WO2019059719A2 - Negative electrode material for pseudocapacitor and method for manufacturing same - Google Patents

Negative electrode material for pseudocapacitor and method for manufacturing same Download PDF

Info

Publication number
WO2019059719A2
WO2019059719A2 PCT/KR2018/011263 KR2018011263W WO2019059719A2 WO 2019059719 A2 WO2019059719 A2 WO 2019059719A2 KR 2018011263 W KR2018011263 W KR 2018011263W WO 2019059719 A2 WO2019059719 A2 WO 2019059719A2
Authority
WO
WIPO (PCT)
Prior art keywords
conductive inorganic
acid
negative electrode
metal oxide
inorganic material
Prior art date
Application number
PCT/KR2018/011263
Other languages
French (fr)
Korean (ko)
Other versions
WO2019059719A3 (en
Inventor
서동훈
윤석현
류병국
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180113044A external-priority patent/KR102084771B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/627,215 priority Critical patent/US11469055B2/en
Priority to EP18858129.2A priority patent/EP3637450B1/en
Priority to JP2020517271A priority patent/JP6925592B2/en
Priority to CN201880039825.0A priority patent/CN111033660B/en
Publication of WO2019059719A2 publication Critical patent/WO2019059719A2/en
Publication of WO2019059719A3 publication Critical patent/WO2019059719A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a negative electrode material for a tap capacitor excellent in non-discharge capacity characteristics and a method for manufacturing the same.
  • Electrochemical capacitors are devices that store electrical energy by forming an electrical double layer between the surface of the electrode and the electrolyte. Since the capacitor is made of electricity by an electric double layer unlike a battery in which electricity is generated by a chemical action, there is no damage to the electrode itself and the lifetime is almost infinite. Moreover, since the layer discharge time is not long, Can be stored. Accordingly, the capacitor is an electric storage material which can be particularly useful in fields requiring high output.
  • a supercapacitor as an energy storage device having an energy density higher than that of a conventional capacitor and an output characteristic superior to that of a lithium ion battery has been actively carried out have.
  • These supercapacitors can be classified into electric double layer capacitors (EDLC) and water capacitors (pseudo capacitors) according to the mechanism of the energy storing mechanism.
  • EDLC is based on the electrochemical phenomenon of the surface of carbon materials and shows high output characteristics but is applied only in a limited field due to the relatively low energy density.
  • metal oxide and a conductive inorganic material bonded to the metal oxide, wherein the composite is doped with at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element, and the metal oxide- , And a cathode material for a water capacitor.
  • a method of manufacturing a semiconductor device comprising: mixing a metal oxide, a conductive inorganic material, and a raw material of a doping element; And heat treating the resultant anode material.
  • a negative electrode and a diaphragm capacitor for a diaphragm capacitor including the negative electrode material.
  • the negative electrode material for a tap capacitor according to the present invention is characterized in that a composite of a metal oxide and a conductive inorganic material has a laminate structure of a plate shape so that the electrolyte can easily approach the electrode surface and is doped by the doping element, The charge mobility between materials is increased, which can dramatically improve the capacitance and output characteristics when applied to the negative electrode of the tap capacitor.
  • FIG. 1A is a graph showing X-ray powder diffraction (XRD) results of a vanadium oxide used in Example 1.
  • FIG. 1B is a scanning electron micrograph (SEM)
  • lc is an enlarged view of the circle display portion in Fig.
  • FIG. 2A is a graph showing the XRD analysis results of the vanadium oxide used in Example 2
  • FIG. 2B is an SEM photograph
  • FIG. 2C is an enlarged view of the circle display portion in FIG. 2B.
  • FIGS. 3A to 3C are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 1 with various blessings.
  • FIG. 3A to 3C are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 1 with various blessings.
  • 4A to 4C are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 2 at various magnifications.
  • FIG. 6 is an SEM photograph of a composite of the vanadium oxide-carbonaceous material prepared in Comparative Example 1.
  • Example 7 (a) is an electron microscopic photograph of the cathode material prepared in Example 1, and b) is an elemental analysis result using an energy divergence spectrometer (EDS).
  • EDS energy divergence spectrometer
  • FIG. 9 is a CV graph measured by a cyclic voltammetry (CV) method for the negative electrode material prepared in Example 1.
  • FIG. 9 is a CV graph measured by a cyclic voltammetry (CV) method for the negative electrode material prepared in Example 1.
  • FIG. 10 is a graph showing the results of measurement of a negative electrode material prepared in Example 2 by a cyclic voltammetry This is the cv graph measured.
  • FIG. 11 is a CV graph measured by a cyclic voltammetry method for the negative electrode material prepared in Example 4. Fig.
  • FIG. 13 is a CV graph measured by a cyclic voltammetry method for the negative electrode material prepared in Comparative Example 3. Fig.
  • the negative electrode material for a water storage capacitor according to an embodiment of the present invention, Metal oxides; And a complex of a metal oxide-conductive inorganic material including a conductive inorganic material combined with the metal oxide,
  • the complex is doped with at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element.
  • a composite of a metal oxide-conductive inorganic material having a plate-like laminate structure is formed by using a carboxylic acid-based complexing agent in the production of a negative electrode material for a metal oxide-based capacitive capacitor, By doping with the doping element, the charge mobility between the doping element and the conductive inorganic material is increased, and the electrolyte is easily accessible to the surface of the electrode, so that the electrostatic capacity and the output characteristic can be remarkably improved.
  • a carboxylic acid-based complexing agent for example, a carbon-
  • the metal oxide has a plate-like structure like vanadium oxide
  • a carbon-based material is interposed between a plurality of plate-shaped vanadium oxides and laminated to form a plate-like laminated structure.
  • the accessibility of the electrolyte to the electrode surface is improved, and the capacitance and the output characteristics of the water capacitor including the electrode can be further improved.
  • the effect of the metal oxide and the conductive inorganic material in the composite can be further improved by optimizing the content of the metal oxide and the conductive inorganic material.
  • the metal oxide may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the conductive inorganic material.
  • the electrostatic capacity and the output characteristic are improved without worrying about the complexity of the complex and the uneven dispersibility or the decrease in the effect of the carbon based material on the reduction of the conductive path.
  • Lt; / RTI &gt More specifically, the metal oxide may be included in an amount of 10 to 15 parts by weight based on 100 parts by weight of the conductive inorganic material.
  • the conductive inorganic material in the composite may be carbon nanofiber (CNT), carbon nanofiber (CNF), carbon nanorods (CNRs), vapor grown carbon fiber (VGCF), graphene, Or activated carbon, and the carbon-based material may be fibrous carbon material such as CNT, CNF, CNRs, or VGCF. These materials may be used singly or in combination of two or more.
  • the term "fibrous” refers to the ratio of the major axis (length) passing through the center of the carbonaceous material to the minor axis (diameter) perpendicular to the major axis and passing through the center of the carbonaceous material, ie, aspect ratio ) Is greater than 1, has a long shape in the long axis direction, and encompasses rods, tubes, fibers, or similar forms thereof.
  • the conductive inorganic material may be Mxene, which is known as an electromagnetic wave shielding material. Similar to graphene, the maxin has a layered structure composed of a layer of a prior metal (M) and an X layer containing at least one of carbon and nitrogen, and exhibits excellent conductivity.
  • the front transition metal M may be Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or the like, and may include any one or two or more of them.
  • Maxine Ti 2 C (Ti 0. 5, Nbo. 5) 2 C, V 2 C, Nb 2 C, Mo 2 C, Ti 3 C 2) Zr 3 C 2) Hf 3 C 2)
  • a carbide-based material such as Nb 4 C 3 , Ta 4 C 3 , Mo 2 TiC 2 , Cr 2 TiC 2 , or Mo 2 Ti 2 C 3 ;
  • a nitride based material such as Cr 2 N or Ti 4 N 3 ; Carbonitride-based materials such as Ti 3 CN, and the like, and any one or two or more of them may be used.
  • the conductive inorganic material may be more specifically CNT.
  • CNT In the case of CNT, it has a hollow at the center, and it has a better effect of improving capacitance due to the effect of ball tunneling (electron tunneling) and the strength of particle shape maintenance during charging / discharging have. More specifically, when the diameter is lnm 200nm, or 5nm to 50nm, or 5 to 20nm.
  • the diameter of the CNT can be measured by a conventional method such as a scanning electron microscope observation.
  • the carbon nanotube may be a single wall, a double wall, or a multi-wall carbon nano-flow, and the multi-wall CNT may exhibit excellent electrical and mechanical characteristics due to its unique structure.
  • the metal oxide may be an oxide containing at least one metal selected from the group consisting of V, Sn, Ru, Ir, Ta, Mn, Mo, and Ti. , And more specifically vanadium oxide such as vanadium pentoxide (V 2 0 5 ).
  • the shape and the particle size of the vanadium oxide are not particularly limited.
  • the shape of the vanadium oxide may vary depending on the kind of the carboxylic acid-based complexing agent. However, in order to improve the capacitance by increasing the contact area with the electrolyte, And may have a plate-like shape.
  • the term “ plate-like" means that two surfaces facing each other are flat and the size in the horizontal direction is larger than the size in the vertical direction. f lake, scales, and the like.
  • the composite further includes at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element.
  • the doping element may be doped to the metal oxide, the conductive inorganic material, or both in the composite. More specifically, within the crystal structure of the metal oxide or conductive inorganic material, or may be located through physical or chemical bonding to the surface of these materials. In particular, when the doping element is doped into the crystal structure of the metal oxide, the stability of the crystal structure can be improved, and when the conductive inorganic material is doped, the charge mobility between the doping element and the carbon- And the effect of improving the output characteristics can be further improved.
  • the doping element specifically includes transition metal elements such as Mn, Cr, Cu, Mo, Ni, and Ti; Or amphoteric metal elements such as Al, Zn, Sn, Bi and the like, and any one or two or more of these elements may be used.
  • transition metal elements such as Mn, Cr, Cu, Mo, Ni, and Ti
  • amphoteric metal elements such as Al, Zn, Sn, Bi and the like, and any one or two or more of these elements may be used.
  • the electric conductivity of the electrode material is increased due to an increase in charge mobility It may exhibit an excellent capacitance improving effect, more specifically, at least one of Mn and Al, and more specifically, Mn may be used.
  • the effect of improving the electrostatic capacity due to doping can be further improved by optimizing the doping amount in the doping with the doping element.
  • the doping element may be contained in an amount of 0.1 to 30 atomic%, more specifically 0.1 atomic% or more, or 0.3 atomic / 3 or more, based on the total atomic weight of the constituent elements composing the complex , Not more than 20 atomic%, or not more than 10 atomic, or not more than 5 atomic%. More specifically, in the composite, the metal oxide is vanadium oxide, the conductive inorganic material is carbon nanotube, and the doping element is at least one of Al and Mn, the electrostatic capacity and output characteristics of the water- And the effect can be further improved when the content is optimized within the above combination.
  • the negative electrode material for a tap capacitor may be prepared by mixing a metal oxide, a conductive inorganic material, and a doping element raw material, followed by adding a carboxylic acid-based compounding agent to the mixture, And heat treating the resultant product (step 2).
  • a method of manufacturing a negative electrode material for a tap capacitor Specifically, in the method of manufacturing a cathode material for a water capacitor, step 1 is a step of counteracting a metal oxide, a conductive inorganic material, a raw material of the doping element, and a carboxylic acid-based compounding agent.
  • the metal oxide and the conductive inorganic material are as described above, and may be used in an amount such that the content range of the metal oxide and the conductive inorganic material contained in the composite body described above is stratified.
  • a metal oxide hydrogen peroxide water; Or hydrochloric acid, in the case of a carbon-based material, or in a dispersion medium in which carboxymethyl sal is dispersed in a dispersion medium such as rosin and the like, respectively.
  • the raw material of the doping element any one or two or more kinds of impurities selected from the group consisting of sulfate, nitrate, chloride, acetate and carbonate including a doping element may be used. In this case, same.
  • a sulfate including a doping element more specifically, a sulfate including at least one of Mn and Al may be used.
  • the amount of the raw material of the doping element may be determined within the range of the content of the doping element in the composite body as described above.
  • the carboxylic acid-based compounding agent introduces a semi-functional group such as a carboxyl group, a hydroxyl group, or an amino group to the surface of the conductive inorganic material to provide a nucleation site for deposition of the metal oxide.
  • the combination of the conductive inorganic material and the metal oxide promotes the formation of the complex of the metal oxide-conductive inorganic material, and when the metal oxide has the plate-like structure, the composite of the plate-like laminate structure is formed.
  • the carboxylic acid-based compounding agent can form a chelate structure with metal ions in the electrolyte composition, and such a chelate structure can increase the layer discharge capacity of the battery.
  • the carboxylic acid-based compounding agent can improve the stability of the metal ion, the improvement of the semisolidity, the suppression of the side reaction, and the reduction of the internal resistance.
  • the carboxylic acid-based compounding agent is a compound having at least one carboxyl group in the molecule
  • the compound include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, heptanoic acid, capryl ic acid, nonanoic acid, decanoic acid undecylenic acid, lauric acid, tridecyl ic acid, Monocarboxylic acids such as myristic acid, titanic decanoic acid and palmitic acid; oxalic acid, malonic acid, succinic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Maleic acid, fumaric acid, glutaconic acid, traumatic acid, muconic acid, citric acid, isocitric acid, aconitic acid, isophthalic acid, terephthalic acid, and ter
  • amino acid further containing an amino group together with a carboxyl group may be used.
  • Specific examples thereof include glutamine, lysine, histidine, serine, threonine, tyrosine, cystine, cysteine, arginine, purine, glutamic acid, aspartic acid, asparagine or glutamine. Mixtures may be used.
  • acetic acid, citric acid, aspartic acid, or a mixture thereof may be used, and more specifically, L-aspartic acid may be used, considering the effect of a more excellent complexing agent.
  • the carboxylic acid-based compounding agent may be used in an amount of 1 to 50 molar equivalents, more preferably 4 to 40 molar equivalents relative to 1 mol of the starting material of the doping element.
  • the carboxylic acid-based compounding agent may be added in an amount of 200 to 1000 parts by weight based on 100 parts by weight of the metal oxide under the condition that the content ratio of the doping element to the raw material is clasified Specifically 200 to 500 parts by weight, and more particularly 300 to 400 parts by weight.
  • the carboxylic acid-based complexing agent may be solid or liquid, and may be added in the form of a solution or dispersion. More specifically, into a solution dissolved in a mixture of water and acid. At this time, the acid serves to assemble and maintain the nanoparticles in the form of a plate-like structure. Specifically, ascorbic acid, hydrochloric acid and the like can be used. In an amount of 5 to 20 mml per 100 ml of the water Can be used.
  • a metal oxide, a conductive inorganic material, the material of the doping element material and banung of acid-based complexing agent is, be carried out by charging the common haphu acid-based complexing agent of the raw materials of the metal oxide, a conductive inorganic material, and the doping element .
  • the metal oxide, the conductive inorganic material, and the raw material of the doping element may be mixed according to a conventional method, and may further include a step for homogeneous mixing such as stirring. Further, after the metal oxide, the conductive inorganic substance, and the raw material of the doping element are mixed, an alcohol compound may be further added before the addition of the carboxylic acid-based compounding agent.
  • the alcohol-based compound plays a role in increasing the synthesis yield. Specifically, ethanol or the like can be used.
  • the alcohol-based compound may be added in an amount of 100 to 200 parts by weight based on 100 parts by weight of the metal oxide, the conductive inorganic material, and the raw material of the doping element.
  • the reaction of the metal oxide, the conductive inorganic substance, the doping element raw material and the carboxylic acid-based compounding agent is preferably 40 to 80 ° C, more specifically 60 to 80 ° C, 70 < 0 > C.
  • the performance can be performed with excellent efficiency without worrying about overaction or unresponsiveness in the above temperature range.
  • a process such as reflux may be selectively performed in order to increase the anti-warping efficiency.
  • a process such as reflux may be selectively performed in order to increase the anti-warping efficiency.
  • a separation process according to a conventional method such as centrifugation and a process for removing impurities using a washing solvent such as water or ethanol can be performed on the separated semipermeable material.
  • step 2 is a step of preparing a negative electrode material by heat-treating the antimony material obtained in step 1 above.
  • the reaction product obtained in the step 1 is a state in which the raw material of the doping element is bonded to the composite in which the metal oxide is formed by bonding with the conductive inorganic material via the functional group derived from the carboxylic acid compound.
  • a doped element is doped in an elemental state to obtain a negative electrode material containing a composite of a plate-like laminate structure in which a conductive inorganic material is interposed.
  • the heat treatment process may be performed at 250 to 350 ° C, more specifically, at 270 to 300 ° C.
  • the negative electrode material can be obtained at a high efficiency without fear of generation of a side reaction depending on the reaction temperature and the reaction temperature.
  • the negative electrode material produced according to the above-described production method has a laminate structure of a plate-shaped composite of the metal oxide and the conductive inorganic material, The accessibility of the electrolyte is easy and the charge mobility between the doping element and the conductive inorganic material is increased by doping with the doping element so that the capacitance and the output characteristic can be remarkably improved when applied to the cathode of the capacitor. Accordingly, according to another embodiment of the present invention, there is provided a composition for forming a negative electrode for a capacitive capacitor including the negative electrode material, and a negative electrode for a tap capacitor manufactured using the same
  • the composition for forming a negative electrode for a tap capacitor includes the negative electrode material described above, and may further include at least one of a binder and a conductive material.
  • the conductive material is used for imparting conductivity to the negative electrode.
  • the conductive material may be used without any particular limitation as long as it has an electronic conductivity without causing chemical change. Specific examples thereof include carbonaceous materials such as natural wood chips or artificial wood chips or carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber. One or more impurities may be used. More specifically, carbon black or acetylene black can be used.
  • the conductive material may be included in an amount of 10 to 30 parts by weight based on 100 parts by weight of the negative electrode material.
  • the binder plays a role of enhancing adhesion between the negative electrode particles and adhesion between the negative electrode material and the negative electrode of the current collector.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • polyvinyl alcohol polyacrylonitrile
  • carboxymethylcellulose Polypropylene
  • EPDM ethylene-propylene-diene polymer
  • SBR Styrene-butadiene rubber
  • a binder of a fluorine-based polymer such as PVDF or PTFE which can exhibit higher stability with respect to the electrolyte is used .
  • the binder may be included in an amount of 10 to 20 parts by weight based on 100 parts by weight of the negative electrode material.
  • the negative electrode in the tap water capacitor can be produced by a conventional method except that the composition for forming an anode is used.
  • the composition for forming an anode may be coated on a current collector such as copper aluminum, nickel, or stainless steel, followed by pressing and drying.
  • an electrochemical device including the negative electrode.
  • the electrochemical device may be specifically a capacitor, and more specifically, may be a tap capacitor.
  • the water storage capacitor includes an anode and a cathode, a separator interposed between the anode and the cathode, and an electrolyte, and the cathode is as described above.
  • the resultant mixture a, L- aspartic acid, 20ml (4 mol / V source material 1 on a molar basis of the doping element 2 0 5 based on 100 parts by weight corresponding to 400 parts by weight) ", a solution prepared by adding the common de-ionized water and 70ml 6N HC1 5ml dropwise, and the reflux for 12 hours at 60 ° C Respectively.
  • the resulting precipitate was separated by centrifugation.
  • the impurities were removed by washing with deionized water and ethanol.
  • Example 1 A1 2 (S0 4) 3 0.5 ⁇ ol instead, and is carried out in the same manner as in Example 1 except for the use of MnS0 4 lmrol a, V 2 0 5 of the metal oxide composite -CNT A negative electrode material doped with Mn was prepared.
  • Example 3
  • Example 1 A1 2 (S0 4) 3 0.5 ⁇ 1 instead of the Cu (N0 3) 2 1 to and is carried out in the same manner as in Example 1 except for the use of ⁇ , the V 2 0 5 A cathode material doped with Cu for the metal oxide-CNT composite was prepared.
  • Example 4
  • Example 2 Comparative Example The doping element in Example 1 and the negative electrode material of Example 1 is performed in the same way as in, non-metal oxides, doped ⁇ 2 0 5 -CNT composite form, except that the unused raw material was used to. Comparative Example 2
  • the resulting product was lyophilized for 3 days and then heat treated in a tube furnace at 27 C C for 12 hours to prepare a cathode material doped with Mn to a metal oxide of V 2 O 5 .
  • CMT carboxymethylcellulose
  • CNT concentration in the dispersion 5% by weight
  • X-ray photoelectron Spectroscopic analysis was performed and the crystal structure was observed using a scanning electron microscope (SEM). The results are shown in Figs. 1A to 1C and Figs. 2A to 2C, respectively.
  • FIG. 1A is a graph showing an XRD analysis result of the vanadium oxide used in Example 1
  • FIG. 1B is an SEM photograph
  • FIG. 1C is an enlarged view of a circled portion of FIG.
  • FIG. 2A is a graph showing an XRD analysis result of the vanadium oxide used in Example 2
  • FIG. 2B is an SEM photograph
  • FIG. 2C is an enlarged view of the circle display portion of FIG. 2B.
  • FIGS. 1A to 1C and FIGS. 2A to 2C it can be seen that the vanadium oxide used in Examples 1 and 2 has a plate-like structure.
  • Each of the cathode materials prepared in Examples 1 to 3 and Comparative Example 1 was observed by SEM. The results are shown in Figs. 3A to 6, respectively.
  • FIGS. 4A to 4C are cross-sectional views of the composite of the vanadium oxide-carbonaceous material prepared in Example 2 SEM photographs were taken at various magnifications.
  • 5 and 6 are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 3 and Comparative Example 1, respectively.
  • the composite of the vanadium oxide-carbonaceous materials of Examples 1 to 3 and Comparative Example 1 has a structure in which a carbonaceous substance is interposed between vanadium oxides in a plate form and laminated.
  • Each of the cathode materials prepared in Examples 1 and 2 was observed with an electron microscope, and elemental analysis was performed using EDS. The results are shown in FIGS. 7 and 8, respectively.
  • CV graphs were measured by cyclic voltammetry (CV) for each of the negative electrode compositions prepared in Examples 1, 2 and 4 and Comparative Examples 2 and 3.
  • PVDF as a negative electrode material carbon black and binder prepared in Examples 1, 2 and 4 and Comparative Examples 2 and 3 were mixed at a weight ratio of 7: 2: 1 to prepare a composition for forming an anode , Applied to a glacier carbon electrode (GCE), vacuum-dried, and dried at 70 ° C for 24 hours.
  • GCE glacier carbon electrode
  • the prepared electrode was impregnated with 1 M Li 2 S0 4 electrolyte, stabilized, and subjected to cyclic scanning potential test using a platinum counter electrode and an SCE reference electrode. Voltage range -1. 1 to -0.2 V and a potential scanning speed of 10 mV / s.
  • the capacitance per unit mass is largely dependent on the vanadium oxide content and the specific surface area of the cathode material, and can be calculated by dividing the current value appearing on the circulating preform by the scanning speed and the mass of the electrode active material. The results are shown in Figs. 9 to 13 and Table 1.
  • Example 1 which includes graphene instead of CNT, exhibits relatively low capacitance and energy density due to the difference in the low charge transfer capacity and conduction path compared to Examples 1 and 2 .
  • Comparative Example 2 which does not include a conductive inorganic substance such as CNT, since the charge transporting ability is lowered due to the absence of a conductive bridge to be present between the particles, The capacitance and energy density were shown, and after 5 cycles, the difference in capacitance and energy density was greater.
  • Comparative Example 3 including only a complex of a metal oxide and a conductive inorganic material without doping elements, the electrostatic capacity and the energy density significantly decreased due to the decrease of charge mobility compared with the embodiment including the doping element.
  • Experimental Example 3 In the same manner as in Experimental Example 2, electrodes were prepared using the negative electrode materials of Examples 1 to 3 and Comparative Example 1, and each of the prepared electrodes was impregnated with 1 M Li 2 S0 4 electrolyte, stabilized The output characteristics were evaluated under the conditions of 1 ⁇ 20kW / kg, 1 ⁇ 30A / g at the voltage range of -1.2-0.2V using the platinum counter electrode and the SCE reference electrode. The results are shown in Fig.
  • Li 2 SO 4 electrolyte was vacuum-impregnated and stabilized in each of the electrodes including the cathode materials of Examples 1 to 3 and Comparative Example 1 prepared above, and then, using the platinum counter electrode and the SCE reference electrode, A potential experiment was performed. At a voltage range of -1.2 to -0.2 V, and at a potential scanning speed of 10 mV / s. The results are shown in Table 2 below.
  • Examples 1 to 3 exhibited improved electrostatic capacitances as compared with Comparative Example 1, and Examples 1 and 2 doped with Al or Mn exhibited greatly increased capacitances of more than 350 F / g.
  • Example 3 doped with Cu the electrostatic capacity was reduced as compared with Examples 1 and 2 due to the relatively low charge mobility despite the metal doping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention provides a negative electrode material for a pseudocapacitor which has excellent specific capacitance characteristics, and a method for manufacturing the same.

Description

【발명의 명칭】  Title of the Invention
수도커패시터용 음극 물질 및 그 제조 방법  Cathode material for water capacitor and manufacturing method thereof
【기술분야】  TECHNICAL FIELD
관련출원 (들)과의 상호 인용  Cross-reference with related application (s)
본 출원은 2017년 9월 25일자 한국 특허 출원 거ᅵ 10-2017-0123725호 및 The present application is related to Korean Patent Application No. 10-2017-0123725 filed on September 25,
2018년 9월 20일자 한국 특허 출원 제 10-2018-0113044호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claims the benefit of priority based on Korean Patent Application No. 10-2018-0113044, filed on Sep. 20, 2018, the entire contents of which are incorporated herein by reference.
본 발명은 비정전 용량 특성이 우수한 수도커패시터용 음극 물질 및 그 제조 방법에 관한 것이다.  The present invention relates to a negative electrode material for a tap capacitor excellent in non-discharge capacity characteristics and a method for manufacturing the same.
【배경기술】 BACKGROUND ART [0002]
전기화학적인 커패시터는 전극의 표면과 전해질 사이에 전기 이중층을 형성함으로써 전기 에너지를 저장하는 장치이다. 커패시터는 화학작용에 의해 전기가 발생되는 전지와 달리 전기 이중층에 의해 전기가 만들어지기 때문에, 전극 자체에 대한 손상이 없어 수명이 거의 무한대이고, 또 층방전 시간이 길지 않아 짧은 시간에 많은 양의 전류를 저장할 수 있다. 이에 따라 커패시터는 고출력이 요구되는 분야에서 특히 유용하게 사용될 수 있는 전기 저장체이다.  Electrochemical capacitors are devices that store electrical energy by forming an electrical double layer between the surface of the electrode and the electrolyte. Since the capacitor is made of electricity by an electric double layer unlike a battery in which electricity is generated by a chemical action, there is no damage to the electrode itself and the lifetime is almost infinite. Moreover, since the layer discharge time is not long, Can be stored. Accordingly, the capacitor is an electric storage material which can be particularly useful in fields requiring high output.
최근 에너지 밀도와 출력이 모두 높은 에너지 저장장치에 대한 요구가 증가함에 따라, 종래의 일반 커패시터 보다 에너지 밀도가 높고, 리튬 이온 배터리보다 출력 특성이 우수한 에너지 저장장치로서 슈퍼 커패시터에 대한 연구가 활발히 이루어지고 있다. 이러한 슈퍼 커패시터는 에너지를 저장하는 메커니즘의 방식에 따라 전기 이중층 커패시터 (electr ical double layer capaci tor , EDLC)와 수도커패시터 (pseudo capaci tor )로 분류될 수 있다.  Recently, as the demand for an energy storage device having a high energy density and a high power output has increased, research on a supercapacitor as an energy storage device having an energy density higher than that of a conventional capacitor and an output characteristic superior to that of a lithium ion battery has been actively carried out have. These supercapacitors can be classified into electric double layer capacitors (EDLC) and water capacitors (pseudo capacitors) according to the mechanism of the energy storing mechanism.
EDLC은 탄소재료 표면의 전기 화학적 현상을 기반으로 한 것으로, 높은 출력 특성을 나타내지만 상대적으로 낮은 에너지 밀도로 인해 제한된 분야에서만 적용되고 있다.  EDLC is based on the electrochemical phenomenon of the surface of carbon materials and shows high output characteristics but is applied only in a limited field due to the relatively low energy density.
이러한 탄소재료 기반의 EDLC의 낮은 용량을 극복하 i자, 나노구조 표면에서 발생하는 패러데이 반웅 ( faradai c react ion)을 통해 전하를 저장하며 전극 /전해질 계면의 가역적인 산화 /환원 반응을 이용하여 더 큰 정전 용량을 나타낼 수 있는 수도커패시터에 대한 연구가 활발히 이루어지고 있다. Overcoming the low capacities of these carbon-based EDLCs, it is possible to store charge through faradai c reactants on the surface of nanostructures Studies have been actively made on water capacitors which can exhibit larger capacitance by using reversible oxidation / reduction reaction at the electrode / electrolyte interface.
그러나, 수계 전해질에서 작동되는 수도커패시터의 경우 음극용 전극 물질이 제한적이며, 이에 대한 연구가 매우 중요하다. 대표적인 음극 물질로서 바나듐 산화물이 알려져 있으나, 낮은 정전 용량 및 낮은 전기 전도도에 의한 낮은 출력 특성의 개선에 대한 요구를 만족시킬 성능을 구현하지 못하고 있는 실정이다.  However, in the case of a water capacitor operated in a water-based electrolyte, the electrode material for a cathode is limited, and research on this is very important. Although vanadium oxide is known as a typical negative electrode material, it has not been able to satisfy the demand for improvement of low output characteristics due to low capacitance and low electric conductivity.
또, 바나듐 산화물의 물성 제어를 통해 정전 용량 및 출력 특성을 향상시키고자 수열 합성, 침전 반웅 등의 다양한 제조방법이 연구, 제안되었으나, 전기화학적 성능은 크게 개선되지 않았다.  In addition, various manufacturing methods such as hydrothermal synthesis and precipitation reaction have been studied and proposed to improve capacitance and output characteristics through control of physical properties of vanadium oxide, but the electrochemical performance has not been greatly improved.
【발명의 상세한 설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
이에 따라, 본 발명은 비정전 용량 특성이 우수한 수도커패시터용 음극 물질 및 그 제조방법을'제공하는 것을 목적으로 한다.  Accordingly, it is an object of the present invention to provide a negative electrode material for a water capacitor having an excellent non-discharge capacity characteristic and a manufacturing method thereof.
【기술적 해결방법】 [Technical Solution]
본 발명의 일 구현예에 따르면, 금속 산화물; 및 상기 금속 산화물과 결합된 전도성 무기물질을 포함하는, 금속 산화물-전도성 무기물질의 복합체를 포함하며, 상기 복합체는 전이금속 및 양쪽성 금속 원소로 이루어진 군에서 선택되는 1종 이상의 도핑원소로 도핑된, 수도커패시터용 음극 물질을 제공한다.  According to one embodiment of the present invention, metal oxide; And a conductive inorganic material bonded to the metal oxide, wherein the composite is doped with at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element, and the metal oxide- , And a cathode material for a water capacitor.
또, 본 발명의 다른 일 구현예에 따르면, 금속 산화물, 전도성 무기물질 및 도핑원소의 원료물질을 흔합한 후, 카르복실산계 복합화제를 첨가하여 반웅시키는 단계; 및 결과의 반웅물을 열처리하는 단계를 포함하는, 상기한수도커패시터용 음극 물질의 제조방법을 제공한다.  According to another embodiment of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: mixing a metal oxide, a conductive inorganic material, and a raw material of a doping element; And heat treating the resultant anode material. The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.
아울러, 본 발명의 또 다른 일 구현예에 따르면, 상기한 음극 물질을 포함하는 수도커패시터용 음극 및 수도커패시터를 각각 제공한다.  According to another embodiment of the present invention, there is provided a negative electrode and a diaphragm capacitor for a diaphragm capacitor including the negative electrode material.
【발명의 효과】 본 발명에 따른 수도커패시터용 음극 물질은, 금속 산화물과 전도성 무기물질의 복합체가 판상의 적층 구조를 가져 전극 표면에 대한 전해질의 접근이 용이하고, 또 도핑원소에 의해 도핑됨으로써 , 도핑원소와 전도성 무기물질 사이의 전하 이동성이 증가하여 수도커패시터의 음극에 적용시 정전 용량 및 출력 특성을 비약적으로 개선시킬 수 있다. 【Effects of the Invention】 The negative electrode material for a tap capacitor according to the present invention is characterized in that a composite of a metal oxide and a conductive inorganic material has a laminate structure of a plate shape so that the electrolyte can easily approach the electrode surface and is doped by the doping element, The charge mobility between materials is increased, which can dramatically improve the capacitance and output characteristics when applied to the negative electrode of the tap capacitor.
【도면의 간단한 설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 la는 실시예 1에서 사용된 바나듬 산화물에 대한 X선 회절 분석 (X- ray powder di f fract ion, XRD) 결과를 나타낸 그래프이고, 도 lb는 주사 전자 현미경 (scanning electron mi croscope , SEM) 관찰 사진, 그리고 도 lc는 도 lb에서의 원 표시 부분의 확대도이다.  FIG. 1A is a graph showing X-ray powder diffraction (XRD) results of a vanadium oxide used in Example 1. FIG. 1B is a scanning electron micrograph (SEM) And lc is an enlarged view of the circle display portion in Fig.
도 2a는 실시예 2에서 사용된 바나듐 산화물에 대한 XRD 분석 결과를 나타낸 그래프이고, 도 2b는 SEM 사진, 그리고 도 2c는 도 2b에서의 원 표시 부분의 확대도이다.  FIG. 2A is a graph showing the XRD analysis results of the vanadium oxide used in Example 2, FIG. 2B is an SEM photograph, and FIG. 2C is an enlarged view of the circle display portion in FIG. 2B.
도 3a 내지 3c는 실시예 1에서 제조한 바나듐 산화물-탄소계 물질의 복합체를 다양한 배을로 관찰한의 SEM사진이다.  FIGS. 3A to 3C are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 1 with various blessings. FIG.
도 4a 내지 도 4c는 실시예 2에서 제조한 바나듐 산화물-탄소계 물질의 복합체의 다양한 배율로 관찰한 SEM사진이다.  4A to 4C are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 2 at various magnifications.
도 5는 실시예 3에서 제조한 바나듐 산화물-탄소계 물질의 복합체를 관찰한 SEM사진이다.  5 is an SEM photograph of the composite of the vanadium oxide-carbonaceous material prepared in Example 3. Fig.
도 6은 비교예 1에서 제조한 바나듐 산화물—탄소계 물질의 복합체를 관찰한 SEM사진이다.  6 is an SEM photograph of a composite of the vanadium oxide-carbonaceous material prepared in Comparative Example 1. FIG.
도 7에서 a)는 실시예 1에서 제조한 음극 물질에 대한 전자현미경 관찰 사진이고, b)는 에너지 분산 분광기 (energy di spersive spectrometer ; EDS)를 이용한 원소분석 결과이다.  7 (a) is an electron microscopic photograph of the cathode material prepared in Example 1, and b) is an elemental analysis result using an energy divergence spectrometer (EDS).
도 8에서 a)는 실시예 2에서 제조한 음극 물질에 대한 전자현미경 관찰 사진이고, b)는 EDS 원소분석 결과이다.  8 (a) is an electron microscopic photograph of the negative electrode material prepared in Example 2, and b) is an EDS elemental analysis result.
도 9는 실시예 1에서 제조한 음극 물질에 대하여 순환전압전류법 (cycl i c vol tammetry, CV)으로 측정한 CV그래프이다.  FIG. 9 is a CV graph measured by a cyclic voltammetry (CV) method for the negative electrode material prepared in Example 1. FIG.
도 10은 실시예 2에서 제조한 음극 물질에 대하여 순환전압전류법으로 측정한 cv그래프이다. FIG. 10 is a graph showing the results of measurement of a negative electrode material prepared in Example 2 by a cyclic voltammetry This is the cv graph measured.
도 11는 실시예 4에서 제조한 음극 물질에 대하여 순환전압전류법으로 측정한 CV그래프이다.  11 is a CV graph measured by a cyclic voltammetry method for the negative electrode material prepared in Example 4. Fig.
도 12는 비교예 2에서 제조한 음극 물질에 대하여 순환전압전류법으로 측정한 CV그래프이다.  12 is a CV graph measured by a cyclic voltammetry method for the negative electrode material prepared in Comparative Example 2. Fig.
도 13은 비교예 3에서 제조한 음극 물질에 대하여 순환전압전류법으로 측정한 CV그래프이다.  13 is a CV graph measured by a cyclic voltammetry method for the negative electrode material prepared in Comparative Example 3. Fig.
도 14는 실시예 1 내지 3, 및 비교예 1의 음극 물질의 출력 특성을 평가한 그래프이다.  14 is a graph showing output characteristics of negative electrode materials of Examples 1 to 3 and Comparative Example 1;
【발명의 실시를 위한 최선의 형태】 BEST MODE FOR CARRYING OUT THE INVENTION
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만사용된다.  In the present invention, the terms first, second, etc. are used to describe various components, and the terms are used only for the purpose of distinguishing one component from another.
또한,. 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해. 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다 "구비하다" 또는 "가지다'' 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  Also,. The terminology used herein is for the purpose of describing exemplary embodiments only. And is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms " comprise, " " comprise, " or " have ", or the like, specify that there are performed features, numbers, steps, , Step (s), component (s), or a combination thereof.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
이하, 본 발명을 더욱 상세하게 설명한다. 본 발명의 일 구현예에 따른 수도커패시터용 음극 물질은, 금속 산화물; 및 상기 금속 산화물과 결합한 전도성 무기물질을 포함하는 금속산화물-전도성 무기물질의 복합체를포함하며, Hereinafter, the present invention will be described in more detail. The negative electrode material for a water storage capacitor according to an embodiment of the present invention, Metal oxides; And a complex of a metal oxide-conductive inorganic material including a conductive inorganic material combined with the metal oxide,
상기 복합체는 전이금속 및 양쪽성 금속 원소로 이루어진 군에서 선택되는 1종 이상의 도핑원소로 도핑된 것이다. 구체적으로, 본 발명에서는 금속 산화물계 수도커패시터용 음극 물질의 제조시, 카르복실산계 복합화제 (complexing agent )를 이용하여 판상 적층 구조의 금속 산화물-전도성 무기물질의 복합체를 형성하고, 또 상기 복합체를 도핑원소로 도핑함으로써, 도핑원소와 전도성 무기물질 사이의 전하 이동성이 증가하고, 또 전극 표면에 대한 전해질의 접근이 용이하게 되어, 정전 용량 및 출력 특성이 비약적으로 개선될 수 있다. 보다 구체적으로, 상기 금속 산화물과 전도성 무기물질의 복합화시, 카르복실산계 복합화제 투입에 의해 전도성 무기물질의 표면에 존재하는 반웅성 작용기, 예를 들면 탄소계 물질의 경우 표면에 존재하는 하이드록실계 작용기와, 금속 산화물이 반웅하여 결합을 형성하게 된다. 이때 상기 금속 산화물이 바나듐 산화물과 같이 판상 구조를 갖는 경우에는, 복수 개의 판상의 바나듐 산화물 사이에 탄소계 물질이 개재되어 적층됨으로써 판상 적층 구조를 형성하게 된다. 그 결과 전극 표면에 대한 전해질의 접근성이 우수하게 되어, 이를 포함하는 수도커패시터의 정전 용량 및 출력 특성이 더욱 향상될 수 있다. 또, 발명의 일 구현예에 따르면, 상기 복합체에 있어서 금속 산화물과 전도성 무기물질의 함량 최적화를 통해 효과를 더욱 개선시킬 수 있다. 구체적으로 상기 복합체에 있어서, 금속 산화물은 전도성 무기물질 100중량부에 대하여 1 내지 30중량부로 포함될 수 있다. 금속 산화물의 함량이 상기한 범위 내에 있을 때, 복합체의 웅집현상 및 불균일한 분산성 또는 탄소계 물질의 상대적인 전도 경로 (conduct ing path) 감소에 따른 효과 저하의 우려없이 우수한 정전 용량 및 출력 특성 개선 효과를 나타낼 수 있다. 보다 구체적으로는 상기 금속 산화물은 전도성 무기물질 100중량부에 대하여 10 내지 15중량부로 포함될 수 있다. 한편, 상기 복합체에 있어서 전도성 무기물질은 구체적으로 탄소나노류브 (CNT) , 탄소나노파이버 (CNF) , 탄소나노로드 (carbon nanorods; CNRs) , 증기 성장 탄소 파이버 (VGCF) , 그래핀 (graphene) , 또는 활성탄 등과 같은 탄소계 물질일 수 있으며, 이중에서도 CNT, CNF, CNRs , 또는 VGCF와 같은 섬유상의 탄소계 물질일 수 있다. 상기한 물질 중 1종 단독으로 또는 2종 이상이 흔합되어 사용될 수 있다. The complex is doped with at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element. Specifically, in the present invention, a composite of a metal oxide-conductive inorganic material having a plate-like laminate structure is formed by using a carboxylic acid-based complexing agent in the production of a negative electrode material for a metal oxide-based capacitive capacitor, By doping with the doping element, the charge mobility between the doping element and the conductive inorganic material is increased, and the electrolyte is easily accessible to the surface of the electrode, so that the electrostatic capacity and the output characteristic can be remarkably improved. More specifically, when the metal oxide and the conductive inorganic material are combined, a semi-maleic functional group present on the surface of the conductive inorganic material by the introduction of a carboxylic acid-based complexing agent, for example, a carbon- The functional groups and the metal oxides are counteracted to form bonds. At this time, when the metal oxide has a plate-like structure like vanadium oxide, a carbon-based material is interposed between a plurality of plate-shaped vanadium oxides and laminated to form a plate-like laminated structure. As a result, the accessibility of the electrolyte to the electrode surface is improved, and the capacitance and the output characteristics of the water capacitor including the electrode can be further improved. According to an embodiment of the present invention, the effect of the metal oxide and the conductive inorganic material in the composite can be further improved by optimizing the content of the metal oxide and the conductive inorganic material. Specifically, in the composite, the metal oxide may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the conductive inorganic material. When the content of the metal oxide is within the above range, the electrostatic capacity and the output characteristic are improved without worrying about the complexity of the complex and the uneven dispersibility or the decrease in the effect of the carbon based material on the reduction of the conductive path. Lt; / RTI > More specifically, the metal oxide may be included in an amount of 10 to 15 parts by weight based on 100 parts by weight of the conductive inorganic material. The conductive inorganic material in the composite may be carbon nanofiber (CNT), carbon nanofiber (CNF), carbon nanorods (CNRs), vapor grown carbon fiber (VGCF), graphene, Or activated carbon, and the carbon-based material may be fibrous carbon material such as CNT, CNF, CNRs, or VGCF. These materials may be used singly or in combination of two or more.
본 발명에 있어서 '섬유상'이란 탄소계 물질의 중심을 지나는 장축 (길이)과, 상기 장축에 대해 수직하며 탄소계 물질의 중심을 지나는 단축 (직경)의 비, 즉 종횡비 (=길이 /직경의 비)가 1 초과로, 장축 방향으로 긴 형태를 가지며, 막대, 튜브, 섬유 또는 이들의 유사 형태를 모두 포괄한다. 또, 상기 전도성 무기물질은 전자파 차폐 물질로 알려진 맥신 (Mxene)일 수 있다. 상기 맥신은 그래핀과 유사하게 앞전이금속 (M)의 층과, 탄소 및 질소 중 적어도 1종을 포함하는 X층으로 이루어진 층상 구조를 가지며, 우수한 전도성을 나타낸다. 상기 앞전이금속 (M)은 Sc , Ti , V, Cr , Zr , Nb, Mo, Hf , 또는 Ta등일 수 있으며, 이들 중 어느 하나또는 둘 이상을 포함할 수 있다. 구체적으로 상기 맥신으로는 Ti2C, (Ti0.5,Nbo.5)2C, V2C, Nb2C, Mo2C, Ti3C2 ) Zr3C2 ) Hf3C2 ) Nb4C3 , Ta4C3 , Mo2TiC2, Cr2TiC2, 또는 Mo2Ti2C3와 같은 카바이드 (carbide )계 물질; Cr2N 또는 Ti4N3과 같은 니트라이드 (nitride)계 물질; Ti3CN과 같은 카보나이트리드 (carbonitride)계 물질 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 물질이 사용될 수 있다. 이중에서도 다공성이어서 보다 넓은 비표면적을 제공할 수 있는 Ti3C2 , Nb2C 및 V2C 중 어느 하나 또는 둘 이상의 물질이 사용될 수 있다. 전도성 무기물질의 제어에 따른 효과의 현저함을 고려할 때, 상기 전도성 무기물질은 보다 구체적으로 CNT일 수 있다. CNT의 경우 중심에 중공을 포함하고, 탄도 전자 터널링 (Bal l ist ic electron tunnel ing) 효과 및 우수한 강도로 충 /방전 중 입자형상 유지의 특성으로 인해 정전 용량 개선 효과 면에서 보다 우수한 효과를 나타낼 수 있다. 보다 구체적으로는 직경이 lnm 내자 200nm, 또는 5nm 내지 50nm, 또는 5 내지 20nm인 CNT일 수 있다. In the present invention, the term "fibrous" refers to the ratio of the major axis (length) passing through the center of the carbonaceous material to the minor axis (diameter) perpendicular to the major axis and passing through the center of the carbonaceous material, ie, aspect ratio ) Is greater than 1, has a long shape in the long axis direction, and encompasses rods, tubes, fibers, or similar forms thereof. In addition, the conductive inorganic material may be Mxene, which is known as an electromagnetic wave shielding material. Similar to graphene, the maxin has a layered structure composed of a layer of a prior metal (M) and an X layer containing at least one of carbon and nitrogen, and exhibits excellent conductivity. The front transition metal M may be Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, or the like, and may include any one or two or more of them. Specifically, in the Maxine Ti 2 C, (Ti 0. 5, Nbo. 5) 2 C, V 2 C, Nb 2 C, Mo 2 C, Ti 3 C 2) Zr 3 C 2) Hf 3 C 2) A carbide-based material such as Nb 4 C 3 , Ta 4 C 3 , Mo 2 TiC 2 , Cr 2 TiC 2 , or Mo 2 Ti 2 C 3 ; A nitride based material such as Cr 2 N or Ti 4 N 3 ; Carbonitride-based materials such as Ti 3 CN, and the like, and any one or two or more of them may be used. Of these, any one or two or more of Ti 3 C 2 , Nb 2 C and V 2 C which are porous and can provide a wider specific surface area can be used. Considering the remarkable effect of the control of the conductive inorganic material, the conductive inorganic material may be more specifically CNT. In the case of CNT, it has a hollow at the center, and it has a better effect of improving capacitance due to the effect of ball tunneling (electron tunneling) and the strength of particle shape maintenance during charging / discharging have. More specifically, when the diameter is lnm 200nm, or 5nm to 50nm, or 5 to 20nm.
본 발명에 있어서 상기 CNT의 직경은 주사전자현미경 관찰 등 통상의 방법에 따라측정될 수 있다.  In the present invention, the diameter of the CNT can be measured by a conventional method such as a scanning electron microscope observation.
또, 상기 탄소나노튜브는 구체적으로 단일벽, 이중벽 또는 다중벽 탄소나노류브일 수 있으며, 이중에서도 그 특유의 구조로 인해 우수한 전기적, 기계적 특성을 나타낼 수 있는 다중벽 CNT일 수 있다. 한편, 상기 복합체에 있어서 금속 산화물은 구체적으로 V, Snᅳ Ru, Ir , Ta, Mn, Mo , 및 Ti로 이루어진 군에서 선택되는 1종 이상의 금속을 포함하는 산화물일 수 있으며, 이중에서도 판상 구조를 갖는 금속 산화물일 수 있으며, 보다구체적으로는 바나듐 5산화물 (V205)과 같은 바나듐 산화물일 수 있다. 상기 바나듐 산화물이 사용될 경우 형태 및 입자 크기가 특별히 한정되는 것은 아니며, 카르복실산계 복합화제의 종류에 따른 형상 변화가 일어날 수도 있으나, 전해액과의 접촉 면적 증가를 통한 정전 용량 개선을 위해 상기 바나듐 산화물은 판상의 형태를 갖는 것일 수 있다. In addition, the carbon nanotube may be a single wall, a double wall, or a multi-wall carbon nano-flow, and the multi-wall CNT may exhibit excellent electrical and mechanical characteristics due to its unique structure. In the composite, the metal oxide may be an oxide containing at least one metal selected from the group consisting of V, Sn, Ru, Ir, Ta, Mn, Mo, and Ti. , And more specifically vanadium oxide such as vanadium pentoxide (V 2 0 5 ). When the vanadium oxide is used, the shape and the particle size of the vanadium oxide are not particularly limited. The shape of the vanadium oxide may vary depending on the kind of the carboxylic acid-based complexing agent. However, in order to improve the capacitance by increasing the contact area with the electrolyte, And may have a plate-like shape.
한편, 본 발명에 있어서 "판상"이란, 서로 대웅 또는 대면하는 두 면이 편평하고, 수평 방향의 크기가 수직 방향의 크기보다 큰 구조를 갖는 것으로서, 완전한 판상 형상은 물론 판상과 유사한 형상인 플레이크 ( f lake)상, 비늘상 등도 포함할 수 있다. 또, 상기 복합체는 전이금속 및 양쪽성 금속 원소로 이루어진 군에서 선택되는 1종 이상의 도핑원소를 더 포함한다.  On the other hand, in the present invention, the term " plate-like " means that two surfaces facing each other are flat and the size in the horizontal direction is larger than the size in the vertical direction. f lake, scales, and the like. The composite further includes at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element.
구체적으로 상기 도핑원소는 상기 복합체에서의 금속 산화물, 전도성 무기물질 또는 둘 모두에 대해 도핑되어 포함될 수 있다. 보다 구체적으로는 금속 산화물 또는 전도성 무기물질의 결정 구조 내에 포함될 수도 있고, 또는 이들 물질의 표면에 물리적 또는 화학적 결합을 통해 위치할 수도 있다. 이중에서도 상기 도핑원소가 금속 산화물의 결정 구조내로 도핑될 경우, 결정 구조의 안정성이 향상될 수 있고, 또 전도성 무기물질에 도핑될 경우 도핑원소와 탄소계 물질 사이의 전하 이동성이 증가하게 됨으로써 정전 용량 및 출력 특성의 개선 효과가 더욱 향상될 수 있다. 상기 도핑원소는 구체적으로 Mn , Cr , Cu , Mo , Ni , Ti 등과 같은 전이금속 원소; 또는 Al , Zn , Sn , Bi 등과 같은 양쪽성 금속 원소 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 원소가 사용될 수 있다. 이중에서도 Mn , Cr, 및 Mo를 포함하는 전이금속과, A1의 양쪽성 금속 원속으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소의 경우 전극물질 표면의 전하의 이동성 증가로 인한 전기전도도 향상으로 보다 우수한 정전 용량 개선 효과를 나타낼 수 있으며, 보다 구체적으로는 Mn 및 A1 중 적어도 하나, 보다 더 구체적으로는 Mn이 사용될 수 있다. 또, 상기 도핑원소로의 도핑시 도핑 함량의 최적화를 통해 도핑에 따른 정전 용량 개선 효과를 더욱 향상시킬 수 있다. 구체적으로, 상기 도핑원소는 복합체를 구성하는 구성원소들의 총 원자량에 대하여, 0. 1 내지 30원자 %의 양으로 포함될 수 있으며, 보다 구체적으로는 0. 1 원자 % 이상, 또는 0.3원자 ¾> 이상이고, 20원자 % 이하, 또는 10원자 이하, 또는 5원자 % 이하의 양으로 포함될 수 있다. 보다 더 구체적으로, 상기 복합체에 있어서 상기 금속 산화물은 바나듐 산화물이고, 상기 전도성 무기물질은 탄소나노튜브이며, 상기 도핑원소는 A1 및 Mn 중 적어도 어느 하나인 경우, 수도커패시터의 정전 용량 및 출력 특성이 보다 향상시킬 수 있으며, 상기한 조합 내에서 함량이 최적화될 경우 그 효과는 더욱 개선될 수 있다. 한편, 상기한 수도커패시터용 음극 물질은, 금속 산화물, 전도성 무기물질 및 도핑원소의 원료물질을 흔합한 후, 카르복실산계 복합화제를 첨가하여 반웅시키는 단계 (단계 1) ; 및 결과의 반웅물을 열처리하는 단계 (단계 2)를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 다른 일 구현예에 따르면 수도커패시터용 음극 물질의 제조방법이 제공된다. 구체적으로, 수도커패시터용 음극 물질의 제조방법에 있어서, 단계 1은 금속산화물, 전도성 무기물질, 도핑원소의 원료물질 및 카르복실산계 복합화제를 흔합하여 반웅시키는 단계이다. Specifically, the doping element may be doped to the metal oxide, the conductive inorganic material, or both in the composite. More specifically, within the crystal structure of the metal oxide or conductive inorganic material, or may be located through physical or chemical bonding to the surface of these materials. In particular, when the doping element is doped into the crystal structure of the metal oxide, the stability of the crystal structure can be improved, and when the conductive inorganic material is doped, the charge mobility between the doping element and the carbon- And the effect of improving the output characteristics can be further improved. The doping element specifically includes transition metal elements such as Mn, Cr, Cu, Mo, Ni, and Ti; Or amphoteric metal elements such as Al, Zn, Sn, Bi and the like, and any one or two or more of these elements may be used. In the case of any one or two or more elements selected from the group consisting of a transition metal including Mn, Cr, and Mo and a metal element having an amphiphilic nature of Al, the electric conductivity of the electrode material is increased due to an increase in charge mobility It may exhibit an excellent capacitance improving effect, more specifically, at least one of Mn and Al, and more specifically, Mn may be used. In addition, the effect of improving the electrostatic capacity due to doping can be further improved by optimizing the doping amount in the doping with the doping element. Specifically, the doping element may be contained in an amount of 0.1 to 30 atomic%, more specifically 0.1 atomic% or more, or 0.3 atomic / 3 or more, based on the total atomic weight of the constituent elements composing the complex , Not more than 20 atomic%, or not more than 10 atomic, or not more than 5 atomic%. More specifically, in the composite, the metal oxide is vanadium oxide, the conductive inorganic material is carbon nanotube, and the doping element is at least one of Al and Mn, the electrostatic capacity and output characteristics of the water- And the effect can be further improved when the content is optimized within the above combination. Meanwhile, the negative electrode material for a tap capacitor may be prepared by mixing a metal oxide, a conductive inorganic material, and a doping element raw material, followed by adding a carboxylic acid-based compounding agent to the mixture, And heat treating the resultant product (step 2). According to another embodiment of the present invention, there is provided a method of manufacturing a negative electrode material for a tap capacitor. Specifically, in the method of manufacturing a cathode material for a water capacitor, step 1 is a step of counteracting a metal oxide, a conductive inorganic material, a raw material of the doping element, and a carboxylic acid-based compounding agent.
상기 금속 산화물 및 전도성 무기물질은 앞서 설명한 바와 같으며, 또 상술한 복합체내 포함되는 금속 산화물 및 전도성 무기물질의 함량 범위를 층족하도록 하는 양으로 사용될 수 있다. 또, 금속 산화물의 경우 과산화수소수; 또는 염산 등의 산에 용해시킨 용액상으로, 탄소계 물질의 경우 물, 또는 카르복시메틸샐를로오스와 같은 분산매 등에 분산시킨 분산액 상태로 각각사용될 수 있다. 상기 도핑원소의 원료물질로는, 도핑원소를 포함하는 황산염, 질산염, 염화물, 아세트산염 및 탄산염으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있으며, 이때 상기 도핑원소는 앞서 설명한 바와 같다. 보다 구체적으로는 도핑원소를 포함하는 황산염, 보다 구체적으로는 Mn 및 A1 중 적어도 1종을 포함하는 황산염이 사용될 수 있다. 상기 도핑원소의 원료물질의 사용량은 앞서 설명한 바와 같은 복합체내 도핑원소의 함량 범위 내에서 결정될 수 있다. 또, 상기 카르복실산계 복합화제는 전도성 무기물질 표면에 대해 카르복실기, 히드록실기, 또는 아미노기와 같은 반웅성 작용기를 도입시켜 금속 산화물의 침착을 위한 핵 형성 부위를 제공한다. 그 결과 전도성 무기물질과 금속 산화물의 결합이 촉진됨으로써 금속산화물-전도성 무기물의 복합체가 형성되게 되며, 상기 금속 산화물이 판상 구조를 갖는 경우에는 판상 적층 구조의 복합체가 형성되게 된다. 또, 상기 카르복실산계 복합화제는 전해액 조성물 내에서 금속 이온과 킬레이트 구조를 형성할 수 있으며, 이러한 킬레이트 구조는 전지의 층방전 용량을 증가시킬 수 있다. 또, 상기 카르복실산계 복합화제는 금속 이온의 안정성이나 반웅성의 향상, 부반응의 억제, 내부 저항의 저감 등을 도모할 수 있다. 상기 카르복실산계 복합화제는 분자내 1개 이상의 카르복실기를 포함하는 화합물로서, 구체적으로는 포름산 (formic acid), 아세트산 (acetic acid) , 프로피은산 (propionic acid) , 부티르산 (butyric acid) , 발레르산 (valeric acid) , 핵사노산 (hexanoic acid) , 헵타노산 (heptanoic acid) ^!"프릴산 (capryl ic acid) , 노나노산 (nonanoic acid) , 데카노산 (decanoic acid) 운데실산 (undecylenic acid), 라우릴산 (lauric acid), 트리데실산 (tridecyl ic acid) , 미리스트산 (myristic acid) , 편타데카노산^ 산^^。 ; acid) , 또는 팔미트산 (palmitic acid)과 같은 모노카르복실산; 옥살산 (oxalic acid), 말론산 (malonic acid) , 숙신산 (succinic acid) , 글루타르산 (glutar ic acid) , 아디프산 (adipic acid), 피멜산 (pimelic acid), 수베르산 (suberic acid) , 아젤라산 (azelaic acid), 세바식산 (sebacic acid) , 말레인산 (maleic acid), 푸마르산 (fumaric acid) , 글루타콘산 (glutaconic acid) , 트라우마트산 ( traumatic acid), 무콘산 (muconic acid), 프탈산 (phthal ic acid) 이소프탈산 (isophthalic acid) 또는 테레프탈산 (terephthal ic acid)과 같은 디카르복실산; 시트르산 (citric acid), 이소시트르산 (isocitric acid), 아콘산 (aconitic acid), 또는 멜리트산 (mel 1 it ic acid)과 같이 3개 이상의 카르복실기를 갖는 다가 카르복실산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 또, 상기 카르복실계 복합화제로는 카르복실기와 함께 아미노기를 더 포함하는 아미노산이 사용될 수도 있다. 구체적인 예로는 글루타민, 리신, 히스티딘, 세린, 쓰레오닌, 타이로신, 시스틴, 시스테인, 아르기닌, 프를린, 글루탐산, 아스파르트산, 아스파라진, 또는 글루타민 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. The metal oxide and the conductive inorganic material are as described above, and may be used in an amount such that the content range of the metal oxide and the conductive inorganic material contained in the composite body described above is stratified. In the case of a metal oxide, hydrogen peroxide water; Or hydrochloric acid, in the case of a carbon-based material, or in a dispersion medium in which carboxymethyl sal is dispersed in a dispersion medium such as rosin and the like, respectively. As the raw material of the doping element, any one or two or more kinds of impurities selected from the group consisting of sulfate, nitrate, chloride, acetate and carbonate including a doping element may be used. In this case, same. More specifically, a sulfate including a doping element, more specifically, a sulfate including at least one of Mn and Al may be used. The amount of the raw material of the doping element may be determined within the range of the content of the doping element in the composite body as described above. In addition, the carboxylic acid-based compounding agent introduces a semi-functional group such as a carboxyl group, a hydroxyl group, or an amino group to the surface of the conductive inorganic material to provide a nucleation site for deposition of the metal oxide. As a result, the combination of the conductive inorganic material and the metal oxide promotes the formation of the complex of the metal oxide-conductive inorganic material, and when the metal oxide has the plate-like structure, the composite of the plate-like laminate structure is formed. In addition, the carboxylic acid-based compounding agent can form a chelate structure with metal ions in the electrolyte composition, and such a chelate structure can increase the layer discharge capacity of the battery. In addition, the carboxylic acid-based compounding agent can improve the stability of the metal ion, the improvement of the semisolidity, the suppression of the side reaction, and the reduction of the internal resistance. The carboxylic acid-based compounding agent is a compound having at least one carboxyl group in the molecule Specific examples of the compound include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, heptanoic acid, heptanoic acid, capryl ic acid, nonanoic acid, decanoic acid undecylenic acid, lauric acid, tridecyl ic acid, Monocarboxylic acids such as myristic acid, titanic decanoic acid and palmitic acid; oxalic acid, malonic acid, succinic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Maleic acid, fumaric acid, glutaconic acid, traumatic acid, muconic acid, citric acid, isocitric acid, aconitic acid, isophthalic acid, terephthalic acid, and terephthalic acid; phthalic acid, isophthalic acid or terephthalic acid; Or a polyvalent carboxylic acid having three or more carboxyl groups such as melitic acid and the like, and any one or two or more of them may be used. An amino acid further containing an amino group together with a carboxyl group may be used. Specific examples thereof include glutamine, lysine, histidine, serine, threonine, tyrosine, cystine, cysteine, arginine, purine, glutamic acid, aspartic acid, asparagine or glutamine. Mixtures may be used.
이중에서도 보다 우수한 복합화제의 효과를 고려할 때, 아세트산, 시트르산, 아스파르트산, 또는 이들의 흔합물이 사용될 수 있으며, 보다 구체적으로는 L-아스파르트산이 사용될 수 있다. 상기 카르복실산계 복합화제는 도핑원소의 원료물질 1몰에 대하여 1 내지 50몰비, 보다 구체적으로는 4 내지 40몰비로 사용될 수 있다. 또, 상기 카르복실산계 복합화제는 도핑원소의 원료물질에 대한 함량비 범위를 층족하는 조건하에, 금속산화물 100중량부에 대하여 200 내지 1000중량부, 보다 구체적으로는 200 내지 500중량부, 보다 더 구체적으로는 300 내지 400중량부로 사용될 수 있다. 상기한 함량 범위로 사용될 때 미반웅 복합화제의 잔류로 인한 부반응 발생의 우려 없이 층분한 복합화제 효과를 나타낼 수 있다. 상기 카르복실산계 복합화제는 고체 또는 액체일 수 있으며, 용액 또는 분산액의 형태로 투입될 수 있다. 보다 구체적으로는 물 및 산의 흔합물에 용해된 용액상으로 투입될 수 있다. 이때 상기 산은 나노 입자를 판상구조의 형태로 조립 및 유지시켜주는 역할을 하는 것으로, 구체적으로는 아스코르브산 (ascorbic acid) , 또는 염산 등이 사용될 수 있으며, 상기 물 100ml에 대해 5내지 20mml의 양으로 사용될 수 있다. 상기 , 금속 산화물, 전도성 무기물질, 도핑원소의 원료물질 및 카르복실산계 복합화제의 반웅은, 금속 산화물, 전도성 무기물질, 및 도핑원소의 원료물질의 흔합후 카르복실산계 복합화제를 투입함으로써 수행될 수 있다. Of these, acetic acid, citric acid, aspartic acid, or a mixture thereof may be used, and more specifically, L-aspartic acid may be used, considering the effect of a more excellent complexing agent. The carboxylic acid-based compounding agent may be used in an amount of 1 to 50 molar equivalents, more preferably 4 to 40 molar equivalents relative to 1 mol of the starting material of the doping element. The carboxylic acid-based compounding agent may be added in an amount of 200 to 1000 parts by weight based on 100 parts by weight of the metal oxide under the condition that the content ratio of the doping element to the raw material is clasified Specifically 200 to 500 parts by weight, and more particularly 300 to 400 parts by weight. When used in the above-mentioned content range, the effect of compounding agent can be exhibited without fear of occurrence of side reaction due to the residual of the polyanionic compounding agent. The carboxylic acid-based complexing agent may be solid or liquid, and may be added in the form of a solution or dispersion. More specifically, into a solution dissolved in a mixture of water and acid. At this time, the acid serves to assemble and maintain the nanoparticles in the form of a plate-like structure. Specifically, ascorbic acid, hydrochloric acid and the like can be used. In an amount of 5 to 20 mml per 100 ml of the water Can be used. Wherein, a metal oxide, a conductive inorganic material, the material of the doping element material and banung of acid-based complexing agent is, be carried out by charging the common haphu acid-based complexing agent of the raw materials of the metal oxide, a conductive inorganic material, and the doping element .
이때, 상기한 금속 산화물, 전도성 무기물질, 및 도핑원소의 원료물질의 흔합은 통상의 방법에 따라 흔합될 수 있으며, 교반 등 균질 흔합을 위한 공정을 선택적으로 더 포함할 수도 있다. 또, 상기 금속 산화물, 전도성 무기물질, 및 도핑원소의 원료물질의 흔합 후 카르복실산계 복합화제 투입 전에 알코을계 화합물이 더 투입될 수 있다.  At this time, the metal oxide, the conductive inorganic material, and the raw material of the doping element may be mixed according to a conventional method, and may further include a step for homogeneous mixing such as stirring. Further, after the metal oxide, the conductive inorganic substance, and the raw material of the doping element are mixed, an alcohol compound may be further added before the addition of the carboxylic acid-based compounding agent.
상기 알코올계 화합물은 합성 수율을 증가시키는 역할을 하는 것으로, 구체적으로는 에탄올 등이 사용될 수 있다. 상기 알코을계 화합물은 상기 금속 산화물, 전도성 무기물질 및 도핑원소의 원료물질의 흔합물 100 중량부에 대해 100 내지 200중량부로 투입될 수 있다. 또, 상기 금속 산화물, 전도성 무기물질, 도핑원소의 원료물질 및 카르복실산계 복합화제의 반웅은 40 내지 80°C , 보다 구체적으로는 60 내지 70 °C에서 수행될 수 있다. 상기한 온도 범위에서 수행시 과반응 또는 미반응에 대한 우려 없이 우수한 효율로 반웅이 수행될 수 있다. The alcohol-based compound plays a role in increasing the synthesis yield. Specifically, ethanol or the like can be used. The alcohol-based compound may be added in an amount of 100 to 200 parts by weight based on 100 parts by weight of the metal oxide, the conductive inorganic material, and the raw material of the doping element. The reaction of the metal oxide, the conductive inorganic substance, the doping element raw material and the carboxylic acid-based compounding agent is preferably 40 to 80 ° C, more specifically 60 to 80 ° C, 70 < 0 > C. The performance can be performed with excellent efficiency without worrying about overaction or unresponsiveness in the above temperature range.
또, 반웅 효율을 높이기 위하여 환류 (ref lux) 등의 공정이 선택적으로 더 수행될 수도 있다. 상기 금속 산화물, 전도성 무기물질, 도핑원소의 원료물질 및 카르복실산계 복합화제의 반웅의 결과로, 반응물이 침전되게 된다.  Further, a process such as reflux may be selectively performed in order to increase the anti-warping efficiency. As a result of the reaction of the metal oxide, the conductive inorganic substance, the raw material of the doping element and the carboxylic acid-based compounding agent, the reactant is precipitated.
침전된 반웅물에 대해서는 원심 분리 등 통상의 방법에 따른 분리 공정 및 분리된 반웅물에 대해 물, 에탄올 등의 세척 용매를 이용한 불순물 제거 공정이 수행될 수 있다.  With respect to the precipitated semipermeable material, a separation process according to a conventional method such as centrifugation and a process for removing impurities using a washing solvent such as water or ethanol can be performed on the separated semipermeable material.
또, 분리 세척된 반웅물에 대한 건조 공정이 선택적으로 더 수행될 수도 있다. 상기 건조 공정은 통상의 방법을 이용하여 수행될 수 있으나, 본 발명에서는 판상 구조의 복합체 형상 유지 및 건조 시 응집 현상 방지를 이유로 동결건조 방법이 이용될 수 있다. 다음으로 단계 2는 상기 단계 1에서 수득한 반웅물에 대해 열처리하여 음극 물질을 제조하는 단계이다.  In addition, a drying process for the separately washed washed water may optionally be further performed. The drying process may be carried out using a conventional method, but in the present invention, a freeze drying method may be used for maintaining the shape of the composite structure of the plate-like structure and preventing aggregation during drying. Next, step 2 is a step of preparing a negative electrode material by heat-treating the antimony material obtained in step 1 above.
단계 1에서 수득한 반웅물은 금속 산화물이 카르복실산계 화합물 유래 작용기를 매개로 전도성 무기물질과 결합하여 형성된 복합체에 도핑원소의 원료물질이 결합된 상태인데, 이에 대해 열처리를 함으로써, 판상의 금속 산화물 사이에 전도성 무기물질이 개재된 판상 적층 구조의 복합체에 도핑원소가 원소 상태로 도핑되어 포함된 음극 물질이 수득되게 된다. 상기 열처리 공정은 250 내지 350 °C에서 수행될 수 있으며, 보다 구체적으로는 270 내지 300°C에서 수행될 수 있다. 상기한 온도 범위내에서 수행시 미반웅 및 과반웅에 따른 부반웅물 생성의 우려 없이 우수한 효율로 음극 물질을 수득할 수 있다. 상기와 같은 제조방법에 따라 제조된 음극 물질은 금속 산화물과 전도성 무기물질의 복합체가 판상의 적층 구조를 가져 전극 표면에 대한 전해질의 접근이 용이하고 , 또 도핑원소에 의해 도핑됨으로쎄 도핑원소와 전도성 무기물질 사이의 전하 이동성이 증가하여 수도커패시터의 음극에 적용시 정전 용량 및 출력 특성을 비약적으로 개선시킬 수 있다. 이에 따라 본 발명의 또 다른 일 구현예에 따르면, 상기 음극 물질을 포함하는 수도커패시터용 음극 형성용 조성물 및 이를 이용하여 제조된 수도커패시터용 음극이 제공된다 The reaction product obtained in the step 1 is a state in which the raw material of the doping element is bonded to the composite in which the metal oxide is formed by bonding with the conductive inorganic material via the functional group derived from the carboxylic acid compound. A doped element is doped in an elemental state to obtain a negative electrode material containing a composite of a plate-like laminate structure in which a conductive inorganic material is interposed. The heat treatment process may be performed at 250 to 350 ° C, more specifically, at 270 to 300 ° C. The negative electrode material can be obtained at a high efficiency without fear of generation of a side reaction depending on the reaction temperature and the reaction temperature. The negative electrode material produced according to the above-described production method has a laminate structure of a plate-shaped composite of the metal oxide and the conductive inorganic material, The accessibility of the electrolyte is easy and the charge mobility between the doping element and the conductive inorganic material is increased by doping with the doping element so that the capacitance and the output characteristic can be remarkably improved when applied to the cathode of the capacitor. Accordingly, according to another embodiment of the present invention, there is provided a composition for forming a negative electrode for a capacitive capacitor including the negative electrode material, and a negative electrode for a tap capacitor manufactured using the same
구체적으로, 상기 수도커패시터용 음극 형성용 조성물은 상기한 음극 물질을 포함하며, 바인더 및 도전재 중 적어도 1종을 선택적으로 더 포함할 수 있다.  Specifically, the composition for forming a negative electrode for a tap capacitor includes the negative electrode material described above, and may further include at least one of a binder and a conductive material.
상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 수도커패시터에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 혹연이나 인조 혹연 등의 혹연 또는 카본 블렉, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 보다 구체적으로는 카본블랙 또는 아세틸렌 블랙이 사용될 수 있다. 상기 도전재는 음극 물질 100중량부에 대하여 10 내지 30중량부로 포함될 수 있다. 또, 상기 바인더는 음극 물질 입자들 간의 부착 및 음극 물질과 집전체와의음극의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드 (PVDF), 비닐리덴플루오라이드-핵사플루오로프로필렌 코폴리머 (PVDF-co-HFP) , 폴리비닐알코올, 폴리아크릴로니트릴 (polyacryloni tr i le) , 카르복시메틸셀를로우즈 (CMC), 전분, 히드록시프로필샐를로우즈 , 재생 샐를로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌 -디엔 폴리머 (EPDM) , 술폰화 -EPDM, 스티렌 부타디엔 고무 (SBR) , 불소 고무 , 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 흔합물이 사용될 수 있다. 이중에서도 전해질에 대해 보다 .높은 안정성을 나타낼 수 있는 PVDF, PTFE 등의 불소계 고분자의 바인더가 사용될 수 있다. 상기 바인더는 음극 물질 100중량부에 대하여 10 내지 20중량부로 포함될 수 있다. 또, 상기 수도커패시터에서의 음극은 상기한 음극 형성용 조성물을 이용하는 것을 제외하고는 통상의 방법에 따라 제조될 수 있다. 일례로, 상기한 음극 형성용 조성물을 구리 알루미늄, 니켈 또는 스테인레스강 등의 집전체 상에 도포한후 압착 및 건조함으로써 제조될 수 있다. 본 발명의 또 다른 일 구현예에 따르면, 상기 음극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 커패시터일 수 있으며, 보다 구체적으로는 수도커패시터일 수 있다. The conductive material is used for imparting conductivity to the negative electrode. The conductive material may be used without any particular limitation as long as it has an electronic conductivity without causing chemical change. Specific examples thereof include carbonaceous materials such as natural wood chips or artificial wood chips or carbonaceous materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber. One or more impurities may be used. More specifically, carbon black or acetylene black can be used. The conductive material may be included in an amount of 10 to 30 parts by weight based on 100 parts by weight of the negative electrode material. In addition, the binder plays a role of enhancing adhesion between the negative electrode particles and adhesion between the negative electrode material and the negative electrode of the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose Polypropylene, ethylene-propylene-diene polymer (EPDM), sulphonated-EPDM, polyvinyl pyrrolidone, polyvinyl pyrrolidone, polyvinyl pyrrolidone, polyvinyl pyrrolidone, Styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof. One or more of these may be used. Among them, a binder of a fluorine-based polymer such as PVDF or PTFE which can exhibit higher stability with respect to the electrolyte is used . The binder may be included in an amount of 10 to 20 parts by weight based on 100 parts by weight of the negative electrode material. In addition, the negative electrode in the tap water capacitor can be produced by a conventional method except that the composition for forming an anode is used. For example, the composition for forming an anode may be coated on a current collector such as copper aluminum, nickel, or stainless steel, followed by pressing and drying. According to another embodiment of the present invention, there is provided an electrochemical device including the negative electrode. The electrochemical device may be specifically a capacitor, and more specifically, may be a tap capacitor.
상기 수도커패시터는 구체적으로 양극과 음극, 상기 양극과 음극 사이에 개재된 분리막, 및 전해질을 포함하며, 상기 음극은 앞서 설명한 바와 같다.  Specifically, the water storage capacitor includes an anode and a cathode, a separator interposed between the anode and the cathode, and an electrolyte, and the cathode is as described above.
이외 수도커패시터의 구성 및 제조방법은 통상의 방법에 따라 수행될 수 있으므로 상세한 설명은 생략한다. 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  The constitution and the manufacturing method of the other water capacitors can be performed according to a usual method, and a detailed description thereof will be omitted. The invention will be described in more detail in the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
실시예 1  Example 1
등근 플라스크에 V205 0.9g, 탈이온수 30ml , H202 20ml를 넣고 교반하였다. 여기에 탈이온수 30ml 중에 CNT 6g (상기 CNT 6g은, CNT는 CMC(carboxymethylcel lulose)에 분산된 분산액으로 투입되는데 이때, 투입되는 분산액 중에 포함된 CNT 함량을 의미함 (분산액 중 CNT 농도 =5중량 ¾ , CNT 직경 =9~llnm임)을 분산시킨 분산액을 첨가하고, 도핑원소 원료물질로서 A12(S04)3 0.5瞧 을 첨가하여 흔합하였다. 에탄올 100ml를 추가로 첨가한 후, 결과의 흔합물에, L-아스파르트산 20ml (도핑원소의 원료물질 1몰 기준 4몰 / V205 100중량부에 대하여 400중량부에 해당함) ', 탈이온수 70ml 및 6N HC1 5ml를 흔합하여 제조한 용액을 점적하고, 60°C에서 12시간 동안 환류를 실시하였다. 결과로 침전된 물질을 원심분리기로 분리하고,. 탈이온수 및 에탄올로 세척하여 불순물을 제거하였다. 결과의 수득물을 3일동안 동결건조한 후, 류브 퍼니스에서 270°C 온도 조건에서 12시간 열처리하여, V205의 금속산화물 -CNT복합체에 대해 A1이 도핑된 음극 물질을 제조하였다. 실시예 2 0.9 g of V 2 O 5 , 30 ml of deionized water and 20 ml of H 2 O 2 were added to an isometric flask and stirred. 6 g of CNT (6 g of CNT) is added to a dispersion of CMT (carboxymethylcellulose) in 30 ml of deionized water. The CNT content in the dispersion is 5 wt. , CNT diameter = 9 to 11 nm) was added to the dispersion, and 0.5 mol of A1 2 (SO 4 ) 3 was added as a doping element raw material. After addition of 100 ml of ethanol, the resultant mixture a, L- aspartic acid, 20ml (4 mol / V source material 1 on a molar basis of the doping element 2 0 5 based on 100 parts by weight corresponding to 400 parts by weight) ", a solution prepared by adding the common de-ionized water and 70ml 6N HC1 5ml dropwise, and the reflux for 12 hours at 60 ° C Respectively. The resulting precipitate was separated by centrifugation. The impurities were removed by washing with deionized water and ethanol. Freeze dried for 3 days to obtain a result of water, for 12 hours heat treatment at 270 ° C temperature condition in the furnace ryubeu, a negative electrode material A1 is doped for the metal oxide -CNT complex of V 2 0 5 was prepared. Example 2
상기 실시예 1에서 A12(S04)3 0.5謹 ol 대신에 MnS04 lmrol을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여, V205의 금속산화물 -CNT복합체에 대해 Mn이 도핑된 음극 물질을 제조하였다. 실시예 3 In Example 1 A1 2 (S0 4) 3 0.5謹ol instead, and is carried out in the same manner as in Example 1 except for the use of MnS0 4 lmrol a, V 2 0 5 of the metal oxide composite -CNT A negative electrode material doped with Mn was prepared. Example 3
상기 실시예 1에서 A12(S04)3 0.5画 1 대신에 Cu(N03)2 1瞧 을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여, V205의 금속산화물 -CNT복합체에 대해 Cu가 도핑된 음극 물질을 제조하였다. 실시예 4 In Example 1 A1 2 (S0 4) 3 0.5画1 instead of the Cu (N0 3) 2 1 to and is carried out in the same manner as in Example 1 except for the use of瞧, the V 2 0 5 A cathode material doped with Cu for the metal oxide-CNT composite was prepared. Example 4
등근 플라스크에 V205 0.9g, 탈이온수 30mᄂ H202 20ml를 넣고 교반하였다. 여기에 탈이온수 30ml 중에 그래핀옥사이드 60g (상기 그래핀 옥사이드 60g은, 그래핀 옥사이드는 수분산된 분산액으로 투입되는데 이때, 투입되는 분산액 중에 포함된 그래핀 옥사이드 함량 60g을 의미함 (분산액 중 그래핀옥사이드 농도 =5중량 ¾)을 첨가하고, 도핑원소 원료물질로서 MnS04 lmm이을 첨가하여 흔합하였다. 에탄을 100ml를 추가로 첨가한 후, 결과의 흔합물에 L-아스파르트산 20ml , 탈이온수 70ml 및 6N HC1 5ml를 흔합하여 제조한 용액을 점적하고, 60°C에서 12시간 동안 환류를 실시하였다. 결과로 침전된 물질을 원심분리기로 분리하고, 탈이온수 및 에탄올로 세척하여 불순물을 제거하였다. 결과의 수득물을 3일동안 동결건조한 후, 튜브 퍼니스에서 270°C 온도 조건에서 12시간 열처리하여, V205의 금속산화물- 그래핀 복합체에 대해 Mn이 도핑된 음극 물질을 제조하였다. 비교예 상기 실시예 1에서 도핑원소 원료물질을 사용하지 않은 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여, 미도핑된 ^205의 금속산화물 -CNT복합체 형태의 음극 물질을 제조하였다. 비교예 2 0.9 g of V 2 O 5 and 20 ml of deionized water, 30 m < 2 > H 2 O 2 were added to an isometric flask and stirred. In 60 ml of deionized water, 60 g of graphene oxide (60 g of the graphene oxide is added to the dispersion in which the graphene oxide is dispersed in water, wherein the content of graphene oxide contained in the dispersion to be added is 60 g the addition of peroxide concentration = 5 wt ¾), and the mixture was added heunhap fall MnS0 4 lmm as doping element raw material. after the addition of ethane added to the 100ml, L- aspartic acid results in common compound of 20ml, 70ml of deionized water and 6N HCl was added dropwise and refluxed for 12 hours at 60 ° C. The resulting precipitate was separated by centrifugation and washed with deionized water and ethanol to remove impurities. after the freeze-drying the obtained water for three days, for 12 hours at 270 ° C temperature in the tube furnace heat treatment, the metal oxide V 2 0 5 - Yes for the pin Mn complex The doped negative electrode material was produced. Comparative Example The doping element in Example 1 and the negative electrode material of Example 1 is performed in the same way as in, non-metal oxides, doped ^ 2 0 5 -CNT composite form, except that the unused raw material was used to. Comparative Example 2
등근 플라스크에 V205 0.9g, 탈이온수 30ml , H202 20ml를 넣고 교반하였다. 여기에 도핑원소 원료물질로서 MnS04 1mm 을 첨가하여 흔합하였다. 에탄올 100ml를 추가로 첨가한 후, 결과의 흔합물에 L- 아스파르트산 20ml , 탈이온수 70ml 및 6N HCl 5ml를 흔합하여 제조한 용액을 점적하고, 60°C에서 12시간 동안 환류를 실시하였다. 결과로 침전된 물질을 원심분리기로 분리하고, 탈이온수 및 에탄올로 세척하여 불순물을 제거하였다. 결과의 수득물을 3일동안 동결건조한 후, 튜브 퍼니스에서 27C C 온도 조건에서 12시간 열처리하여, V205의 금속산화물에 Mn이 도핑된 음극 물질을 제조하였다. 비교예 3 등근 플라스크에 Mn02 1.8g, 탈이온수 30ml , ¾02 20ml를 넣고 교반하였다. 여기에 탈이은수 30ml 중에 CNT 6g (상기 CNT 6g은, CNT는 CMC(carboxymethylcel lulose)에 분산된 분산액으로 투입되는데 이때, 투입되는 분산액 중에 포함된 CNT 함량을 의미함 (분산액 중 CNT 농도 =5중량 %), CNT 직경 =9~llnm임)을 분산시킨 분산액을 첨가하여 흔합하였다. 에탄올 100ml를 추가로 첨가한 후, 결과의 흔합물에 L-아스파르트산 20ml , 탈이온수 70ml 및 6N HCl 5ml를'흔합하여 제조한 용액을 점적하고, 60°C에서 12시간 동안 환류를 실시하였다. 결과로 침전된 물질을 원심분리기로 분리하고, 탈이온수 및 에탄올로 세척하여 불순물을 제거하였다. 결과의 수득물을 3일동안 동결건조한 후, 튜브 퍼니스에서 270°C 온도 조건에서 12시간 열처리하여, 미도핑된 Mn¾ 금속산화물 -CNT복합체의 음극 물질을 제조하였다. 실험예 1 0.9 g of V 2 O 5 , 30 ml of deionized water and 20 ml of H 2 O 2 were added to an isometric flask and stirred. MnS04 1 mm as a doping element raw material was added thereto and mixed. After addition of 100 ml of ethanol, a solution prepared by mixing 20 ml of L-aspartic acid, 70 ml of deionized water and 5 ml of 6N HCl was added dropwise to the resulting mixture and refluxed at 60 ° C for 12 hours. The resulting precipitated material was separated by a centrifuge and washed with deionized water and ethanol to remove impurities. The resulting product was lyophilized for 3 days and then heat treated in a tube furnace at 27 C C for 12 hours to prepare a cathode material doped with Mn to a metal oxide of V 2 O 5 . Comparative Example 3 1.8g deunggeun Mn0 2, deionized water and the flask was 30ml, stirring the ¾0 2 20ml. 6 g of CNT (6 g of CNT) is added to a dispersion of CMT (carboxymethylcellulose) in 30 ml of dehydrogenated water (CNT concentration in the dispersion = 5% by weight) ) And a CNT diameter of 9 to 11 nm) were dispersed in the dispersion solution. After further added to 100ml of ethanol, 20ml of L- aspartic acid, deionized water and 70ml of 6N HCl 5ml dropwise a solution prepared 'traces were combined and refluxed at 60 ° C for 12 hours was performed on the traces of the compound results. The resulting precipitated material was separated by a centrifuge and washed with deionized water and ethanol to remove impurities. The resulting product was freeze-dried for 3 days and then heat-treated in a tube furnace at a temperature of 270 ° C for 12 hours to prepare a negative electrode material of an undoped Mn metal oxide-CNT composite. Experimental Example 1
상기 실시예 1 및 2에서 사용한 바나듐 산화물에 대하여 X선 광전자 분광 분석 (XRD)하였으며, 또 주사전자 현미경 ( scanning el ectron mi croscope ; SEM)을 이용하여 결정구조를 관찰하였다. 그 결과를 도 la 내지 도 lc , 그리고 도 2a 내지 도 2c에 각각 나타내었다. For the vanadium oxide used in Examples 1 and 2, X-ray photoelectron Spectroscopic analysis (XRD) was performed and the crystal structure was observed using a scanning electron microscope (SEM). The results are shown in Figs. 1A to 1C and Figs. 2A to 2C, respectively.
도 la는 실시예 1에서 사용된 바나듐 산화물에 대한 XRD 분석 결과를 나타낸 그래프이고, 도 lb는 SEM 사진, 그리고 도 lc는 도 lb의 원 표시 부분의 확대도이다.  FIG. 1A is a graph showing an XRD analysis result of the vanadium oxide used in Example 1, FIG. 1B is an SEM photograph, and FIG. 1C is an enlarged view of a circled portion of FIG.
또, 도 2a는 실시예 2에서 사용된 바나듐 산화물에 대한 XRD 분석 결과를 나타낸 그래프이고, 도 2b는 SEM 사진, 그리고 도 2c는 도 2b의 원 표시 부분의 확대도이다.  2A is a graph showing an XRD analysis result of the vanadium oxide used in Example 2, FIG. 2B is an SEM photograph, and FIG. 2C is an enlarged view of the circle display portion of FIG. 2B.
도 la 내지 도 lc , 그리고 도 2a 내지 도 2c에 나타난 바와 같이, 실시예 1 및 2에서 사용된 바나듐산화물은 판상 구조를 가짐을 알 수 있다. 또, 상기 실시예 1 내지 3 및 비교예 1에서 제조한 각각의 음극 물질을 SEM으로 관찰하였다. 그 결과를 도 3a 내지 도 6에 각각 나타내었다.  As shown in FIGS. 1A to 1C and FIGS. 2A to 2C, it can be seen that the vanadium oxide used in Examples 1 and 2 has a plate-like structure. Each of the cathode materials prepared in Examples 1 to 3 and Comparative Example 1 was observed by SEM. The results are shown in Figs. 3A to 6, respectively.
도 3a 내자 3c는 실시예 1에서 제조한 바나듐 산화물-탄소계 물질의 복합체를 다양한 배율로 관찰한의 SEM 사진이고, 도 4a 내지 도 4c는 실시예 2에서 제조한 바나듐 산화물-탄소계 물질의 복합체의 다양한 배율로 관찰한 SEM사진이다. 또 도 5 및 6은 각각 실시예 3 및 비교예 1에서 제조한 바나듐 산화물-탄소계 물질의 복합체를 관찰한 SEM사진이다.  3A is an SEM photograph of a composite of the vanadium oxide-carbonaceous material prepared in Example 1 at various magnifications, and FIGS. 4A to 4C are cross-sectional views of the composite of the vanadium oxide-carbonaceous material prepared in Example 2 SEM photographs were taken at various magnifications. 5 and 6 are SEM photographs of the composite of the vanadium oxide-carbonaceous material prepared in Example 3 and Comparative Example 1, respectively.
관찰 결과, 실시예 1 내지 3 및 비교예 1의 바나듐 산화물-탄소계 물질의 복합체는 판상의 바나듐 산화물 사이에 탄소계 물질이 개재되어 적층된 구조를 가짐을 확인할 수 있다. 또, 상기 실시예 1 및 2에서 제조한 각각의 음극 물질을 전자현미경으로 관찰하고, 또 EDS를 이용하여 원소 분석하였다. 그 결과를 도 7 및 8에 각각 나타내었다.  As a result of observation, it can be confirmed that the composite of the vanadium oxide-carbonaceous materials of Examples 1 to 3 and Comparative Example 1 has a structure in which a carbonaceous substance is interposed between vanadium oxides in a plate form and laminated. Each of the cathode materials prepared in Examples 1 and 2 was observed with an electron microscope, and elemental analysis was performed using EDS. The results are shown in FIGS. 7 and 8, respectively.
분석결과, 실시예 1 및 2의 음극 물질은 판상 적층 구조의 바나듐 산화물-탄소계 물질의 복합체에 A1 또는 Mn의 도핑원소가 도핑되어 있음을 확인할 수 있다 (실시예 1에서의 A1 도핑량 (복합체 구성 전체 원자 함량 기준) : 0.3원자¾, 실시예 2에서의 Mn 도핑량 (복합체 구성 전체 원자 함량 기준) : 1.08원자 실험예 2 As a result of the analysis, it was confirmed that the anode materials of Examples 1 and 2 were doped with a doping element of Al or Mn to the vanadium oxide-carbonaceous material composite of the plate-like laminated structure (A1 doping amount in Example 1 (Based on total atomic content): 0.3 atomic ¾, Mn doping amount in Example 2 (based on the total atomic content of the composite): 1.08 Atomic experiment example 2
상기 실시예 1, 2 및 4, 그리고 비교예 2 및 3에서 제조한 각각의 음극 형성용 조성물에 대하여 순환전압전류법 (CV, cycl ic vol tammetry)으로 CV 그래프를 측정하였다.  CV graphs were measured by cyclic voltammetry (CV) for each of the negative electrode compositions prepared in Examples 1, 2 and 4 and Comparative Examples 2 and 3.
상세하게는, 상기 실시예 1 , 2 및 4, 그리고 비교예 2 및 3에서 제조한 각각의 음극 물질, 카본블랙 및 바인더로서 PVDF를 7 : 2 : 1의 중량비로 흔합하여 음극 형성용 조성물을 제조하고, 글래시 카본 전극 (GCE)에 도포한 후 진공건조시키고, 70°C에서 24시간 동안 건조시켰다. 제조한 전극에 1M Li2S04 전해질을 함침시키고, 안정화시킨 후 백금 반대전극과 SCE 기준전극을 사용하여, 순환주사전위 실험을 수행하였다. 전압 범위 -1. 1~-0.2V에서, 전위 주사속도 10 mV/s로 하여 측정하였다. Specifically, PVDF as a negative electrode material, carbon black and binder prepared in Examples 1, 2 and 4 and Comparative Examples 2 and 3 were mixed at a weight ratio of 7: 2: 1 to prepare a composition for forming an anode , Applied to a glacier carbon electrode (GCE), vacuum-dried, and dried at 70 ° C for 24 hours. The prepared electrode was impregnated with 1 M Li 2 S0 4 electrolyte, stabilized, and subjected to cyclic scanning potential test using a platinum counter electrode and an SCE reference electrode. Voltage range -1. 1 to -0.2 V and a potential scanning speed of 10 mV / s.
단위질량당 정전용량은 바나듐 산화물의 함량과 음극 물질의 비표면적에 크게 의존하며, 순환주사전위에서 나타나는 전류값을 주사속도와 전극 활물질의 질량으로 나누어 계산할 수 있다. 그 결과를 도 9 내지 13, 및 표 1에 나타내었다.  The capacitance per unit mass is largely dependent on the vanadium oxide content and the specific surface area of the cathode material, and can be calculated by dividing the current value appearing on the circulating preform by the scanning speed and the mass of the electrode active material. The results are shown in Figs. 9 to 13 and Table 1.
【표 11 [Table 11
Figure imgf000019_0001
2nd 405.08 49. 18 488.08 57.40 283.71 30. 19 81.87 3.53 81.87 3.53
Figure imgf000019_0001
2 nd 405.08 49. 18 488.08 57.40 283.71 30. 19 81.87 3.53 81.87 3.53
3rd ― ― ― ᅳ 273. 16 28.58 77.85 3.42 77.85 3.423 rd - - - ᅳ 273. 16 28.58 77.85 3.42 77.85 3.42
4th ― ― 一 ― 265.25 27.35 74.62 3.31 74.62 3.31 4 th - - 1 - 265.25 27.35 74.62 3.31 74.62 3.31
5th 330.65 39.92 405.08 48. 14 257.27 26.50 64.06 3. 17 64.06 3. 17 5 th 330.65 39.92 405.08 48. 14 257.27 26.50 64.06 3. 17 64.06 3. 17
상기 표 1에서 "-"는 측정하지 않음을 의미한다. 측정 결과, 실시예 1, 2, 및 4의 음극 물질은 비교예 2 및 3 대비 높은 정전 용량과 함께 높은 에너지 밀도를 나타내었다. 그 중에서도 전도성 무기물질로서 CNT를 포함하는 실시예 1 및 2의 경우 CNT의 높은 전기전도성으로 인해 450 F/g 이상의 높은 정전 용량와 함께 50 Wh/kg 이상의 높은 에너지 밀도를 나타내었으며, 5사이클 후에도 300 F/g 이상와 정전 용량 및 30 Wh/kg 이상의 에너지 밀도를 나타내었다. 이와 같은 우수한 정전 용량 및 에너지 밀도 특성은 실시예 1 및 2의 음극 물질이 층상 구조를 가짐에 따라 비표면적이 크게 증가하였기 때문이다. 한편, CNT 대신에 그래핀을 포함하는 실시예 4의 경우, 실시예 1 및 2에 비해 낮은 전하전달 능력 및 전도성 경로 (conduct ing path)의 차이로 인해, 상대적으로 낮은 정전 용량과 에너지 밀도를 나타내었다. In Table 1, " - " means not measured. As a result of the measurement, the negative electrode materials of Examples 1, 2, and 4 exhibited a high energy density with high capacitance as compared with Comparative Examples 2 and 3. Among them, Examples 1 and 2 including CNT as a conductive inorganic material showed a high energy density of more than 50 Wh / kg together with a high electrostatic capacity of 450 F / g or more due to high electrical conductivity of CNT, and 300 F / g and the electrostatic capacity and energy density of 30 Wh / kg or more. The excellent electrostatic capacity and energy density characteristics are due to the fact that the specific surface area of the negative electrode material of Examples 1 and 2 greatly increased with the layered structure. On the other hand, Example 4, which includes graphene instead of CNT, exhibits relatively low capacitance and energy density due to the difference in the low charge transfer capacity and conduction path compared to Examples 1 and 2 .
또, CNT 등의 전도성 무기 물질을 포함하지 않는 비교예 2의 경우, 입자 간에 존재해야 할 전도성 브릿지 (conduct ing br idge)의 부재로, 전하 전달 능력이 저하됨에 따라 실시예들에 비해 크게 저하된 정전 용량과 에너지 밀도를 나타내었으며, 5 사이클 후에는 이 같은 정전 용량 및 에너지 밀도의 차가 더 커졌다.  In the case of Comparative Example 2 which does not include a conductive inorganic substance such as CNT, since the charge transporting ability is lowered due to the absence of a conductive bridge to be present between the particles, The capacitance and energy density were shown, and after 5 cycles, the difference in capacitance and energy density was greater.
또, 도핑원소 없이 금속산화물과 전도성 무기 물질의 복합체 만을 포함하는 비교예 3의 경우, 도핑원소를 포함하는 실시예 대비 전하 이동성의 감소로 크게 저하된 정전 용량과 에너지 밀도를 나타내었다. 실험예 3 상기 실험예 2에서와 동일한 방법으로, 실시예 1 내지 3, 및 비교예 1의 음극 물질을 이용하여 전극을 제조하고, 제조한 각각의 전극에 1M Li2S04 전해질을 함침시키고, 안정화시킨 후 백금 반대전극과 SCE 기준전극을 사용하여, 전압 범위 -1.2—0.2V에서, l~20kW/kg, l~30A/g의 조건에서 출력 특성을 평가하였다. 그 결과를 도 14에 나타내었다. Also, in Comparative Example 3 including only a complex of a metal oxide and a conductive inorganic material without doping elements, the electrostatic capacity and the energy density significantly decreased due to the decrease of charge mobility compared with the embodiment including the doping element. Experimental Example 3 In the same manner as in Experimental Example 2, electrodes were prepared using the negative electrode materials of Examples 1 to 3 and Comparative Example 1, and each of the prepared electrodes was impregnated with 1 M Li 2 S0 4 electrolyte, stabilized The output characteristics were evaluated under the conditions of 1 ~ 20kW / kg, 1 ~ 30A / g at the voltage range of -1.2-0.2V using the platinum counter electrode and the SCE reference electrode. The results are shown in Fig.
실험결과, Cii, Al , 또는 Mn으로 도핑한 바나듐산화물 -탄소계경우물질의 복합재를 포함하는 실시예 1 내지 3의 음극 물질이, 비도핑된 비교예 1의 음극 물질에 비해 보다 우수한 출력특성을 나타내었다. 이 같은 결과로부터 바나듐 산화물-탄소계 물질 복합재료에 대한 도핑에 의해 전극물질의 출력특성이 더욱 개선될 수 있음을 알 수 있다. 실험예 4  Experimental results show that the negative electrode materials of Examples 1 to 3 including the composite material of the vanadium oxide-carbon based material doped with Cii, Al, or Mn have better output characteristics than the negative electrode material of the non- Respectively. From these results, it can be seen that the output characteristics of the electrode material can be further improved by doping the vanadium oxide-carbon composite material. Experimental Example 4
상기에서 제조한 실시예 1 내지 3 및 비교예 1의 음극 물질을 포함하는 각각의 전극에, Li2S04 전해질을 진공 함침시키고, 안정화시킨 후 백금 반대전극과 SCE 기준전극을 사용하여, 순환주사전위 실험을 수행하였다. 전압 범위 -1.2~-0.2V에서, 전위 주사 속도 10 mV/s로 하여 측정하였다. 그 결과를 하기 표 2에 나타내었다. Li 2 SO 4 electrolyte was vacuum-impregnated and stabilized in each of the electrodes including the cathode materials of Examples 1 to 3 and Comparative Example 1 prepared above, and then, using the platinum counter electrode and the SCE reference electrode, A potential experiment was performed. At a voltage range of -1.2 to -0.2 V, and at a potential scanning speed of 10 mV / s. The results are shown in Table 2 below.
【표 2] [Table 2]
Figure imgf000021_0001
실험결과, 실시예 1 내지 3은 비교예 1에 비해 개선된 정전 용량을 나타내었으며, 특히 A1 또는 Mn을 도핑한 실시예 1 및 2는 350 F/g 이상으로 크게 증가된 정전용량을 나타내었다. 한편, Cu를 도핑한 실시예 3의 경우, 금속 도핑에도 불구하고 상대적으로 낮은 전하의 이동성으로 인해 정전 용량이 실시예 1 및 2에 비해 감소하였다.
Figure imgf000021_0001
As a result, Examples 1 to 3 exhibited improved electrostatic capacitances as compared with Comparative Example 1, and Examples 1 and 2 doped with Al or Mn exhibited greatly increased capacitances of more than 350 F / g. On the other hand, in the case of Example 3 doped with Cu, the electrostatic capacity was reduced as compared with Examples 1 and 2 due to the relatively low charge mobility despite the metal doping.

Claims

[청구의 범위】 [Claims]
【청구항 1】  [Claim 1]
금속 산화물, 및 상기 금속 산화물과 결합한 전도성 무기물질을 포함하는 금속 산화물-전도성 무기물질의 복합체를 포함하며 , A complex of a metal oxide-conductive inorganic material including a metal oxide and a conductive inorganic material combined with the metal oxide,
상기 복합체는 전이 금속 및 양쪽성 금속 원소로 이루어진 군에서 선택되는 1종 이상의 도핑원소로 도핑된, 수도커패시터용 음극 물질.  Wherein the composite is doped with at least one doping element selected from the group consisting of a transition metal and an amphoteric metal element.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 금속 산화물은 판상 구조를 갖고,  The method according to claim 1, wherein the metal oxide has a plate-
상기 복합체는 복수 개의 상기 판상의 금속 산화물 사이에 전도성 무기물질이 개재된 판상 적층 구조를 갖는, 수도커패시터용 음극 물질.  Wherein the composite has a plate-like laminate structure in which a conductive inorganic material is interposed between a plurality of the plate-shaped metal oxides.
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 복합체는 Mn , Cr , Cu , Mo , Ni, Ti, Al , Zn , Sn , 및 Bi로 이루어진 군에서 선택되는 1종 이상의 도핑원소로 도핑된, 수도커패시터용 음극 물질.  The negative electrode material for a capacitive capacitor according to claim 1, wherein the composite is doped with at least one doping element selected from the group consisting of Mn, Cr, Cu, Mo, Ni, Ti, Al, Zn, Sn and Bi.
【청구항 4】 Claim 4
제 1항에 있어서, 상기 도핑원소는 상기 복합체를 구성하는 원소들의 총 함량에 대하여 0. 1 내지 30원자 %의 양으로 포함되는, 수도커패시터용 음극 물질.  The negative electrode material for a capacitive capacitor according to claim 1, wherein the doping element is contained in an amount of 0.1 to 30 atomic% with respect to the total content of the elements constituting the composite.
【청구항 5] [Claim 5]
게 1항에 있어서, 상기 금속 산화물은 V, Sn , Ru Ir , Ta , Mn , Mo , 및 Ti로 이루어진 군에서 선택되는 1종 이상의 금속을 포함하는 산화물인, 수도커패시터용 음극 물질.  Wherein the metal oxide is an oxide containing at least one metal selected from the group consisting of V, Sn, Ru Ir, Ta, Mn, Mo, and Ti.
【청구항 6】 [Claim 6]
제 1항에 있어서, 상기 전도성 무기물질은 탄소계 물질 및 맥신 (Mxene)으로 이루어진 군에서 선택되는 적어도 하나를 포함하는, 수도커패시터용 음극 물질 The conductive inorganic material according to claim 1, wherein the conductive inorganic material comprises at least one selected from the group consisting of carbon-based materials and Mxene. Cathode material for water capacitors
【청구항 7] [7]
제 1항에 있어서, 상기 전도성 무기물질은 탄소나노튜브, 탄소나노파이버, 탄소나노로드, 증기 성장 탄소 파이버, 그래핀, 및 활성탄으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 탄소계 물질을 포함하는, 수도커패시터용 음극 물질.  The conductive inorganic material according to claim 1, wherein the conductive inorganic material comprises one or two or more carbon-based materials selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanorods, vapor growth carbon fibers, graphene, , Cathode materials for water capacitors.
【청구항 8】 8.
제 1항에 있어서, 상기 금속 산화물은 전도성 무기물질 loo중량부에 대하여 1 내지 30중량부로 포함되는, 수도커패시터용 음극 물질.  The negative electrode material for a capacitive capacitor according to claim 1, wherein the metal oxide is contained in an amount of 1 to 30 parts by weight based on 100 parts by weight of the conductive inorganic material.
【청구항 9】 [Claim 9]
제 1항에 있어서, 상기 금속 산화물은 바나듐 산화물을 포함하고, 상기 전도성 무기물질은 탄소나노튜브를 포함하며, 상기 복합체는 A1 및 Mn 중 적어도 어느 하나의 도핑원소로 도핑된, 수도커패시터용 음극 물질.  The method of claim 1, wherein the metal oxide comprises vanadium oxide, the conductive inorganic material comprises carbon nanotubes, and the composite is doped with at least one of Al and Mn. .
【청구항 10】 Claim 10
금속 산화물, 전도성 무기물질 및 도핑원소의 원료물질을 흔합한 후, 카르복실산계 복합화제를 첨가하여 반응시키는 단계; 및  Mixing a metal oxide, a conductive inorganic material and a raw material of a doping element, and then adding a carboxylic acid-based compounding agent to the mixture; And
결과의 반웅물을 열처리하는 단계를 포함하는, 제 1항의 수도커패시터용 음극 물질의 제조방법 .  The method of manufacturing a cathode material for a watercapped capacitor according to claim 1, comprising the step of heat treating the resultant anode material.
【청구항 11】 Claim 11
제 10항에 있어서, 상기 도핑원소의 원료물질은, 도핑원소를 포함하는 황산염, 질산염, 염화물, 아세트산염 및 탄산염으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 흔합물을 포함하는, 수도커패시터용 음극 물질의 제조방법ᅳ  11. The method of claim 10, wherein the source material of the doping element comprises at least one selected from the group consisting of sulfates, nitrates, chlorides, acetates, and carbonates including doping elements. Method of manufacturing materials ᅳ
【청구항 12】 제 10항에 있어서, 상기 도핑원소의 원료물질은, Mn 및 A1 중 적어도 1종을 포함하는 황산염인, 수도커패시터용 음극 물질의 제조방법. Claim 12 11. The method of manufacturing a cathode material for a capacitive capacitor according to claim 10, wherein the raw material of the doping element is a sulfate containing at least one of Mn and Al.
【청구항 13】 Claim 13
제 10항에 있어서, 상기 카르복실산계 복합화제는 모노카르복실산, 디카르복실산, 3관능 이상의 다가 카르복실산, 및 아미노산으로 이루어진 군에서 선택되는, 수도커패시터용 음극 물질의 제조방법.  The method for producing a negative electrode material for a capacitive capacitor according to claim 10, wherein the carboxylic acid-based complexing agent is selected from the group consisting of a monocarboxylic acid, a dicarboxylic acid, a polyfunctional carboxylic acid having three or more functional groups, and an amino acid.
【청구항 14】 14.
제 10항에 있어서, 상기 카르복실산계 복합화제는 L-아스파르트산, 아세트산, 시트르산 및 이들의 흔합물로 이루어진 군에서 선택되는, 수도커패시터용 음극 물질의 제조방법.  11. The method of claim 10, wherein the carboxylic acid-based complexing agent is selected from the group consisting of L-aspartic acid, acetic acid, citric acid, and a mixture thereof.
【청구항 15] [15]
제 10항에 있어서, 상기 금속 산화물, 전도성 무기물질 및 도핑원소의 원료물질의 흔합 후 카르복실산계 복합화제 투입 전에 알코올계 화합물이 더 투입되는, 수도커패시터용 음극 물질의 제조방법.  11. The method of manufacturing a cathode material for a capacitive capacitor according to claim 10, wherein an alcoholic compound is further added before the addition of the carboxylic acid-based complexing agent after mixing of the metal oxide, the conductive inorganic substance and the doping element raw material.
【청구항 16】 Claim 16
제 10항에 있어서, 상기 카르복실산계 복합화제는 물 및 산의 흔합물에 용해된 용액상으로 투입되는, 수도커패시터용 음극 물질의 제조방법.  11. The method of claim 10, wherein the carboxylic acid-based complexing agent is charged into a solution dissolved in a mixture of water and acid.
[청구항 17】 [Claim 17]
제 10항에 있어서, 상기 열처리 전, 결과의 반웅물을 동결건조하는 단계를.더 포함하는, 수도커패시터용 음극 물질의 제조방법 .  11. The method of claim 10, further comprising lyophilizing the resultant blank before the heat treatment.
【청구항 18】 Claim 18
제 10항에 있어서, 상기 열처리는 250 내지 350°C에서 수행되는 수도커패시터용 음극 물질의 제조방법. The method of claim 10, wherein the heat treatment is performed at 250 to 350 ° C.
【청구항 19] [19]
제 1항 내지 제 9항 중 어느 한 항에 따른 음극 물질을 포함하는 수도커패시터용 음극.  A negative electrode for a water-cooled capacitor comprising a negative electrode material according to any one of claims 1 to 9.
【청구항 20] [20]
게 1항 내지 계 9항 중 어느 한 항에 따른 음극 물질을 포함하는 수도커패시터.  A water-containing capacitor comprising a negative electrode material according to any one of claims 1 to 9.
PCT/KR2018/011263 2017-09-25 2018-09-21 Negative electrode material for pseudocapacitor and method for manufacturing same WO2019059719A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/627,215 US11469055B2 (en) 2017-09-25 2018-09-21 Pseudocapacitor anode material and method for preparing the same
EP18858129.2A EP3637450B1 (en) 2017-09-25 2018-09-21 Negative electrode material for pseudocapacitor and method for manufacturing same
JP2020517271A JP6925592B2 (en) 2017-09-25 2018-09-21 Negative electrode material for pseudo capacitors and its manufacturing method
CN201880039825.0A CN111033660B (en) 2017-09-25 2018-09-21 Anode material of pseudo capacitor and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170123725 2017-09-25
KR10-2017-0123725 2017-09-25
KR10-2018-0113044 2018-09-20
KR1020180113044A KR102084771B1 (en) 2017-09-25 2018-09-20 Pseudo capacitor anode material and method for preparing the same

Publications (2)

Publication Number Publication Date
WO2019059719A2 true WO2019059719A2 (en) 2019-03-28
WO2019059719A3 WO2019059719A3 (en) 2019-05-09

Family

ID=65809923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011263 WO2019059719A2 (en) 2017-09-25 2018-09-21 Negative electrode material for pseudocapacitor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2019059719A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642341A (en) * 2019-10-22 2020-01-03 河海大学 Membrane electrode for ozone/electric filtration coupling water treatment system and preparation method and application thereof
CN112053861A (en) * 2020-08-25 2020-12-08 浙江工业大学 In-situ preparation method of three-dimensional conductive MOF @ MXene composite electrode
CN112159605A (en) * 2020-09-09 2021-01-01 苏州北科纳米科技有限公司 Method for preparing mxene material based on molten salt growth method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090057408A (en) * 2006-09-01 2009-06-05 바텔리 메모리얼 인스티튜트 Carbon nanotube nanocomposites, methods of making carbon nanotube nanocomposites, and devices comprising the nanocomposites
KR101280914B1 (en) * 2010-05-17 2013-07-18 삼화콘덴서공업주식회사 Active material for Anode, Method for manufacturing the same, And Secondary Battery and Super Capacitor including the Same
KR101776244B1 (en) * 2015-04-14 2017-09-19 울산과학기술원 Composite electrode, method for manufacturing the same, and electrochemical device including the same
CN105161314B (en) * 2015-08-26 2018-09-11 四川天策聚材科技有限公司 Nano-nickel oxide/nickel/graphene composite material and its preparation method and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642341A (en) * 2019-10-22 2020-01-03 河海大学 Membrane electrode for ozone/electric filtration coupling water treatment system and preparation method and application thereof
CN112053861A (en) * 2020-08-25 2020-12-08 浙江工业大学 In-situ preparation method of three-dimensional conductive MOF @ MXene composite electrode
CN112053861B (en) * 2020-08-25 2022-08-23 浙江工业大学 In-situ preparation method of three-dimensional conductive MOF @ MXene composite electrode
CN112159605A (en) * 2020-09-09 2021-01-01 苏州北科纳米科技有限公司 Method for preparing mxene material based on molten salt growth method and application

Also Published As

Publication number Publication date
WO2019059719A3 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6858175B2 (en) Silicon-carbon composite particle material
JP2012501515A (en) Composite electrode material, battery electrode including the material, and lithium battery having the electrode
Yan et al. Hierarchically organized CNT@ TiO 2@ Mn 3 O 4 nanostructures for enhanced lithium storage performance
JP6953065B2 (en) Method for manufacturing hexagonal molybdenum oxide nanorods
WO2019059719A2 (en) Negative electrode material for pseudocapacitor and method for manufacturing same
KR102084771B1 (en) Pseudo capacitor anode material and method for preparing the same
CN107428553B (en) Titanium oxide particles, method for producing titanium oxide particles, electrode for electricity storage element, and electricity storage element
KR101960154B1 (en) Carbon fiber/metal oxide complex body comprising oxygen vacancy metal oxides, manufacturing method for thereof and electrode for supercapacitor comprising thereof
KR20140083070A (en) Hybrid nano-complex, method for producing the same, and electrode for supercapacitor comprising the same
KR100765615B1 (en) Method of manufacturing electrochemical capacitors containing composite materials of manganese oxide and carbon nano tubes
US20230238509A1 (en) Manufacture of electrodes for energy storage devices
KR101620195B1 (en) Tin-carbon nanocomposite and manufacturing method thereof, and secondary battery including the same
KR20130047879A (en) Method for fabrication of charge storage in multi-walled carbon nanotube-tio2 nano composites
US9431659B2 (en) Electrode binder for secondary battery and electrode for secondary battery comprising the same
JP6953061B2 (en) Manufacturing method of negative electrode active material for pseudocapacitors
JP7224850B2 (en) Positive electrode or separator for power storage device containing output improving agent for power storage device, and power storage device containing them
KR101604791B1 (en) Nano composite, method for preparing the same, and supercapacitor
JP2000331672A (en) Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof
Ghiyami et al. Nanomaterials for Titanium-Based Anodes in Sodium-ion Batteries
Akbulut et al. MAGNETRON SPUTTERED ZNO ON MWCNT FOR LI-ION BATTERY NEGATIVE ELECTRODES
JP2003151862A (en) Continuous formation of film
KR20140109346A (en) Hybrid nano-complex, and electrode for supercapacitor comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858129

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020517271

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018858129

Country of ref document: EP

Effective date: 20200107

NENP Non-entry into the national phase

Ref country code: DE