WO2019059298A1 - Electric actuator - Google Patents

Electric actuator Download PDF

Info

Publication number
WO2019059298A1
WO2019059298A1 PCT/JP2018/034872 JP2018034872W WO2019059298A1 WO 2019059298 A1 WO2019059298 A1 WO 2019059298A1 JP 2018034872 W JP2018034872 W JP 2018034872W WO 2019059298 A1 WO2019059298 A1 WO 2019059298A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
electric actuator
support member
input
output
Prior art date
Application number
PCT/JP2018/034872
Other languages
French (fr)
Japanese (ja)
Inventor
慎太朗 石川
阿部 克史
雄太 中辻
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019059298A1 publication Critical patent/WO2019059298A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an electric actuator.
  • an electric actuator capable of changing the rotational phase difference between the input side to which the driving force is input from the outside and the output side to which the input driving force is output
  • an intake valve and an exhaust valve of an automobile engine It is known to be used in a variable valve timing device that changes the open / close timing of one or both of the valves.
  • this type of electric actuator includes an electric motor unit and a reduction gear that obtains driving force from the electric motor unit and decelerates and transmits rotational power (see Patent Document 1).
  • the reduction gear is not driven by the electric motor unit, when the member on the input side (for example, the sprocket) and the member on the output side (for example, the camshaft) rotate synchronously, and the reduction gear is driven by the electric motor unit
  • the rotational phase difference of the member on the output side with respect to the member on the input side is changed by the reduction gear, whereby the opening / closing timing of the valve is adjusted.
  • an object of the present invention is to increase the support rigidity of the components of the reduction gear in an electric actuator provided with a reduction gear having an eccentric rotation body.
  • the present invention relates to an electric motor portion, a stationary member, a reduction gear transmitting rotation of the electric motor portion, and an input rotating body to which a driving force is inputted from the outside And an output rotary body coupled to the reduction gear and capable of relative rotation with respect to the input rotary body, wherein the reduction gear performs eccentric rotational movement with respect to the center of the output rotary body
  • An eccentric rotating body, and a supporting member rotationally driven by the electric motor portion to support the eccentric rotating body are supported, the supporting member is supported by a pair of rolling bearings, and a preload is applied to each of the pair of rolling bearings
  • the reduction gear here, for example, a mechanism that changes the rotational phase difference of the output rotary body with respect to the input rotary body can be used by rotation of the support member.
  • the support rigidity with respect to the support member is enhanced.
  • the posture of the eccentric rotary body supported by the support member can be stabilized, and the swinging of the components of the reduction gear can be prevented. Therefore, it is possible to prevent an increase in friction due to the swinging, and occurrence of biting, vibration, noise and the like.
  • Each of the pair of rolling bearings has a first raceway surface and a second raceway surface.
  • the motorized actuator can be made more compact.
  • angular contact ball bearings as the pair of rolling bearings facilitates application of preload to the rolling bearings. It is preferable to use a nut as a preload applying member for applying a preload to the pair of rolling bearings. By adjusting the amount of tightening of the nut, it is possible to adjust the amount of preload, thus facilitating preload control.
  • the bearing span between the rolling bearings is expanded, so that the support rigidity to the support member can be further enhanced.
  • a support member and an eccentric rotating body are disposed on an inner diameter side of a motor core including a stator and a rotor of the electric motor unit.
  • an input rotating body is disposed on the inner diameter side of the electric motor portion, with the output shaft rotating integrally with the output rotating body, and on the outer diameter side of the output shaft coaxially with the output shaft and permitting relative rotation with respect to the output shaft Place.
  • the electric actuator described above can be applied to a continuously variable valve timing device that changes the opening / closing timing of the valve by changing the rotational phase difference of the camshaft with respect to the sprocket.
  • the input rotary body can be provided with a sprocket, and the output shaft can be used as a camshaft.
  • the electric actuator provided with the reduction gear having the eccentric rotation body it is possible to increase the support rigidity for the components of the reduction gear. Therefore, the operation of the electric actuator can be stabilized.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 2 is a cross-sectional view taken along line B-B in FIG. It is a graph which shows the relationship between a motor rotational speed, a sprocket (input rotary body) rotational speed, and an output rotational phase angle difference.
  • FIG. 8 is a cross-sectional view taken along the line CC in FIG. 7;
  • FIG. 8 is a cross-sectional view taken along line DD in FIG. 7;
  • FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the electric actuator according to the present embodiment.
  • the electric actuator 1 includes an input rotary body 2, an output rotary body 3, an electric motor unit 4, a reduction gear 5, and a casing 6 for housing these.
  • the main component is
  • the input rotating body 2 is a member that is rotationally driven by a driving force from an external driving source (not shown).
  • the output rotary body 3 is a member for outputting the driving force input to the input rotary body 2 to the outside, and a shaft 7 as an output shaft is disposed on the inner periphery thereof.
  • the input rotary body 2 is disposed on one side in the axial direction of the electric actuator 1 and on the outer diameter side of the shaft 7 with a gap from the outer peripheral surface of the shaft 7.
  • the output rotary body 3 is disposed on the other side of the electric actuator 1 in the axial direction.
  • the output rotating body 3 is coupled to the shaft 7 so as to be capable of transmitting torque, and in the present embodiment, the output rotating body 3 and the shaft 7 are connected to be capable of transmitting torque via the serrations 8. From this configuration, the output rotating body 3 is disposed coaxially with the input rotating body 2 and is relatively rotatable with respect to the input rotating body 2 (the rotation axes of the input rotating body 2 and the output rotating body 3 Indicated).
  • the input rotary body 2 is formed in a cylindrical shape that opens at both end portions in the axial direction, and a large diameter large diameter portion 2b having a small diameter portion 2a and an outer diameter dimension larger than the outer diameter dimension of the small diameter portion 2a. And an intermediate diameter portion 2c located between the small diameter portion 2a and the large diameter portion 2b and having an outer diameter size larger than the outer diameter size of the small diameter portion 2a and smaller than the outer diameter size of the large diameter portion 2b Prepare.
  • the slide bearing 9 is disposed on the inner periphery of the small diameter portion 2a, and the rolling bearing 10 is disposed on the inner periphery of the large diameter portion 2b.
  • a slide bearing disposed between the inner peripheral surface of the input rotor 2 and the outer peripheral surface of the shaft 7
  • the shaft 7 is rotatably supported relative to the inner peripheral surface of the input rotary body 2 by 9 and the rolling bearing 10.
  • the casing 6 is divided into a bottomed cylindrical casing main body 6a and a lid 6b for the convenience of assembly.
  • the casing body 6a and the lid 6b are integrated using fastening means such as bolts.
  • the lid 6 b has a tubular shape for drawing out to the outside a feed line for supplying power to the electric motor unit 4 and a signal line connected to a rotation number detection sensor (not shown) for detecting the rotation number of the electric motor unit 4.
  • the projections 6c and 6d are provided.
  • a deep groove ball bearing 22 as a bearing is disposed between the cover 6 b of the casing 6 and the output rotary body 3, and the output rotary body 3 is opposed to the casing 6 by the bearing 22. Is rotatably supported.
  • the electric motor unit 4 is a radial gap type motor having a stator 11 fixed to a casing main body 6 a and a rotor 12 disposed to face the inner side in the radial direction of the stator 11 with a gap. It is.
  • the stator 11 is composed of a stator core 11a made of a plurality of electromagnetic steel plates stacked in the axial direction, a bobbin 11b made of an insulating material mounted on the stator core 11a, and a stator coil 11c wound around the bobbin 11b.
  • the rotor 12 is configured of an annular rotor core (rotor inner) 12 a and a plurality of magnets 12 b attached to the rotor core 12 a.
  • the reduction gear 5 has a first external tooth portion 13 formed of a plurality of curved teeth (projections) provided on the outer peripheral surface of the input rotary body 2 and a plurality of curved shapes provided on the outer peripheral surface of the output rotary body 3.
  • a so-called second external tooth portion 14 composed of the following teeth (protrusion), a cylindrical support member 15 that rotates integrally with the rotor 12, and an annular internal gear 16 disposed on the inner periphery of the support member 15. It is a cycloid reducer.
  • the support member 15 integrally includes a small diameter cylindrical portion 15a fixed to the inner periphery of the rotor core 12a, and a large diameter cylindrical portion 15b which is larger in diameter than the small diameter cylindrical portion 15a and protrudes axially from the rotor core 12a.
  • a cylindrical surface-shaped eccentric inner peripheral surface 15a1 eccentric to the respective rotational axes O of the input rotating body 2 and the output rotating body 3 is formed.
  • the region other than the eccentric inner peripheral surface 15 a 1 is formed coaxially with the rotation axis O of the input rotating body 2 and the output rotating body 3.
  • the outer peripheral surface of the support member 15 is a cylindrical surface formed coaxially with the rotation axis O of the input rotating body 2 and the output rotating body 3. Accordingly, the support member 15 has a thick portion and a thin portion when viewed in a radial cross section passing through the eccentric inner circumferential surface 15a1 (see FIGS. 3 and 4).
  • the support member 15 is supported by a pair of rolling bearings 17 and 18 arranged to sandwich the internal gear 16 from both sides in the axial direction.
  • one rolling bearing 17 is disposed between the inner periphery of the support member 15 (in the present embodiment, the large diameter cylindrical portion 15b) and the outer periphery of the casing 6, and the rolling bearing 17 makes the support member 15 a casing. 6 is rotatably supported.
  • the other rolling bearing 18 is disposed between the inner periphery of the support member 15 (in the present embodiment, the small diameter cylindrical portion 15a) and the outer periphery of the input rotating body 2 (in the present embodiment, the intermediate diameter portion 2c)
  • the support member 15 is rotatably supported by the input rotary body 2 by the rolling bearing 18.
  • the internal gear 16 has a first internal gear 19 and a second internal gear 20 on its inner periphery.
  • the first internal tooth portion 19 and the second internal tooth portion 20 are each formed of a plurality of curved (trocolloid-based curved) teeth (protrusions) provided on the inner peripheral surface of the internal gear 16.
  • the first internal teeth 19 are provided on the input rotary body 2 side in the axial direction
  • the second internal teeth 20 are provided on the output rotary body 3 side in the axial direction.
  • the first internal tooth portion 19 radially faces the first external tooth portion 13 provided on the input rotary body 2
  • the second internal tooth portion 20 is provided on the second outer side provided on the output rotary body 3. It faces the tooth portion 14 in the radial direction.
  • the number of teeth of the first internal teeth 19 is larger than the number of teeth of the first external teeth 13, and the number of teeth of the second internal teeth 20 is larger than the number of teeth of the second external teeth 14. Further, the numbers of teeth of the first external teeth 13 and the second external teeth 14 are different, and the numbers of teeth of the first internal teeth 19 and the second internal teeth 20 are also different. In this embodiment, the number of teeth of the first internal tooth portion 19 is set to 24 and the number of teeth of the first external tooth portion 13 is increased by one, and the number of teeth of the second internal tooth portion 20 is set to 20. The number of teeth is one greater than the number of teeth (19) of the second outer teeth portion 14.
  • the internal gear 16 is rotatably supported on the support member 15 by a needle roller bearing 21 as a bearing member disposed between the outer peripheral surface thereof and the eccentric inner peripheral surface 15a1 of the support member 15. There is. Further, the internal gear 16 is disposed on the inner periphery of the small diameter cylindrical portion 15 a of the support member 15 via the needle roller bearing 21 so that the rotation shaft O of the input rotating body 2 and the output rotating body 3 is It is arranged eccentrically.
  • FIG. 3 is a cross-sectional view (a cross-sectional view taken along line AA in FIG. 1) cut at a point where the first internal teeth 19 and the first external teeth 13 face each other
  • FIG. 20 is a cross-sectional view (a cross-sectional view taken along the line BB in FIG. 1) cut at a location where the second external gear portion 20 and the second external gear portion 14 face each other.
  • the central axis P1 of the first internal gear 19 is Also, the distance E is decentered in the radial direction with respect to the rotation axis O of the first external gear portion 13.
  • the first internal tooth portion 19 and the first external tooth portion 13 are engaged with each other in a part in the circumferential direction (right side in FIG. 3) and are engaged with each other, and a point on the opposite side in the radial direction They are not in engagement with each other apart from each other (on the left side of FIG. 3). Further, as shown in FIG.
  • the central axis P2 of the second internal gear 20 is also eccentric by a distance E in the radial direction with respect to the rotation axis O of the second external gear 14.
  • the second internal tooth portion 20 and the second external tooth portion 14 engage with each other in a part in the circumferential direction (left side in FIG. 4) in close proximity to each other, and a point on the opposite side in the radial direction They are separated from each other and do not engage with each other (right side in FIG. 4).
  • FIGS. 3 and 4 since the directions of arrows are different from each other, the eccentric directions of the first internal gear 19 and the second internal gear 20 are shown in opposite directions in the respective drawings. However, the first internal teeth 19 and the second internal teeth 20 are eccentric by the same distance in the same direction.
  • the teeth (the first external teeth 13 and the first internal teeth 19, the second external teeth 14 and the teeth provided with the input rotor 2 and the internal gear 16, the internal gear 16 and the output rotor 3) Since the second internal teeth 20) circumferentially engage with each other in a partial region in the circumferential direction, when the input rotary body 2 rotates, the input rotary body is maintained while maintaining the engagement relationship thereof 2 and the internal gear 16 and the output rotating body 3 rotate synchronously. That is, the input rotary body 2 and the output rotary body 3 rotate at the same rotational phase (rotational phase difference is zero).
  • the rotor 12 and further the support member 15 coupled to the rotor core 12 b of the rotor 12 It rotates integrally about the rotation axis O.
  • the internal gear 16 performs eccentric rotational movement with respect to the input rotating body 2 and the output rotating body 3 under the pressing force of the rotation of the support member 15 having the thin portion and the thick portion. That is, while the internal gear 16 revolves around the rotation axis O of the input rotary body 2 and the output rotary body 3, the internal gear 16 rotates on center axes P1 and P2 of the first internal gear 19 and the second internal gear 20.
  • the internal gear 16 is rotationally driven by the engagement portions of the first internal teeth 19 and the first external teeth 13 being shifted in the circumferential direction by one tooth.
  • the input rotary body 2 is decelerated and rotated (rotation).
  • the second internal gear 20 and the second external gear 20 each time the support member 15 makes one revolution (revolution).
  • the engagement position with 14 is shifted in the circumferential direction by one tooth.
  • the output rotating body 3 is rotated relative to the internal gear 16.
  • the rotational torque from the electric motor unit 4 is transmitted to the internal gear 16 while being decelerated, and thus the torque from the electric motor unit 4 is superimposed on the torque from the input rotary body 2. It is possible to change the rotational phase difference of the output rotary body 3 with respect to 2 in the forward and reverse directions (differential).
  • the reduction ratio of the reduction gear 5 is i
  • the motor rotational speed is n m
  • the rotational speed of the sprocket (input rotating body 2) is n S
  • the output rotational phase angle difference is (n m ⁇ n S ) / i (See FIG. 5).
  • the reduction gear ratio by the reduction gear according to the present embodiment can be obtained by the following equation 1.
  • the reduction ratio is 120 from the above equation (1).
  • the reduction gear 5 it is possible to obtain high torque by a large reduction ratio.
  • the output rotating body 3 is disposed on the inner diameter side.
  • a motor output shaft is provided on the inner diameter side of the electric motor unit.
  • the reduction gear is disposed in series in the axial direction of the electric motor portion, and the axial dimension of the entire electric actuator is increased.
  • the support member 15 of the reduction gear 5 to which the driving force is input from the electric motor unit 4 is disposed on the outer diameter side, and on the inner diameter side of the support member 15.
  • the driving force from the electric motor unit 4 is input on the outer diameter side of the reduction gear 5 and output on the inner diameter side.
  • each component of the decelerator 5 such as the support member 15 and the output rotating body 3 can be disposed on the inner diameter side of the motor core including the stator 11 and the rotor 12.
  • the reduction gear 5 does not have to be arranged in series in the axial direction with respect to the electric motor unit 4, the axial size of the electric actuator can be reduced.
  • the support member 15, the first external gear 13, the second external gear 14, and the internal gear 16 are components of the reduction gear 5.
  • the needle roller bearing 21 the axial miniaturization of the electric actuator is realized.
  • positioned at the internal-diameter side of a motor core may not be the case where it is all the reduction gears, but may be the one part.
  • the internal gear 16 is an eccentric rotating body that performs the above-described eccentric rotational movement
  • the weight balance of the rotating internal gear 16 becomes uneven.
  • the meshing positions of the internal teeth 19 and 20 and the external teeth 13 and 14 change in the circumferential direction every moment.
  • the internal gear 16 which is an eccentric rotating body, and further, the needle roller bearing 21 receives a biased load and tries to swing. It becomes clear that this swinging becomes particularly remarkable when only one axial side of the support member 15 is supported by the bearing 17 as in the electric actuator 1 ′ shown as a comparative example in FIG. The The reasons are described below.
  • the internal gear 16 is indirectly connected by the support member 15 via the needle roller bearing 21.
  • the support member 15 is in a cantilevered state, so that the unbalanced load from the internal gear 16 is supported. It can not be stably supported by the member 15. Therefore, a whirling of the internal gear 16 is generated, which propagates to peripheral members of the internal gear 16 (the support member 15, the output rotary body 3, etc.), causing an increase in friction, biting, or generation of vibration or noise. There is a fear. In addition, there is a possibility that the shaft 7 may be misaligned.
  • the support member 14 is supported by a pair of rolling bearings 17 and 18 disposed on both sides in the axial direction sandwiching the internal gear 16 and the rolling bearing 17 , 18 are preloaded. From such a configuration, since the support rigidity against the unbalanced load is increased, the swinging of the support member 15 itself is suppressed. Further, since the postures of the internal gear 16 as the eccentric rotating body and the needle roller bearing 21 are restrained by the support member 15, it is possible to prevent their swinging, and also the swinging of the output rotating body 3. It can be prevented. Thus, since the support rigidity for each component of the reduction gear 5 is improved, problems such as increase in friction, biting, vibration / noise, misalignment of the shaft 7 and the like can be avoided. It can be stabilized.
  • a preload applying member for applying a preload to the rolling bearings 17 and 18 it is preferable to use a nut 25 as shown in FIG. 1 in consideration of the ease of control of the preload amount.
  • a male screw 7a is provided at the axial end of the shaft 7, and a nut 25 is screwed into the male screw 7a.
  • the bearing surface of the nut 25 is brought into contact with the end face of the output rotary body 3.
  • the tightening force from the shoulder 7 b of the shaft 7 is the deep groove ball bearing 10 on the input rotary body 2 side, the input rotary body 2, the rolling bearing 18 on the input rotary body 2 side, the support member 15, It propagates to the rolling bearing 17 on the side of the output rotary body 3 and the casing 6 which is a stationary member, and a preload is applied to each of the rolling bearings 17 and 18.
  • a preload it is preferable to elastically deform the rolling elements (balls) of the rolling bearings 17 and 18 so as to make both the axial bearing gap and the radial axial gap negative.
  • a snap ring is mounted on the outer peripheral surface of the shaft 7 and this snap ring is brought into contact with the end face of the output rotary body 3 to preload the rolling bearings 17 and 18. May be given.
  • an angular ball bearing having a contact angle (indicated by an alternate long and short dash line in FIG. 1) as the rolling bearings 17 and 18 for supporting the support member 15 so that the preload can be reliably applied.
  • the angular ball bearings 17 and 18 are arranged in a back face arrangement in which the back faces of the outer rings are opposed to each other.
  • Etc. respectively, provide an axial gap.
  • axial gaps are provided on both axial sides of the internal gear 16 so that axial movement thereof is permitted.
  • the races normally used for rolling bearings are omitted, and the outer raceway surfaces of the rolling bearings 17 and 18 supporting the support member 15 (first The raceway surfaces 17a and 18a are formed directly on the inner peripheral surface of the support member 15, and the inner raceway surfaces 17b and 18b (second raceway surface) are formed on the outer peripheral surface of the casing 6 and the input rotary body 2 (middle diameter portion 2c). It is directly formed on the outer peripheral surface. From this configuration, the electric actuator 1 can be miniaturized.
  • the casing 6 is a resin molded product
  • at least the inner raceway surface 17b of the rolling bearing 17 on the output rotating body 3 side is formed of a metal material such as steel, and the rolling fatigue life and the like at the inner raceway surface 17b is secured. It is preferable to do.
  • the metal material portion including the inner raceway surface 17b is fixed to the resin casing 6 by means such as insert molding.
  • the entire casing 6 may be formed of a metal material.
  • the balls PCD (D1, D2: rolling elements PCD) of the rolling bearings 17, 18 supporting the support member 15 have different sizes.
  • the bearing span between the rolling bearings 17 and 18 supporting the support member 15 is substantially expanded, so that the support rigidity to the support member 15 can be enhanced.
  • the ball PCD (D2) of the rolling bearing 17 on the output rotating body 3 side larger than the ball PCD (D1) of the rolling bearing on the input rotating body 2 side
  • the inner diameter side of the rolling bearing 17 on the output rotating body 3 side Can be used as a housing space for the support member 15 and the bearing 22. Therefore, the size of the electric actuator 1 can be further reduced.
  • a sprocket 23 to which the driving force is transmitted from the engine is integrally provided to the input rotating body 2 (see FIG. 2) .
  • the shaft 7 is used as a camshaft for driving at least one of an intake valve and an exhaust valve of the engine.
  • the configuration is substantially the same as that of the electric actuator according to the above embodiment.
  • the camshaft 7 rotates in synchronization with the sprocket 23. That is, in this case, the reduction gear 5 is not driven by the electric motor unit 4, and the input rotating body 2 and the internal gear 16, and the internal gear 16 and the output rotating body 3 rotate while maintaining mutual engagement.
  • the camshaft 7 rotates in synchronization with the sprocket 23.
  • the rotor 12 of the electric motor unit 4 is sprocket 22 by known means, for example, electronic control. Relatively slower or faster than the rotation speed of.
  • the output rotor 3 is decelerated and rotated with respect to the input rotor 2 by the operation of the above-described reduction gear 5, and the rotational phase difference of the camshaft 7 with respect to the sprocket 22 is changed.
  • the rotation of the engine during idle operation can be stabilized and fuel consumption can be improved.
  • the speed difference of the relative rotation of the electric motor portion 4 with respect to the sprocket 23 is increased.
  • the rotational phase difference can be changed to a rotational phase difference suitable for high rotation, and it is possible to achieve high output of the engine.
  • variable valve timing device As described above, by applying the electric actuator according to the present invention to the variable valve timing device, it is possible to change the opening / closing timing of the valve by changing the rotational phase difference of the camshaft with respect to the sprocket according to the operating condition of the engine. It is. Moreover, by adopting the electric actuator according to the present invention, it is possible to provide a variable valve timing device which is compact and excellent in mountability.
  • the electric actuator according to the present invention is not limited to the variable valve timing device, and is required to switch between the synchronous rotation on the input side and the output side and the rotation having a rotational phase difference on the input side and the output side.
  • the present invention is also applicable to other devices (for example, a power steering system).
  • FIGS. 7 to 9 an electric actuator provided with another speed reducer 5 having such an eccentric rotating body will be described.
  • 7 is a longitudinal sectional view of the electric actuator
  • FIG. 8 is a sectional view taken along the line CC in FIG. 7
  • FIG. 9 is a sectional view taken along the line DD in FIG.
  • the electric motor unit 4 disposed on the outer diameter side of the support member 15 is not shown.
  • the electric actuator according to the present embodiment differs from the electric actuator according to the above embodiment in the configuration of the reduction gear.
  • the other configuration is basically the same.
  • the reduction gear 5 has a plurality of first outer teeth 31 provided with a plurality of teeth (projections) on the outer peripheral surface of the input rotating body 2 and a plurality of outer peripheral surfaces of the output rotating body 3.
  • Second external teeth 32 provided with the teeth (protrusions), a cylindrical support member 15 that rotates integrally with the rotor 12, and a needle roller bearing 21 as a bearing member on the inner periphery of the support member 15
  • the plurality of first rollers 34 disposed between the inner peripheral surface of the cylindrical member 33 and the first external teeth 31, the inner peripheral surface of the cylindrical member 33 and the second external teeth
  • a plurality of second rollers 35 disposed between the portion 32 and a holder 36 rotatably holding the first roller 34 and the second roller 35.
  • the first external teeth 31 and the second external teeth 32 have a plurality of teeth arranged at equal intervals in the circumferential direction, and curved tooth gaps are formed between the teeth.
  • the number of teeth of the first external teeth 31 and the number of teeth of the second external teeth 32 are set to different numbers.
  • the cage 36 is rotatably disposed between the cylindrical member 33 and the first external gear 31 and between the cylindrical member 33 and the second external gear 32, and formed in two rows in the axial direction.
  • the first roller 34 is accommodated in one of them, and the second roller 35 is accommodated one by one in the other. Also, each roller 34, 35 is held movably in the radial direction in the pocket.
  • the rollers 34 and 35 are disposed rollably on the smooth inner surface of the cylindrical member 33.
  • the cylindrical member 33 is disposed via the needle roller bearing 21 on the inner peripheral surface of the support member 15 (small diameter cylindrical portion 15a) which is eccentric with respect to the central axes of the input rotating body 2 and the output rotating body 3 Because of this, the inner circumferential surface of the cylindrical member 33 is also disposed eccentrically with respect to the central axes of the input rotating body 2 and the output rotating body 3. Therefore, as shown in FIGS.
  • the centers Q1 and Q2 of the circles passing through the central axes of the rollers 34 and 35 aligned on the inner peripheral surface of the cylindrical member 33 are also each of the input rotating body 2 and the output rotating body 3 A distance F is offset in the radial direction with respect to the central axis O.
  • the first roller 34 and the second roller 35 have external teeth (the first external teeth 31 or the second external teeth 31 or 32) facing each other at a part (upper side in FIGS. 8 and 9) in the circumferential direction of each track. It is disposed at a position (into the tooth groove) in close engagement with the tooth groove of the external tooth portion 32), and is opposed at the opposite point (the lower side of FIGS. 8 and 9) It is arrange
  • the rotation of the input rotating body 2 is first By being transmitted to the output rotary body 3 via the roller 34, the holder 36, and the second roller 35, the output rotary body 3 rotates in synchronization with the input rotary body 2. That is, the first external teeth 31 and the first roller 34 provided on the input rotary body 2 and the second external teeth 32 and the second roller 35 provided on the output rotary body 3 are parts of the circumferential direction.
  • first roller 34 and the second roller 35 are held by the retainer 36, they are engaged with each other at the point, so that when the input rotary body 2 rotates, the input rotary body 2 is maintained while maintaining the engagement relationship.
  • the first roller 34, the second roller 35, the holder 36, and the output rotor 3 rotate in synchronization.
  • the support member 15 rotates integrally with the roller of the electric motor by the driving force of the electric motor. .
  • the first roller 34 and the second roller 35 reciprocate in the radial direction with respect to the input rotating body 2 and the output rotating body 3.
  • the first roller 34 rotates along the tooth groove of the first external gear 31 of the input rotary body 2 and moves to the next tooth groove while moving the support member 15 every rotation. 36 move in the circumferential direction by one tooth of the first external gear 31.
  • the holder 36 is decelerated and rotated with respect to the input rotary body 2 that is rotationally driven.
  • the second roller 35 held by the holder 36 also rotates.
  • the second roller 35 since the second roller 35 reciprocates in the radial direction along with the rotation of the support member 15, the second roller 35 rotates along the tooth groove of the second external gear portion 32 while the next tooth groove is rotated.
  • the output rotary body 3 having the second external teeth 32 receives a circumferential force and rotates. Thereby, the output rotary body 3 rotates one tooth of the second external gear 32 with respect to the holder 36 each time the support member 15 makes one rotation.
  • the first roller 34 and the second roller 35 function as an eccentric rotating body that performs eccentric rotational movement with respect to the rotation axis O of the input rotating body 2 and the output rotating body 3.
  • the same effects as described above can be obtained by applying the configurations described in the embodiment shown in FIGS. For example, as shown in FIG. 7, by supporting the support member 15 with a pair of rolling bearings 17 and 18 and applying a preload to each of the rolling bearings 17 and 18, the support rigidity for the support member 15 is increased, The operation of the electric actuator can be stabilized.
  • the present invention is not limited at all to the above-mentioned embodiment, and within the range which does not deviate from the gist of the present invention, it can carry out with various forms. Of course it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Valve Device For Special Equipments (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

An electric actuator 1 is provided with: an electric motor unit 4; a stationary member 6; a speed reducer 5 which transmits the rotation of the electric motor unit; an input rotating body 2 into which a driving force is input from outside; and an output rotating body 3 which is coupled to the speed reducer 5 and is capable of rotating relative to the input rotating body 2. The speed reducer 5 is provided with an internal gear 16 which performs an eccentric rotating motion relative to a center O of the output rotating body 3, and a support member 15 which is driven in rotation by the electric motor unit 4 and supports the internal gear 16. The support member 15 is supported by a pair of rolling bearings 17, 18, and a preload is applied to the pair of rolling bearings 17, 18.

Description

電動アクチュエータElectric actuator
 本発明は、電動アクチュエータに関する。 The present invention relates to an electric actuator.
 外部から駆動力が入力される入力側と、入力された駆動力を出力する出力側とで、回転位相差を変化させることが可能な電動アクチュエータとして、例えば、自動車のエンジンの吸気バルブと排気バルブの一方または両方のバルブの開閉タイミングを変更する可変バルブタイミング装置に用いられるものが知られている。 As an electric actuator capable of changing the rotational phase difference between the input side to which the driving force is input from the outside and the output side to which the input driving force is output, for example, an intake valve and an exhaust valve of an automobile engine It is known to be used in a variable valve timing device that changes the open / close timing of one or both of the valves.
 一般的に、この種の電動アクチュエータは、電動モータ部と、電動モータ部による駆動力を得て回転力を減速して伝達する減速機とを備えている(特許文献1参照)。電動モータ部によって減速機が駆動されないときは、入力側の部材(例えば、スプロケット)と出力側の部材(例えば、カムシャフト)とが同期回転し、電動モータ部によって減速機が駆動されるときは、減速機によって入力側の部材に対する出力側の部材の回転位相差が変更されることで、バルブの開閉タイミングが調整される。 Generally, this type of electric actuator includes an electric motor unit and a reduction gear that obtains driving force from the electric motor unit and decelerates and transmits rotational power (see Patent Document 1). When the reduction gear is not driven by the electric motor unit, when the member on the input side (for example, the sprocket) and the member on the output side (for example, the camshaft) rotate synchronously, and the reduction gear is driven by the electric motor unit The rotational phase difference of the member on the output side with respect to the member on the input side is changed by the reduction gear, whereby the opening / closing timing of the valve is adjusted.
特開2014-152766号公報JP 2014-152766 A
 上記の電動アクチュエータでは、減速機内に偏心回転運動を行う偏心回転体が配置されるため、偏心回転体の回転運動に起因して減速機内部の各所に偏荷重が作用する。減速機の各構成要素に対する支持剛性が不十分であると、この偏荷重により各構成要素が振れ回りを生じ、これに起因してフリクションの増大、噛み込み、振動・騒音等の作動不良を生じるおそれがあることが明らかになった。 In the above-described electric actuator, since the eccentric rotating body which performs eccentric rotational movement is disposed in the reduction gear, a unbalanced load acts on various places inside the reduction gear due to the rotational movement of the eccentric rotation body. If the supporting rigidity for each component of the reduction gear is insufficient, this offset load causes each component to run out, resulting in increased friction, biting, malfunction such as vibration or noise, etc. It became clear that there was a fear.
 そこで、本発明は、偏心回転体を有する減速機を備えた電動アクチュエータにおいて、減速機の構成要素に対する支持剛性を高めることを目的とする。 Therefore, an object of the present invention is to increase the support rigidity of the components of the reduction gear in an electric actuator provided with a reduction gear having an eccentric rotation body.
 前述の目的を達成するための技術的手段として、本発明は、電動モータ部と、静止部材と、前記電動モータ部の回転を伝達する減速機と、外部から駆動力が入力される入力回転体と、前記減速機に連結され、前記入力回転体に対して相対回転可能な出力回転体とを備えた電動アクチュエータにおいて、前記減速機が、前記出力回転体の中心に対して偏心回転運動を行う偏心回転体と、前記電動モータ部に回転駆動され、前記偏心回転体を支持する支持部材とを備え、前記支持部材を一対の転がり軸受で支持し、一対の転がり軸受のそれぞれに予圧を付与したことを特徴とする。ここでいう減速機として、例えば支持部材の回転で、入力回転体に対する出力回転体の回転位相差を変更する機構を使用することができる。 As technical means for achieving the above-mentioned object, the present invention relates to an electric motor portion, a stationary member, a reduction gear transmitting rotation of the electric motor portion, and an input rotating body to which a driving force is inputted from the outside And an output rotary body coupled to the reduction gear and capable of relative rotation with respect to the input rotary body, wherein the reduction gear performs eccentric rotational movement with respect to the center of the output rotary body An eccentric rotating body, and a supporting member rotationally driven by the electric motor portion to support the eccentric rotating body are supported, the supporting member is supported by a pair of rolling bearings, and a preload is applied to each of the pair of rolling bearings It is characterized by As the reduction gear here, for example, a mechanism that changes the rotational phase difference of the output rotary body with respect to the input rotary body can be used by rotation of the support member.
 このように、偏心回転体を支持する支持部材を一対の転がり軸受で支持し、一対の転がり軸受のそれぞれに予圧を付与することにより、支持部材に対する支持剛性が高まる。これにより、支持部材に支持される偏心回転体の姿勢を安定化させて、減速機の構成要素の振れ回りを防止することができる。従って、振れ回りに起因したフリクションの増大や、噛み込み、振動・騒音等の発生を防止することができる。 As described above, by supporting the support member for supporting the eccentric rotary body by the pair of rolling bearings and applying a preload to each of the pair of rolling bearings, the support rigidity with respect to the support member is enhanced. Thus, the posture of the eccentric rotary body supported by the support member can be stabilized, and the swinging of the components of the reduction gear can be prevented. Therefore, it is possible to prevent an increase in friction due to the swinging, and occurrence of biting, vibration, noise and the like.
 一対の転がり軸受は、それぞれに第一軌道面および第二軌道面を有する。転がり軸受の各第一軌道面を支持部材に設けることで、各転がり軸受における一方の軸受軌道輪を省略することができるため、電動アクチュエータのコンパクト化を達成できる。 Each of the pair of rolling bearings has a first raceway surface and a second raceway surface. By providing each first raceway surface of the rolling bearing on the support member, it is possible to omit one bearing ring in each rolling bearing, so that the electric actuator can be made compact.
 また、一対の転がり軸受のうち、一方の転がり軸受の第二軌道面を静止部材に設け、他方の転がり軸受の第二軌道面を入力回転体に設けることで、各転がり軸受における他方の軌道輪を省略できるため、電動アクチュエータのさらなるコンパクト化を図ることができる。 Further, by providing the second raceway surface of one of the rolling bearings of the pair of rolling bearings on the stationary member and providing the second raceway surface of the other rolling bearing on the input rotating body, the other race ring in each rolling bearing As a result, the motorized actuator can be made more compact.
 一対の転がり軸受としてアンギュラ玉軸受を用いることで、転がり軸受に対する予圧の付与が容易となる。一対の転がり軸受に予圧を付与する予圧付与部材としては、ナットを使用することが好ましい。ナットの締め込み量を調整することで予圧量の調整が可能となるため、予圧管理が容易なものとなる。 The use of angular contact ball bearings as the pair of rolling bearings facilitates application of preload to the rolling bearings. It is preferable to use a nut as a preload applying member for applying a preload to the pair of rolling bearings. By adjusting the amount of tightening of the nut, it is possible to adjust the amount of preload, thus facilitating preload control.
 一対の転がり軸受の転動体PCDを異なる大きさにすることにより、転がり軸受間の軸受スパンが拡大するため、支持部材に対する支持剛性をより一層高めることができる。 By making the size of the rolling elements PCD of the pair of rolling bearings different from each other, the bearing span between the rolling bearings is expanded, so that the support rigidity to the support member can be further enhanced.
 電動モータ部のステータとロータからなるモータコアの内径側に、支持部材および偏心回転体を配置する。また、電動モータ部の内径側に、出力回転体と一体に回転する出力軸を配置し、出力軸の外径側に、出力軸と同軸に、かつ出力軸に対する相対回転を許容した入力回転体を配置する。かかる構成から、電動アクチュエータのコンパクト化を図ることができる。 A support member and an eccentric rotating body are disposed on an inner diameter side of a motor core including a stator and a rotor of the electric motor unit. In addition, an input rotating body is disposed on the inner diameter side of the electric motor portion, with the output shaft rotating integrally with the output rotating body, and on the outer diameter side of the output shaft coaxially with the output shaft and permitting relative rotation with respect to the output shaft Place. With this configuration, the electric actuator can be made compact.
 以上に述べた電動アクチュエータは、スプロケットに対するカムシャフトの回転位相差を変更してバルブの開閉タイミングを変更する連続可変バルブタイミング装置に適用することができる。この場合、入力回転体にスプロケットを設け、出力軸をカムシャフトとして用いることができる。 The electric actuator described above can be applied to a continuously variable valve timing device that changes the opening / closing timing of the valve by changing the rotational phase difference of the camshaft with respect to the sprocket. In this case, the input rotary body can be provided with a sprocket, and the output shaft can be used as a camshaft.
 本発明によれば、偏心回転体を有する減速機を備えた電動アクチュエータにおいて、減速機の構成要素に対する支持剛性を高めることができる。そのため、電動アクチュエータの動作を安定化させることができる。 According to the present invention, in the electric actuator provided with the reduction gear having the eccentric rotation body, it is possible to increase the support rigidity for the components of the reduction gear. Therefore, the operation of the electric actuator can be stabilized.
本発明の一実施形態に係る電動アクチュエータの縦断面図である。It is a longitudinal cross-sectional view of the electrically-driven actuator which concerns on one Embodiment of this invention. 本実施形態に係る電動アクチュエータの分解斜視図である。It is an exploded perspective view of an electric actuator concerning this embodiment. 図1におけるA-A線矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるB-B線矢視断面図である。FIG. 2 is a cross-sectional view taken along line B-B in FIG. モータ回転速度、スプロケット(入力回転体)回転速度、出力回転位相角度差の関係を示すグラフである。It is a graph which shows the relationship between a motor rotational speed, a sprocket (input rotary body) rotational speed, and an output rotational phase angle difference. 比較例としての電動アクチュエータの縦断面図である。It is a longitudinal cross-sectional view of the electrically-driven actuator as a comparative example. 本発明の他の実施形態に係る電動アクチュエータの縦断面図である。It is a longitudinal cross-sectional view of the electrically-driven actuator which concerns on other embodiment of this invention. 図7におけるC-C線矢視断面図である。FIG. 8 is a cross-sectional view taken along the line CC in FIG. 7; 図7におけるD-D線矢視断面図である。FIG. 8 is a cross-sectional view taken along line DD in FIG. 7;
 以下、添付の図面に基づき、本発明について説明する。なお、本発明を説明するための各図面において、同一の機能もしくは形状を有する部材や構成部品等の構成要素については、判別が可能な限り同一符号を付すことにより一度説明した後ではその説明を省略する。 Hereinafter, the present invention will be described based on the attached drawings. In each drawing for explaining the present invention, components such as members or components having the same function or shape are denoted by the same reference numerals as long as discrimination is possible, and then the explanation thereof will be described. I omit it.
 図1は、本発明の一実施形態に係る電動アクチュエータの縦断面図、図2は、本実施形態に係る電動アクチュエータの分解斜視図である。 FIG. 1 is a longitudinal sectional view of an electric actuator according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the electric actuator according to the present embodiment.
 図1及び図2に示すように、本実施形態に係る電動アクチュエータ1は、入力回転体2と、出力回転体3と、電動モータ部4と、減速機5と、これらを収容するケーシング6とを主な構成とする。 As shown in FIGS. 1 and 2, the electric actuator 1 according to the present embodiment includes an input rotary body 2, an output rotary body 3, an electric motor unit 4, a reduction gear 5, and a casing 6 for housing these. The main component is
 入力回転体2は、図示しない外部の駆動源からの駆動力により回転駆動される部材である。出力回転体3は、入力回転体2に入力された駆動力を外部へ出力する部材であり、その内周に出力軸としてのシャフト7が配置されている。入力回転体2は、電動アクチュエータ1の軸方向一方側で、かつシャフト7の外径側に、シャフト7の外周面に対して隙間を持たせて配置されている。出力回転体3は、電動アクチュエータ1の軸方向他方側に配置されている。出力回転体3はシャフト7とトルク伝達可能に結合されており、本実施形態では、セレーション8を介して出力回転体3とシャフト7とをトルク伝達可能に結合している。かかる構成から、出力回転体3は、入力回転体2と同軸上に配置され、かつ入力回転体2に対して相対回転可能とされる(入力回転体2と出力回転体3の回転軸をOで示す)。 The input rotating body 2 is a member that is rotationally driven by a driving force from an external driving source (not shown). The output rotary body 3 is a member for outputting the driving force input to the input rotary body 2 to the outside, and a shaft 7 as an output shaft is disposed on the inner periphery thereof. The input rotary body 2 is disposed on one side in the axial direction of the electric actuator 1 and on the outer diameter side of the shaft 7 with a gap from the outer peripheral surface of the shaft 7. The output rotary body 3 is disposed on the other side of the electric actuator 1 in the axial direction. The output rotating body 3 is coupled to the shaft 7 so as to be capable of transmitting torque, and in the present embodiment, the output rotating body 3 and the shaft 7 are connected to be capable of transmitting torque via the serrations 8. From this configuration, the output rotating body 3 is disposed coaxially with the input rotating body 2 and is relatively rotatable with respect to the input rotating body 2 (the rotation axes of the input rotating body 2 and the output rotating body 3 Indicated).
 入力回転体2は、軸方向の両端部にて開口する筒状に形成されており、小径部2aと、外径寸法を小径部2aの外径寸法よりも大きくした大径の大径部2bと、小径部2aと大径部2bの間に位置し、小径部2aの外径寸法よりも大きく大径部2bの外径寸法よりも小さい外径寸法を有する中径部2cとを一体に備える。 The input rotary body 2 is formed in a cylindrical shape that opens at both end portions in the axial direction, and a large diameter large diameter portion 2b having a small diameter portion 2a and an outer diameter dimension larger than the outer diameter dimension of the small diameter portion 2a. And an intermediate diameter portion 2c located between the small diameter portion 2a and the large diameter portion 2b and having an outer diameter size larger than the outer diameter size of the small diameter portion 2a and smaller than the outer diameter size of the large diameter portion 2b Prepare.
 小径部2aの内周にはすべり軸受9が配置され、大径部2bの内周には、転がり軸受10が配置されている。シャフト7が、入力回転体2の内周に挿入されて出力回転体3に連結された状態になると、入力回転体2の内周面とシャフト7の外周面との間に配置されたすべり軸受9と転がり軸受10とによって、シャフト7が入力回転体2の内周面に対して回転可能に支持される。これにより、入力回転体2と、出力回転体3およびシャフト7との間の相対回転が許容され、かつシャフト7の径方向の振れを低減してシャフト7の径方向の振れに伴う動力伝達効率の低下を抑制できるようになる。なお、すべり軸受9を含油軸受とし、転がり軸受10を深溝玉軸受とすると、より効果的に動力伝達効率の低下を抑制できる。 The slide bearing 9 is disposed on the inner periphery of the small diameter portion 2a, and the rolling bearing 10 is disposed on the inner periphery of the large diameter portion 2b. When the shaft 7 is inserted into the inner periphery of the input rotor 2 and connected to the output rotor 3, a slide bearing disposed between the inner peripheral surface of the input rotor 2 and the outer peripheral surface of the shaft 7 The shaft 7 is rotatably supported relative to the inner peripheral surface of the input rotary body 2 by 9 and the rolling bearing 10. Thereby, relative rotation between input rotary body 2 and output rotary body 3 and shaft 7 is allowed, and radial runout of shaft 7 is reduced to reduce power transmission efficiency associated with radial runout of shaft 7 Can be controlled. When the slide bearing 9 is an oil-impregnated bearing and the rolling bearing 10 is a deep groove ball bearing, the reduction in power transmission efficiency can be more effectively suppressed.
 図2に示すように、ケーシング6は、組み立ての都合上、有底円筒状のケーシング本体6aと、蓋部6bとに分割されている。ケーシング本体6aと蓋部6bとは、ボルト等の締結手段を用いて一体化される。蓋部6bには、電動モータ部4へ給電するための給電線や、電動モータ部4の回転数を検知する図示しない回転数検知センサに接続される信号線を、外部に引き出すための筒状の突起6c,6dが設けられている。図1に示すように、ケーシング6の蓋部6bと出力回転体3との間には軸受としての深溝玉軸受22が配置されており、この軸受22によって、出力回転体3がケーシング6に対して回転可能に支持されている。 As shown in FIG. 2, the casing 6 is divided into a bottomed cylindrical casing main body 6a and a lid 6b for the convenience of assembly. The casing body 6a and the lid 6b are integrated using fastening means such as bolts. The lid 6 b has a tubular shape for drawing out to the outside a feed line for supplying power to the electric motor unit 4 and a signal line connected to a rotation number detection sensor (not shown) for detecting the rotation number of the electric motor unit 4. The projections 6c and 6d are provided. As shown in FIG. 1, a deep groove ball bearing 22 as a bearing is disposed between the cover 6 b of the casing 6 and the output rotary body 3, and the output rotary body 3 is opposed to the casing 6 by the bearing 22. Is rotatably supported.
 図1に示すように、電動モータ部4は、ケーシング本体6aに固定されたステータ11と、ステータ11の半径方向内側に隙間をもって対向するように配置されたロータ12とを有するラジアルギャップ型のモータである。ステータ11は、軸方向に積層した複数の電磁鋼板から成るステータコア11aと、ステータコア11aに装着された絶縁材料から成るボビン11bと、ボビン11bに巻き回されたステータコイル11cとで構成されている。ロータ12は、環状のロータコア(ロータインナ)12aと、ロータコア12aに取り付けられた複数のマグネット12bとで構成されている。 As shown in FIG. 1, the electric motor unit 4 is a radial gap type motor having a stator 11 fixed to a casing main body 6 a and a rotor 12 disposed to face the inner side in the radial direction of the stator 11 with a gap. It is. The stator 11 is composed of a stator core 11a made of a plurality of electromagnetic steel plates stacked in the axial direction, a bobbin 11b made of an insulating material mounted on the stator core 11a, and a stator coil 11c wound around the bobbin 11b. The rotor 12 is configured of an annular rotor core (rotor inner) 12 a and a plurality of magnets 12 b attached to the rotor core 12 a.
 減速機5は、入力回転体2の外周面に設けられた複数の曲線状の歯(突起)から成る第一外歯部13と、出力回転体3の外周面に設けられた複数の曲線状の歯(突起)から成る第二外歯部14と、ロータ12と一体に回転する筒状の支持部材15と、支持部材15の内周に配置された環状の内歯車16とを備える、いわゆるサイクロイド減速機である。 The reduction gear 5 has a first external tooth portion 13 formed of a plurality of curved teeth (projections) provided on the outer peripheral surface of the input rotary body 2 and a plurality of curved shapes provided on the outer peripheral surface of the output rotary body 3. A so-called second external tooth portion 14 composed of the following teeth (protrusion), a cylindrical support member 15 that rotates integrally with the rotor 12, and an annular internal gear 16 disposed on the inner periphery of the support member 15. It is a cycloid reducer.
 支持部材15は、ロータコア12aの内周に固定された小径筒部15aと、小径筒部15aより大径に形成されロータコア12aから軸方向に突出する大径筒部15bとを一体に有する。支持部材15の内周面の軸方向中央領域には、入力回転体2及び出力回転体3の各回転軸Oに対して偏心した円筒面状の偏心内周面15a1が形成される。支持部材15の内周面のうち、偏心内周面15a1以外の領域は、入力回転体2及び出力回転体3の回転軸Oと同軸に形成されている。また、支持部材15の外周面は、入力回転体2及び出力回転体3の回転軸Oと同軸に形成された円筒面である。従って、支持部材15は、偏心内周面15a1を通る半径方向の断面で見ると、厚肉部分と薄肉部分とを有する(図3および図4参照)。 The support member 15 integrally includes a small diameter cylindrical portion 15a fixed to the inner periphery of the rotor core 12a, and a large diameter cylindrical portion 15b which is larger in diameter than the small diameter cylindrical portion 15a and protrudes axially from the rotor core 12a. In the central region in the axial direction of the inner peripheral surface of the support member 15, a cylindrical surface-shaped eccentric inner peripheral surface 15a1 eccentric to the respective rotational axes O of the input rotating body 2 and the output rotating body 3 is formed. Of the inner peripheral surface of the support member 15, the region other than the eccentric inner peripheral surface 15 a 1 is formed coaxially with the rotation axis O of the input rotating body 2 and the output rotating body 3. Further, the outer peripheral surface of the support member 15 is a cylindrical surface formed coaxially with the rotation axis O of the input rotating body 2 and the output rotating body 3. Accordingly, the support member 15 has a thick portion and a thin portion when viewed in a radial cross section passing through the eccentric inner circumferential surface 15a1 (see FIGS. 3 and 4).
 支持部材15は、内歯車16を軸方向両側から挟むように配置した一対の転がり軸受17,18によって支持される。具体的には、支持部材15(本実施形態では大径筒部15b)の内周とケーシング6の外周との間に一方の転がり軸受17が配置され、この転がり軸受17によって支持部材15はケーシング6に対して回転可能に支持されている。また、支持部材15(本実施形態では小径筒部15a)の内周と入力回転体2(本実施形態では中径部2c)の外周との間に他方の転がり軸受18が配置されており、この転がり軸受18によって、支持部材15は入力回転体2に対して回転可能に支持されている。 The support member 15 is supported by a pair of rolling bearings 17 and 18 arranged to sandwich the internal gear 16 from both sides in the axial direction. Specifically, one rolling bearing 17 is disposed between the inner periphery of the support member 15 (in the present embodiment, the large diameter cylindrical portion 15b) and the outer periphery of the casing 6, and the rolling bearing 17 makes the support member 15 a casing. 6 is rotatably supported. Further, the other rolling bearing 18 is disposed between the inner periphery of the support member 15 (in the present embodiment, the small diameter cylindrical portion 15a) and the outer periphery of the input rotating body 2 (in the present embodiment, the intermediate diameter portion 2c) The support member 15 is rotatably supported by the input rotary body 2 by the rolling bearing 18.
 内歯車16は、その内周に第一内歯部19と第二内歯部20とを有する。第一内歯部19と第二内歯部20は、それぞれ内歯車16の内周面に設けられた複数の曲線(トロコロイド系曲線)状の歯(突起)で構成されている。第一内歯部19は、軸方向の入力回転体2側に設けられ、第二内歯部20は、軸方向の出力回転体3側に設けられている。また、第一内歯部19は、入力回転体2に設けられた第一外歯部13と径方向で対向し、第二内歯部20は、出力回転体3に設けられた第二外歯部14と径方向で対向している。第一内歯部19の歯数は第一外歯部13の歯数よりも多く、第二内歯部20の歯数は第二外歯部14の歯数よりも多い。また、第一外歯部13と第二外歯部14の歯数は異なり、第一内歯部19と第二内歯部20の歯数も異なる。本実施形態では、第一内歯部19の歯数を24個として、第一外歯部13の歯数(23個)よりも一つ大きくし、第二内歯部20の歯数を20個として、第二外歯部14の歯数(19個)よりも一つ大きくしている。 The internal gear 16 has a first internal gear 19 and a second internal gear 20 on its inner periphery. The first internal tooth portion 19 and the second internal tooth portion 20 are each formed of a plurality of curved (trocolloid-based curved) teeth (protrusions) provided on the inner peripheral surface of the internal gear 16. The first internal teeth 19 are provided on the input rotary body 2 side in the axial direction, and the second internal teeth 20 are provided on the output rotary body 3 side in the axial direction. In addition, the first internal tooth portion 19 radially faces the first external tooth portion 13 provided on the input rotary body 2, and the second internal tooth portion 20 is provided on the second outer side provided on the output rotary body 3. It faces the tooth portion 14 in the radial direction. The number of teeth of the first internal teeth 19 is larger than the number of teeth of the first external teeth 13, and the number of teeth of the second internal teeth 20 is larger than the number of teeth of the second external teeth 14. Further, the numbers of teeth of the first external teeth 13 and the second external teeth 14 are different, and the numbers of teeth of the first internal teeth 19 and the second internal teeth 20 are also different. In this embodiment, the number of teeth of the first internal tooth portion 19 is set to 24 and the number of teeth of the first external tooth portion 13 is increased by one, and the number of teeth of the second internal tooth portion 20 is set to 20. The number of teeth is one greater than the number of teeth (19) of the second outer teeth portion 14.
 内歯車16は、その外周面と上記支持部材15の偏心状内周面15a1との間に配置された軸受部材としての針状ころ軸受21によって、支持部材15に対して回転可能に支持されている。また、内歯車16は、針状ころ軸受21を介して支持部材15の小径筒部15aの内周に配置されていることで、入力回転体2及び出力回転体3の回転軸Oに対して偏心して配置されている。 The internal gear 16 is rotatably supported on the support member 15 by a needle roller bearing 21 as a bearing member disposed between the outer peripheral surface thereof and the eccentric inner peripheral surface 15a1 of the support member 15. There is. Further, the internal gear 16 is disposed on the inner periphery of the small diameter cylindrical portion 15 a of the support member 15 via the needle roller bearing 21 so that the rotation shaft O of the input rotating body 2 and the output rotating body 3 is It is arranged eccentrically.
 図3は、第一内歯部19と第一外歯部13とが対向する箇所で切断した断面図(図1におけるA-A線矢視断面図)、図4は、第二内歯部20と第二外歯部14とが対向する箇所で切断した断面図(図1におけるB-B線矢視断面図)である。 FIG. 3 is a cross-sectional view (a cross-sectional view taken along line AA in FIG. 1) cut at a point where the first internal teeth 19 and the first external teeth 13 face each other, and FIG. 20 is a cross-sectional view (a cross-sectional view taken along the line BB in FIG. 1) cut at a location where the second external gear portion 20 and the second external gear portion 14 face each other.
 上記のように、内歯車16が入力回転体2及び出力回転体3の回転軸Oに対して偏心して配置されているため、図3に示すように、第一内歯部19の中心軸P1も、第一外歯部13の回転軸Oに対して径方向に距離E偏心している。これにより、第一内歯部19と第一外歯部13とは、周方向の一部の箇所(図3の右側)において互いに接近して係合し、これとは径方向反対側の箇所(図3の左側)において互いに離間して係合しない状態にある。また、図4に示すように、第二内歯部20の中心軸P2も、第二外歯部14の回転軸Oに対して径方向に距離E偏心している。これにより、第二内歯部20と第二外歯部14とは、周方向の一部の箇所(図4の左側)において互いに接近して係合し、これとは径方向反対側の箇所(図4の右側)において互いに離間して係合しない状態にある。なお、図3及び図4では、互いの矢視方向が異なっているため、第一内歯部19と第二内歯部20とのそれぞれの偏心方向が各図において互いに左右逆方向に示されているが、第一内歯部19及び第二内歯部20は同じ方向に同じ距離偏心している。 As described above, since the internal gear 16 is disposed eccentrically with respect to the rotation axis O of the input rotary body 2 and the output rotary body 3, as shown in FIG. 3, the central axis P1 of the first internal gear 19 is Also, the distance E is decentered in the radial direction with respect to the rotation axis O of the first external gear portion 13. Thereby, the first internal tooth portion 19 and the first external tooth portion 13 are engaged with each other in a part in the circumferential direction (right side in FIG. 3) and are engaged with each other, and a point on the opposite side in the radial direction They are not in engagement with each other apart from each other (on the left side of FIG. 3). Further, as shown in FIG. 4, the central axis P2 of the second internal gear 20 is also eccentric by a distance E in the radial direction with respect to the rotation axis O of the second external gear 14. As a result, the second internal tooth portion 20 and the second external tooth portion 14 engage with each other in a part in the circumferential direction (left side in FIG. 4) in close proximity to each other, and a point on the opposite side in the radial direction They are separated from each other and do not engage with each other (right side in FIG. 4). In FIGS. 3 and 4, since the directions of arrows are different from each other, the eccentric directions of the first internal gear 19 and the second internal gear 20 are shown in opposite directions in the respective drawings. However, the first internal teeth 19 and the second internal teeth 20 are eccentric by the same distance in the same direction.
 続いて、図1~図4を参照しつつ本実施形態に係る電動アクチュエータの動作について説明する。 Subsequently, the operation of the electric actuator according to the present embodiment will be described with reference to FIGS. 1 to 4.
 電動モータ部4に通電されず、電動モータ部4から減速機5へ駆動力が供給されない状態では、外部からの駆動力によって入力回転体2が回転駆動すると、入力回転体2の回転が内歯車16を介して出力回転体3に伝達されることで、出力回転体3は入力回転体2と同期して回転する。すなわち、入力回転体2と内歯車16、内歯車16と出力回転体3とが、それぞれに設けられた歯(第一外歯部13と第一内歯部19、第二外歯部14と第二内歯部20)によって円周方向の一部の領域にて互いに円周方向で係合しているため、入力回転体2が回転すると、これらの係合関係を維持しながら入力回転体2と内歯車16と出力回転体3とが同期して回転する。すなわち、入力回転体2と出力回転体3は同じ回転位相(回転位相差はゼロ)で回転する。 In the state where the electric motor unit 4 is not energized and the driving force is not supplied from the electric motor unit 4 to the reduction gear 5, when the input rotating body 2 is rotationally driven by the external driving force, the rotation of the input rotating body 2 is an internal gear. By being transmitted to the output rotary body 3 via 16, the output rotary body 3 rotates in synchronization with the input rotary body 2. That is, the teeth (the first external teeth 13 and the first internal teeth 19, the second external teeth 14 and the teeth provided with the input rotor 2 and the internal gear 16, the internal gear 16 and the output rotor 3) Since the second internal teeth 20) circumferentially engage with each other in a partial region in the circumferential direction, when the input rotary body 2 rotates, the input rotary body is maintained while maintaining the engagement relationship thereof 2 and the internal gear 16 and the output rotating body 3 rotate synchronously. That is, the input rotary body 2 and the output rotary body 3 rotate at the same rotational phase (rotational phase difference is zero).
 これに対して、電動モータ部4に通電されて、電動モータ部4から減速機5に駆動力が供給された場合は、ロータ12、さらにはロータ12のロータコア12bに結合された支持部材15が回転軸Oを中心として一体に回転する。薄肉部分と厚肉部分とを備えた支持部材15の回転による押圧力を受けて、内歯車16が入力回転体2及び出力回転体3に対して偏心回転運動を行う。つまり、内歯車16が、入力回転体2及び出力回転体3の回転軸Oを中心として公転しながら、第一内歯部19および第二内歯部20の中心軸P1,P2を中心として自転する。支持部材15が1回転(公転)するごとに、第一内歯部19と第一外歯部13との係合箇所が一歯分ずつ周方向にずれることで、内歯車16は回転駆動する入力回転体2に対して減速されて回転(自転)する。 On the other hand, when the electric motor unit 4 is energized and the driving force is supplied from the electric motor unit 4 to the reduction gear 5, the rotor 12 and further the support member 15 coupled to the rotor core 12 b of the rotor 12 It rotates integrally about the rotation axis O. The internal gear 16 performs eccentric rotational movement with respect to the input rotating body 2 and the output rotating body 3 under the pressing force of the rotation of the support member 15 having the thin portion and the thick portion. That is, while the internal gear 16 revolves around the rotation axis O of the input rotary body 2 and the output rotary body 3, the internal gear 16 rotates on center axes P1 and P2 of the first internal gear 19 and the second internal gear 20. Do. Each time the support member 15 makes one rotation (revolution), the internal gear 16 is rotationally driven by the engagement portions of the first internal teeth 19 and the first external teeth 13 being shifted in the circumferential direction by one tooth. The input rotary body 2 is decelerated and rotated (rotation).
 また、この内歯車16の偏心回転運動により、内歯車16と出力回転体3との関係では、支持部材15が1回転(公転)するごとに、第二内歯部20と第二外歯部14との係合箇所が一歯分ずつ周方向にずれる。これにより、出力回転体3が内歯車16に対して相対回転させられる。このように、内歯車16に電動モータ部4からの回転トルクが減速されつつ伝達されることにより、入力回転体2からのトルクに電動モータ部4からのトルクが重畳されるため、入力回転体2に対する出力回転体3の回転位相差を正逆方向に変更することが可能となる(差動)。 Further, due to the eccentric rotational movement of the internal gear 16, in the relationship between the internal gear 16 and the output rotary body 3, the second internal gear 20 and the second external gear 20 each time the support member 15 makes one revolution (revolution). The engagement position with 14 is shifted in the circumferential direction by one tooth. Thus, the output rotating body 3 is rotated relative to the internal gear 16. As described above, the rotational torque from the electric motor unit 4 is transmitted to the internal gear 16 while being decelerated, and thus the torque from the electric motor unit 4 is superimposed on the torque from the input rotary body 2. It is possible to change the rotational phase difference of the output rotary body 3 with respect to 2 in the forward and reverse directions (differential).
 ここで、減速機5の減速比をi、モータ回転速度をnm、スプロケット(入力回転体2)の回転速度をnSとすると、出力回転位相角度差は(nm-nS)/iとなる(図5参照)。 Here, assuming that the reduction ratio of the reduction gear 5 is i, the motor rotational speed is n m , and the rotational speed of the sprocket (input rotating body 2) is n S , the output rotational phase angle difference is (n m −n S ) / i (See FIG. 5).
 また、第一内歯部19の歯数をz1、第二内歯部20の歯数をz2とすると、本実施形態に係る減速機による減速比は、下記式1によって求められる。 Further, assuming that the number of teeth of the first internal gear 19 is z1 and the number of teeth of the second internal gear 20 is z2, the reduction gear ratio by the reduction gear according to the present embodiment can be obtained by the following equation 1.
 減速比=z1×z2/|z1-z2|・・・式1 Reduction ratio = z1 × z2 / | z1-z2 | .. Formula 1
 例えば、第一内歯部19の歯数(z1)が24、第二内歯部20の歯数(z2)が20の場合、上記式1から減速比は120となる。このように、本実施形態に係る減速機5では、大きな減速比によって高トルクを得ることが可能である。 For example, when the number of teeth (z1) of the first internal teeth 19 is 24, and the number of teeth (z2) of the second internal teeth 20 is 20, the reduction ratio is 120 from the above equation (1). As described above, in the reduction gear 5 according to the present embodiment, it is possible to obtain high torque by a large reduction ratio.
 図1に示すように、電動モータ部4から駆動力が入力される部材である減速機5の支持部材15が外径側に配置され、反対に出力回転体3が内径側に配置されているが、これらの位置関係を外径側と内径側とで逆転させることも可能である。しかしながら、電動モータ部からの駆動力が減速機の内径側で入力され、外径側で出力されるように構成すると、電動モータ部の内径側にモータ出力軸を設けて、このモータ出力軸に対して減速機の入力軸となる部材を連結しなければならないため、減速機が電動モータ部の軸方向に直列に配置されることになり、電動アクチュエータ全体の軸方向寸法が大きくなってしまう。 As shown in FIG. 1, the support member 15 of the reduction gear 5, which is a member to which the driving force is input from the electric motor unit 4, is disposed on the outer diameter side, and the output rotating body 3 is disposed on the inner diameter side. However, it is also possible to reverse these positional relationships between the outer diameter side and the inner diameter side. However, when the driving force from the electric motor unit is input on the inner diameter side of the reduction gear and output on the outer diameter side, a motor output shaft is provided on the inner diameter side of the electric motor unit. On the other hand, since members serving as the input shaft of the reduction gear must be connected, the reduction gear is disposed in series in the axial direction of the electric motor portion, and the axial dimension of the entire electric actuator is increased.
 本実施形態に係る電動アクチュエータにおいては、図1に示すように、電動モータ部4から駆動力が入力される減速機5の支持部材15を外径側に配置し、支持部材15の内径側に出力回転体3の一部又は全部を配置することで、電動モータ部4からの駆動力が減速機5の外径側で入力され、内径側で出力される構成にしている。これにより、支持部材15や出力回転体3等の減速機5の各構成部材を、ステータ11とロータ12から成るモータコアの内径側に配置できるようになる。その結果、減速機5を電動モータ部4に対して軸方向に直列に配置しなくてもよくなるので、電動アクチュエータの軸方向の小型化を図れるようになる。図1に示すように、モータコア(ステータ11及びロータ12)の内径側に、減速機5の構成要素である、支持部材15、第一外歯部13、第二外歯部14、内歯車16及び針状ころ軸受21を配置することで、電動アクチュエータの軸方向の小型化を実現している。なお、モータコアの内径側に配置される減速機の部分は、減速機の全部である場合に限らず、その一部であってもよい。 In the electric actuator according to the present embodiment, as shown in FIG. 1, the support member 15 of the reduction gear 5 to which the driving force is input from the electric motor unit 4 is disposed on the outer diameter side, and on the inner diameter side of the support member 15. By arranging a part or all of the output rotating body 3, the driving force from the electric motor unit 4 is input on the outer diameter side of the reduction gear 5 and output on the inner diameter side. As a result, each component of the decelerator 5 such as the support member 15 and the output rotating body 3 can be disposed on the inner diameter side of the motor core including the stator 11 and the rotor 12. As a result, since the reduction gear 5 does not have to be arranged in series in the axial direction with respect to the electric motor unit 4, the axial size of the electric actuator can be reduced. As shown in FIG. 1, on the inner diameter side of the motor core (the stator 11 and the rotor 12), the support member 15, the first external gear 13, the second external gear 14, and the internal gear 16 are components of the reduction gear 5. And by arranging the needle roller bearing 21, the axial miniaturization of the electric actuator is realized. In addition, the part of the reduction gear arrange | positioned at the internal-diameter side of a motor core may not be the case where it is all the reduction gears, but may be the one part.
 ところで、本実施形態にかかる電動アクチュエータでは、内歯車16が上記の偏心回転運動を行う偏心回転体であるため、回転中の内歯車16は、その重量バランスが不均一となる。また、内歯部19,20と外歯部13,14の噛み合い位置は円周方向で刻々と変化する。以上の要因から、偏心回転体である内歯車16、さらには針状ころ軸受21は偏荷重を受けて振れ回ろうとする。この振れ回りは、図6に比較例として示す電動アクチュエータ1’のように、支持部材15の軸方向一方側のみが軸受17で支持されている場合に特に顕著なものとなることが明らかになった。以下にその理由を述べる。 By the way, in the electric actuator according to the present embodiment, since the internal gear 16 is an eccentric rotating body that performs the above-described eccentric rotational movement, the weight balance of the rotating internal gear 16 becomes uneven. Further, the meshing positions of the internal teeth 19 and 20 and the external teeth 13 and 14 change in the circumferential direction every moment. From the above factors, the internal gear 16 which is an eccentric rotating body, and further, the needle roller bearing 21 receives a biased load and tries to swing. It becomes clear that this swinging becomes particularly remarkable when only one axial side of the support member 15 is supported by the bearing 17 as in the electric actuator 1 ′ shown as a comparative example in FIG. The The reasons are described below.
 本実施形態の電動アクチュエータ1では、偏心回転運動を行う内歯車16を軸受で直接支持することはスペース的に困難であるため、内歯車16は針状ころ軸受21を介して支持部材15により間接的に支持されている。しかしながら、比較例の電動アクチュエータ1’のように、支持部材15の軸方向一方側のみを軸受17で支持すると、支持部材15が片持ち梁状態となるため、内歯車16からの偏荷重を支持部材15で安定して支持することができない。そのため、内歯車16に振れ回りが発生し、これが内歯車16の周辺部材(支持部材15、出力回転体3等)に伝播して、フリクションの増大、噛み込み、あるいは振動・騒音等が発生するおそれがある。また、シャフト7のミスアライメントを招くおそれもある。 In the electric actuator 1 of the present embodiment, it is difficult in space to directly support the internal gear 16 performing eccentric rotational movement by bearings, so the internal gear 16 is indirectly connected by the support member 15 via the needle roller bearing 21. Are supported. However, as in the case of the electric actuator 1 'of the comparative example, when only one axial side of the support member 15 is supported by the bearing 17, the support member 15 is in a cantilevered state, so that the unbalanced load from the internal gear 16 is supported. It can not be stably supported by the member 15. Therefore, a whirling of the internal gear 16 is generated, which propagates to peripheral members of the internal gear 16 (the support member 15, the output rotary body 3, etc.), causing an increase in friction, biting, or generation of vibration or noise. There is a fear. In addition, there is a possibility that the shaft 7 may be misaligned.
 また、図6の比較例において、支持部材15の軸方向他方側(図6の右側)をスペース面で有利なすべり軸受で支持することも考えられるが、かかる構成では、すべり軸受にラジアル軸受隙間が存在するため、支持部材15と入力回転体2との間に半径方向の相対移動が許容される。そのため、内歯車16、支持部材1、出力回転体3等の振れ回りを規制する効果が不十分となる。 In the comparative example of FIG. 6, it is also conceivable to support the other axial side (right side in FIG. 6) of the support member 15 with the advantageous slide bearing in the space surface. Therefore, relative relative movement between the support member 15 and the input rotary body 2 is permitted. Therefore, the effect of restricting the swinging of the internal gear 16, the support member 1, the output rotary body 3 and the like becomes insufficient.
 以上の問題点に鑑み、本実施形態では、図1に示すように、支持部材14を、内歯車16を挟む軸方向両側に配置した一対の転がり軸受17,18で支持し、かつ転がり軸受17,18のそれぞれに予圧を付与している。かかる構成から、偏荷重に対する支持剛性が増大するため、支持部材15自身の振れ回りが抑制される。また、偏心回転体としての内歯車16、さらには針状ころ軸受21の姿勢が支持部材15で拘束されるため、それらの振れ回りを防止することができ、さらに出力回転体3の振れ回りも防止することができる。このように減速機5の各構成要素に対する支持剛性が向上するため、フリクションの増大、噛み込み、振動・騒音、シャフト7のミスアライメント等の問題を回避することができ、電動アクチュエータ1の動作を安定化させることができる。 In view of the above problems, in the present embodiment, as shown in FIG. 1, the support member 14 is supported by a pair of rolling bearings 17 and 18 disposed on both sides in the axial direction sandwiching the internal gear 16 and the rolling bearing 17 , 18 are preloaded. From such a configuration, since the support rigidity against the unbalanced load is increased, the swinging of the support member 15 itself is suppressed. Further, since the postures of the internal gear 16 as the eccentric rotating body and the needle roller bearing 21 are restrained by the support member 15, it is possible to prevent their swinging, and also the swinging of the output rotating body 3. It can be prevented. Thus, since the support rigidity for each component of the reduction gear 5 is improved, problems such as increase in friction, biting, vibration / noise, misalignment of the shaft 7 and the like can be avoided. It can be stabilized.
 転がり軸受17,18に予圧を付与する予圧付与部材としては、予圧量管理の容易性を考慮して、図1に示すように、ナット25を使用するのが好ましい。具体的にはシャフト7の軸端に雄ねじ部7aを設け、この雄ねじ部7aにナット25を螺合させる。ナット25の座面は、出力回転体3の端面に当接させる。ナット25を締め込むことで、その締め付け力がシャフト7の肩部7bから、入力回転体2側の深溝玉軸受10、入力回転体2、入力回転体2側の転がり軸受18、支持部材15、出力回転体3側の転がり軸受17、および静止部材であるケーシング6に伝播し、各転がり軸受17,18に予圧が付与される。予圧付与に際しては、各転がり軸受17,18の転動体(ボール)を弾性変形させ、アキシャル軸受隙間およびラジアルアキシャル隙間の双方を負にするのが好ましい。正確な予圧量管理がそれほど重視されない場合等には、シャフト7の外周面に止め輪を装着し、この止め輪を出力回転体3の端面に当接させることで、転がり軸受17,18に予圧を付与してもよい。 As a preload applying member for applying a preload to the rolling bearings 17 and 18, it is preferable to use a nut 25 as shown in FIG. 1 in consideration of the ease of control of the preload amount. Specifically, a male screw 7a is provided at the axial end of the shaft 7, and a nut 25 is screwed into the male screw 7a. The bearing surface of the nut 25 is brought into contact with the end face of the output rotary body 3. By tightening the nut 25, the tightening force from the shoulder 7 b of the shaft 7 is the deep groove ball bearing 10 on the input rotary body 2 side, the input rotary body 2, the rolling bearing 18 on the input rotary body 2 side, the support member 15, It propagates to the rolling bearing 17 on the side of the output rotary body 3 and the casing 6 which is a stationary member, and a preload is applied to each of the rolling bearings 17 and 18. When applying a preload, it is preferable to elastically deform the rolling elements (balls) of the rolling bearings 17 and 18 so as to make both the axial bearing gap and the radial axial gap negative. In the case where accurate preload amount management is not so important, etc., a snap ring is mounted on the outer peripheral surface of the shaft 7 and this snap ring is brought into contact with the end face of the output rotary body 3 to preload the rolling bearings 17 and 18. May be given.
 予圧付与を確実に行えるように、支持部材15を支持する転がり軸受17,18として接触角(図1中に一点鎖線で示す)を有するアンギュラ玉軸受を用いるのが好ましい。この時、アンギュラ玉軸受17,18は、外輪の背面同士を対向させた背面配列で配置する。なお、予圧付与を行えるように、入力回転体2とすべり軸受9の間、出力回転体3とすべり軸受9の間、出力回転体2と支持部材15の間、支持部材15とケーシング6の間等には、それぞれ軸方向隙間を設ける。また、内歯車16の軸方向両側に、その軸方向移動が許容されるように軸方向隙間を設ける。 It is preferable to use an angular ball bearing having a contact angle (indicated by an alternate long and short dash line in FIG. 1) as the rolling bearings 17 and 18 for supporting the support member 15 so that the preload can be reliably applied. At this time, the angular ball bearings 17 and 18 are arranged in a back face arrangement in which the back faces of the outer rings are opposed to each other. In addition, between the input rotary body 2 and the slide bearing 9, between the output rotary body 3 and the slide bearing 9, between the output rotary body 2 and the support member 15, and between the support member 15 and the casing 6 so that preload can be applied. Etc., respectively, provide an axial gap. Further, axial gaps are provided on both axial sides of the internal gear 16 so that axial movement thereof is permitted.
 電動アクチュエータ1のコンパクト化のため、入力回転体2と支持部材15は軸方向および径方向で対面させ、両方向で互いに極力接近させる必要がある。同様の関係は、支持部材15とケーシング6の間にも求められる。かかる要請に対応するため、本実施形態では、図1に示すように、転がり軸受に通常使用される軌道輪を省略し、支持部材15を支持する転がり軸受17,18の外側軌道面(第一軌道面)17a,18aを支持部材15の内周面に直接形成すると共に、内側軌道面17b、18b(第二軌道面)をケーシング6の外周面と入力回転体2(中径部2c)の外周面に直接形成している。かかる構成から、電動アクチュエータ1の小型化を図ることができる。 In order to make the electric actuator 1 compact, it is necessary to make the input rotary body 2 and the support member 15 face in the axial direction and in the radial direction, and to make them as close as possible to each other in both directions. A similar relationship is also sought between the support member 15 and the casing 6. In order to respond to such a demand, in the present embodiment, as shown in FIG. 1, the races normally used for rolling bearings are omitted, and the outer raceway surfaces of the rolling bearings 17 and 18 supporting the support member 15 (first The raceway surfaces 17a and 18a are formed directly on the inner peripheral surface of the support member 15, and the inner raceway surfaces 17b and 18b (second raceway surface) are formed on the outer peripheral surface of the casing 6 and the input rotary body 2 (middle diameter portion 2c). It is directly formed on the outer peripheral surface. From this configuration, the electric actuator 1 can be miniaturized.
 なお、ケーシング6を樹脂成型品とする場合は、出力回転体3側の転がり軸受17の少なくとも内側軌道面17bを鋼等の金属材料で形成し、内側軌道面17bにおける転動疲労寿命等を確保するのが好ましい。この場合、内側軌道面17bを含む金属材料部分は、樹脂製のケーシング6に対してインサート成形等の手段で固定する。もちろん、ケーシング6全体を金属材料で形成しても構わない。 When the casing 6 is a resin molded product, at least the inner raceway surface 17b of the rolling bearing 17 on the output rotating body 3 side is formed of a metal material such as steel, and the rolling fatigue life and the like at the inner raceway surface 17b is secured. It is preferable to do. In this case, the metal material portion including the inner raceway surface 17b is fixed to the resin casing 6 by means such as insert molding. Of course, the entire casing 6 may be formed of a metal material.
 図1に示すように、支持部材15を支持する転がり軸受17,18のボールPCD(D1,D2:転動体PCD)は、異なる大きさにするのが好ましい。これにより、支持部材15を支持する転がり軸受17,18間の軸受スパンが実質的に拡大するため、支持部材15に対する支持剛性を高めることができる。特に出力回転体3側の転がり軸受17のボールPCD(D2)を入力回転体2側の転がり軸受のボールPCD(D1)よりも大きくすることにより、出力回転体3側の転がり軸受17の内径側を、支持部材15や軸受22の収容空間として活用することが可能となる。従って、電動アクチュエータ1のより一層の小型化を図ることができる。 As shown in FIG. 1, it is preferable that the balls PCD (D1, D2: rolling elements PCD) of the rolling bearings 17, 18 supporting the support member 15 have different sizes. As a result, the bearing span between the rolling bearings 17 and 18 supporting the support member 15 is substantially expanded, so that the support rigidity to the support member 15 can be enhanced. In particular, by making the ball PCD (D2) of the rolling bearing 17 on the output rotating body 3 side larger than the ball PCD (D1) of the rolling bearing on the input rotating body 2 side, the inner diameter side of the rolling bearing 17 on the output rotating body 3 side Can be used as a housing space for the support member 15 and the bearing 22. Therefore, the size of the electric actuator 1 can be further reduced.
 次に、本発明に係る電動アクチュエータを、可変バルブタイミング装置に適用した場合の動作を説明する。 Next, the operation when the electric actuator according to the present invention is applied to a variable valve timing device will be described.
 可変バルブタイミング装置として使用する場合、電動アクチュエータ1において、図1に二点鎖線で示すように、入力回転体2にエンジンから駆動力が伝達されるスプロケット23が一体に設けられる(図2参照)。また、シャフト7は、エンジンの吸気バルブおよび排気バルブの少なくとも一方を駆動するカムシャフトとして用いる。それ以外は、上記実施形態に係る電動アクチュエータとほぼ同様の構成である。 When used as a variable valve timing device, in the electric actuator 1, as shown by a two-dot chain line in FIG. 1, a sprocket 23 to which the driving force is transmitted from the engine is integrally provided to the input rotating body 2 (see FIG. 2) . Further, the shaft 7 is used as a camshaft for driving at least one of an intake valve and an exhaust valve of the engine. Other than that, the configuration is substantially the same as that of the electric actuator according to the above embodiment.
 この電動アクチュエータ1において、エンジンが始動し、クランクシャフトからタイミングチェーンを介してスプロケット23に駆動力が伝達された場合は、カムシャフト7がスプロケット23と同期して回転する。すなわち、この場合、電動モータ部4によって減速機5は駆動されず、入力回転体2と内歯車16、内歯車16と出力回転体3とが、互いの係合を維持しながら回転することで、カムシャフト7はスプロケット23と同期して回転する。 In the electric actuator 1, when the engine is started and the driving force is transmitted from the crankshaft to the sprocket 23 through the timing chain, the camshaft 7 rotates in synchronization with the sprocket 23. That is, in this case, the reduction gear 5 is not driven by the electric motor unit 4, and the input rotating body 2 and the internal gear 16, and the internal gear 16 and the output rotating body 3 rotate while maintaining mutual engagement. The camshaft 7 rotates in synchronization with the sprocket 23.
 その後、エンジンがアイドル運転などの低回転域に移行し、カムシャフト7がエンジンの吸気バルブを駆動させる場合、公知の手段、例えば、電子制御などによって、電動モータ部4のロータ12を、スプロケット22の回転速度よりも相対的に遅く又は速く回転させる。 Thereafter, when the engine shifts to a low rotation range such as idle operation and the camshaft 7 drives the intake valve of the engine, the rotor 12 of the electric motor unit 4 is sprocket 22 by known means, for example, electronic control. Relatively slower or faster than the rotation speed of.
 この相対回転の結果、上述の減速機5の動作で、出力回転体3が入力回転体2に対して減速回転し、スプロケット22に対するカムシャフト7の回転位相差が変更される。これにより、アイドル運転時のエンジンの回転の安定化と燃費の向上が図れる。また、アイドル状態からエンジンの運転が通常運転に移行し、例えば、高回転時になった場合、スプロケット23に対する電動モータ部4の相対回転の速度差を大きくすることで、スプロケット23に対するカムシャフト7の回転位相差を高回転に適した回転位相差に変更することができ、エンジンの高出力化を図ることが可能である。 As a result of this relative rotation, the output rotor 3 is decelerated and rotated with respect to the input rotor 2 by the operation of the above-described reduction gear 5, and the rotational phase difference of the camshaft 7 with respect to the sprocket 22 is changed. As a result, the rotation of the engine during idle operation can be stabilized and fuel consumption can be improved. Further, when the operation of the engine shifts from the idle state to the normal operation, for example, at the time of high rotation, the speed difference of the relative rotation of the electric motor portion 4 with respect to the sprocket 23 is increased. The rotational phase difference can be changed to a rotational phase difference suitable for high rotation, and it is possible to achieve high output of the engine.
 このように、本発明に係る電動アクチュエータを可変バルブタイミング装置に適用することで、エンジンの運転状態に応じてスプロケットに対するカムシャフトの回転位相差を変化させ、バルブの開閉タイミングを変更することが可能である。また、本発明に係る電動アクチュエータを採用することで、小型で搭載性に優れる可変バルブタイミング装置を提供することが可能となる。なお、本発明に係る電動アクチュエータは、可変バルブタイミング装置に限らず、入力側と出力側の同期回転と、入力側と出力側の回転位相差を持った回転とを切り替えることが必要とされる他の装置(例えばパワーステアリングシステム)に対しても適用可能である。 As described above, by applying the electric actuator according to the present invention to the variable valve timing device, it is possible to change the opening / closing timing of the valve by changing the rotational phase difference of the camshaft with respect to the sprocket according to the operating condition of the engine. It is. Moreover, by adopting the electric actuator according to the present invention, it is possible to provide a variable valve timing device which is compact and excellent in mountability. The electric actuator according to the present invention is not limited to the variable valve timing device, and is required to switch between the synchronous rotation on the input side and the output side and the rotation having a rotational phase difference on the input side and the output side. The present invention is also applicable to other devices (for example, a power steering system).
 以上に述べた本願発明の構成は、減速機5として、出力回転体3の中心Oに対して偏心回転運動を行う偏心回転体を備える電動アクチュエータに広く適用することができる。図7~図9に基づいて、この種の偏心回転体を有する他の減速機5を備えた電動アクチュエータを説明する。なお、図7は、電動アクチュエータの縦断面図であり、図8は、図7におけるC-C線矢視断面図、図9は、図7におけるD-D線矢視断面図である。なお、図7では、支持部材15の外径側に配置される電動モータ部4の図示を省略している。 The configuration of the present invention described above can be widely applied to an electric actuator including an eccentric rotating body that performs eccentric rotational movement with respect to the center O of the output rotating body 3 as the reduction gear 5. Based on FIGS. 7 to 9, an electric actuator provided with another speed reducer 5 having such an eccentric rotating body will be described. 7 is a longitudinal sectional view of the electric actuator, FIG. 8 is a sectional view taken along the line CC in FIG. 7, and FIG. 9 is a sectional view taken along the line DD in FIG. In FIG. 7, the electric motor unit 4 disposed on the outer diameter side of the support member 15 is not shown.
 本実施形態に係る電動アクチュエータは、上記実施形態に係る電動アクチュエータとは減速機の構成が異なる。それ以外は基本的に同様の構成である。 The electric actuator according to the present embodiment differs from the electric actuator according to the above embodiment in the configuration of the reduction gear. The other configuration is basically the same.
 図8及び図9に示すように、減速機5は、入力回転体2の外周面に複数の歯(突起)が設けられた第一外歯部31と、出力回転体3の外周面に複数の歯(突起)が設けられた第二外歯部32と、ロータ12と一体に回転する筒状の支持部材15と、支持部材15の内周に軸受部材としての針状ころ軸受21を介して配置された円筒部材33と、円筒部材33の内周面と第一外歯部31との間に配置された複数の第一ローラ34と、円筒部材33の内周面と第二外歯部32との間に配置された複数の第二ローラ35と、第一ローラ34及び第二ローラ35を回転可能に保持する保持器36とを備える。 As shown in FIGS. 8 and 9, the reduction gear 5 has a plurality of first outer teeth 31 provided with a plurality of teeth (projections) on the outer peripheral surface of the input rotating body 2 and a plurality of outer peripheral surfaces of the output rotating body 3. Second external teeth 32 provided with the teeth (protrusions), a cylindrical support member 15 that rotates integrally with the rotor 12, and a needle roller bearing 21 as a bearing member on the inner periphery of the support member 15 And the plurality of first rollers 34 disposed between the inner peripheral surface of the cylindrical member 33 and the first external teeth 31, the inner peripheral surface of the cylindrical member 33 and the second external teeth A plurality of second rollers 35 disposed between the portion 32 and a holder 36 rotatably holding the first roller 34 and the second roller 35.
 第一外歯部31及び第二外歯部32は、それぞれ複数の歯が周方向に等間隔に配置され、各歯の間は曲線状の歯溝が形成されている。第一外歯部31の歯数と第二外歯部32の歯数とは異なる数に設定されている。 The first external teeth 31 and the second external teeth 32 have a plurality of teeth arranged at equal intervals in the circumferential direction, and curved tooth gaps are formed between the teeth. The number of teeth of the first external teeth 31 and the number of teeth of the second external teeth 32 are set to different numbers.
 保持器36は、円筒部材33と第一外歯部31との間、円筒部材33と第二外歯部32との間に、回転可能に配置され、軸方向に二列に形成されたポケットのうちの一方に第一ローラ34が収容され、他方に第二ローラ35が1つずつ収容されている。また、各ローラ34,35は、ポケット内で径方向に移動可能に保持されている。 The cage 36 is rotatably disposed between the cylindrical member 33 and the first external gear 31 and between the cylindrical member 33 and the second external gear 32, and formed in two rows in the axial direction. The first roller 34 is accommodated in one of them, and the second roller 35 is accommodated one by one in the other. Also, each roller 34, 35 is held movably in the radial direction in the pocket.
 各ローラ34,35は、円筒部材33の滑らかに形成された内周面に対して転動可能に配置されている。ここで、円筒部材33は、入力回転体2及び出力回転体3の各中心軸に対して偏心する支持部材15(小径筒部15a)の内周面に針状ころ軸受21を介して配置されているため、円筒部材33の内周面も、入力回転体2及び出力回転体3の各中心軸に対して偏心して配置されている。従って、図8及び図9に示すように、円筒部材33の内周面上に並ぶ各ローラ34,35の中心軸を通る円の中心Q1,Q2も入力回転体2及び出力回転体3の各中心軸Oに対して径方向に距離F偏心している。このため、第一ローラ34及び第二ローラ35は、それぞれの軌道の周方向の一部の箇所(図8及び図9の上側)において対向する外歯部(第一外歯部31又は第二外歯部32)の歯溝に対して接近して係合する位置(歯溝内に入り込んだ位置)に配置され、これとは反対側の箇所(図8及び図9の下側)において対向する外歯部の歯溝に対して離間し係合しない位置に配置されている。 The rollers 34 and 35 are disposed rollably on the smooth inner surface of the cylindrical member 33. Here, the cylindrical member 33 is disposed via the needle roller bearing 21 on the inner peripheral surface of the support member 15 (small diameter cylindrical portion 15a) which is eccentric with respect to the central axes of the input rotating body 2 and the output rotating body 3 Because of this, the inner circumferential surface of the cylindrical member 33 is also disposed eccentrically with respect to the central axes of the input rotating body 2 and the output rotating body 3. Therefore, as shown in FIGS. 8 and 9, the centers Q1 and Q2 of the circles passing through the central axes of the rollers 34 and 35 aligned on the inner peripheral surface of the cylindrical member 33 are also each of the input rotating body 2 and the output rotating body 3 A distance F is offset in the radial direction with respect to the central axis O. For this reason, the first roller 34 and the second roller 35 have external teeth (the first external teeth 31 or the second external teeth 31 or 32) facing each other at a part (upper side in FIGS. 8 and 9) in the circumferential direction of each track. It is disposed at a position (into the tooth groove) in close engagement with the tooth groove of the external tooth portion 32), and is opposed at the opposite point (the lower side of FIGS. 8 and 9) It is arrange | positioned in the position which is separated and engaged with the tooth space of the external tooth part which does
 電動モータ部4に通電されず、電動モータ部4から減速機5へ駆動力が供給されない状態では、外部からの駆動力によって入力回転体2が回転駆動すると、入力回転体2の回転が第一ローラ34、保持器36、第二ローラ35を介して出力回転体3に伝達されることで、出力回転体3は入力回転体2と同期して回転する。すなわち、入力回転体2に設けられた第一外歯部31と第一ローラ34、出力回転体3に設けられた第二外歯部32と第二ローラ35とが、周方向の一部の箇所において互いに係合し、さらに第一ローラ34と第二ローラ35とが保持器36によって保持されているため、入力回転体2が回転すると、これらの係合関係を維持しながら入力回転体2、第一ローラ34、第二ローラ35、保持器36及び出力回転体3が同期して回転する。 In the state where the electric motor unit 4 is not energized and the driving force is not supplied from the electric motor unit 4 to the reduction gear 5, when the input rotating body 2 is rotationally driven by the external driving force, the rotation of the input rotating body 2 is first By being transmitted to the output rotary body 3 via the roller 34, the holder 36, and the second roller 35, the output rotary body 3 rotates in synchronization with the input rotary body 2. That is, the first external teeth 31 and the first roller 34 provided on the input rotary body 2 and the second external teeth 32 and the second roller 35 provided on the output rotary body 3 are parts of the circumferential direction. Since the first roller 34 and the second roller 35 are held by the retainer 36, they are engaged with each other at the point, so that when the input rotary body 2 rotates, the input rotary body 2 is maintained while maintaining the engagement relationship. The first roller 34, the second roller 35, the holder 36, and the output rotor 3 rotate in synchronization.
 これに対して、支持部材15の外径側に配置された電動モータ部(図示省略)に通電されると、電動モータ部の駆動力により支持部材15が電動モータ部のローラと一体に回転する。これに伴い、第一ローラ34及び第二ローラ35が入力回転体2及び出力回転体3に対して径方向に往復運動する。このとき、第一ローラ34が入力回転体2の第一外歯部31の歯溝に沿って回転しながら隣の歯溝へ移動することで、支持部材15が1回転するごとに、保持器36が第一外歯部31の一歯分ずつ周方向に移動する。これにより、保持器36が回転駆動する入力回転体2に対して減速されて回転する。 On the other hand, when the electric motor (not shown) disposed on the outer diameter side of the support member 15 is energized, the support member 15 rotates integrally with the roller of the electric motor by the driving force of the electric motor. . Along with this, the first roller 34 and the second roller 35 reciprocate in the radial direction with respect to the input rotating body 2 and the output rotating body 3. At this time, the first roller 34 rotates along the tooth groove of the first external gear 31 of the input rotary body 2 and moves to the next tooth groove while moving the support member 15 every rotation. 36 move in the circumferential direction by one tooth of the first external gear 31. As a result, the holder 36 is decelerated and rotated with respect to the input rotary body 2 that is rotationally driven.
 また、保持器36が回転すると、保持器36に保持されている第二ローラ35も回転する。これと同時に、第二ローラ35は上記支持部材15の回転に伴う径方向の往復運動もするので、第二ローラ35は第二外歯部32の歯溝に沿って回転しながら隣の歯溝へ移動する。このとき、第二ローラ35が歯溝の壁を押すことで、第二外歯部32を有する出力回転体3が周方向の力を受け回転する。これにより、出力回転体3は、支持部材15が1回転するごとに、保持器36に対して第二外歯部32の一歯分ずつ回転する。 In addition, when the holder 36 rotates, the second roller 35 held by the holder 36 also rotates. At the same time, since the second roller 35 reciprocates in the radial direction along with the rotation of the support member 15, the second roller 35 rotates along the tooth groove of the second external gear portion 32 while the next tooth groove is rotated. Move to At this time, when the second roller 35 pushes the wall of the tooth groove, the output rotary body 3 having the second external teeth 32 receives a circumferential force and rotates. Thereby, the output rotary body 3 rotates one tooth of the second external gear 32 with respect to the holder 36 each time the support member 15 makes one rotation.
 かかる構成の減速機5において、第一ローラ34および第二ローラ35は、入力回転体2および出力回転体3の回転軸Oに対する偏心回転運動を行う偏心回転体として機能する。かかる減速機5においても、図1~図4に示す実施形態で述べた各構成を適用することにより、上記と同様の効果が得られる。例えば、図7に示すように、支持部材15を一対の転がり軸受17,18で支持し、転がり軸受17,18のそれぞれに予圧を付与することにより、支持部材15に対する支持剛性が大きくして、電動アクチュエータの作動を安定化させることができる。 In the reduction gear 5 having such a configuration, the first roller 34 and the second roller 35 function as an eccentric rotating body that performs eccentric rotational movement with respect to the rotation axis O of the input rotating body 2 and the output rotating body 3. Also in the reduction gear 5, the same effects as described above can be obtained by applying the configurations described in the embodiment shown in FIGS. For example, as shown in FIG. 7, by supporting the support member 15 with a pair of rolling bearings 17 and 18 and applying a preload to each of the rolling bearings 17 and 18, the support rigidity for the support member 15 is increased, The operation of the electric actuator can be stabilized.
 以上、本発明に係る電動アクチュエータの実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことである。 As mentioned above, although the embodiment of the electric actuator concerning the present invention was described, the present invention is not limited at all to the above-mentioned embodiment, and within the range which does not deviate from the gist of the present invention, it can carry out with various forms. Of course it is.
1   電動アクチュエータ
2   入力回転体
3   出力回転体
4   電動モータ部
5   減速機
6   ケーシング(静止部材)
7   シャフト(出力軸)
11  ステータ
12  ロータ
13  第一外歯部
14  第二外歯部
15  支持部材
16  内歯車(偏心回転体)
17  転がり軸受
17a 第一軌道面
17b 第二軌道面
18  転がり軸受
18a 第一軌道面
18b 第二軌道面
19  第一内歯部
20  第二内歯部
21  針状ころ軸受(軸受)
23  スプロケット
31  第一外歯部
25  ナット(予圧付与部材)
32  第二外歯部
33  円筒部材
34  第一ローラ(偏心回転体)
35  第二ローラ(偏心回転体)
36  保持器
Reference Signs List 1 electric actuator 2 input rotary body 3 output rotary body 4 electric motor unit 5 reduction gear 6 casing (stationary member)
7 shaft (output shaft)
DESCRIPTION OF SYMBOLS 11 Stator 12 Rotor 13 1st external gear part 14 2nd external gear part 15 Support member 16 Internal gear (eccentric rotary body)
17 rolling bearing 17a first raceway surface 17b second raceway surface 18 rolling bearing 18a first raceway surface 18b second raceway surface 19 first internal gear 20 second internal gear 21 needle roller bearing (bearing)
23 Sprocket 31 first external gear 25 nut (preload member)
32 second external gear 33 cylindrical member 34 first roller (eccentric rotating body)
35 Second roller (eccentric rotating body)
36 Retainer

Claims (10)

  1.  電動モータ部と、静止部材と、前記電動モータ部の回転を伝達する減速機と、外部から駆動力が入力される入力回転体と、前記減速機に連結され、前記入力回転体に対して相対回転可能な出力回転体とを備えた電動アクチュエータにおいて、
     前記減速機が、前記出力回転体の中心に対して偏心回転運動を行う偏心回転体と、前記電動モータ部に回転駆動され、前記偏心回転体を支持する支持部材とを備え、
     前記支持部材を一対の転がり軸受で支持し、一対の転がり軸受のそれぞれに予圧を付与したことを特徴とする電動アクチュエータ。
    An electric motor unit, a stationary member, a reduction gear for transmitting the rotation of the electric motor unit, an input rotating body to which a driving force is input from the outside, and the reduction gear connected to the input rotating body In an electric actuator provided with a rotatable output rotating body,
    The reduction gear comprises: an eccentric rotating body performing eccentric rotational movement with respect to a center of the output rotating body; and a support member which is rotationally driven by the electric motor unit and supports the eccentric rotating body.
    An electric actuator characterized in that the support member is supported by a pair of rolling bearings, and a preload is applied to each of the pair of rolling bearings.
  2.  前記転がり軸受が第一軌道面および第二軌道面を有し、前記一対の転がり軸受の各第一軌道面を、前記支持部材に設けた請求項1に記載の電動アクチュエータ。 The electric actuator according to claim 1, wherein the rolling bearing has a first raceway surface and a second raceway surface, and the first raceway surfaces of the pair of rolling bearings are provided on the support member.
  3.  前記一対の転がり軸受のうち、一方の転がり軸受の第二軌道面を前記静止部材に設け、他方の転がり軸受の第二軌道面を前記入力回転体に設けた請求項2に記載の電動アクチュエータ。 The electric actuator according to claim 2, wherein a second raceway surface of one of the pair of rolling bearings is provided on the stationary member, and a second raceway surface of the other rolling bearing is provided on the input rotary body.
  4.  前記一対の転がり軸受としてアンギュラ玉軸受を用いた請求項1~3何れか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 3, wherein angular ball bearings are used as the pair of rolling bearings.
  5.  前記一対の転がり軸受に予圧を付与する予圧付与部材として、ナットを使用した請求項1~4何れか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 4, wherein a nut is used as a preload applying member for applying a preload to the pair of rolling bearings.
  6.  前記一対の転がり軸受の転動体PCDを異なる大きさにした請求項1~5何れか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 5, wherein rolling elements PCD of the pair of rolling bearings have different sizes.
  7.  前記電動モータ部のステータとロータからなるモータコアの内径側に、前記支持部材および前記偏心回転体を配置した請求項1~6何れか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 6, wherein the support member and the eccentric rotary body are disposed on an inner diameter side of a motor core including a stator and a rotor of the electric motor unit.
  8.  前記電動モータ部の内径側に、前記出力回転体と一体に回転する出力軸を配置し、前記出力軸の外径側に、前記出力軸と同軸に、かつ出力軸に対する相対回転を許容した入力回転体を配置した請求項1~7何れか1項に記載の電動アクチュエータ。 An output shaft that rotates integrally with the output rotor is disposed on the inner diameter side of the electric motor unit, and an input that allows relative rotation with respect to the output shaft coaxially with the output shaft on the outer diameter side of the output shaft The electric actuator according to any one of claims 1 to 7, wherein a rotating body is disposed.
  9.  前記減速機が、支持部材の回転で、前記入力回転体に対する前記出力回転体の回転位相差を変更する請求項1~6何れか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 6, wherein the reduction gear changes a rotational phase difference of the output rotary body with respect to the input rotary body by rotation of a support member.
  10.  スプロケットに対するカムシャフトの回転位相差を変更してバルブの開閉タイミングを変更する可変バルブタイミング装置に適用した請求項1から7のいずれか1項に記載の電動アクチュエータ。 The electric actuator according to any one of claims 1 to 7, applied to a variable valve timing device which changes the opening / closing timing of the valve by changing the rotational phase difference of the camshaft with respect to the sprocket.
PCT/JP2018/034872 2017-09-22 2018-09-20 Electric actuator WO2019059298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-182326 2017-09-22
JP2017182326A JP2019056459A (en) 2017-09-22 2017-09-22 Electric actuator

Publications (1)

Publication Number Publication Date
WO2019059298A1 true WO2019059298A1 (en) 2019-03-28

Family

ID=65811289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034872 WO2019059298A1 (en) 2017-09-22 2018-09-20 Electric actuator

Country Status (2)

Country Link
JP (1) JP2019056459A (en)
WO (1) WO2019059298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424245B2 (en) 2020-08-07 2024-01-30 株式会社デンソー Valve timing adjustment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394738B2 (en) * 2020-11-05 2023-12-08 住友重機械工業株式会社 reduction gear

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059519A (en) * 2013-09-19 2015-03-30 日立オートモティブシステムズ株式会社 Controller of variable valve device and variable valve system of internal combustion engine
JP2016211443A (en) * 2015-05-11 2016-12-15 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine and method of manufacturing valve timing control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059519A (en) * 2013-09-19 2015-03-30 日立オートモティブシステムズ株式会社 Controller of variable valve device and variable valve system of internal combustion engine
JP2016211443A (en) * 2015-05-11 2016-12-15 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine and method of manufacturing valve timing control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424245B2 (en) 2020-08-07 2024-01-30 株式会社デンソー Valve timing adjustment device

Also Published As

Publication number Publication date
JP2019056459A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6903490B2 (en) Electric actuator
EP2180210B1 (en) Reduction gear
JP5376288B2 (en) Variable valve timing device
JP6815852B2 (en) Rotational drive source for electric actuators and electric actuators
WO2019059298A1 (en) Electric actuator
JP5139209B2 (en) Variable valve timing device
JP2018100744A (en) Rotary driving source for electric actuator and electric actuator
CN113518873A (en) Electric actuator
WO2020184135A1 (en) Electric actuator
US11852049B2 (en) Electric actuator
JP2020150716A (en) Electric motor and electric actuator including the same
WO2021182019A1 (en) Electric actuator
WO2023276714A1 (en) Clutch actuator
WO2023276715A1 (en) Clutch actuator
JP2018155258A (en) Reduction gear
WO2023276720A1 (en) Clutch actuator
CN117581043A (en) Gear drive motor and clutch actuator using same
JP2020150665A (en) Electric actuator
WO2022118850A1 (en) Clutch actuator
CN116892594A (en) Eccentric swing type speed reducer
US20160053831A1 (en) One-way clutch device
JP2020143600A (en) Electric actuator
JP2010090850A (en) Variable valve timing device
JP2023007822A (en) clutch actuator
JP2023042273A (en) electric actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859684

Country of ref document: EP

Kind code of ref document: A1