WO2019061515A1 - 鲁棒的无线通信物理层斜率认证方法和装置 - Google Patents

鲁棒的无线通信物理层斜率认证方法和装置 Download PDF

Info

Publication number
WO2019061515A1
WO2019061515A1 PCT/CN2017/105069 CN2017105069W WO2019061515A1 WO 2019061515 A1 WO2019061515 A1 WO 2019061515A1 CN 2017105069 W CN2017105069 W CN 2017105069W WO 2019061515 A1 WO2019061515 A1 WO 2019061515A1
Authority
WO
WIPO (PCT)
Prior art keywords
authentication
signal
parameter adjustment
adjustment factor
power parameter
Prior art date
Application number
PCT/CN2017/105069
Other languages
English (en)
French (fr)
Inventor
谢宁
张莉
王晖
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/105069 priority Critical patent/WO2019061515A1/zh
Publication of WO2019061515A1 publication Critical patent/WO2019061515A1/zh
Priority to US16/574,152 priority patent/US20200015083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/106Packet or message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a robust wireless communication physical layer slope authentication method and apparatus.
  • the first authentication technology is the Spread Spectrum Authentication method (Auth-SS).
  • Auth-SS Spread Spectrum Authentication method
  • the basic idea is to use traditional direct sequence spread spectrum or frequency modulation technology.
  • the second is based on the Auth-TDM.
  • the basic idea is that the transmitting device periodically sends information signals and tag information alternately.
  • the receiving device directly extracts the expected information after receiving the signal.
  • Tag information for the purpose of authenticating the signal.
  • the third authentication technology is the Authentication with Superimposed Tag (Auth-SUP).
  • Auth-SUP Authentication with Superimposed Tag
  • the basic idea is to superimpose the tag information on the information signal, and then transmit it at the same time by the transmitting device. After receiving the signal, the receiving device uses the key. The key extracts the label information in the superimposed signal to achieve the purpose of signal authentication.
  • the embodiment of the invention discloses a robust wireless communication physical layer slope authentication method and device, which can ensure the robustness of information authentication.
  • the first aspect of the embodiments of the present invention discloses a robust wireless communication physical layer slope authentication method, which is applied to a receiving end device, and the method includes:
  • the signals in the first number of channel blocks are authenticated.
  • the authenticating the signals in the first quantity of channel blocks includes:
  • the second quantity is greater than the quantity threshold, determining that the signal in the first number of channel blocks is a label signal, where the label signal is an authentication signal received by the receiving end device;
  • the second quantity is less than the quantity threshold, determining that the signal in the first number of channel blocks is a regular signal, wherein the regular signal is a non-authentication signal received by the receiving end device.
  • the determining, according to the statistical authentication probability, determining the first number of channel blocks for performing signal authentication includes:
  • the number corresponding to the authentication probability threshold is obtained, and the number corresponding to the authentication probability threshold is determined as the first number of channel blocks for signal authentication.
  • a second aspect of the embodiments of the present invention discloses a robust wireless communication physical layer slope authentication method, which is applied to a transmitting device, and the method includes:
  • the signal to be transmitted after the power is adjusted is transmitted.
  • the authentication probability is negatively correlated with the power parameter adjustment factor.
  • a third aspect of the embodiments of the present invention discloses a robust wireless communication physical layer slope authentication apparatus, which is implemented on a receiving end device, and includes:
  • a receiving unit configured to receive a signal sent by the transmitting device
  • a determining unit configured to determine, according to the statistical authentication probability, a first quantity of channel blocks for performing signal authentication
  • An authentication unit configured to authenticate a signal in the first number of channel blocks.
  • the manner in which the authentication unit authenticates the signal in the first quantity of channel blocks is specifically:
  • the second quantity is greater than the quantity threshold, determining that the signal in the first number of channel blocks is a label signal, where the label signal is an authentication signal received by the receiving end device;
  • the second quantity is less than the quantity threshold, determining that the signal in the first number of channel blocks is a regular signal, wherein the regular signal is a non-authentication signal received by the receiving end device.
  • the determining, by the determining unit, the first quantity of the channel block for performing signal authentication according to the statistical authentication probability is specifically:
  • the number corresponding to the authentication probability threshold is obtained, and the number corresponding to the authentication probability threshold is determined as the first number of channel blocks for signal authentication.
  • a fourth aspect of the embodiments of the present invention discloses a robust wireless communication physical layer slope authentication device. Set, run on the transmitting device, including:
  • a dividing unit configured to divide the signal to be sent into a plurality of packets by using a pre-agreed key
  • a first determining unit configured to determine, according to a correspondence between the authentication probability and the power parameter adjustment factor, a first power parameter adjustment factor corresponding to the preset authentication probability
  • a second determining unit configured to determine, according to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, a power parameter adjustment factor of the plurality of the packets, except the first power parameter adjustment factor Power parameter adjustment factor other than;
  • an adjusting unit configured to perform power adjustment on the signal of the packet according to a power parameter adjustment factor of the packet for each of the packets
  • a sending unit configured to send the to-be-transmitted signal after adjusting the power.
  • the authentication probability is negatively correlated with the power parameter adjustment factor.
  • the embodiment of the invention has the following beneficial effects:
  • the receiving end device may receive the signal sent by the transmitting end device; determine the first quantity of the channel block for performing signal authentication according to the statistical authentication probability; further, the receiving end device may perform the first quantity
  • the signals in the channel block are authenticated.
  • the receiving device may determine the first number of channel blocks for performing signal authentication according to the authentication probability, and further perform signals on the first number of channel blocks. Authentication, that is, authentication of signals in multiple channel blocks, is more robust than authentication of signals in a single channel block, thereby ensuring robustness of information authentication.
  • FIG. 1 is a schematic diagram of a model of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of another wireless communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power allocation mechanism of a signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another wireless communication method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of relationship between authentication probability and signal-to-noise ratio SNR under various numbers of channel blocks according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of relationship between an authentication probability and a power parameter adjustment factor according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another wireless communication apparatus according to an embodiment of the present invention.
  • the embodiment of the invention discloses a robust wireless communication physical layer slope authentication method and device, which can improve the robustness of information authentication. The details are described below in conjunction with the drawings.
  • FIG. 1 is a schematic diagram of a model of a communication system according to an embodiment of the present invention.
  • the communication system may include a transmitting end device, a receiving end device, a listening device 1 and a listening device 2, wherein:
  • the transmitting device is legal and is mainly used to transmit a label signal that needs to be authenticated.
  • the signal to which the label is added is called a label signal, and the signal without the label is called a regular signal.
  • the transmitting end device may include but is not limited to a base station and a user equipment.
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional NodeB)
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • User equipment may include, but is not limited to, a smart phone, a notebook computer, a personal computer (PC), a personal digital assistant (PDA), a mobile internet device (MID), a wearable device (such as a smart watch).
  • the operating system of the user device may include, but is not limited to, an Android operating system, an IOS operating system, a Symbian operating system, and a BlackBerry operating system.
  • the Windows Phone 8 operating system and the like are not limited in the embodiment of the present invention.
  • the receiving device is legal, mainly used to receive signals, and the signal is authenticated to determine whether the signal is a regular signal or a tag signal.
  • the receiving end device may include but is not limited to a base station and a user equipment.
  • a base station e.g., an access point
  • the base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional NodeB)
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Long Term Evolution
  • User equipment may include, but is not limited to, a smartphone, a laptop, an individual Computers (Personal Computer, PC), Personal Digital Assistant (PDA), Mobile Internet Device (MID), wearable devices (such as smart watches, smart bracelets, smart glasses) and other electronic devices
  • the operating system of the user equipment may include, but is not limited to, an Android operating system, an IOS operating system, a Symbian operating system, a Blackberry operating system, a Windows Phone 8 operating system, etc., which are not implemented in the embodiment of the present invention. limited.
  • the listening device 1 is an illegal receiving party (ie, a hostile user), and is mainly used for monitoring signals sent by the transmitting device. Once the signal sent by the transmitting device is found to have authentication information (ie, a tag signal), the signal will be analyzed. And trying to extract, destroy, and even tamper with the authentication information.
  • authentication information ie, a tag signal
  • the monitoring device 2 is a relatively neutral receiver, and the monitoring device 2 can receive the signal transmitted by the transmitting device, but the monitoring device 2 has no knowledge of the authentication method, and does not attempt to analyze whether the received signal contains the authentication information. It does not interfere with the signal received by the receiving device, and does not affect the authentication process of the signal by the receiving device.
  • the transmitting end device, the receiving end device, the listening device 1 and the listening device 2 in the communication system described in FIG. 1 all represent different types of devices, that is, the transmitting in the communication system described in FIG.
  • the terminal device is not limited to the one described in FIG. 1, and may be plural.
  • the receiving device in the communication system described in FIG. 1 is not limited to only one described in FIG.
  • the listening device 1 in the communication system described in FIG. 1 is not limited to the one described in FIG. 1, but may be plural.
  • the listening device 2 in the communication system described in FIG. 1 is not limited to the figure.
  • the one described in 1 can also have more than one.
  • ⁇ i represents the random variable of short-term fading
  • n i ⁇ n i1 , n i2 , ..., n iL ⁇ , It is Gaussian white noise.
  • the device at the transmitting end may divide the signal to be sent into multiple packets by using a pre-agreed key; acquire a preset authentication probability; and determine the preset authentication according to the correspondence between the authentication probability and the power parameter adjustment factor. a first power parameter adjustment factor corresponding to the probability; determining, according to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, a power parameter adjustment factor of the plurality of packets, except the first power a power parameter adjustment factor other than the parameter adjustment factor; for each of the packets, performing power adjustment on the signal of the packet according to the power parameter adjustment factor of the packet; and transmitting the to-be-transmitted signal after adjusting the power.
  • the receiving device may determine a first number of channel blocks for performing signal authentication according to the statistical authentication probability; and perform authentication on the signal in the first number of channel blocks.
  • the receiving end device knows the label signal and the encryption mode added by the transmitting end device, and agrees with the transmitting end device to use the used key in advance.
  • the above physical layer authentication technology may be referred to as a slope authentication technology (Auth-SLO).
  • the transmitting end device uses the key agreed by the two parties to group the sending signal, and determines the power parameter adjusting factors of the plurality of the packets according to the authentication probability and the energy limited condition, and then uses the determined
  • the power parameter adjustment factor allocates and adjusts the power of each group of signals
  • the receiving end device may also determine the first number of channel blocks for performing signal authentication according to the authentication probability, and further perform signals on the first number of channel blocks.
  • Authentication that is, authentication of signals in multiple channel blocks, is more robust than authentication of signals in a single channel block, thereby ensuring robustness of information authentication.
  • FIG. 2 is a schematic flowchart diagram of a wireless communication method according to an embodiment of the present invention.
  • the wireless communication method is applicable to the receiving end device. As shown in FIG. 2, the wireless communication method may include the following steps:
  • Step 201 The receiving end device receives a signal sent by the transmitting end device.
  • the signal sent by the receiving end device to the transmitting end device may be expressed as:
  • the SINR of the receiving device is,
  • the superimposed tag signal does not sacrifice the SINR of the receiving device.
  • the receiving end device it is not necessary to estimate the channel parameters (channel fading), there is no need to compensate the channel, and even the signal is not required to be demodulated and decoded, only by judging whether the received signal conforms to the transmitting end.
  • the signal can be authenticated by the power distribution characteristics of the device.
  • Step 202 The receiving end device determines, according to the statistical authentication probability, a first quantity of channel blocks for performing signal authentication.
  • the authentication probability of the i-th channel block can be expressed as follows:
  • the receiving device can calculate the authentication probability according to the above formula.
  • the receiving end device determines, according to the statistical authentication probability, that the first number of channel blocks for performing signal authentication includes:
  • the number corresponding to the authentication probability threshold is obtained, and the number corresponding to the authentication probability threshold is determined as the first number of channel blocks for signal authentication.
  • an authentication probability threshold may be preset, wherein the authentication probability threshold may be obtained in advance by multiple implementations, and the authentication probability threshold corresponds to the number of channel blocks.
  • the method further determines whether the authentication probability is greater than the authentication probability threshold; if yes, the number corresponding to the authentication probability threshold is obtained, and the number corresponding to the authentication probability threshold is determined to be performed.
  • the first number is the minimum number of channel blocks that can satisfy the authentication probability threshold.
  • the minimum number of channel blocks are selected according to the requirements of the authentication probability, the complexity of the receiving device can be reduced.
  • Step 203 The receiving end device authenticates the signal in the first quantity of channel blocks.
  • the receiving end device authenticating the signals in the first number of channel blocks includes:
  • the second quantity is greater than the quantity threshold, determining that the signal in the first number of channel blocks is a label signal, where the label signal is an authentication signal received by the receiving end device;
  • the second quantity is less than the quantity threshold, determining that the signal in the first number of channel blocks is a regular signal, wherein the regular signal is a non-authentication signal received by the receiving end device.
  • the channel fading experienced by each channel block is independent of each other, and the authentication decision results corresponding to different channel blocks are also independent of each other.
  • the probability of the tag signal is:
  • B CDF (x, K, p) is a binomial cumulative distribution function with a probability p of each accurate x in K identical and independent experiments
  • B PDF (x, K, p) is It corresponds to the probability density function. Compare x and ensure that the new threshold corresponding to the preset false alarm probability P FA is not exceeded in K data blocks Available,
  • k 0 is a preset number threshold
  • the probability that the signal in the K channel blocks is determined to be a label signal can be expressed as:
  • the receiving device may determine the first number of channel blocks for performing signal authentication according to the authentication probability, and further, in the first number of channel blocks.
  • the signal is authenticated, that is, the signals in the plurality of channel blocks are authenticated, which is more robust than the authentication of the signals in the single channel block, thereby ensuring the robustness of the information authentication.
  • FIG. 3 is a schematic flowchart diagram of another wireless communication method according to an embodiment of the present invention.
  • the wireless communication method is applicable to a transmitting device. As shown in FIG. 3, the wireless communication method may include the following steps:
  • Step 301 The transmitting device divides the to-be-transmitted signal into multiple packets by using a pre-agreed key.
  • the transmitting end device may divide the signal to be transmitted into multiple packets by using a pre-agreed key, where the number of specific packets and the length of each group of signals are all by the transmitting end.
  • the device and the receiving device are pre-agreed and jointly owned by the key.
  • a string of information signals of length N has a string of keys of length N, and N is a positive integer.
  • the number of 0s and 1s in the key is the same.
  • the transmitting device can align the information signal with the key, the bit corresponding to the key being 0 is divided into the first group, and the bit corresponding to the key is divided into the second group, that is, the information signal is divided into two groups.
  • Step 302 The transmitting device acquires a preset authentication probability.
  • the robustness of the system is related to the authentication probability.
  • an ideal authentication probability can be set in advance, and the robustness of the system is better under the preset authentication probability.
  • Step 303 The transmitting end device determines, according to the correspondence between the authentication probability and the power parameter adjustment factor, a first power parameter adjustment factor corresponding to the preset authentication probability.
  • the authentication probability is negatively correlated with the power parameter adjustment factor in the correspondence between the authentication probability and the power parameter adjustment factor.
  • the correspondence between the authentication probability and the power parameter adjustment factor may be obtained by multiple tests in advance. After the preset authentication probability is obtained, the corresponding relationship between the authentication probability and the power parameter adjustment factor may be determined. The first power parameter adjustment factor corresponding to the preset authentication probability.
  • the transmitting end device and the receiving end device can establish a correspondence relationship between the authentication probability and the power parameter adjusting factor through multiple communications, and each time the transmitting end device is performing signal transmission. Before sending, the feedback information sent by the receiving device is received, and the feedback information is used to indicate the correspondence between the authentication probability and the power parameter adjustment factor.
  • Step 304 The transmitting end device determines, according to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, a power parameter adjustment factor of the plurality of packets, except the first power parameter adjustment factor. External power parameter adjustment factor.
  • the transmitting end device needs to determine a power parameter adjustment factor of each of the packets. After determining the first power parameter adjustment factor corresponding to the preset authentication probability, the transmitting device may further determine, according to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, A power parameter adjustment factor of the power parameter adjustment factors of the group other than the first power parameter adjustment factor.
  • Step 305 For each of the packets, the transmitting device adjusts a power parameter of the packet to perform power adjustment on the signal of the packet.
  • FIG. 4 is a schematic diagram of a signal power allocation mechanism disclosed in an embodiment of the present invention.
  • the information signal is divided into two groups, that is, the first group and the second group, and the transmitting device can multiply the power of the first group by the power parameter adjustment factor ⁇ , and multiply the power of the second group.
  • the power factor is adjusted by a factor of [beta] to adjust the power of each packet. Among them, it is necessary to satisfy 0 ⁇ ⁇ ⁇ 1 ⁇ ⁇ .
  • the tag signal can be expressed as follows:
  • l 1 ⁇ l 2 ⁇ 1,...,L/2 ⁇ represents the subscript of each group of signals.
  • the lengths of the signals x i,1 and x i,2 are both L/2.
  • Step 306 The transmitting device sends the to-be-transmitted signal after adjusting the power.
  • a certain power allocation feature may be formed, and the to-be-transmitted signal after the power adjustment is sent to the receiving device.
  • the power allocation feature may include: a tag signal, a power parameter adjustment factor, and a packet mode (ie, at which locations are grouped).
  • the transmitting device before transmitting the to-be-sent signal, uses the key agreed by the two parties to group the transmitted signals, and determines the power of the plurality of packets according to the authentication probability and the energy limited condition.
  • the parameter adjustment factor uses the determined power parameter adjustment factor to adjust and transmit the power of each group of signals.
  • FIG. 5 is a schematic flowchart diagram of another wireless communication method according to an embodiment of the present invention.
  • the wireless communication method is described from both the transmitting end device and the receiving end device.
  • the wireless communication method may include the following steps:
  • Step 501 The transmitting device divides the signal to be sent into multiple packets by using a pre-agreed key.
  • Step 502 The transmitting device acquires a preset authentication probability.
  • Step 503 The transmitting end device determines, according to the correspondence between the authentication probability and the power parameter adjustment factor, a first power parameter adjustment factor corresponding to the preset authentication probability.
  • Step 504 According to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, the transmitting end device determines, among the power parameter adjustment factors of the plurality of the packets, the first power parameter adjustment factor. External power parameter adjustment factor.
  • Step 505 For each of the packets, according to the power parameter adjustment factor of the packet, the transmitting device performs power adjustment on the signal of the packet.
  • Step 506 The transmitting device sends the to-be-transmitted signal after adjusting the power.
  • Step 507 The receiving end device determines, according to the statistical authentication probability, a first quantity of channel blocks for performing signal authentication.
  • Step 508 The receiving end device authenticates the signal in the first number of channel blocks.
  • FIG. 6 is a schematic diagram of relationship between authentication probability and signal-to-noise ratio (SNR) under various numbers of channel blocks according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an embodiment of the present invention.
  • a schematic diagram of the relationship between the authentication probability and the power parameter adjustment factor. 6 shows the relationship between the authentication probability and the signal-to-noise ratio SNR in the number K of three channel blocks, wherein the number of channel blocks K is 2, 5, and 10, respectively, as can be seen from FIG.
  • Figure 7 shows the relationship between the authentication probability and the power parameter adjustment factor ⁇ . As can be seen from Figure 7, the authentication probability gradually decreases from 1 to 0 as ⁇ increases, so to ensure the robustness of the system authentication, When designing the power parameter adjustment factor, a smaller ⁇ value should be taken.
  • the wireless communication physical layer authentication technology (Auth-SLO) proposed in the present invention implements the wireless communication physical layer compared with the existing wireless communication physical layer authentication technology (Auth-SS, Auth-SUP, Auth-TDM).
  • the authentication does not need to occupy additional signal bandwidth, the tag signal does not become the noise that affects the signal extracted by the receiving device, and does not affect the statistical characteristics of the noise of the receiving device.
  • the Auth-SLO authentication technology proposed by the present invention is more robust than the prior art.
  • the transmitting end device uses the key agreed by the two parties to group the sending signals, and determines the power of the plurality of the packets according to the authentication probability and the energy limited condition.
  • the parameter adjustment factor, and then the power of each group of signals is allocated and adjusted by using the determined power parameter adjustment factor.
  • the receiving end device may also determine the first quantity of the channel block for performing signal authentication according to the authentication probability, and then the first The signals in the number of channel blocks are authenticated, that is, the signals in the plurality of channel blocks are authenticated, which is more robust than the authentication of the signals in the single channel block, thereby ensuring the robustness of the information authentication.
  • FIG. 8 is a schematic structural diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • the wireless communication device shown in FIG. 8 is operated by the receiving device, wherein the wireless communication device described in FIG. 8 can be used to perform some or all of the steps in the wireless communication method described in FIG. 2 and FIG. Referring to the related descriptions in FIG. 2 and FIG. 5, details are not described herein again.
  • the wireless communication device can include:
  • the receiving unit 801 is configured to receive a signal sent by the transmitting device.
  • a determining unit 802 configured to determine, according to a statistical authentication probability, a first quantity of channel blocks for performing signal authentication
  • the authentication unit 803 is configured to authenticate the signal in the first number of channel blocks.
  • the manner in which the authentication unit 803 authenticates the signal in the first number of channel blocks is specifically:
  • the second quantity is greater than the quantity threshold, determining that the signal in the first number of channel blocks is a label signal, where the label signal is an authentication signal received by the receiving end device;
  • the second quantity is less than the quantity threshold, determining that the signal in the first number of channel blocks is a regular signal, wherein the regular signal is a non-authentication signal received by the receiving end device.
  • the determining unit 802 determines, according to the statistical authentication probability, a manner of determining a first quantity of channel blocks for performing signal authentication, specifically:
  • the number corresponding to the authentication probability threshold is obtained, and the number corresponding to the authentication probability threshold is determined as the first number of channel blocks for signal authentication.
  • the first number of channel blocks for performing signal authentication may be determined according to the authentication probability, and then the signal in the first number of channel blocks Authentication is performed by authenticating signals in multiple channel blocks, which is more robust than authentication of signals in a single channel block, thereby ensuring robustness of information authentication.
  • FIG. 9 is a schematic structural diagram of another wireless communication apparatus according to an embodiment of the present invention.
  • the wireless communication device shown in FIG. 9 operates on a transmitting device, wherein the wireless communication device described in FIG. 9 can be used to perform some or all of the steps in the wireless communication method described in FIG. 3 and FIG. Referring to the related descriptions in FIG. 3 and FIG. 5, details are not described herein again.
  • the wireless communication device can include:
  • the dividing unit 901 is configured to divide the to-be-transmitted signal into multiple packets by using a pre-agreed key
  • the first determining unit 902 is configured to determine, according to the correspondence between the authentication probability and the power parameter adjustment factor, a first power parameter adjustment factor corresponding to the preset authentication probability;
  • a second determining unit 903 configured to determine, according to the energy limited condition of the to-be-transmitted signal power and the first power parameter adjustment factor, a power parameter adjustment factor of the plurality of packets, except the first power parameter adjustment Power parameter adjustment factor other than the factor;
  • the adjusting unit 904 is configured to perform power adjustment on the signal of the packet according to a power parameter adjustment factor of the packet for each of the packets;
  • the sending unit 905 is configured to send the to-be-transmitted signal after adjusting the power.
  • the authentication probability is negatively correlated with the power parameter adjustment factor in the correspondence between the authentication probability and the power parameter adjustment factor.
  • the wireless communication device described in FIG. 9 is configured to group the signals to be transmitted by using the agreed key of the two parties before transmitting the signal to be transmitted, and determine the power of the plurality of packets according to the authentication probability and the energy limited condition.
  • the parameter adjustment factor uses the determined power parameter adjustment factor to adjust and transmit the power of each group of signals.
  • the above-described integrated unit implemented in the form of a software function module can be stored in a computer readable storage medium.
  • the computer readable storage medium can store a computer program, which when executed by the processor, can implement the steps in the foregoing method embodiments.
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable storage medium can To include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a Read-Only Memory (ROM), a random access memory ( RAM, Random-Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable storage medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a memory. Including several instructions to make a computer device (can be a personal computer, server Or a network device or the like) performing all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种鲁棒的无线通信物理层斜率认证方法及装置,该方法包括:接收发射端设备发送的信号;根据统计的认证概率,确定进行信号认证的信道块的第一数量;对所述第一数量的信道块中的信号进行认证。本发明实施例可以确保信息认证的鲁棒性。

Description

鲁棒的无线通信物理层斜率认证方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及一种鲁棒的无线通信物理层斜率认证方法和装置。
背景技术
当前物理层认证技术主要有三种,第一种认证技术是扩频技术(Spread Spectrum Authentication method,Auth-SS),基本思想是采用传统的直接序列扩频或者调频技术。第二种是基于时分复用标签技术(Authentication with Time Division Multiplexed tag,Auth-TDM),基本思想是发射端设备周期性的交替发送信息信号和标签信息,接收端设备接收到信号后直接提取期望的标签信息以实现信号的认证目的。第三种认证技术是标签叠加技术(Authentication with Superimposed tag,Auth-SUP),基本思想是将标签信息叠加在信息信号上,再由发射端设备同时发射出去,接收端设备接收到信号之后利用密钥对叠加信号中的标签信息进行提取,达到信号认证的目的。
然而,上述三种物理层认证技术(Auth-TDM、Auth-SS和Auth-SUP)无法有效地对抗信道衰落和接收端设备的噪声影响,而且当训练序列很长时,会牺牲掉本身的性能,即鲁棒性较差。
发明内容
本发明实施例公开了一种鲁棒的无线通信物理层斜率认证方法及装置,可以确保信息认证的鲁棒性。
本发明实施例第一方面公开一种鲁棒的无线通信物理层斜率认证方法,应用于接收端设备,所述方法包括:
接收发射端设备发送的信号;
根据统计的认证概率,确定进行信号认证的信道块的第一数量;
对所述第一数量的信道块中的信号进行认证。
作为一种可选的实施方式,在本发明实施例第一方面中,所述对所述第一数量的信道块中的信号进行认证包括:
确定所述第一数量的信道块中的标签信号的第二数量;
判断所述第二数量是否大于预设的数量阈值;
若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
作为一种可选的实施方式,在本发明实施例第一方面中,所述根据统计的认证概率,确定进行信号认证的信道块的第一数量包括:
根据接收到的所述信号,统计认证概率;
判断所述认证概率是否大于认证概率阈值;
若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
本发明实施例第二方面公开一种鲁棒的无线通信物理层斜率认证方法,应用于发射端设备,所述方法包括:
利用预先约定的密钥,将待发送信号划分成多个分组;
获取预设的认证概率;
根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子;
根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;
针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;
将调整功率后的待发送信号进行发送。
作为一种可选的实施方式,在本发明实施例第二方面中,所述在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
本发明实施例第三方面公开一种鲁棒的无线通信物理层斜率认证装置,运行于接收端设备,包括:
接收单元,用于接收发射端设备发送的信号;
确定单元,用于根据统计的认证概率,确定进行信号认证的信道块的第一数量;
认证单元,用于对所述第一数量的信道块中的信号进行认证。
作为一种可选的实施方式,在本发明实施例第三方面中,所述认证单元对所述第一数量的信道块中的信号进行认证的方式具体为:
确定所述第一数量的信道块中的标签信号的第二数量;
判断所述第二数量是否大于预设的数量阈值;
若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
作为一种可选的实施方式,在本发明实施例第三方面中,所述确定单元根据统计的认证概率,确定进行信号认证的信道块的第一数量的方式具体为:
根据接收到的所述信号,统计认证概率;
判断所述认证概率是否大于认证概率阈值;
若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
本发明实施例第四方面公开了一种鲁棒的无线通信物理层斜率认证装 置,运行于发射端设备,包括:
划分单元,用于利用预先约定的密钥,将待发送信号划分成多个分组;
第一确定单元,用于根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子;
第二确定单元,用于根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;
调整单元,用于针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;
发送单元,用于将调整功率后的待发送信号进行发送。
作为一种可选的实施方式,在本发明实施例第四方面中,在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
与现有技术相比,本发明实施例具备以下有益效果:
本发明实施例中,接收端设备可以接收发射端设备发送的信号;根据统计的认证概率,确定进行信号认证的信道块的第一数量;进一步地,接收端设备可以对所述第一数量的信道块中的信号进行认证。可见,实施本发明实施例,接收端设备接收发射端设备发送的信号之后,可以根据认证概率确定进行信号认证的信道块的第一数量,进而对所述第一数量的信道块中的信号进行认证,即对多个信道块中的信号进行认证,这比对单个信道块中的信号进行认证的鲁棒性要强,从而能够确保信息认证的鲁棒性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种通信系统的模型示意图;
图2是本发明实施例公开的一种无线通信方法的流程示意图;
图3是本发明实施例公开的另一种无线通信方法的流程示意图;
图4是本发明实施例公开的一种信号的功率分配机制的示意图;
图5是本发明实施例公开的另一种无线通信方法的流程示意图;
图6是本发明实施例公开的一种在多种数量的信道块下认证概率随信噪比SNR的关系示意图;
图7是本发明实施例公开的一种认证概率与功率参数调整因子的关系示意图;
图8是本发明实施例公开的一种无线通信装置的结构示意图;
图9是本发明实施例公开的另一种无线通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例公开了一种鲁棒的无线通信物理层斜率认证方法及装置,可以提高信息认证的鲁棒性。以下进行结合附图进行详细描述。
请参阅图1,图1是本发明实施例公开的一种通信系统的模型示意图。 如图1所示,该通信系统可以包括发射端设备、接收端设备、监听设备1以及监听设备2,其中:
发射端设备为合法的,主要用于发射需要进行认证的标签信号,其中,添加了标签的信号称为标签信号,没有添加标签的信号称之为常规信号。其中,发射端设备可以包括但不限于基站以及用户设备。基站(例如接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中,接入网的其余部分可包括网际协议(IP)网络。基站还可以协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional NodeB),本发明实施例不做限定。用户设备可以包括但不限于智能手机、笔记本电脑、个人计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、穿戴设备(如智能手表、智能手环、智能眼镜)等各类电子设备,其中,该用户设备的操作系统可包括但不限于Android操作系统、IOS操作系统、Symbian(塞班)操作系统、Black Berry(黑莓)操作系统、Windows Phone8操作系统等等,本发明实施例不做限定。
接收端设备为合法的,主要用于接收信号,并对该信号进行认证,以确定该信号是常规信号还是标签信号。其中,接收端设备可以包括但不限于基站以及用户设备。基站(例如接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中,接入网的其余部分可包括网际协议(IP)网络。基站还可以协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional NodeB),本发明实施例不做限定。用户设备可以包括但不限于智能手机、笔记本电脑、个人 计算机(Personal Computer,PC)、个人数字助理(Personal Digital Assistant,PDA)、移动互联网设备(Mobile Internet Device,MID)、穿戴设备(如智能手表、智能手环、智能眼镜)等各类电子设备,其中,该用户设备的操作系统可包括但不限于Android操作系统、IOS操作系统、Symbian(塞班)操作系统、Black Berry(黑莓)操作系统、Windows Phone8操作系统等等,本发明实施例不做限定。
监听设备1为非法的接收方(即敌对用户),主要用于监听发射端设备发送的信号,一旦发现发射端设备发出的信号中可能有认证信息(即标签信号),将对该信号进行分析并试图提取、破坏、甚至篡改认证信息。
监听设备2是相对中立的接收方,监听设备2可以接收发射端设备发送的信号,但监听设备2对于认证方法一无所知,不会尝试去分析接收到的信号里是否包含认证信息,也不会对接收端设备接收到的信号进行干扰,不影响接收端设备对信号的认证过程。
需要说明的是,图1所描述的通信系统中的发射端设备、接收端设备、监听设备1以及监听设备2均表示不同类的设备,也就是说,图1所描述的通信系统中的发射端设备不仅仅局限于图1所描述的一个,也可以有多个,同样,图1所描述的通信系统中的接收端设备不仅仅局限于图1所描述的一个,也可以有多个,同样,图1所描述的通信系统中的监听设备1不仅仅局限于图1所描述的一个,也可以有多个,同样,图1所描述的通信系统中的监听设备2不仅仅局限于图1所描述的一个,也可以有多个。
在图1所描述的通信系统中,假设发射端设备发射的信号是分块发送的,表示为b={b1,...,bL},每一块的长度为L,且块与块之间是独立同分布的随机变量。此外,不同设备之间的信道建模为快衰落信道,这意味着不同的信号块对应的信道衰落也是独立的。基于以上假设,接收端设备接收到的信号可表示如下:
yi=hixi+ni
其中xi为原始发射信号码序列b={b1,...,bL}经过一系列操作如编码调制脉冲整形等操作变为si后加上标签信号的结果,即xi包含了标签信号和信息 信号。hi=liηi为信道响应,本发明中我们采用的是Nakagami信道,ηi代表短时衰落的随机变量,li=λ/4πd为路径损耗,λ=c/fc是信号波长,c=3×108m/s,fc为信号的载波频率,d是发射端设备和接收端设备之间的距离,ni={ni1,ni2,...,niL},
Figure PCTCN2017105069-appb-000001
为高斯白噪声。
具体的,发射端设备可以利用预先约定的密钥,将待发送信号划分成多个分组;获取预设的认证概率;根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子;根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;将调整功率后的待发送信号进行发送。接收端设备接收到信号之后,可以根据统计的认证概率,确定进行信号认证的信道块的第一数量;对所述第一数量的信道块中的信号进行认证。其中,接收端设备知道发射端设备添加的标签信号以及加密方式,并提前和发射端设备约定好了所使用的密钥。其中,上述的物理层认证技术可以称之为斜率认证技术(Auth-SLO)。
可见,在发送待发送信号之前,发射端设备利用双方约定的密钥对待发送信号进行分组,并根据认证概率和能量受限条件,确定多个所述分组的功率参数调整因子,进而使用确定的功率参数调整因子对每组信号的功率进行分配调整,同时,接收端设备也可以根据认证概率确定进行信号认证的信道块的第一数量,进而对所述第一数量的信道块中的信号进行认证,即对多个信道块中的信号进行认证,这比对单个信道块中的信号进行认证的鲁棒性要强,从而能够确保信息认证的鲁棒性。
请参见图2,图2是本发明实施例公开的一种无线通信方法的流程示意图。其中,该无线通信方法适用于接收端设备。如图2所示,该无线通信方法可以包括以下步骤:
步骤201、接收端设备接收发射端设备发送的信号。
本发明实施例中,接收端设备接收发射端设备发送的信号可以表示为:
yi,1=hixi,1+ni,1
yi,2=hixi,2+ni,2
此时,接收端设备的SINR为,
Figure PCTCN2017105069-appb-000002
从上述公式可以看出,叠加的标签信号并不会牺牲接收端设备的SINR。此时,对于接收端设备来说,不需要对信道参数(信道衰落)进行估计,不需要补偿信道,甚至不需要对信号进行解调和解码,只需要通过判断收到的信号是否符合发射端设备的功率分配特征,就可以对信号进行认证。
步骤202、接收端设备根据统计的认证概率,确定进行信号认证的信道块的第一数量。
本发明实施例中,假设fY(y)是Y的概率密度函数,FY(y)是Y的累积分布函数。且Y=||X1||2-||X2||2
Figure PCTCN2017105069-appb-000003
则有如下表达式:
Figure PCTCN2017105069-appb-000004
Figure PCTCN2017105069-appb-000005
其中,阈值
Figure PCTCN2017105069-appb-000006
取决于虚警概率εFA,表示如下:
Figure PCTCN2017105069-appb-000007
第i个信道块的认证概率可表示如下:
Figure PCTCN2017105069-appb-000008
接收端设备可以依据上述公式,统计认证概率。
具体的,接收端设备根据统计的认证概率,确定进行信号认证的信道块的第一数量包括:
根据接收到的所述信号,统计认证概率;
判断所述认证概率是否大于认证概率阈值;
若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
在该实施例中,可以预设一个认证概率阈值,其中,所述认证概率阈值可以是预先通过多次实现获得的,所述认证概率阈值与信道块的数量相对应。
接收端设备统计出认证概率之后,进一步地,可以判断所述认证概率是否大于认证概率阈值;若是,则获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
需要说明的是,该第一数量为能够满足认证概率阈值的信道块的最少数量。当根据满足认证概率的要求,选择最少数量的信道块时,能够降低接收端设备的复杂性。
步骤203、接收端设备对所述第一数量的信道块中的信号进行认证。
具体的,接收端设备对所述第一数量的信道块中的信号进行认证包括:
确定所述第一数量的信道块中的标签信号的第二数量;
判断所述第二数量是否大于预设的数量阈值;
若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
在该实施例中,已经预先假设过每个信道块经历的信道衰落是相互独立的,不同的信道块对应的认证判决结果也是相互独立的。假设所述第一数量的信道块中的标签信号的第二数量表示为x=Σiδi,其中,第一数量可以用K 表示,如果信号中不存在标签信号,判决出存在k0个标签信号的概率为:
f(x>k0|H0)=1-BCDF(k0,K,εFA)
其中,BCDF(x,K,p)是在K个完全相同且相互独立的试验中获得每个准确x的概率为p的二项式累积分布函数,BPDF(x,K,p)是它对应的概率密度函数。比较x和保证在K个数据块中不超过预设虚警概率PFA对应的新阈值
Figure PCTCN2017105069-appb-000009
可得,
Figure PCTCN2017105069-appb-000010
则对K个信道块进行认证的判决结果为:
Figure PCTCN2017105069-appb-000011
其中,k0为预设的数量阈值,
Figure PCTCN2017105069-appb-000012
若第二数量表示为x大于所述数量阈值k0,则确定K个信道块中的信号为标签信号,若第二数量表示为x小于所述数量阈值k0,则确定K个信道块中的信号为常规信号,若第二数量表示为x等于所述数量阈值k0,则不对K个信道块中的信号进行判断。
此外,对于随机选取的K个信道块,K个信道块中的信号判决为标签信号的概率可以表示为:
f(x>k0|H1)=1-BCDF(k0,K,P)+(1-π)BPDF(k0,K,P)
在图2所描述的方法流程中,接收端设备接收发射端设备发送的信号之后,可以根据认证概率确定进行信号认证的信道块的第一数量,进而对所述第一数量的信道块中的信号进行认证,即对多个信道块中的信号进行认证,这比对单个信道块中的信号进行认证的鲁棒性要强,从而能够确保信息认证的鲁棒性。
请参见图3,图3是本发明实施例公开的另一种无线通信方法的流程示意图。其中,该无线通信方法适用于发射端设备。如图3所示,该无线通信方法可以包括以下步骤:
步骤301、发射端设备利用预先约定的密钥,将待发送信号划分成多个分组。
本发明实施例中,发射端设备在发送待发送信号之前,可以利用预先约定的密钥,将待发送信号划分成多个分组,其中,具体分组的数量和每组信号的长度均由发射端设备和接收端设备预先约定的且共同拥有的密钥来决定。
举例来说,一串长度为N的信息信号,同时有一串长度为N的密钥,N为正整数,密钥中0和1的个数是相同的。发射端设备可以将信息信号和密钥对齐,对应密钥为0的位分为第一组,对应密钥为1的位分为第二组,即信息信号被分成了两组。
为了简单起见,下文均以划分为两个分组来进行描述。
步骤302、发射端设备获取预设的认证概率。
本发明实施例中,系统的鲁棒性跟认证概率有关。在考虑系统的鲁棒性时,可以预先设置一个比较理想的认证概率,在该预设的认证概率下,系统的鲁棒性较好。
步骤303、发射端设备根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子。
其中,在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
本发明实施例中,可以预先通过多次试验获得认证概率与功率参数调整因子的对应关系,在获取到预设的认证概率之后,可以根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子。
需要说明的是,发射端设备和接收端设备可以通过多次通信建立起认证概率与功率参数调整因子之间的对应关系,每次发射端设备在进行信号的发 送之前,均会接收到接收端设备发送的反馈信息,该反馈信息用于表示认证概率与功率参数调整因子之间的对应关系。
步骤304、发射端设备根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子。
本发明实施例中,发射端设备需要确定每个所述分组的功率参数调整因子。发射端设备在确定所述预设的认证概率对应的第一功率参数调整因子之后,进一步地,可以根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子。其中,根据信号的总能量调整前后不发生变化的原则,在进行功率参数调整时,所述待发送信号的功率参数调整因子需要满足能量受限条件,待发送信号功率的能量受限条件比如:α2/2+β2/2=1。
举例来说,发射端设备可以根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子β=0.8,进一步地,可以根据β=0.8以及α2/2+β2/2=1,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子,即第二功率参数调整因子α。
步骤305、针对每个所述分组,发射端设备按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整。
请一并参见图4,图4是本发明实施例公开的一种信号的功率分配机制的示意图。如图4所示,信息信号被划分成了两个分组,即第一组和第二组,发射端设备可以将第一组的功率乘以功率参数调整因子α,将第二组的功率乘以功率参数调整因子β,以对每个分组的信号进行功率调整。其中,需要满足0≤β<1<α。标签信号可以表示如下:
xi,1(l1)=αsi(l1)
xi,2(l2)=βsi(l2)
其中,l1≠l2∈{1,...,L/2}表示的是每一组信号的下标。信号xi,1和xi,2的长度 均为L/2。α和β还要满足信号功率的能量受限条件,即α2/2+β2/2=1,因此α和β的取值范围进一步变化为
Figure PCTCN2017105069-appb-000013
步骤306、发射端设备将调整功率后的待发送信号进行发送。
本发明实施例中,发射端设备将每个分组的信号进行功率调整之后,可以形成一定的功率分配特征,并将调整功率后的待发送信号发送给接收端设备。其中,该功率分配特征可以包括:标签信号,功率参数调整因子以及分组模式(即在哪些位置进行分组的)。
在图3所描述的方法流程中,在发送待发送信号之前,发射端设备利用双方约定的密钥对待发送信号进行分组,并根据认证概率和能量受限条件,确定多个所述分组的功率参数调整因子,进而使用确定的功率参数调整因子对每组信号的功率进行分配调整并发送出去。
请参见图5,图5是本发明实施例公开的另一种无线通信方法的流程示意图。其中,该无线通信方法是从发射端设备以及接收端设备两侧进行描述的。如图5所示,该无线通信方法可以包括以下步骤:
步骤501、发射端设备利用预先约定的密钥,将待发送信号划分成多个分组。
步骤502、发射端设备获取预设的认证概率。
步骤503、发射端设备根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子。
步骤504、根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,发射端设备确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子。
步骤505、针对每个所述分组,按照所述分组的功率参数调整因子,发射端设备对所述分组的信号进行功率调整。
步骤506、发射端设备将调整功率后的待发送信号进行发送。
步骤507、接收端设备根据统计的认证概率,确定进行信号认证的信道块的第一数量。
步骤508、接收端设备对所述第一数量的信道块中的信号进行认证。
请一并参见图6和图7,图6是本发明实施例公开的一种在多种数量的信道块下认证概率随信噪比SNR的关系示意图;图7是本发明实施例公开的一种认证概率与功率参数调整因子的关系示意图。其中,图6表示的是在三种信道块数量K下认证概率与信噪比SNR的曲线关系,其中,信道块数量K分别取值为2,5,10,从图6中可以看出,在K=2,5,10这三种情况下,认证概率都随着SNR增大逐渐从0增大到1,且可以看出,当K=10时认证效果是最好的,即当K=10时,SNR=10dB的时候认证概率就已经达到1;而当K=2时认证效果最差,即K=2时,SNR=25dB的时候认证概率才达到1。因此,为了保证认证技术的鲁棒性,可以采取尽可能多的信道块进行认证。图7表示的是认证概率与功率参数调整因子β的曲线关系,从图7中可以看出,认证概率随着β增大逐渐从1减小到0,因此为了确保系统认证的鲁棒性,在进行功率参数调整因子的设计时,应该取较小的β值。
本发明中所提出的无线通信物理层认证技术(Auth-SLO)与现有的无线通信物理层认证技术(Auth-SS、Auth-SUP、Auth-TDM)相比,本发明实现无线通信物理层的认证不需要占用额外的信号带宽,标签信号不成为影响接收端设备所接收信号提取的噪声,不影响接收端设备噪声的统计特性,此外,无论从频谱特性的分析、还是对通信场景中其他用户的影响来看,本发明提出的Auth-SLO认证技术的鲁棒性要比现有技术高。
其中,实施图5所描述的方法,在发送待发送信号之前,发射端设备利用双方约定的密钥对待发送信号进行分组,并根据认证概率和能量受限条件,确定多个所述分组的功率参数调整因子,进而使用确定的功率参数调整因子对每组信号的功率进行分配调整,同时,接收端设备也可以根据认证概率确定进行信号认证的信道块的第一数量,进而对所述第一数量的信道块中的信号进行认证,即对多个信道块中的信号进行认证,这比对单个信道块中的信号进行认证的鲁棒性要强,从而能够确保信息认证的鲁棒性。
请参阅图8,图8是本发明实施例公开的一种无线通信装置的结构示意 图。其中,图8所示的无线通信装置运行于接收端设备,其中,图8所描述的无线通信装置可以用于执行图2以及图5所描述的无线通信方法中的部分或全部步骤,具体请参见图2以及图5中的相关描述,在此不再赘述。如图8所示,该无线通信装置可以包括:
接收单元801,用于接收发射端设备发送的信号;
确定单元802,用于根据统计的认证概率,确定进行信号认证的信道块的第一数量;
认证单元803,用于对所述第一数量的信道块中的信号进行认证。
具体的,所述认证单元803对所述第一数量的信道块中的信号进行认证的方式具体为:
确定所述第一数量的信道块中的标签信号的第二数量;
判断所述第二数量是否大于预设的数量阈值;
若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
具体的,所述确定单元802根据统计的认证概率,确定进行信号认证的信道块的第一数量的方式具体为:
根据接收到的所述信号,统计认证概率;
判断所述认证概率是否大于认证概率阈值;
若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
在图8所描述的无线通信装置中,在接收发射端设备发送的信号之后,可以根据认证概率确定进行信号认证的信道块的第一数量,进而对所述第一数量的信道块中的信号进行认证,即对多个信道块中的信号进行认证,这比对单个信道块中的信号进行认证的鲁棒性要强,从而能够确保信息认证的鲁棒性。
请参阅图9,图9是本发明实施例公开的另一种无线通信装置的结构示意图。其中,图9所示的无线通信装置运行于发射端设备,其中,图9所描述的无线通信装置可以用于执行图3以及图5所描述的无线通信方法中的部分或全部步骤,具体请参见图3以及图5中的相关描述,在此不再赘述。如图9所示,该无线通信装置可以包括:
划分单元901,用于利用预先约定的密钥,将待发送信号划分成多个分组;
第一确定单元902,用于根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子;
第二确定单元903,用于根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;
调整单元904,用于针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;
发送单元905,用于将调整功率后的待发送信号进行发送。
其中,在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
其中,实施图9所描述的无线通信装置,在发送待发送信号之前,可以利用双方约定的密钥对待发送信号进行分组,并根据认证概率和能量受限条件,确定多个所述分组的功率参数调整因子,进而使用确定的功率参数调整因子对每组信号的功率进行分配调整并发送出去。
上述以软件功能模块的形式实现的集成的单元,可以存储在一个计算机可读存储介质中。其中,该计算机可读存储介质可以存储计算机程序,该计算机程序在被处理器执行时,可实现上述各个方法实施例中的步骤。其中,该计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可 以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random-Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本发明实施例公开的一种无线通信方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种鲁棒的无线通信物理层斜率认证方法,其特征在于,应用于接收端设备,所述方法包括:
    接收发射端设备发送的信号;
    根据统计的认证概率,确定进行信号认证的信道块的第一数量;
    对所述第一数量的信道块中的信号进行认证。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述第一数量的信道块中的信号进行认证包括:
    确定所述第一数量的信道块中的标签信号的第二数量;
    判断所述第二数量是否大于预设的数量阈值;
    若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
    若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据统计的认证概率,确定进行信号认证的信道块的第一数量包括:
    根据接收到的所述信号,统计认证概率;
    判断所述认证概率是否大于认证概率阈值;
    若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应的数量确定为进行信号认证的信道块的第一数量。
  4. 一种鲁棒的无线通信物理层斜率认证方法,其特征在于,应用于发射端设备,所述方法包括:
    利用预先约定的密钥,将待发送信号划分成多个分组;
    获取预设的认证概率;
    根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概 率对应的第一功率参数调整因子;
    根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;
    针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;
    将调整功率后的待发送信号进行发送。
  5. 根据权利要求4所述的方法,其特征在于,在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
  6. 一种鲁棒的无线通信物理层斜率认证装置,其特征在于,运行于接收端设备,包括:
    接收单元,用于接收发射端设备发送的信号;
    确定单元,用于根据统计的认证概率,确定进行信号认证的信道块的第一数量;
    认证单元,用于对所述第一数量的信道块中的信号进行认证。
  7. 根据权利要求6所述的装置,其特征在于,所述认证单元对所述第一数量的信道块中的信号进行认证的方式具体为:
    确定所述第一数量的信道块中的标签信号的第二数量;
    判断所述第二数量是否大于预设的数量阈值;
    若所述第二数量大于所述数量阈值,则确定所述第一数量的信道块中的信号为标签信号,其中,所述标签信号为所述接收端设备接收的认证信号;
    若所述第二数量小于所述数量阈值,则确定所述第一数量的信道块中的信号为常规信号,其中,所述常规信号为所述接收端设备接收的非认证信号。
  8. 根据权利要求6或7所述的装置,其特征在于,所述确定单元根据统计的认证概率,确定进行信号认证的信道块的第一数量的方式具体为:
    根据接收到的所述信号,统计认证概率;
    判断所述认证概率是否大于认证概率阈值;
    若是,获取所述认证概率阈值对应的数量,并将所述认证概率阈值对应 的数量确定为进行信号认证的信道块的第一数量。
  9. 一种鲁棒的无线通信物理层斜率认证装置,其特征在于,运行于发射端设备,包括:
    划分单元,用于利用预先约定的密钥,将待发送信号划分成多个分组;
    第一确定单元,用于根据认证概率与功率参数调整因子的对应关系,确定所述预设的认证概率对应的第一功率参数调整因子;
    第二确定单元,用于根据所述待发送信号功率的能量受限条件以及所述第一功率参数调整因子,确定多个所述分组的功率参数调整因子中除所述第一功率参数调整因子之外的功率参数调整因子;
    调整单元,用于针对每个所述分组,按照所述分组的功率参数调整因子,对所述分组的信号进行功率调整;
    发送单元,用于将调整功率后的待发送信号进行发送。
  10. 根据权利要求9所述的装置,其特征在于,在所述认证概率与功率参数调整因子的对应关系中,所述认证概率与所述功率参数调整因子呈负相关。
PCT/CN2017/105069 2017-09-30 2017-09-30 鲁棒的无线通信物理层斜率认证方法和装置 WO2019061515A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/105069 WO2019061515A1 (zh) 2017-09-30 2017-09-30 鲁棒的无线通信物理层斜率认证方法和装置
US16/574,152 US20200015083A1 (en) 2017-09-30 2019-09-18 Robust Physical Layer Slope Authentication Method in Wireless Communications and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105069 WO2019061515A1 (zh) 2017-09-30 2017-09-30 鲁棒的无线通信物理层斜率认证方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/574,152 Continuation US20200015083A1 (en) 2017-09-30 2019-09-18 Robust Physical Layer Slope Authentication Method in Wireless Communications and Apparatus

Publications (1)

Publication Number Publication Date
WO2019061515A1 true WO2019061515A1 (zh) 2019-04-04

Family

ID=65903430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105069 WO2019061515A1 (zh) 2017-09-30 2017-09-30 鲁棒的无线通信物理层斜率认证方法和装置

Country Status (2)

Country Link
US (1) US20200015083A1 (zh)
WO (1) WO2019061515A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868006A (zh) * 2020-12-04 2021-05-28 华为技术有限公司 认证方法、设备及相关产品
CN113840285A (zh) * 2021-09-09 2021-12-24 北京邮电大学 基于5g的物理层协同认证方法、系统及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140040985A1 (en) * 2011-12-29 2014-02-06 Xianbin Wang Method and apparatus for wireless security enhancement using multiple attributes monitoring, continuous and interleaved authentication, and system adaptation
CN104918249A (zh) * 2015-05-04 2015-09-16 厦门大学 一种基于强化学习的无线信道指纹方法
CN105162778A (zh) * 2015-08-19 2015-12-16 电子科技大学 基于射频指纹的跨层认证方法
CN105635125A (zh) * 2015-12-25 2016-06-01 电子科技大学 基于射频指纹和信道信息的物理层联合认证方法
CN107122810A (zh) * 2017-03-10 2017-09-01 杨玉芹 一种基于rfid物理层特征的标签可信认证方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012372A1 (en) * 2001-04-25 2003-01-16 Cheng Siu Lung System and method for joint encryption and error-correcting coding
US8190163B2 (en) * 2002-08-08 2012-05-29 Qualcomm Incorporated Methods and apparatus of enhanced coding in multi-user communication systems
US20100246825A1 (en) * 2007-09-07 2010-09-30 University Of Maryland Wireless communication method and system for transmission authentication at the physical layer
WO2009051733A2 (en) * 2007-10-15 2009-04-23 University Of Connecticut Systems and methods for key generation in wireless communication systems
CN102197624B (zh) * 2008-09-19 2016-10-12 交互数字专利控股公司 用于安全无线通信的认证
WO2010105136A2 (en) * 2009-03-13 2010-09-16 Cornell University Spoofing detection for civilian gnss signals
US8694017B2 (en) * 2009-03-25 2014-04-08 Qualcomm Incorporated Method and apparatus for interference management in a wireless communication system
US9161214B2 (en) * 2010-03-05 2015-10-13 University Of Maryland Wireless communication method and system for transmission authentication at the physical layer
US9713019B2 (en) * 2011-08-17 2017-07-18 CBF Networks, Inc. Self organizing backhaul radio
WO2013036794A1 (en) * 2011-09-08 2013-03-14 Drexel University Reconfigurable antenna based solutions for device authentication and instrusion detection in wireless networks
US9538040B2 (en) * 2011-12-16 2017-01-03 University Of Maryland, College Park Active sensing for dynamic spectrum access
WO2014047378A1 (en) * 2012-09-20 2014-03-27 Cornell University Methods and apparatus for detecting spoofing of global navigation satellite system signals using carrier phase measurements and known antenna motions
US9585009B2 (en) * 2013-03-14 2017-02-28 University Of Maryland Enhancing privacy in cellular paging system using physical layer identification
US10295675B2 (en) * 2013-07-26 2019-05-21 Arbiter Systems, Incorporated Cryptographically-secure autonomous detection of spoofed GNSS signals
US9775034B2 (en) * 2015-02-06 2017-09-26 Nxp B.V. Communications with distance authentication
US9268938B1 (en) * 2015-05-22 2016-02-23 Power Fingerprinting Inc. Systems, methods, and apparatuses for intrusion detection and analytics using power characteristics such as side-channel information collection
CN107949991B (zh) * 2015-09-02 2020-10-27 华为技术有限公司 一种信号发送或接收方法和设备
US11019525B2 (en) * 2018-10-02 2021-05-25 The Government Of The United States, As Represented By The Secretary Of The Army Multiple-input, multiple-output (MIMO) multihop mobile ad-hoc network (MANET) routing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140040985A1 (en) * 2011-12-29 2014-02-06 Xianbin Wang Method and apparatus for wireless security enhancement using multiple attributes monitoring, continuous and interleaved authentication, and system adaptation
CN104918249A (zh) * 2015-05-04 2015-09-16 厦门大学 一种基于强化学习的无线信道指纹方法
CN105162778A (zh) * 2015-08-19 2015-12-16 电子科技大学 基于射频指纹的跨层认证方法
CN105635125A (zh) * 2015-12-25 2016-06-01 电子科技大学 基于射频指纹和信道信息的物理层联合认证方法
CN107122810A (zh) * 2017-03-10 2017-09-01 杨玉芹 一种基于rfid物理层特征的标签可信认证方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU ET AL: "review on physical-layer security techniques of wireless communications", COMMUNICATIONS TECHNOLOGY, vol. 47, no. 2, 28 February 2014 (2014-02-28), pages 128 - 135 *
PEI, CHENGCHENG: "Channel-based Physical Layer Authentication", GLOBECOM 2014 - WIRELESS COMMUNICATIONS SYMPOSIUM, 31 December 2014 (2014-12-31), pages 4114 - 4119, XP055588264 *
VERMA, GUNJAN: "Physical Layer Authentication via Fingerprint Embedding Using Software-Defined Radios", IEEE ACCESS, vol. 3, 26 February 2015 (2015-02-26), XP011574000 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868006A (zh) * 2020-12-04 2021-05-28 华为技术有限公司 认证方法、设备及相关产品
CN113840285A (zh) * 2021-09-09 2021-12-24 北京邮电大学 基于5g的物理层协同认证方法、系统及电子设备
CN113840285B (zh) * 2021-09-09 2022-12-02 北京邮电大学 基于5g的物理层协同认证方法、系统及电子设备

Also Published As

Publication number Publication date
US20200015083A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US11082841B2 (en) Secure physical layer slope authentication method in wireless communications and apparatus
US11082847B2 (en) Covert physical layer slope authentication method in wireless communications and apparatus
Jana et al. On the effectiveness of secret key extraction from wireless signal strength in real environments
CN109168166B (zh) 物理层认证系统的安全性检测方法
US20200169882A1 (en) Security Detection for a Physical Layer Authentication System that Considers Signal-Discriminating Capability of an Active Adversary
CN110381510B (zh) 基于叠加物理层认证标签的非正交多址认证系统
CN107528687A (zh) 基于物理层信道互相关性的动态密钥量化协商方法
WO2019061515A1 (zh) 鲁棒的无线通信物理层斜率认证方法和装置
CN110324830B (zh) 基于时分复用物理层认证标签的非正交多址认证系统
CN110381511B (zh) 基于共享物理层认证标签的非正交多址认证系统
CN103688579A (zh) 用于td-scdma系统的自动增益控制的方法和装置
CN106953819B (zh) 基于多无线电协作预编码的物理层保密通信方法
CN110380798B (zh) 基于共享认证标签的非正交多址认证系统及参数优化方法
CN110312255B (zh) 基于叠加认证标签的非正交多址认证系统的参数优化方法
CN110392371B (zh) 基于时分复用认证标签的非正交多址认证系统的优化方法
CN109600767B (zh) 鲁棒的无线通信物理层斜率认证方法和装置
WO2019113864A1 (zh) 基于平滑技术的频率选择性衰落信道的盲认证方法和系统
Refaey et al. Multilayer authentication for communication systems based on physical-layer attributes
CN109600742B (zh) 隐蔽的无线通信物理层斜率认证方法和装置
CN114629626B (zh) 一种智能反射阵面提升物理层密钥生成性能系统与方法
CN111683363B (zh) 空域调制系统中的物理层认证方法及系统
CN108966211B (zh) 安全的无线通信物理层斜率认证方法和装置
CN109982326B (zh) 一种基于大尺度衰落特征的物理层安全认证方法
KR20210056551A (ko) 양자 암호키 관리 장치, 방법 및 컴퓨터 프로그램
WO2021012237A1 (zh) 基于叠加认证标签的非正交多址认证系统的参数优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15-10-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17927229

Country of ref document: EP

Kind code of ref document: A1