WO2019061975A1 - 一种抗刮高对比度的玻璃及陶瓷的激光打标方法 - Google Patents

一种抗刮高对比度的玻璃及陶瓷的激光打标方法 Download PDF

Info

Publication number
WO2019061975A1
WO2019061975A1 PCT/CN2018/074518 CN2018074518W WO2019061975A1 WO 2019061975 A1 WO2019061975 A1 WO 2019061975A1 CN 2018074518 W CN2018074518 W CN 2018074518W WO 2019061975 A1 WO2019061975 A1 WO 2019061975A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
marking
marking method
light
processed
Prior art date
Application number
PCT/CN2018/074518
Other languages
English (en)
French (fr)
Inventor
王晧智
张�杰
秦国双
Original Assignee
英诺激光科技股份有限公司
常州英诺激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司, 常州英诺激光科技有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2019061975A1 publication Critical patent/WO2019061975A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/262Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording

Definitions

  • This application belongs to the field of laser processing, and in particular relates to a laser marking method for scratch-resistant high contrast glass and ceramics.
  • laser marking in glass and ceramic materials is divided into three types: material marking, material structuring, and additive marking.
  • Laser subtraction marking is laser engraving, where the surface is marked to remove material. This method usually does not produce high contrast and poor visual effects.
  • the structuring of the surface of the material with a laser generally enhances the absorption of light and gives a dark color. It usually exhibits good contrast on light-colored materials, but has a poor visual effect on dark-colored materials.
  • a common glass marking is to crack the material and cause the marking part to scatter light to create a contrast.
  • This method is also a kind of material structuring.
  • the contrast of this method on glass is acceptable, but the crack has a great influence on the strength of the glass, which greatly increases the possibility of glass damage.
  • Additive marking is usually done by applying a coating on the surface of the material and then laser marking. The laser welds the coating to the surface to form a permanent marking. The disadvantage of this method is that the marking color is less selective. And the coating cost is higher.
  • the technical problem to be solved by the present application is to overcome the technical bottleneck of poor visual effect, less color selection, and high coating cost after marking in the prior art, thereby providing a scratch-resistant high contrast glass and Laser marking method for ceramics.
  • the present application discloses a laser marking method for ceramics and glass materials, which is: scanning a surface of a material to be processed with a focused laser, and then waiting for the material to be processed.
  • the surface of the marking portion is marked in the form of a white powder which adheres to the surface of the material to be treated.
  • the focused laser is one of a solid laser, a gaseous laser, or a liquid laser.
  • the focused laser is a laser of different pulse length, which is a nanosecond laser, a picosecond laser, and a femtosecond.
  • a laser of different pulse length which is a nanosecond laser, a picosecond laser, and a femtosecond.
  • One of the lasers is a laser of different pulse length.
  • the focused laser light is laser light of different wavelengths, and is one of an infrared laser light, a visible light laser, and an ultraviolet laser.
  • the material to be treated is one of ceramic, glass, and sapphire.
  • the scanning of the focused laser light on the surface of the material to be processed is achieved by moving the laser beam or by fixing the laser beam and moving the material to be processed.
  • the laser light is absorbed by the processing material, and the absorption mode is linear absorption or nonlinear absorption.
  • the method marked by the method is one of a rectangle, a circle, a triangle, and a polygon.
  • the heat generated by the laser beam scanning will be sufficient to melt and structure the material, but not enough to evaporate it, so that the structured material remains and adheres to the material being processed. surface. It can be processed at different repetition frequencies or using sub-pulse mode processing. The amount of radiation exposure and overlap rate in different repetition frequency or sub-pulse modes need to be optimized to achieve the preferred structuring effect.
  • the material to be processed can be transparent or opaque ceramic, glass, quartz and sapphire.
  • the white powder structured material strongly scatters incident light, so that such marking exhibits high brightness regardless of various angles.
  • This type of marking shows a very high contrast on either transparent or dark materials.
  • the marking can be dyed to produce a strong contrast. The dye is strongly adsorbed on the powdered marking structure and is not easily peeled off.
  • the present application proposes a method for avoiding scratching of the marking:
  • the marking of the whole piece is mosaic-like, consisting of a plurality of markings of several tens of micrometers, and the secondary markings are not connected to each other. Form an island with each other.
  • the sub-marking can be of various shapes including, but not limited to, rectangles, circles, triangles, polygons, and the like.
  • the gap between the sub-marks is from a few microns to tens of microns. Since the size of the secondary marking is smaller than most objects, the general object cannot be bundled into the powder, and the marking of the final structure cannot be scraped off. Since the secondary marking is very dense, it does not affect the overall effect visually.
  • Embodiment 1 is a partial flow chart of the method described in Embodiment 1;
  • Embodiment 2 is a partial flow chart of the method described in Embodiment 1;
  • Embodiment 3 is a partial flow chart of the method described in Embodiment 2;
  • Embodiment 6 is a partial flow chart of the method described in Embodiment 2.
  • Example 1 This example discloses a laser marking method for scratch-resistant high contrast glass and ceramics: Examples of high-intensity white or colored marking:
  • the laser light 1 is focused on the surface of the sample 2, and the sample 2 is scanned at a high overlap rate, which may be a glass type.
  • Materials such as ceramics, sapphire, etc., generate heat to melt the sample into a white powdery structure 3 and adhere to the surface as shown in Fig. 2.
  • the powder after being irradiated to the white powdery structure, it is strongly scattered 4, showing high brightness. If different colors are required, the powder can be dyed with different color dyes as required. As shown in Fig. 3, the dye 4 is attached to the powder, and the dye is tightly adsorbed on the powder mark due to the surface tension. A high-color colored marking is obtained by wiping off excess dye, as shown in Figure 4.
  • Example 2 This embodiment discloses a laser marking method for scratch-resistant high contrast glass and ceramics: [0034]
  • the structured powder marking is easy to be hardened due to the loss of the original strength of the material. Scraping off. If the marking is rubbed against a hard object, even if the marking is not completely scraped, the hard object will leave a scratch on the marking, making the marking unsightly.
  • FIG. 5 and FIG. 6 show a method for avoiding scratching, which is to mark a pattern of markings 5 by a plurality of sub-markings of other patterns such as dots, rectangles, or polygons.
  • Each sub-marking is only a few tens of microns in size, and the sub-marking room is separated by the unprocessed sample 2.
  • the general object 6 is larger than the secondary marking, so it cannot be touched. Marking of the powder structure, marking will not be scratched. Due to the small size of the secondary marking, the overall effect of marking is not visually affected.
  • the surface of the coating can be coated with a protective coating to protect the surface without damaging the marking structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种抗刮高对比度的玻璃及陶瓷的激光打标方法,包括:用聚焦激光(1)在待处理材料(2)表面扫描;将待处理材料的待打标部分的表面打标成白色粉末状结构(3),白色粉末沾附在待处理材料表面;其中该白色粉末状结构对入射光造成强烈散射而在视觉上产生高对比度。此外,可将打标图样解离成仅数十微米大小的几何形状,解决了图样不耐刮的问题,提高了打标图样的抗刮性能。

Description

一种抗刮高对比度的玻璃及陶瓷的激光打标方法
[0001] 本申请是以申请号为 201710911809.3, 申请日为 2017年 9月 29日的中国专利申请 为基础, 并主张其优先权, 该申请的全部内容在此作为整体引入本申请中。
[0002] 技术领域
[0003] 本申请属于激光加工领域, 具体涉及一种抗刮高对比度的玻璃及陶瓷的激光打 标方法。
[0004] 背景技术
[0005] 一般激光在玻璃及陶瓷材料打标分为三种: 减材打标、 材料结构化、 增材打标 。 激光减材打标即为激光雕刻, 将表面打标的地方去除材料。 此方法通常无法 产生高对比度, 视觉效果较差。 以激光将材料表面结构化通常可以增强对光的 吸收而呈现暗色系, 通常可以在浅色系的材料上呈现不错的对比度, 但在暗色 系的材料上的视觉效果却很差。 常见的玻璃打标则是将材料打出裂痕, 使打标 的部分对光散射而造成对比。 此方法亦为材料结构化的一种, 此方法在玻璃上 的对比度尚可, 但是裂痕对玻璃强度的影响甚巨, 大幅增加玻璃破坏的可能性 。 增材打标通常是在材料表面先涂上一层涂层, 再以激光打标, 激光将涂层熔 接在表面上, 形成永久的打标, 此方法的缺点在于打标颜色的选择较少, 且涂 层成本较高。
[0006] 申请内容
[0007] 为此, 本申请所要解决的技术问题在于克服现有技术打标后的视觉效果差、 颜 色选择少、 涂层成本较高的技术瓶颈, 从而提一种抗刮高对比度的玻璃及陶瓷 的激光打标方法。
[0008] 为解决上述技术问题, 本申请公幵了一种用于陶瓷和玻璃材料的激光打标方法 , 所述方法为: 用聚焦激光在待处理材料表面扫描, 然后将待处理材料的待打 标部分的表面打标成白色粉末状, 所述粉末状沾附在所述待处理材料表面。
[0009] 优选的, 所述聚焦激光为固态激光、 气态激光、 或液态激光中的一种。
[0010] 优选的, 所述聚焦激光为不同脉冲长度之激光, 为纳秒激光、 皮秒激光、 飞秒 激光中的一种。
[0011] 优选的, 所述聚焦激光为不同波长的激光, 为红外线激光、 可见光激光、 紫外 线激光中的一种。
[0012] 优选的, 所述待处理材料为陶瓷、 玻璃、 蓝宝石中的一种。
[0013] 优选的, 所述聚焦激光在待处理材料表面扫描是通过移动激光束来达成或由固 定激光束、 移动被加工材料来达成。
[0014] 优选的, 所述激光须被加工材料吸收, 吸收方式为线性吸收或非线性吸收。
[0015] 更为优选的, 所述方法打标出的形状为矩形、 圆形、 三角形、 多边形中的一种
[0016] 本申请的上述技术方案相比现有技术具有以下优点:
[0017] 1) 以聚焦的脉冲激光束照射被加工材料, 以激光束对被加工材料进行高重叠 率的扫描, 其中激光的扫描可以通过振镜移动激光束来达成或由固定激光束、 移动被加工材料来达成。 透过优选的辐射暴光量以及重叠率, 激光束扫描所产 生的热会足以将材料熔融并且结构化, 而不足以将之蒸发, 被结构化的材料因 此留下并沾附在被加工材料的表面。 可在不同重复频率下加工或使用子脉冲模 式加工, 不同的重复频率或子脉冲模式下的辐射暴光量以及重叠率需要优化以 达到优选的结构化效果。 被加工的材料可以为透明的或不透明的陶瓷、 玻璃、 石英及蓝宝石。
[0018] 2) 白色粉末结构化的材料对入射光造成强烈散射, 因此不论从各种角度观察 此种打标都呈现高明度。 此种打标在透明的材料或暗色系的材料上都显示非常 高的对比度。 在白色或淡色系的材料上, 可将打标染色以产生强对比度。 染料 会强力吸附在粉末状的打标结构, 不易脱落。
[0019] 3) 本申请提出了避免打标被刮伤的方法: 将整片的打标如马赛克般, 由大量 尺度在数十微米的次打标组成, 次打标之间不互相连接, 彼此形成孤岛。 次打 标可为各种形状, 包括但不限于矩形、 圆形、 三角形、 多边形等。 次打标之间 的间隙为数微米至数十微米。 由于次打标的大小比大部分物体还要小, 一般物 体无法接束到粉末, 也就无法刮落分末结构状的打标。 由于次打标非常密集, 视觉上不影响整体效果。 [0020] 附图说明
[0021] 为了使本申请的内容更容易被清楚的理解, 下面根据本申请的具体实施例并 合附图, 对本申请作进一步详细的说明, 其中
[0022] 图 1 是实施例 1所述方法中部分流程示意图;
[0023] 图 2 是实施例 1所述方法中部分流程示意图;
[0024] 图 3 是实施例 2所述方法中部分流程示意图;
[0025] 图 4 是实施例 2所述方法中部分流程示意图;
[0026] 图 5 是实施例 2所述方法中部分流程示意图;
[0027] 图 6 是实施例 2所述方法中部分流程示意图。
[0028] 图中附图标记表示为: 1-激光; 2-扫描样品; 3-白色粉末状结构; 4-散射; 5-打 标; 6-物体。
[0029] 具体实施方式
[0030] 实施例 1 本实施例公幵了一种抗刮高对比度的玻璃及陶瓷的激光打标方法: 高 明度白色或有色打标的例子:
[0031] 如图 1所示, 将激光 1聚焦在样品 2表面, 并以高重叠率扫描样品 2, 可为玻璃类
、 陶瓷类、 蓝宝石等材料, 其产生的热将样品熔融成白色粉末状结构 3并沾附在 表面上如图 2所示。
[0032] 如图 2所示, 照射到白色粉状结构后被强烈散射 4, 呈现高明度。 若需要不同颜 色, 可依需求以不同颜色的染料将粉末打标染色。 如图 3, 将染料 4附着在粉末 上, 染料会因表面张力而紧紧吸附在粉末打标上。 将多余的染料擦拭后即为高 彩度的有色打标, 如图 4所示。
[0033] 实施例 2本实施例公幵了一种抗刮高对比度的玻璃及陶瓷的激光打标方法: [0034] 结构化后的粉末状打标由于失去材料原本的强度, 容易被硬物刮落。 若打标与 硬物摩擦, 即使打标未完全被刮除, 硬物也会在打标上留下刮痕, 使打标变得 不美观。
[0035] 图 5和图 6中体现的是避免打标刮伤的方法, 即将打标由大量的点状、 矩形、 或 多角形等其他图形的次打标组成打标 5的图样。 每个次打标的大小仅数十微米, 次打标间被未加工的样本 2所隔幵。 一般的物体 6较次打标大, 因此无法碰触到 粉末结构的打标, 打标也因此不会被刮伤。 由于次打标尺寸小, 视觉上不影响 打标的整体效果。 上述两种范例为不同应用, 可合并应用。 另外可以打标后再 表面涂覆保护涂层, 在不破坏打标结构的情况下对表面进行保护。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定 。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做出其它不 同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由此所 引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种抗刮高对比度的玻璃及陶瓷的激光打标方法, 其特征在于, 所述 方法为: 用聚焦激光在待处理材料表面扫描, 然后将待处理材料的待 打标部分的表面打标成白色粉末状, 所述粉末状沾附在所述待处理材 料表面。
[权利要求 2] 如权利要求 1所述的激光打标方法, 其特征在于, 所述聚焦激光为固 态激光、 气态激光、 或液态激光中的一种。
[权利要求 3] 如权利要求 1所述的激光打标方法, 其特征在于, 所述聚焦激光为不 同脉冲长度的激光, 为纳秒激光、 皮秒激光、 飞秒激光中的一种。
[权利要求 4] 如权利要求 1所述的激光打标方法, 其特征在于, 所述聚焦激光为不 同波长的激光, 为红外线激光、 可见光激光、 紫外线激光中的一种。
[权利要求 5] 如权利要求 1-4任一项所述的激光打标方法, 其特征在于, 所述待处 理材料为陶瓷、 玻璃、 蓝宝石中的一种。
[权利要求 6] 如权利要求 5所述的激光打标方法, 其特征在于, 所述聚焦激光在待 处理材料表面扫描是通过移动激光束来实现; 或由固定激光束, 移动 被加工材料来实现。
[权利要求 7] 如权利要求 6所述的激光打标方法, 其特征在于, 所述激光须被加工 材料吸收, 吸收方式为线性吸收或非线性吸收。
[权利要求 8] 如权利要求 7所述的激光打标方法, 其特征在于, 所述方法打标出的 形状为矩形、 圆形、 三角形、 多边形中的一种。
PCT/CN2018/074518 2017-09-29 2018-01-30 一种抗刮高对比度的玻璃及陶瓷的激光打标方法 WO2019061975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710911809.3A CN107718920A (zh) 2017-09-29 2017-09-29 一种抗刮高对比度的玻璃及陶瓷的激光打标方法
CN201710911809.3 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019061975A1 true WO2019061975A1 (zh) 2019-04-04

Family

ID=61209316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074518 WO2019061975A1 (zh) 2017-09-29 2018-01-30 一种抗刮高对比度的玻璃及陶瓷的激光打标方法

Country Status (2)

Country Link
CN (1) CN107718920A (zh)
WO (1) WO2019061975A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199660A (ja) * 1984-03-24 1985-10-09 Toshiba Corp レ−ザマ−キング装置
JP2007033857A (ja) * 2005-07-27 2007-02-08 Hoya Corp マスクブランクス用ガラス基板の製造方法、マスクブランクス用ガラス基板、マスクブランクスの製造方法、及びマスクブランクス
US20090317729A1 (en) * 2008-06-18 2009-12-24 Hoya Corporation Mask blank glass substrate, mask blank glass substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
CN102036927A (zh) * 2008-04-18 2011-04-27 康宁股份有限公司 用来在玻璃基板中形成微结构的方法和系统
CN102950908A (zh) * 2011-08-26 2013-03-06 精工电子有限公司 热头、打印机及标注方法
CN205414703U (zh) * 2015-09-02 2016-08-03 深圳英诺激光科技有限公司 一种毛面透明材料的激光内雕装置
CN106335289A (zh) * 2016-11-18 2017-01-18 深圳英诺激光科技有限公司 一种在透明材料上进行白色或彩色打标的设备及方法
CN106626849A (zh) * 2016-09-13 2017-05-10 山东镭泽智能科技有限公司 用于陶瓷的彩色激光打标方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040836A1 (en) * 2008-08-12 2010-02-18 Shenping Li Method for providing sub-surface marks in polymeric materials
CN203390386U (zh) * 2013-05-10 2014-01-15 苏州图森激光有限公司 一种激光加工装置
CN203887388U (zh) * 2013-11-08 2014-10-22 苏州图森激光有限公司 一种激光打标机
CN203528095U (zh) * 2013-11-08 2014-04-09 苏州图森激光有限公司 激光打标机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199660A (ja) * 1984-03-24 1985-10-09 Toshiba Corp レ−ザマ−キング装置
JP2007033857A (ja) * 2005-07-27 2007-02-08 Hoya Corp マスクブランクス用ガラス基板の製造方法、マスクブランクス用ガラス基板、マスクブランクスの製造方法、及びマスクブランクス
CN102036927A (zh) * 2008-04-18 2011-04-27 康宁股份有限公司 用来在玻璃基板中形成微结构的方法和系统
US20090317729A1 (en) * 2008-06-18 2009-12-24 Hoya Corporation Mask blank glass substrate, mask blank glass substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
CN102950908A (zh) * 2011-08-26 2013-03-06 精工电子有限公司 热头、打印机及标注方法
CN205414703U (zh) * 2015-09-02 2016-08-03 深圳英诺激光科技有限公司 一种毛面透明材料的激光内雕装置
CN106626849A (zh) * 2016-09-13 2017-05-10 山东镭泽智能科技有限公司 用于陶瓷的彩色激光打标方法
CN106335289A (zh) * 2016-11-18 2017-01-18 深圳英诺激光科技有限公司 一种在透明材料上进行白色或彩色打标的设备及方法

Also Published As

Publication number Publication date
CN107718920A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Wang et al. Femtosecond pulse laser ablation of sapphire in ambient air
US7662440B2 (en) Process for marking object surfaces
JP6745822B2 (ja) 第2の面のレーザーアブレーション
KR20180071396A (ko) 양극 산화된 금속 물품
JPH11267861A (ja) 光透過性材料のマーキング方法
Ou et al. The fluence threshold of femtosecond laser blackening of metals: The effect of laser-induced ripples
JP2018020378A (ja) 時計要素の彫刻方法およびその方法によって得られる時計要素
JP6403762B2 (ja) ガラスもしくはガラスセラミックのレーザー誘導によるボリューム色づけ
Campbell et al. Ultra-short-pulse laser irradiation and ablation of dielectrics
US20150158116A1 (en) Method and apparatus for internally marking a substrate having a rough surface
JP6474810B2 (ja) 薄層の内部にマーキングするためのレーザシステム並びに方法及びこれにより作製される対象物
JP6415020B2 (ja) そのバルク内が局所的に着色した透明ガラス物品、およびその関連方法
CN106794553A (zh) 第二表面激光烧蚀
Ersoy et al. Femtosecond laser cleaning of historical paper with sizing
Wang et al. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation
WO2019061975A1 (zh) 一种抗刮高对比度的玻璃及陶瓷的激光打标方法
KR20230077734A (ko) 광학 부재, 그 제조 방법, 및 배광 소자
DE102013002222B4 (de) Verfahren zur Modifikation der Oberfläche eines Metalls
JP7082615B2 (ja) エレクトロクロミックコーティングガラス物品およびそれをレーザー加工する方法
RU2634571C1 (ru) Способ создания оригинального цветного защитного изображения внутри листового материала
JP2001276985A (ja) マーキング方法、装置及びマーキングされた光学部材
Rong et al. Facile fabrication of optical diffusers by ablation-assisted nanosecond laser micromachining of glass substrates
Zhang et al. Periodic subwavelength ripples on a Si surface induced by a single temporally shaped femtosecond laser pulse: Enhanced periodic energy deposition and reduced residual thermal effect
JP2004202498A (ja) レーザ加工方式及びこの方式によって形成されるエンコーダスリット及び像表示体
Chambonneau et al. Laser-induced damage morphology in fused silica at 1064 nm in the nanosecond regime

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860832

Country of ref document: EP

Kind code of ref document: A1