WO2019062023A1 - Procédé de perturbation mppt à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité - Google Patents

Procédé de perturbation mppt à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité Download PDF

Info

Publication number
WO2019062023A1
WO2019062023A1 PCT/CN2018/077723 CN2018077723W WO2019062023A1 WO 2019062023 A1 WO2019062023 A1 WO 2019062023A1 CN 2018077723 W CN2018077723 W CN 2018077723W WO 2019062023 A1 WO2019062023 A1 WO 2019062023A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
disturbance
value
voltage
current
Prior art date
Application number
PCT/CN2018/077723
Other languages
English (en)
Chinese (zh)
Inventor
钟建朋
刘永奎
周洪伟
Original Assignee
特变电工新疆新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特变电工新疆新能源股份有限公司 filed Critical 特变电工新疆新能源股份有限公司
Publication of WO2019062023A1 publication Critical patent/WO2019062023A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of maximum power tracking (MPPT) technology, and in particular to a variable step size fixed speed derating power MPPT disturbance method.
  • MPPT maximum power tracking
  • MPPT maximum power tracking
  • distributed photovoltaic power plants often have limited power operation due to the limitation of load and grid capacity.
  • the power station needs to reduce the active output to a certain expected value according to the requirements of the superior scheduling.
  • the microgrid system operating in the island mode will also issue a limited power operation command to the distributed power generation unit in the system according to the actual load demand.
  • the inverter needs to disturb the output voltage of the PV array to the open circuit voltage in the MPPT control, similar to the MPPT control.
  • the disturbance step of the voltage has a great influence on the limited power speed and accuracy, and it is necessary to select a suitable disturbance method. To ensure the speed and accuracy requirements of limited power operation.
  • Inverter limited power operation means that the PV array output voltage needs to be disturbed in the direction of the open circuit voltage, which is opposite to the voltage disturbance direction in the MPPT control.
  • MPPT control it is similar to MPPT control, and the purpose of changing power is achieved by adding a disturbance voltage at the current voltage.
  • the existing MPPT control is mainly divided into fixed step size and variable step size.
  • the common observation disturbance method and conductance method belong to the fixed step method.
  • the advantage of the fixed-step algorithm is that it is simple, low-cost and easy to implement, but its shortcomings are also obvious.
  • the adjustment flexibility of the fixed step size is poor.
  • the smaller step size can ensure sufficient accuracy, but the adjustment time is too long.
  • a larger step size results in poor power adjustment accuracy, which often results in a large fluctuation in power near the target value. For this reason, in the case where there is a high demand for adjustment speed and accuracy, a variable step size algorithm is often used.
  • the main idea of the method is: when the working point is far away from the target power point, the larger step size is used for the disturbance, and when the power is close to the target value, the smaller step size is used for the disturbance.
  • the method better solves the contradiction between the disturbance speed and the precision, but the disadvantage is that the method for determining the step size is complicated, and usually needs to collect a large amount of data than to perform complicated processing.
  • the object of the present invention is to provide a variable step size fixed speed derating power MPPT disturbance method, which can be simple Real-time step size calculations are achieved to achieve fast and accurate power change requirements.
  • a variable-step fixed-speed derating power-limited MPPT disturbance method When the inverter is operating in a limited power mode, the current power value is P current , and the target power value is P aim ; if the inverter starts running initially In MPPT mode, the limited power mode means that the power is reduced, that is, P aim ⁇ P current , which usually causes the voltage to be disturbed to the open circuit voltage direction to reduce the power to achieve the target. Therefore, the limited power mode usually runs on the power voltage curve. The right side of the maximum power point;
  • the simplest method is to use the uniform speed drop method, set the power change rate to ⁇ p , the unit is W / s, and the MPPT disturbance period is T m , then within a single disturbance period
  • the expected power derating value is the limit
  • the power reduction amount after each disturbance is approximately equal to the expected value ⁇ p s , then the power reaches the target value within the specified time, so that the step size of each disturbance is updated as the basis for selecting the disturbance step size;
  • the power change ⁇ p at the previous voltage disturbance step is obtained by making the power of the current moment and the power of the previous disturbance period, so that it is quotient with ⁇ p s ,
  • the power decrement generated by the two disturbances is considered to be approximately equal, that is, at the power voltage.
  • the slope on the curve is approximately equal
  • the iterative update of the disturbance step can be realized by using the power derating coefficient ⁇ ; in practical applications, the step size of the previous MPPT disturbance can be utilized as the initial value of the step in the limited power mode.
  • the voltage disturbance step is the actual measured value.
  • Step 1 After the MPPT function is turned on, the inverter counts down according to the disturbance period T m counter set by the system. Before the set disturbance period T m arrives, the system remains in the waiting state until the disturbance period T m reaches;
  • Step 2 After the disturbance period T m arrives, calculate the current power value P current according to the currently collected voltage value U k and the current value I k , and then store the previous power value P k-1 and the previous voltage value stored by the system.
  • U k-1 is different from the current power value P current and the current voltage value U k , respectively, thereby obtaining the power variation amount ⁇ p k and the voltage variation amount ⁇ u k caused by the previous disturbance;
  • Step 3 According to the selection of the operating mode of the inverter by the host computer, if the inverter operation selects the non-limited power mode, the system will calculate the next voltage according to the current power value P current and the current voltage value U k according to the normal MPPT mode. Disturbance step
  • Step 4 If the inverter operation selects the limited power mode, it is determined whether the difference between the current power value P current and the limited power target value P aim exceeds a system-set power derating value, that is, a limit value ⁇ p s , if both If the difference does not exceed the limit value ⁇ p s , it indicates that the current power P current is very close to the limit power target value P aim . At this time, to ensure the disturbance accuracy, a constant voltage disturbance step is adopted;
  • Step 5 If the difference between the current power value P current and the limit power target value P aim exceeds the limit value ⁇ p s , the power derating value calculated according to the set power derating rate, and using the previous power calculated in step 2
  • the amount of change ⁇ p k and the power derating value ⁇ p s are calculated according to formula (2), and the power derating coefficient ⁇ is calculated by using the voltage variation ⁇ -u k caused by the previous disturbance obtained in equation (5) and step 2.
  • Step 6 According to the current voltage value U k and the voltage change disturbance step calculated in step 3 or 4 or 5, add the two to determine the next voltage reference value, as a voltage disturbance reference, and thus, a disturbance period
  • the power oscillation is separated separately, and the current power and target power difference is less than the set rate, and the single period power derating value ⁇ p In s , the disturbance is performed with a fixed step size S d .
  • the present invention has the following advantages:
  • variable step size disturbance method has a clear relationship with the expected operating power and derating rate indicators, and the disturbance step size can be continuously adjusted according to the set derating rate to ensure that the actual derating rate of the inverter follows the set value, thereby The derating operation of the specified power is reached within the time.
  • step size determination method and logic of the variable step size perturbation method are simple, and only by judging the power and voltage difference of the last two samples, combined with the derating rate and the MPPT disturbance period, the perturbation step size can be obtained. Specific value.
  • variable step size perturbation method does not use a fixed finite step size, but continuously adjusts the step size according to an artificially set desired value, and the step size adjustment idea is not limited to the MPPT perturbation only in the limited power operation mode.
  • the same step size determination method and method are also applicable in normal MPPT control.
  • FIG. 1 is a flow chart of a method of perturbing according to the present invention.
  • Figure 2 shows the voltage disturbance step variation and corresponding power variation of the inverter at different derating rates.
  • Figure 2(a) shows the segment voltage disturbance at 50kW/s derating rate.
  • Figure 2(b) shows The difference between power and voltage disturbance at 50kW/s derating rate
  • Figure 2(c) is the segment voltage disturbance at 100kW/s derating rate
  • Figure 2(d) shows the difference in power and voltage disturbance at 100kW/s derating rate. value.
  • variable step size fixed speed derating power MPPT disturbance method of the present invention are as follows:
  • Step 1 After the MPPT function is turned on, the inverter counts down according to the disturbance period T m counter set by the system. Before the set disturbance period T m arrives, the system remains in the waiting state until the disturbance period T m reaches;
  • Step 2 After the disturbance period T m arrives, calculate the current power value P current according to the currently collected voltage value U k and the current value I k , and then store the previous power value P k-1 and the previous voltage value stored by the system.
  • U k-1 is different from the current power value P current and the current voltage value U k , respectively, thereby obtaining the power variation amount ⁇ p k and the voltage variation amount ⁇ u k caused by the previous disturbance;
  • Step 3 According to the selection of the operating mode of the inverter by the host computer, if the inverter operation selects the non-limited power mode, the system will calculate the next voltage according to the current power value P current and the current voltage value U k according to the normal MPPT mode. Disturbance step
  • Step 4 If the inverter operation selects the limited power mode, it is determined whether the difference between the current power value P current and the limited power target value P aim exceeds a system-set power derating value, that is, a limit value ⁇ p s , if both If the difference does not exceed the limit value ⁇ p s , it indicates that the current power P current is very close to the limit power target value P aim . At this time, to ensure the disturbance accuracy, a constant voltage disturbance step is adopted;
  • Step 5 If the difference between the current power value P current and the limit power target value P aim exceeds the limit value ⁇ p s , the power derating value calculated according to the set power derating rate, and using the previous power calculated in step 2
  • the amount of change ⁇ p k and the power derating value ⁇ p s are calculated according to formula (2), and the voltage derating coefficient ⁇ is calculated according to formula (5) and the voltage change amount ⁇ u k caused by the previous disturbance obtained in step 2 Change the disturbance step size;
  • Step 6 According to the current voltage value U k and the voltage change disturbance step calculated in step 3 or 4 or 5, add the two to determine the next voltage reference value, as a voltage disturbance reference, and thus, a disturbance period
  • the inverters respectively have voltage disturbances at different derating rates. Step size changes and corresponding power changes. It can be seen that the inverter voltage disturbance step size and power drop amplitude are significantly different under different derating rates.
  • the present invention analyzes the perturbation method by taking a uniform derating as an example.
  • the algorithm is not limited to uniform derating, and its core disturbance step calculation method and method are also applicable to the limited power operation disturbance of other different derating methods, and the step determination in normal MPPT control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

La présente invention concerne un procédé de perturbation MPPT à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité, qui consiste à : calculer un coefficient de déclassement de puissance α par comparaison de la quantité de variation de puissance engendrée par la perturbation précédente à une variation de puissance calculée en fonction d'un taux de déclassement de puissance délivré par un ordinateur supérieur, et calculer, en temps réel et au moyen de la relation puissance-tension d'un ensemble photovoltaïque, la relation entre la longueur de pas de tension de perturbation suivante et le coefficient de déclassement de puissance et entre celle-ci et la longueur de pas de variation de tension réelle précédente ; donner la valeur de référence de perturbation de tension suivante par combinaison d'une valeur de mesure de tension actuelle ; et quand la différence entre la puissance réelle et la puissance attendue est inférieure à une certaine valeur définie, utiliser une perturbation à longueur de pas fixe pour réduire l'oscillation de puissance provoquée par la perturbation et améliorer la précision de perturbation. Le procédé de la présente invention peut mettre en œuvre un calcul de longueur de pas en temps réel d'une manière simple, ce qui permet de répondre à des exigences de variation de puissance rapide et précise.
PCT/CN2018/077723 2017-09-29 2018-03-01 Procédé de perturbation mppt à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité WO2019062023A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710912011.0 2017-09-29
CN201710912011.0A CN107491137B (zh) 2017-09-29 2017-09-29 一种变步长定速降额限功率mppt扰动方法

Publications (1)

Publication Number Publication Date
WO2019062023A1 true WO2019062023A1 (fr) 2019-04-04

Family

ID=60654141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077723 WO2019062023A1 (fr) 2017-09-29 2018-03-01 Procédé de perturbation mppt à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité

Country Status (2)

Country Link
CN (1) CN107491137B (fr)
WO (1) WO2019062023A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491137B (zh) * 2017-09-29 2018-12-11 特变电工西安电气科技有限公司 一种变步长定速降额限功率mppt扰动方法
CN108983862B (zh) * 2018-08-08 2021-02-02 江苏固德威电源科技股份有限公司 一种最大功率点追踪方法
CN110362147B (zh) * 2019-07-15 2021-08-20 西交利物浦大学 基于光伏系统的功率储备控制方法及系统
CN111414036B (zh) * 2020-03-10 2022-01-18 上海空间电源研究所 一种卫星用电源系统mppt控制装置及方法
CN115268559B (zh) * 2022-05-23 2023-07-14 北京华能新锐控制技术有限公司 用于永磁同步风力发电机的最大功率点跟踪鲁棒控制方法
CN114879806B (zh) * 2022-06-07 2024-02-20 固德威电源科技(广德)有限公司 光伏静动态mppt扰动观测识别方法及光伏阵列发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175858A (ja) * 2011-02-23 2012-09-10 Ntt Facilities Inc 太陽光発電システム、及び、当該システムを構成する電力変換装置
KR20130102390A (ko) * 2012-03-07 2013-09-17 현대중공업 주식회사 태양광 발전용 전력변환장치의 유효 전력 제한 방법
CN104102270A (zh) * 2014-06-20 2014-10-15 北京京东方能源科技有限公司 最大功率点跟踪方法及装置、光伏发电系统
CN105159388A (zh) * 2015-09-02 2015-12-16 广东明阳龙源电力电子有限公司 一种用于光伏微网系统中的最大功率点跟踪的方法
CN105807840A (zh) * 2016-03-05 2016-07-27 厦门科华恒盛股份有限公司 一种光伏系统最大功率点跟踪方法
CN107491137A (zh) * 2017-09-29 2017-12-19 特变电工西安电气科技有限公司 一种变步长定速降额限功率mppt扰动方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877467B (zh) * 2017-02-28 2020-06-19 西安特锐德智能充电科技有限公司 一种放电电路及放电控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175858A (ja) * 2011-02-23 2012-09-10 Ntt Facilities Inc 太陽光発電システム、及び、当該システムを構成する電力変換装置
KR20130102390A (ko) * 2012-03-07 2013-09-17 현대중공업 주식회사 태양광 발전용 전력변환장치의 유효 전력 제한 방법
CN104102270A (zh) * 2014-06-20 2014-10-15 北京京东方能源科技有限公司 最大功率点跟踪方法及装置、光伏发电系统
CN105159388A (zh) * 2015-09-02 2015-12-16 广东明阳龙源电力电子有限公司 一种用于光伏微网系统中的最大功率点跟踪的方法
CN105807840A (zh) * 2016-03-05 2016-07-27 厦门科华恒盛股份有限公司 一种光伏系统最大功率点跟踪方法
CN107491137A (zh) * 2017-09-29 2017-12-19 特变电工西安电气科技有限公司 一种变步长定速降额限功率mppt扰动方法

Also Published As

Publication number Publication date
CN107491137B (zh) 2018-12-11
CN107491137A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2019062023A1 (fr) Procédé de perturbation mppt à longueur de pas variable, à vitesse fixe et à déclassement de puissance limité
US9866029B2 (en) Enhancing power system voltage stability using grid energy storage for voltage support
EP3242011B1 (fr) Procédé, dispositif et système pour compenser la puissance de sortie d'un ensemble génératrice d'éolienne
US20150013748A1 (en) Maximum power point tracking (mppt)
KR101065862B1 (ko) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력 추정방법
TWI553440B (zh) 太陽光伏發電之最大功率追蹤方法
CN109491445B (zh) 新型光伏储备功率控制方法
JP6287306B2 (ja) 電力推定装置、電力推定方法、および、プログラム
WO2017012435A1 (fr) Procédé de suivi du point de puissance maximum d'un système d'énergie photovoltaïque
WO2022121446A1 (fr) Système de commande, procédé et dispositif de commande de tension réactive, support et dispositif de calcul
US20230042950A1 (en) Inverter parallel system and zero feed-in control method therefor
US10326293B2 (en) Control of output power of a battery charger for charging a battery of an electronic device from an energy source
CN106873710A (zh) 基于新型阈值函数的分段式可变步长光伏发电最大功率跟踪控制方法
CN105446413B (zh) 一种光伏逆变器及其最大功率点跟踪方法和装置
WO2013172012A1 (fr) Dispositif de commande d'énergie, procédé de commande d'énergie et programme associé
CN103412609A (zh) 光伏并网逆变器的输出功率控制方法
WO2016015635A1 (fr) Procédé et dispositif de commande pour la prévention des erreurs d'évaluation dans la poursuite du point de puissance maximale
CN110880778A (zh) 一种多端柔性直流输电系统改进型非线性下垂控制方法
CN114301091A (zh) 一种光伏阵列输出功率控制方法和装置
Xu et al. Advanced control techniques for PV maximum power point tracking
TW201517191A (zh) 太陽能電池最大功率點追蹤方法
CN110109504A (zh) 一种基于多重算法的最大功率跟踪控制方法及系统
CN117200266B (zh) 配电线路光伏汇集点储能容量配置方法、装置和设备
JP7206532B1 (ja) 空気調和装置および制御システム
CN116316708B (zh) 一种柔性直流电网自适应控制方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862111

Country of ref document: EP

Kind code of ref document: A1