WO2019062076A1 - 一种热气溶胶型灭火组合物及其制备方法 - Google Patents

一种热气溶胶型灭火组合物及其制备方法 Download PDF

Info

Publication number
WO2019062076A1
WO2019062076A1 PCT/CN2018/082988 CN2018082988W WO2019062076A1 WO 2019062076 A1 WO2019062076 A1 WO 2019062076A1 CN 2018082988 W CN2018082988 W CN 2018082988W WO 2019062076 A1 WO2019062076 A1 WO 2019062076A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire extinguishing
extinguishing composition
hot aerosol
polyvinyl alcohol
aerosol
Prior art date
Application number
PCT/CN2018/082988
Other languages
English (en)
French (fr)
Inventor
孟祥豹
张延松
王振平
陈海燕
俞海玲
邓雪翔
杜文州
徐翠翠
王相
解庆鑫
胡凯
Original Assignee
山东科技大学
兖矿集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学, 兖矿集团有限公司 filed Critical 山东科技大学
Publication of WO2019062076A1 publication Critical patent/WO2019062076A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/06Fire-extinguishing compositions; Use of chemical substances in extinguishing fires containing gas-producing, chemically-reactive components

Definitions

  • the invention relates to the field of fire extinguishing, in particular to a hot aerosol type fire extinguishing composition and a preparation method thereof.
  • the commonly used fire extinguishing agents can be roughly classified into the following categories: water-based fire extinguishing agents, gas fire extinguishing agents, powder fire extinguishing agents, aerosol fire extinguishing agents, and halon fire extinguishing agents.
  • the same performance indicators have their own advantages and disadvantages, among which: Halon fire extinguishing agent has the characteristics of good fire extinguishing effect and high fire extinguishing efficiency.
  • the principle of water-based fire extinguishing agents is mainly through the cooling, suffocation and heat radiation of fine water mist to achieve the purpose of fire extinguishing;
  • the fire extinguishing agent mainly reduces the oxygen content of the fire zone by spraying inert gas to achieve the purpose of suffocating fire;
  • the main principle of the powder fire extinguishing agent is to spray the powder under the action of high pressure gas, consume free radicals in the flame, generate inert gas, etc. The purpose of the fire.
  • the existing aerosol fire extinguishing agents can be mainly divided into S type and K type. These fire extinguishing agents mainly use inert gas and free radicals released by redox reaction to act on the fire area, and pass the inert gas suffocation and free radical chemistry. React to achieve the purpose of fire fighting.
  • the main disadvantages are: the large heat release of the redox reaction, which makes the structure of the aerosol fire extinguishing device have a higher temperature; some aerosol fire extinguishing agents produce aerosols with low efficiency and long time, which is not conducive to timely control of the initial fire.
  • the technical solution of the present invention includes:
  • a hot aerosol fire extinguishing composition comprising, by weight percent:
  • the hot aerosol type fire extinguishing composition comprises, by weight percentage percentage:
  • the hot aerosol type fire extinguishing composition wherein the polyvinyl alcohol is diluted with distilled water before use, wherein a mass ratio of polyvinyl alcohol to distilled water is 1:9-13.
  • a method of preparing the hot aerosol type fire extinguishing composition comprising the steps of:
  • the above raw material components are weighed according to the corresponding proportions, and the raw material components are respectively ground into powder by a mill; then, after passing through a 500 mesh sieve, the sieved powder is collected and used;
  • the above materials are dried in an explosion-proof oven, the explosion-proof oven is heated from room temperature to 40 ° C at a rate of 15 ° C / h, and then dried at 40 ° C constant temperature until the moisture content of the material is less than or equal to 0.8%, to obtain a dry material;
  • the obtained dry material is put into a mixer, and then the remaining polyvinyl alcohol is diluted with distilled water, and the diluted polyethylene is added to the mixer to be evenly mixed to obtain a semi-finished product;
  • the prepared semi-finished product is placed in a drug cartridge, placed on a press table, and compacted under a pressure of 5 MPa to obtain the above hot aerosol-type fire extinguishing composition.
  • step A further comprises: collecting the remaining material in the sieve pan into the next batch of solid raw materials, and filling the regrind mill to grind.
  • step B further comprises: the jet pressure of the rotary granulator is 0.5 Mp, the rotation speed of the spray pump is 5 to 25 r ⁇ min -1 , and the rotation speed of the feeder is 5 to 25 r ⁇ min. -1 , the dilution zero density is 0.64g/ml, the angle of repose is 32°, and the particle size control index of granulation is the final yield of 28-32 mesh is greater than 90%.
  • the inner diameter of the cartridge in the above step E is 40 mm, the height is 100 mm, and the loading amount is 50-100 g.
  • the invention provides a hot aerosol type fire extinguishing composition and a preparation method thereof, which have the advantages of less dosage, fast fire extinguishing speed and high fire extinguishing efficiency, and are particularly suitable for fire extinguishing of oil fire sources
  • the hot aerosol type fire extinguishing composition contains An oxidizing agent, a combustible agent, a combustion regulator, an additive, a modifier, and a binder; wherein the oxidizing agent is a mixture of calcium metaphosphate and calcium pyrophosphate, the combustible agent is lactose and carbon powder, and the combustion regulator is nanocarboxymethyl fiber.
  • the additives are basic magnesium carbonate and calcium carbonate, the modifier is potassium oxalate, and the binder is polyvinyl alcohol.
  • the basic magnesium carbonate and calcium carbonate in the composition are thermally decomposed at a high temperature to release a large amount of carbon dioxide, which is used for fire extinguishing; in the thermal decomposition process of basic magnesium carbonate and calcium carbonate (the basic magnesium carbonate and calcium carbonate are thermally decomposed, Part of it is carried out in an aerosol fire extinguishing device, and part of it is fired and then burned.) It is necessary to absorb a large amount of heat, which can lower the flame temperature at the ignition point, assist in extinguishing the fire, and help reduce the nozzle temperature of the aerosol fire extinguishing device. It effectively guarantees the safety of the user of the fire-fighting device and brings convenience and safety in use.
  • the basic magnesium carbonate and calcium carbonate are thermally decomposed, and the heat absorption causes a decrease in the temperature of the ignition point, which further leads to the combustion of the combustible molecules and the gasified combustible molecules in the combustion process of the combustion products.
  • the heat of cracking into free radicals is reduced, so that the rate of combustion (continued) combustion reaction is somewhat suppressed.
  • the calcium oxide formed by the decomposition of calcium carbonate can chemically react with carbon in the combustion product to generate carbon dioxide. That is, converting the combustible component (carbon powder) in the combustion product into a non-combustible inert gas (carbon dioxide) is advantageous for delaying the burning rate of the combustion product, reducing the oxygen content of the combustion space, and promoting the fire extinguishing speed and efficiency.
  • the combustion products will continue to crack during the fire combustion process (ie, during the process of sustaining the combustion reaction) to generate a large number of active groups such as H, ⁇ O, ⁇ OH, which are indispensable for combustion. .
  • the basic magnesium carbonate and calcium carbonate are decomposed at a high temperature, and the generated magnesium oxide and calcium oxide are chemically reacted with the above-mentioned reactive groups (ie, active groups such as ⁇ H, ⁇ O, ⁇ OH, etc.), thereby These reactive groups are partially consumed, and the reaction between these reactive groups is suppressed, thereby interrupting the combustion chain and suppressing the continuation of flame combustion.
  • reactive groups ie, active groups such as ⁇ H, ⁇ O, ⁇ OH, etc.
  • the oxidant and reducing agent in the composition are ignited in the aerosol fire extinguishing device by the electric starter of the aerosol fire extinguishing device, and a severe redox reaction occurs, and a large amount of heat is released, and the calcium metaphosphate in the composition, Calcium pyrophosphate, carbon powder and lactose then begin to incompletely burn, producing a large amount of flue gas, which is mixed with air to form an aerosol;
  • the nano-carboxymethylcellulose component in the composition is mainly used as a combustion regulator because of its flammability, low ignition point and large specific surface area. That is, it is used to ignite/accelerate the burning rate of the combustible component in the composition to promote the rapid formation of a large amount of aerosol in the container at the beginning of the operation of the aerosol fire extinguishing device.
  • the inorganic oxide solid particles generated by decomposition at a high temperature cover the surface of the object to be ignited, and further act to isolate oxygen from the surface of the fired object, thereby prompting the flame to extinguish due to anoxic suffocation.
  • the present invention provides a hot aerosol type fire extinguishing composition and a preparation method thereof, and the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the present invention provides a hot aerosol fire extinguishing composition
  • a hot aerosol fire extinguishing composition comprising, by weight percent, 25.7% to 37.6% calcium metaphosphate, 10.4% to 22.1% calcium pyrophosphate, 5.2% to 18.1% lactose, 0.9% to 3.5% of carbon powder, 1.3% to 4.9% of nano-carboxymethyl cellulose, 12.5% to 28.6% of basic magnesium carbonate, 10.6% to 22.8% of calcium carbonate, and 0.3% to 3.7% of potassium oxalate With 1.2% to 5.6% of polyvinyl alcohol.
  • the above polyvinyl alcohol is diluted with distilled water as a diluent before use, wherein the mass ratio of polyvinyl alcohol to distilled water is 1:9-13, which has better cost performance in use, and is convenient for bonding of fire extinguishing agent.
  • the press forming operation has good press forming quality.
  • the present invention also provides a method of preparing the above hot aerosol type fire extinguishing composition, comprising the steps of:
  • Step one weigh the above raw material components according to the corresponding proportions, and respectively grind the raw material components into powder by a mill; then, pass through a 500 mesh sieve, collect the sieved powder, and set aside;
  • step two the collected sieved powder is separately added to the tray of the rotary granulator, and 1/3 of the total amount of polyvinyl alcohol is added to the storage tank of the rotary granulator; then, the rotary granulator is started. After the materials are thoroughly mixed, the spray pump of the rotary granulator is turned on to perform granulation to obtain materials;
  • the above materials are dried in an explosion-proof oven, and the explosion-proof oven is heated from room temperature to 40 ° C at a rate of 15 ° C / h, and then dried at a constant temperature of 40 ° C until the moisture content of the material is less than or equal to 0.8% to obtain a dry material. ;
  • Step 4 the obtained dry material is put into a mixer, and then the remaining polyvinyl alcohol is diluted with distilled water, and the diluted polyethylene is added to the mixer to be evenly mixed to obtain a semi-finished product;
  • step 5 the prepared semi-finished product is placed in a drug cartridge, placed on a press table, and compacted under a pressure of 5 MPa to obtain the above hot aerosol-type fire extinguishing composition.
  • the above step 1 specifically includes: collecting the remaining material in the sieve pan into the next batch of solid raw materials, and filling the refiner to grind.
  • the above step 2 specifically includes: the jet pressure of the rotary granulator is 0.5 Mp, the rotation speed of the spray pump is 5 to 25 r ⁇ min -1 , the rotation speed of the feeder is 5 to 25 r ⁇ min -1 , and the dilution and zero density are 0.64g/ml, the angle of repose is 32°, and the particle size control index of granulation is that the final yield of 28-32 mesh is greater than 90%.
  • the inner diameter of the cartridge in the above step E is 40 mm, the height is 100 mm, and the loading amount is 50-100 g.
  • the raw material formula of the composite aerosol fire extinguishing composition is: mass fraction, calcium metaphosphate 26.5%, calcium pyrophosphate 17%, lactose 9%, carbon powder 2.5%, nano-carboxymethyl cellulose 4%, basic magnesium carbonate 23%, calcium carbonate 14%, potassium oxalate 2%, polyvinyl alcohol 2% (distilled with distilled water as a diluent in a mass ratio of 1:9).
  • the press-formed product (with a cartridge) is placed in a small aerosol fire extinguishing device, and an electric starter is installed (no coolant or compressed gas in the aerosol fire extinguishing device), and the implementation area is 0.1 m 2 oil.
  • the fire extinguishing experiment of the disk, the fuel is commercial grade n-heptane.
  • the quality of the product used in the fire extinguishing experiment was 50g, and the experimental results are shown in Table 1.
  • the raw material formula of the aerosol fire extinguishing composition is: mass fraction, calcium metaphosphate 27%, calcium pyrophosphate 15%, lactose 11%, carbon powder 2.5%, nano carboxymethyl cellulose 3%, basic magnesium carbonate 21 %, calcium carbonate 16%, potassium oxalate 2.5%, polyvinyl alcohol 2% (distilled by distilled water as a thinner according to a mass ratio of 1:11).
  • the press-formed product (with a cartridge) is placed in a small aerosol fire extinguishing device, and an electric starter is installed (no coolant or compressed gas in the aerosol fire extinguishing device), and the implementation area is 0.1 m 2 oil.
  • the fire extinguishing experiment of the disk, the fuel is commercial grade n-heptane.
  • the quality of the product used in the fire extinguishing experiment was 50g, and the experimental results are shown in Table 1.
  • the raw material formula of the aerosol fire extinguishing composition is: by mass fraction, calcium metaphosphate 30%, calcium pyrophosphate 14%, lactose 10%, carbon powder 2%, nano carboxymethyl cellulose 2%, basic magnesium carbonate 20 %, calcium carbonate 16%, potassium oxalate 3.5%, polyvinyl alcohol 2.5% (distilled in distilled water as a thinner according to a mass ratio of 1:11).
  • the press-formed product (with a cartridge) is placed in a small aerosol fire extinguishing device, and an electric starter is installed (no coolant or compressed gas in the aerosol fire extinguishing device), and the implementation area is 0.1 m 2 oil.
  • the fire extinguishing experiment of the disk, the fuel is commercial grade n-heptane.
  • the quality of the product used in the fire extinguishing experiment was 50g, and the experimental results are shown in Table 1.
  • the raw material formula of the aerosol fire extinguishing composition is: mass fraction, calcium metaphosphate 25%, calcium pyrophosphate 13%, lactose 14%, carbon powder 2%, nano carboxymethyl cellulose 4%, basic magnesium carbonate 19 %, calcium carbonate 18%, potassium oxalate 3%, polyvinyl alcohol 2% (distilled with distilled water for dilution in a mass ratio of 1:13).
  • the press-formed product (with a cartridge) is placed in a small aerosol fire extinguishing device, and an electric starter is installed (no coolant or compressed gas in the aerosol fire extinguishing device), and the implementation area is 0.1 m 2 oil.
  • the fire extinguishing experiment of the disk, the fuel is commercial grade n-heptane.
  • the quality of the product used in the fire extinguishing experiment was 50g.
  • the experimental results are shown in Table 1 below.
  • the fire extinguishing agent is a commercially available S-type fire extinguishing agent, and the mass used for the fire extinguishing experiment is 50g.
  • the fire extinguishing agent is a commercially available K type fire extinguishing agent, and the mass used for the fire extinguishing experiment is 50g.
  • Table 1 is a comparison table of the results of the fire-extinguishing comparison test of Example 1 - Example 4 and Comparative Example 1 and Comparative Example 2.
  • the average aerosol continuous injection time required for the fire extinguishing of Examples 1-4 is about 12.5 s.
  • the average aerosol continuous injection time required for fire extinguishing of the same type of commercially available K-type fire extinguishing agent and commercially available S-type fire extinguishing agent product is about It is 19.1s. It is shown that the aerosol continuous spraying time required for the fire extinguishing of Examples 1 to 4 is shortened by about 34.6%.
  • the specific fire extinguishing mechanism of the present invention is:
  • the basic magnesium carbonate and calcium carbonate in the composition are thermally decomposed at a high temperature to release a large amount of carbon dioxide, which is used for fire extinguishing; in the thermal decomposition process of basic magnesium carbonate and calcium carbonate (the basic magnesium carbonate and calcium carbonate are thermally decomposed, Part of it is carried out in an aerosol fire extinguishing device, and part of it is fired and then burned.) It is necessary to absorb a large amount of heat, which can lower the flame temperature at the ignition point, assist in extinguishing the fire, and help reduce the nozzle temperature of the aerosol fire extinguishing device. It effectively guarantees the safety of the user of the fire-fighting device and brings convenience and safety in use.
  • the basic magnesium carbonate and calcium carbonate are thermally decomposed, and the heat absorption causes a decrease in the temperature of the ignition point, which further leads to the combustion of the combustible molecules and the gasified combustible molecules in the combustion process of the combustion products.
  • the heat of cracking into free radicals is reduced, so that the rate of combustion (continued) combustion reaction is somewhat suppressed.
  • the calcium oxide formed by the decomposition of calcium carbonate can chemically react with carbon in the combustion product to generate carbon dioxide. That is, converting the combustible component (carbon powder) in the combustion product into a non-combustible inert gas (carbon dioxide) is advantageous for delaying the burning rate of the combustion product, reducing the oxygen content of the combustion space, and promoting the fire extinguishing speed and efficiency.
  • the combustion products will continue to crack during the fire combustion process (ie, during the process of sustaining the combustion reaction) to generate a large number of active groups such as H, ⁇ O, ⁇ OH, which are indispensable for combustion. .
  • the basic magnesium carbonate and calcium carbonate are decomposed at a high temperature, and the generated magnesium oxide and calcium oxide are chemically reacted with the above-mentioned reactive groups (ie, active groups such as ⁇ H, ⁇ O, ⁇ OH, etc.), thereby These reactive groups are partially consumed, and the reaction between these reactive groups is suppressed, thereby interrupting the combustion chain and suppressing the continuation of flame combustion.
  • reactive groups ie, active groups such as ⁇ H, ⁇ O, ⁇ OH, etc.
  • the oxidant and reducing agent in the composition are ignited in the aerosol fire extinguishing device by the electric starter of the aerosol fire extinguishing device, and a severe redox reaction occurs, and a large amount of heat is released, and the calcium metaphosphate in the composition, Calcium pyrophosphate, carbon powder and lactose then begin to incompletely burn, producing a large amount of flue gas, which is mixed with air to form an aerosol;
  • the nano-carboxymethylcellulose component in the composition is mainly used as a combustion regulator because of its flammability, low ignition point and large specific surface area. That is, it is used to ignite/accelerate the burning rate of the combustible components in the composition to promote the rapid formation of a large amount of aerosol in the container at the beginning of the operation of the aerosol fire extinguishing device.
  • the inorganic oxide solid particles generated by decomposition at high temperature cover the surface of the fired object, and further act to isolate oxygen from the surface of the fired object, thereby prompting the flame to extinguish the process due to lack of oxygen and suffocation.
  • the hot aerosol type fire extinguishing composition of the above technical solution can be directly used in the aerosol fire extinguishing device (the gas is generated in the device to generate a certain pressure). No pressure storage required. This effectively enhances the convenience and safety of the fire extinguishing composition during storage and use, and has a significant comparative advantage over conventional conventional products of the prior art.
  • the components of the hot aerosol fire extinguishing composition of the above technical solution have a very obvious function and function of "division and cooperation", and the components have obvious synergistic effects.
  • the mutual cooperation and mutual promotion make the aerosol fire extinguishing composition as a whole have good fire extinguishing ability and fire extinguishing efficiency.
  • the fire-extinguishing efficiency of the hot aerosol-type fire extinguishing composition product of the present invention is significantly higher than that of the commercially available K-type fire extinguishing agent and the commercially available S-type fire extinguishing agent product of the same type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

一种热气溶胶型灭火组合物,其按照重量份百分比包括:25.7%~37.6%的偏磷酸钙、10.4%~22.1%的焦磷酸钙、5.2%~18.1%的乳糖、0.9%~3.5%的碳粉、1.3%~4.9%的纳米羧甲基纤维素、12.5%~28.6%的碱式碳酸镁、10.6%~22.8%的碳酸钙、0.3%~3.7%的草酸钾与1.2%~5.6%的聚乙烯醇,其各组份之间具有明显的协同作用,使得气溶胶灭火剂整体上具有良好的灭火能力与灭火效率。

Description

一种热气溶胶型灭火组合物及其制备方法 技术领域
本发明涉及灭火领域,尤其涉及一种热气溶胶型灭火组合物及其制备方法。
背景技术
当前,普遍使用的灭火剂大致可分为如下几类:水基类灭火剂、气体类灭火剂、粉体类灭火剂、气溶胶类灭火剂以及哈龙灭火剂,各类灭火剂适用范围不尽相同、性能指标也各有优劣,其中:哈龙灭火剂具有灭火效果好、灭火效率高的特点。
但是,哈龙灭火剂中存在对臭氧层较大的破坏作用的化学成分,从1987年开始,各国在《关乎破坏臭氧物质的蒙特利尔协定书》限制下,逐步淘汰哈龙灭火剂的生产和使用,我国政府也在2010年起全面停止生产1211、1301灭火剂。
在哈龙灭火剂被淘汰的背景下,其他类灭火剂得到了更广泛的发展应用,水基类灭火剂的原理主要是通过细水雾的冷却、窒息和隔绝热辐射作用达到灭火目的;气体类灭火剂主要是通过喷射惰性气体减少火区的氧含量达到窒息火灾的目的;粉体类灭火剂主要原理是通过高压气体作用下喷射出粉末,消耗火焰中的自由基、产生惰性气体等达到灭火目的。但是,这些灭火剂使用过程中都需要高压环境的存在,造成设备体积较大,存储使用过程中具有物理爆炸危险性,文献“气体灭火系统的安全性分析”中,分析了气体灭火系统的危险性。
现有气溶胶类灭火剂主要可分为S型和K型,这类灭火剂主要是利用氧化还原反应释放的惰性气体、自由基等作用于火区,通过惰性气体的窒息、自由基的化学反应来达到灭火的目的。其不足主要是表现在:氧化还原反应放热量大,使得气溶胶灭火装置结构喷口温度较高;一些气溶胶灭火剂产生气溶胶效率较低,时间长,不利于及时控制初期火灾。
因此,现有技术有待于更进一步的改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种热气溶胶型灭火组合物及其制备方法,在降低成本的前提下,提高灭火效率。
为解决上述技术问题,本发明技术方案包括:
一种热气溶胶型灭火组合物,其按照重量份百分比包括:
Figure PCTCN2018082988-appb-000001
Figure PCTCN2018082988-appb-000002
所述的热气溶胶型灭火组合物,其按照重量份百分比包括:
Figure PCTCN2018082988-appb-000003
所述的热气溶胶型灭火组合物,其中,上述聚乙烯醇使用前用蒸馏水作稀料稀释,其中,聚乙烯醇与蒸馏水的质量比为1:9-13。
一种制备所述热气溶胶型灭火组合物的方法,其包括以下步骤:
A、按对应比例分别称取上述原料组份,并将所取原料组份分别用磨机粉磨成粉体;然后,过500目筛,收集过筛的粉体,备用;
B、将所收集过筛的粉体分别加入旋转造粒机的料盘,将聚乙烯醇总量的1/3加入到旋转造粒机的储液罐;然后,启动旋转造粒机,待物料充分混合均匀后,开启旋转造粒机的喷浆泵,进行造粒得到物料;
C、将上述物料在防爆烘箱内进行干燥,防爆烘箱按照15℃/h的速率从室温升温至40℃,然后在40℃下恒温干燥,直至物料含水率小于或者等于0.8%,得到干物料;
D、将所得干物料入搅拌机,然后将剩余的聚乙烯醇入用蒸馏水进行稀释,稀释后聚乙烯加入搅拌机的拌和均匀,得到半成品;
E、将所制得的半成品装入药筒内,置于压力机工作台上,在5MPa压力下压实,得到上述热气溶胶型灭火组合物。
所述的制备方法,其中,上述步骤A具体的还包括:收集过筛锅中的筛余物料掺入下一批次固体原料中,并充填回磨机粉磨。
所述的制备方法,其中,上述步骤B具体的还包括:旋转造粒机的喷气压力为0.5Mp,喷浆泵转速为5~25r·min -1,供料机转速为5~25r·min -1,稀释零密度为0.64g/ml,休止角为32°,造粒的粒径控制指标为最终28-32目的得料得率大于90%。
所述的制备方法,其中,上述步骤E中的药筒内径为40mm,高100mm,装料量为50-100g。
本发明提供的一种热气溶胶型灭火组合物及其制备方法,具有用药量少、灭火速度快、灭火效率高等优点,特别适于油类火源的灭火,热气溶胶型灭火组合物中,含有氧化剂、可燃剂、燃烧调节剂、添加剂、改性剂和粘合剂;其中,氧化剂为偏磷酸钙和焦磷酸钙的混合物,可燃剂为乳糖和碳粉,燃烧调节剂为纳米羧甲基纤维素,添加剂为碱式碳酸镁和碳酸钙,改性剂为草酸钾,粘合剂为聚乙烯醇。
组合物中的碱式碳酸镁和碳酸钙在高温下受热分解,释放出大量的二氧化碳,二氧化碳用于灭火;在碱式碳酸镁和碳酸钙受热分解过程(碱式碳酸镁和碳酸钙受热分解,一部分在气溶胶灭火装置内进行,一部分在喷出后再起火燃烧点进行)中,需要吸收大量的热,既可以将着火点的火焰温度降低,辅助灭火,又有利于降低气溶胶灭火装置喷口温度,有效保证灭火装置操作使用人的安全,带来使用上的便利与安全。如前所述的碱式碳酸镁和碳酸钙受热分解过程,吸热所致着火点温度的降低,这将进一步导致燃烧物燃烧过程中用于气化可燃物分子和将已气化的可燃烧分子裂解成自由基的热量减少,使得着火点(继续)燃烧反应的速度得到一定抑制。
并且,由于碳酸钙分解后生成的氧化钙,可与燃烧物中的碳元素发生化学反应,生成二氧化碳。即,将燃烧物中的可燃成分(碳粉)转化成不可燃烧惰性气体(二氧化碳),有利于延缓燃烧物的燃烧速度、降低燃烧空间的氧含量,促进灭火速度和效率的提高。此外,燃烧物在起火燃烧过程中(即,维持燃烧反应持续进行的过程中),将会持续不断裂解生成大量的、燃烧持续进行所不可缺少的·H、·O、·OH等活性基团。
而,碱式碳酸镁和碳酸钙高温下分解,生成的氧化镁和氧化钙,将分别与上述这些活性基团(即,·H、·O、·OH等活性基团)发生化学反应,从而部分消耗掉这些活性基团、抑制这些活性基团彼此之间的反应,进而中断燃烧链、抑制火焰燃烧的继续进行。
组合物中的氧化剂与还原剂在气溶胶灭火装置内,经气溶胶灭火装置的电启动器点火后,将发生剧烈的氧化还原反应,并释放出大量的热,组合物中的偏磷酸钙、焦磷酸钙、碳粉和乳糖随后开始不完全燃烧,产生大量的烟气,与空气混合后形成气溶胶;
组合物中的纳米羧甲基纤维素成分,由于其可燃、着火点低,且比表面积大,主要作燃烧调节剂用。即,用于引燃/加快组合物中可燃组分的燃烧速度,以促进气溶胶灭火装置工作初期,容器内快速形成大量的气溶胶。灭火组合物中,在高温下分解所生成的无机氧化物固 体微粒,覆盖在着火物体表面,进一步起到着火物体表面隔绝氧气的作用,促使火焰因缺氧窒息熄灭进程的加快。
具体实施方式
本发明提供了一种热气溶胶型灭火组合物及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种一种热气溶胶型灭火组合物,其按照重量份百分比包括:25.7%~37.6%的偏磷酸钙、10.4%~22.1%的焦磷酸钙、5.2%~18.1%的乳糖、0.9%~3.5%的碳粉、1.3%~4.9%的纳米羧甲基纤维素、12.5%~28.6%的碱式碳酸镁、10.6%~22.8%的碳酸钙、0.3%~3.7%的草酸钾与1.2%~5.6%的聚乙烯醇。
当然更为优选的是,其按照重量份百分比包括:26.3%~31.4%的偏磷酸钙、12.6%~21.1%的焦磷酸钙、8.5%~14.3%的乳糖、1.2%~2.6%的碳粉、1.8%~4.2%的纳米羧甲基纤维素、15.7%~27.2%的碱式碳酸镁、12.1%~21.6%的碳酸钙、0.8%~3.2%的草酸钾与1.5%~4.8%的聚乙烯醇。
更进一步的,上述聚乙烯醇使用前用蒸馏水作稀料稀释,其中,聚乙烯醇与蒸馏水的质量比为1:9-13,具有更好的使用上的性价比,既便于灭火剂的粘结、压制成型操作,又具有良好的压制成型质量。
本发明还提供了一种制备上述热气溶胶型灭火组合物的方法,其包括以下步骤:
步骤一,按对应比例分别称取上述原料组份,并将所取原料组份分别用磨机粉磨成粉体;然后,过500目筛,收集过筛的粉体,备用;
步骤二,将所收集过筛的粉体分别加入旋转造粒机的料盘,将聚乙烯醇总量的1/3加入到旋转造粒机的储液罐;然后,启动旋转造粒机,待物料充分混合均匀后,开启旋转造粒机的喷浆泵,进行造粒得到物料;
步骤三,将上述物料在防爆烘箱内进行干燥,防爆烘箱按照15℃/h的速率从室温升温至40℃,然后在40℃下恒温干燥,直至物料含水率小于或者等于0.8%,得到干物料;
步骤四,将所得干物料入搅拌机,然后将剩余的聚乙烯醇入用蒸馏水进行稀释,稀释后聚乙烯加入搅拌机的拌和均匀,得到半成品;
步骤五,将所制得的半成品装入药筒内,置于压力机工作台上,在5MPa压力下压实,得到上述热气溶胶型灭火组合物。
更进一步的,上述步骤一具体的还包括:收集过筛锅中的筛余物料掺入下一批次固体原料中,并充填回磨机粉磨。而且上述步骤二具体的还包括:旋转造粒机的喷气压力为0.5Mp, 喷浆泵转速为5~25r·min -1,供料机转速为5~25r·min -1,稀释零密度为0.64g/ml,休止角为32°,造粒的粒径控制指标为最终28-32目的得料得率大于90%。上述步骤E中的药筒内径为40mm,高100mm,装料量为50-100g。
为了更进一步的描述本发明,以下列举更为详尽的实施例进行说明。以下各实施例,灭火组合物产品的灭火应用实验,均采用GA 499.1-2010《气溶胶灭火系统》第1部分:热气溶胶灭火装置规定的方法进行,灭火组合物的使用量均为50g。
实施例1
复合型气溶胶灭火组合物的原料配方为:按质量分数,偏磷酸钙26.5%、焦磷酸钙17%、乳糖9%、碳粉2.5%、纳米羧甲基纤维素4%、碱式碳酸镁23%、碳酸钙14%、草酸钾2%、聚乙烯醇2%(按1:9的质量比,加入蒸馏水作稀料稀释)。
将压制成型的产品(随药筒一块)装入小型气溶胶灭火装置中,装入电启动器(气溶胶灭火装置中不加冷却剂、不加压缩气体),进行实施面积为0.1m 2油盘的灭火实验,燃料为商业级正庚烷。灭火实验所用产品质量为50g,实验结果见表1。
实施例2
气溶胶型灭火组合物的原料配方为:按质量分数,偏磷酸钙27%、焦磷酸钙15%、乳糖11%、碳粉2.5%、纳米羧甲基纤维素3%、碱式碳酸镁21%、碳酸钙16%、草酸钾2.5%、聚乙烯醇2%(按1:11的质量比,加入蒸馏水作稀料稀释)。
将压制成型的产品(随药筒一块)装入小型气溶胶灭火装置中,装入电启动器(气溶胶灭火装置中不加冷却剂、不加压缩气体),进行实施面积为0.1m 2油盘的灭火实验,燃料为商业级正庚烷。灭火实验所用产品质量为50g,实验结果见表1。
实施例3
气溶胶型灭火组合物的原料配方为:按质量分数,偏磷酸钙30%、焦磷酸钙14%、乳糖10%、碳粉2%、纳米羧甲基纤维素2%、碱式碳酸镁20%、碳酸钙16%、草酸钾3.5%、聚乙烯醇2.5%(按1:11的质量比,加入蒸馏水作稀料稀释)。
将压制成型的产品(随药筒一块)装入小型气溶胶灭火装置中,装入电启动器(气溶胶灭火装置中不加冷却剂、不加压缩气体),进行实施面积为0.1m 2油盘的灭火实验,燃料为商业级正庚烷。灭火实验所用产品质量为50g,实验结果见表1。
实施例4
气溶胶型灭火组合物的原料配方为:按质量分数,偏磷酸钙25%、焦磷酸钙13%、乳糖14%、碳粉2%、纳米羧甲基纤维素4%、碱式碳酸镁19%、碳酸钙18%、草酸钾3%、聚乙烯醇2%(按1:13的质量比,加入蒸馏水作稀料稀释)。
将压制成型的产品(随药筒一块)装入小型气溶胶灭火装置中,装入电启动器(气溶胶灭火装置中不加冷却剂、不加压缩气体),进行实施面积为0.1m 2油盘的灭火实验,燃料为商业级正庚烷。灭火实验所用产品质量为50g。实验结果见下表1。
对比实施例1
灭火剂为市售S型灭火剂,灭火实验所用质量为50g。
对比实施例2
灭火剂为市售K型灭火剂,灭火实验所用质量为50g。
表1为实施例1-实施例4以及对比实施例1、对比实施例2进行灭火对比试验的结果对照表。
表1
Figure PCTCN2018082988-appb-000004
Figure PCTCN2018082988-appb-000005
从上表1中可以看出,实施例1~4灭火成功率均为100%,高于同类型的市售K型灭火剂和市售S型灭火剂产品(平均为62.5%)。
实施例1~4灭火所需要的气溶胶持续喷射时间平均值约为12.5s,同类型的市售K型灭火剂和市售S型灭火剂产品灭火所需要的气溶胶持续喷射时间平均值约为19.1s。表明,实施例1~4灭火所需要的气溶胶持续喷射时间,(平均值)缩短了34.6%左右。
本发明具体的灭火机理为:
组合物中的碱式碳酸镁和碳酸钙在高温下受热分解,释放出大量的二氧化碳,二氧化碳用于灭火;在碱式碳酸镁和碳酸钙受热分解过程(碱式碳酸镁和碳酸钙受热分解,一部分在气溶胶灭火装置内进行,一部分在喷出后再起火燃烧点进行)中,需要吸收大量的热,既可以将着火点的火焰温度降低,辅助灭火,又有利于降低气溶胶灭火装置喷口温度,有效保证灭火装置操作使用人的安全,带来使用上的便利与安全。如前所述的碱式碳酸镁和碳酸钙受热分解过程,吸热所致着火点温度的降低,这将进一步导致燃烧物燃烧过程中用于气化可燃物分子和将已气化的可燃烧分子裂解成自由基的热量减少,使得着火点(继续)燃烧反应的速度得到一定抑制。
并且,由于碳酸钙分解后生成的氧化钙,可与燃烧物中的碳元素发生化学反应,生成二氧化碳。即,将燃烧物中的可燃成分(碳粉)转化成不可燃烧惰性气体(二氧化碳),有利于延缓燃烧物的燃烧速度、降低燃烧空间的氧含量,促进灭火速度和效率的提高。此外,燃烧物在起火燃烧过程中(即,维持燃烧反应持续进行的过程中),将会持续不断裂解生成大量的、燃烧持续进行所不可缺少的·H、·O、·OH等活性基团。
而,碱式碳酸镁和碳酸钙高温下分解,生成的氧化镁和氧化钙,将分别与上述这些活性基团(即,·H、·O、·OH等活性基团)发生化学反应,从而部分消耗掉这些活性基团、抑制这些活性基团彼此之间的反应,进而中断燃烧链、抑制火焰燃烧的继续进行。
组合物中的氧化剂与还原剂在气溶胶灭火装置内,经气溶胶灭火装置的电启动器点火后,将发生剧烈的氧化还原反应,并释放出大量的热,组合物中的偏磷酸钙、焦磷酸钙、碳粉和乳糖随后开始不完全燃烧,产生大量的烟气,与空气混合后形成气溶胶;
组合物中的纳米羧甲基纤维素成分,由于其可燃、着火点低,且比表面积大,主要作燃烧调节剂用。即,用于引燃/加快组合物中可燃组分的燃烧速度,以促进气溶胶灭火装置工作 初期,容器内快速形成大量的气溶胶。灭火组合物中,在高温下分解所生成的无机氧化物固体微粒,覆盖在着火物体表面,进一步起到着火物体表面隔绝氧气的作用,促使火焰因缺氧窒息熄灭进程的加快。
从上述实施例1-4的分析中不难理解,上述技术方案的热气溶胶型灭火组合物,装入气溶胶灭火装置中即可直接使用(在装置内燃烧产生气体、形成一定的压力),无需压力储存。这有力地提高了灭火组合物的存储和使用过程中的便利性与安全性,与现有技术的常规同类型产品比,具有十分突出的比较优势。
上述关于热气溶胶型灭火组合物灭火机理文字说明中,所涉及的主要化学反应方程式如下:
Mg 2(OH) 2CO 3→MgO+CO 2↑+H 2O
CaCO 3→CaO+CO 2
CaO+C→Ca+CO 2
Ca+·OH→Ca(OH) 2
Ca+·O→CaO
Ca(OH) 2+·H→H 2O+Ca
Ca(OH) 2+·OH→H 2O+CaO
CaO+·H→Ca(OH) 2
MgO+·H→Mg(OH) 2
Mg(OH) 2+·OH→H 2O+MgO。
综上所述,不难看出,上述技术方案的热气溶胶型灭火组合物的各组分之间,具有十分明显的“分工与协作”的功能和作用,各组分之间具有明显的协同作用,相互配合、相互促进,使得气溶胶灭火组合物整体上具有良好的灭火能力与灭火效率。
说明本发明的热气溶胶型灭火组合物产品的灭火效率,明显高于同类型的市售K型灭火剂和市售S型灭火剂产品。
当然,以上说明仅仅为本发明的较佳实施例,本发明并不限于列举上述实施例,应当说明的是,任何熟悉本领域的技术人员在本说明书的教导下,所做出的所有等同替代、明显变形形式,均落在本说明书的实质范围之内,理应受到本发明的保护。

Claims (7)

  1. 一种热气溶胶型灭火组合物,特征在于,其按照重量份百分比包括:
    Figure PCTCN2018082988-appb-100001
  2. 根据权利要求1所述的热气溶胶型灭火组合物,特征在于,其按照重量份百分比包括:
    Figure PCTCN2018082988-appb-100002
    上述各组分之重量百分比的总和为100%。
  3. 根据权利要求1所述的热气溶胶型灭火组合物,其特征在于,上述聚乙烯醇使用前用蒸馏水作稀料稀释,其中,聚乙烯醇与蒸馏水的质量比为1:9-13。
  4. 一种制备如权利要求1所述热气溶胶型灭火组合物的方法,其包括以下步骤:
    A、按对应比例分别称取上述原料组份,并将所取原料组份分别用磨机粉磨成粉体;然后,过500目筛,收集过筛的粉体,备用;
    B、将所收集过筛的粉体分别加入旋转造粒机的料盘,将聚乙烯醇总量的1/3加入到旋转造粒机的储液罐;然后,启动旋转造粒机,待物料充分混合均匀后,开启旋转造粒机的喷浆泵,进行造粒得到物料;
    C、将上述物料在防爆烘箱内进行干燥,防爆烘箱按照15℃/h的速率从室温升温至40℃,然后在40℃下恒温干燥,直至物料含水率小于或者等于0.8%,得到干物料;
    D、将所得干物料入搅拌机,然后将剩余的稀释后的聚乙烯醇加入搅拌机的拌和均匀,得到半成品;
    E、将所制得的半成品装入药筒内,置于压力机工作台上,在5MPa压力下压实,得到上述热气溶胶型灭火组合物。
  5. 根据权利要求4所述的制备方法,其特征在于,上述步骤A具体的还包括:收集过筛锅中的筛余物料掺入下一批次固体原料中,并充填回磨机粉磨。
  6. 根据权利要求4所述的制备方法,其特征在于,上述步骤B具体的还包括:旋转造粒机的喷气压力为0.5Mp,喷浆泵转速为5~25r·min -1,供料机转速为5~25r·min -1,稀释零密度为0.64g/ml,休止角为32°,造粒的粒径控制指标为最终28-32目的得料得率大于90%。
  7. 根据权利要求4所述的制备方法,其特征在于,上述步骤E中的药筒内径为40mm,高100mm,装料量为50-100g。
PCT/CN2018/082988 2017-09-29 2018-04-13 一种热气溶胶型灭火组合物及其制备方法 WO2019062076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710905111.0A CN107537128B (zh) 2017-09-29 2017-09-29 一种热气溶胶型灭火组合物及其制备方法
CN201710905111.0 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062076A1 true WO2019062076A1 (zh) 2019-04-04

Family

ID=60965049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082988 WO2019062076A1 (zh) 2017-09-29 2018-04-13 一种热气溶胶型灭火组合物及其制备方法

Country Status (2)

Country Link
CN (1) CN107537128B (zh)
WO (1) WO2019062076A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537128B (zh) * 2017-09-29 2018-10-02 山东科技大学 一种热气溶胶型灭火组合物及其制备方法
CN114367075A (zh) * 2021-12-13 2022-04-19 湖北及安盾消防科技有限公司 热气溶胶灭火剂及其制备方法和应用
CN116474308A (zh) * 2023-04-25 2023-07-25 西安庆华民用爆破器材股份有限公司 复合型低温气溶胶灭火剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085400A (zh) * 2007-07-12 2007-12-12 陕西坚瑞化工有限责任公司 防止和减少对电器设备二次损害的气溶胶灭火组合物
CN101376049A (zh) * 2008-09-26 2009-03-04 陕西坚瑞消防股份有限公司 一种热气溶胶灭火组合物
CN101554520A (zh) * 2009-05-26 2009-10-14 胡永华 蒸汽热气溶胶灭火组合物及其使用方法和灭火装置
WO2016148014A1 (ja) * 2015-03-13 2016-09-22 株式会社ダイセル エアロゾル消火剤組成物
CN107537128A (zh) * 2017-09-29 2018-01-05 山东科技大学 一种热气溶胶型灭火组合物及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676917A (en) * 1996-09-20 1997-10-14 Osram Sylvania Inc. Synthesis of beta phase spherical calcium pyrophosphate powder
DE19909083C2 (de) * 1998-07-30 2002-03-14 Amtech R Int Inc Verfahren und Vorrichtung zum Löschen von Bränden
US20020137875A1 (en) * 1999-01-11 2002-09-26 Russell Reed Fire suppressing gas generator composition
CN101862517B (zh) * 2010-07-01 2011-06-29 湖南省金鼎消防器材有限公司 复合型气溶胶灭火剂
CN102179024B (zh) * 2010-09-16 2012-06-27 陕西坚瑞消防股份有限公司 通过高温进行组分间发生化学反应产生灭火物质的灭火组合物
CN102225228B (zh) * 2011-04-26 2013-01-09 杭州华神消防科技有限公司 热气溶胶灭火剂
CN102824715A (zh) * 2012-09-21 2012-12-19 陕西坚瑞消防股份有限公司 一种磷酸盐类灭火组合物
CN105597259B (zh) * 2016-03-04 2018-08-28 湖北海山科技有限公司 一种快速高效气溶胶灭火剂及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085400A (zh) * 2007-07-12 2007-12-12 陕西坚瑞化工有限责任公司 防止和减少对电器设备二次损害的气溶胶灭火组合物
CN101376049A (zh) * 2008-09-26 2009-03-04 陕西坚瑞消防股份有限公司 一种热气溶胶灭火组合物
CN101554520A (zh) * 2009-05-26 2009-10-14 胡永华 蒸汽热气溶胶灭火组合物及其使用方法和灭火装置
WO2016148014A1 (ja) * 2015-03-13 2016-09-22 株式会社ダイセル エアロゾル消火剤組成物
CN107537128A (zh) * 2017-09-29 2018-01-05 山东科技大学 一种热气溶胶型灭火组合物及其制备方法

Also Published As

Publication number Publication date
CN107537128B (zh) 2018-10-02
CN107537128A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
EP2898925B1 (en) Phosphate fire-extinguishing composition
RU2520095C2 (ru) Химический каталитический охлаждающий агент для термоаэрозолей и способ его получения
WO2019062076A1 (zh) 一种热气溶胶型灭火组合物及其制备方法
CN108355293A (zh) 一种s型热气溶胶灭火剂
KR101505848B1 (ko) 고온 승화를 통하여 소화 물질을 생성하는 소화 조성물
EP3412344B1 (en) Extinguishant composition
WO2014048272A1 (zh) 一种金属含氧酸盐类灭火组合物
WO2013023580A1 (zh) 灭火组合物
WO2016148014A1 (ja) エアロゾル消火剤組成物
CN102225228A (zh) 热气溶胶灭火剂
CN105169614A (zh) 一种手持式灭火器用气溶胶灭火剂及其制备方法
WO2019062075A1 (zh) 一种复合型气溶胶灭火剂及其制备方法
WO2013023576A1 (zh) 一种铜盐类灭火组合物
CN102949803B (zh) 一种灭火组合物
CN107670215B (zh) 一种热气溶胶灭火剂及其制备方法
CN107537126B (zh) 一种热气溶胶灭火组合物及其制备方法
CN107694001B (zh) 一种热气溶胶灭火剂及其制备方法
CN114768164B (zh) 一种安全高效气溶胶灭火剂及其制备方法
CN107670217B (zh) 一种气溶胶型灭火剂及其制备方法
CN107551443B (zh) 一种abc干粉灭火剂的制备方法
WO2013023584A1 (zh) 一种新型灭火组合物
CN111450462A (zh) 一种金属锆火灾用灭火剂及其制备和使用方法
CN116570874A (zh) 一种气溶胶灭火剂用的化学冷却剂及制备方法
CN102935276B (zh) 一种灭火组合物
CN114768163A (zh) 一种气溶胶灭火剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860003

Country of ref document: EP

Kind code of ref document: A1