WO2019062294A1 - 一种显示面板的驱动装置及驱动方法 - Google Patents

一种显示面板的驱动装置及驱动方法 Download PDF

Info

Publication number
WO2019062294A1
WO2019062294A1 PCT/CN2018/096436 CN2018096436W WO2019062294A1 WO 2019062294 A1 WO2019062294 A1 WO 2019062294A1 CN 2018096436 W CN2018096436 W CN 2018096436W WO 2019062294 A1 WO2019062294 A1 WO 2019062294A1
Authority
WO
WIPO (PCT)
Prior art keywords
output buffer
module
positive
negative
driving
Prior art date
Application number
PCT/CN2018/096436
Other languages
English (en)
French (fr)
Inventor
赵文勤
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US16/650,261 priority Critical patent/US11120721B2/en
Publication of WO2019062294A1 publication Critical patent/WO2019062294A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0254Control of polarity reversal in general, other than for liquid crystal displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • G09G2330/045Protection against panel overheating

Definitions

  • the embodiments of the present application belong to the field of display technologies, and in particular, to a driving device and a driving method for a display panel.
  • display devices such as liquid crystal panels and displays are constantly developing in the direction of thinness, large screen, low power consumption, and low cost.
  • the frequency of the driving voltage outputted by the source driving chip driving the display panel is also higher and higher, resulting in an increase in power consumption of the source driving chip. This makes the source driver chip generate heat seriously and reduces its service life.
  • the technical problem to be solved by the embodiment of the present application is to provide a driving device for the display panel, which can reduce the power consumption of the source driving chip.
  • a technical problem to be solved by the embodiments of the present application is to provide a driving method of the display panel, so that the driving device reduces the power consumption of the source driving chip.
  • a driving device for a display panel which includes:
  • a source driving module configured to output a first polarity driving signal and a second polarity driving signal to drive the display panel
  • the upper limit of the operating voltage range of the first positive output buffer module is the maximum driving voltage of the driving device
  • the lower limit of the operating voltage range of the Mth positive output buffer module The value is 1/2 of the maximum driving voltage
  • the lower limit value of the working voltage range of the i-th positive output buffer module is equal to the upper limit value of the working voltage range of the i+1th positive output buffer module, M>i ⁇ 1 and M, i are positive integers;
  • a positive input selection module connected to the source driving module and the M positive output buffer modules, configured to select, according to the first polarity driving signal, an operating voltage range corresponding to the first polarity driving signal
  • the positive output buffer module is used as a target positive output buffer module to perform output buffering on the first polarity driving signal by the target positive output buffer module;
  • a positive output selection module respectively connected to the M positive output buffer modules and the display panel
  • N negative output buffer modules wherein the upper limit of the operating voltage range of the first negative output buffer module is 1/2 of the maximum driving voltage, and the lower limit of the operating voltage range of the Nth negative output buffer module 0, the lower limit of the operating voltage range of the jth negative output buffer module is equal to the upper limit of the operating voltage range of the j+1th negative output buffer module, N>j ⁇ 1 and N, j are positive integers;
  • a negative input selection module connected to the source driving module and the N negative output buffer modules, and selecting a negative output corresponding to the operating voltage range and the second polarity driving signal according to the second polarity driving signal
  • the buffer module serves as a target negative output buffer module
  • a negative output selection module which is respectively connected to the N negative output buffer modules and the display panel, and selects the target negative output buffer module to output the second polarity driving signal after output buffering to the display panel.
  • the M ⁇ N.
  • a first positive output buffer module respectively connected to the positive input selection module and the positive output selection module, and respectively accessing the maximum driving voltage and the first driving voltage;
  • a second positive output buffer module respectively connected to the positive input selection module and the positive output selection module, and respectively connected to the first driving voltage and the second driving voltage;
  • the N negative output buffer modules include:
  • a first negative output buffer module respectively connected to the negative input selection module and the negative output selection module, and respectively accessing the second driving voltage and the third driving voltage;
  • a second negative output buffer module respectively connected to the negative input selection module and the negative output selection module, and respectively connected to the third driving voltage and the fourth driving voltage;
  • the third negative output buffer module is respectively connected to the negative input selection module and the negative output selection module, and respectively accesses the fourth driving voltage and the ground.
  • the M N.
  • a first positive output buffer module respectively connected to the positive input selection module and the positive output selection module, and respectively inputting a voltage of the maximum driving voltage and a first driving voltage for inputting the first pole Outputting buffering of the first polarity driving signal when driving the signal;
  • a second positive output buffer module respectively connected to the positive input selection module and the positive output selection module, and respectively inputting the first driving voltage and the second driving voltage for inputting the first polarity Outputting buffering of the first polarity driving signal when driving a signal;
  • the N negative output buffer modules include:
  • a first negative output buffer module respectively connected to the negative input selection module and the negative output selection module, and respectively connecting the second driving voltage and the third driving voltage for inputting the second polarity Outputting buffering of the second polarity driving signal when driving a signal;
  • a second negative output buffer module respectively connected to the negative input selection module and the negative output selection module, and respectively connected to the third driving voltage and ground for inputting the second polarity driving signal And output buffering the second polarity driving signal.
  • the positive output buffer module includes a first output buffer unit
  • the negative output buffer module includes a second output buffer unit
  • the positive input selection module includes a first electronic switching unit
  • the positive output selection module includes a second electronic switching unit
  • the negative input selection module includes a third electronic switching unit
  • the negative output selection The module includes a fourth electronic switch unit.
  • the embodiment of the present application further provides a driving method of a display panel, where the driving method includes:
  • the first polarity driving signal is input, selecting a positive output buffer module whose working voltage range corresponds to the first polarity driving signal as the target positive output buffer module, and the first pole is passed through the target positive output buffering module Sex drive signals for output buffering;
  • the outputted buffered second polarity driving signal is output to the display panel.
  • the embodiment of the present application further provides a driving method of a display panel, including:
  • a positive output buffer module corresponding to the first polarity driving signal is selected as the target positive output buffer module, and the target is positively
  • the output buffer module performs output buffering on the first polarity driving signal
  • the negative output buffer module corresponding to the working voltage range and the second polarity driving signal is selected as the target negative output buffer module, and the target negative
  • the output buffer module performs output buffering on the second polarity driving signal
  • the upper limit of the operating voltage range of the first positive output buffer module is the maximum driving voltage of the driving device connected to the display panel
  • the lower limit of the operating voltage range of the Mth positive output buffer module is the 1/2 of the maximum driving voltage
  • the lower limit of the operating voltage range of the i-th positive output buffer module is equal to the upper limit of the operating voltage range of the i+1th positive output buffer module, M>i ⁇ 1 and M, i is a positive integer
  • the upper limit of the operating voltage range of the first negative output buffer module is 1/2 of the maximum driving voltage
  • the lower limit of the operating voltage range of the Nth negative output buffering module is 0,
  • the lower limit of the operating voltage range of the j negative output buffer modules is equal to the upper limit of the operating voltage range of the j+1th negative output buffer module, N>j ⁇ 1 and N and j are positive integers.
  • the M ⁇ N.
  • the embodiment of the present application provides a driving device and a driving method applied to a display panel, and selects a corresponding positive output buffer module or a negative output buffer module to perform data on the display panel according to driving polarity and voltage magnitude of the accessed driving signal.
  • the driving can effectively reduce the frequency of change of the driving voltage outputted by the source driving chip, reduce the power consumption of the source driving chip, thereby effectively improving the heating problem and improving the service life thereof.
  • FIG. 1 is a schematic structural diagram of a driving device of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a driving device of a display panel according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a driving device of a display panel according to still another embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a driving method of a display panel according to an embodiment of the present application.
  • FIG. 5 is a schematic flow chart of a driving method of a display panel according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • an embodiment of the present application provides a driving device 100 for a display panel, including a source driving module 10, M positive output buffer modules, a positive input selecting module 20, and a positive output selecting module 30, N.
  • the source driving module may be any device or circuit having a data driving function on a pixel of the display panel, for example, a source driving chip (Source) Driver IC) or thin film source driver chip (S-COF, Source-Chip On Film) and so on.
  • a source driving chip Source
  • S-COF thin film source driver chip
  • the number of positive output buffer modules can be set according to actual needs. For example, if the first polarity driving signal output from the source driving chip needs to be equally divided into 2, two positive output buffer modules can be set. If the first polarity drive signal output from the source driver chip needs to be divided into three equal parts, three positive output buffer modules can be set.
  • M positive output buffer modules (shown as positive output buffer module 11, positive output buffer module 12, ..., positive output buffer module 1M in FIG. 1) are exemplarily shown;
  • the upper limit of the operating voltage range of the first positive output buffer module 11 is the maximum driving voltage of the driving device, and the lower limit of the operating voltage range of the Mth positive output buffering module 1M is 1/ of the maximum driving voltage.
  • the lower limit of the operating voltage range of the i-th positive output buffer module 1i is equal to the upper limit of the operating voltage range of the i+1th positive output buffer module 1i+1, M>i ⁇ 1 and M,i are A positive integer.
  • the positive output buffer module includes a first output buffer unit, and the first output buffer unit can be any device or circuit having an output buffer function, such as an output buffer.
  • the range of the operating voltage range of the adjacent positive output buffer module may be the same or different, and the range difference refers to the difference between the upper limit value and the lower limit value of one operating voltage range, with the first positive output.
  • the positive input selection module 20 is connected to the source driving module 10 and the M positive output buffer modules 11 ⁇ 1M for selecting a positive output buffer module corresponding to the first polarity driving signal according to the first polarity driving signal.
  • the target positive output buffer module the first polarity drive signal is output buffered by the target positive output buffer module.
  • the positive input selection module includes a first electronic switching unit, and the first electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the first electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the positive output selection module 30 is connected to the M positive output buffer modules 11 to 1M and the display panel 200 for selecting the target positive output buffer module to output the first polarity driving signal after the output buffering to the display panel 200.
  • the positive output selection module includes a second electronic switching unit, and the second electronic switching unit can be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the second electronic switching unit can be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the number of negative output buffer modules can be set according to actual needs. For example, if the second polarity driving signal output from the source driving chip needs to be equally divided, two negative output buffer modules can be set. If the second polarity drive signal output from the source driver chip needs to be divided into three equal parts, three negative output buffer modules can be set.
  • N negative output buffer modules (shown as negative output buffer module 41, negative output buffer module 42, ..., negative output buffer module 4M in FIG. 1) are exemplarily shown in this embodiment;
  • the upper limit of the operating voltage range of the first negative output buffer module 41 is 1/2 of the maximum driving voltage, and the lower limit of the operating voltage range of the Nth negative output buffering module 4N is 0, the jth
  • the lower limit value of the operating voltage range of the negative output buffer module 4j is equal to the upper limit value of the operating voltage range of the j+1th negative output buffer module 4j+1, N>j ⁇ 1 and N, j are positive integers.
  • FIG. 1 exemplarily shows that the upper limit value and the lower limit value of the operating voltage range of the first negative output buffer module 41 are HVAA and HVAA1, respectively, and the upper limit value of the operating voltage range of the second negative output buffer module 42 and The lower limit values are HVAA1 and HVAA2, respectively.
  • the working voltage is equal to 0, which is equivalent to being grounded.
  • an N-th ground GND is shown by way of an example in which the Nth negative output buffer module 4N operates at a voltage of zero.
  • the negative output buffer module includes a second output buffer unit, and the second output buffer unit can be any device or circuit having an output buffer function, such as an output buffer.
  • the range of the operating voltage range of the adjacent negative output buffer module may be the same or different, and the range difference refers to the difference between the upper limit value and the lower limit value of one operating voltage range, and the first negative output buffer is used.
  • the negative input selection module 50 is connected to the source driving module 10 and the N output buffer modules 41 ⁇ 4N for selecting a second output buffer corresponding to the second polarity driving signal according to the second polarity driving signal.
  • the module acts as a target negative output buffer module to buffer the output of the second polarity drive signal through the target negative output buffer module.
  • the negative input selection module includes a third electronic switching unit, and the third electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the third electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the negative output selection module 60 is respectively connected to the N output buffer modules 41 4N and the display panel 200 for selecting a second output buffer module corresponding to the second polarity driving signal to perform the second buffer after the output buffering
  • the polarity drive signal is output to the display panel 200.
  • the negative output selection module includes a fourth electronic switching unit, and the fourth electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the fourth electronic switching unit may be any device or circuit having an electronic switching function, such as a triode or a metal oxide semiconductor (metal) Oxide semiconductor, MOS) field effect transistor.
  • the specific values of M and N can be set according to actual needs.
  • the numerical values of M and N directly determine the number of divisions of the operating voltage range, which in turn determines the frequency of change of the driving voltage output by the source driver chip. The larger the value of N and N, the smaller the frequency of change of the driving voltage output from the source driving chip, and M may be equal to N or not equal to N.
  • a driving device for a display panel according to the driving polarity and voltage of the input driving signal, selecting a corresponding positive output buffer module or a negative output buffer module to drive data to the display panel can effectively reduce the source.
  • the frequency of change of the driving voltage of the output of the driving chip reduces the power consumption of the source driving chip, thereby effectively improving the heat generation problem and improving the service life thereof.
  • the driving device 100 includes a first positive output buffer module 11, a second positive output buffer module 12, and a first negative The output buffer module 41, the second negative output buffer module 42, and the third negative output buffer module 43.
  • the first positive output buffer module 11 is respectively connected to the positive input selection module 20 and the positive output selection module 30, and respectively connected to the maximum driving voltage VAA and the first positive driving voltage VAA1 for inputting the first polarity driving signal. Output buffering of the first polarity drive signal.
  • the first drive voltage 3/4 maximum drive voltage.
  • the second positive output buffer module 12 is respectively connected to the positive input selection module 20 and the positive output selection module 30, and respectively connected to the first positive driving voltage VAA1 and the second positive driving voltage VAA2 for inputting the first polarity driving signal When the first polarity drive signal is output buffered.
  • the second positive drive voltage 1/2 the maximum drive voltage.
  • the first negative output buffer module 41 is respectively connected to the negative input selection module 50 and the negative output selection module 60, and is respectively connected to the first negative driving voltage HVAA and the second negative driving voltage HVAA1 for driving at the input second polarity
  • the second negative drive voltage 1/3 of the maximum drive voltage.
  • the second negative output buffer module 42 is respectively connected to the negative input selection module 50 and the negative output selection module 60, and respectively connected to the second negative driving voltage HVAA1 and the third negative driving voltage HVAA2 for driving at the input second polarity When the signal is output, the output of the second polarity drive signal is buffered.
  • HVAA2 1/6 VAA.
  • the third negative output buffer module 43 is respectively connected to the negative input selection module 50 and the negative output selection module 60, and is respectively connected to the third driving voltage HVAA2 and the ground GND (ie, the HVAA3 terminal) for driving at the input second polarity.
  • the output of the second polarity drive signal is buffered.
  • the driving device 100 of the display panel includes a first positive output buffer module 11 and a second positive output buffer.
  • the first positive output buffer module 11 is respectively connected to the positive input selection module 20 and the positive output selection module 30, and respectively connected to the maximum driving voltage VAA and the first positive driving voltage VAA1 for inputting the first polarity driving signal. Output buffering of the first polarity drive signal.
  • the first positive drive voltage 3/4 maximum drive voltage.
  • the second positive output buffer module 12 is respectively connected to the positive input selection module 20 and the positive output selection module 30, and is respectively connected to the first positive driving voltage VAA1 and the second positive driving voltage VAA2 for inputting the first polarity driving signal. Output buffering of the first polarity drive signal.
  • the second positive drive voltage 1/2 the maximum drive voltage.
  • the first negative output buffer module 41 is respectively connected to the negative input selection module 50 and the negative output selection module 60, and is respectively connected to the first negative driving voltage HVAA and the second negative driving voltage HVAA1 for driving at the input second polarity
  • the second negative drive voltage 1/4 of the maximum drive voltage.
  • the second negative output buffer module 42 is respectively connected to the negative input selection module 50 and the negative output selection module 60, and is respectively connected to the second negative driving voltage HVAA1 and the ground GND (ie, the HVAA2 terminal) for inputting the second polarity.
  • the second polarity drive signal is output buffered.
  • the positive driving voltage and the negative driving voltage in the above embodiments of the present application do not mean that the polarity of the voltage is positive or negative, but refers to the relative magnitude of the voltage, and the voltage value of the positive driving voltage is greater than or equal to the negative driving voltage. Voltage value.
  • the driving device further includes a digital-to-analog conversion module respectively connected to the positive input selection module and the negative input selection module for inputting the first polarity driving data and the second polarity driving data and converting to the first The polarity drive signal and the second polarity drive signal.
  • the digital to analog conversion module may specifically be a digital to analog converter for converting a digital signal into an analog signal.
  • the driving device further includes a shift register module, a data register module, a data latch module, and a level shifting module;
  • the shift register module is configured to output drive data according to a certain shift direction
  • a data registration module coupled to the shift register module, for storing drive data
  • the data latching module is connected to the data registering module for latching the driving data, and outputting the first polarity driving data when receiving the first polarity driving signal, when receiving the second polarity driving signal , outputting second polarity driving data;
  • a level conversion module respectively connected to the data latch module and the digital-to-analog conversion module for level-shifting the first polarity driving data and the second polarity driving data, and performing the level conversion
  • the one polarity drive data and the second polarity drive data are respectively output to the digital to analog conversion module.
  • the shift register module may be a one-way shift register or a bidirectional shift register
  • the data register module may be a data register
  • the data latch module may be a data latch
  • the level conversion module may specifically It is a level shifting circuit
  • the driving device further includes a control module respectively connected to the source driving module, the positive input selecting module, the positive output selecting module, the negative input selecting module and the negative output selecting module, for respectively connecting the modules connected thereto Work status is controlled.
  • the display panel can be any type of display panel, such as based on LCD (Liquid Liquid crystal display panel of Crystal Display (liquid crystal display device) technology, organic electric laser display panel based on OLED (Organic Electroluminescence Display) technology, based on QLED (Quantum) Dot Light Emitting Diodes, quantum dot light emitting diode display panels or curved display panels.
  • LCD Liquid Liquid crystal display panel of Crystal Display (liquid crystal display device) technology
  • organic electric laser display panel based on OLED (Organic Electroluminescence Display) technology
  • QLED Quantum
  • Dot Light Emitting Diodes quantum dot light emitting diode display panels or curved display panels.
  • an embodiment of the present application further provides a driving method of a display panel, including:
  • Step S401 If a first polarity driving signal is input, selecting a positive output buffer module whose working voltage range corresponds to the first polarity driving signal as a target positive output buffering module, by using the target positive output buffering module The first polarity driving signal is output buffered;
  • Step S402 output the buffered first polarity driving signal to the display panel
  • Step S403 If a second polarity driving signal is input, selecting a negative output buffer module corresponding to the working voltage range and the second polarity driving signal as a target negative output buffering module, by using the target negative output buffering module The second polarity driving signal performs output buffering;
  • Step S404 Output the outputted buffered second polarity driving signal to the display panel.
  • steps S401 to S404 may respectively pass through a positive input selection module, a positive output selection module, a negative input selection module, and The negative output selects the module to execute.
  • an embodiment of the present application further provides a driving method of a display panel, including:
  • Step S501 If the first polarity driving signal is input, in the M positive output buffer modules, the positive output buffer module corresponding to the working voltage range and the first polarity driving signal is selected as the target positive output buffer module, and the The target positive output buffer module performs output buffering on the first polarity driving signal;
  • Step S502 output the buffered first polarity driving signal to the display panel
  • Step S503 If the second polarity driving signal is input, in the N negative output buffer modules, the negative output buffer module corresponding to the working voltage range and the second polarity driving signal is selected as the target negative output buffer module.
  • the target negative output buffer module performs output buffering on the second polarity driving signal;
  • Step S504 output the buffered second polarity driving signal to the display panel
  • the upper limit of the operating voltage range of the first positive output buffer module is the maximum driving voltage of the driving device connected to the display panel
  • the lower limit of the operating voltage range of the Mth positive output buffer module is the 1/2 of the maximum driving voltage
  • the lower limit of the operating voltage range of the i-th positive output buffer module is equal to the upper limit of the operating voltage range of the i+1th positive output buffer module, M>i ⁇ 1 and M, i is a positive integer
  • the upper limit of the operating voltage range of the first negative output buffer module is 1/2 of the maximum driving voltage
  • the lower limit of the operating voltage range of the Nth negative output buffering module is 0,
  • the lower limit of the operating voltage range of the j negative output buffer modules is equal to the upper limit of the operating voltage range of the j+1th negative output buffer module, N>j ⁇ 1 and N and j are positive integers.
  • steps S501 to S504 may respectively pass through a positive input selection module, a positive output selection module, a negative input selection module, and The negative output selects the module to execute.
  • the modules in all embodiments of the present application can pass through a general-purpose integrated circuit, such as a CPU (Central Processing Unit, central processing unit, or via ASIC (Application Specific Integrated Circuit), field programmable logic gate device to achieve.
  • a general-purpose integrated circuit such as a CPU (Central Processing Unit, central processing unit, or via ASIC (Application Specific Integrated Circuit), field programmable logic gate device to achieve.
  • an embodiment of the present invention provides a display device 600 including the above-described driving device 100 and a display panel 601 connected to an output end of the driving device 100 .
  • the embodiment of the present application provides a driving device and a driving method applied to a display panel, and selects a corresponding positive output buffer module or a negative output buffer module to perform data on the display panel according to driving polarity and voltage magnitude of the accessed driving signal.
  • the driving can effectively reduce the frequency of change of the driving voltage outputted by the source driving chip, reduce the power consumption of the source driving chip, thereby effectively improving the heating problem and improving the service life thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板的驱动装置及驱动方法,驱动装置包括源极驱动模块(10)、M个正输出缓冲模块,正输入选择模块(20),正输出选择模块(30),N个负输出缓冲模块,负输入选择模块(50)和负输出选择模块(60);驱动方法包括:选择工作电压范围与第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块进行输出缓冲,将输出缓冲后的第一极性驱动信号输出至显示面板,选择工作电压范围与第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块进行输出缓冲,将输出缓冲后的第二极性驱动信号输出至显示面板。

Description

一种显示面板的驱动装置及驱动方法 技术领域
本申请实施例属于显示技术领域,尤其涉及一种显示面板的驱动装置及驱动方法。
背景技术
随着显示技术的不断发展,液晶面板、显示器等显示装置不断向着轻薄化、大屏化、低功耗、低成本的方向发展。
然而,由于显示装置的显示面板尺寸越来越大,使得对显示面板进行驱动的源极驱动芯片输出的驱动电压的变化频率也越来越高,导致源极驱动芯片的功耗越来越大,使得源极驱动芯片发热严重,降低了其使用寿命。
技术问题
本申请实施例首先要解决的技术问题在于,提供一种显示面板的驱动装置,能降低源极驱动芯片的功耗。
本申请实施例还要解决的技术问题在于,提供一种显示面板的驱动方法,使驱动装置降低源极驱动芯片的功耗。
技术解决方案
为解决上述技术问题,本申请实施例首先提供了一种显示面板的驱动装置,其包括:
源极驱动模块,用于输出第一极性驱动信号和第二极性驱动信号,以对显示面板进行驱动;
M个正输出缓冲模块,其中,第1个正输出缓冲模块的工作电压范围的上限值为所述驱动装置接入的最大驱动电压,第M个正输出缓冲模块的工作电压范围的下限值为所述最大驱动电压的1/2,第i个正输出缓冲模块的工作电压范围的下限值等于第i+1个正输出缓冲模块的工作电压范围的上限值,M>i≥1且M、i为正整数;
正输入选择模块,与所述源极驱动模块和所述M个正输出缓冲模块连接,用于根据所述第一极性驱动信号,选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,以通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
正输出选择模块,分别与所述M个正输出缓冲模块和所述显示面板连接;
N个负输出缓冲模块,其中,第1个负输出缓冲模块的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块的工作电压范围的下限值为0,第j个负输出缓冲模块的工作电压范围的下限值等于第j+1个负输出缓冲模块的工作电压范围的上限值,N>j≥1且N、j为正整数;
负输入选择模块,与所述源极驱动模块和所述N个负输出缓冲模块连接,根据所述第二极性驱动信号,选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块;
负输出选择模块,分别与所述N个负输出缓冲模块和所述显示面板连接,选择所述目标负输出缓冲模块将输出缓冲之后的所述第二极性驱动信号输出至所述显示面板。
在一个实施例中,所述M≠N。
在一个实施例中,所述M=2,所述N=3,所述M个正输出缓冲模块包括:
第一正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述最大驱动电压和第一驱动电压;
第二正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述第一驱动电压和第二驱动电压;
所述N个负输出缓冲模块包括:
第一负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第二驱动电压和第三驱动电压;
第二负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第三驱动电压和第四驱动电压;
第三负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第四驱动电压和地。
在一个实施例中,所述M=N。
在一个实施例中,所述M=2,所述N=2,所述M个正输出缓冲模块包括:
第一正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述最大驱动电压的电压和第一驱动电压,用于在输入所述第一极性驱动信号时,对所述第一极性驱动信号进行输出缓冲;
第二正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述第一驱动电压和第二驱动电压,用于在输入所述第一极性驱动信号时,对所述第一极性驱动信号进行输出缓冲;
所述N个负输出缓冲模块包括:
第一负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第二驱动电压和第三驱动电压,用于在输入所述第二极性驱动信号时,对所述第二极性驱动信号进行输出缓冲;
第二负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第三驱动电压和地,用于在输入所述第二极性驱动信号时,对所述第二极性驱动信号进行输出缓冲。
在一个实施例中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
在一个实施例中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
为解决上述技术问题,本申请实施例还提供一种显示面板的驱动方法,所述驱动方法包括:
若输入第一极性驱动信号,则选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
若输入第二极性驱动信号,则选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
将输出缓冲后的所述第二极性驱动信号输出至所述显示面板。
本申请实施例还提供一种显示面板的驱动方法,其包括:
若输入第一极性驱动信号,则在M个正输出缓冲模块中,选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
若输入第二极性驱动信号,则在N个负输出缓冲模块中,选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
将输出缓冲后的所述第二极性驱动信号输出至所述显示面板;
其中,第1个正输出缓冲模块的工作电压范围的上限值为与显示面板连接的驱动装置接入的最大驱动电压,第M个正输出缓冲模块的工作电压范围的下限值为所述最大驱动电压的1/2,第i个正输出缓冲模块的工作电压范围的下限值等于第i+1个正输出缓冲模块的工作电压范围的上限值,M>i≥1且M、i为正整数;第1个负输出缓冲模块的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块的工作电压范围的下限值为0,第j个负输出缓冲模块的工作电压范围的下限值等于第j+1个负输出缓冲模块的工作电压范围的上限值,N>j≥1且N、j为正整数。
在一个实施例中,所述M≠N。
有益效果
本申请实施例通过提供一种应用于显示面板的驱动装置及驱动方法,根据接入的驱动信号的驱动极性和电压大小,选择对应的正输出缓冲模块或负输出缓冲模块对显示面板进行数据驱动,可以有效降低源极驱动芯片输出的驱动电压的变化频率,降低源极驱动芯片的功耗,从而有效改善其发热问题,提高其使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一个实施例提供的显示面板的驱动装置的结构示意图。
图2是本申请的另一个实施例提供的显示面板的驱动装置的结构示意图。
图3是本申请的再一个实施例提供的显示面板的驱动装置的结构示意图。
图4是本申请的一个实施例提供的显示面板的驱动方法的流程示意图。
图5是本申请的另一个实施例提供的显示面板的驱动方法的流程示意图。
图6是本申请的一个实施例提供的显示装置的结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。
如图1所示,本申请的一个实施例提供一种显示面板的驱动装置100,其包括源极驱动模块10、M个正输出缓冲模块、正输入选择模块20、正输出选择模块30、N个负输出缓冲模块、负输入选择模块50和负输出选择模块60。
在具体应用中,源极驱动模块可以是任意的具有对显示面板的像素进行数据驱动功能的器件或电路,例如,源极驱动芯片(Source Driver IC)或薄膜源极驱动芯片(S-COF,Source-Chip on Film)等。
在具体应用中,正输出缓冲模块的数量可以根据实际需要进行设定,例如,若需要对源极驱动芯片输出的第一极性驱动信号进行2等分,则可以设置2个正输出缓冲模块;若需要对源极驱动芯片输出的第一极性驱动信号进行3等分,则可以设置3个正输出缓冲模块。
如图1所示,本实施例中示例性的示出M个正输出缓冲模块(图1中表示为正输出缓冲模块11、正输出缓冲模块12、……、正输出缓冲模块1M);其中,第1个正输出缓冲模块11的工作电压范围的上限值为驱动装置接入的最大驱动电压,第M个正输出缓冲模块1M的工作电压范围的下限值为最大驱动电压的1/2,第i个正输出缓冲模块1i的工作电压范围的下限值等于第i+1个正输出缓冲模块1i+1的工作电压范围的上限值,M>i≥1且M、i为正整数。
图1示例性的示出第1个正输出缓冲模块11的工作电压范围的上限值和下限值分别为VAA和VAA1,第2个正输出缓冲模块12的工作电压范围的上限值和下限值分别为VAA1和VAA2……,第M个正输出缓冲模块1M的工作电压范围的上限值和下限值分别为VAA(M-1)和VAAM;其中,VAAM=1/2VAA。
在具体应用中,正输出缓冲模块包括第一输出缓冲单元,第一输出缓冲单元可以是任意的具有输出缓冲功能的器件或电路,例如,输出缓冲器。
在具体应用中,相邻的正输出缓冲模块的工作电压范围的范围差可以相同也可以不同,范围差是指一个工作电压范围的上限值和下限值之差,以第1个正输出缓冲模块为例,第1个正输出缓冲模块的工作电压范围的范围差=VAA-VAA1。
正输入选择模块20与源极驱动模块10和M个正输出缓冲模块11~1M连接,用于根据第一极性驱动信号,选择工作电压范围与第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,以通过目标正输出缓冲模块对第一极性驱动信号进行输出缓冲。
在具体应用中,正输入选择模块包括第一电子开关单元,第一电子开关单元可以是任意的具有电子开关功能的器件或电路,例如,三极管或金属氧化物半导体(metal oxide semiconductor,MOS)场效应晶体管。
正输出选择模块30,分别与M个正输出缓冲模块11~1M和显示面板200连接,用于选择目标正输出缓冲模块将输出缓冲之后的第一极性驱动信号输出至显示面板200。
在具体应用中,正输出选择模块包括第二电子开关单元,第二电子开关单元可以是任意的具有电子开关功能的器件或电路,例如,三极管或金属氧化物半导体(metal oxide semiconductor,MOS)场效应晶体管。
在具体应用中,负输出缓冲模块的数量可以根据实际需要进行设定,例如,若需要对源极驱动芯片输出的第二极性驱动信号进行2等分,则可以设置2个负输出缓冲模块;若需要对源极驱动芯片输出的第二极性驱动信号进行3等分,则可以设置3个负输出缓冲模块。
如图1所示,本实施例中示例性的示出N个负输出缓冲模块(图1中表示为负输出缓冲模块41、负输出缓冲模块42、……、负输出缓冲模块4M);其中,第1个负输出缓冲模块41的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块4N的工作电压范围的下限值为0,第j个负输出缓冲模块4j的工作电压范围的下限值等于第j+1个负输出缓冲模块4j+1的工作电压范围的上限值,N>j≥1且N、j为正整数。
图1示例性的示出第1个负输出缓冲模块41的工作电压范围的上限值和下限值分别为HVAA和HVAA1,第2个负输出缓冲模块42的工作电压范围的上限值和下限值分别为HVAA1和HVAA2……,第N个负输出缓冲模块4N的工作电压范围的上限值和下限值分别为HVAA(N-1)和HVAAN,其中,HVAA=VAAM =1/2VAA,HVAAN=0。
在具体应用中,工作电压等于0即等效于是接地,如图1所示,示例性的示出第N个负输出缓冲模块4N工作电压为0的一端接地GND。
在具体应用中,负输出缓冲模块包括第二输出缓冲单元,第二输出缓冲单元可以是任意的具有输出缓冲功能的器件或电路,例如,输出缓冲器。
在具体应用中,相邻的负输出缓冲模块的工作电压范围的范围差可以相同也可以不同,范围差是指一个工作电压范围的上限值和下限值之差,以第1负输出缓冲模块为例,第1负输出缓冲模块的工作电压范围的范围差=HVAA-HVAA1。
负输入选择模块50,与源极驱动模块10和N个输出缓冲模块41~4N连接,用于根据第二极性驱动信号,选择工作电压范围与第二极性驱动信号对应的第二输出缓冲模块作为目标负输出缓冲模块,以通过目标负输出缓冲模块对第二极性驱动信号进行输出缓冲。
在具体应用中,负输入选择模块包括第三电子开关单元,第三电子开关单元可以是任意的具有电子开关功能的器件或电路,例如,三极管或金属氧化物半导体(metal oxide semiconductor,MOS)场效应晶体管。
负输出选择模块60,分别与N个输出缓冲模块41~4N和显示面板200连接,用于选择与第二极性驱动信号对应的第二输出缓冲模块,以将进行了输出缓冲之后的第二极性驱动信号输出至显示面板200。
在具体应用中,负输出选择模块包括第四电子开关单元,第四电子开关单元可以是任意的具有电子开关功能的器件或电路,例如,三极管或金属氧化物半导体(metal oxide semiconductor,MOS)场效应晶体管。
在具体应用中,M和N的具体数值可以根据实际需要进行设置,M和N的数值大小直接决定了工作电压范围的划分数量,进而决定了源极驱动芯片输出的驱动电压的变化频率,M和N的数值越大,源极驱动芯片输出的驱动电压的变化频率越小,M可以等于N也可以不等于N。
本实施例通过提供一种显示面板的驱动装置,根据输入的驱动信号的驱动极性和电压大小,选择对应的正输出缓冲模块或负输出缓冲模块对显示面板进行数据驱动,可以有效降低源极驱动芯片的输出的驱动电压的变化频率,降低源极驱动芯片的功耗,从而有效改善其发热问题,提高其使用寿命。
如图2所示,在本发明的一个实施例中,M≠N,M=2,N=3,驱动装置100包括第一正输出缓冲模块11、第二正输出缓冲模块12、第一负输出缓冲模块41、第二负输出缓冲模块42和第三负输出缓冲模块43。
第一正输出缓冲模块11,分别与正输入选择模块20和正输出选择模块30连接,并分别接入最大驱动电压VAA和第一正驱动电压VAA1,用于在输入第一极性驱动信号时,对第一极性驱动信号进行输出缓冲。
在一个实施例中,第一驱动电压= 3/4最大驱动电压。
第二正输出缓冲模块12,分别与正输入选择模块20和正输出选择模块30连接,并分别接入第一正驱动电压VAA1和第二正驱动电压VAA2,用于在输入第一极性驱动信号时,对第一极性驱动信号进行输出缓冲。
在一个实施例中,第二正驱动电压= 1/2最大驱动电压。
第一负输出缓冲模块41,分别与负输入选择模块50和负输出选择模块60连接,并分别接入第一负驱动电压HVAA和第二负驱动电压HVAA1,用于在输入第二极性驱动信号时,对第二极性驱动信号进行输出缓冲,第一负驱动电压=第二正驱动电压,即HVAA=VAA2= 1/2VAA。
在一个实施例中,第二负驱动电压= 1/3最大驱动电压。
第二负输出缓冲模块42,分别与负输入选择模块50和负输出选择模块60连接,并分别接入第二负驱动电压HVAA1和第三负驱动电压HVAA2,用于在输入第二极性驱动信号时,对第二极性驱动信号进行输出缓冲。
在一个实施例中,HVAA2= 1/6VAA。
第三负输出缓冲模块43,分别与负输入选择模块50和负输出选择模块60连接,并分别接入第三驱动电压HVAA2和地GND(即HVAA3端),用于在输入第二极性驱动信号时,对第二极性驱动信号进行输出缓冲。
如图3所示,在本发明的一个实施例中,M=N=2且相邻电压范围的范围差相等,显示面板的驱动装置100包括第一正输出缓冲模块11、第二正输出缓冲模块12、第一负输出缓冲模块41和第二负输出缓冲模块42。
第一正输出缓冲模块11,分别与正输入选择模块20和正输出选择模块30连接,并分别接入最大驱动电压VAA和第一正驱动电压VAA1,用于在输入第一极性驱动信号时,对第一极性驱动信号进行输出缓冲。
在一个实施例中,第一正驱动电压= 3/4最大驱动电压。
第二正输出缓冲模块12,分别与正输入选择模块20和正输出选择模块30连接,并分别接入第一正驱动电压VAA1和第正二驱动电压VAA2,用于在输入第一极性驱动信号时,对第一极性驱动信号进行输出缓冲。
在一个实施例中,第二正驱动电压= 1/2最大驱动电压。
第一负输出缓冲模块41,分别与负输入选择模块50和负输出选择模块60连接,并分别接入第一负驱动电压HVAA和第二负驱动电压HVAA1,用于在输入第二极性驱动信号时,对第二极性驱动信号进行输出缓冲,第一负驱动电压=第二正驱动电压,即HVAA=VAA2= 1/2VAA。
在一个实施例中,第二负驱动电压= 1/4最大驱动电压。
第二负输出缓冲模块42,分别与负输入选择模块50和负输出选择模块60连接,并分别接入第二负驱动电压HVAA1和地GND(即HVAA2端),用于在输入第二极性驱动信号时,对第二极性驱动信号进行输出缓冲。
应当理解的是,本申请上述实施例中正驱动电压和负驱动电压并不是指电压的极性为正或负,而是指的电压的相对大小,正驱动电压的电压值大于或等于负驱动电压的电压值。
在一个实施例中,驱动装置还包括数模转换模块,分别与正输入选择模块和负输入选择模块连接,用于输入第一极性驱动数据和第二极性驱动数据并分别转换为第一极性驱动信号和第二极性驱动信号。
在一个实施例中,数模转换模块具体可以为数模转换器,用于将数字信号转换成模拟信号。
在一个实施例中,驱动装置还包括移位寄存模块、数据寄存模块、数据锁存模块和电平转换模块;
其中,移位寄存模块,用于按照一定的移位方向输出驱动数据;
数据寄存模块,与移位寄存模块连接,用于对驱动数据进行存储;
数据锁存模块,与数据寄存模块连接,用于对驱动数据进行锁存,并在接收到第一极性驱动信号时,输出第一极性驱动数据,在接收到第二极性驱动信号时,输出第二极性驱动数据;
电平转换模块,分别与数据锁存模块和数模转换模块连接,用于对第一极性驱动数据和第二极性驱动数据进行电平转换,并将进行电平转换后的所述第一极性驱动数据和所述第二极性驱动数据分别输出给数模转换模块。
在具体应用中,移位寄存模块具体可以为单向移位寄存器或双向移位寄存器,数据寄存模块具体可以为数据寄存器,数据锁存模块具体可以为数据锁存器,电平转换模块具体可以为电平转换电路。
在一个实施例中,驱动装置还包括控制模块,分别与源极驱动模块、正输入选择模块、正输出选择模块、负输入选择模块和负输出选择模块连接,用于对与其连接的各模块的工作状态进行控制。
在一个实施例中,显示面板可以为任意类型的显示面板,例如基于LCD( Liquid Crystal Display,液晶显示装置)技术的液晶显示面板、基于OLED(Organic Electroluminescence Display,有机电激光显示)技术的有机电激光显示面板、基于QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)技术的量子点发光二极管显示面板或曲面显示面板等。
如图4所示,本申请的一个实施例还提供一种显示面板的驱动方法,其包括:
步骤S401:若输入第一极性驱动信号,则选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
步骤S402:将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
步骤S403:若输入第二极性驱动信号,则选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
步骤S404:将输出缓冲后的所述第二极性驱动信号输出至所述显示面板。
在具体应用中,本实施例所提供的方法可以基于上述任一实施例中的驱动装置来实现,其中,步骤S401~S404可以分别通过正输入选择模块、正输出选择模块、负输入选择模块和负输出选择模块来执行。
如图5所示,本申请的一个实施例还提供一种显示面板的驱动方法,其包括:
步骤S501:若输入第一极性驱动信号,则在M个正输出缓冲模块中,选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
步骤S502:将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
步骤S503:若输入第二极性驱动信号,则在N个负输出缓冲模块中,选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
步骤S504:将输出缓冲后的所述第二极性驱动信号输出至所述显示面板;
其中,第1个正输出缓冲模块的工作电压范围的上限值为与显示面板连接的驱动装置接入的最大驱动电压,第M个正输出缓冲模块的工作电压范围的下限值为所述最大驱动电压的1/2,第i个正输出缓冲模块的工作电压范围的下限值等于第i+1个正输出缓冲模块的工作电压范围的上限值,M>i≥1且M、i为正整数;第1个负输出缓冲模块的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块的工作电压范围的下限值为0,第j个负输出缓冲模块的工作电压范围的下限值等于第j+1个负输出缓冲模块的工作电压范围的上限值,N>j≥1且N、j为正整数。
在具体应用中,本实施例所提供的方法可以基于上述任一实施例中的驱动装置来实现,其中,步骤S501~S504可以分别通过正输入选择模块、正输出选择模块、负输入选择模块和负输出选择模块来执行。
本申请所有实施例中的模块均可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC (Application Specific Integrated Circuit,专用集成电路)、现场可编程逻辑门器件来实现。
如图6所示,本发明的一个实施例提供一种显示装置600,其包括上述的驱动装置100及与驱动装置100的输出端连接的显示面板601。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例通过提供一种应用于显示面板的驱动装置及驱动方法,根据接入的驱动信号的驱动极性和电压大小,选择对应的正输出缓冲模块或负输出缓冲模块对显示面板进行数据驱动,可以有效降低源极驱动芯片输出的驱动电压的变化频率,降低源极驱动芯片的功耗,从而有效改善其发热问题,提高其使用寿命。

Claims (18)

  1. 一种显示面板的驱动装置,包括:
    源极驱动模块,用于输出第一极性驱动信号和第二极性驱动信号,以对显示面板进行驱动;
    M个正输出缓冲模块,其中,第1个正输出缓冲模块的工作电压范围的上限值为所述驱动装置接入的最大驱动电压,第M个正输出缓冲模块的工作电压范围的下限值为所述最大驱动电压的1/2,第i个正输出缓冲模块的工作电压范围的下限值等于第i+1个正输出缓冲模块的工作电压范围的上限值,M>i≥1且M、i为正整数;
    正输入选择模块,与所述源极驱动模块和所述M个正输出缓冲模块连接,用于根据所述第一极性驱动信号,选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,以通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
    正输出选择模块,分别与所述M个正输出缓冲模块和所述显示面板连接;
    N个负输出缓冲模块,其中,第1个负输出缓冲模块的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块的工作电压范围的下限值为0,第j个负输出缓冲模块的工作电压范围的下限值等于第j+1个负输出缓冲模块的工作电压范围的上限值,N>j≥1且N、j为正整数;
    负输入选择模块,与所述源极驱动模块和所述N个负输出缓冲模块连接,根据所述第二极性驱动信号,选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块;
    负输出选择模块,分别与所述N个负输出缓冲模块和所述显示面板连接,选择所述目标负输出缓冲模块将输出缓冲之后的所述第二极性驱动信号输出至所述显示面板。
  2. 如权利要求1所述的显示面板的驱动装置,其中,所述M≠N。
  3. 如权利要求2所述的显示面板的驱动装置,其中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
  4. 如权利要求2所述的显示面板的驱动装置,其中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
  5. 如权利要求2所述的显示面板的驱动装置,其中,所述M=2,所述N=3,所述M个正输出缓冲模块包括:
    第一正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述最大驱动电压和第一驱动电压;
    第二正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述第一驱动电压和第二驱动电压;
    所述N个负输出缓冲模块包括:
    第一负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第二驱动电压和第三驱动电压;
    第二负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第三驱动电压和第四驱动电压;
    第三负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第四驱动电压和地。
  6. 如权利要求5所述的显示面板的驱动装置,其中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
  7. 如权利要求5所述的显示面板的驱动装置,其中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
  8. 如权利要求1所述的显示面板的驱动装置,其中,所述M=N。
  9. 如权利要求8所述的显示面板的驱动装置,其中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
  10. 如权利要求8所述的显示面板的驱动装置,其中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
  11. 如权利要求8所述的显示面板的驱动装置,其中,所述M=2,所述N=2,所述M个正输出缓冲模块包括:
    第一正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述最大驱动电压的电压和第一驱动电压;
    第二正输出缓冲模块,分别与所述正输入选择模块和所述正输出选择模块连接,并分别接入所述第一驱动电压和第二驱动电压;
    所述N个负输出缓冲模块包括:
    第一负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第二驱动电压和第三驱动电压;
    第二负输出缓冲模块,分别与所述负输入选择模块和所述负输出选择模块连接,并分别接入所述第三驱动电压和地。
  12. 如权利要求11所述的显示面板的驱动装置,其中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
  13. 如权利要求11所述的显示面板的驱动装置,其中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
  14. 如权利要求1所述的显示面板的驱动装置,其中,所述正输出缓冲模块包括第一输出缓冲单元,所述负输出缓冲模块包括第二输出缓冲单元。
  15. 如权利要求1所述的显示面板的驱动装置,其中,所述正输入选择模块包括第一电子开关单元,所述正输出选择模块包括第二电子开关单元,所述负输入选择模块包括第三电子开关单元,所述负输出选择模块包括第四电子开关单元。
  16. 一种显示面板的驱动方法,其中,所述驱动方法包括:
    若输入第一极性驱动信号,则选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
    将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
    若输入第二极性驱动信号,则选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
    将输出缓冲后的所述第二极性驱动信号输出至所述显示面板。
  17. 一种显示面板的驱动方法,其中,所述驱动方法包括:
    若输入第一极性驱动信号,则在M个正输出缓冲模块中,选择工作电压范围与所述第一极性驱动信号对应的正输出缓冲模块作为目标正输出缓冲模块,通过所述目标正输出缓冲模块对所述第一极性驱动信号进行输出缓冲;
    将输出缓冲后的所述第一极性驱动信号输出至所述显示面板;
    若输入第二极性驱动信号,则在N个负输出缓冲模块中,选择工作电压范围与所述第二极性驱动信号对应的负输出缓冲模块作为目标负输出缓冲模块,通过所述目标负输出缓冲模块对所述第二极性驱动信号进行输出缓冲;
    将输出缓冲后的所述第二极性驱动信号输出至所述显示面板;
    其中,第1个正输出缓冲模块的工作电压范围的上限值为与显示面板连接的驱动装置接入的最大驱动电压,第M个正输出缓冲模块的工作电压范围的下限值为所述最大驱动电压的1/2,第i个正输出缓冲模块的工作电压范围的下限值等于第i+1个正输出缓冲模块的工作电压范围的上限值,M>i≥1且M、i为正整数;第1个负输出缓冲模块的工作电压范围的上限值为所述最大驱动电压的1/2,第N个负输出缓冲模块的工作电压范围的下限值为0,第j个负输出缓冲模块的工作电压范围的下限值等于第j+1个负输出缓冲模块的工作电压范围的上限值,N>j≥1且N、j为正整数。
  18. 如权利要求17所述的显示面板的驱动方法,其中,所述M≠N。
PCT/CN2018/096436 2017-09-28 2018-07-20 一种显示面板的驱动装置及驱动方法 WO2019062294A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/650,261 US11120721B2 (en) 2017-09-28 2018-07-20 Driver device and driving method for display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710893819.9A CN107610633B (zh) 2017-09-28 2017-09-28 一种显示面板的驱动装置及驱动方法
CN201710893819.9 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019062294A1 true WO2019062294A1 (zh) 2019-04-04

Family

ID=61058374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096436 WO2019062294A1 (zh) 2017-09-28 2018-07-20 一种显示面板的驱动装置及驱动方法

Country Status (3)

Country Link
US (1) US11120721B2 (zh)
CN (1) CN107610633B (zh)
WO (1) WO2019062294A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610633B (zh) * 2017-09-28 2020-12-04 惠科股份有限公司 一种显示面板的驱动装置及驱动方法
CN115424591B (zh) * 2022-08-30 2023-08-04 惠科股份有限公司 显示面板及其驱动方法、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030184550A1 (en) * 2002-03-28 2003-10-02 Nally Robert M. Virtual frame buffer control system
US20090052261A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd. Data strobe buffer and memory system including the same
CN101551983A (zh) * 2008-04-02 2009-10-07 奇景光电股份有限公司 应用于显示器的源极驱动电路的缓冲器与其控制方法
CN105630055A (zh) * 2015-12-30 2016-06-01 深圳市华星光电技术有限公司 模拟缓冲放大器、用于输入电压分组的控制装置及方法
CN107610633A (zh) * 2017-09-28 2018-01-19 惠科股份有限公司 一种显示面板的驱动装置及驱动方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292217B2 (en) * 2004-03-18 2007-11-06 Novatek Microelectronics Corp. Source driver and liquid crystal display using the same
JP4721763B2 (ja) * 2005-04-26 2011-07-13 ルネサスエレクトロニクス株式会社 D/a変換回路、ディスプレイドライバ、及び表示装置
JP4466735B2 (ja) * 2007-12-28 2010-05-26 ソニー株式会社 信号線駆動回路および表示装置、並びに電子機器
US8368673B2 (en) * 2008-09-30 2013-02-05 Himax Technologies Limited Output buffer and source driver using the same
KR101037561B1 (ko) * 2009-02-18 2011-05-27 주식회사 실리콘웍스 전류소모가 적은 액정디스플레이 구동회로
JP2011008028A (ja) * 2009-06-25 2011-01-13 Sony Corp 信号線駆動回路および表示装置、並びに電子機器
TWI430707B (zh) * 2010-11-18 2014-03-11 Au Optronics Corp 液晶顯示器及其源極驅動裝置與面板的驅動方法
KR102098879B1 (ko) * 2013-09-04 2020-05-22 엘지디스플레이 주식회사 표시장치용 구동회로 및 이의 구동방법
TWI521496B (zh) * 2014-02-11 2016-02-11 聯詠科技股份有限公司 緩衝電路、面板模組及顯示驅動方法
CN105047157B (zh) * 2015-08-19 2017-10-24 深圳市华星光电技术有限公司 一种源极驱动电路
KR102636679B1 (ko) * 2016-08-31 2024-02-14 엘지디스플레이 주식회사 터치 디스플레이 장치 및 그 구동 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030184550A1 (en) * 2002-03-28 2003-10-02 Nally Robert M. Virtual frame buffer control system
US20090052261A1 (en) * 2007-08-24 2009-02-26 Samsung Electronics Co., Ltd. Data strobe buffer and memory system including the same
CN101551983A (zh) * 2008-04-02 2009-10-07 奇景光电股份有限公司 应用于显示器的源极驱动电路的缓冲器与其控制方法
CN105630055A (zh) * 2015-12-30 2016-06-01 深圳市华星光电技术有限公司 模拟缓冲放大器、用于输入电压分组的控制装置及方法
CN107610633A (zh) * 2017-09-28 2018-01-19 惠科股份有限公司 一种显示面板的驱动装置及驱动方法

Also Published As

Publication number Publication date
US20210209985A1 (en) 2021-07-08
CN107610633A (zh) 2018-01-19
CN107610633B (zh) 2020-12-04
US11120721B2 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN102201194B (zh) 移位寄存器电路
US10699643B2 (en) Pixel driving compensation circuit, driving compensation method therefor and display device
JP2022503421A (ja) アレイ基板、駆動方法、有機発光表示パネル及び表示装置
US11004375B2 (en) Signal protection circuit, driving method thereof, and device
US11257409B1 (en) Gate on array circuit
CN105807518A (zh) 液晶显示面板
US10657864B2 (en) Drive circuit of display device and driving method for display device having single-ended to differential modules
WO2016041241A1 (zh) 一种源极驱动电路及显示装置
US20170287405A1 (en) Source driving circuits, source driving devices, display panels and display devices
US10580380B2 (en) Level conversion circuit, display apparatus, and driving method
CN105047155A (zh) 液晶显示装置及其goa扫描电路
WO2019062294A1 (zh) 一种显示面板的驱动装置及驱动方法
US20060262068A1 (en) Semiconductor integrated circuit device and liquid crystal display driving semiconductor integrated circuit device
US20050264551A1 (en) Multi-driving circuit and active-matrix display device using the same
US9559696B2 (en) Gate driver and related circuit buffer
CN108877675B (zh) 一种像素电路、显示面板及其驱动方法、显示装置
US20140055332A1 (en) Shift registers, display panels, display devices, and electronic devices
US10565935B2 (en) Scan driving circuit for OLED and display panel
CN101950545B (zh) 可降低功率消耗的液晶显示器及相关驱动方法
CN111613184B (zh) 源驱动电路和显示装置
US10650767B2 (en) Scan-driving circuit and a display device
US20190035348A1 (en) Scan driving circuit and apparatus thereof
WO2018233053A1 (zh) 显示面板的驱动电路、方法及显示装置
CN214624393U (zh) Oled栅极驱动电路、显示面板驱动装置和显示装置
TWI251187B (en) Data driver and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863089

Country of ref document: EP

Kind code of ref document: A1