x is modulo y
  • the method further includes:
  • the X value is one of 1, 2, 4, 8, 12, 16, 24, 32; the N value is one of 1, 2, 4.
  • a network side device including:
  • a determining unit configured to determine a pilot configuration of an X port channel state information reference signal (CSI-RS);
  • CSI-RS channel state information reference signal
  • a transmitting unit configured to number, according to a pilot configuration of the X port CSI-RS, a port of an X port CSI-RS, and map a CSI-RS of each port in the X port CSI-RS to a same number
  • the transmission is performed on the antenna port; wherein the ports of all the code division multiplexing (CDM) groups included in the X port CSI-RS are sequentially numbered in the order of the pre-frequency domain and the time domain, and the number of the port in the same CDM group has Continuity.
  • CDM code division multiplexing
  • the pilot configuration of the X-port CSI-RS includes a configuration of a pilot multiplexing manner, where the pilot multiplexing manner includes a 2-port frequency domain code division multiplexing FD-CDM2. 4-port code division multiplexing CDM4 or 8-port code division multiplexing CDM8.
  • the transmitting unit is used to follow the first
  • the OFDM symbol, the third OFDM symbol, and the order of the last fourth OFDM symbol of the second OFDM symbol are time-domain numbered for the ports of all CDM groups included in the X-port CSI-RS.
  • the transmission unit is further configured to use a formula. Determining the number of each port in the i-th CDM group in the entire CDM group; wherein, p (i) is a number of each port in the i-th CDM group in the all CDM groups, and N is the number The number of OFDM symbols occupied by the X port CSI-RS, Indicates the number of ports in a CDM group.
  • p 0 is the starting number of the port
  • mod(x, y) means that x is modulo y
  • the X port CSI-RS is a 1-port CSI-RS, a 2-port CSI-RS, a 4-port CSI-RS, an 8-port CSI-RS, a 12-port CSI-RS, and a 16-port.
  • CSI-RS any of the 24-port CSI-RS, 32-port CSI-RS; the X-port CSI-RS occupies 1, 2 or 4 OFDM symbols.
  • a computer apparatus comprising a processor, the processor being configured to implement the method of any one of the alternative aspects of the first aspect when the computer program is stored in a memory.
  • a computer readable storage medium is stored, the computer readable storage medium storing computer instructions that, when executed on a computer, cause the computer to perform an optional implementation as in any of the first aspects The method described.
  • the ports are sequentially numbered according to the order of the time domain in the first frequency domain, and the numbers of the ports in the same CDM group are adjacent; and the port to the antenna port is performed by using the mapping rule described in the formula.
  • the mapping can achieve the purpose of port sharing between CSI-RS resources of different port numbers, that is, the CSI-RS resources of the low port number can use a part of the time-frequency resources occupied by the high-port number CSI-RS resources, thereby being effective.
  • the overhead of saving pilot resources can be used.
  • 1 is a four basic member CSI-RS RE pattern in a PRB in the prior art
  • FIG. 2 is a schematic flowchart of a method for transmitting a CSI-RS according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of numbering of a 32-port CSI-RS including 16 CDM groups implemented by the method provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram showing the numbering of antenna ports of an (8, 2) antenna configuration determined according to the definition of a codebook in the prior art
  • 5 is a schematic diagram showing the numbering of antenna ports of a (6, 2) antenna configuration determined according to the definition of a codebook in the prior art
  • FIG. 6 is a schematic diagram of numbering of a 24-port CSI-RS including 12 CDM groups implemented by the method provided by the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • the embodiment of the present application provides a CSI-RS transmission method, where a network side device determines a pilot configuration of an X port CSI-RS; X is a positive integer; according to the X port CSI - the pilot configuration of the RS numbers the ports of the X port CSI-RS, and maps the CSI-RSs of the ports in the X port CSI-RS to the antenna ports having the same number for transmission; wherein the X Ports of all CDM groups included in the port CSI-RS are numbered sequentially in the order of the pre-frequency domain and the time domain. The number of the ports in the same CDM group is continuous.
  • the ports are sequentially numbered according to the order of the time domain of the pre-frequency domain, and the numbers of the ports in the same CDM group are adjacent; therefore, the mapping of the port to the antenna port can reach different numbers of ports.
  • the purpose of sharing can effectively save the overhead of pilot resources.
  • the embodiment of the present application provides a method for transmitting a CSI-RS, and the method may specifically include the following steps:
  • Step 101 The network side device determines a pilot configuration of the X port CSI-RS; X is a positive integer.
  • the X port CSI-RS includes X/2 CDM groups, the number of ports in a CDM group One port corresponds to one RE, and two ports in each CDM group correspond to two REs adjacent to a frequency domain located on the same OFDM symbol.
  • Step 102 The ports of the X port CSI-RS are numbered according to the pilot configuration of the X port CSI-RS, and the CSI-RSs of the ports in the X port CSI-RS are mapped to the antenna ports having the same number. Transfer on.
  • the ports of all the CDM groups included in the X-port CSI-RS are sequentially numbered in the order of the pre-frequency domain and the time domain, and the numbers of the ports in the same CDM group are continuous.
  • all CDM groups are sequentially numbered in the order of the pre-frequency domain and the time domain, that is, all the ports included in the X port CSI-RS are numbered.
  • the pilot configuration of the X port CSI-RS includes a pilot multiplexing mode, and the pilot multiplexing mode includes a 2-port frequency domain code division multiplexing FD-CDM2. 4-port code division multiplexing CDM4 or 8-port code division multiplexing CDM8.
  • the configuration of the pilot multiplexing mode in the pilot configuration of the X port CSI-RS is FD-CDM2, and the X port CSI-RS occupies 4 OFDM symbols (determined in chronological order 4
  • the OFDM symbols are: the first OFDM symbol, the second OFDM symbol, the third OFDM symbol, and the fourth OFDM symbol
  • the time domain number may be: numbered according to the first OFDM symbol, the third OFDM symbol, and the last OFDM symbol of the second OFDM symbol.
  • the X value of the X port CSI-RS of the embodiment of the present application may be any one of 1, 2, 4, 8, 12, 16, 24, 32; and the X port
  • the number of OFDM symbols occupied by the CSI-RS may be 1, 2 or 4.
  • the pilot configuration of the X-port CSI-RS specifically numbers the ports of the X-port CSI-RS.
  • the implementation can be:
  • the number order of the number of different OFDM symbols in the time domain number may be:
  • the time domain number sequence of the X port CSI-RS is: first OFDM symbol, then second OFDM symbol; when X port CSI-RS occupies 4 OFDM symbols
  • the time domain number sequence of the X port CSI-RS is, in order, the first OFDM symbol, the third OFDM symbol, the second OFDM symbol, and the fourth OFDM symbol.
  • the OFDM symbols are sequentially numbered in the order of the time domain after the frequency domain, and the numbers of the ports in the same CDM group are adjacent; further, the port number is determined by using the mapping rule described in the formula. Therefore, after the CSI-RS resource is mapped to the CSI-RS resource with a high port number, the CSI-RS resource with a low port number can be regarded as a part of the CSI-RS resource with a high port number, and the CSI of the high port number is directly used. - A part of the time-frequency resources occupied by the RS resources, so that port sharing can be implemented, thereby achieving the technical effect of effectively saving the pilot resource overhead.
  • mapping relationship between the port and the antenna port in the embodiment provided by the present application is further described in detail below with reference to the accompanying drawings.
  • the specific implementation manner may be:
  • Example 1 For example, if the X port CSI-RS is a 32-port CSI-RS, the correspondence between each port and the antenna port number in the 32-port CSI-RS may be:
  • the pilot multiplexing mode of the 32-port CSI-RS is FD-CDM2 (one FR-CDM2 group contains two REs in the frequency domain adjacent to the same OFDM symbol)
  • the 32-port CSI-RS includes 16 CDM group (as shown in Figure 3). Two ports in each CDM group share two REs in multiplex mode of FD-CDM2.
  • the CDM port 0 in the 32-port CSI-RS uses the code (1, 1) code to occupy two REs in the CDM group, and the port 1 uses the code (1, -1) for encoding. Two REs within the CDM group.
  • N1, N2) (8, 2)
  • N1 represents the number of antenna ports of the first dimension
  • N2 represents the number of antenna ports of the second dimension.
  • 16 CDM groups are sequentially numbered according to the order of the pre-frequency domain and the time domain, as shown in FIG. 3 .
  • the port number of each CDM group can be obtained according to the formula in the embodiment of the present application, as shown in FIG.
  • the four CDM groups on the symbol are numbered sequentially in the frequency domain, numbered ⁇ 8, 9 ⁇ , ⁇ 10, 11 ⁇ , ⁇ 12, 13 ⁇ , ⁇ 14, 15 ⁇ .
  • the four CDM groups on the second OFDM symbol are sequentially numbered in the frequency domain
  • the four CDM groups on the fourth OFDM symbol are sequentially numbered in the frequency domain.
  • the numbered ports are mapped to the antenna ports of the same number in Figure 4 for transmission.
  • the 16-port CSI-RS when the FD-CDM2 is obtained by the CDM group 0 to the CDM group 7 can be transmitted by using 16 antenna ports in the rectangular box in FIG. Port CSI-RS sharing; 8-port CSI-RS when FD-CDM2 is obtained by CDM group 0, CDM group 1, CDM group 4, and CDM group 5, and 8 antennas in the square box in FIG. 4 can be used.
  • the port is transmitted for sharing with the 8-port CSI-RS.
  • Example 2 Antenna port number used by 24-port CSI-RS:
  • the pilot multiplexing mode of the 24-port CSI-RS is FD-CDM2
  • the 12-port CSI-RS when the FD-CDM2 is obtained by the CDM group 0 to the CDM group 2 is transmitted by using 12 antenna ports in the rectangular box in FIG. 5, and can be shared with the 12-port CSI-RS;
  • the 8-port CSI-RS in the FD-CDM2 can be aggregated by the CDM group 0, the CDM group 1, the CDM group 3, and the CDM group 4, and can be transmitted using the eight antenna ports in the square box in FIG. Sharing with 8-port CSI-RS.
  • the embodiment of the present application further provides a network side device, where the network side device may specifically include:
  • a determining unit 701 configured to determine a pilot configuration of the X port CSI-RS; X is a positive integer;
  • the pilot configuration of the X port CSI-RS includes a pilot multiplexing mode, and the pilot multiplexing mode includes a 2-port frequency domain code division multiplexing FD-CDM 2, 4-port code division multiplexing. CDM4 or 8-port code division multiplexing CDM8.
  • the transmitting unit 702 is configured to number the ports of the X port CSI-RS according to the pilot configuration of the X port CSI-RS, and map the CSI-RSs of the ports in the X port CSI-RS to the same number. The transmission is performed on the antenna port.
  • the ports of all the CDM groups included in the X-port CSI-RS are sequentially numbered in the order of the pre-frequency domain and the time domain, and the numbers of the ports in the same CDM group are continuous.
  • the transmitting unit 702 is configured to use the first OFDM symbol, the third OFDM symbol, The order of the last fourth OFDM symbol of the two OFDM symbols is time-domain numbered for the ports of all CDM groups included in the X-port CSI-RS.
  • the transmitting unit 702 is further configured to use a formula. Determining the number of each port in the i-th CDM group in the entire CDM group; wherein, p (i) is a number of each port in the i-th CDM group in the all CDM groups, and N is the number The number of OFDM symbols occupied by the X port CSI-RS, Indicates the number of ports in a CDM group.
  • p 0 is the starting number of the port
  • mod(x, y) means that x is modulo y
  • the X port CSI-RS is a 1-port CSI-RS, a 2-port CSI-RS, a 4-port CSI-RS, an 8-port CSI-RS, a 12-port CSI-RS, a 16-port CSI-RS, and a 24-port.
  • CSI-RS any one of 32-port CSI-RS; the number of OFDM symbols occupied by the X-port CSI-RS is 1, 2 or 4.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, and when the computer instruction instructions are run on the computer, the CSI-RS transmission provided by the first embodiment of the present application can be implemented. The steps of the method.
  • the embodiment of the present application may further provide a computer device, where the computer device includes a processor, where the processor is configured to implement the CSI-RS transmission method provided in Embodiment 1 when the computer program stored in the memory is executed.
  • the scheme provided by the embodiment of the present application is sequentially numbered according to the order of the OFDM symbol in the frequency domain and the time domain, and the numbers of the ports in the same CDM group are adjacent; further, the mapping rule described in the formula is used to determine the port number, so After the CSI-RS and the antenna port are mapped to the CSI-RS resource with a high number of ports, the CSI-RS resource with a low port number can be regarded as a part of the CSI-RS resource with a high port number, and the CSI-RS with a high port number is directly used. A part of the time-frequency resources occupied by the resources, so that port sharing can be implemented, thereby achieving the technical effect of effectively saving pilot resource overhead.
  • the disclosed data processing method and data processing device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种CSI-RS的传输方法及装置,该方法包括:网络侧设备确定X端口CSI-RS的导频配置;X为正整数;根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;其中,所述X端口CSI-RS所包含的全部CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。解决了现有技术中配置多个CSI-RS资源时,导频资源的开销大的技术问题。

Description

一种CSI-RS的传输方法及装置
本申请要求在2017年9月29日提交中国专利局、申请号为201710911399.2、发明名称为“一种CSI-RS的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种CSI-RS的传输方法及装置。
背景技术
在NR系统中,用于进行信道状态信息(Channel State Information,CSI)获取的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)在端口密度为1RE/PRB/Port时,定义了以下四种基本的成员CSI-RS RE图样(component CSI-RS RE pattern),在一个PRB内四种基本的成员CSI-RS RE图样如图1所示:
1端口成员CSI-RS RE图样由1个资源单元((Resource Element,RE)构成;
2端口成员CSI-RS RE图样由一个OFDM符号上频域相邻的2个RE构成;
4端口成员CSI-RS RE图样包含两种图样,一种是由一个OFDM符号上频域相邻的4个RE构成(图样a),另一种由2个时域相邻的OFDM符号上频域相邻的4个RE构成(图样b)。
对于更高端口的CSI-RS的图样由所述四种基本的成员CSI-RS RE图样聚合得到,如表1所示:
Figure PCTCN2018099265-appb-000001
表1
在表1中,X表示端口数,N表示X端口CSI-RS占用的OFDM符号数,(Y,Z)表示一个成员CSI-RS RE图样在频域上占用Y个RE,在时域上占用Z个RE,码分复用(Code Division Multiplex,CDM)表示资源块RE的导频复用方式,FD-CDM2表示频域2个RE采用码分复用。例如X=16的端口CSI-RS由4个4端口成员CSI-RS RE图样(图1所示的图样b)聚合得到。
现有技术中针对每种X端口CSI-RS都要占用相应的时频资源并映射至与其对应的天线端口进行传输。当配置的CSI-RS资源数较多时,将会占用较多的时频资源,导致导频资源的开销过大,存在资源浪费的问题。例如当端口密度为1RE/PRB/Port时,若配置一个X=32的端口CSI-RS和一个X=16的端口CSI-RS,需要占用32+16=48个RE的时频资源。
发明内容
本申请提供一种CSI-RS的传输方法及装置,用以解决现有技术中的技术中当配置的CSI-RS资源数较多时,导频资源的开销大的技术问题。
第一方面,本申请提供一种CSI-RS的传输方法,包括:
网络侧设备确定X端口信道状态信息参考信号CSI-RS的导频配置;X为正整数;
根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;
其中,所述X端口CSI-RS所包含的全部码分复用CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
在一种可选的实现方式中,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用(FD-CDM2)、4端口的码分复用CDM4或者8端口的码分复用(CDM8)。
在一种可选的实现方式中,当所述导频复用方式配置为FD-CDM2时,并且所述X端口CSI-RS占用4个OFDM符号时,所述X端口CSI-RS所包含的全部CDM组的端口时域编号包括:
按照第一个OFDM符号,第三个OFDM符号,第二个OFDM符号最后第四个OFDM符号的顺序进行编号。
在一种可选的实现方式中,当所述导频复用方式配置为FD-CDM2时,根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号包括:
利用公式
Figure PCTCN2018099265-appb-000002
确定所述全部CDM组中第i个CDM组内的各端口的编号;
其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
Figure PCTCN2018099265-appb-000003
表示一个CDM组内的端口数,当所述导频复用方式配置为FD-CDM2时,
Figure PCTCN2018099265-appb-000004
p 0为端口的起始编号,mod(x,y)表示x对y取模,
Figure PCTCN2018099265-appb-000005
表示向下取整,i∈{0,1,...,N·K-1},
Figure PCTCN2018099265-appb-000006
l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
在一种可选的实现方式中,还包括:
所述X取值为1,2,4,8,12,16,24,32中的一个;所述N取值为1,2,4中的一个。
第二方面,提供一种网络侧设备,包括:
确定单元,用于确定X端口信道状态信息参考信号(CSI-RS)的导频配置;X为正整数;
传输单元,用于根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;其中,所述X端口CSI-RS所包含的全部码分复用(CDM)组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
在一种可选的实现方式中,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
在一种可选的实现方式中,当所述导频复用方式配置为FD-CDM2时,并且所述X端口CSI-RS占用4个OFDM符号时,所述传输单元用于按照第一个OFDM符号,第三个OFDM符号,第二个OFDM符号最后第四个OFDM符号的顺序对X端口CSI-RS所包含的全部CDM组的端口进行时域编号。
在一种可选的实现方式中,当所述导频复用方式配置为FD-CDM2时,所述传输单元还用于利用公式
Figure PCTCN2018099265-appb-000007
确定所述全部CDM组中第i个CDM组内的各端口的编号;其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
Figure PCTCN2018099265-appb-000008
表示一个CDM组内的端口数,当所述导频复用方式配置为FD-CDM2时,
Figure PCTCN2018099265-appb-000009
Figure PCTCN2018099265-appb-000010
p 0为端口的起始编号,mod(x,y)表示x对y取模,
Figure PCTCN2018099265-appb-000011
表示向下取整,i∈{0,1,...,N·K-1},
Figure PCTCN2018099265-appb-000012
l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
在一种可选的实现方式中,所述X端口CSI-RS为1端口CSI-RS,2端口CSI-RS,4端口CSI-RS,8端口CSI-RS,12端口CSI-RS,16端口CSI-RS,24端口CSI-RS,32端口CSI-RS中任意一种;所述X端口CSI-RS占用的OFDM符号数为1,2或4。
第三方面,提供一种计算机装置,所述计算机装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如第一方面中任意一种可选的实现方式所述方法。
第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如第一方面中任意一种可选的实现方式所述方法。
本申请有益效果如下:
本申请实施例所提供的方法中,端口是按照先频域后时域的顺序依次编号,并且同一CDM组内的端口的编号相邻;同时,采用公式中描述的映射规则进行端口至天线端口的映射可以达到不同端口数的CSI-RS资源之间实现端口共享的目的,即低端口数的CSI-RS资源可以使用高端口数CSI-RS资源所占用的时频资源中的一部分,从而能够有效的节省导频资源的开销。
附图说明
图1为现有技术中在一个PRB内四种基本的成员CSI-RS RE图样;
图2为本申请实施例所提供的一种CSI-RS的传输方法的流程示意图;
图3为本申请实施例所提供方法实现的32端口CSI-RS包含16个CDM组的编号示意图;
图4为根据现有技术中码本的定义确定的(8,2)天线配置的天线端口的编号示意图;
图5为根据现有技术中码本的定义确定的(6,2)天线配置的天线端口的编号示意图;
图6为本申请实施例所提供的方法实现的24端口CSI-RS包含12个CDM组的编号示意图;
图7为本申请实施例所提供的一种网络侧设备的结构示意图。
具体实施方式
针对现有技术中存在的问题,本申请实施例提供一种CSI-RS的传输方法,其中,网络侧设备确定X端口CSI-RS的导频配置;X为正整数;根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;其中,所述X端口CSI-RS所包含的全部CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
因为本申请实施例所提供的方法中,端口是按照先频域后时域的顺序依次编号,并且同一CDM组内的端口的编号相邻;所以端口至天线端口的映射可以达到不同数量的端口共享的目的,从而能够有效的节省导频资源的开销。以下结合具体的实施例对本申请所提供的方案做进一步说明:
实施例一
如图2所示,本申请实施例提供一种CSI-RS的传输方法,该方法具体可以包括步骤:
步骤101,网络侧设备确定X端口CSI-RS的导频配置;X为正整数。
在该实施例中,如表1所提供的X端口CSI-RS的导频配置类型,如果资源单元(RE)的导频复用方式包括FD-CDM2时,所述X端口CSI-RS则包含X/2个CDM组,一个CDM组内的端口数
Figure PCTCN2018099265-appb-000013
一个端口与一个RE对应,每个CDM组中两个端口与位于同一OFDM符号上的频域相邻的两个RE对应。
步骤102,根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将 所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输。
其中,所述X端口CSI-RS所包含的全部CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
在该实施例中,按先频域后时域的顺序对全部CDM组依次编号,即对X端口CSI-RS所包含的所有端口进行编号。
基于表1所示的导频配置,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
为了实现端口共享的目的,对于X端口CSI-RS的导频配置中导频复用方式的配置为FD-CDM2,并且所述X端口CSI-RS占用4个OFDM符号(按照时间顺序可以确定4个OFDM符号为:第一个OFDM符号,第二个OFDM符号,第三个OFDM符号和第四个OFDM符号)的情况,在基于先频域后时域的顺序依次对端口编号的前提下,具体对于时域编号可以是:按照第一个OFDM符号,第三个OFDM符号,第二个OFDM符号最后第四个OFDM符号的顺序进行编号。
基于表1所示的导频配置,本申请实施例种的X端口CSI-RS的X取值可以是1,2,4,8,12,16,24,32中的任一;并且X端口CSI-RS所占用的OFDM符号数可以1、2或4。
当所述导频复用方式配置为FD-CDM2时,为了更高效快速的确定每个端口的编号,具体所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号的实现方式可以是:
利用公式
Figure PCTCN2018099265-appb-000014
确定所述全部CDM组中第i个CDM组内的各端口的编号;其中,N表示所述X端口CSI-RS占用的OFDM符号数,
Figure PCTCN2018099265-appb-000015
表示一个CDM组内的端口数,当所述导频复用方式配置为FD-CDM2时,
Figure PCTCN2018099265-appb-000016
p 0为端口的起始编号,mod(x,y)表示x对y取模,
Figure PCTCN2018099265-appb-000017
表示向下取整,i∈{0,1,...,N·K-1},
Figure PCTCN2018099265-appb-000018
l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
根据该上述公式进行编号时,在时域编号针对不同的OFDM符号个数编号顺序可以是:
当X端口CSI-RS占用2个OFDM符号时,X端口CSI-RS的时域编号顺序依次为:第一个OFDM符号,然后第二个OFDM符号;当X端口CSI-RS占用4个OFDM符号时,X端口CSI-RS的时域编号顺序依次为第一个OFDM符号,第三个OFDM符号,第二个OFDM符号和第四个OFDM符号。
因为本申请实施例所提供方案中,按照OFDM符号先频域后时域的顺序依次编号的,并且同一CDM组内的端口的编号相邻;进一步还采用公式中描述的映射规则确定端口的编号,所以在高端口数的CSI-RS资源进行CSI-RS与天线端口的映射后,低端口数的CSI-RS资源则可以视为高端口数的CSI-RS资源中的一部分,直接使用高端口数的CSI-RS资源所占用的时频资源中的一部分,所以能够实现端口共享,从而达到有效的节省导频资源开销的技术效果。
为了更详细的说明,本申请所提供的实施例中端口与天线端口的映射关系,以下结合说明书附图做进一步详细的说明,具体实现方式可以是:
举例一:例如X端口CSI-RS为32端口CSI-RS,则32端口CSI-RS中各端口与天线端口编号的对应关系可以是:
根据表1所示的X端口CSI-RS的聚合方式,32端口CSI-RS可以由8个4端口(图1所示图样b)CSI-RS聚合得到,且32端口CSI-RS占用N=4个OFDM符号。如果配置32端口CSI-RS的导频复用方式为FD-CDM2(一个FD-CDM2组内包含位于同一OFDM符号上的频域相邻的两个RE),则32端口CSI-RS包含16个CDM组(如图3所示)。每个CDM组内的两个端口采用FD-CDM2的复用方式共用两个RE。如图3所示,32端口CSI-RS中的CDM端口0使用编码(1,1)编码后占用CDM组内的两个RE,端口1使用编码(1,-1)进行编码后也占用此CDM组内的两个RE。
当与该32端口CSI-RS对应的天线配置为(N1,N2)=(8,2),其中N1表示第一维度天线端口数,N2表示第二维度天线端口数。根据现有技术中码本的定义,可以确定此天线配置的天线端口的编号如图4所示。
根据本申请实施例公式中给出的映射规则,16个CDM组之间按照先频域后时域的顺序依次编号,如图3所示。假设P0=0,根据本申请实施例中的公式可以得到每个CDM组 的端口编号,如图3所示。在第一个OFDM符号上对4个CDM组按频域顺序编号;编号为{0,1},{2,3},{4,5},{6,7},然后对第三个OFDM符号上的4个CDM组按频域顺序编号,编号为{8,9},{10,11},{12,13},{14,15}。之后再对第二个OFDM符号上的4个CDM组按频域顺序编号,最后对第四个OFDM符号上的4个CDM组按频域顺序编号。
在实现对端口进行编号后,再将编号后的端口映射至图4中具有相同编号的天线端口上进行传输。
在该实施例中,由CDM组0至CDM组7可以聚合得到FD-CDM2时的16端口CSI-RS,并使用图4中的长方形方框中的16个天线端口进行传输,可以实现与16端口CSI-RS共享;由CDM组0、CDM组1、CDM组4和CDM组5可以聚合得到FD-CDM2时的8端口CSI-RS,并可以使用图4中正方形方框中的8个天线端口进行传输,可以实现与8端口CSI-RS的共享。
举例二:24端口CSI-RS使用的天线端口编号:
根据表一,24端口CSI-RS由6个4端口(图样b)CSI-RS资源聚合得到,且其占用N=4个OFDM符号。当配置24端口CSI-RS的导频复用方式为FD-CDM2时,此X=24端口CSI-RS共包含12个CDM组,当与该24端口CSI-RS对应的天线配置为(N1,N2)=(6,2),根据现有技术中码本的定义,可以确定此天线配置的天线端口的编号如图5所示。
根据本发明的公式中给出的映射规则,12个CDM组之间按照先频域后时域的顺序依次编号,如图6所示。假设P0=0,根据本发明中的公式可以得到每个CDM组的端口编号,如图6所示。在第一个OFDM符号上对3个CDM组按频域顺序编号后,继续对第三个OFDM符号上的3个CDM组按频域顺序编号。之后再对第二个OFDM符号上的3个CDM组按频域顺序编号,最后对第四个OFDM符号上的3个CDM组按频域顺序编号。将此编号后的端口映射至图5中具有相同编号的天线端口上进行传输。
由CDM组0至CDM组2可以聚合得到FD-CDM2时的12端口CSI-RS,并使用图5中的长方形方框中的12个天线端口进行传输,可以实现与12端口CSI-RS共享;由CDM组0、CDM组1、CDM组3和CDM组4可以聚合得到FD-CDM2时的8端口CSI-RS,并可以使用图5中正方形方框中的8个天线端口进行传输,可以实现与8端口CSI-RS的共享。
实施例二
如图7所示,本申请实施例还提供一种网络侧设备,该网络侧设备具体可以包括:
确定单元701,用于确定X端口CSI-RS的导频配置;X为正整数;
其中,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
传输单元702,用于根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;其中,所述X端口CSI-RS所包含的全部CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
当所述导频复用方式配置为FD-CDM2时,并且所述X端口CSI-RS占用4个OFDM符号时,该传输单元702用于按照第一个OFDM符号,第三个OFDM符号,第二个OFDM符号最后第四个OFDM符号的顺序对X端口CSI-RS所包含的全部CDM组的端口进行时域编号。
可选的,当所述导频复用方式配置为FD-CDM2时,该传输单元702还用于利用公式
Figure PCTCN2018099265-appb-000019
确定所述全部CDM组中第i个CDM组内的各端口的编号;其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
Figure PCTCN2018099265-appb-000020
表示一个CDM组内的端口数,当所述导频复用方式配置为FD-CDM2时,
Figure PCTCN2018099265-appb-000021
p 0为端口的起始编号,mod(x,y)表示x对y取模,
Figure PCTCN2018099265-appb-000022
表示向下取整,i∈{0,1,...,N·K-1},
Figure PCTCN2018099265-appb-000023
l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
可选的,所述X端口CSI-RS为1端口CSI-RS,2端口CSI-RS,4端口CSI-RS,8端口CSI-RS,12端口CSI-RS,16端口CSI-RS,24端口CSI-RS,32端口CSI-RS中任意一种;所述X端口CSI-RS占用的OFDM符号数为1,2或4。
实施例三
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当计算机指令指令在计算机上运行时可以实现如本申请实施例一所提供的CSI-RS的传输方法的步骤。
另外,本申请实施例还可以提供一种计算机装置,该计算机装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现实施例一所提供的CSI-RS的传输方法。
因为本申请实施例所提供方案按照OFDM符号先频域后时域的顺序依次编号的,并且同一CDM组内的端口的编号相邻;进一步还采用公式中描述的映射规则确定端口的编号,所以在高端口数的CSI-RS资源进行CSI-RS与天线端口的映射后,低端口数的CSI-RS资源则可以视为高端口数的CSI-RS资源中的一部分,直接使用高端口数的CSI-RS资源所占用的时频资源中的一部分,所以能够实现端口共享,从而达到有效的节省导频资源开销的技术效果。
在本发明实施例中,应该理解到,所揭露数据处理方法及数据处理设备,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性或其它的形式。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种CSI-RS的传输方法,其特征在于,包括:
    网络侧设备确定X端口信道状态信息参考信号CSI-RS的导频配置;X为正整数;
    根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;
    其中,所述X端口CSI-RS所包含的全部码分复用CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
  2. 如权利要求1所述的方法,其特征在于,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
  3. 如权利要求2所述的方法,其特征在于,当所述导频复用方式配置为FD-CDM2时,根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号包括:
    利用公式
    Figure PCTCN2018099265-appb-100001
    确定所述全部CDM组中第i个CDM组内的各端口的编号;
    其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
    Figure PCTCN2018099265-appb-100002
    表示一个CDM组内的端口数,当所述导频复用方式配置FD-CDM2时,
    Figure PCTCN2018099265-appb-100003
    p 0为端口的起始编号,mod(x,y)表示x对y取模,
    Figure PCTCN2018099265-appb-100004
    表示向下取整,i∈{0,1,...,N·K-1},
    Figure PCTCN2018099265-appb-100005
    l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
  4. 如权利要求3所述的方法,其特征在于,所述X取值为1,2,4,8,12,16,24,32中的一个;所述N取值为1,2,4中的一个。
  5. 一种网络侧设备,其特征在于,包括:
    确定单元,用于确定X端口信道状态信息参考信号CSI-RS的导频配置;X为正整数;
    传输单元,用于根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行 传输;其中,所述X端口CSI-RS所包含的全部码分复用CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
  6. 如权利要求5所述的网络侧设备,其特征在于,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
  7. 如权利要求6所述的网络侧设备,其特征在于,当所述导频复用方式配置为FD-CDM2时,所述传输单元还用于利用公式
    Figure PCTCN2018099265-appb-100006
    确定所述全部CDM组中第i个CDM组内的各端口的编号;其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
    Figure PCTCN2018099265-appb-100007
    表示一个CDM组内的端口数,当所述导频复用方式配置为FD-CDM2时,
    Figure PCTCN2018099265-appb-100008
    p 0为端口的起始编号,.mod(x,y)表示x对y取模,
    Figure PCTCN2018099265-appb-100009
    表示向下取整,i∈{0,1,...,N·K-1},
    Figure PCTCN2018099265-appb-100010
    l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
  8. 如权利要求7所述的网络侧设备,其特征在于,所述X端口CSI-RS为1端口CSI-RS,2端口CSI-RS,4端口CSI-RS,8端口CSI-RS,12端口CSI-RS,16端口CSI-RS,24端口CSI-RS,32端口CSI-RS中任意一种;所述X端口CSI-RS占用的OFDM符号数为1,2或4。
  9. 一种计算机装置,其特征在于,所述计算机装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现:
    确定X端口信道状态信息参考信号CSI-RS的导频配置;X为正整数;
    根据所述X端口CSI-RS的导频配置对X端口CSI-RS的端口进行编号,将所述X端口CSI-RS中各端口的CSI-RS映射至与其具有相同编号的天线端口上进行传输;
    其中,所述X端口CSI-RS所包含的全部码分复用CDM组的端口按先频域后时域的顺序依次编号,同一CDM组内的端口的编号具有连续性。
  10. 如权利要求9所述的计算机装置,其特征在于,所述X端口CSI-RS的导频配置包括导频复用方式的配置,所述导频复用方式包括2端口的频域码分复用FD-CDM2、4端口的码分复用CDM4或者8端口的码分复用CDM8。
  11. 如权利要求10所述的计算机装置,其特征在于,当所述导频复用方式配置为FD-CDM2时,所述处理器具体用于:
    利用公式
    Figure PCTCN2018099265-appb-100011
    确定所述全部CDM组中第i个CDM组内的各端口的编号;
    其中,所述p (i)为所述全部CDM组中第i个CDM组内的各端口的编号,N表示所述X端口CSI-RS占用的OFDM符号数,
    Figure PCTCN2018099265-appb-100012
    表示一个CDM组内的端口数,当所述导频复用方式配置FD-CDM2时,
    Figure PCTCN2018099265-appb-100013
    p 0为端口的起始编号,mod(x,y)表示x对y取模,
    Figure PCTCN2018099265-appb-100014
    表示向下取整,i∈{0,1,...,N·K-1},
    Figure PCTCN2018099265-appb-100015
    l(0)=0,l(1)=N/2,l(2)=1,l(3)=3。
  12. 如权利要求11所述的计算机装置,其特征在于,所述X取值为1,2,4,8,12,16,24,32中的一个;所述N取值为1,2,4中的一个。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-4中任一权项所述的方法。
PCT/CN2018/099265 2017-09-29 2018-08-07 一种csi-rs的传输方法及装置 WO2019062339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710911399.2A CN109586871B (zh) 2017-09-29 2017-09-29 一种csi-rs的传输方法及装置
CN201710911399.2 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062339A1 true WO2019062339A1 (zh) 2019-04-04

Family

ID=65900590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099265 WO2019062339A1 (zh) 2017-09-29 2018-08-07 一种csi-rs的传输方法及装置

Country Status (2)

Country Link
CN (1) CN109586871B (zh)
WO (1) WO2019062339A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133376A1 (en) * 2015-02-20 2016-08-25 Samsung Electronics Co., Ltd. Channel-state-information reference signals
WO2017028006A1 (en) * 2015-08-14 2017-02-23 Qualcomm Incorporated Techniques for transmitting and receiving channel state information reference signals in ebf/fd-mimo environment
CN106664192A (zh) * 2015-01-30 2017-05-10 韩国电子通信研究院 传送下行链路参考信号的方法和设备和多小区协作通信系统中传送控制信息的方法和设备
CN106685620A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 信道状态测量导频的配置方法及装置、解析方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180054290A1 (en) * 2015-09-03 2018-02-22 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664192A (zh) * 2015-01-30 2017-05-10 韩国电子通信研究院 传送下行链路参考信号的方法和设备和多小区协作通信系统中传送控制信息的方法和设备
WO2016133376A1 (en) * 2015-02-20 2016-08-25 Samsung Electronics Co., Ltd. Channel-state-information reference signals
WO2017028006A1 (en) * 2015-08-14 2017-02-23 Qualcomm Incorporated Techniques for transmitting and receiving channel state information reference signals in ebf/fd-mimo environment
CN106685620A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 信道状态测量导频的配置方法及装置、解析方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussion on CSI-RS design and signalling for 12 and 16 ports", 3GPP TSG RAN WG1 MEETING #83 R1-157489, 22 November 2015 (2015-11-22), XP051003601 *

Also Published As

Publication number Publication date
CN109586871A (zh) 2019-04-05
CN109586871B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
BR112016028057B1 (pt) Método de alocação de recursos e estação base
TWI411767B (zh) 產生一導航樣本之方法及裝置適用於正交分頻多工通訊系統
RU2011132139A (ru) Способы и системы для выделения csi-rs-ресурсов в системах по усовершенствованному стандарту lte
BR112012019729A2 (pt) método de pré-codificação para um símbolo de referência de demodulação de multiplexação híbrida, método de mapeamento de uma camada para um porto de símbolo de referência de demodulação de multiplexação, aplicado em um método de pré-codificação baseado em um dmrs de multiplexação híbrida e aparato para alcançar pré-codificação baseado em um símbolo compreendendo de referência de demodulação de multiplexação híbrida, compreendendo um módulo de mapeamento e um módulo de pré-codificação
CN103202080B (zh) 控制信道传输方法及设备
CN105637827B (zh) 导频序列的插入、提取方法和设备
JP2014057309A (ja) データの送信方法および装置
WO2017076233A1 (zh) 信道状态测量导频的配置方法及装置、解析方法及装置
WO2018196849A1 (zh) 解调参考信号的资源映射方法及基站
WO2019047845A1 (zh) 一种参考信号的传输方法、装置、基站及终端
TWI611680B (zh) 一種參考信號映射方法及裝置
CN103270715A (zh) 传输控制信息的方法、装置及系统
AU2012373944B2 (en) Method, base station, and user equipment for transmitting control channel
WO2011020342A1 (zh) 信道测量导频发送方法和系统
WO2017152730A1 (zh) 一种参考信号映射方法及装置
TW201815116A (zh) 一種參考信號映射方法及裝置
WO2019062339A1 (zh) 一种csi-rs的传输方法及装置
CN101399761B (zh) 用于长期演进系统的将资源单元映射到资源块的方法
CN112118598B (zh) 一种信道数据的处理方法及通信设备
CN109150427B (zh) 一种信号处理方法、装置、电子设备及计算机可读存储介质
CN102076088A (zh) 一种资源单元映射的方法和装置
WO2017054514A1 (zh) 导频的配置方法及装置
CN107888346B (zh) 一种csi-rs的映射及传输方法和通信设备
CN104396175B (zh) 一种检测上行控制信道上发送的信号的方法、装置和设备
WO2018161875A1 (zh) 一种边缘子带的数据调制方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861001

Country of ref document: EP

Kind code of ref document: A1