WO2019059423A1 - Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure - Google Patents

Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure Download PDF

Info

Publication number
WO2019059423A1
WO2019059423A1 PCT/KR2017/010230 KR2017010230W WO2019059423A1 WO 2019059423 A1 WO2019059423 A1 WO 2019059423A1 KR 2017010230 W KR2017010230 W KR 2017010230W WO 2019059423 A1 WO2019059423 A1 WO 2019059423A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive substrate
nanostructure
porous
producing
porous nanostructure
Prior art date
Application number
PCT/KR2017/010230
Other languages
French (fr)
Korean (ko)
Inventor
양성
권희정
홍성아
Original Assignee
주식회사 라디안큐바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 라디안큐바이오 filed Critical 주식회사 라디안큐바이오
Priority to PCT/KR2017/010230 priority Critical patent/WO2019059423A1/en
Publication of WO2019059423A1 publication Critical patent/WO2019059423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/20Electroplating using ultrasonics, vibrations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a method of manufacturing a porous nanostructure, and more particularly, to a method of manufacturing a porous nanostructure using electrochemical deposition, a three-dimensional electrode and a sensor including the porous nanostructure manufactured thereby, .
  • Nanoscale materials ie, particles at the nanoscale level, can vary in surface area, chemical reactivity due to surface energy, and magnetic / magnetic properties or optical properties as they control size or shape. Nanostructures having such physical and chemical properties are widely used in a wide range of fields such as chemical, biological, mechanical, electronic, and communication. Particularly, a business that is applied to a chemical catalyst, an electromagnetic material, and an optical sensor device by using a nanostructure having improved sensitivity and high selectivity is gradually expanding.
  • nanostructures having various shapes as disclosed in Korean Patent Publication No. 10-2014-0014069 are manufactured by gas-phase deposition or hydrothermal method under a high temperature atmosphere.
  • a high-quality nanostructure can be produced through a vapor deposition method, there is a disadvantage that manufacturing cost is increased due to a high-temperature composition and it is difficult to manufacture the nanostructure in a large area.
  • the hydrothermal synthesis method is easier to control the process than the vapor deposition method and can be applied to a large area, but it takes a long time to reduce the production yield.
  • the noble metal including gold (Au) and silver (Ag) among the various metals used as the material of the nanostructure has a standard measurement principle for measuring the adsorption degree of the sample due to the characteristics of surface plasmon resonance and quantitative and qualitative It is possible to measure and is used for biosensor and so on.
  • gold nanoparticles have advantages of high biostability and low cytotoxicity, and various attempts have been made to form nanostructures having a surface with high sensitivity using gold.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method of manufacturing a porous nanostructure having a relatively small cost and a short time,
  • the present invention provides a three-dimensional electrode, a sensor, and a porous nanostructure manufacturing apparatus.
  • a method of fabricating a porous nanostructure comprising: preparing a conductive substrate; and performing electrochemical deposition on the conductive substrate in an atmosphere in which an electrolyte is supplied, A foaming step of forming a metal structure having a plurality of pores by bubbles generated in the electrochemical deposition process and an electrochemical deposition process in an atmosphere in which the electrolyte is supplied to the metal structure, And a coating step of forming a first nanostructure.
  • the electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure.
  • the metallic base metal may be at least one of copper, zinc, gold, and platinum.
  • the foam forming step includes a reaction tank preparation step of preparing a deposition reaction tank containing the electrolytic solution therein, a first immersion step of installing the reference electrode, the counter electrode, and the conductive substrate in the deposition reaction tank so as to be immersed in the electrolyte solution, And performing a deposition process of applying a predetermined voltage to the conductive substrate and the reference electrode immersed in the electrolyte so that bubbles may be generated on the conductive substrate.
  • the foam forming step further includes a bubble reducing step of reducing the size of the bubble generated during the electrochemical deposition process.
  • the bubble reducing step applies ultrasonic waves to the conductive substrate immersed in the electrolytic solution.
  • the bubble reduction step includes a water tank preparation step of preparing a water tank in which immersion water is contained, a second immersion step of immersing the deposition reaction tank in the immersion index held in the water tank, and a second immersion step of immersing the immersion water immersed in the deposition reaction tank in an ultrasonic oscillator And the ultrasound wave oscillator is operated to generate ultrasonic waves in the deposition reaction tank.
  • the bubble reduction step may irradiate the conductive substrate immersed in the electrolyte with light having a predetermined wavelength.
  • a voltage of -2.7 V to -3.3 V is applied to the conductive substrate.
  • the coating step is a step of applying a predetermined voltage to the conductive substrate and the reference electrode provided in the deposition reaction tank so that the nanostructure can be formed on the metal structure, A lower voltage is applied.
  • the coating step preferably applies a voltage of -0.005 V to -0.015 V to the conductive substrate.
  • the method of fabricating a porous nanostructure according to the present invention may further comprise a pattern layer forming step of forming a micropattern layer on the conductive substrate between the preparing step and the foam forming step, wherein a micropattern layer is exposed on a part of the conductive substrate ,
  • the coating step forms the first nanostructure on which the base metal particles of the electrolyte are deposited on the metal structure exposed by the micropattern layer.
  • the method for fabricating a porous structure according to the present invention may further include a removing step of selectively removing the micropattern layer after the coating step is completed and a step of removing the micropattern layer from the microstructure layer, Further comprising performing an electrochemical deposition process to form a second nanostructure on which the base metal particles of the electrolyte are deposited on the first nanostructure.
  • the coating step and the additional deposition step apply a voltage to the conductive substrate and the reference electrode in a state where the conductive substrate having the metal nano body is immersed in the electrolyte solution together with the reference electrode and the counter electrode, And the applied voltage and the low voltage are applied in the deposition process.
  • the coating step and the additional deposition step apply a voltage of -0.005 V to -0.015 V to the conductive substrate.
  • a patterned photoresist is deposited on the metal structure at regular intervals.
  • the reference electrode is silver-silver chloride (Ag / AgCl), and the counter electrode uses platinum (Pt).
  • the porous nanostructure according to the present invention may further include a heat treatment step of performing heat treatment by applying heat to the metal structure having the nanostructure formed thereon after the coating step is completed.
  • Another aspect of the present invention includes a three-dimensional electrode having a porous nanostructure prepared by the above-described method for producing a porous nanostructure.
  • Yet another aspect of the present invention includes a sensor having a porous matrix structure produced by the above-described method for producing a porous nanostructure.
  • the apparatus for manufacturing a porous nanostructure includes a deposition reaction tank in which an electrolyte is contained and in which a conductive substrate is immersed so as to be immersed in the electrolyte, a reference electrode and a counter electrode provided in the deposition reaction tank to be immersed in the electrolyte, A voltage applying member for forming a porous metal structure on the conductive substrate and applying a voltage to the conductive substrate and the reference electrode to perform an electrochemical deposition process on the conductive substrate to form a nanostructure on the porous metal structure, And a bubble reduction unit that reduces the size of bubbles formed on the conductive substrate when a voltage is applied to the conductive substrate.
  • the bubble reducing unit applies ultrasonic waves to the conductive substrate immersed in the electrolytic solution.
  • the bubbling reducing portion includes a water tank in which immersion water is contained and immersed in the immersion index, and an ultrasonic oscillator installed in the water tank to generate ultrasonic waves in the deposition tank so as to be immersed in the immersion index .
  • the bubble reduction unit may irradiate the conductive substrate immersed in the electrolyte with light having a predetermined wavelength.
  • the electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure.
  • the base metal is preferably at least one of copper, zinc, gold, and platinum.
  • the present invention is advantageous in that a nanostructure having a three-dimensional nanosurface can be manufactured at a relatively low cost by using an electrochemical deposition method.
  • the present invention can produce an electrode having a relatively large surface area by forming multiple nanostructures in a porous metal structure, and can be utilized for a sensing means such as a sensor requiring high sensitivity, and the nanostructure can be used as a structure of the porous metal structure And maintains the porous structure firmly even after a lapse of time, so that there is an advantage that the performance reliability is high.
  • FIG. 1 is a schematic view of a patterned layer of an amorphous silicon layer used in a method for producing a porous nanostructure according to the present invention
  • FIG. 2 is a view showing an apparatus for manufacturing a porous nanostructure according to the present invention
  • FIG. 3 is a photograph showing the production of a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus.
  • FIG. 4 is a graph showing changes in roughness factor with time after the metal structure manufactured by performing only the foam forming step of the porous nanostructure manufacturing method of the present invention and the metal structure performed up to the coating step,
  • 5 to 7 are SEM photographs taken immediately after the fabrication of the fabricated structure, 24 hours after the fabrication, and 48 hours after the fabrication, respectively, of the porous nanostructure fabricating method of the present invention.
  • FIG. 12 is a cross-sectional view of a porous nanostructure manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 13 is a photograph showing the production of a nanostructure according to the method of manufacturing a porous nanostructure according to the present invention using the apparatus for producing a nanostructure of FIG. 17,
  • FIG. 14 is a cross-sectional view of a metal structure (Nominal) fabricated by performing only a foam forming step, a metallic structure (Sonication 1,2) fabricated by applying ultrasonic waves in the manufacture of a metal structure, (Degassing 1, 2)
  • 15 and 16 are SEM and FE-SEM photographs of the metal structure obtained by performing both the coating step and the heat treatment step of the porous nanostructure of the present invention.
  • FIG. 17 is a cross-sectional view of an apparatus for manufacturing a porous nanostructure according to another embodiment of the present invention.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • the method for producing a porous nanostructure according to the present invention comprises a preparation step, a pattern layer forming step, a foam forming step, a coating step, a removing step and an additional deposition step.
  • the preparation step is a step of preparing a conductive substrate.
  • the conductive substrate may be platinum, silver, copper, gold, titanium, nickel, ruthenium or the like, and carbon materials such as graghite, carbon nanotube and fullerene may be used.
  • the pattern layer forming step is a step of forming, on the conductive substrate, a micropattern layer in which a part of the conductive substrate is exposed.
  • the micropattern layer is formed on a conductive substrate, and a part of the conductive substrate may be exposed at regular intervals or in a constant shape between patterns of the micropattern layer by the micropattern layer.
  • 1 shows an embodiment of a patterned layer of an amide.
  • the pattern layer forming step may deposit photoresist patterned at regular intervals on a conductive substrate.
  • the patterned photoresist is formed by applying a photoresist on a conductive substrate to form a photoresist film, covering the photoresist film with a mask having a pattern of a predetermined interval or a predetermined shape, A patterned photoresist having a desired pattern is formed on the conductive substrate.
  • a gold (Au) seed layer may be formed on the conductive substrate before the pattern layer forming step.
  • the gold (Au) seed layer may be a thin film layer made of only gold particles, and may be a thin film layer made of an alloy containing conductive metal particles other than gold particles according to an embodiment.
  • the conductive metal particles may be at least one selected from the group consisting of Au, Pt, Fe, Co, Ti, V, Al, Mo, (Cu), and silver (Ag).
  • the gold (Au) seed layer may be formed on the metal structure by a method such as evaporation, sputtering, wet coating, electrolytic plating, or electroless plating. , It can be formed by a sputtering method.
  • the foam forming step is a step of performing an electrochemical deposition process on the conductive substrate in an atmosphere where an electrolyte is supplied, and a metal structure having a plurality of pores is formed on the conductive substrate by bubbles generated during the electrochemical deposition process .
  • the foam forming step uses the porous nanostructure manufacturing apparatus 100 shown in FIG. 2, and includes a reactor preparation step, a first immersion step, and a deposition step.
  • the apparatus for manufacturing a porous nanostructure 100 includes a deposition reaction tank 101 in which an electrolyte is contained and in which a conductive substrate 105 is immersed so as to be immersed in the electrolyte solution and a deposition reaction tank 101 installed in the deposition reaction tank 101 to be immersed in the electrolyte solution.
  • a voltage applying member 104 for applying a voltage to the conductive substrate 105 and the reference electrode 102 in order to perform the process.
  • the electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the base metal structure, and the metallic base metal is at least one of copper, zinc, gold, and platinum. More preferably, the electrolyte is yeomhwageum (III) hydrate (Gold (III) chloride hydrate; AuCl 3 ⁇ H 2 O), chloroauric acid (Hydrogen Tetrachloroaurate (III); HAuCl 4 ⁇ H 2 O), chloroauric acid, potassium ( KAuCl 4 ), sodium tetrachloroaurate (III) dihydrate, NaAuCl 4 ⁇ H 2 O, gold (III) bromide hydrate, AuBr 3 ⁇ H 2 O), and gold (III) chloride (AuCl 3 ).
  • the electrolyte is yeomhwageum (III) hydrate (Gold (III) chloride hydrate; AuCl 3 ⁇ H 2 O), chloroauric acid (Hydrog
  • the concentration of the electrolytic solution may be 0.1M to 0.5M. When the concentration of the electrolytic solution is less than 0.1M, the base metal particles of the electrolytic solution are difficult to deposit sufficiently on the conductive substrate 105. When the concentration of the electrolytic solution exceeds 1M, Or may not be formed into a nanostructure of a desired shape.
  • the reference electrode 102 is silver-silver chloride (Ag / AgCl), and the counter electrode 103 is made of platinum (Pt). Further, the voltage applying member 104 is a voltage supplying means for applying a voltage to the electrodes conventionally used in the electrochemical vapor deposition process, and a detailed description thereof will be omitted.
  • the reactor preparation step is a step of preparing a deposition reaction vessel 101 containing an electrolyte therein. At this time, it is preferable that the deposition reaction tank 101 is formed of a transparent material so as to easily grasp the internal state from the outside.
  • the reference electrode 102, the counter electrode 103, and the conductive substrate 105 are installed in the deposition reaction tank 101 so as to be immersed in the electrolyte solution.
  • the conductive substrate 105 is connected to the cathode of the voltage applying member 104, and the counter electrode 103 is connected to the anode.
  • the conductive substrate 105 becomes a working electrode during the electrochemical deposition process.
  • the step of performing the deposition process may be performed by performing an electrochemical deposition process on the conductive substrate 105.
  • the conductive substrate 105 and the reference electrode 102 which are immersed in the electrolyte solution, To a predetermined voltage.
  • the voltage of the power source applied to the conductive substrate 105 is preferably -2.7 V to -3.3 V.
  • the voltage is applied to the conductive substrate 105 at less than -3.0 V, plating is not performed on the conductive substrate 105, and when the applied voltage exceeds -4.0 V, cracks are generated in the deposited porous metal structure. May occur.
  • the metal particles precipitated on the conductive substrate 105 can obtain a porous metal structure having many pores inside or on the surface of the metal particles due to hydrogen generated during the electrochemical deposition process.
  • the hydrogen bubbles are generated from the negative electrode reaction on the conductive substrate 105, and are continuously generated during the electrochemical deposition process.
  • the metal structure is formed on the conductive metal substrate between the hydrogen bubbles because the metal structure is not formed at the portion where the hydrogen bubble is present because the metal ion is hardly present.
  • the micropattern layer is formed on the conductive substrate 105, the porous metal structure is formed in a part of the conductive substrate 105 exposed by the micropattern layer.
  • the pores generated by the hydrogen may be variously formed depending on the metal material contained in the electrolyte, the concentration of the metal material, and the pore size may be from several tens nanometers to several tens of microseconds. At this time, the pores formed in the metal structure are preferably 10 micrometers to 20 m chrome.
  • the coating step an electrochemical deposition process is performed in an atmosphere in which the electrolyte solution is supplied to the metal structure to form a first nanostructure on the metal structure.
  • the coating step is a step of applying a predetermined voltage to the conductive substrate 105 and the reference electrode 102 provided in the deposition reaction tank 101 so that the nanostructure can be formed on the metal structure, 105 in the deposition process step.
  • the first nanostructure is formed by depositing base metal particles of the electrolyte on the metal structure exposed by the micropattern layer.
  • the electrochemical deposition process itself is not performed. If the applied voltage exceeds -0.015 V, cracks may be generated in the deposited nanostructure have.
  • the side regions of the structure may be deposited in a limited manner by the pattern of the micropattern layer.
  • the first nanostructure may be formed of a nanostructured crystal while particles are intensively deposited in an upper region of the metal structure where no pattern of the micropattern layer is formed.
  • the method of manufacturing a porous nanostructure according to the present invention may be repeated several times in the deposition step and coating step. That is, when the coating step is completed, the conductive substrate 105 having the metal nano body is immersed in the electrolyte together with the reference electrode 102 and the counter electrode 103, A voltage of -2.7 V to -3.3 V is applied to the conductive substrate 105 for a predetermined time and then a voltage of -0.005 V to -0.015 V is applied to the conductive substrate 105 Repeat the process.
  • the removing step is a step of selectively removing the micropattern layer after the coating step is completed.
  • the micropattern layer may be selectively removed by performing an etching process on the metal structure having the first nanostructure formed thereon.
  • the conductive substrate 105 is taken out of the deposition reaction tank 101 and immersed in the etching solution.
  • the etching solution is a solution of (CH 3) 2 CHOH (acetone), HF (hydrofluoric acid), BHF (buffered hydrofluoric acid), H 2 SO 4 (sulfuric acid), H 2 O 2 (hydrogen peroxide) But is not limited to, any one selected from NH 4 OH (ammonia), HCl (hydrochloric acid), H 3 PO 4 (phosphoric acid), and stripper.
  • an electrochemical deposition process is performed in an atmosphere in which the electrolyte is supplied to the metal structure from which the micropattern layer is removed, thereby forming a second nanostructure on which the base metal particles of the electrolyte are deposited on the first nanostructure .
  • the conductive substrate 105 having the metal structure is connected to the negative electrode of the voltage applying member 104 and then installed in the deposition reaction tank 101 so as to be immersed in the electrolytic solution, A power source is applied to the deposition reaction tank 101 to perform an electrochemical deposition process.
  • the voltage of the power source applied to the conductive substrate 105 is preferably -0.005 V to -0.015 V.
  • the electrochemical deposition process itself is not performed. If the applied voltage exceeds -0.015 V, cracks may be generated in the deposited nanostructure have.
  • the conductive substrate 105 on which the first nanostructure is formed is used as a working electrode, and the base metal particles of the electrolyte are reduced and further deposited on the first nanostructure, To form a structure.
  • the second nanostructure has a flower-like three-dimensional nanosurface structure, which is different from the first nanostructure in that the micro-pattern layer is removed by the removing step Accordingly, the particles deposited by performing the additional deposition step are also deposited on the lateral region of the first nanostructure, so that the gold particles are deposited and grown on the porous metal structure in all directions, and the three- A second nanostructure on a microscale scale is formed. More specifically, the flower-like nanostructure is formed by connecting fine grains in the form of nano-rod or nano-needle like branches and forming a crystal grains such as a leaf of a coniferous tree, And the like.
  • each of the second nanostructures having such a flower-shaped three-dimensional nanosurface structure has a microscale size.
  • the particles deposited by the additional deposition step may be deposited on the surface of the first nanostructure as well as on the surface of the porous metal structure by reducing the gold particles.
  • the second nanostructures may be connected to each other according to the magnitude of the voltage applied during the additional deposition step and the process execution time.
  • the porous nanostructure according to the present invention may further include a heat treatment step of performing heat treatment by applying heat to the metal structure having the nanostructure formed after the coating step is completed.
  • the heat treatment step the conductive substrate 105 on which the coating step has been completed is taken out of the electrolytic solution, and heat of 180 to 450 ° C is supplied to heat treatment.
  • the heat treatment step may be performed between the coating step and the removing step, or may be performed after the additional deposition step.
  • the method of manufacturing a porous nanostructure according to the present invention may omit the removing step and the additional deposition step depending on the type of the sensor and the electrode using the nanostructure.
  • FIG. 3 is a photograph illustrating a method of fabricating a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus.
  • the reference electrode 102 Ag / AgCl the reference electrode 102 Ag / AgCl
  • the counter electrode 103 is Pt mesh
  • a conductive substrate Is a Pt / Ti / Glass electrode
  • the voltage application time is 20 seconds.
  • the foam forming step is performed at a voltage of -3 V applied to the conductive substrate, and a voltage of -0.01 V is applied in the coating step to perform an electrochemical deposition process.
  • FIG. 4 is a graph showing changes in roughness factor with time after the metal structure manufactured by performing only the foam forming step and the metal structure performed up to the coating step.
  • Nominal is a metal structure manufactured by performing only the foam forming step
  • Gold coating is a metal structure carried to the coating step
  • Rf is a roughness factor.
  • the roughness factor is an electrochemical area / geometrical area. The higher the roughness factor, the more the surface area exposed to the outside increases, so that the sensitivity of the sensor can be improved when applied to the sensor.
  • FIGS. 5 to 7 show SEM photographs taken immediately after the fabrication of the metal structure having the nominal conditions, 24 hours after the fabrication, 48 hours after the fabrication, and FIGS. 8 to 10 show the fabrication SEM photographs taken immediately after, 24 hours after, and 48 hours after production are shown.
  • 11 there is shown an SEM photograph of the same magnification of a metal structure having a nominal condition and a metal structure having a gold coating condition. Comparing the photographs, it can be seen that the surface area of the electrode is reduced to some extent over time in both the metal structure having the nominal condition and the metal structure having the gold coating condition. However, the metal structure with gold coating condition has a coarser structure due to the reduction of gold ion in the skeleton which maintains the porous structure compared to the metal structure with nominal condition. That is, it can be seen that the porous structure of the metal structure is more stably maintained as the skeleton forming the porous structure is thickened by the nanostructure formed through the coating step.
  • the foam forming process includes forming a metal structure on the substrate, and includes a reactor preparation step, a first immersion step, a bubble reduction step, and a deposition step. At this time, the steps of preparing the reaction tank, performing the first immersion step, and performing the deposition step are performed in the same manner as the foam formation step of the above-mentioned embodiment, and thus detailed description thereof will be omitted.
  • the bubble reduction step includes a water tank preparation step, a second immersion step, and an ultrasonic application step.
  • the foam forming step uses a nanostructure manufacturing apparatus according to another embodiment of the present invention shown in FIG. Elements having the same functions as those in the previous drawings are denoted by the same reference numerals.
  • the apparatus for fabricating a nanostructure further includes a bubble reducing unit 110 for reducing the size of bubbles formed on the conductive substrate 105 when a voltage is applied to the conductive substrate 105.
  • the bubble reduction unit 110 applies ultrasonic waves to the conductive substrate 105 immersed in the electrolyte solution and is configured to receive immersion water therein and to be immersed in the immersion index, And an ultrasonic oscillator 112 installed in the water tank 111 to generate ultrasonic waves in the deposition reaction tank 101 to be immersed in the immersion index.
  • the bubble reduction unit 110 indirectly transfers the ultrasonic waves generated by the ultrasonic oscillator 112 to the conductive substrate 105 through a needle index.
  • the bubble reduction unit 110 may include a vibrator installed in the water tub 111 to generate vibration, instead of the ultrasonic oscillator 112.
  • the water tank preparing step is a step of preparing a water tank 111 containing immersion water therein.
  • the second immersion step is a step of immersing the deposition reaction tank 101 in the immersion indices contained in the water tank 111.
  • the deposition reaction tank 101 is installed in the water tank 111 so that the lower part of the deposition reaction tank 101 is sufficiently immersed in the immersion index. It is preferable that the operator installs the deposition reaction tank 101 in the water tank 111 prior to the deposition process.
  • the ultrasonic oscillator 112 is immersed in the immersion index of the deposition reaction tank 101, and the ultrasonic oscillator 112 is operated to generate ultrasonic waves in the deposition reaction tank 101. At this time, an ultrasonic wave of 40 kHz is generated through the ultrasonic oscillator 112. The operator preferably stops the ultrasonic oscillator 112 after the deposition process step is completed. In place of the ultrasonic oscillator 112, a vibrator (not shown) provided in the water tank 111 may be operated to apply vibration to the conductive substrate.
  • the foam forming step according to the present invention may include a degassing step in the deposition step instead of the bubble reducing step.
  • the gas generated during the electrochemical deposition process is forcibly discharged to the outside of the deposition reaction tank.
  • FIG. 13 is a photograph showing a method of fabricating a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus.
  • the reference electrode 102 Ag / AgCl the reference electrode 102 Ag / AgCl
  • the counter electrode 103 is Pt mesh
  • a conductive substrate Is a Pt / Ti / Glass electrode
  • the voltage application time is 20 seconds. Further, the voltage to be applied to the conductive substrate was set to -3V.
  • FIG. 14 shows a case where a metal structure (Nominal) manufactured by performing only a foam forming step, a metallic structure (Sonication 1, 2) fabricated by applying ultrasonic waves in the manufacture of a metal structure, and a metal structure (Degassing 1, 2).
  • the SEM photograph shows that the metal structure manufactured under the sonication condition is finer and has a larger number of pores than the nominal and degassing conditions.
  • 15 and 16 show an SEM photograph and an FE-SEM photograph of the metal structure obtained by performing both the coating step and the heat treatment step.
  • a voltage is applied to the conductive substrate 105 for 5 seconds during the deposition process, and a voltage is applied to the conductive substrate 105 for 20 seconds in the coating process.
  • the metal structure was manufactured by including a bubble reduction step in the foam forming step. Referring to the SEM photographs and the FE-SEM photographs, it can be seen that the particles of the metal structure subjected to both the coating step and the heat treatment step are relatively small and the surface is rough.
  • a process of applying a voltage to the conductive substrate 105 for 5 seconds in the deposition process step and applying a voltage to the conductive substrate 105 in the coating step for 20 seconds is referred to as 4 And then heat-treated at 450 ⁇ .
  • the bubble reduction step is a step of irradiating the conductive substrate 105 immersed in the electrolyte with light having a predetermined wavelength.
  • the apparatus for manufacturing a porous nanostructure shown in FIG. 17 is used.
  • the apparatus for manufacturing a porous nanostructure includes a bubble reduction unit 120 according to another embodiment of the present invention.
  • the bubble reduction unit 120 is installed at a position opposite to the deposition reaction tank 101, And a light irradiation member 121 for irradiating light having a predetermined wavelength.
  • the operator irradiates the conductive substrate 105 with light by activating the light irradiation member 121 when performing the electrochemical deposition process on the conductive substrate 105.
  • the hydrogen bubbles on the conductive substrate 105 are pulverized by the light to form a plurality of fine bubbles, and the metal structure has fine pores.
  • a three-dimensional electrode including a nanostructure produced by the method of manufacturing a porous nanostructure as described above.
  • the three-dimensional electrode may include the nanostructure on the surface. Accordingly, the three-dimensional electrode can have a wide surface area due to the structural characteristics of the gold nanostructure formed on the surface, and thus can be widely used as an electrode of a device requiring high sensitivity and high selectivity.
  • the three-dimensional gold electrode may have a surface area of 200 mm 2 to 800 mm 2 . This is because the gold nanostructure having a flower-like three-dimensional nano-surface formed in a predetermined pattern on the surface of the three-dimensional gold electrode has a significantly improved surface area compared to a conventional bare gold electrode having a flat surface Lt; / RTI >
  • a sensor including the nanostructure fabricated by the method of manufacturing a porous nanostructure described above in one aspect of the present invention can be applied to a sensing area of a sensor that requires high sensitivity to precisely measure the adsorption and concentration of the sample using the structural characteristics of the nanostructure composed of the three-dimensional nanosurface.
  • the sensor including the nanostructure may be a norovirus measuring sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

The present invention relates to a method for producing a porous nanostructure and, in more detail, comprises: a preparation step for preparing an electrically conductive substrate; a foam forming step wherein an electrochemical deposition process is performed on the electrically conductive substrate in an atmosphere supplied with an electrolytic solution, and wherein a metallic structure having a plurality of pores due to bubbles generated during the electrochemical deposition process is formed on the electrically conductive substrate; and a coating step for forming a first nanostructure on the metallic structure by performing an electrochemical deposition process on the metallic structure in the atmosphere supplied with the electrolytic solution.

Description

다공성 나노구조체의 제조방법, 이에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극 및 센서, 다공성 나노구조체 제조장치Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced by the method, apparatus for manufacturing porous nanostructure
본 발명은 다공성 나노구조체의 제조방법에 관한 것으로서, 보다 상세하게는 전기화학 증착을 이용한 다공성 나노구조체의 제조방법, 이에 의해 제조된 다공성 나노구조체를 포함하는 3차원 전극 및 센서, 다공성 나노구조체 제조장치에 관한 것이다. The present invention relates to a method of manufacturing a porous nanostructure, and more particularly, to a method of manufacturing a porous nanostructure using electrochemical deposition, a three-dimensional electrode and a sensor including the porous nanostructure manufactured thereby, .
최근 나노 기술의 발전에 따라 나노로드(nanorod), 나노튜브(nanotube), 나노와이어(nanowire)와 같은 다양한 나노구조체 물질에 대한 연구가 진행되고 있다. 나노 크기의 물질, 즉 나노 수준에서의 입자는 크기나 모양을 조절함에 따라 표면적, 표면에너지에 기인하는 화학적 반응성, 및 전·자기적 특징 또는 광학적 성질이 달라질 수 있다. 이러한 물리적·화학적 특성을 갖는 나노구조체는 넓은 활용범위를 가지고 있어, 화학, 생물, 기계, 전자, 또는 통신 등의 폭넓은 분야에서 각광받고 있다. 특히, 고감도, 고선택성을 향상시킨 나노구조체를 이용하여, 화학적 촉매, 전자기적 재료, 및 광학적 센서 장치 등에 적용한 사업이 점차 확대되고 있다.Recently, researches on various nanostructured materials such as nanorods, nanotubes, and nanowires have been conducted according to the development of nanotechnology. Nanoscale materials, ie, particles at the nanoscale level, can vary in surface area, chemical reactivity due to surface energy, and magnetic / magnetic properties or optical properties as they control size or shape. Nanostructures having such physical and chemical properties are widely used in a wide range of fields such as chemical, biological, mechanical, electronic, and communication. Particularly, a business that is applied to a chemical catalyst, an electromagnetic material, and an optical sensor device by using a nanostructure having improved sensitivity and high selectivity is gradually expanding.
일반적으로 한국 공개특허공보 제10-2014-0014069호에 개시된 바와 같은 다양한 형상을 가지는 나노구조체는 고온의 분위기하에서 기상증착법(gas-phase deposition) 또는 수열합성법(hydrothermal method)을 통해 제조되고 있다. 기상증착법을 통해 양질의 나노구조체를 제조할 수 있으나, 고온 조성에 따른 제조비용 상승 및 대면적으로 제조하기가 어렵다는 단점이 있다. 수열합성법은 기상증착법에 비해 공정제어가 용이하고 대면적에 적용하기 유리하나, 오랜 시간이 소요되어 제조수율이 감소되는 문제점이 있다.In general, nanostructures having various shapes as disclosed in Korean Patent Publication No. 10-2014-0014069 are manufactured by gas-phase deposition or hydrothermal method under a high temperature atmosphere. Although a high-quality nanostructure can be produced through a vapor deposition method, there is a disadvantage that manufacturing cost is increased due to a high-temperature composition and it is difficult to manufacture the nanostructure in a large area. The hydrothermal synthesis method is easier to control the process than the vapor deposition method and can be applied to a large area, but it takes a long time to reduce the production yield.
한편, 상기 나노구조체의 물질로 사용되는 다양한 금속 중에서 금(Au)과 은(Ag)을 포함하는 귀금속은 표면 플라즈몬 공명의 특성으로 인해 시료의 흡착 정도를 측정하는 표준 계측 원리, 및 정량적, 정성적 측정이 가능하여 바이오센서 등에 활용되고 있다. 특히, 금 나노입자는 생체안정성이 높고 세포독성도가 낮다는 장점이 있어, 금을 이용하여 고감도의 표면을 가진 나노구조체를 형성하기 위한 다양한 개발이 시도되고 있다.On the other hand, the noble metal including gold (Au) and silver (Ag) among the various metals used as the material of the nanostructure has a standard measurement principle for measuring the adsorption degree of the sample due to the characteristics of surface plasmon resonance and quantitative and qualitative It is possible to measure and is used for biosensor and so on. In particular, gold nanoparticles have advantages of high biostability and low cytotoxicity, and various attempts have been made to form nanostructures having a surface with high sensitivity using gold.
본 발명은 상기와 같은 문제점을 개선하기 위해 창안된 것으로서, 비교적 적은 비용과 짧은 시간으로 제조가 가능하며, 외부와의 접촉면적이 확장된 다공성 나노구조체의 제조방법, 이에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극 및 센서, 다공성 나노구조체 제조장치를 제공하는 데 그 목적이 있다. The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method of manufacturing a porous nanostructure having a relatively small cost and a short time, The present invention provides a three-dimensional electrode, a sensor, and a porous nanostructure manufacturing apparatus.
상기 목적을 달성하기 위한 본 발명에 따른 다공성 나노구조체의 제조방법은 도전성 기판을 준비하는 준비단계와, 전해액이 공급되는 분위기에서 상기 도전성 기판에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판 상에, 상기 전기화학 증착 공정 중 발생된 기포에 의해 다수의 기공을 갖는 금속구조체를 형성하는 폼 형성단계와, 상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 금속구조체 상에 제1나노구조체를 형성하는 코팅단계를 포함한다. According to an aspect of the present invention, there is provided a method of fabricating a porous nanostructure, comprising: preparing a conductive substrate; and performing electrochemical deposition on the conductive substrate in an atmosphere in which an electrolyte is supplied, A foaming step of forming a metal structure having a plurality of pores by bubbles generated in the electrochemical deposition process and an electrochemical deposition process in an atmosphere in which the electrolyte is supplied to the metal structure, And a coating step of forming a first nanostructure.
상기 전해액은 상기 금속구조체에 전기화학 증착 공정의 수행이 가능한 금속성 베이스 금속을 함유한다. The electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure.
상기 금속성 베이스 금속은 구리, 아연, 금, 백금 중 적어도 어느 하나 인 것이 바람직하다. The metallic base metal may be at least one of copper, zinc, gold, and platinum.
상기 폼 형성단계는 내부에 상기 전해액이 수용된 증착 반응조를 준비하는 반응조 준비단계와, 기준전극, 상대전극 및 상기 도전성 기판이 상기 전해액에 침지되도록 상기 증착 반응조에 설치하는 제1침지단계와, 상기 도전성 기판에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판 상에 기포가 발생할 수 있도록 상기 전해액에 침지된 상기 도전성 기판과 기준전극에 소정의 전압을 인가하는 증착공정 수행단계를 포함한다. Wherein the foam forming step includes a reaction tank preparation step of preparing a deposition reaction tank containing the electrolytic solution therein, a first immersion step of installing the reference electrode, the counter electrode, and the conductive substrate in the deposition reaction tank so as to be immersed in the electrolyte solution, And performing a deposition process of applying a predetermined voltage to the conductive substrate and the reference electrode immersed in the electrolyte so that bubbles may be generated on the conductive substrate.
상기 폼 형성단계는 상기 전기화학 증착 공정 중 발생된 기포의 크기를 감소시키는 기포 축소 단계를 더 포함한다. The foam forming step further includes a bubble reducing step of reducing the size of the bubble generated during the electrochemical deposition process.
상기 기포 축소단계는 상기 전해액에 침지된 상기 도전성 기판에 초음파를 인가한다. The bubble reducing step applies ultrasonic waves to the conductive substrate immersed in the electrolytic solution.
상기 기포 축소단계는 내부에 침지수가 수용된 수조를 준비하는 수조 준비단계와, 상기 수조에 수용된 침지수에 상기 증착 반응조를 침지시키는 제2침지단계와, 상기 증착 반응조가 침지된 상기 침지수에 초음파 발진기를 침지시키고, 상기 초암파 발진기를 작동시켜 상기 증착 반응조로 초음파를 발생시키는 것이 바람직하다. The bubble reduction step includes a water tank preparation step of preparing a water tank in which immersion water is contained, a second immersion step of immersing the deposition reaction tank in the immersion index held in the water tank, and a second immersion step of immersing the immersion water immersed in the deposition reaction tank in an ultrasonic oscillator And the ultrasound wave oscillator is operated to generate ultrasonic waves in the deposition reaction tank.
상기 기포 축소단계는 상기 전해액에 침지된 상기 도전성 기판에 소정의 파장을 갖는 광을 조사할 수도 있다. The bubble reduction step may irradiate the conductive substrate immersed in the electrolyte with light having a predetermined wavelength.
상기 증착공정 수행단계는 상기 도전성 기판에 -2.7V 내지 -3.3V의 전압을 인가한다. In the deposition step, a voltage of -2.7 V to -3.3 V is applied to the conductive substrate.
상기 코팅단계는 상기 나노구조체가 상기 금속구조체 상에 형성될 수 있도록 상기 증착 반응조에 설치된 상기 도전성 기판과 기준전극에 소정의 전압을 인가하는 것으로서, 상기 도전성 기판에 상기 증착공정 수행단계에서 인가된 전압보다 낮은 전압을 인가한다. Wherein the coating step is a step of applying a predetermined voltage to the conductive substrate and the reference electrode provided in the deposition reaction tank so that the nanostructure can be formed on the metal structure, A lower voltage is applied.
상기 코팅단계는 상기 도전성 기판에 -0.005V 내지 -0.015V의 전압을 인가하는 것이 바람직하다. The coating step preferably applies a voltage of -0.005 V to -0.015 V to the conductive substrate.
한편, 본 발명에 따른 다공성 나노구조체 제조방법은 상기 준비단계 및 폼 형성단계 사이에 상기 도전성 기판 상에, 상기 도전성 기판의 일부영역이 노출되는 마이크로패턴층을 형성하는 패턴층 형성단계를 더 포함하고, 상기 코팅단계는 상기 마이크로패턴층에 의해 노츨된 상기 금속구조체 상에 상기 전해액의 베이스 금속 입자들이 증착된 상기 제1나노구조체를 형성한다. Meanwhile, the method of fabricating a porous nanostructure according to the present invention may further comprise a pattern layer forming step of forming a micropattern layer on the conductive substrate between the preparing step and the foam forming step, wherein a micropattern layer is exposed on a part of the conductive substrate , The coating step forms the first nanostructure on which the base metal particles of the electrolyte are deposited on the metal structure exposed by the micropattern layer.
또한, 본 발명에 따른 다공송 나노구조체 제조방법은 상기 코팅단계가 완료된 다음, 상기 마이크로패턴층을 선택적으로 제거하는 제거단계와, 상기 마이크로패턴층이 제거된 상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 제1나노구조체에 상기 전해액의 베이스 금속 입자들이 증착된 제2나노구조체를 형성하는 추가 증착단계를 더 포함한다. The method for fabricating a porous structure according to the present invention may further include a removing step of selectively removing the micropattern layer after the coating step is completed and a step of removing the micropattern layer from the microstructure layer, Further comprising performing an electrochemical deposition process to form a second nanostructure on which the base metal particles of the electrolyte are deposited on the first nanostructure.
상기 코팅단계 및 추가 증착단계는 상기 금속나노체를 갖는 상기 도전성 기판이 상기 전해액에 상기 기준전극 및 상대전극과 함께 침지된 상태에서 상기 도전성 기판 및 기준전극에 전압을 인가하는 것으로서, 상기 도전성 기판에 상기 증착공정 수행단계에서 인가된 전압과 낮은 전압을 인가한다. Wherein the coating step and the additional deposition step apply a voltage to the conductive substrate and the reference electrode in a state where the conductive substrate having the metal nano body is immersed in the electrolyte solution together with the reference electrode and the counter electrode, And the applied voltage and the low voltage are applied in the deposition process.
상기 코팅단계 및 추가 증착단계는 상기 도전성 기판에 -0.005V 내지 -0.015V의 전압을 인가하는 것이 바람직하다. It is preferable that the coating step and the additional deposition step apply a voltage of -0.005 V to -0.015 V to the conductive substrate.
상기 패턴층 형성단계는 상기 금속구조체 상에 일정 간격으로 패턴화된 포토레지스트가 증착된다. In the pattern layer forming step, a patterned photoresist is deposited on the metal structure at regular intervals.
상기 기준전극은 은-염화은(Ag/AgCl)이고, 상기 상대전극은 백금(Pt)를 사용한다. The reference electrode is silver-silver chloride (Ag / AgCl), and the counter electrode uses platinum (Pt).
한편, 본 발명에 따른 다공성 나노구조체의 제조방법은 상기 코팅단계가 완료된 다음, 상기 나노구조체가 형성된 상기 금속구조체에 열을 인가하여 열처리 공정을 수행하는 열처리단계를 더 포함할 수도 있다. The porous nanostructure according to the present invention may further include a heat treatment step of performing heat treatment by applying heat to the metal structure having the nanostructure formed thereon after the coating step is completed.
한편, 본 발명의 또 다른 측면은 상기 언급된 다공성 나노구조체의 제조방법에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극을 포함한다. Another aspect of the present invention includes a three-dimensional electrode having a porous nanostructure prepared by the above-described method for producing a porous nanostructure.
또한, 본 발명의 또 다른 측면은 상기 언급된 다공성 나노구조체의 제조방법에 의해 제조된 다공성 나조구조체를 갖는 센서를 구비한다. Yet another aspect of the present invention includes a sensor having a porous matrix structure produced by the above-described method for producing a porous nanostructure.
그리고, 본 발명에 따른 다공성 나노구조체 제조장치는 내부에 전해액이 수용되고, 상기 전해액에 침지되도록 도전성 기판이 침지되는 증착 반응조와, 상기 전해액에 침지되도록 상기 증착 반응조에 설치되는 기준전극 및 상대전극과, 상기 도전성 기판에 다공성 금속구조체를 형성하고, 상기 다공성 금속구조체에 나노구조체를 형성하기 위해 상기 도전성 기판에 전기화학 증착 공정을 수행하기 위해 상기 도전성 기판 및 기준전극에 전압을 인가하는 전압인가부재와, 상기 도전성 기판에 전압을 인가시 상기 도전성 기판 상에 형성된 기포의 크기를 감소시키는 기포감소부를 포함한다. The apparatus for manufacturing a porous nanostructure according to the present invention includes a deposition reaction tank in which an electrolyte is contained and in which a conductive substrate is immersed so as to be immersed in the electrolyte, a reference electrode and a counter electrode provided in the deposition reaction tank to be immersed in the electrolyte, A voltage applying member for forming a porous metal structure on the conductive substrate and applying a voltage to the conductive substrate and the reference electrode to perform an electrochemical deposition process on the conductive substrate to form a nanostructure on the porous metal structure, And a bubble reduction unit that reduces the size of bubbles formed on the conductive substrate when a voltage is applied to the conductive substrate.
상기 기포감소부는 상기 전해액에 침지된 상기 도전성 기판에 초음파를 인가한다. The bubble reducing unit applies ultrasonic waves to the conductive substrate immersed in the electrolytic solution.
상기 기포감소부는 내부에 침지수가 수용되고, 상기 침지수에 침지되도록 상기 증착 반응조가 설치되는 수조와, 상기 침지수에 침지되도록 상기 수조에 설치되어 초음파를 상기 증착 반응조로 발생시키는 초음파 발진기를 구비한다. The bubbling reducing portion includes a water tank in which immersion water is contained and immersed in the immersion index, and an ultrasonic oscillator installed in the water tank to generate ultrasonic waves in the deposition tank so as to be immersed in the immersion index .
상기 기포감소부는 상기 전해액에 침지된 상기 도전성 기판에 소정의 파장을 갖는 광을 조사할 수도 있다. The bubble reduction unit may irradiate the conductive substrate immersed in the electrolyte with light having a predetermined wavelength.
상기 전해액은 상기 금속구조체에 전기화학 증착 공정의 수행이 가능한 금속성 베이스 금속을 함유한다. The electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure.
상기 베이스 금속은 구리, 아연, 금, 백금 중 적어도 어느 하나 인 것이 바람직하다. The base metal is preferably at least one of copper, zinc, gold, and platinum.
본 발명은 전기화학 증착방법을 이용하여 3차원 나노표면을 갖는 나노구조체를 비교적 저렴한 비용으로 제작이 가능하다는 장점이 있다.The present invention is advantageous in that a nanostructure having a three-dimensional nanosurface can be manufactured at a relatively low cost by using an electrochemical deposition method.
본 발명은 다공성 금속구조체에 다중으로 나노구조체를 형성하여 표면적이 비교적 넓은 전극을 제조할 수 있어 고감도가 요구되는 센서와 같은 센싱수단에도 적극 활용할 수 있으며, 상기 나노구조체가 상기 다공성 금속구조체의 골격을 지지하여 시간이 경과하더라도 견고하게 다공성 구조를 유지하므로 성능 신뢰도가 높다는 장점이 있다. The present invention can produce an electrode having a relatively large surface area by forming multiple nanostructures in a porous metal structure, and can be utilized for a sensing means such as a sensor requiring high sensitivity, and the nanostructure can be used as a structure of the porous metal structure And maintains the porous structure firmly even after a lapse of time, so that there is an advantage that the performance reliability is high.
도 1은 본 발명에 따른 다공성 나노구조체의 제조방법에 사용되는 마이트로패턴층에 대한 도면이고, BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a patterned layer of an amorphous silicon layer used in a method for producing a porous nanostructure according to the present invention,
도 2는 본 발명에 따른 다공성 나노구조체 제조장치에 관한 것이고, 2 is a view showing an apparatus for manufacturing a porous nanostructure according to the present invention,
도 3은 실제 나노구조체 제조장치를 이용하여 본 발명에 따른 다공성 나노구조체의 제조방법에 따라 나노구조체를 제조하는 사진이고, FIG. 3 is a photograph showing the production of a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus. FIG.
도 4는 본 발명의 다공성 나노구조체 제조방법의 폼 형성단계만 수행하여 제작한 금속구조체와, 코팅단계까지 수행한 금속구조체의 제조 이후 시간 경과에 따른 거칠기 인자 변화에 대한 그래프이고, FIG. 4 is a graph showing changes in roughness factor with time after the metal structure manufactured by performing only the foam forming step of the porous nanostructure manufacturing method of the present invention and the metal structure performed up to the coating step,
도 5 내지 도 7은 본 발명의 다공성 나노구조체 제조방법의 폼 형성단계만 수행하여 제작한 금속구조체의 제작 직후, 제작 이후 24시간 후, 제작 이후 48시간 후 각각 촬영한 SEM 사진이고, 5 to 7 are SEM photographs taken immediately after the fabrication of the fabricated structure, 24 hours after the fabrication, and 48 hours after the fabrication, respectively, of the porous nanostructure fabricating method of the present invention,
도 8 내지 도 10은 본 발명의 다공성 나노구조체 제조방법으로 제조된 금속구조체의 제작 직후, 제작 이후 24시간 후, 제작 이후 48시간 후 각각 촬영한 SEM 사진이고, 8 to 10 are SEM photographs taken immediately after the fabrication, 24 hours after the fabrication, and 48 hours after the fabrication of the fabricated porous structure according to the present invention,
도 11은 발명의 다공성 나노구조체 제조방법의 폼 형성단계만 수행하여 제작한 금속구조체와, 코팅단계까지 수행한 금속구조체의 동일 배율에 대한 SEM 사진이고,  11 is a SEM photograph of the same magnification of the metal structure produced by performing only the foam forming step and the metal structure carried to the coating step of the porous nanostructure manufacturing method of the present invention,
도 12는 본 발명의 또 다른 실시 예에 따른 다공성 나노구조체 제조장치에 대한 단면도이고, 12 is a cross-sectional view of a porous nanostructure manufacturing apparatus according to another embodiment of the present invention,
도 13은 도 17의 나노구조체 제조장치를 이용하여 본 발명에 따른 다공성 나노구조체의 제조방법에 따라 나노구조체를 제조하는 사진이고, FIG. 13 is a photograph showing the production of a nanostructure according to the method of manufacturing a porous nanostructure according to the present invention using the apparatus for producing a nanostructure of FIG. 17,
도 14는 폼 형성단계만 수행하여 제작한 금속구조체(Nominal), 금속구조체 제조시 초음파를 인가하여 제작한 금속구조체(Sonication1,2) 및 초음파 인가하는 것 대신에 탈기공정을 수행하여 제작한 금속구조체(Degassing1,2)에 대한 SEM 사진이고, FIG. 14 is a cross-sectional view of a metal structure (Nominal) fabricated by performing only a foam forming step, a metallic structure (Sonication 1,2) fabricated by applying ultrasonic waves in the manufacture of a metal structure, (Degassing 1, 2)
도 15 및 도 16은 본 발명의 다공성 나노구조체의 제조방법의 코팅단계와 열처리 단계를 모두 수행한 금속구조체의 SEM 사진 및 FE-SEM 사진이고, 15 and 16 are SEM and FE-SEM photographs of the metal structure obtained by performing both the coating step and the heat treatment step of the porous nanostructure of the present invention,
도 17은 본 발명의 또 다른 실시 예에 따른 다공성 나노구조체 제조장치에 대한 단면도이다. 17 is a cross-sectional view of an apparatus for manufacturing a porous nanostructure according to another embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 다공성 나노구조체의 제조방법, 이에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극 및 센서, 다공성 나노구조체 제조장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a method for manufacturing a porous nanostructure according to an embodiment of the present invention, a three-dimensional electrode having the porous nanostructure, a sensor, and an apparatus for manufacturing a porous nanostructure will be described in detail with reference to the accompanying drawings. The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It is to be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but on the contrary, is intended to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing. In the accompanying drawings, the dimensions of the structures are enlarged to illustrate the present invention in order to clarify the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "comprises", "having", and the like are used to specify that a feature, a number, a step, an operation, an element, a part or a combination thereof is described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
본 발명에 따른 다공성 나노구조체의 제조방법은 준비단계, 패턴층 형성단계, 폼 형성단계, 코팅단계, 제거단계 및 추가증착단계를 구비한다. The method for producing a porous nanostructure according to the present invention comprises a preparation step, a pattern layer forming step, a foam forming step, a coating step, a removing step and an additional deposition step.
준비단계는 도전성 기판을 준비하는 단계이다. 이때, 상기 도전성 기판은 백금, 은, 구리, 금 타이타늄, 니켈, 루테늄 등을 사용할 수 있고, 그라파이트(graghite), 탄소나노튜브, 풀러린(fullerene) 등과 같은 탄소물질도 사용할 수 있다. The preparation step is a step of preparing a conductive substrate. At this time, the conductive substrate may be platinum, silver, copper, gold, titanium, nickel, ruthenium or the like, and carbon materials such as graghite, carbon nanotube and fullerene may be used.
패턴층 형성단계는 상기 도전성 기판 상에, 상기 도전성 기판의 일부영역이 노출되는 마이크로패턴층을 형성하는 단계이다. The pattern layer forming step is a step of forming, on the conductive substrate, a micropattern layer in which a part of the conductive substrate is exposed.
상기 마이크로패턴층은 도전성 기판 상에 형성된 것으로, 마이크로패턴층에 의해 마이크로패턴층의 패턴 사이로 도전성 기판의 일부영역이 일정간격 또는 일정한 모양으로 노출될 수 있다. 도 1에는 마이트로패턴층의 일실시예가 도시되어 있다. The micropattern layer is formed on a conductive substrate, and a part of the conductive substrate may be exposed at regular intervals or in a constant shape between patterns of the micropattern layer by the micropattern layer. 1 shows an embodiment of a patterned layer of an amide.
보다 상세하게, 패턴층 형성단계는 도전성 기판 상에 일정간격으로 패턴화된 포토레지스트를 증착시킬 수 있다. 패턴화된 포토레지스트(photoresist)를 형성하는 것은 도전성 기판 상에 포토레지스트를 도포하여 포토레지스트막을 형성하고, 일정간격 또는 일정한 모양의 패턴을 가진 마스크(mask)로 상기 포토레지스트 막을 가린 뒤 노광함으로써, 원하는 형태의 패턴을 가진 패턴화된 포토레지스트를 도전성 기판 상에 형성한다. More specifically, the pattern layer forming step may deposit photoresist patterned at regular intervals on a conductive substrate. The patterned photoresist is formed by applying a photoresist on a conductive substrate to form a photoresist film, covering the photoresist film with a mask having a pattern of a predetermined interval or a predetermined shape, A patterned photoresist having a desired pattern is formed on the conductive substrate.
한편, 패턴층 형성단계 이전에 도전성 기판 상에 금(Au) 씨드 층을 형성할 수도 있다. 상기 금(Au) 씨드층은 금 입자로만 이루어진 박막층일 수 있으며, 실시예에 따라 금 입자 이외의 전도성 금속입자가 더 포함된 합금으로 이루어진 박막층일 수 있다. 예를 들어, 상기 전도성 금속입자는 금(Au), 백금(Pt), 철(Fe), 코발트(Co), 티탄(Ti), 바나듐(V), 알루미늄(Al), 몰리브덴(Mo), 구리(Cu), 및 은(Ag) 중에서 선택되는 적어도 하나 이상의 금속입자일 수 있다. 상기 금속구조체 상에 상기 금(Au) 씨드층을 형성하는 것은 증발법(evaporation), 스퍼터링법(sputtering), 습식 코팅, 전해도금, 또는 무전해 도금 등의 방법을 이용하여 수행할 수 있으며, 바람직하게는, 스퍼터링법을 이용하여 형성할 수 있다.On the other hand, a gold (Au) seed layer may be formed on the conductive substrate before the pattern layer forming step. The gold (Au) seed layer may be a thin film layer made of only gold particles, and may be a thin film layer made of an alloy containing conductive metal particles other than gold particles according to an embodiment. For example, the conductive metal particles may be at least one selected from the group consisting of Au, Pt, Fe, Co, Ti, V, Al, Mo, (Cu), and silver (Ag). The gold (Au) seed layer may be formed on the metal structure by a method such as evaporation, sputtering, wet coating, electrolytic plating, or electroless plating. , It can be formed by a sputtering method.
폼 형성단계는 전해액이 공급되는 분위기에서 상기 도전성 기판에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판 상에, 상기 전기화학 증착 공정 중 발생된 기포에 의해 다수의 기공을 갖는 금속구조체를 형성하는 단계이다. 상기 폼 형성단계는 도 2에 도시된 다공성 나노구조체 제조장치(100)를 이용하는 것으로서, 반응조 준비단계, 제1침지단계 및 증착공정 수행단계를 포함한다. The foam forming step is a step of performing an electrochemical deposition process on the conductive substrate in an atmosphere where an electrolyte is supplied, and a metal structure having a plurality of pores is formed on the conductive substrate by bubbles generated during the electrochemical deposition process . The foam forming step uses the porous nanostructure manufacturing apparatus 100 shown in FIG. 2, and includes a reactor preparation step, a first immersion step, and a deposition step.
상기 다공성 나노구조체 제조장치(100)는 내부에 전해액이 수용되고, 상기 전해액에 침지되도록 도전성 기판(105)이 침지되는 증착 반응조(101)와, 상기 전해액에 침지되도록 상기 증착 반응조(101)에 설치되는 기준전극(102) 및 상대전극(103)과, 상기 도전성 기판(105)에 다공성 금속구조체를 형성하고, 상기 다공성 금속구조체에 나노구조체를 형성할 수 있도록 상기 도전성 기판(105)에 전기화학 증착 공정을 수행하기 위해 상기 도전성 기판(105) 및 기준전극(102)에 전압을 인가하는 전압인가부재(104)를 구비한다. The apparatus for manufacturing a porous nanostructure 100 includes a deposition reaction tank 101 in which an electrolyte is contained and in which a conductive substrate 105 is immersed so as to be immersed in the electrolyte solution and a deposition reaction tank 101 installed in the deposition reaction tank 101 to be immersed in the electrolyte solution. A reference electrode 102 and a counter electrode 103 formed on the conductive substrate 105 and a conductive metal layer 105 formed on the conductive substrate 105 to form a nanostructure on the porous metal structure, And a voltage applying member 104 for applying a voltage to the conductive substrate 105 and the reference electrode 102 in order to perform the process.
이때, 상기 전해액은 기 금속구조체에 전기화학 증착 공정의 수행이 가능한 금속성 베이스 금속을 함유하는 것으로서, 상기 금속성 베이스 금속은 구리, 아연, 금, 백금 중 적어도 어느 하나이다. 더욱 바람직하게는, 상기 전해액은 염화금(Ⅲ)수화물(Gold(Ⅲ)chloride hydrate; AuCl3·H2O), 염화금산(Hydrogen Tetrachloroaurate(Ⅲ); HAuCl4·H2O), 염화금산칼륨(Potassium tetrachloroaurate(Ⅱ); KAuCl4), 염화금산나트륨이수화물(Sodium tetrachloroaurate(Ⅲ) dihydrate; NaAuCl4·H2O), 브롬화금(Ⅲ)수화물(Gold(Ⅲ)bromide hydrate; AuBr3·H2O), 및 염화금(Ⅲ)(Gold(Ⅲ) chloride; AuCl3)중에서 선택되는 적어도 어느 하나를 사용한다. At this time, the electrolyte solution contains a metallic base metal capable of performing an electrochemical deposition process on the base metal structure, and the metallic base metal is at least one of copper, zinc, gold, and platinum. More preferably, the electrolyte is yeomhwageum (Ⅲ) hydrate (Gold (Ⅲ) chloride hydrate; AuCl 3 · H 2 O), chloroauric acid (Hydrogen Tetrachloroaurate (Ⅲ); HAuCl 4 · H 2 O), chloroauric acid, potassium ( KAuCl 4 ), sodium tetrachloroaurate (Ⅲ) dihydrate, NaAuCl 4 · H 2 O, gold (III) bromide hydrate, AuBr 3 · H 2 O), and gold (III) chloride (AuCl 3 ).
상기 전해액의 농도는 0.1M 내지 0.5M 일 수 있다. 상기 전해액의 농도가 0.1M 미만일 경우, 도전성 기판(105) 상에 전해액의 베이스 금속 입자가 충분히 증착되기 어려우며, 상기 전해액의 농도가 1M을 초과하는 경우, 증착되는 베이스 금속 입자로 인해 형성되는 나노구조체의 두께가 두꺼워지거나 원하는 형태의 나노구조체로 형성되지 않을 수 있다. The concentration of the electrolytic solution may be 0.1M to 0.5M. When the concentration of the electrolytic solution is less than 0.1M, the base metal particles of the electrolytic solution are difficult to deposit sufficiently on the conductive substrate 105. When the concentration of the electrolytic solution exceeds 1M, Or may not be formed into a nanostructure of a desired shape.
상기 기준전극(102)은 은-염화은(Ag/AgCl)이고, 상기 상대전극(103)은 백금(Pt)이 사용된다. 또한, 전압인가부재(104)는 종래에 전기화학 증착 공정에 사용되는 전극들에 전압을 인가하는 전압공급수단이므로 상세한 설명은 생략한다. The reference electrode 102 is silver-silver chloride (Ag / AgCl), and the counter electrode 103 is made of platinum (Pt). Further, the voltage applying member 104 is a voltage supplying means for applying a voltage to the electrodes conventionally used in the electrochemical vapor deposition process, and a detailed description thereof will be omitted.
반응조 준비단계는 내부에 전해액이 수용된 증착 반응조(101)를 준비하는 단계이다. 이때, 증착 반응조(101)는 외부에서 내부 상태를 용이하게 파악할 수 있도록 투명한 소재로 형성되는 것이 바람직하다. The reactor preparation step is a step of preparing a deposition reaction vessel 101 containing an electrolyte therein. At this time, it is preferable that the deposition reaction tank 101 is formed of a transparent material so as to easily grasp the internal state from the outside.
제1침지단계는 기준전극(102), 상대전극(103) 및 상기 도전성 기판(105)이 상기 전해액에 침지되도록 상기 증착 반응조(101)에 설치하는 단계이다. 이때, 전압인가부재(104)의 음극에는 도전성 기판(105)을 연결하고, 양극에는 상대전극(103)을 연결한다. 이때, 도전성 기판(105)이 전기화학 증착 공정 중에 작업 전극(working eletrode)이 된다. In the first immersion step, the reference electrode 102, the counter electrode 103, and the conductive substrate 105 are installed in the deposition reaction tank 101 so as to be immersed in the electrolyte solution. At this time, the conductive substrate 105 is connected to the cathode of the voltage applying member 104, and the counter electrode 103 is connected to the anode. At this time, the conductive substrate 105 becomes a working electrode during the electrochemical deposition process.
증착공정 수행단계는 상기 도전성 기판(105)에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판(105) 상에 기포가 발생할 수 있도록 상기 전해액에 침지된 상기 도전성 기판(105)과 기준전극(102)에 소정의 전압을 인가하는 단계이다. The step of performing the deposition process may be performed by performing an electrochemical deposition process on the conductive substrate 105. The conductive substrate 105 and the reference electrode 102, which are immersed in the electrolyte solution, To a predetermined voltage.
이때, 도전성 기판(105)에 인가되는 전원의 전압은 -2.7V 내지 -3.3V이 바람직하다. -3.0V 미만으로 도전성 기판(105)에 전압이 인가되면, 도전성 기판(105)에 도금 자체가 이루어지지 않고, 인가 전압이 -4.0V를 초과하는 경우에는 석출되는 다공성 금속구조체에 크랙(crack)이 발생될 수 있다. At this time, the voltage of the power source applied to the conductive substrate 105 is preferably -2.7 V to -3.3 V. When the voltage is applied to the conductive substrate 105 at less than -3.0 V, plating is not performed on the conductive substrate 105, and when the applied voltage exceeds -4.0 V, cracks are generated in the deposited porous metal structure. May occur.
전술된 바와 같이 도전성 기판(105) 상에 석출된 금속입자는 전기화학 증착 공정 시에 발생되는 수소로 인해 금속 입자 내부 또는 표면에 다수의 기공이 형성된 다공성 금속구조체를 얻을 수 있다. 상기 수소 기포는 도전성 기판(105) 상에서의 음극 반응으로부터 발생되고, 전기화학 증착공정이 진행되는 동안 지속적으로 발생된다. 이때, 수소 기포가 존재하는 부분은 금속이온이 존재하기 어렵기 때문에 그 부분은 금속 구조체가 형성되지 않으므로 수소 기포 사이의 도전성 금속 기질 상에 금속구조체가 형성된다. 이때, 도전성 기판(105) 상에는 마이크로패턴층이 형성되어 있으므로 마이크로패턴층에 의해 노출된 도전성 기판(105)의 일부영역에 다공성 금속구조체가 형성된다. As described above, the metal particles precipitated on the conductive substrate 105 can obtain a porous metal structure having many pores inside or on the surface of the metal particles due to hydrogen generated during the electrochemical deposition process. The hydrogen bubbles are generated from the negative electrode reaction on the conductive substrate 105, and are continuously generated during the electrochemical deposition process. At this time, the metal structure is formed on the conductive metal substrate between the hydrogen bubbles because the metal structure is not formed at the portion where the hydrogen bubble is present because the metal ion is hardly present. At this time, since the micropattern layer is formed on the conductive substrate 105, the porous metal structure is formed in a part of the conductive substrate 105 exposed by the micropattern layer.
상기 수소에 의해 발생된 기공은 전해액에 함유된 금속물질, 금속물질의 농도 등에 따라 다양하게 형성시킬 수 있는데, 상기 기공의 크기는 수십 나노에서 수십 마이크로 크기까지 형성시킬 수 있다. 이때, 금속구조체에 형성된 기공은 10마이크로미터 내지 20마인크로미터인 것이 바람직하다. The pores generated by the hydrogen may be variously formed depending on the metal material contained in the electrolyte, the concentration of the metal material, and the pore size may be from several tens nanometers to several tens of microseconds. At this time, the pores formed in the metal structure are preferably 10 micrometers to 20 m chrome.
코팅단계는 상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 금속구조체 상에 제1나노구조체를 형성하는 단계이다. 상기 코팅단계는 상기 나노구조체가 상기 금속구조체 상에 형성될 수 있도록 상기 증착 반응조(101)에 설치된 상기 도전성 기판(105)과 기준전극(102)에 소정의 전압을 인가하는 것으로서, 상기 도전성 기판(105)에 상기 증착공정 수행단계에서 인가된 전압과 상이한 전압을 인가한다. In the coating step, an electrochemical deposition process is performed in an atmosphere in which the electrolyte solution is supplied to the metal structure to form a first nanostructure on the metal structure. The coating step is a step of applying a predetermined voltage to the conductive substrate 105 and the reference electrode 102 provided in the deposition reaction tank 101 so that the nanostructure can be formed on the metal structure, 105 in the deposition process step.
이때, 제1나노구조체는 상기 마이크로패턴층에 의해 노츨된 상기 금속구조체 상에 상기 전해액의 베이스 금속 입자들이 증착되어 형성된다. 이때, 도전성 기판(105)에 인가되는 전원의 전압을 -0.005V 내지 -0.015V로 변경하는 것이 바람직하다. -0.005V 미만으로 도전성 기판(105)에 전압이 인가되면, 전기화학 증착 공정 자체가 이루어지지 않고, 인가 전압이 -0.015V를 초과하는 경우에는 석출되는 나노구조체에 크랙(crack)이 발생될 수 있다. At this time, the first nanostructure is formed by depositing base metal particles of the electrolyte on the metal structure exposed by the micropattern layer. At this time, it is preferable to change the voltage of the power source applied to the conductive substrate 105 from -0.005V to -0.015V. When a voltage is applied to the conductive substrate 105 at less than -0.005 V, the electrochemical deposition process itself is not performed. If the applied voltage exceeds -0.015 V, cracks may be generated in the deposited nanostructure have.
상기 코팅단계를 통해 다공성 금속구조체 상에 증착된 상기 제1나노구조체는, 상기 마이크로패턴층에 의해 노출된 다공성 금속구조체 상에 증착되어 상기 마이크로패턴층의 패턴 사이에 형성되는 것이므로, 상기 제1나노구조체의 측면영역은 상기 마이크로패턴층의 패턴에 의해 제한적으로 증착될 수 있다. 이에, 상기 제1나노구조체는 상기 마이크로패턴층의 패턴이 형성되지 않은, 상기 금속구조체의 상부영역으로 입자가 집중적으로 증착되면서 나노구조의 결정체로 형성되는 것일 수 있다.Since the first nanostructures deposited on the porous metal structure through the coating step are formed on the porous metal structure exposed by the micropattern layer and formed between the patterns of the micropattern layer, The side regions of the structure may be deposited in a limited manner by the pattern of the micropattern layer. The first nanostructure may be formed of a nanostructured crystal while particles are intensively deposited in an upper region of the metal structure where no pattern of the micropattern layer is formed.
한편, 본 발명에 따른 다공성 나노구조체의 제조방법은 증착공정 수행단계, 코팅단계를 다수회 반복할 수도 있다. 즉, 코팅단계가 완료되면, 상기 금속나노체를 갖는 상기 도전성 기판(105)이 상기 전해액에 상기 기준전극(102) 및 상대전극(103)과 함께 침지된 상태에서 상기 도전성 기판(105) 및 기준전극(102)에 전압을 인가하되, 상기 도전성 기판(105)에 -2.7V 내지 -3.3V의 전압을 소정 시간 인가한 다음, 다시 도전성 기판(105)에 -0.005V 내지 -0.015V의 전압을 인가하는 과정을 반복한다. Meanwhile, the method of manufacturing a porous nanostructure according to the present invention may be repeated several times in the deposition step and coating step. That is, when the coating step is completed, the conductive substrate 105 having the metal nano body is immersed in the electrolyte together with the reference electrode 102 and the counter electrode 103, A voltage of -2.7 V to -3.3 V is applied to the conductive substrate 105 for a predetermined time and then a voltage of -0.005 V to -0.015 V is applied to the conductive substrate 105 Repeat the process.
제거단계는 상기 코팅단계가 완료된 다음, 상기 마이크로패턴층을 선택적으로 제거하는 단계이다. 제1나노구조체가 형성된 금속구조체에 식각공정을 수행하여 상기 마이크로패턴층을 선택적으로 제거할 수 있다. 코팅단계가 완료된 다음, 도전성 기판(105)을 증착 반응조(101)로부터 꺼내어 식각용액에 침지시킨다. 이때, 상기 식각용액은 (CH3)2CHOH(아세톤), HF(불산), BHF(버퍼드 불산), H2SO4(황산), H2O2(과산화수소), IPA(이소프로필 알코올), NH4OH(암모니아), HCL(염산), H3PO4(인산), 및 박리액(stripper) 중에서 선택되는 어느 하나일 수 있으나, 이에 한정되지는 않는다.The removing step is a step of selectively removing the micropattern layer after the coating step is completed. The micropattern layer may be selectively removed by performing an etching process on the metal structure having the first nanostructure formed thereon. After the coating step is completed, the conductive substrate 105 is taken out of the deposition reaction tank 101 and immersed in the etching solution. At this time, the etching solution is a solution of (CH 3) 2 CHOH (acetone), HF (hydrofluoric acid), BHF (buffered hydrofluoric acid), H 2 SO 4 (sulfuric acid), H 2 O 2 (hydrogen peroxide) But is not limited to, any one selected from NH 4 OH (ammonia), HCl (hydrochloric acid), H 3 PO 4 (phosphoric acid), and stripper.
추가증착단계는 상기 마이크로패턴층이 제거된 상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 제1나노구조체에 상기 전해액의 베이스 금속 입자들이 증착된 제2나노구조체를 형성하는 단계이다. 상기 금속구조체를 갖는 도전성 기판(105)을 전압인가부재(104)의 음극에 연결한 다음, 전해액에 침지되도록 증착 반응조(101)에 설치하고, 전압인가부재(104)를 통해 소정의 전압을 갖는 전원을 증착 반응조(101)에 인가하여 전기화학 증착 공정을 수행한다. In the additional deposition step, an electrochemical deposition process is performed in an atmosphere in which the electrolyte is supplied to the metal structure from which the micropattern layer is removed, thereby forming a second nanostructure on which the base metal particles of the electrolyte are deposited on the first nanostructure . The conductive substrate 105 having the metal structure is connected to the negative electrode of the voltage applying member 104 and then installed in the deposition reaction tank 101 so as to be immersed in the electrolytic solution, A power source is applied to the deposition reaction tank 101 to perform an electrochemical deposition process.
이때, 도전성 기판(105)에 인가되는 전원의 전압은 -0.005V 내지 -0.015V가 바람직하다. -0.005V 미만으로 도전성 기판(105)에 전압이 인가되면, 전기화학 증착 공정 자체가 이루어지지 않고, 인가 전압이 -0.015V를 초과하는 경우에는 석출되는 나노구조체에 크랙(crack)이 발생될 수 있다. At this time, the voltage of the power source applied to the conductive substrate 105 is preferably -0.005 V to -0.015 V. When a voltage is applied to the conductive substrate 105 at less than -0.005 V, the electrochemical deposition process itself is not performed. If the applied voltage exceeds -0.015 V, cracks may be generated in the deposited nanostructure have.
상기 추가증착단계는 앞서 상술한 바와 같이, 상기 제1나노구조체가 형성된 도전성 기판(105)을 작업 전극으로 하는 것으로, 상기 전해액의 베이스 금속 입자들이 환원되어 제1나노구조체에 추가적으로 증착되어 제2나노구조체를 형성한다. In the additional deposition step, as described above, the conductive substrate 105 on which the first nanostructure is formed is used as a working electrode, and the base metal particles of the electrolyte are reduced and further deposited on the first nanostructure, To form a structure.
이때, 제2나노구조체는 꽃 형상의(flower-like) 3차원 나노표면 구조를 갖는데, 이는 상기 제2나노구조체가 상기 제1나노구조체와 달리, 상기 제거단계에 의해 상기 마이크로패턴층이 제거됨에 따라 추가증착단계 수행으로 증착되는 입자들이 상기 제1나노구조체의 측면영역에도 증착되어 다공성 금속구조체 상에 전방향(all direction)으로 상기 금 입자들이 증착성장되고, 이에 꽃 형상으로 3차원 나노표면 구조를 가진 마이크로 스케일(scale)의 제2나노구조체가 형성된다. 보다 구체적으로, 상기 꽃 형상의 나노구조체는, 미세한 나노로드(nano-rod), 또는 나노니들(nano-needle) 형태의 결정립들이 가지처럼 연결되어, 마치 소나무 등의 침엽수의 잎사귀 같이, 사방으로 결정립이 연결되어 형성된 형상을 의미하는 것일 수 있다. 이에, 나노표면을 가진 미세한 결정립들이 3차원적으로 연결된 구조가 형성될 수 있고, 이러한 꽃 형상의 3차원 나노표면 구조를 가진 각각의 제2나노구조체들은 마이크로 스케일 크기를 가진다. 상기 추가증착단계에 의해 증착되는 상기 입자들은 상기 제1나노구조체 뿐만 아니라, 다공성 금속구조체 표면 상에도 상기 금 입자들이 환원되어 증착될 수 있다. 또한, 상기 추가증착단계 시 인가되는 전압의 크기 및 공정수행시간에 따라 상기 제2나노구조체가 서로 연결되는 형태를 가질 수도 있다.At this time, the second nanostructure has a flower-like three-dimensional nanosurface structure, which is different from the first nanostructure in that the micro-pattern layer is removed by the removing step Accordingly, the particles deposited by performing the additional deposition step are also deposited on the lateral region of the first nanostructure, so that the gold particles are deposited and grown on the porous metal structure in all directions, and the three- A second nanostructure on a microscale scale is formed. More specifically, the flower-like nanostructure is formed by connecting fine grains in the form of nano-rod or nano-needle like branches and forming a crystal grains such as a leaf of a coniferous tree, And the like. Accordingly, a structure in which fine grains having nanosurfaces are three-dimensionally connected can be formed, and each of the second nanostructures having such a flower-shaped three-dimensional nanosurface structure has a microscale size. The particles deposited by the additional deposition step may be deposited on the surface of the first nanostructure as well as on the surface of the porous metal structure by reducing the gold particles. In addition, the second nanostructures may be connected to each other according to the magnitude of the voltage applied during the additional deposition step and the process execution time.
또한, 본 발명에 따른 다공성 나노구조체의 제조방법은 상기 코팅단계가 완료된 다음, 상기 나노구조체가 형성된 상기 금속구조체에 열을 인가하여 열처리 공정을 수행하는 열처리단계를 더 포함할 수 있다. 상기 열처리 단계에서, 코팅단계가 완료된 도전성 기판(105)을 전해액으로부터 꺼내서 180 내지 450℃의 열을 공급하여 열처리한다. 이때, 열처리단계는 코팅단계와 제거단계 사이에 수행하거나 추가증착단계 이후에 수행할 수 있다. The porous nanostructure according to the present invention may further include a heat treatment step of performing heat treatment by applying heat to the metal structure having the nanostructure formed after the coating step is completed. In the heat treatment step, the conductive substrate 105 on which the coating step has been completed is taken out of the electrolytic solution, and heat of 180 to 450 ° C is supplied to heat treatment. At this time, the heat treatment step may be performed between the coating step and the removing step, or may be performed after the additional deposition step.
또한, 본 발명에 따른 다공성 나노구조체의 제조방법은 나노구조체를 사용하는 센서 및 전극의 종류에 따라 제거단계 및 추가증착단계를 생략할 수도 있다. In addition, the method of manufacturing a porous nanostructure according to the present invention may omit the removing step and the additional deposition step depending on the type of the sensor and the electrode using the nanostructure.
한편, 실제로 본 발명에 따른 다공성 나노구조체의 제조방법을 통해 실시한 실험을 상세히 설명하면 다음과 같다. 도 3에는 실제 나노구조체 제조장치를 이용하여 본 발명에 따른 다공성 나노구조체의 제조방법에 따라 나노구조체를 제조하는 사진이 도시되어 있다. Experiments conducted through the method for producing porous nanostructures according to the present invention will be described in detail as follows. FIG. 3 is a photograph illustrating a method of fabricating a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus.
이때, 0.1M 염화금산(HAucl4)에 2M의 염화암모늄(NH4Cl)이 각각 혼합된 전해액들을 사용하였으며, 기준전극(102)은 Ag/AgCl, 상대전극(103)은 Pt mesh, 도전성 기질은 Pt/Ti/Glass electrode이고, 전압인가시간은 20초이다. 또한, 도전성 기판에 인가하는 전압을 -3V로 상기 폼 형성단계를 수행하였고, 코팅단계에서는 -0.01V의 전압을 인가하여 전기화학 증착공정을 수행한다. At this time, in the 2M ammonium chloride in 0.1M chloroauric acid (HAucl 4) (NH 4 Cl) was used as the respective mixed electrolyte, the reference electrode 102 Ag / AgCl, the counter electrode 103 is Pt mesh, a conductive substrate Is a Pt / Ti / Glass electrode, and the voltage application time is 20 seconds. Further, the foam forming step is performed at a voltage of -3 V applied to the conductive substrate, and a voltage of -0.01 V is applied in the coating step to perform an electrochemical deposition process.
도 4에는 폼 형성단계만 수행하여 제작한 금속구조체와, 코팅단계까지 수행한 금속구조체의 제조 이후 시간 경과에 따른 거칠기 인자 변화에 대한 그래프가 도시되어 있다. 이때, Nominal이 폼 형성단계만 수행하여 제작한 금속구조체이고, Gold coating은 코팅단계까지 수행한 금속구조체이고, Rf는 거칠기 인자(Roughness factor) 값이다. 이때, 상기 거칠기 인자는 Electrochemical area / geometrical area 이다. 상기 거칠기 인자가 높을 수록 이후, 외부에 노출되는 표면적이 증가하여 센서에 적용시 센싱 민감도가 향상될 수 있다.FIG. 4 is a graph showing changes in roughness factor with time after the metal structure manufactured by performing only the foam forming step and the metal structure performed up to the coating step. In this case, Nominal is a metal structure manufactured by performing only the foam forming step, Gold coating is a metal structure carried to the coating step, and Rf is a roughness factor. Here, the roughness factor is an electrochemical area / geometrical area. The higher the roughness factor, the more the surface area exposed to the outside increases, so that the sensitivity of the sensor can be improved when applied to the sensor.
도면을 참조하면, 금속구조체의 제작 직후, Nominal과 Gold coating의 거칠기 인자는 거의 유사하다 그러나 제조 후 12시간이 경과한 다음, Nominal의 경우, 거칠기 인자가 지속적으로 감소하나, Gold coating의 경우, 거칠기 인자가 일정 값으로 유지되고, Nominal보다 더 큰 값을 갖는다. Referring to the drawing, roughness factors of Nominal and Gold coating are almost similar immediately after the fabrication of the metal structure. However, after 12 hours of manufacture, the roughness factor is steadily decreased in case of Nominal, The factor remains constant and has a value greater than Nominal.
도 5 내지 도 7에는 상기 Nominal 조건의 금속구조체의 제작 직후, 제작 이후 24시간 후, 제작 이후 48시간 후 촬영한 SEM 사진이 도시되어 있고, 도 8 내지 도 10에는 Gold coating 조건의 금속구조체의 제작 직후, 제작 이후 24시간 후, 제작 이후 48시간 후 촬영한 SEM 사진이 도시되어 있다. 그리고, 도 11에는 Nominal 조건의 금속구조체와 Gold coating 조건의 금속구조체의 동일 배율에 대한 SEM 사진이 개시되어 있다. 상기 사진들을 비교하면, Nominal 조건의 금속구조체와 Gold coating 조건의 금속구조체 모두 시간이 경과하면서 전극의 표면적이 어느 정도 감소함을 알 수 있다. 그러나, Gold coating 조건의 금속구조체는 Nominal 조건의 금속구조체에 비해 다공성 구조를 유지하고 있는 뼈대에 gold 이온이 환원되어 더 거칠은 구조를 이루고 있다. 즉, 코팅 단계를 통해 형성된 나노구조체에 의해 다공성 구조를 이루는 뼈대가 두꺼워지면서 금속구조체의 다공성 구조가 더욱 안정적으로 유지됨을 알 수 있다. FIGS. 5 to 7 show SEM photographs taken immediately after the fabrication of the metal structure having the nominal conditions, 24 hours after the fabrication, 48 hours after the fabrication, and FIGS. 8 to 10 show the fabrication SEM photographs taken immediately after, 24 hours after, and 48 hours after production are shown. 11, there is shown an SEM photograph of the same magnification of a metal structure having a nominal condition and a metal structure having a gold coating condition. Comparing the photographs, it can be seen that the surface area of the electrode is reduced to some extent over time in both the metal structure having the nominal condition and the metal structure having the gold coating condition. However, the metal structure with gold coating condition has a coarser structure due to the reduction of gold ion in the skeleton which maintains the porous structure compared to the metal structure with nominal condition. That is, it can be seen that the porous structure of the metal structure is more stably maintained as the skeleton forming the porous structure is thickened by the nanostructure formed through the coating step.
한편, 본 발명의 또 다른 실시 예에 따른 폼 형성단계를 보다 상세히 설명하면 다음과 같다. 상기 폼 형성단계는 속성 기질에 금속구조체를 형성하는 단계로서, 반응조 준비단계, 제1침지단계, 기포 축소단계 및 증착공정 수행단계를 포함한다. 이때, 반응조 준비단계, 제1침지단계 및 증착공정 수행단계는 앞서 언급된 실시 예의 폼 형성단계와 동일한 방법으로 수행되므로 상세한 설명은 생략한다. The foam forming process according to another embodiment of the present invention will be described in more detail as follows. The foam forming step includes forming a metal structure on the substrate, and includes a reactor preparation step, a first immersion step, a bubble reduction step, and a deposition step. At this time, the steps of preparing the reaction tank, performing the first immersion step, and performing the deposition step are performed in the same manner as the foam formation step of the above-mentioned embodiment, and thus detailed description thereof will be omitted.
기포 축소단계는 수조 준비단계, 제2침지단계, 초음파 인가단계를 포함한다. The bubble reduction step includes a water tank preparation step, a second immersion step, and an ultrasonic application step.
이때, 이때, 폼 형성단계는 도 12에 도시된 본 발명의 또 다른 실시 예에 따른 나노 구조체 제조장치를 이용한다. 앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조부호로 표기한다.At this time, the foam forming step uses a nanostructure manufacturing apparatus according to another embodiment of the present invention shown in FIG. Elements having the same functions as those in the previous drawings are denoted by the same reference numerals.
도면을 참조하면, 나노 구조체 제조장치는 상기 도전성 기판(105)에 전압을 인가시 상기 도전성 기판(105) 상에 형성된 기포의 크기를 감소시키는 기포감소부(110)를 더 포함한다. Referring to FIG. 1, the apparatus for fabricating a nanostructure further includes a bubble reducing unit 110 for reducing the size of bubbles formed on the conductive substrate 105 when a voltage is applied to the conductive substrate 105.
상기 기포감소부(110)는 상기 전해액에 침지된 상기 도전성 기판(105)에 초음파를 인가하는 것으로서, 내부에 침지수가 수용되고, 상기 침지수에 침지되도록 상기 증착 반응조(101)가 설치되는 수조(111)와, 상기 침지수에 침지되도록 상기 수조(111)에 설치되어 초음파를 상기 증착 반응조(101)로 발생시키는 초음파 발진기(112)를 구비한다. 상기 기포감소부(110)는 초음파 발진기(112)로 발생된 초음파를 침지수를 통해 간접적으로 도전성 기판(105)에 전달한다. 한편, 기포감소부(110)는 초음파 발진기(112) 대신에 수조(111)에 설치되어 진동을 발생시키는 바이브레이터를 구비할 수도 있다. The bubble reduction unit 110 applies ultrasonic waves to the conductive substrate 105 immersed in the electrolyte solution and is configured to receive immersion water therein and to be immersed in the immersion index, And an ultrasonic oscillator 112 installed in the water tank 111 to generate ultrasonic waves in the deposition reaction tank 101 to be immersed in the immersion index. The bubble reduction unit 110 indirectly transfers the ultrasonic waves generated by the ultrasonic oscillator 112 to the conductive substrate 105 through a needle index. The bubble reduction unit 110 may include a vibrator installed in the water tub 111 to generate vibration, instead of the ultrasonic oscillator 112.
수조 준비단계는 내부에 침지수가 수용된 수조(111)를 준비하는 단계이다. The water tank preparing step is a step of preparing a water tank 111 containing immersion water therein.
제2침지단계는 상기 수조(111)에 수용된 침지수에 상기 증착 반응조(101)를 침지시키는 단계이다. 이때, 증착 반응조(101)의 하부가 충분히 침지수에 잠기도록 증착 반응조(101)를 수조(111)에 설치한다. 작업자는 증착 공정수행단계 이전에 상기 수조(111)에 상기 증착 반응조(101)를 설치하는 것이 바람직하다. The second immersion step is a step of immersing the deposition reaction tank 101 in the immersion indices contained in the water tank 111. At this time, the deposition reaction tank 101 is installed in the water tank 111 so that the lower part of the deposition reaction tank 101 is sufficiently immersed in the immersion index. It is preferable that the operator installs the deposition reaction tank 101 in the water tank 111 prior to the deposition process.
초음파 인가단계는 상기 증착 반응조(101)가 침지된 상기 침지수에 초음파 발진기(112)를 침지시키고, 상기 초음파 발진기(112)를 작동시켜 상기 증착 반응조(101)로 초음파를 발생시킨다. 이때, 초음파 발진기(112)를 통해 40kHz의 초음파를 발생시킨다. 작업자는 증착 공정수행단계가 완료된 다음에 상기 초음파 발진기(112)를 정지시키는 것이 바람직하다. 또한, 초음파 발진기(112) 대신에 수조(111)에 설치된 바이브레이터(미도시)를 작동시켜 진동을 도전성 기판에 인가할 수도 있다. In the ultrasonic wave application step, the ultrasonic oscillator 112 is immersed in the immersion index of the deposition reaction tank 101, and the ultrasonic oscillator 112 is operated to generate ultrasonic waves in the deposition reaction tank 101. At this time, an ultrasonic wave of 40 kHz is generated through the ultrasonic oscillator 112. The operator preferably stops the ultrasonic oscillator 112 after the deposition process step is completed. In place of the ultrasonic oscillator 112, a vibrator (not shown) provided in the water tank 111 may be operated to apply vibration to the conductive substrate.
한편, 본 발명에 따른 폼 형성단계는 기포 축소단계 대신에 증착공정 수행단계에서, 탈기공정을 포함할 수도 있다. 상기 증착공정 수행단계는 전기화학 증착 공정 중 발생하는 가스를 증착 반응조 외부로 강제 배출시킨다. Meanwhile, the foam forming step according to the present invention may include a degassing step in the deposition step instead of the bubble reducing step. In the deposition step, the gas generated during the electrochemical deposition process is forcibly discharged to the outside of the deposition reaction tank.
한편, 실제로 본 발명에 따른 다공성 나노구조체의 제조방법을 통해 실시한 실험을 상세히 설명하면 다음과 같다. 도 13에는 실제 나노구조체 제조장치를 이용하여 본 발명에 따른 다공성 나노구조체의 제조방법에 따라 나노구조체를 제조하는 사진이 도시되어 있다. Experiments conducted through the method for producing porous nanostructures according to the present invention will be described in detail as follows. 13 is a photograph showing a method of fabricating a nanostructure according to a method of manufacturing a porous nanostructure according to the present invention using an actual nanostructure manufacturing apparatus.
이때, 0.1M 염화금산(HAucl4)에 2M의 염화암모늄(NH4Cl)이 각각 혼합된 전해액들을 사용하였으며, 기준전극(102)은 Ag/AgCl, 상대전극(103)은 Pt mesh, 도전성 기질은 Pt/Ti/Glass electrode이고, 전압인가시간은 20초이다. 또한, 도전성 기판에 인가하는 전압을 -3V로 설정하였다. At this time, in the 2M ammonium chloride in 0.1M chloroauric acid (HAucl 4) (NH 4 Cl) was used as the respective mixed electrolyte, the reference electrode 102 Ag / AgCl, the counter electrode 103 is Pt mesh, a conductive substrate Is a Pt / Ti / Glass electrode, and the voltage application time is 20 seconds. Further, the voltage to be applied to the conductive substrate was set to -3V.
도 14에서는 폼 형성단계만 수행하여 제작한 금속구조체(Nominal), 금속구조체 제조시 초음파를 인가하여 제작한 금속구조체(Sonication1,2) 및 초음파 인가하는 것 대신에 탈기공정을 수행하여 제작한 금속구조체(Degassing1,2)에 대한 SEM 사진이 개시되어 있다. 상기 SEM 사진을 보면, Nominal 및 Degassing 조건보다 Sonication 조건에서 제작된 금속구조체가 보다 미세하고, 보다 많은 수의 기공이 형성되어 있음을 알 수 있다. FIG. 14 shows a case where a metal structure (Nominal) manufactured by performing only a foam forming step, a metallic structure (Sonication 1, 2) fabricated by applying ultrasonic waves in the manufacture of a metal structure, and a metal structure (Degassing 1, 2). The SEM photograph shows that the metal structure manufactured under the sonication condition is finer and has a larger number of pores than the nominal and degassing conditions.
도 15 및 도 16에는 상기 코팅단계와 열처리 단계를 모두 수행한 금속구조체의 SEM 사진 및 FE-SEM 사진이 개시되어 있다. 이때, 상기 금속구조체는 증착공정 수행단계에서 5초 동안 도전성 기판(105)에 전압을 인가하고 코팅단계에서 20초 동안 도전성 기판(105)에 전압을 인가한 과정을 4회 반복한 다음, 450℃로 열처리하여 제작하였다. 또한, 상기 금속구조체는 폼 형성단계에서 기포 축소단계를 포함하여 제작하였다. 상기 SEM 사진 및 FE-SEM 사진을 참조하면, 상기 코팅단계와 열처리 단계를 모두 수행한 금속구조체의 입자가 비교적 작고, 표면도 거칠은 상태임을 알 수 있다. 15 and 16 show an SEM photograph and an FE-SEM photograph of the metal structure obtained by performing both the coating step and the heat treatment step. At this time, in the metal structure, a voltage is applied to the conductive substrate 105 for 5 seconds during the deposition process, and a voltage is applied to the conductive substrate 105 for 20 seconds in the coating process. . In addition, the metal structure was manufactured by including a bubble reduction step in the foam forming step. Referring to the SEM photographs and the FE-SEM photographs, it can be seen that the particles of the metal structure subjected to both the coating step and the heat treatment step are relatively small and the surface is rough.
따라서, 가장 안정적이고, 우수한 금속구조체를 제조하기 위해서는 증착공정 수행단계에서 5초 동안 도전성 기판(105)에 전압을 인가하고 코팅단계에서 20초 동안 도전성 기판(105)에 전압을 인가한 과정을 4회 반복한 다음, 450℃로 열처리하여 제작하는 것이 바람직하다. Accordingly, in order to manufacture the most stable and excellent metal structure, a process of applying a voltage to the conductive substrate 105 for 5 seconds in the deposition process step and applying a voltage to the conductive substrate 105 in the coating step for 20 seconds is referred to as 4 And then heat-treated at 450 캜.
한편, 본 발명의 또 다른 실시 예에 따른 기포 축소단계를 보다 상세히 설명하면 다음과 같다. 상기 기포 축소단계는 상기 전해액에 침지된 상기 도전성 기판(105)에 소정의 파장을 갖는 광을 조사하는 단계이다. 이때, 도 17에 도시된 다공성 나노구조체 제조장치를 이용한다. 상기 다공성 나노구조체 제조장치는 또 다른 실시 예에 따른 기포감소부(120)를 구비하는데, 상기 기포감소부(120)는 상기 증착 반응조(101)에 대향되는 위치에 설치되어 상기 증착 반응조(101)에 소정의 파장을 갖는 광을 조사하는 광조사부재(121)를 구비한다. 작업자는 도전성 기판(105)에 전기화학 증착 공정을 수행시 광조사부재(121)를 작동시켜 도전성 기판(105)에 광을 조사한다. 상기 광에 의해 도전성 기판(105) 상의 수소 기포는 분쇄되어 크기가 미세한 다수의 기포로 형성되고, 금속구조체는 미세한 다수의 기공이 마련된다. The bubble reduction step according to another embodiment of the present invention will be described in more detail as follows. The bubble reducing step is a step of irradiating the conductive substrate 105 immersed in the electrolyte with light having a predetermined wavelength. At this time, the apparatus for manufacturing a porous nanostructure shown in FIG. 17 is used. The apparatus for manufacturing a porous nanostructure includes a bubble reduction unit 120 according to another embodiment of the present invention. The bubble reduction unit 120 is installed at a position opposite to the deposition reaction tank 101, And a light irradiation member 121 for irradiating light having a predetermined wavelength. The operator irradiates the conductive substrate 105 with light by activating the light irradiation member 121 when performing the electrochemical deposition process on the conductive substrate 105. The hydrogen bubbles on the conductive substrate 105 are pulverized by the light to form a plurality of fine bubbles, and the metal structure has fine pores.
본 발명의 다른 측면은, 본 발명의 일 측면에서 상술한 다공성 나노구조체의 제조방법을 통해 제조된 나노구조체를 포함하는 3차원 전극을 제공할 수 있다. 구체적으로, 상기 3차원 전극은 표면에 상기 나노구조체를 포함하고 있는 것일 수 있다. 이에, 상기 3차원 전극은 표면에 형성된 상기 금 나노구조체의 구조적 특징에 의해 넓은 표면적을 가질 수 있어, 고감도, 및 고선택성이 필요한 장치의 전극으로 폭넓게 활용될 수 있다.According to another aspect of the present invention, there is provided a three-dimensional electrode including a nanostructure produced by the method of manufacturing a porous nanostructure as described above. Specifically, the three-dimensional electrode may include the nanostructure on the surface. Accordingly, the three-dimensional electrode can have a wide surface area due to the structural characteristics of the gold nanostructure formed on the surface, and thus can be widely used as an electrode of a device requiring high sensitivity and high selectivity.
상기 3차원 골드 전극은 200mm2 내지 800mm2 의 표면적을 갖는 것일 수 있다. 이는, 종래의 편평한(flat) 표면을 가진 일반(bare) 골드 전극에 비해, 상기 3차원 골드 전극 표면에 일정한 패턴으로 형성된 꽃 형상의 3차원 나노표면을 갖는 상기 금 나노구조체에 의해 표면적이 크게 향상된 것일 수 있다. The three-dimensional gold electrode may have a surface area of 200 mm 2 to 800 mm 2 . This is because the gold nanostructure having a flower-like three-dimensional nano-surface formed in a predetermined pattern on the surface of the three-dimensional gold electrode has a significantly improved surface area compared to a conventional bare gold electrode having a flat surface Lt; / RTI >
본 발명의 또 다른 측면은, 본 발명의 일 측면에서 상술한 다공성 나노구조체의 제조방법을 통해 제조된 나노구조체를 포함하는 센서를 제공할 수 있다. 상기 센서는 3차원 나노표면으로 이루어진 나노구조체의 구조적 특징을 이용하여, 시료의 흡착 및 농도 정도를 정밀하게 측정할 수 있는 고감도가 요구되는 센서의 감지영역에 적용시킬 수 있다. 이때, 나노구조체를 포함하는 센서는, 노로바이러스 측정 센서일 수 있다. According to another aspect of the present invention, there is provided a sensor including the nanostructure fabricated by the method of manufacturing a porous nanostructure described above in one aspect of the present invention. The sensor can be applied to a sensing area of a sensor that requires high sensitivity to precisely measure the adsorption and concentration of the sample using the structural characteristics of the nanostructure composed of the three-dimensional nanosurface. At this time, the sensor including the nanostructure may be a norovirus measuring sensor.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features presented herein.

Claims (26)

  1. 도전성 기판을 준비하는 준비단계;Preparing a conductive substrate;
    전해액이 공급되는 분위기에서 상기 도전성 기판에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판 상에, 상기 전기화학 증착 공정 중 발생된 기포에 의해 다수의 기공을 갖는 금속구조체를 형성하는 폼 형성단계;Forming a metal structure having a plurality of pores by bubbles generated in the electrochemical deposition process on the conductive substrate by performing an electrochemical deposition process on the conductive substrate in an atmosphere in which an electrolyte is supplied;
    상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 금속구조체 상에 제1나노구조체를 형성하는 코팅단계;를 포함하는, And a coating step of performing an electrochemical deposition process in an atmosphere in which the electrolyte solution is supplied to the metal structure to form a first nanostructure on the metal structure,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  2. 제1항에 있어서, The method according to claim 1,
    상기 전해액은 상기 금속구조체에 전기화학 증착 공정의 수행이 가능한 금속성 베이스 금속을 함유하는,Wherein the electrolytic solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  3. 제2항에 있어서, 3. The method of claim 2,
    상기 금속성 베이스 금속은 구리, 아연, 금, 백금 중 적어도 어느 하나 인,Wherein the metallic base metal is at least one of copper, zinc, gold and platinum,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  4. 제1항에 있어서, The method according to claim 1,
    상기 폼 형성단계는 The foam forming step
    내부에 상기 전해액이 수용된 증착 반응조를 준비하는 반응조 준비단계,A reaction tank preparation step of preparing a deposition reaction tank containing the electrolytic solution therein,
    기준전극, 상대전극 및 상기 도전성 기판이 상기 전해액에 침지되도록 상기 증착 반응조에 설치하는 제1침지단계,A first immersion step in which the reference electrode, the counter electrode, and the conductive substrate are installed in the deposition reaction tank so as to be immersed in the electrolytic solution,
    상기 도전성 기판에 전기화학 증착 공정을 수행하는 것으로서, 상기 도전성 기판 상에 기포가 발생할 수 있도록 상기 전해액에 침지된 상기 도전성 기판과 기준전극에 소정의 전압을 인가하는 증착공정 수행단계를 포함하는, And performing a deposition process of applying a predetermined voltage to the conductive substrate and the reference electrode immersed in the electrolyte so that bubbles may be generated on the conductive substrate by performing an electrochemical deposition process on the conductive substrate,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  5. 제1항에 있어서, The method according to claim 1,
    상기 폼 형성단계는 상기 전기화학 증착 공정 중 발생된 기포의 크기를 감소시키는 기포 축소 단계를 더 포함하는,Wherein the foaming step further comprises a bubble reduction step of reducing the size of bubbles generated during the electrochemical deposition process.
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 기포 축소단계는 상기 전해액에 침지된 상기 도전성 기판에 초음파를 인가하는,Wherein the bubble reduction step comprises applying ultrasonic waves to the conductive substrate immersed in the electrolyte solution,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  7. 제6항에 있어서, The method according to claim 6,
    상기 기포 축소단계는 The bubble reduction step
    내부에 침지수가 수용된 수조를 준비하는 수조 준비단계,A water tank preparing step of preparing a water tank containing immersion water therein,
    상기 수조에 수용된 침지수에 상기 증착 반응조를 침지시키는 제2침지단계, A second immersion step of immersing the deposition reaction tank in a saliva index contained in the water tank,
    상기 증착 반응조가 침지된 상기 침지수에 초음파 발진기를 침지시키고, 상기 초암파 발진기를 작동시켜 상기 증착 반응조로 초음파를 발생시키는 초음파 인가단계를 포함하는, And an ultrasonic wave application step of immersing the ultrasonic oscillator in the deposition index in which the deposition reaction bath is immersed and operating the ultra-wave oscillator to generate ultrasonic waves in the deposition reaction tank.
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  8. 제5항에 있어서, 6. The method of claim 5,
    상기 기포 축소단계는 상기 전해액에 침지된 상기 도전성 기판에 소정의 파장을 갖는 광을 조사하는,Wherein the bubble reduction step comprises irradiating the conductive substrate immersed in the electrolyte with light having a predetermined wavelength,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  9. 제4항에 있어서, 5. The method of claim 4,
    상기 증착공정 수행단계는 상기 도전성 기판에 -2.7V 내지 -3.3V의 전압을 인가하는,The performing of the deposition process may include applying a voltage of -2.7 V to -3.3 V to the conductive substrate,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  10. 제4항에 있어서, 5. The method of claim 4,
    상기 코팅단계는 상기 나노구조체가 상기 금속구조체 상에 형성될 수 있도록 상기 증착 반응조에 설치된 상기 도전성 기판과 기준전극에 소정의 전압을 인가하는 것으로서, 상기 도전성 기판에 상기 증착공정 수행단계에서 인가된 전압보다 낮은 전압을 인가하는,Wherein the coating step is a step of applying a predetermined voltage to the conductive substrate and the reference electrode provided in the deposition reaction tank so that the nanostructure can be formed on the metal structure, Applying a lower voltage,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  11. 제10항에 있어서, 11. The method of claim 10,
    상기 코팅단계는 상기 도전성 기판에 -0.005V 내지 -0.015V의 전압을 인가하는,Wherein the coating step comprises applying a voltage of -0.005 V to -0.015 V to the conductive substrate,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  12. 제4항에 있어서, 5. The method of claim 4,
    상기 준비단계 및 폼 형성단계 사이에 상기 도전성 기판 상에, 상기 도전성 기판의 일부영역이 노출되는 마이크로패턴층을 형성하는 패턴층 형성단계;를 더 포함하고, Forming a micropattern layer in which a part of the conductive substrate is exposed on the conductive substrate between the preparing step and the foam forming step,
    상기 코팅단계는 상기 마이크로패턴층에 의해 노츨된 상기 금속구조체 상에 상기 전해액의 베이스 금속 입자들이 증착된 상기 제1나노구조체를 형성하는 Wherein the coating step forms the first nanostructure on which the base metal particles of the electrolyte are deposited on the metal structure exposed by the micropattern layer
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  13. 제12항에 있어서, 13. The method of claim 12,
    상기 코팅단계가 완료된 다음, 상기 마이크로패턴층을 선택적으로 제거하는 제거단계;A removal step of selectively removing the micropattern layer after the coating step is completed;
    상기 마이크로패턴층이 제거된 상기 금속구조체에 상기 전해액이 공급되는 분위기에서 전기화학 증착 공정을 수행하여 상기 제1나노구조체에 상기 전해액의 베이스 금속 입자들이 증착된 제2나노구조체를 형성하는 추가 증착단계;를 더 포함하는,An additional deposition step of performing an electrochemical deposition process in an atmosphere in which the electrolyte solution is supplied to the metal structure from which the micropattern layer has been removed to form a second nanostructure on which the base metal particles of the electrolyte are deposited on the first nanostructure; ; ≪ / RTI >
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  14. 제13항에 있어서, 14. The method of claim 13,
    상기 코팅단계 및 추가 증착단계는 상기 금속나노체를 갖는 상기 도전성 기판이 상기 전해액에 상기 기준전극 및 상대전극과 함께 침지된 상태에서 상기 도전성 기판 및 기준전극에 전압을 인가하는 것으로서, 상기 도전성 기판에 상기 증착공정 수행단계에서 인가된 전압과 낮은 전압을 인가하는,Wherein the coating step and the additional deposition step apply a voltage to the conductive substrate and the reference electrode in a state where the conductive substrate having the metal nano body is immersed in the electrolyte solution together with the reference electrode and the counter electrode, And applying a voltage and a low voltage in the deposition process,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  15. 제14항에 있어서, 15. The method of claim 14,
    상기 코팅단계 및 추가 증착단계는 상기 도전성 기판에 -0.005V 내지 -0.015V의 전압을 인가하는,Wherein the coating step and the additional deposition step are performed by applying a voltage of -0.005 V to -0.015 V to the conductive substrate,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  16. 제12항에 있어서, 13. The method of claim 12,
    상기 패턴층 형성단계는 상기 금속구조체 상에 일정 간격으로 패턴화된 포토레지스트가 증착된,Wherein the pattern layer forming step comprises forming a patterned photoresist on the metal structure,
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  17. 제12항에 있어서, 13. The method of claim 12,
    상기 기준전극은 은-염화은(Ag/AgCl)이고, 상기 상대전극은 백금(Pt)를 사용하는,Wherein the reference electrode is silver-silver chloride (Ag / AgCl), and the counter electrode is made of platinum (Pt)
    다공성 나노구조체의 제조방법. A method for producing a porous nanostructure.
  18. 제12항에 있어서, 13. The method of claim 12,
    상기 코팅단계가 완료된 다음, 상기 나노구조체가 형성된 상기 금속구조체에 열을 인가하여 열처리 공정을 수행하는 열처리단계를 더 포함하는,Further comprising a heat treatment step of performing heat treatment by applying heat to the metal structure on which the nanostructure is formed after the coating step is completed,
    다공성 나노구조체의 제조방법.A method for producing a porous nanostructure.
  19. 제1항 내지 제18항 중 어느 한 항에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극.A three-dimensional electrode having the porous nanostructure produced by any one of claims 1 to 18.
  20. 제1항 내지 제18항 중 어느 한 항에 의해 제조된 다공성 나조구조체를 갖는 센서. 19. A sensor having a porous matrix structure produced by any one of claims 1 to 18.
  21. 내부에 전해액이 수용되고, 상기 전해액에 침지되도록 도전성 기판이 침지되는 증착 반응조;A deposition reaction tank in which an electrolytic solution is contained, and a conductive substrate is immersed in the electrolytic solution;
    상기 전해액에 침지되도록 상기 증착 반응조에 설치되는 기준전극 및 상대전극;A reference electrode and a counter electrode provided in the deposition reaction tank so as to be immersed in the electrolytic solution;
    상기 도전성 기판에 다공성 금속구조체를 형성하고, 상기 다공성 금속구조체에 나노구조체를 형성하기 위해 상기 도전성 기판에 전기화학 증착 공정을 수행하기 위해 상기 도전성 기판 및 기준전극에 전압을 인가하는 전압인가부재;A voltage applying member for applying a voltage to the conductive substrate and the reference electrode to perform electrochemical deposition on the conductive substrate to form a porous metal structure on the conductive substrate and to form a nanostructure on the porous metal structure;
    상기 도전성 기판에 전압을 인가시 상기 도전성 기판 상에 형성된 기포의 크기를 감소시키는 기포감소부;를 포함하는,And a bubble reducing part that reduces the size of bubbles formed on the conductive substrate when a voltage is applied to the conductive substrate.
    다공성 나노구조체 제조장치. Porous nanostructure manufacturing apparatus.
  22. 제21항에 있어서, 22. The method of claim 21,
    상기 기포감소부는 상기 전해액에 침지된 상기 도전성 기판에 초음파를 인가하는,Wherein the bubble reducing unit applies ultrasonic waves to the conductive substrate immersed in the electrolytic solution,
    다공성 나노구조체 제조장치.Porous nanostructure manufacturing apparatus.
  23. 제22항에 있어서, 23. The method of claim 22,
    상기 기포감소부는The bubble reducing portion
    내부에 침지수가 수용되고, 상기 침지수에 침지되도록 상기 증착 반응조가 설치되는 수조와, A water tank in which immersion water is contained and in which the deposition reaction tank is immersed in the immersion index,
    상기 침지수에 침지되도록 상기 수조에 설치되어 초음파를 상기 증착 반응조로 발생시키는 초음파 발진기를 구비하는,And an ultrasonic oscillator installed in the water tank so as to be immersed in the immersion index to generate ultrasonic waves in the deposition reaction tank,
    다공성 나노구조체 제조장치. Porous nanostructure manufacturing apparatus.
  24. 제21항에 있어서, 22. The method of claim 21,
    상기 기포감소부는 상기 전해액에 침지된 상기 도전성 기판에 소정의 파장을 갖는 광을 조사하는,Wherein the bubble reducing part irradiates light having a predetermined wavelength to the conductive substrate immersed in the electrolytic solution,
    다공성 나노구조체 제조장치.Porous nanostructure manufacturing apparatus.
  25. 제21항에 있어서, 22. The method of claim 21,
    상기 전해액은 상기 금속구조체에 전기화학 증착 공정의 수행이 가능한 금속성 베이스 금속을 함유하는,Wherein the electrolytic solution contains a metallic base metal capable of performing an electrochemical deposition process on the metal structure,
    다공성 나노구조체 제조장치.Porous nanostructure manufacturing apparatus.
  26. 제25항에 있어서, 26. The method of claim 25,
    상기 베이스 금속은 구리, 아연, 금, 백금 중 적어도 어느 하나 인,Wherein the base metal is at least one of copper, zinc, gold, and platinum,
    다공성 나노구조체 제조장치.Porous nanostructure manufacturing apparatus.
PCT/KR2017/010230 2017-09-19 2017-09-19 Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure WO2019059423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/010230 WO2019059423A1 (en) 2017-09-19 2017-09-19 Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/010230 WO2019059423A1 (en) 2017-09-19 2017-09-19 Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure

Publications (1)

Publication Number Publication Date
WO2019059423A1 true WO2019059423A1 (en) 2019-03-28

Family

ID=65810378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010230 WO2019059423A1 (en) 2017-09-19 2017-09-19 Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure

Country Status (1)

Country Link
WO (1) WO2019059423A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106315A (en) * 2006-10-26 2008-05-08 National Institute Of Advanced Industrial & Technology Metal nanoparticle and production method therefor
KR20110001845A (en) * 2009-06-29 2011-01-06 경상대학교산학협력단 3-dimension nano structure and manufacturing method thereof
KR101437289B1 (en) * 2013-08-19 2014-09-02 성균관대학교산학협력단 Method of fabricating three dimensional graphene devices and sensors comprising the same
KR101463067B1 (en) * 2014-01-07 2014-12-04 권지웅 Synthesis of porous metal particles by ultrasonic irradiation
KR20160013749A (en) * 2014-07-28 2016-02-05 광주과학기술원 Method of manufacturing gold nanostructure, 3-dimensional gold electrode and sensor comprising gold nanostructure manufactured thereby
KR20170130216A (en) * 2016-05-18 2017-11-28 주식회사 큐바이오센스 Method of manufacturing porous nanostructure, 3-dimensional electrode and sensor comprising porous nanostructure manufactured thereby and apparatus for manufacturing porous nanostructure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106315A (en) * 2006-10-26 2008-05-08 National Institute Of Advanced Industrial & Technology Metal nanoparticle and production method therefor
KR20110001845A (en) * 2009-06-29 2011-01-06 경상대학교산학협력단 3-dimension nano structure and manufacturing method thereof
KR101437289B1 (en) * 2013-08-19 2014-09-02 성균관대학교산학협력단 Method of fabricating three dimensional graphene devices and sensors comprising the same
KR101463067B1 (en) * 2014-01-07 2014-12-04 권지웅 Synthesis of porous metal particles by ultrasonic irradiation
KR20160013749A (en) * 2014-07-28 2016-02-05 광주과학기술원 Method of manufacturing gold nanostructure, 3-dimensional gold electrode and sensor comprising gold nanostructure manufactured thereby
KR20170130216A (en) * 2016-05-18 2017-11-28 주식회사 큐바이오센스 Method of manufacturing porous nanostructure, 3-dimensional electrode and sensor comprising porous nanostructure manufactured thereby and apparatus for manufacturing porous nanostructure

Similar Documents

Publication Publication Date Title
JP4464041B2 (en) Columnar structure, electrode having columnar structure, and manufacturing method thereof
Li et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Wang et al. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity
WO2021006439A1 (en) Electrochemical water decomposition catalyst and method for producing same
Contes-de Jesus et al. Platinum electrodeposition on unsupported single wall carbon nanotubes and its application as methane sensing material
Wang et al. One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement Raman scattering
Ceballos et al. Electrochemical growth of silver nanodendrites on aluminum and their application as surface-enhanced Raman spectroscopy (SERS) substrates
Chakraborti et al. Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection
KR20170130216A (en) Method of manufacturing porous nanostructure, 3-dimensional electrode and sensor comprising porous nanostructure manufactured thereby and apparatus for manufacturing porous nanostructure
KR102169125B1 (en) Method of manufacturing gold nanostructure, 3-dimensional gold electrode and sensor comprising gold nanostructure manufactured thereby
Wang et al. Electrodeposition of vertically standing Ag nanoplates and nanowires on transparent conductive electrode using porous anodic aluminum oxide template
Yaghoubinezhad et al. Design of experiments for pulse reverse electrodeposition of graphene oxide toward hydrogen evolution reaction
WO2019059423A1 (en) Method for producing porous nanostructure, three-dimensional electrode and sensor having porous nanostructure produced thereby, and apparatus for producing porous nanostructure
CN105347345A (en) Silicon micro-nano structure preparing method
Pham et al. Hydrazine detection by shape-controlled palladium nanostructures on carbon nanotube thin films
Lee et al. Growth and patterning of Pt nanowires on silicon substrates
CN111150368B (en) Processing method of flexible vibration sensor for monitoring Parkinson's syndrome
JP5062748B2 (en) Surface microstructure manufacturing method, diamond nanoelectrode manufacturing method, and electrode body thereof
Sharma et al. Synthesis and characterization of patterned and nonpatterned copper and nickel nanowire arrays on silicon substrate
CN116724230A (en) Chemiresistor substrate for hydrogen sensor
KR101358989B1 (en) TRANSITION METAL NANO ElECTRODE AND A METHOD OF FABRICATING THEREOF
JP2006342402A (en) Method for producing structure
TWI476282B (en) Method for transferring a metal with a relative low reduction potential into a metal with a relative high reduction potential without changing its shape
JP2004285405A (en) Microelectrode array and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925729

Country of ref document: EP

Kind code of ref document: A1