WO2023276715A1 - Clutch actuator - Google Patents

Clutch actuator Download PDF

Info

Publication number
WO2023276715A1
WO2023276715A1 PCT/JP2022/024288 JP2022024288W WO2023276715A1 WO 2023276715 A1 WO2023276715 A1 WO 2023276715A1 JP 2022024288 W JP2022024288 W JP 2022024288W WO 2023276715 A1 WO2023276715 A1 WO 2023276715A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
housing
torque
drive cam
thrust bearing
Prior art date
Application number
PCT/JP2022/024288
Other languages
French (fr)
Japanese (ja)
Inventor
文規 鈴木
巧美 杉浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023276715A1 publication Critical patent/WO2023276715A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms

Definitions

  • the present disclosure relates to clutch actuators.
  • a clutch actuator is known that can change the state of a clutch that changes between a non-engaged state that cuts off torque transmission between two transmission parts.
  • the clutch actuator of Patent Document 1 has a torque cam that can change the state of the clutch between the engaged state and the disengaged state.
  • the torque cam is provided on one side of the electric motor in the axial direction, and converts rotary motion due to torque from the electric motor into translational motion, which is axial relative movement with respect to the housing.
  • the torque cam has an annular drive cam that rotates relative to the housing when torque is input from the electric motor.
  • the drive cam has a drive cam groove extending in the circumferential direction of the drive cam so that the cam rolling element can roll.
  • the clutch actuator of Patent Document 1 further includes a thrust bearing that receives an axial load from the torque cam.
  • the thrust bearing is provided on a pitch circle, which is a circle that passes through the center position of the drive cam in the drive cam groove in the radial direction, when viewed from the axial direction.
  • the thrust bearing is axially supported by the housing.
  • a rotor bearing that rotatably supports the rotor of the electric motor, a rotor, and a stator are provided so as to be positioned radially outside the thrust bearing when viewed from the axial direction of the thrust bearing.
  • An object of the present disclosure is to provide a compact clutch actuator.
  • the present disclosure provides an engagement state that allows transmission of torque between the first transmission portion and the second transmission portion, which are relatively rotatable, and the first transmission portion.
  • a clutch actuator used in a clutch device having a clutch whose state changes between a disengaged state and a disengaged state that interrupts transmission of torque between a housing, an electric motor, a torque cam, and a thrust bearing. Prepare.
  • An electric motor has a stator fixed to a housing and a rotor rotatable relative to the stator, and can output torque from the rotor when energized.
  • the torque cam is provided on one side of the electric motor in the axial direction, and converts rotary motion due to torque from the electric motor into translational motion, which is relative movement in the axial direction with respect to the housing, and changes the state of the clutch to engaged or disengaged. It can be changed to an engaged state.
  • the thrust bearing is annularly formed and receives axial loads from the torque cam.
  • the torque cam includes an annular drive cam that rotates relative to the housing when torque is input from the electric motor, a driven cam that moves relative to the housing in the axial direction when the drive cam rotates relative to the housing, and a drive cam. It has a cam rolling element that rolls with the driven cam.
  • the drive cam has a drive cam groove extending in the circumferential direction of the drive cam so that the cam rolling element can roll.
  • the thrust bearing is provided so that, when viewed from the axial direction, the radial center position of the thrust bearing is located radially inside the pitch circle, which is a circle passing through the radial center position of the drive cam in the drive cam groove. ing. Therefore, the diameter of the rotor bearing can be reduced compared to the conventional configuration in which the thrust bearing is provided on the pitch circle of the drive cam groove. As a result, the diameter of the electric motor can be reduced, and the size of the clutch actuator can be reduced.
  • FIG. 1 is a cross-sectional view showing a clutch actuator and a clutch device to which it is applied according to the first embodiment
  • FIG. 2 is a cross-sectional view showing a part of the clutch actuator and the clutch device according to the first embodiment
  • FIG. 3 is a cross-sectional view showing part of the clutch actuator according to the first embodiment
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view showing the drive cam of the clutch actuator according to the first embodiment
  • FIG. 6 is a plan view showing a driven cam of the clutch actuator according to the first embodiment
  • FIG. 7 is a cross-sectional view showing a part of the clutch actuator according to the second embodiment
  • FIG. 8 is a cross-sectional view showing part of the clutch actuator according to the third embodiment.
  • a clutch device to which the clutch actuator according to the first embodiment is applied is shown in FIGS.
  • a clutch device 1 is provided, for example, between an internal combustion engine and a transmission of a vehicle, and is used to allow or block transmission of torque between the internal combustion engine and the transmission.
  • the clutch device 1 includes a clutch actuator 10, a clutch 70, an electronic control unit (hereinafter referred to as "ECU") 100 as a “control section”, an input shaft 61 as a “first transmission section”, and an input shaft 61 as a “second transmission section”. output shaft 62 and the like.
  • ECU electronice control unit
  • the clutch actuator 10 includes a housing 12, an electric motor 20 as a "prime mover”, a rotor bearing 15, a speed reducer 30, a torque cam 2 as a “rotational translation part” or a “rolling element cam”, a thrust bearing 16, a state changing part 80, and the like. It has
  • the ECU 100 is a small computer having a CPU as computing means, ROM, RAM, etc. as storage means, and I/O etc. as input/output means.
  • the ECU 100 executes calculations according to programs stored in a ROM or the like based on information such as signals from various sensors provided in various parts of the vehicle, and controls operations of various devices and devices of the vehicle.
  • the ECU 100 executes the program stored in the non-transitional substantive recording medium. By executing this program, the method corresponding to the program is executed.
  • the ECU 100 can control the operation of the internal combustion engine based on information such as signals from various sensors.
  • the ECU 100 can also control the operation of an electric motor 20, which will be described later.
  • the input shaft 61 is connected to, for example, a drive shaft of an internal combustion engine (not shown) and is rotatable together with the drive shaft. That is, torque is input to the input shaft 61 from the drive shaft.
  • a vehicle equipped with an internal combustion engine is provided with a fixed body 11 (see FIG. 2).
  • the fixed body 11 is formed, for example, in a tubular shape and fixed to the engine room of the vehicle.
  • a ball bearing 141 is provided between the inner peripheral wall of the fixed body 11 and the outer peripheral wall of the input shaft 61 . Thereby, the input shaft 61 is supported by the fixed body 11 via the ball bearings 141 .
  • the housing 12 is provided between the inner peripheral wall of the fixed body 11 and the outer peripheral wall of the input shaft 61 .
  • the housing 12 has a housing inner cylindrical portion 121, a housing plate portion 122, a housing outer cylindrical portion 123, a seal groove portion 124, a housing step surface 125, a housing side spline groove portion 127, a housing hole portion 128, and the like. doing.
  • the housing inner cylindrical portion 121 is formed in a substantially cylindrical shape.
  • the housing plate portion 122 is formed in an annular plate shape so as to extend radially outward from the end portion of the housing inner cylindrical portion 121 .
  • the housing outer tubular portion 123 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the housing plate portion 122 to the same side as the housing inner tubular portion 121 .
  • the housing inner cylindrical portion 121, the housing plate portion 122, and the housing outer cylindrical portion 123 are integrally formed of metal, for example.
  • the housing 12 is formed in a hollow and flat shape as a whole.
  • the seal groove portion 124 is formed in an annular shape so as to be recessed radially inward from the outer peripheral wall of the housing inner cylindrical portion 121 .
  • the housing stepped surface 125 is formed in an annular planar shape between the seal groove portion 124 and the housing plate portion 122 so as to face the side opposite to the housing plate portion 122 .
  • the housing-side spline groove portion 127 is formed on the outer peripheral wall of the housing inner cylindrical portion 121 so as to extend in the axial direction of the housing inner cylindrical portion 121 .
  • a plurality of housing-side spline groove portions 127 are formed in the circumferential direction of the housing inner tubular portion 121 .
  • the housing hole portion 128 is formed so as to penetrate the housing plate portion 122 in the plate thickness direction.
  • the housing 12 is fixed to the fixed body 11 so that part of the outer wall abuts part of the wall surface of the fixed body 11 (see FIG. 2).
  • the housing 12 is fixed to the fixed body 11 by bolts (not shown) or the like.
  • housing 12 is provided coaxially with fixed body 11 and input shaft 61 .
  • coaxial is not limited to a coaxial state in which the two axes are exactly aligned, but also includes a slightly eccentric or tilted state (the same applies hereinafter).
  • a substantially cylindrical space is formed between the inner peripheral wall of the housing inner cylindrical portion 121 and the outer peripheral wall of the input shaft 61 .
  • the housing 12 has an accommodation space 120 as a "space”.
  • the accommodation space 120 is formed between the housing inner tubular portion 121 , the housing plate portion 122 and the housing outer tubular portion 123 .
  • the electric motor 20 is housed in the housing space 120 .
  • the electric motor 20 has a stator 21, a coil 22, a rotor 23, a magnet 230 as a "permanent magnet", a magnet cover 24, and the like.
  • the stator 21 has a stator yoke 211 and stator teeth 212 .
  • the stator 21 is made of laminated steel plates, for example.
  • Stator yoke 211 is formed in a substantially cylindrical shape.
  • Stator teeth 212 are formed integrally with stator yoke 211 so as to protrude radially inward from the inner peripheral wall of stator yoke 211 .
  • a plurality of stator teeth 212 are formed at equal intervals in the circumferential direction of stator yoke 211 .
  • Coil 22 is provided on each of stator teeth 212 .
  • the stator 21 is fixed to the housing 12 so that the outer peripheral wall of the stator yoke 211 fits into the inner peripheral wall of the housing outer cylindrical portion 123 .
  • the rotor 23 is made of, for example, iron-based metal.
  • the rotor 23 has a rotor main body 231 and a rotor tubular portion 232 .
  • the rotor main body 231 is formed in a substantially annular shape.
  • the rotor tubular portion 232 is formed to extend in a tubular shape from the outer edge of the rotor main body 231 .
  • the magnet 230 is provided on the outer peripheral wall of the rotor 23.
  • a plurality of magnets 230 are provided at equal intervals in the circumferential direction of the rotor 23 so that the magnetic poles alternate.
  • the magnet cover 24 is provided on the rotor 23 so as to cover the radially outer surface of the rotor 23 of the magnet 230 . More specifically, the magnet cover 24 is made of, for example, non-magnetic metal.
  • the clutch actuator 10 has a rotor bearing 15.
  • the rotor bearing 15 is provided on the housing plate portion 122 side with respect to the housing stepped surface 125 and radially outside the housing inner cylinder portion 121 .
  • the rotor bearing 15 has an inner ring 151, an outer ring 152, bearing balls 153 as "bearing rolling elements", and the like.
  • the inner ring 151 and the outer ring 152 are formed of metal, for example, in a cylindrical shape.
  • the outer ring 152 is provided radially outside the inner ring 151 .
  • the bearing ball 153 is spherically formed of metal, for example.
  • the bearing balls 153 are provided so as to be able to roll between the inner ring 151 and the outer ring 152 in an annular groove formed in the outer peripheral wall of the inner ring 151 and an annular groove formed in the inner peripheral wall of the outer ring 152 .
  • there is A plurality of bearing balls 153 are provided in the circumferential direction of inner ring 151 and outer ring 152 .
  • the bearing balls 153 roll between the inner ring 151 and the outer ring 152 so that the inner ring 151 and the outer ring 152 can rotate relative to each other.
  • the bearing balls 153 restrict relative axial movement between the inner ring 151 and the outer ring 152 .
  • the inner peripheral wall of the inner ring 151 abuts against the outer peripheral wall of the housing inner cylindrical portion 121, and one axial end face of the inner ring 151 is placed on the housing inner cylindrical portion 121 with a predetermined distance from the housing plate portion 122. is provided.
  • the rotor 23 is provided such that the inner peripheral wall of the rotor body 231 is fitted to the outer peripheral wall of the rotor bearing 15 . Thereby, the rotor bearing 15 supports the rotor 23 so as to be relatively rotatable with respect to the housing 12 .
  • the ECU 100 can control the operation of the electric motor 20 by controlling the electric power supplied to the coil 22 .
  • a rotating magnetic field is generated in the stator 21 and the rotor 23 rotates.
  • torque is output from the rotor 23 .
  • the electric motor 20 has a stator 21 and a rotor 23 that is rotatable relative to the stator 21, and can output torque from the rotor 23 when electric power is supplied.
  • the electric motor 20 is an inner rotor type brushless DC motor.
  • the clutch actuator 10 has a rotation angle sensor 104 .
  • the rotation angle sensor 104 is provided on the electric motor 20 so as to be positioned on the housing plate portion 122 side with respect to the coil 22 .
  • the rotation angle sensor 104 detects magnetic flux generated from a sensor magnet that rotates integrally with the rotor 23, and outputs a signal corresponding to the detected magnetic flux to the ECU 100. Accordingly, the ECU 100 can detect the rotation angle, rotation speed, etc. of the rotor 23 based on the signal from the rotation angle sensor 104 .
  • the ECU 100 also determines the relative rotation angle of the drive cam 40 with respect to the housing 12 and a driven cam 50 described later, and the relative rotation angle of the driven cam 50 and the state changer 80 with respect to the housing 12 and the drive cam 40, based on the rotation angle and rotation speed of the rotor 23 . A relative position in the axial direction and the like can be calculated.
  • the speed reducer 30 has a sun gear 31, a planetary gear 32, a carrier 33, a first ring gear 34, a second ring gear 35, and the like.
  • the sun gear 31 is provided so as to be coaxial with the rotor 23 and integrally rotatable.
  • the rotor 23 and the sun gear 31 are formed separately from different materials and arranged coaxially so as to be rotatable together.
  • the sun gear 31 has a sun gear base portion 310, a sun gear tooth portion 311 as a "tooth portion” and an “external tooth”, and a sun gear cylindrical portion 312.
  • the sun gear base portion 310 is formed of metal, for example, in a substantially annular shape.
  • Sun gear cylindrical portion 312 is formed integrally with sun gear base portion 310 so as to extend cylindrically from the outer edge of sun gear base portion 310 .
  • the sun gear tooth portion 311 is formed on the outer peripheral wall of the end portion of the sun gear tubular portion 312 opposite to the sun gear base portion 310 .
  • the sun gear 31 is provided so that the outer peripheral wall of the sun gear base portion 310 fits into the inner peripheral wall of the rotor tubular portion 232 . Accordingly, the sun gear 31 is supported by the rotor bearing 15 so as to be rotatable relative to the housing 12 together with the rotor 23 .
  • the torque of the electric motor 20 is input to the sun gear 31 that rotates integrally with the rotor 23 .
  • the sun gear 31 corresponds to the “input portion” of the speed reducer 30 .
  • a plurality of planetary gears 32 are provided along the circumferential direction of the sun gear 31, and can revolve in the circumferential direction of the sun gear 31 while meshing with the sun gear 31 and rotating. More specifically, the planetary gears 32 are formed of metal, for example, in a substantially cylindrical shape, and are provided in plurality at equal intervals in the circumferential direction of the sun gear 31 on the radially outer side of the sun gear 31 .
  • the planetary gear 32 has planetary gear teeth 321 as "teeth" and "external teeth”.
  • the planetary gear tooth portion 321 is formed on the outer peripheral wall of the planetary gear 32 so as to mesh with the sun gear tooth portion 311 .
  • the carrier 33 rotatably supports the planetary gear 32 and is rotatable relative to the sun gear 31 .
  • the carrier 33 has a carrier body 331 and pins 335 .
  • the carrier main body 331 is made of metal, for example, and is formed in a substantially annular plate shape.
  • the carrier body 331 is positioned between the coil 22 and the planetary gear 32 in the axial direction.
  • the pin 335 is made of metal, for example, and has a substantially columnar shape.
  • the pin 335 is provided such that its axial end is fixed to the carrier body 331 .
  • the speed reducer 30 has a planetary gear bearing 36.
  • the planetary gear bearing 36 is provided between the outer peripheral wall of the pin 335 and the inner peripheral wall of the planetary gear 32 .
  • the planetary gear 32 is rotatably supported by the pin 335 via the planetary gear bearing 36 .
  • the pin 335 is provided at the rotation center of the planetary gear 32 and supports the planetary gear 32 rotatably.
  • the planetary gear 32 and the pin 335 are axially movable relative to each other within a predetermined range via the planetary gear bearing 36 .
  • the planetary gear bearing 36 restricts the axial relative movement range between the planetary gear 32 and the pin 335 to a predetermined range.
  • the first ring gear 34 has a first ring gear tooth portion 341 which is a tooth portion that can mesh with the planetary gear 32 and is fixed to the housing 12 . More specifically, the first ring gear 34 is made of metal, for example, and has a substantially cylindrical shape. The first ring gear 34 is fixed to the housing 12 on the side opposite to the housing plate portion 122 with respect to the stator 21 so that the outer edge thereof fits into the inner peripheral wall of the housing outer cylinder portion 123 . Therefore, the first ring gear 34 cannot rotate relative to the housing 12 .
  • the first ring gear 34 is provided coaxially with the housing 12 , the rotor 23 and the sun gear 31 .
  • a first ring gear tooth portion 341 as a “tooth portion” and an “internal tooth” is formed on the inner peripheral wall of the first ring gear 34 so as to be able to mesh with one axial end side of the planetary gear tooth portion 321 of the planetary gear 32 . ing.
  • the second ring gear 35 has a second ring gear tooth portion 351 which is a tooth portion that can mesh with the planetary gear 32 and has a number of teeth different from that of the first ring gear tooth portion 341. ing. More specifically, the second ring gear 35 is made of metal, for example, and has a cylindrical shape.
  • the second ring gear 35 is provided coaxially with the housing 12, the rotor 23, and the sun gear 31.
  • the second ring gear tooth portion 351 as a “tooth portion” and an “internal tooth” is arranged at the first axial position of the second ring gear 35 so as to be able to mesh with the other axial end side of the planetary gear tooth portion 321 of the planetary gear 32 . It is formed on the inner peripheral wall of the end on the ring gear 34 side.
  • the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 . More specifically, the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 by the number obtained by multiplying the number of planetary gears 32 by an integer.
  • the planetary gear 32 needs to mesh normally without interference with the first ring gear 34 and the second ring gear 35, which have two different specifications at the same location. It is designed to shift and keep the center distance of each gear pair constant.
  • the sun gear 31 rotates, and the planetary gear tooth portion 321 of the planetary gear 32 meshes with the sun gear tooth portion 311 and the first ring gear tooth portion 341 and the second ring gear tooth portion 351. It revolves in the circumferential direction of the sun gear 31 while rotating.
  • the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 , the second ring gear 35 rotates relative to the first ring gear 34 .
  • the speed reducer 30 can reduce the torque of the electric motor 20 and output it.
  • the speed reducer 30 constitutes a 3k paradox planetary gear speed reducer.
  • the second ring gear 35 is formed separately from the drive cam 40 described later, and is provided so as to be rotatable together with the drive cam 40 .
  • the second ring gear 35 reduces the torque from the electric motor 20 and outputs it to the drive cam 40 .
  • the second ring gear 35 corresponds to the “output section” of the speed reducer 30 .
  • the torque cam 2 has a driving cam 40 as a "rotating part”, a driven cam 50 as a “translating part”, and a cam ball 3 as a “cam rolling element”.
  • the drive cam 40 has a drive cam main body 41, a drive cam specific shape portion 42, a drive cam plate portion 43, a drive cam outer cylindrical portion 44, a drive cam groove 400, and the like.
  • the drive cam main body 41 is formed in a substantially annular plate shape.
  • the drive cam specific shape portion 42 is formed to extend from the outer edge portion of the drive cam body 41 so as to be inclined with respect to the axis of the drive cam body 41 .
  • the drive cam plate portion 43 is formed in a substantially annular plate shape so as to extend radially outward from the end portion of the drive cam specific shape portion 42 opposite to the drive cam main body 41 .
  • the drive cam outer cylindrical portion 44 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the drive cam plate portion 43 to the side opposite to the drive cam specific shape portion 42 .
  • the drive cam main body 41, the drive cam specific shape portion 42, the drive cam plate portion 43, and the drive cam outer cylindrical portion 44 are integrally formed of metal, for example.
  • the drive cam groove 400 is formed to extend in the circumferential direction of the drive cam body 41 while being recessed from one end face of the drive cam body 41 on the drive cam specific shape portion 42 side to the other end face side.
  • the drive cam groove 400 is formed such that the depth from one end surface thereof changes in the circumferential direction of the drive cam main body 41 .
  • three drive cam grooves 400 are formed at equal intervals in the circumferential direction of the drive cam main body 41 .
  • the drive cam 40 has a drive cam body 41 located between the outer peripheral wall of the housing inner cylindrical portion 121 and the inner peripheral wall of the sun gear cylindrical portion 312 of the sun gear 31 , and the drive cam plate portion 43 and the carrier body 331 with respect to the planetary gear 32 . are provided between the housing inner tubular portion 121 and the housing outer tubular portion 123 so as to be located on opposite sides.
  • the drive cam 40 is rotatable relative to the housing 12 .
  • the second ring gear 35 is provided integrally with the drive cam 40 so that the inner peripheral wall of the end opposite to the end where the second ring gear teeth 351 are formed is fitted to the outer edge of the drive cam plate portion 43 . ing.
  • the second ring gear 35 is non-rotatable relative to the drive cam 40 . That is, the second ring gear 35 is provided so as to be integrally rotatable with the drive cam 40 as a "rotating portion". Therefore, when the torque from the electric motor 20 is reduced by the reduction gear 30 and output from the second ring gear 35 , the drive cam 40 rotates relative to the housing 12 . That is, the drive cam 40 rotates relative to the housing 12 when the torque output from the speed reducer 30 is input.
  • the driven cam 50 has a driven cam body 51, a driven cam specific shape portion 52, a driven cam plate portion 53, a cam-side spline groove portion 54, a driven cam groove 500, and the like.
  • the driven cam main body 51 is formed in a substantially annular plate shape.
  • the driven cam specific shape portion 52 is formed to extend from the outer edge portion of the driven cam body 51 so as to be inclined with respect to the axis of the driven cam body 51 .
  • the driven cam plate portion 53 is formed in a substantially annular plate shape so as to extend radially outward from the end portion of the driven cam specific shape portion 52 opposite to the driven cam main body 51 .
  • the driven cam main body 51, the driven cam specific shape portion 52, and the driven cam plate portion 53 are integrally formed of metal, for example.
  • the cam-side spline groove portion 54 is formed on the inner peripheral wall of the driven cam main body 51 so as to extend in the axial direction.
  • a plurality of cam-side spline groove portions 54 are formed in the circumferential direction of the driven cam main body 51 .
  • the driven cam 50 has a driven cam main body 51 located on the opposite side of the drive cam main body 41 from the rotor bearing 15 and radially inside the drive cam specific shape portion 42 and the drive cam plate portion 43 . 54 is provided for spline connection with the housing-side spline groove portion 127 . As a result, the driven cam 50 is non-rotatable relative to the housing 12 and is axially movable relative to the housing 12 .
  • the driven cam groove 500 is formed to extend in the circumferential direction of the driven cam body 51 while being recessed from one end face of the driven cam body 51 on the drive cam body 41 side to the other end face side.
  • the driven cam groove 500 is formed such that the depth from one end surface of the driven cam main body 51 varies in the circumferential direction.
  • three driven cam grooves 500 are formed at equal intervals in the circumferential direction of the driven cam main body 51 .
  • the cam ball 3 is spherically formed of metal, for example.
  • the cam balls 3 are provided to roll between the three drive cam grooves 400 and the three driven cam grooves 500 respectively. That is, a total of three cam balls 3 are provided.
  • the driving cam 40, the driven cam 50, and the cam ball 3 constitute the torque cam 2 as a “rolling cam”.
  • the drive cam 40 rotates relative to the housing 12 and the driven cam 50, the cam balls 3 roll along the groove bottoms of the drive cam groove 400 and the driven cam groove 500, respectively.
  • the drive cam groove 400 and the driven cam groove 500 are formed so that the depth changes in the circumferential direction of the drive cam 40 or the driven cam 50 . Therefore, when the drive cam 40 rotates relative to the housing 12 and the driven cam 50 by the torque output from the speed reducer 30, the cam ball 3 rolls in the drive cam groove 400 and the driven cam groove 500, and the driven cam 50 is driven. Axial relative movement or stroke relative to cam 40 and housing 12 .
  • the driven cam 50 has a plurality of driven cam grooves 500 formed on one end face so as to sandwich the cam ball 3 between the driven cam groove 400 and the driven cam groove 400 . doing.
  • the driven cam 50 moves axially relative to the drive cam 40 and the housing 12 when the drive cam 40 rotates relative to the housing 12 .
  • the driven cam 50 does not rotate relative to the housing 12 because the cam-side spline groove portion 54 is spline-connected to the housing-side spline groove portion 127 .
  • the drive cam 40 rotates relative to the housing 12, it does not move relative to the housing 12 in the axial direction.
  • the torque cam 2 is provided on one side of the electric motor 20 in the axial direction, and converts rotational motion due to torque from the electric motor 20 into translational motion, which is axial relative movement with respect to the housing 12 .
  • the clutch actuator 10 includes a return spring 55 and a return spring retainer 56 as "biasing members".
  • the return spring 55 is, for example, a coil spring, and is provided on the side of the driven cam body 51 opposite to the drive cam body 41 and radially outside the housing inner cylindrical portion 121 .
  • One end of the return spring 55 is in contact with the surface of the driven cam body 51 opposite to the drive cam body 41 .
  • the return spring retainer 56 has a retainer inner cylindrical portion 561 , a retainer plate portion 562 and a retainer outer cylindrical portion 563 .
  • the retainer inner cylindrical portion 561 is formed in a substantially cylindrical shape.
  • the retainer plate portion 562 is formed in an annular plate shape so as to extend radially outward from one end portion of the retainer inner cylindrical portion 561 .
  • the retainer outer tubular portion 563 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the retainer plate portion 562 toward the retainer inner tubular portion 561 side.
  • the retainer inner tubular portion 561, the retainer plate portion 562, and the retainer outer tubular portion 563 are integrally formed of metal, for example.
  • the return spring retainer 56 is fixed to the housing inner tubular portion 121 so that the inner peripheral wall of the retainer inner tubular portion 561 fits into the outer peripheral wall of the housing inner tubular portion 121 .
  • the other end of the return spring 55 is in contact with the retainer plate portion 562 between the retainer inner cylinder portion 561 and the retainer outer cylinder portion 563 .
  • the return spring 55 has a force extending in the axial direction. Therefore, the driven cam 50 is urged toward the drive cam main body 41 by the return spring 55 with the cam ball 3 sandwiched between the driven cam 50 and the drive cam 40 .
  • the output shaft 62 has a shaft portion 621, a plate portion 622, a cylindrical portion 623, and a friction plate 624 (see FIG. 2).
  • the shaft portion 621 is formed in a substantially cylindrical shape.
  • the plate portion 622 is formed integrally with the shaft portion 621 so as to extend radially outward in an annular plate shape from one end of the shaft portion 621 .
  • the cylindrical portion 623 is formed integrally with the plate portion 622 so as to extend in a substantially cylindrical shape from the outer edge portion of the plate portion 622 to the side opposite to the shaft portion 621 .
  • the friction plate 624 is formed in a substantially annular plate shape, and is provided on the end surface of the plate portion 622 on the cylinder portion 623 side. Here, the friction plate 624 cannot rotate relative to the plate portion 622 .
  • a clutch space 620 is formed inside the cylindrical portion 623 .
  • the end of the input shaft 61 passes through the housing inner cylindrical portion 121 and is located on the opposite side of the driven cam 50 to the drive cam 40 .
  • the output shaft 62 is provided coaxially with the input shaft 61 on the opposite side of the driven cam 50 from the drive cam 40 .
  • a ball bearing 142 is provided between the inner peripheral wall of the shaft portion 621 and the outer peripheral wall at the end of the input shaft 61 . Thereby, the output shaft 62 is supported by the input shaft 61 via the ball bearings 142 .
  • the input shaft 61 and the output shaft 62 are rotatable relative to the housing 12 .
  • the clutch 70 is provided between the input shaft 61 and the output shaft 62 in the clutch space 620 .
  • the clutch 70 has an inner friction plate 71 , an outer friction plate 72 and a locking portion 701 .
  • the inner friction plates 71 are formed in a substantially annular plate shape, and are provided in plurality so as to be aligned in the axial direction between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 .
  • the inner friction plate 71 is provided such that the inner edge thereof is spline-connected to the outer peripheral wall of the input shaft 61 . Therefore, the inner friction plate 71 is non-rotatable relative to the input shaft 61 and is axially movable relative to the input shaft 61 .
  • the outer friction plates 72 are formed in a substantially annular plate shape, and are provided in plurality so as to be aligned in the axial direction between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 .
  • the inner friction plates 71 and the outer friction plates 72 are alternately arranged in the axial direction of the input shaft 61 .
  • the outer friction plate 72 is provided so that its outer edge is spline-connected to the inner peripheral wall of the cylindrical portion 623 of the output shaft 62 . Therefore, the outer friction plate 72 is non-rotatable relative to the output shaft 62 and is axially movable relative to the output shaft 62 .
  • the outer friction plate 72 located closest to the friction plate 624 among the plurality of outer friction plates 72 can contact the friction plate 624 .
  • the locking portion 701 is formed in a substantially annular shape, and is provided so that the outer edge thereof fits into the inner peripheral wall of the cylindrical portion 623 of the output shaft 62 .
  • the locking portion 701 can lock the outer edge portion of the outer friction plate 72 positioned closest to the driven cam 50 among the plurality of outer friction plates 72 . Therefore, the plurality of outer friction plates 72 and the plurality of inner friction plates 71 are prevented from coming off from the inside of the tubular portion 623 .
  • the distance between locking portion 701 and friction plate 624 is greater than the total thickness of outer friction plates 72 and inner friction plates 71 .
  • the clutch 70 transmits torque between the input shaft 61 and the output shaft 62.
  • Clutch 70 allows transmission of torque between input shaft 61 and output shaft 62 when in the engaged state, and allows transmission of torque between input shaft 61 and output shaft 62 when in the disengaged state. It interrupts transmission of torque to and from shaft 62 .
  • the clutch device 1 is a so-called normally open type clutch device that is normally in a non-engaged state.
  • the state changing portion 80 has a disc spring 81, a disc spring retainer 82, and a disc spring thrust bearing 83 as an "elastic deformation portion".
  • the disc spring retainer 82 has a retainer tubular portion 821 and a retainer flange portion 822 .
  • the retainer tubular portion 821 is formed in a substantially cylindrical shape.
  • the retainer flange portion 822 is formed in an annular plate shape extending radially outward from one end of the retainer tubular portion 821 .
  • the retainer tubular portion 821 and the retainer flange portion 822 are integrally formed of metal, for example.
  • the disk spring retainer 82 is provided on the driven cam 50 such that the other end of the retainer cylinder portion 821 is connected to the end surface of the driven cam plate portion 53 opposite to the drive cam 40 , for example.
  • the retainer cylinder portion 821 and the driven cam plate portion 53 are connected by welding, for example.
  • the disk spring 81 is provided so that the inner edge portion is positioned between the driven cam plate portion 53 and the retainer flange portion 822 on the radially outer side of the retainer tubular portion 821 .
  • the disk spring thrust bearing 83 is formed in an annular shape, and is provided between the driven cam plate portion 53 and the inner edge portion of the disk spring 81 on the radially outer side of the retainer tubular portion 821 .
  • the disk spring retainer 82 is fixed to the driven cam 50 so that the retainer flange portion 822 can lock one axial end of the disk spring 81, that is, the inner edge portion. Therefore, the disc spring 81 and the disc spring thrust bearing 83 are prevented from falling off from the disc spring retainer 82 by the retainer flange portion 822 .
  • the disc spring 81 is elastically deformable in the axial direction.
  • FIG. 3 is a cross-sectional view showing the clutch actuator 10 without the state changing section 80 attached.
  • the cam ball 3 corresponds to the deepest part of the drive cam groove 400, which is the part of the drive cam body 41 that is farthest from one end face of the drive cam body 41 in the axial direction, that is, the depth direction.
  • the distance between the drive cam 40 and the driven cam 50 is relatively small, and a gap Sp1 is formed between the other axial end of the disc spring 81, that is, the outer edge thereof, and the clutch 70 (see FIG. 1). reference). Therefore, the clutch 70 is in a disengaged state, and transmission of torque between the input shaft 61 and the output shaft 62 is interrupted.
  • the disk spring 81 rotates relative to the driven cam 50 and the disk spring retainer 82 while being supported by the disk spring thrust bearing 83 .
  • the disk spring thrust bearing 83 bears the disk spring 81 while receiving a thrust-direction load from the disk spring 81 .
  • the ECU 100 stops rotation of the electric motor 20 when the clutch transmission torque reaches the clutch required torque capacity.
  • the clutch 70 is in an engagement holding state in which the clutch transmission torque is maintained at the clutch required torque capacity.
  • the disk spring 81 of the state changing portion 80 receives an axial force from the driven cam 50 and engages the clutch 70 in accordance with the axial relative position of the driven cam 50 with respect to the housing 12 and the drive cam 40 . It can be changed to engaged or disengaged.
  • the torque cam 2 can convert rotational motion due to torque from the electric motor 20 into translational motion, which is relative movement in the axial direction with respect to the housing 12, and change the state of the clutch 70 between the engaged state and the disengaged state. be.
  • the output shaft 62 is connected to an input shaft of a transmission (not shown) at the end of the shaft portion 621 opposite to the plate portion 622, and is rotatable together with the input shaft. That is, the torque output from the output shaft 62 is input to the input shaft of the transmission.
  • the torque input to the transmission is changed by the transmission and output as drive torque to the drive wheels of the vehicle. This allows the vehicle to run.
  • the clutch device 1 includes an oil supply section 5 (see FIGS. 1 and 2).
  • the oil supply portion 5 is formed in the shape of a passage on the output shaft 62 so that one end thereof is exposed to the clutch space 620 .
  • the other end of the oil supply portion 5 is connected to an oil supply source (not shown). As a result, oil is supplied from one end of the oil supply portion 5 to the clutch 70 in the clutch space 620 .
  • the ECU 100 controls the amount of oil supplied from the oil supply section 5 to the clutch 70 .
  • the oil supplied to clutch 70 can lubricate and cool clutch 70 .
  • the clutch 70 is a wet clutch and can be cooled by oil.
  • the torque cam 2 as the “rotational translation section” forms an accommodation space 120 between the housing 12 and the drive cam 40 and the second ring gear 35 as the “rotational section”.
  • the accommodation space 120 is formed inside the housing 12 on the side opposite to the clutch 70 with respect to the drive cam 40 and the second ring gear 35 .
  • Electric motor 20 and speed reducer 30 are provided in housing space 120 .
  • the clutch 70 is provided in a clutch space 620 which is a space on the opposite side of the housing space 120 with respect to the drive cam 40 .
  • the thrust bearing 16 has rollers 161, races 162, and backup plates 163 as "thrust bearing rolling elements.”
  • the race 162 is made of metal, for example, and has an annular plate shape.
  • the roller 161 is formed of metal, for example, in a substantially columnar shape, and is provided so as to be able to roll in the circumferential direction of the race 162 while being in contact with one end surface of the race 162 .
  • a plurality of rollers 161 are provided in the circumferential direction of the race 162 .
  • the backup plate 163 has a plate main body 164 and plate protrusions 165 .
  • the plate body 164 is formed in a substantially annular shape.
  • the plate convex portion 165 is formed in a substantially annular shape so as to protrude in the axial direction from the inner edge portion of the plate main body 164 .
  • the plate main body 164 and the plate protrusion 165 are integrally formed of metal, for example.
  • the backup plate 163 is provided radially outward of the housing inner cylindrical portion 121 so that the plate convex portion 165 contacts the housing stepped surface 125 .
  • the race 162 is provided radially outward of the housing inner cylindrical portion 121 so that the other end face abuts the end face of the plate main body 164 opposite to the plate protrusion 165 .
  • the roller 161 is provided between the race 162 and the drive cam main body 41 , and is in contact with the end surface of the race 162 on the drive cam main body 41 side and the surface of the drive cam main body 41 on the race 162 side, and moves in the circumferential direction of the race 162 . can be rolled to
  • the thrust bearing 16 bears the drive cam 40 while receiving a load in the thrust direction, that is, the axial direction from the drive cam 40 .
  • the axial load from the clutch 70 side acts on the thrust bearing 16 via the disc spring 81 , disc spring thrust bearing 83 , driven cam 50 , cam ball 3 and drive cam 40 .
  • the clutch actuator 10 includes an inner seal member 191 and an outer seal member 192 as “seal members".
  • the inner seal member 191 is an annular oil seal made of an elastic material such as rubber.
  • the outer seal member 192 is an annular oil seal made of an elastic material such as rubber and a metal ring.
  • the inner seal member 191 is provided in a seal groove portion 124 formed in the housing inner cylindrical portion 121 .
  • the inner seal member 191 is provided in the seal groove portion 124 so that the outer edge portion can slide on the inner peripheral wall of the drive cam body 41 .
  • the outer seal member 192 is provided between the housing outer cylindrical portion 123 and the drive cam outer cylindrical portion 44 on the side opposite to the first ring gear 34 with respect to the second ring gear 35 .
  • the outer seal member 192 is provided on the housing outer cylinder portion 123 so that the seal lip portion of the inner edge portion can slide on the outer peripheral wall of the drive cam outer cylinder portion 44 .
  • the outer seal member 192 is provided so as to be positioned radially outward of the inner seal member 191 when viewed from the axial direction of the inner seal member 191 (see FIGS. 1 and 2).
  • the inner peripheral wall of the drive cam body 41 is slidable with the inner seal member 191 . That is, the inner seal member 191 is provided so as to come into contact with the drive cam 40 as a "rotating portion".
  • the inner seal member 191 hermetically or liquid-tightly seals between the drive cam main body 41 and the housing inner cylindrical portion 121 .
  • the outer peripheral wall of the drive cam outer cylindrical portion 44 is slidable on the seal lip portion that is the inner edge portion of the outer seal member 192 . That is, the outer seal member 192 is provided so as to come into contact with the drive cam 40 as a "rotating portion".
  • the outer seal member 192 hermetically or liquid-tightly seals the outer peripheral wall of the drive cam outer cylindrical portion 44 and the inner peripheral wall of the housing outer cylindrical portion 123 .
  • the accommodation space 120 that accommodates the electric motor 20 and the speed reducer 30 can be kept airtight or liquid-tight. It is possible to maintain airtightness or liquidtightness with the clutch space 620 in which 70 is provided. As a result, for example, even if foreign matter such as abrasion powder is generated in the clutch 70 , it is possible to prevent the foreign matter from entering the housing space 120 from the clutch space 620 . Therefore, malfunction of the electric motor 20 or the speed reducer 30 due to foreign matter can be suppressed.
  • the thrust bearing 16 when viewed from the axial direction, has a central position P1, which is the center position of the thrust bearing 16 in the radial direction. It is provided so as to be positioned radially inside a pitch circle Cp1 that is a circle passing through a center position P3 that is the position of .
  • the thrust bearing 16 has an annular backup plate 163 , an annular race 162 , and rollers 161 that can roll in the circumferential direction of the race 162 . , is formed to be annular as a whole.
  • the axial direction of the thrust bearing 16 means “the axial direction of the backup plate 163 or the race 162" (same below).
  • the “radial center position of the thrust bearing 16 ” means the radial center position of the generally annular thrust bearing 16 integrally including the rollers 161 , the races 162 and the backup plate 163 .
  • the thrust bearing 16 is provided so as to be positioned radially inward of the pitch circle Cp1 as viewed from the axial direction. More specifically, the thrust bearing 16 is provided so that the outer edge of the race 162 and the outer edge of the backup plate 163 are positioned radially inside the pitch circle Cp1 when viewed in the axial direction.
  • the axial load received from the torque cam 2 is supported by the housing 12 via the thrust bearing 16. More specifically, the plate convex portion 165 of the backup plate 163 of the thrust bearing 16 is in contact with the housing step surface 125 . As a result, the axial load from the clutch 70 side acts on the housing step surface 125 via the disc spring 81 , disc spring thrust bearing 83 , driven cam 50 , cam ball 3 , drive cam 40 and thrust bearing 16 .
  • a pitch circle Cp1 and a thrust bearing 16 are defined as a circle centered on the center O1 of the drive cam body 41 and passing through a center position P3, which is the center position of the drive cam 40 in the radial direction of the drive cam groove 400. and the center of the thrust bearing 16 passing through the center position P1, which is the radial center position of the thrust bearing 16, is a circle C1. It is provided so that the circle C1 is positioned.
  • a pitch circle Cp2 is a circle that is centered on the center O2 of the driven cam main body 51 and passes through a center position P4 that is the center position of the driven cam 50 in the radial direction of the driven cam groove 500, then the thrust bearing 16 , the pitch circle Cp2 coincides with the pitch circle Cp1 (see FIGS. 3 and 4).
  • the drive cam 40 has the drive cam groove 400 formed to extend in the circumferential direction of the drive cam 40 so that the cam ball 3 can roll.
  • the thrust bearing 16 has a radial center position P1 of the thrust bearing 16 as viewed in the axial direction with respect to a pitch circle Cp1, which is a circle passing through a radial center position P3 of the drive cam 40 in the drive cam groove 400. It is provided so as to be located inside.
  • the diameter of the rotor bearing 15 can be reduced compared to the conventional configuration in which the thrust bearing is provided on the pitch circle of the drive cam groove.
  • the diameter of the electric motor 20 can be reduced, and the clutch actuator 10 can be reduced in size.
  • the housing capacity of the clutch actuator 10 can be improved, and the cost can be reduced.
  • the thrust bearing 16 is arranged radially inside the pitch circle Cp1 of the drive cam groove 400 as in the present embodiment.
  • the axial load can be supported without the drive cam 40 deforming. Therefore, the axial load can be properly supported by the thrust bearing 16, and the size of the clutch actuator 10 can be reduced.
  • the thrust bearing 16 is provided so that the entirety is located radially inside the pitch circle Cp1 when viewed from the axial direction.
  • the diameter of the rotor bearing 15 can be further reduced.
  • the diameter of the electric motor 20 can be further reduced, and the clutch actuator 10 can be further reduced in size.
  • the axial load received from the torque cam 2 is supported by the housing 12 via the thrust bearing 16 .
  • the axial load received from the torque cam 2 can be reliably supported by the housing 12 while reducing the size of the clutch actuator 10 in the radial direction.
  • FIG. 7 shows part of a clutch device to which the clutch actuator according to the second embodiment is applied.
  • the second embodiment differs from the first embodiment in the positional relationship among the drive cam 40, the thrust bearing 16, and the rotor bearing 15, and the like.
  • the axial load received from the torque cam 2 is supported by the rotor bearing 15 via the thrust bearing 16 .
  • the axial load received from the torque cam 2 is supported by the inner ring 151 of the rotor bearing 15 via the thrust bearing 16 .
  • the housing 12 has a housing step surface 126 .
  • the housing stepped surface 126 is formed in an annular planar shape between the housing stepped surface 125 and the housing plate portion 122 so as to face the side opposite to the housing plate portion 122 .
  • the housing stepped surface 126 is formed radially outwardly of the housing stepped surface 125 when viewed from the axial direction of the housing inner tubular portion 121 .
  • the end surface of the housing plate portion 122 on the housing inner cylindrical portion 121 side and the housing stepped surface 126 are separated from each other by a predetermined distance in the axial direction of the housing inner cylindrical portion 121 .
  • the rotor bearing 15 is provided on the opposite side of the housing plate portion 122 with respect to the housing stepped surface 126 and radially outside the housing inner cylindrical portion 121 .
  • the rotor bearing 15 is provided on the housing inner cylindrical portion 121 so that the inner peripheral wall of the inner ring 151 contacts the outer peripheral wall of the housing inner cylindrical portion 121 and one axial end surface of the inner ring 151 contacts the housing stepped surface 126 .
  • the backup plate 163 of the thrust bearing 16 is provided radially outside the housing inner cylindrical portion 121 so that the plate convex portion 165 contacts the end surface of the inner ring 151 of the rotor bearing 15 opposite to the housing stepped surface 126 .
  • the axial load from the clutch 70 side passes through the disk spring 81, the disk spring thrust bearing 83, the driven cam 50, the cam ball 3, the drive cam 40, the thrust bearing 16, and the inner ring 151 of the rotor bearing 15 to the housing. It acts on the step surface 126 .
  • the axial load received from the torque cam 2 is supported by the rotor bearing 15 via the thrust bearing 16 .
  • the axial load received from the torque cam 2 can be reliably supported by the rotor bearing 15 while the clutch actuator 10 is made compact in the radial direction.
  • the axial load received from the torque cam 2 is supported by the inner ring 151 of the rotor bearing 15 via the thrust bearing 16 .
  • the axial load received from the torque cam 2 can be reliably supported by the inner ring 151 of the rotor bearing 15 while making the clutch actuator 10 more compact in the radial direction.
  • FIG. 8 shows part of a clutch device to which the clutch actuator according to the third embodiment is applied.
  • the third embodiment differs from the first embodiment in the configuration of the thrust bearing 16 and the like.
  • the thrust bearing 16 and the drive cam 40 are provided radially outside of the housing inner cylindrical portion 121 as the "housing cylindrical portion".
  • the inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are the same.
  • “same” means not only the case where the inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are exactly the same, but also includes the case where they are slightly different due to tolerances or the like (same below).
  • the housing 12 has the housing inner cylindrical portion 121 having a hollow cylindrical shape.
  • the thrust bearing 16 and the drive cam 40 are provided radially outside of a housing inner tubular portion 121 as a "housing tubular portion”.
  • the inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are the same.
  • the diameter of the rotor bearing 15 can be further reduced.
  • the diameter of the electric motor 20 can be further reduced, and the clutch actuator 10 can be further reduced in size.
  • the thrust bearing is radially inward of a pitch circle, which is a circle passing through the radial center position of the drive cam in the drive cam groove, where the radial center position of the thrust bearing is seen from the axial direction.
  • a pitch circle which is a circle passing through the radial center position of the drive cam in the drive cam groove, where the radial center position of the thrust bearing is seen from the axial direction.
  • any number of driving cam grooves 400 and driven cam grooves 500 may be formed as long as they are three or more. Also, any number of cam balls 3 may be provided according to the number of drive cam grooves 400 and driven cam grooves 500 .
  • the present disclosure can be applied not only to vehicles that run by driving torque from an internal combustion engine, but also to electric vehicles, hybrid vehicles, and the like that can run by driving torque from a motor.
  • torque may be input from the "second transmission section” and output from the "first transmission section” via the "clutch”.
  • the clutch device can be used as a braking device.
  • the clutch system control and techniques described in the present disclosure may be provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by Alternatively, the clutch system controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the clutch device controller and techniques described in this disclosure may be a processor configured with one or more hardware logic circuits and a processor and memory programmed to perform one or more functions. may be implemented by one or more dedicated computers configured by a combination of The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.

Abstract

A torque cam (2) comprises: an annular driving cam (40) that relatively rotates with respect to a housing (12) when a torque from an electric motor (20) is input; a driven cam (50) that relatively moves with respect to the housing (12) in the axial direction when the driving cam (40) relatively rotates with respect to the housing (12); and cam rolling elements (3) that roll between the driving cam (40) and the driven cam (50). The driving cam (40) has a driving cam groove (400) formed to extend in the circumferential direction of the driving cam (40) so that the cam rolling elements (3) can roll therein. A thrust bearing (16) is provided such that, as viewed in the axial direction, the center position (P1) in the radial direction of the thrust bearing (16) is located on the radially inner side of a pitch circle (Cp1) passing through the center position (P3) of the driving cam groove (400) in the radial direction of the driving cam (40).

Description

クラッチアクチュエータclutch actuator 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年6月30日に出願された特許出願番号2021-108818号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2021-108818 filed on June 30, 2021, and the contents thereof are incorporated herein.
 本開示は、クラッチアクチュエータに関する。 The present disclosure relates to clutch actuators.
 従来、相対回転可能な第1伝達部と第2伝達部との間において、第1伝達部と第2伝達部との間のトルクの伝達を許容する係合状態と、第1伝達部と第2伝達部との間のトルクの伝達を遮断する非係合状態とに状態が変化するクラッチの状態を変更可能なクラッチアクチュエータが知られている。
 例えば、特許文献1のクラッチアクチュエータは、クラッチの状態を係合状態または非係合状態に変更可能なトルクカムを備えている。トルクカムは、電動モータに対し軸方向の一方側に設けられ、電動モータからのトルクによる回転運動を、ハウジングに対する軸方向の相対移動である並進運動に変換する。
Conventionally, between the first transmission portion and the second transmission portion that are capable of relative rotation, an engagement state that allows transmission of torque between the first transmission portion and the second transmission portion; A clutch actuator is known that can change the state of a clutch that changes between a non-engaged state that cuts off torque transmission between two transmission parts.
For example, the clutch actuator of Patent Document 1 has a torque cam that can change the state of the clutch between the engaged state and the disengaged state. The torque cam is provided on one side of the electric motor in the axial direction, and converts rotary motion due to torque from the electric motor into translational motion, which is axial relative movement with respect to the housing.
 トルクカムは、電動モータからのトルクが入力されるとハウジングに対し相対回転する環状の駆動カムを有している。駆動カムは、カム転動体が転動可能なよう駆動カムの周方向に延びて形成された駆動カム溝を有している。 The torque cam has an annular drive cam that rotates relative to the housing when torque is input from the electric motor. The drive cam has a drive cam groove extending in the circumferential direction of the drive cam so that the cam rolling element can roll.
特開2021-23092号公報Japanese Patent Application Laid-Open No. 2021-23092
 特許文献1のクラッチアクチュエータは、トルクカムからの軸方向の荷重を受けるスラストベアリングをさらに備えている。スラストベアリングは、軸方向から見て、概ね駆動カム溝の駆動カムの径方向における中央位置を通る円であるピッチ円上に設けられている。スラストベアリングは、軸方向においてハウジングにより支持されている。 The clutch actuator of Patent Document 1 further includes a thrust bearing that receives an axial load from the torque cam. The thrust bearing is provided on a pitch circle, which is a circle that passes through the center position of the drive cam in the drive cam groove in the radial direction, when viewed from the axial direction. The thrust bearing is axially supported by the housing.
 そのため、電動モータのロータを回転可能に支持するロータベアリング、ロータ、および、ステータは、スラストベアリングの軸方向から見て、スラストベアリングの径方向外側に位置するよう設けられている。よって、ロータベアリング、ロータ、および、ステータの外径が大きくなり、電動モータが大型化し、ひいては、クラッチアクチュエータ全体の大型化を招くおそれがある。その結果、クラッチアクチュエータの収容性が低下するとともに、コストが増大するおそれがある。 Therefore, a rotor bearing that rotatably supports the rotor of the electric motor, a rotor, and a stator are provided so as to be positioned radially outside the thrust bearing when viewed from the axial direction of the thrust bearing. As a result, the outer diameters of the rotor bearing, rotor, and stator increase, the size of the electric motor increases, and the size of the clutch actuator as a whole may increase. As a result, the accommodation capacity of the clutch actuator may decrease and the cost may increase.
 本開示の目的は、小型のクラッチアクチュエータを提供することにある。 An object of the present disclosure is to provide a compact clutch actuator.
 本開示は、相対回転可能な第1伝達部と第2伝達部との間において、第1伝達部と第2伝達部との間のトルクの伝達を許容する係合状態と、第1伝達部と第2伝達部との間のトルクの伝達を遮断する非係合状態とに状態が変化するクラッチを備えるクラッチ装置に用いられるクラッチアクチュエータであって、ハウジングと電動モータとトルクカムとスラストベアリングとを備える。 The present disclosure provides an engagement state that allows transmission of torque between the first transmission portion and the second transmission portion, which are relatively rotatable, and the first transmission portion. A clutch actuator used in a clutch device having a clutch whose state changes between a disengaged state and a disengaged state that interrupts transmission of torque between a housing, an electric motor, a torque cam, and a thrust bearing. Prepare.
 電動モータは、ハウジングに固定されたステータ、および、ステータに対し相対回転可能に設けられたロータを有し、通電によりロータからトルクを出力可能である。トルクカムは、電動モータに対し軸方向の一方側に設けられ、電動モータからのトルクによる回転運動を、ハウジングに対する軸方向の相対移動である並進運動に変換し、クラッチの状態を係合状態または非係合状態に変更可能である。スラストベアリングは、環状に形成され、トルクカムからの軸方向の荷重を受ける。 An electric motor has a stator fixed to a housing and a rotor rotatable relative to the stator, and can output torque from the rotor when energized. The torque cam is provided on one side of the electric motor in the axial direction, and converts rotary motion due to torque from the electric motor into translational motion, which is relative movement in the axial direction with respect to the housing, and changes the state of the clutch to engaged or disengaged. It can be changed to an engaged state. The thrust bearing is annularly formed and receives axial loads from the torque cam.
 トルクカムは、電動モータからのトルクが入力されるとハウジングに対し相対回転する環状の駆動カム、駆動カムがハウジングに対し相対回転するとハウジングに対し軸方向に相対移動する従動カム、および、駆動カムと従動カムとの間で転動するカム転動体を有する。駆動カムは、カム転動体が転動可能なよう駆動カムの周方向に延びるよう形成された駆動カム溝を有する。 The torque cam includes an annular drive cam that rotates relative to the housing when torque is input from the electric motor, a driven cam that moves relative to the housing in the axial direction when the drive cam rotates relative to the housing, and a drive cam. It has a cam rolling element that rolls with the driven cam. The drive cam has a drive cam groove extending in the circumferential direction of the drive cam so that the cam rolling element can roll.
 スラストベアリングは、軸方向から見て、スラストベアリングの径方向における中央位置が、駆動カム溝の駆動カムの径方向における中央位置を通る円であるピッチ円に対し径方向内側に位置するよう設けられている。そのため、スラストベアリングが駆動カム溝のピッチ円上に設けられる従来の構成と比べ、ロータベアリングを小径化できる。これにより、電動モータを小径化でき、クラッチアクチュエータを小型化できる。 The thrust bearing is provided so that, when viewed from the axial direction, the radial center position of the thrust bearing is located radially inside the pitch circle, which is a circle passing through the radial center position of the drive cam in the drive cam groove. ing. Therefore, the diameter of the rotor bearing can be reduced compared to the conventional configuration in which the thrust bearing is provided on the pitch circle of the drive cam groove. As a result, the diameter of the electric motor can be reduced, and the size of the clutch actuator can be reduced.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるクラッチアクチュエータおよびそれを適用したクラッチ装置を示す断面図であり、 図2は、第1実施形態によるクラッチアクチュエータおよびクラッチ装置の一部を示す断面図であり、 図3は、第1実施形態によるクラッチアクチュエータの一部を示す断面図であり、 図4は、図1のIV-IV線断面図であり、 図5は、第1実施形態によるクラッチアクチュエータの駆動カムを示す断面図であり、 図6は、第1実施形態によるクラッチアクチュエータの従動カムを示す平面図であり、 図7は、第2実施形態によるクラッチアクチュエータの一部を示す断面図であり、 図8は、第3実施形態によるクラッチアクチュエータの一部を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a cross-sectional view showing a clutch actuator and a clutch device to which it is applied according to the first embodiment, FIG. 2 is a cross-sectional view showing a part of the clutch actuator and the clutch device according to the first embodiment; FIG. 3 is a cross-sectional view showing part of the clutch actuator according to the first embodiment; FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. FIG. 5 is a cross-sectional view showing the drive cam of the clutch actuator according to the first embodiment; FIG. 6 is a plan view showing a driven cam of the clutch actuator according to the first embodiment; FIG. 7 is a cross-sectional view showing a part of the clutch actuator according to the second embodiment; FIG. 8 is a cross-sectional view showing part of the clutch actuator according to the third embodiment.
 以下、複数の実施形態によるクラッチアクチュエータを図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。 Hereinafter, clutch actuators according to multiple embodiments will be described based on the drawings. In addition, the same code|symbol is attached|subjected to the substantially same structural part in several embodiment, and description is abbreviate|omitted.
  (第1実施形態)
 第1実施形態によるクラッチアクチュエータを適用したクラッチ装置を図1、2に示す。クラッチ装置1は、例えば車両の内燃機関と変速機との間に設けられ、内燃機関と変速機との間のトルクの伝達を許容または遮断するのに用いられる。
(First embodiment)
A clutch device to which the clutch actuator according to the first embodiment is applied is shown in FIGS. A clutch device 1 is provided, for example, between an internal combustion engine and a transmission of a vehicle, and is used to allow or block transmission of torque between the internal combustion engine and the transmission.
 クラッチ装置1は、クラッチアクチュエータ10、クラッチ70、「制御部」としての電子制御ユニット(以下、「ECU」という)100、「第1伝達部」としての入力軸61、「第2伝達部」としての出力軸62等を備えている。 The clutch device 1 includes a clutch actuator 10, a clutch 70, an electronic control unit (hereinafter referred to as "ECU") 100 as a "control section", an input shaft 61 as a "first transmission section", and an input shaft 61 as a "second transmission section". output shaft 62 and the like.
 クラッチアクチュエータ10は、ハウジング12、「原動機」としての電動モータ20、ロータベアリング15、減速機30、「回転並進部」または「転動体カム」としてのトルクカム2、スラストベアリング16、状態変更部80等を備えている。 The clutch actuator 10 includes a housing 12, an electric motor 20 as a "prime mover", a rotor bearing 15, a speed reducer 30, a torque cam 2 as a "rotational translation part" or a "rolling element cam", a thrust bearing 16, a state changing part 80, and the like. It has
 ECU100は、演算手段としてのCPU、記憶手段としてのROM、RAM等、入出力手段としてのI/O等を有する小型のコンピュータである。ECU100は、車両の各部に設けられた各種センサからの信号等の情報に基づき、ROM等に格納されたプログラムに従い演算を実行し、車両の各種装置および機器の作動を制御する。このように、ECU100は、非遷移的実体的記録媒体に格納されたプログラムを実行する。このプログラムが実行されることで、プログラムに対応する方法が実行される。 The ECU 100 is a small computer having a CPU as computing means, ROM, RAM, etc. as storage means, and I/O etc. as input/output means. The ECU 100 executes calculations according to programs stored in a ROM or the like based on information such as signals from various sensors provided in various parts of the vehicle, and controls operations of various devices and devices of the vehicle. Thus, the ECU 100 executes the program stored in the non-transitional substantive recording medium. By executing this program, the method corresponding to the program is executed.
 ECU100は、各種センサからの信号等の情報に基づき、内燃機関等の作動を制御可能である。また、ECU100は、後述する電動モータ20の作動を制御可能である。 The ECU 100 can control the operation of the internal combustion engine based on information such as signals from various sensors. The ECU 100 can also control the operation of an electric motor 20, which will be described later.
 入力軸61は、例えば、図示しない内燃機関の駆動軸に接続され、駆動軸とともに回転可能である。つまり、入力軸61には、駆動軸からトルクが入力される。 The input shaft 61 is connected to, for example, a drive shaft of an internal combustion engine (not shown) and is rotatable together with the drive shaft. That is, torque is input to the input shaft 61 from the drive shaft.
 内燃機関を搭載する車両には、固定体11が設けられる(図2参照)。固定体11は、例えば筒状に形成され、車両のエンジンルームに固定される。固定体11の内周壁と入力軸61の外周壁との間には、ボールベアリング141が設けられる。これにより、入力軸61は、ボールベアリング141を介して固定体11により軸受けされる。 A vehicle equipped with an internal combustion engine is provided with a fixed body 11 (see FIG. 2). The fixed body 11 is formed, for example, in a tubular shape and fixed to the engine room of the vehicle. A ball bearing 141 is provided between the inner peripheral wall of the fixed body 11 and the outer peripheral wall of the input shaft 61 . Thereby, the input shaft 61 is supported by the fixed body 11 via the ball bearings 141 .
 ハウジング12は、固定体11の内周壁と入力軸61の外周壁との間に設けられる。ハウジング12は、「ハウジング筒部」としてのハウジング内筒部121、ハウジング板部122、ハウジング外筒部123、シール溝部124、ハウジング段差面125、ハウジング側スプライン溝部127、ハウジング穴部128等を有している。 The housing 12 is provided between the inner peripheral wall of the fixed body 11 and the outer peripheral wall of the input shaft 61 . The housing 12 has a housing inner cylindrical portion 121, a housing plate portion 122, a housing outer cylindrical portion 123, a seal groove portion 124, a housing step surface 125, a housing side spline groove portion 127, a housing hole portion 128, and the like. doing.
 ハウジング内筒部121は、略円筒状に形成されている。ハウジング板部122は、ハウジング内筒部121の端部から径方向外側へ延びるよう環状の板状に形成されている。ハウジング外筒部123は、ハウジング板部122の外縁部からハウジング内筒部121と同じ側へ延びるよう略円筒状に形成されている。ここで、ハウジング内筒部121とハウジング板部122とハウジング外筒部123とは、例えば金属により一体に形成されている。 The housing inner cylindrical portion 121 is formed in a substantially cylindrical shape. The housing plate portion 122 is formed in an annular plate shape so as to extend radially outward from the end portion of the housing inner cylindrical portion 121 . The housing outer tubular portion 123 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the housing plate portion 122 to the same side as the housing inner tubular portion 121 . Here, the housing inner cylindrical portion 121, the housing plate portion 122, and the housing outer cylindrical portion 123 are integrally formed of metal, for example.
 上述のように、ハウジング12は、全体としては、中空、かつ、扁平形状に形成されている。 As described above, the housing 12 is formed in a hollow and flat shape as a whole.
 シール溝部124は、ハウジング内筒部121の外周壁から径方向内側へ凹むよう環状に形成されている。ハウジング段差面125は、シール溝部124とハウジング板部122との間において、ハウジング板部122とは反対側を向くよう円環の平面状に形成されている。 The seal groove portion 124 is formed in an annular shape so as to be recessed radially inward from the outer peripheral wall of the housing inner cylindrical portion 121 . The housing stepped surface 125 is formed in an annular planar shape between the seal groove portion 124 and the housing plate portion 122 so as to face the side opposite to the housing plate portion 122 .
 ハウジング側スプライン溝部127は、ハウジング内筒部121の軸方向に延びるようハウジング内筒部121の外周壁に形成されている。ハウジング側スプライン溝部127は、ハウジング内筒部121の周方向に複数形成されている。ハウジング穴部128は、ハウジング板部122を板厚方向に貫くよう形成されている。 The housing-side spline groove portion 127 is formed on the outer peripheral wall of the housing inner cylindrical portion 121 so as to extend in the axial direction of the housing inner cylindrical portion 121 . A plurality of housing-side spline groove portions 127 are formed in the circumferential direction of the housing inner tubular portion 121 . The housing hole portion 128 is formed so as to penetrate the housing plate portion 122 in the plate thickness direction.
 ハウジング12は、外壁の一部が固定体11の壁面の一部に当接するよう固定体11に固定される(図2参照)。ハウジング12は、図示しないボルト等により固定体11に固定される。ここで、ハウジング12は、固定体11および入力軸61に対し同軸に設けられる。ここで、「同軸」とは、2つの軸が厳密に一致する同軸の状態に限らず、僅かに偏心している状態または傾いている状態を含むものとする(以下、同じ)。また、ハウジング内筒部121の内周壁と入力軸61の外周壁との間には、略円筒状の空間が形成される。 The housing 12 is fixed to the fixed body 11 so that part of the outer wall abuts part of the wall surface of the fixed body 11 (see FIG. 2). The housing 12 is fixed to the fixed body 11 by bolts (not shown) or the like. Here, housing 12 is provided coaxially with fixed body 11 and input shaft 61 . Here, "coaxial" is not limited to a coaxial state in which the two axes are exactly aligned, but also includes a slightly eccentric or tilted state (the same applies hereinafter). A substantially cylindrical space is formed between the inner peripheral wall of the housing inner cylindrical portion 121 and the outer peripheral wall of the input shaft 61 .
 ハウジング12は、「空間」としての収容空間120を有している。収容空間120は、ハウジング内筒部121とハウジング板部122とハウジング外筒部123との間に形成されている。 The housing 12 has an accommodation space 120 as a "space". The accommodation space 120 is formed between the housing inner tubular portion 121 , the housing plate portion 122 and the housing outer tubular portion 123 .
 電動モータ20は、収容空間120に収容されている。電動モータ20は、ステータ21、コイル22、ロータ23、「永久磁石」としてのマグネット230、マグネットカバー24等を有している。 The electric motor 20 is housed in the housing space 120 . The electric motor 20 has a stator 21, a coil 22, a rotor 23, a magnet 230 as a "permanent magnet", a magnet cover 24, and the like.
 ステータ21は、ステータヨーク211、ステータティース212を有している。ステータ21は、例えば積層鋼板により形成されている。ステータヨーク211は、略円筒状に形成されている。ステータティース212は、ステータヨーク211の内周壁から径方向内側へ突出するようステータヨーク211と一体に形成されている。ステータティース212は、ステータヨーク211の周方向に等間隔で複数形成されている。コイル22は、複数のステータティース212のそれぞれに設けられている。ステータ21は、ステータヨーク211の外周壁がハウジング外筒部123の内周壁に嵌合するようハウジング12に固定されている。 The stator 21 has a stator yoke 211 and stator teeth 212 . The stator 21 is made of laminated steel plates, for example. Stator yoke 211 is formed in a substantially cylindrical shape. Stator teeth 212 are formed integrally with stator yoke 211 so as to protrude radially inward from the inner peripheral wall of stator yoke 211 . A plurality of stator teeth 212 are formed at equal intervals in the circumferential direction of stator yoke 211 . Coil 22 is provided on each of stator teeth 212 . The stator 21 is fixed to the housing 12 so that the outer peripheral wall of the stator yoke 211 fits into the inner peripheral wall of the housing outer cylindrical portion 123 .
 ロータ23は、例えば鉄系の金属により形成されている。ロータ23は、ロータ本体231、ロータ筒部232を有している。ロータ本体231は、略円環状に形成されている。ロータ筒部232は、ロータ本体231の外縁部から筒状に延びるよう形成されている。 The rotor 23 is made of, for example, iron-based metal. The rotor 23 has a rotor main body 231 and a rotor tubular portion 232 . The rotor main body 231 is formed in a substantially annular shape. The rotor tubular portion 232 is formed to extend in a tubular shape from the outer edge of the rotor main body 231 .
 マグネット230は、ロータ23の外周壁に設けられている。マグネット230は、磁極が交互になるようロータ23の周方向に等間隔で複数設けられている。 The magnet 230 is provided on the outer peripheral wall of the rotor 23. A plurality of magnets 230 are provided at equal intervals in the circumferential direction of the rotor 23 so that the magnetic poles alternate.
 マグネットカバー24は、マグネット230のロータ23の径方向外側の面を覆うようロータ23に設けられている。より詳細には、マグネットカバー24は、例えば非磁性の金属により形成されている。 The magnet cover 24 is provided on the rotor 23 so as to cover the radially outer surface of the rotor 23 of the magnet 230 . More specifically, the magnet cover 24 is made of, for example, non-magnetic metal.
 クラッチアクチュエータ10は、ロータベアリング15を備えている。ロータベアリング15は、ハウジング段差面125に対しハウジング板部122側において、ハウジング内筒部121の径方向外側に設けられている。ロータベアリング15は、内輪151、外輪152、「軸受転動体」としての軸受ボール153等を有している。 The clutch actuator 10 has a rotor bearing 15. The rotor bearing 15 is provided on the housing plate portion 122 side with respect to the housing stepped surface 125 and radially outside the housing inner cylinder portion 121 . The rotor bearing 15 has an inner ring 151, an outer ring 152, bearing balls 153 as "bearing rolling elements", and the like.
 内輪151、外輪152は、例えば金属により筒状に形成されている。外輪152は、内輪151の径方向外側に設けられている。軸受ボール153は、例えば金属により球状に形成されている。軸受ボール153は、内輪151の外周壁に環状に形成された溝部、および、外輪152の内周壁に環状に形成された溝部において、内輪151と外輪152との間で転動可能に設けられている。軸受ボール153は、内輪151および外輪152の周方向に複数設けられている。内輪151と外輪152との間で軸受ボール153が転動することにより、内輪151と外輪152とは相対回転可能である。軸受ボール153により、内輪151と外輪152との軸方向への相対移動が規制されている。 The inner ring 151 and the outer ring 152 are formed of metal, for example, in a cylindrical shape. The outer ring 152 is provided radially outside the inner ring 151 . The bearing ball 153 is spherically formed of metal, for example. The bearing balls 153 are provided so as to be able to roll between the inner ring 151 and the outer ring 152 in an annular groove formed in the outer peripheral wall of the inner ring 151 and an annular groove formed in the inner peripheral wall of the outer ring 152 . there is A plurality of bearing balls 153 are provided in the circumferential direction of inner ring 151 and outer ring 152 . The bearing balls 153 roll between the inner ring 151 and the outer ring 152 so that the inner ring 151 and the outer ring 152 can rotate relative to each other. The bearing balls 153 restrict relative axial movement between the inner ring 151 and the outer ring 152 .
 ロータベアリング15は、内輪151の内周壁がハウジング内筒部121の外周壁に当接し、内輪151の軸方向の一方の端面がハウジング板部122から所定距離離間した状態でハウジング内筒部121に設けられている。ロータ23は、ロータ本体231の内周壁がロータベアリング15の外周壁に嵌合するよう設けられている。これにより、ロータベアリング15は、ロータ23をハウジング12に対し相対回転可能に支持している。 In the rotor bearing 15, the inner peripheral wall of the inner ring 151 abuts against the outer peripheral wall of the housing inner cylindrical portion 121, and one axial end face of the inner ring 151 is placed on the housing inner cylindrical portion 121 with a predetermined distance from the housing plate portion 122. is provided. The rotor 23 is provided such that the inner peripheral wall of the rotor body 231 is fitted to the outer peripheral wall of the rotor bearing 15 . Thereby, the rotor bearing 15 supports the rotor 23 so as to be relatively rotatable with respect to the housing 12 .
 ECU100は、コイル22に供給する電力を制御することにより、電動モータ20の作動を制御可能である。コイル22に電力が供給されると、ステータ21に回転磁界が生じ、ロータ23が回転する。これにより、ロータ23からトルクが出力される。このように、電動モータ20は、ステータ21、および、ステータ21に対し相対回転可能に設けられたロータ23を有し、電力の供給によりロータ23からトルクを出力可能である。 The ECU 100 can control the operation of the electric motor 20 by controlling the electric power supplied to the coil 22 . When power is supplied to the coil 22, a rotating magnetic field is generated in the stator 21 and the rotor 23 rotates. As a result, torque is output from the rotor 23 . As described above, the electric motor 20 has a stator 21 and a rotor 23 that is rotatable relative to the stator 21, and can output torque from the rotor 23 when electric power is supplied.
 ここで、ロータ23は、ステータ21の径方向内側において、ステータ21に対し相対回転可能に設けられている。電動モータ20は、インナロータタイプのブラシレス直流モータである。 Here, the rotor 23 is provided radially inside the stator 21 so as to be rotatable relative to the stator 21 . The electric motor 20 is an inner rotor type brushless DC motor.
 本実施形態では、クラッチアクチュエータ10は、回転角センサ104を備えている。回転角センサ104は、コイル22に対しハウジング板部122側に位置するよう電動モータ20に設けられている。 In this embodiment, the clutch actuator 10 has a rotation angle sensor 104 . The rotation angle sensor 104 is provided on the electric motor 20 so as to be positioned on the housing plate portion 122 side with respect to the coil 22 .
 回転角センサ104は、ロータ23と一体に回転するセンサマグネットから発生する磁束を検出し、検出した磁束に応じた信号をECU100に出力する。これにより、ECU100は、回転角センサ104からの信号に基づき、ロータ23の回転角および回転数等を検出することができる。また、ECU100は、ロータ23の回転角および回転数等に基づき、ハウジング12および後述する従動カム50に対する駆動カム40の相対回転角度、ハウジング12および駆動カム40に対する従動カム50および状態変更部80の軸方向の相対位置等を算出することができる。 The rotation angle sensor 104 detects magnetic flux generated from a sensor magnet that rotates integrally with the rotor 23, and outputs a signal corresponding to the detected magnetic flux to the ECU 100. Accordingly, the ECU 100 can detect the rotation angle, rotation speed, etc. of the rotor 23 based on the signal from the rotation angle sensor 104 . The ECU 100 also determines the relative rotation angle of the drive cam 40 with respect to the housing 12 and a driven cam 50 described later, and the relative rotation angle of the driven cam 50 and the state changer 80 with respect to the housing 12 and the drive cam 40, based on the rotation angle and rotation speed of the rotor 23 . A relative position in the axial direction and the like can be calculated.
 図3に示すように、減速機30は、サンギヤ31、プラネタリギヤ32、キャリア33、第1リングギヤ34、第2リングギヤ35等を有している。 As shown in FIG. 3, the speed reducer 30 has a sun gear 31, a planetary gear 32, a carrier 33, a first ring gear 34, a second ring gear 35, and the like.
 サンギヤ31は、ロータ23と同軸かつ一体回転可能に設けられている。つまり、ロータ23とサンギヤ31とは、異なる材料により別体に形成され、一体に回転可能なよう同軸に配置されている。 The sun gear 31 is provided so as to be coaxial with the rotor 23 and integrally rotatable. In other words, the rotor 23 and the sun gear 31 are formed separately from different materials and arranged coaxially so as to be rotatable together.
 より詳細には、サンギヤ31は、サンギヤ基部310、「歯部」および「外歯」としてのサンギヤ歯部311、サンギヤ筒部312を有している。サンギヤ基部310は、例えば金属により略円環状に形成されている。サンギヤ筒部312は、サンギヤ基部310の外縁部から筒状に延びるようサンギヤ基部310と一体に形成されている。サンギヤ歯部311は、サンギヤ筒部312のサンギヤ基部310とは反対側の端部の外周壁に形成されている。 More specifically, the sun gear 31 has a sun gear base portion 310, a sun gear tooth portion 311 as a "tooth portion" and an "external tooth", and a sun gear cylindrical portion 312. The sun gear base portion 310 is formed of metal, for example, in a substantially annular shape. Sun gear cylindrical portion 312 is formed integrally with sun gear base portion 310 so as to extend cylindrically from the outer edge of sun gear base portion 310 . The sun gear tooth portion 311 is formed on the outer peripheral wall of the end portion of the sun gear tubular portion 312 opposite to the sun gear base portion 310 .
 サンギヤ31は、サンギヤ基部310の外周壁がロータ筒部232の内周壁に嵌合するよう設けられている。これにより、サンギヤ31は、ロータベアリング15により、ロータ23とともに、ハウジング12に対し相対回転可能に支持されている。 The sun gear 31 is provided so that the outer peripheral wall of the sun gear base portion 310 fits into the inner peripheral wall of the rotor tubular portion 232 . Accordingly, the sun gear 31 is supported by the rotor bearing 15 so as to be rotatable relative to the housing 12 together with the rotor 23 .
 ロータ23と一体回転するサンギヤ31には、電動モータ20のトルクが入力される。ここで、サンギヤ31は、減速機30の「入力部」に対応する。 The torque of the electric motor 20 is input to the sun gear 31 that rotates integrally with the rotor 23 . Here, the sun gear 31 corresponds to the “input portion” of the speed reducer 30 .
 プラネタリギヤ32は、サンギヤ31の周方向に沿って複数設けられ、サンギヤ31に噛み合いつつ自転しながらサンギヤ31の周方向に公転可能である。より詳細には、プラネタリギヤ32は、例えば金属により略円筒状に形成され、サンギヤ31の径方向外側においてサンギヤ31の周方向に等間隔で複数設けられている。プラネタリギヤ32は、「歯部」および「外歯」としてのプラネタリギヤ歯部321を有している。プラネタリギヤ歯部321は、サンギヤ歯部311に噛み合い可能なようプラネタリギヤ32の外周壁に形成されている。 A plurality of planetary gears 32 are provided along the circumferential direction of the sun gear 31, and can revolve in the circumferential direction of the sun gear 31 while meshing with the sun gear 31 and rotating. More specifically, the planetary gears 32 are formed of metal, for example, in a substantially cylindrical shape, and are provided in plurality at equal intervals in the circumferential direction of the sun gear 31 on the radially outer side of the sun gear 31 . The planetary gear 32 has planetary gear teeth 321 as "teeth" and "external teeth". The planetary gear tooth portion 321 is formed on the outer peripheral wall of the planetary gear 32 so as to mesh with the sun gear tooth portion 311 .
 キャリア33は、プラネタリギヤ32を回転可能に支持し、サンギヤ31に対し相対回転可能である。 The carrier 33 rotatably supports the planetary gear 32 and is rotatable relative to the sun gear 31 .
 より詳細には、キャリア33は、キャリア本体331、ピン335を有している。キャリア本体331は、例えば金属により略円環の板状に形成されている。キャリア本体331は、軸方向においてはコイル22とプラネタリギヤ32との間に位置している。 More specifically, the carrier 33 has a carrier body 331 and pins 335 . The carrier main body 331 is made of metal, for example, and is formed in a substantially annular plate shape. The carrier body 331 is positioned between the coil 22 and the planetary gear 32 in the axial direction.
 ピン335は、例えば金属により略円柱状に形成されている。ピン335は、軸方向の端部がキャリア本体331に固定されるようにして設けられている。 The pin 335 is made of metal, for example, and has a substantially columnar shape. The pin 335 is provided such that its axial end is fixed to the carrier body 331 .
 減速機30は、プラネタリギヤベアリング36を有している。プラネタリギヤベアリング36は、ピン335の外周壁とプラネタリギヤ32の内周壁との間に設けられている。これにより、プラネタリギヤ32は、プラネタリギヤベアリング36を介してピン335により回転可能に支持されている。すなわち、ピン335は、プラネタリギヤ32の回転中心に設けられ、プラネタリギヤ32を回転可能に支持している。また、プラネタリギヤ32とピン335とは、プラネタリギヤベアリング36を介して所定の範囲で軸方向に相対移動可能である。言い換えると、プラネタリギヤ32とピン335とは、プラネタリギヤベアリング36により、軸方向の相対移動可能範囲が所定の範囲に規制されている。 The speed reducer 30 has a planetary gear bearing 36. The planetary gear bearing 36 is provided between the outer peripheral wall of the pin 335 and the inner peripheral wall of the planetary gear 32 . Thereby, the planetary gear 32 is rotatably supported by the pin 335 via the planetary gear bearing 36 . That is, the pin 335 is provided at the rotation center of the planetary gear 32 and supports the planetary gear 32 rotatably. Also, the planetary gear 32 and the pin 335 are axially movable relative to each other within a predetermined range via the planetary gear bearing 36 . In other words, the planetary gear bearing 36 restricts the axial relative movement range between the planetary gear 32 and the pin 335 to a predetermined range.
 第1リングギヤ34は、プラネタリギヤ32に噛み合い可能な歯部である第1リングギヤ歯部341を有し、ハウジング12に固定されている。より詳細には、第1リングギヤ34は、例えば金属により略円筒状に形成されている。第1リングギヤ34は、ステータ21に対しハウジング板部122とは反対側において、外縁部がハウジング外筒部123の内周壁に嵌合するようハウジング12に固定されている。そのため、第1リングギヤ34は、ハウジング12に対し相対回転不能である。 The first ring gear 34 has a first ring gear tooth portion 341 which is a tooth portion that can mesh with the planetary gear 32 and is fixed to the housing 12 . More specifically, the first ring gear 34 is made of metal, for example, and has a substantially cylindrical shape. The first ring gear 34 is fixed to the housing 12 on the side opposite to the housing plate portion 122 with respect to the stator 21 so that the outer edge thereof fits into the inner peripheral wall of the housing outer cylinder portion 123 . Therefore, the first ring gear 34 cannot rotate relative to the housing 12 .
 ここで、第1リングギヤ34は、ハウジング12、ロータ23、サンギヤ31に対し同軸に設けられている。「歯部」および「内歯」としての第1リングギヤ歯部341は、プラネタリギヤ32のプラネタリギヤ歯部321の軸方向の一方の端部側に噛み合い可能なよう第1リングギヤ34の内周壁に形成されている。 Here, the first ring gear 34 is provided coaxially with the housing 12 , the rotor 23 and the sun gear 31 . A first ring gear tooth portion 341 as a “tooth portion” and an “internal tooth” is formed on the inner peripheral wall of the first ring gear 34 so as to be able to mesh with one axial end side of the planetary gear tooth portion 321 of the planetary gear 32 . ing.
 第2リングギヤ35は、プラネタリギヤ32に噛み合い可能な歯部であり第1リングギヤ歯部341とは歯数の異なる第2リングギヤ歯部351を有し、後述する駆動カム40と一体回転可能に設けられている。より詳細には、第2リングギヤ35は、例えば金属により筒状に形成されている。 The second ring gear 35 has a second ring gear tooth portion 351 which is a tooth portion that can mesh with the planetary gear 32 and has a number of teeth different from that of the first ring gear tooth portion 341. ing. More specifically, the second ring gear 35 is made of metal, for example, and has a cylindrical shape.
 ここで、第2リングギヤ35は、ハウジング12、ロータ23、サンギヤ31に対し同軸に設けられている。「歯部」および「内歯」としての第2リングギヤ歯部351は、プラネタリギヤ32のプラネタリギヤ歯部321の軸方向の他方の端部側に噛み合い可能なよう第2リングギヤ35の軸方向の第1リングギヤ34側の端部の内周壁に形成されている。本実施形態では、第2リングギヤ歯部351の歯数は、第1リングギヤ歯部341の歯数よりも多い。より詳細には、第2リングギヤ歯部351の歯数は、第1リングギヤ歯部341の歯数よりも、プラネタリギヤ32の個数に整数を乗じた数分だけ多い。 Here, the second ring gear 35 is provided coaxially with the housing 12, the rotor 23, and the sun gear 31. The second ring gear tooth portion 351 as a “tooth portion” and an “internal tooth” is arranged at the first axial position of the second ring gear 35 so as to be able to mesh with the other axial end side of the planetary gear tooth portion 321 of the planetary gear 32 . It is formed on the inner peripheral wall of the end on the ring gear 34 side. In this embodiment, the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 . More specifically, the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 by the number obtained by multiplying the number of planetary gears 32 by an integer.
 また、プラネタリギヤ32は、同一部位において2つの異なる諸元をもつ第1リングギヤ34および第2リングギヤ35と干渉なく正常に噛み合う必要があるため、第1リングギヤ34および第2リングギヤ35の一方もしくは両方を転位させて各歯車対の中心距離を一定にする設計としている。 In addition, the planetary gear 32 needs to mesh normally without interference with the first ring gear 34 and the second ring gear 35, which have two different specifications at the same location. It is designed to shift and keep the center distance of each gear pair constant.
 上記構成により、電動モータ20のロータ23が回転すると、サンギヤ31が回転し、プラネタリギヤ32のプラネタリギヤ歯部321がサンギヤ歯部311と第1リングギヤ歯部341および第2リングギヤ歯部351とに噛み合いつつ自転しながらサンギヤ31の周方向に公転する。ここで、第2リングギヤ歯部351の歯数が第1リングギヤ歯部341の歯数より多いため、第2リングギヤ35は、第1リングギヤ34に対し相対回転する。そのため、第1リングギヤ34と第2リングギヤ35との間で第1リングギヤ歯部341と第2リングギヤ歯部351との歯数差に応じた微小差回転が第2リングギヤ35の回転として出力される。これにより、電動モータ20からのトルクは、減速機30により減速されて、第2リングギヤ35から出力される。このように、減速機30は、電動モータ20のトルクを減速して出力可能である。本実施形態では、減速機30は、3k型の不思議遊星歯車減速機を構成している。 With the above configuration, when the rotor 23 of the electric motor 20 rotates, the sun gear 31 rotates, and the planetary gear tooth portion 321 of the planetary gear 32 meshes with the sun gear tooth portion 311 and the first ring gear tooth portion 341 and the second ring gear tooth portion 351. It revolves in the circumferential direction of the sun gear 31 while rotating. Here, since the number of teeth of the second ring gear tooth portion 351 is greater than the number of teeth of the first ring gear tooth portion 341 , the second ring gear 35 rotates relative to the first ring gear 34 . Therefore, between the first ring gear 34 and the second ring gear 35, a minute differential rotation corresponding to the difference in the number of teeth between the first ring gear tooth portion 341 and the second ring gear tooth portion 351 is output as the rotation of the second ring gear 35. . As a result, the torque from the electric motor 20 is reduced by the reduction gear 30 and output from the second ring gear 35 . Thus, the speed reducer 30 can reduce the torque of the electric motor 20 and output it. In this embodiment, the speed reducer 30 constitutes a 3k paradox planetary gear speed reducer.
 第2リングギヤ35は、後述する駆動カム40とは別体に形成され、駆動カム40と一体回転可能に設けられている。第2リングギヤ35は、電動モータ20からのトルクを減速して駆動カム40に出力する。ここで、第2リングギヤ35は、減速機30の「出力部」に対応する。 The second ring gear 35 is formed separately from the drive cam 40 described later, and is provided so as to be rotatable together with the drive cam 40 . The second ring gear 35 reduces the torque from the electric motor 20 and outputs it to the drive cam 40 . Here, the second ring gear 35 corresponds to the “output section” of the speed reducer 30 .
 トルクカム2は、「回転部」としての駆動カム40、「並進部」としての従動カム50、「カム転動体」としてのカムボール3を有している。 The torque cam 2 has a driving cam 40 as a "rotating part", a driven cam 50 as a "translating part", and a cam ball 3 as a "cam rolling element".
 駆動カム40は、駆動カム本体41、駆動カム特定形状部42、駆動カム板部43、駆動カム外筒部44、駆動カム溝400等を有している。駆動カム本体41は、略円環の板状に形成されている。駆動カム特定形状部42は、駆動カム本体41の外縁部から、駆動カム本体41の軸に対し傾斜して延びるよう形成されている。駆動カム板部43は、駆動カム特定形状部42の駆動カム本体41とは反対側の端部から径方向外側へ延びるよう略円環の板状に形成されている。駆動カム外筒部44は、駆動カム板部43の外縁部から駆動カム特定形状部42とは反対側へ延びるよう略円筒状に形成されている。ここで、駆動カム本体41と駆動カム特定形状部42と駆動カム板部43と駆動カム外筒部44とは、例えば金属により一体に形成されている。 The drive cam 40 has a drive cam main body 41, a drive cam specific shape portion 42, a drive cam plate portion 43, a drive cam outer cylindrical portion 44, a drive cam groove 400, and the like. The drive cam main body 41 is formed in a substantially annular plate shape. The drive cam specific shape portion 42 is formed to extend from the outer edge portion of the drive cam body 41 so as to be inclined with respect to the axis of the drive cam body 41 . The drive cam plate portion 43 is formed in a substantially annular plate shape so as to extend radially outward from the end portion of the drive cam specific shape portion 42 opposite to the drive cam main body 41 . The drive cam outer cylindrical portion 44 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the drive cam plate portion 43 to the side opposite to the drive cam specific shape portion 42 . Here, the drive cam main body 41, the drive cam specific shape portion 42, the drive cam plate portion 43, and the drive cam outer cylindrical portion 44 are integrally formed of metal, for example.
 駆動カム溝400は、駆動カム本体41の駆動カム特定形状部42側の面である一方の端面から他方の端面側へ凹みつつ、駆動カム本体41の周方向に延びるよう形成されている。駆動カム溝400は、駆動カム本体41の周方向において一方の端面からの深さが変化するよう形成されている。駆動カム溝400は、例えば駆動カム本体41の周方向に等間隔で3つ形成されている。 The drive cam groove 400 is formed to extend in the circumferential direction of the drive cam body 41 while being recessed from one end face of the drive cam body 41 on the drive cam specific shape portion 42 side to the other end face side. The drive cam groove 400 is formed such that the depth from one end surface thereof changes in the circumferential direction of the drive cam main body 41 . For example, three drive cam grooves 400 are formed at equal intervals in the circumferential direction of the drive cam main body 41 .
 駆動カム40は、駆動カム本体41がハウジング内筒部121の外周壁とサンギヤ31のサンギヤ筒部312の内周壁との間に位置し、駆動カム板部43がプラネタリギヤ32に対しキャリア本体331とは反対側に位置するようハウジング内筒部121とハウジング外筒部123との間に設けられている。駆動カム40は、ハウジング12に対し相対回転可能である。 The drive cam 40 has a drive cam body 41 located between the outer peripheral wall of the housing inner cylindrical portion 121 and the inner peripheral wall of the sun gear cylindrical portion 312 of the sun gear 31 , and the drive cam plate portion 43 and the carrier body 331 with respect to the planetary gear 32 . are provided between the housing inner tubular portion 121 and the housing outer tubular portion 123 so as to be located on opposite sides. The drive cam 40 is rotatable relative to the housing 12 .
 第2リングギヤ35は、第2リングギヤ歯部351が形成された端部とは反対側の端部の内周壁が駆動カム板部43の外縁部に嵌合するよう駆動カム40と一体に設けられている。第2リングギヤ35は、駆動カム40に対し相対回転不能である。すなわち、第2リングギヤ35は、「回転部」としての駆動カム40と一体回転可能に設けられている。そのため、電動モータ20からのトルクが、減速機30により減速され、第2リングギヤ35から出力されると、駆動カム40は、ハウジング12に対し相対回転する。すなわち、駆動カム40は、減速機30から出力されたトルクが入力されるとハウジング12に対し相対回転する。 The second ring gear 35 is provided integrally with the drive cam 40 so that the inner peripheral wall of the end opposite to the end where the second ring gear teeth 351 are formed is fitted to the outer edge of the drive cam plate portion 43 . ing. The second ring gear 35 is non-rotatable relative to the drive cam 40 . That is, the second ring gear 35 is provided so as to be integrally rotatable with the drive cam 40 as a "rotating portion". Therefore, when the torque from the electric motor 20 is reduced by the reduction gear 30 and output from the second ring gear 35 , the drive cam 40 rotates relative to the housing 12 . That is, the drive cam 40 rotates relative to the housing 12 when the torque output from the speed reducer 30 is input.
 従動カム50は、従動カム本体51、従動カム特定形状部52、従動カム板部53、カム側スプライン溝部54、従動カム溝500等を有している。従動カム本体51は、略円環の板状に形成されている。従動カム特定形状部52は、従動カム本体51の外縁部から、従動カム本体51の軸に対し傾斜して延びるよう形成されている。従動カム板部53は、従動カム特定形状部52の従動カム本体51とは反対側の端部から径方向外側へ延びるよう略円環の板状に形成されている。ここで、従動カム本体51と従動カム特定形状部52と従動カム板部53とは、例えば金属により一体に形成されている。 The driven cam 50 has a driven cam body 51, a driven cam specific shape portion 52, a driven cam plate portion 53, a cam-side spline groove portion 54, a driven cam groove 500, and the like. The driven cam main body 51 is formed in a substantially annular plate shape. The driven cam specific shape portion 52 is formed to extend from the outer edge portion of the driven cam body 51 so as to be inclined with respect to the axis of the driven cam body 51 . The driven cam plate portion 53 is formed in a substantially annular plate shape so as to extend radially outward from the end portion of the driven cam specific shape portion 52 opposite to the driven cam main body 51 . Here, the driven cam main body 51, the driven cam specific shape portion 52, and the driven cam plate portion 53 are integrally formed of metal, for example.
 カム側スプライン溝部54は、従動カム本体51の内周壁において軸方向に延びるよう形成されている。カム側スプライン溝部54は、従動カム本体51の周方向に複数形成されている。 The cam-side spline groove portion 54 is formed on the inner peripheral wall of the driven cam main body 51 so as to extend in the axial direction. A plurality of cam-side spline groove portions 54 are formed in the circumferential direction of the driven cam main body 51 .
 従動カム50は、従動カム本体51が駆動カム本体41に対しロータベアリング15とは反対側、かつ、駆動カム特定形状部42および駆動カム板部43の径方向内側に位置し、カム側スプライン溝部54がハウジング側スプライン溝部127とスプライン結合するよう設けられている。これにより、従動カム50は、ハウジング12に対し、相対回転不能、かつ、軸方向に相対移動可能である。 The driven cam 50 has a driven cam main body 51 located on the opposite side of the drive cam main body 41 from the rotor bearing 15 and radially inside the drive cam specific shape portion 42 and the drive cam plate portion 43 . 54 is provided for spline connection with the housing-side spline groove portion 127 . As a result, the driven cam 50 is non-rotatable relative to the housing 12 and is axially movable relative to the housing 12 .
 従動カム溝500は、従動カム本体51の駆動カム本体41側の面である一方の端面から他方の端面側へ凹みつつ、従動カム本体51の周方向に延びるよう形成されている。従動カム溝500は、従動カム本体51の周方向において一方の端面からの深さが変化するよう形成されている。従動カム溝500は、例えば従動カム本体51の周方向に等間隔で3つ形成されている。 The driven cam groove 500 is formed to extend in the circumferential direction of the driven cam body 51 while being recessed from one end face of the driven cam body 51 on the drive cam body 41 side to the other end face side. The driven cam groove 500 is formed such that the depth from one end surface of the driven cam main body 51 varies in the circumferential direction. For example, three driven cam grooves 500 are formed at equal intervals in the circumferential direction of the driven cam main body 51 .
 なお、駆動カム溝400と従動カム溝500とは、それぞれ、駆動カム本体41の従動カム本体51側の面側、または、従動カム本体51の駆動カム本体41側の面側から見たとき、同一の形状となるよう形成されている。 When the drive cam groove 400 and the driven cam groove 500 are viewed from the surface of the drive cam main body 41 on the side of the driven cam main body 51 or from the surface of the driven cam main body 51 on the side of the drive cam main body 41, They are formed to have the same shape.
 カムボール3は、例えば金属により球状に形成されている。カムボール3は、3つの駆動カム溝400と3つの従動カム溝500との間のそれぞれにおいて転動可能に設けられている。すなわち、カムボール3は、合計3つ設けられている。 The cam ball 3 is spherically formed of metal, for example. The cam balls 3 are provided to roll between the three drive cam grooves 400 and the three driven cam grooves 500 respectively. That is, a total of three cam balls 3 are provided.
 このように、駆動カム40と従動カム50とカムボール3とは、「転動体カム」としてのトルクカム2を構成している。駆動カム40がハウジング12および従動カム50に対し相対回転すると、カムボール3は、駆動カム溝400および従動カム溝500においてそれぞれの溝底に沿って転動する。 Thus, the driving cam 40, the driven cam 50, and the cam ball 3 constitute the torque cam 2 as a "rolling cam". When the drive cam 40 rotates relative to the housing 12 and the driven cam 50, the cam balls 3 roll along the groove bottoms of the drive cam groove 400 and the driven cam groove 500, respectively.
 上述のように、駆動カム溝400および従動カム溝500は、駆動カム40または従動カム50の周方向において深さが変化するよう形成されている。そのため、減速機30から出力されるトルクにより駆動カム40がハウジング12および従動カム50に対し相対回転すると、カムボール3が駆動カム溝400および従動カム溝500において転動し、従動カム50は、駆動カム40およびハウジング12に対し軸方向に相対移動、すなわち、ストロークする。 As described above, the drive cam groove 400 and the driven cam groove 500 are formed so that the depth changes in the circumferential direction of the drive cam 40 or the driven cam 50 . Therefore, when the drive cam 40 rotates relative to the housing 12 and the driven cam 50 by the torque output from the speed reducer 30, the cam ball 3 rolls in the drive cam groove 400 and the driven cam groove 500, and the driven cam 50 is driven. Axial relative movement or stroke relative to cam 40 and housing 12 .
 このように、従動カム50は、駆動カム溝400との間にカムボール3を挟むようにして一方の端面に形成された複数の従動カム溝500を有し、駆動カム40およびカムボール3とともにトルクカム2を構成している。従動カム50は、駆動カム40がハウジング12に対し相対回転すると駆動カム40およびハウジング12に対し軸方向に相対移動する。ここで、従動カム50は、カム側スプライン溝部54がハウジング側スプライン溝部127とスプライン結合しているため、ハウジング12に対し相対回転しない。また、駆動カム40は、ハウジング12に対し相対回転するものの、軸方向には相対移動しない。 As described above, the driven cam 50 has a plurality of driven cam grooves 500 formed on one end face so as to sandwich the cam ball 3 between the driven cam groove 400 and the driven cam groove 400 . doing. The driven cam 50 moves axially relative to the drive cam 40 and the housing 12 when the drive cam 40 rotates relative to the housing 12 . Here, the driven cam 50 does not rotate relative to the housing 12 because the cam-side spline groove portion 54 is spline-connected to the housing-side spline groove portion 127 . Further, although the drive cam 40 rotates relative to the housing 12, it does not move relative to the housing 12 in the axial direction.
 トルクカム2は、電動モータ20に対し軸方向の一方側に設けられ、電動モータ20からのトルクによる回転運動を、ハウジング12に対する軸方向の相対移動である並進運動に変換する。 The torque cam 2 is provided on one side of the electric motor 20 in the axial direction, and converts rotational motion due to torque from the electric motor 20 into translational motion, which is axial relative movement with respect to the housing 12 .
 本実施形態では、クラッチアクチュエータ10は、「付勢部材」としてのリターンスプリング55、リターンスプリングリテーナ56を備えている。リターンスプリング55は、例えばコイルスプリングであり、従動カム本体51の駆動カム本体41とは反対側において、ハウジング内筒部121の径方向外側に設けられている。リターンスプリング55は、一端が従動カム本体51の駆動カム本体41とは反対側の面に当接している。 In this embodiment, the clutch actuator 10 includes a return spring 55 and a return spring retainer 56 as "biasing members". The return spring 55 is, for example, a coil spring, and is provided on the side of the driven cam body 51 opposite to the drive cam body 41 and radially outside the housing inner cylindrical portion 121 . One end of the return spring 55 is in contact with the surface of the driven cam body 51 opposite to the drive cam body 41 .
 リターンスプリングリテーナ56は、リテーナ内筒部561、リテーナ板部562、リテーナ外筒部563を有している。リテーナ内筒部561は、略円筒状に形成されている。リテーナ板部562は、リテーナ内筒部561の一方の端部から径方向外側に延びるよう環状の板状に形成されている。リテーナ外筒部563は、リテーナ板部562の外縁部からリテーナ内筒部561側へ延びるよう略円筒状に形成されている。リテーナ内筒部561とリテーナ板部562とリテーナ外筒部563とは、例えば金属により一体に形成されている。 The return spring retainer 56 has a retainer inner cylindrical portion 561 , a retainer plate portion 562 and a retainer outer cylindrical portion 563 . The retainer inner cylindrical portion 561 is formed in a substantially cylindrical shape. The retainer plate portion 562 is formed in an annular plate shape so as to extend radially outward from one end portion of the retainer inner cylindrical portion 561 . The retainer outer tubular portion 563 is formed in a substantially cylindrical shape so as to extend from the outer edge portion of the retainer plate portion 562 toward the retainer inner tubular portion 561 side. The retainer inner tubular portion 561, the retainer plate portion 562, and the retainer outer tubular portion 563 are integrally formed of metal, for example.
 リターンスプリングリテーナ56は、リテーナ内筒部561の内周壁がハウジング内筒部121の外周壁に嵌合するようハウジング内筒部121に固定されている。リターンスプリング55の他端は、リテーナ内筒部561とリテーナ外筒部563との間においてリテーナ板部562に当接している。 The return spring retainer 56 is fixed to the housing inner tubular portion 121 so that the inner peripheral wall of the retainer inner tubular portion 561 fits into the outer peripheral wall of the housing inner tubular portion 121 . The other end of the return spring 55 is in contact with the retainer plate portion 562 between the retainer inner cylinder portion 561 and the retainer outer cylinder portion 563 .
 リターンスプリング55は、軸方向に伸びる力を有している。そのため、従動カム50は、駆動カム40との間にカムボール3を挟んだ状態で、リターンスプリング55により駆動カム本体41側へ付勢されている。 The return spring 55 has a force extending in the axial direction. Therefore, the driven cam 50 is urged toward the drive cam main body 41 by the return spring 55 with the cam ball 3 sandwiched between the driven cam 50 and the drive cam 40 .
 出力軸62は、軸部621、板部622、筒部623、摩擦板624を有している(図2参照)。軸部621は、略円筒状に形成されている。板部622は、軸部621の一端から径方向外側へ環状の板状に延びるよう軸部621と一体に形成されている。筒部623は、板部622の外縁部から軸部621とは反対側へ略円筒状に延びるよう板部622と一体に形成されている。摩擦板624は、略円環の板状に形成され、板部622の筒部623側の端面に設けられている。ここで、摩擦板624は、板部622に対し相対回転不能である。筒部623の内側には、クラッチ空間620が形成されている。 The output shaft 62 has a shaft portion 621, a plate portion 622, a cylindrical portion 623, and a friction plate 624 (see FIG. 2). The shaft portion 621 is formed in a substantially cylindrical shape. The plate portion 622 is formed integrally with the shaft portion 621 so as to extend radially outward in an annular plate shape from one end of the shaft portion 621 . The cylindrical portion 623 is formed integrally with the plate portion 622 so as to extend in a substantially cylindrical shape from the outer edge portion of the plate portion 622 to the side opposite to the shaft portion 621 . The friction plate 624 is formed in a substantially annular plate shape, and is provided on the end surface of the plate portion 622 on the cylinder portion 623 side. Here, the friction plate 624 cannot rotate relative to the plate portion 622 . A clutch space 620 is formed inside the cylindrical portion 623 .
 入力軸61の端部は、ハウジング内筒部121の内側を通り、従動カム50に対し駆動カム40とは反対側に位置している。出力軸62は、従動カム50に対し駆動カム40とは反対側において、入力軸61と同軸に設けられる。軸部621の内周壁と入力軸61の端部の外周壁との間には、ボールベアリング142が設けられる。これにより、出力軸62は、ボールベアリング142を介して入力軸61により軸受けされる。入力軸61および出力軸62は、ハウジング12に対し相対回転可能である。 The end of the input shaft 61 passes through the housing inner cylindrical portion 121 and is located on the opposite side of the driven cam 50 to the drive cam 40 . The output shaft 62 is provided coaxially with the input shaft 61 on the opposite side of the driven cam 50 from the drive cam 40 . A ball bearing 142 is provided between the inner peripheral wall of the shaft portion 621 and the outer peripheral wall at the end of the input shaft 61 . Thereby, the output shaft 62 is supported by the input shaft 61 via the ball bearings 142 . The input shaft 61 and the output shaft 62 are rotatable relative to the housing 12 .
 クラッチ70は、クラッチ空間620において入力軸61と出力軸62との間に設けられている。クラッチ70は、内側摩擦板71、外側摩擦板72、係止部701を有している。内側摩擦板71は、略円環の板状に形成され、入力軸61と出力軸62の筒部623との間において、軸方向に並ぶよう複数設けられている。内側摩擦板71は、内縁部が入力軸61の外周壁とスプライン結合するよう設けられている。そのため、内側摩擦板71は、入力軸61に対し相対回転不能、かつ、軸方向に相対移動可能である。 The clutch 70 is provided between the input shaft 61 and the output shaft 62 in the clutch space 620 . The clutch 70 has an inner friction plate 71 , an outer friction plate 72 and a locking portion 701 . The inner friction plates 71 are formed in a substantially annular plate shape, and are provided in plurality so as to be aligned in the axial direction between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 . The inner friction plate 71 is provided such that the inner edge thereof is spline-connected to the outer peripheral wall of the input shaft 61 . Therefore, the inner friction plate 71 is non-rotatable relative to the input shaft 61 and is axially movable relative to the input shaft 61 .
 外側摩擦板72は、略円環の板状に形成され、入力軸61と出力軸62の筒部623との間において、軸方向に並ぶよう複数設けられている。ここで、内側摩擦板71と外側摩擦板72とは、入力軸61の軸方向において交互に配置されている。外側摩擦板72は、外縁部が出力軸62の筒部623の内周壁とスプライン結合するよう設けられている。そのため、外側摩擦板72は、出力軸62に対し相対回転不能、かつ、軸方向に相対移動可能である。複数の外側摩擦板72のうち最も摩擦板624側に位置する外側摩擦板72は、摩擦板624に接触可能である。 The outer friction plates 72 are formed in a substantially annular plate shape, and are provided in plurality so as to be aligned in the axial direction between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 . Here, the inner friction plates 71 and the outer friction plates 72 are alternately arranged in the axial direction of the input shaft 61 . The outer friction plate 72 is provided so that its outer edge is spline-connected to the inner peripheral wall of the cylindrical portion 623 of the output shaft 62 . Therefore, the outer friction plate 72 is non-rotatable relative to the output shaft 62 and is axially movable relative to the output shaft 62 . The outer friction plate 72 located closest to the friction plate 624 among the plurality of outer friction plates 72 can contact the friction plate 624 .
 係止部701は、略円環状に形成され、外縁部が出力軸62の筒部623の内周壁に嵌合するよう設けられる。係止部701は、複数の外側摩擦板72のうち最も従動カム50側に位置する外側摩擦板72の外縁部を係止可能である。そのため、複数の外側摩擦板72、複数の内側摩擦板71は、筒部623の内側からの脱落が抑制される。なお、係止部701と摩擦板624との距離は、複数の外側摩擦板72および複数の内側摩擦板71の板厚の合計よりも大きい。 The locking portion 701 is formed in a substantially annular shape, and is provided so that the outer edge thereof fits into the inner peripheral wall of the cylindrical portion 623 of the output shaft 62 . The locking portion 701 can lock the outer edge portion of the outer friction plate 72 positioned closest to the driven cam 50 among the plurality of outer friction plates 72 . Therefore, the plurality of outer friction plates 72 and the plurality of inner friction plates 71 are prevented from coming off from the inside of the tubular portion 623 . The distance between locking portion 701 and friction plate 624 is greater than the total thickness of outer friction plates 72 and inner friction plates 71 .
 複数の内側摩擦板71および複数の外側摩擦板72が互いに接触、つまり係合した状態である係合状態では、内側摩擦板71と外側摩擦板72との間に摩擦力が生じ、当該摩擦力の大きさに応じて内側摩擦板71と外側摩擦板72との相対回転が規制される。一方、複数の内側摩擦板71および複数の外側摩擦板72が互いに離間、つまり係合していない状態である非係合状態では、内側摩擦板71と外側摩擦板72との間に摩擦力は生じず、内側摩擦板71と外側摩擦板72との相対回転は規制されない。 In the engaged state in which the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are in contact with each other, that is, in the engaged state, a friction force is generated between the inner friction plates 71 and the outer friction plates 72, and the friction force is generated. Relative rotation between the inner friction plate 71 and the outer friction plate 72 is regulated according to the size of . On the other hand, in the non-engaged state in which the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are separated from each other, that is, the plurality of outer friction plates 72 are not engaged with each other, the frictional force between the inner friction plates 71 and the outer friction plates 72 is The relative rotation between the inner friction plate 71 and the outer friction plate 72 is not restricted.
 クラッチ70が係合状態のとき、入力軸61に入力されたトルクは、クラッチ70を経由して出力軸62に伝達される。一方、クラッチ70が非係合状態のとき、入力軸61に入力されたトルクは、出力軸62に伝達されない。 When the clutch 70 is engaged, torque input to the input shaft 61 is transmitted to the output shaft 62 via the clutch 70 . On the other hand, when the clutch 70 is in the disengaged state, the torque input to the input shaft 61 is not transmitted to the output shaft 62 .
 このように、クラッチ70は、入力軸61と出力軸62との間でトルクを伝達する。クラッチ70は、係合している係合状態のとき、入力軸61と出力軸62との間のトルクの伝達を許容し、係合していない非係合状態のとき、入力軸61と出力軸62との間のトルクの伝達を遮断する。 Thus, the clutch 70 transmits torque between the input shaft 61 and the output shaft 62. Clutch 70 allows transmission of torque between input shaft 61 and output shaft 62 when in the engaged state, and allows transmission of torque between input shaft 61 and output shaft 62 when in the disengaged state. It interrupts transmission of torque to and from shaft 62 .
 本実施形態では、クラッチ装置1は、通常、非係合状態となる、所謂常開式(ノーマリーオープンタイプ)のクラッチ装置である。 In this embodiment, the clutch device 1 is a so-called normally open type clutch device that is normally in a non-engaged state.
 状態変更部80は、「弾性変形部」としての皿ばね81、皿ばねリテーナ82、皿ばねスラストベアリング83を有している。皿ばねリテーナ82は、リテーナ筒部821、リテーナフランジ部822を有している。リテーナ筒部821は、略円筒状に形成されている。リテーナフランジ部822は、リテーナ筒部821の一端から径方向外側へ延びるよう環状の板状に形成されている。リテーナ筒部821とリテーナフランジ部822とは、例えば金属により一体に形成されている。皿ばねリテーナ82は、例えばリテーナ筒部821の他端が従動カム板部53の駆動カム40とは反対側の端面に接続するよう従動カム50に設けられている。ここで、リテーナ筒部821と従動カム板部53とは、例えば溶接により接続されている。 The state changing portion 80 has a disc spring 81, a disc spring retainer 82, and a disc spring thrust bearing 83 as an "elastic deformation portion". The disc spring retainer 82 has a retainer tubular portion 821 and a retainer flange portion 822 . The retainer tubular portion 821 is formed in a substantially cylindrical shape. The retainer flange portion 822 is formed in an annular plate shape extending radially outward from one end of the retainer tubular portion 821 . The retainer tubular portion 821 and the retainer flange portion 822 are integrally formed of metal, for example. The disk spring retainer 82 is provided on the driven cam 50 such that the other end of the retainer cylinder portion 821 is connected to the end surface of the driven cam plate portion 53 opposite to the drive cam 40 , for example. Here, the retainer cylinder portion 821 and the driven cam plate portion 53 are connected by welding, for example.
 皿ばね81は、内縁部がリテーナ筒部821の径方向外側において、従動カム板部53とリテーナフランジ部822との間に位置するよう設けられている。皿ばねスラストベアリング83は、環状に形成され、リテーナ筒部821の径方向外側において、従動カム板部53と皿ばね81の内縁部との間に設けられている。 The disk spring 81 is provided so that the inner edge portion is positioned between the driven cam plate portion 53 and the retainer flange portion 822 on the radially outer side of the retainer tubular portion 821 . The disk spring thrust bearing 83 is formed in an annular shape, and is provided between the driven cam plate portion 53 and the inner edge portion of the disk spring 81 on the radially outer side of the retainer tubular portion 821 .
 皿ばねリテーナ82は、リテーナフランジ部822が皿ばね81の軸方向の一端すなわち内縁部を係止可能なよう従動カム50に固定されている。そのため、皿ばね81および皿ばねスラストベアリング83は、リテーナフランジ部822により、皿ばねリテーナ82からの脱落が抑制されている。皿ばね81は、軸方向に弾性変形可能である。 The disk spring retainer 82 is fixed to the driven cam 50 so that the retainer flange portion 822 can lock one axial end of the disk spring 81, that is, the inner edge portion. Therefore, the disc spring 81 and the disc spring thrust bearing 83 are prevented from falling off from the disc spring retainer 82 by the retainer flange portion 822 . The disc spring 81 is elastically deformable in the axial direction.
 図3は、状態変更部80を取り付けていない状態のクラッチアクチュエータ10を示す断面図である。 FIG. 3 is a cross-sectional view showing the clutch actuator 10 without the state changing section 80 attached.
 図1、2に示すように、カムボール3が、駆動カム本体41の一方の端面から駆動カム溝400の駆動カム本体41の軸方向すなわち深さ方向に最も離れた部位である最深部に対応する位置(原点)、および、従動カム本体51の一方の端面から従動カム溝500の従動カム本体51の軸方向すなわち深さ方向に最も離れた部位である最深部に対応する位置(原点)に位置するとき、駆動カム40と従動カム50との距離は、比較的小さく、皿ばね81の軸方向の他端すなわち外縁部とクラッチ70との間には、隙間Sp1が形成されている(図1参照)。そのため、クラッチ70は非係合状態であり、入力軸61と出力軸62との間のトルクの伝達は遮断されている。 As shown in FIGS. 1 and 2, the cam ball 3 corresponds to the deepest part of the drive cam groove 400, which is the part of the drive cam body 41 that is farthest from one end face of the drive cam body 41 in the axial direction, that is, the depth direction. A position (origin) and a position (origin) corresponding to the deepest portion of the driven cam groove 500 that is the most distant portion in the axial direction, that is, the depth direction, of the driven cam body 51 from one end surface of the driven cam body 51. At this time, the distance between the drive cam 40 and the driven cam 50 is relatively small, and a gap Sp1 is formed between the other axial end of the disc spring 81, that is, the outer edge thereof, and the clutch 70 (see FIG. 1). reference). Therefore, the clutch 70 is in a disengaged state, and transmission of torque between the input shaft 61 and the output shaft 62 is interrupted.
 ここで、クラッチ70の状態を変更する通常作動時、ECU100の制御により電動モータ20のコイル22に電力が供給されると、電動モータ20が回転し、減速機30からトルクが出力され、駆動カム40がハウジング12に対し相対回転する。これにより、カムボール3が最深部に対応する位置から駆動カム溝400および従動カム溝500の周方向の一方側へ転動する。これにより、従動カム50は、リターンスプリング55を圧縮しながらハウジング12に対し軸方向に相対移動、すなわち、クラッチ70側へ移動する。これにより、皿ばね81は、クラッチ70側へ移動する。 Here, when electric power is supplied to the coil 22 of the electric motor 20 under the control of the ECU 100 during normal operation to change the state of the clutch 70, the electric motor 20 rotates, torque is output from the speed reducer 30, and the drive cam 40 rotates relative to housing 12; As a result, the cam ball 3 rolls from the position corresponding to the deepest portion to one side of the driving cam groove 400 and the driven cam groove 500 in the circumferential direction. As a result, the driven cam 50 moves relative to the housing 12 in the axial direction while compressing the return spring 55, that is, moves toward the clutch 70 side. As a result, the disk spring 81 moves toward the clutch 70 side.
 従動カム50の軸方向の移動により皿ばね81がクラッチ70側へ移動すると、隙間Sp1が小さくなり、皿ばね81の軸方向の他端は、クラッチ70の外側摩擦板72に接触する。皿ばね81がクラッチ70に接触した後さらに従動カム50が軸方向に移動すると、皿ばね81は、軸方向に弾性変形しつつ、外側摩擦板72を摩擦板624側へ押す。これにより、複数の内側摩擦板71および複数の外側摩擦板72が互いに係合し、クラッチ70が係合状態となる。そのため、入力軸61と出力軸62との間のトルクの伝達が許容される。 When the disk spring 81 moves toward the clutch 70 due to the axial movement of the driven cam 50 , the gap Sp1 becomes smaller and the other axial end of the disk spring 81 contacts the outer friction plate 72 of the clutch 70 . When the driven cam 50 further moves in the axial direction after the disc spring 81 contacts the clutch 70 , the disc spring 81 pushes the outer friction plate 72 toward the friction plate 624 while elastically deforming in the axial direction. As a result, the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are engaged with each other, and the clutch 70 is engaged. Therefore, transmission of torque between the input shaft 61 and the output shaft 62 is permitted.
 このとき、皿ばね81は、皿ばねスラストベアリング83に軸受けされながら従動カム50および皿ばねリテーナ82に対し相対回転する。このように、皿ばねスラストベアリング83は、皿ばね81からスラスト方向の荷重を受けつつ、皿ばね81を軸受けする。 At this time, the disk spring 81 rotates relative to the driven cam 50 and the disk spring retainer 82 while being supported by the disk spring thrust bearing 83 . Thus, the disk spring thrust bearing 83 bears the disk spring 81 while receiving a thrust-direction load from the disk spring 81 .
 ECU100は、クラッチ伝達トルクがクラッチ要求トルク容量に達すると、電動モータ20の回転を停止させる。これにより、クラッチ70は、クラッチ伝達トルクがクラッチ要求トルク容量に維持された係合保持状態となる。このように、状態変更部80の皿ばね81は、従動カム50から軸方向の力を受け、ハウジング12および駆動カム40に対する従動カム50の軸方向の相対位置に応じてクラッチ70の状態を係合状態または非係合状態に変更可能である。 The ECU 100 stops rotation of the electric motor 20 when the clutch transmission torque reaches the clutch required torque capacity. As a result, the clutch 70 is in an engagement holding state in which the clutch transmission torque is maintained at the clutch required torque capacity. Thus, the disk spring 81 of the state changing portion 80 receives an axial force from the driven cam 50 and engages the clutch 70 in accordance with the axial relative position of the driven cam 50 with respect to the housing 12 and the drive cam 40 . It can be changed to engaged or disengaged.
 また、トルクカム2は、電動モータ20からのトルクによる回転運動を、ハウジング12に対する軸方向の相対移動である並進運動に変換し、クラッチ70の状態を係合状態または非係合状態に変更可能である。 In addition, the torque cam 2 can convert rotational motion due to torque from the electric motor 20 into translational motion, which is relative movement in the axial direction with respect to the housing 12, and change the state of the clutch 70 between the engaged state and the disengaged state. be.
 出力軸62は、軸部621の板部622とは反対側の端部が、図示しない変速機の入力軸に接続され、当該入力軸とともに回転可能である。つまり、変速機の入力軸には、出力軸62から出力されたトルクが入力される。変速機に入力されたトルクは、変速機で変速され、駆動トルクとして車両の駆動輪に出力される。これにより、車両が走行する。 The output shaft 62 is connected to an input shaft of a transmission (not shown) at the end of the shaft portion 621 opposite to the plate portion 622, and is rotatable together with the input shaft. That is, the torque output from the output shaft 62 is input to the input shaft of the transmission. The torque input to the transmission is changed by the transmission and output as drive torque to the drive wheels of the vehicle. This allows the vehicle to run.
 本実施形態では、クラッチ装置1は、オイル供給部5を備えている(図1、2参照)。オイル供給部5は、一端がクラッチ空間620に露出するよう、出力軸62において通路状に形成されている。オイル供給部5の他端は、図示しないオイル供給源に接続される。これにより、オイル供給部5の一端からクラッチ空間620のクラッチ70にオイルが供給される。 In this embodiment, the clutch device 1 includes an oil supply section 5 (see FIGS. 1 and 2). The oil supply portion 5 is formed in the shape of a passage on the output shaft 62 so that one end thereof is exposed to the clutch space 620 . The other end of the oil supply portion 5 is connected to an oil supply source (not shown). As a result, oil is supplied from one end of the oil supply portion 5 to the clutch 70 in the clutch space 620 .
 ECU100は、オイル供給部5からクラッチ70に供給するオイルの量を制御する。クラッチ70に供給されたオイルは、クラッチ70を潤滑および冷却可能である。このように、本実施形態では、クラッチ70は、湿式クラッチであり、オイルにより冷却され得る。 The ECU 100 controls the amount of oil supplied from the oil supply section 5 to the clutch 70 . The oil supplied to clutch 70 can lubricate and cool clutch 70 . Thus, in this embodiment, the clutch 70 is a wet clutch and can be cooled by oil.
 本実施形態では、「回転並進部」としてのトルクカム2は、「回転部」としての駆動カム40および第2リングギヤ35とハウジング12との間に収容空間120を形成している。ここで、収容空間120は、駆動カム40および第2リングギヤ35に対しクラッチ70とは反対側においてハウジング12の内側に形成されている。電動モータ20および減速機30は、収容空間120に設けられている。クラッチ70は、駆動カム40に対し収容空間120とは反対側の空間であるクラッチ空間620に設けられている。 In this embodiment, the torque cam 2 as the "rotational translation section" forms an accommodation space 120 between the housing 12 and the drive cam 40 and the second ring gear 35 as the "rotational section". Here, the accommodation space 120 is formed inside the housing 12 on the side opposite to the clutch 70 with respect to the drive cam 40 and the second ring gear 35 . Electric motor 20 and speed reducer 30 are provided in housing space 120 . The clutch 70 is provided in a clutch space 620 which is a space on the opposite side of the housing space 120 with respect to the drive cam 40 .
 図3に示すように、スラストベアリング16は、「スラスト軸受転動体」としてのころ161、レース162、バックアッププレート163を有している。レース162は、例えば金属により環状の板状に形成されている。ころ161は、例えば金属により略円柱状に形成され、レース162の一方の端面に接触しながらレース162の周方向に転動可能に設けられている。ころ161は、レース162の周方向に複数設けられている。 As shown in FIG. 3, the thrust bearing 16 has rollers 161, races 162, and backup plates 163 as "thrust bearing rolling elements." The race 162 is made of metal, for example, and has an annular plate shape. The roller 161 is formed of metal, for example, in a substantially columnar shape, and is provided so as to be able to roll in the circumferential direction of the race 162 while being in contact with one end surface of the race 162 . A plurality of rollers 161 are provided in the circumferential direction of the race 162 .
 バックアッププレート163は、プレート本体164、プレート凸部165を有している。プレート本体164は、略円環状に形成されている。プレート凸部165は、プレート本体164の内縁部から軸方向に突出するよう略円環状に形成されている。プレート本体164とプレート凸部165とは、例えば金属により一体に形成されている。 The backup plate 163 has a plate main body 164 and plate protrusions 165 . The plate body 164 is formed in a substantially annular shape. The plate convex portion 165 is formed in a substantially annular shape so as to protrude in the axial direction from the inner edge portion of the plate main body 164 . The plate main body 164 and the plate protrusion 165 are integrally formed of metal, for example.
 バックアッププレート163は、プレート凸部165がハウジング段差面125に当接するようハウジング内筒部121の径方向外側に設けられている。レース162は、他方の端面がプレート本体164のプレート凸部165とは反対側の端面に当接するようハウジング内筒部121の径方向外側に設けられている。ころ161は、レース162と駆動カム本体41との間に設けられ、レース162の駆動カム本体41側の端面と駆動カム本体41のレース162側の面とに接触しつつ、レース162の周方向に転動可能である。 The backup plate 163 is provided radially outward of the housing inner cylindrical portion 121 so that the plate convex portion 165 contacts the housing stepped surface 125 . The race 162 is provided radially outward of the housing inner cylindrical portion 121 so that the other end face abuts the end face of the plate main body 164 opposite to the plate protrusion 165 . The roller 161 is provided between the race 162 and the drive cam main body 41 , and is in contact with the end surface of the race 162 on the drive cam main body 41 side and the surface of the drive cam main body 41 on the race 162 side, and moves in the circumferential direction of the race 162 . can be rolled to
 スラストベアリング16は、駆動カム40からスラスト方向すなわち軸方向の荷重を受けつつ駆動カム40を軸受けする。本実施形態では、クラッチ70側からの軸方向の荷重は、皿ばね81、皿ばねスラストベアリング83、従動カム50、カムボール3、駆動カム40を経由してスラストベアリング16に作用する。 The thrust bearing 16 bears the drive cam 40 while receiving a load in the thrust direction, that is, the axial direction from the drive cam 40 . In this embodiment, the axial load from the clutch 70 side acts on the thrust bearing 16 via the disc spring 81 , disc spring thrust bearing 83 , driven cam 50 , cam ball 3 and drive cam 40 .
 本実施形態では、クラッチアクチュエータ10は、「シール部材」としての内側シール部材191、外側シール部材192を備えている。内側シール部材191は、例えばゴム等の弾性材料により環状に形成されたオイルシールである。外側シール部材192は、例えばゴム等の弾性材料および金属環等により環状に形成されたオイルシールである。 In this embodiment, the clutch actuator 10 includes an inner seal member 191 and an outer seal member 192 as "seal members". The inner seal member 191 is an annular oil seal made of an elastic material such as rubber. The outer seal member 192 is an annular oil seal made of an elastic material such as rubber and a metal ring.
 内側シール部材191は、ハウジング内筒部121に形成されたシール溝部124に設けられている。内側シール部材191は、外縁部が駆動カム本体41の内周壁と摺動可能なようシール溝部124に設けられている。 The inner seal member 191 is provided in a seal groove portion 124 formed in the housing inner cylindrical portion 121 . The inner seal member 191 is provided in the seal groove portion 124 so that the outer edge portion can slide on the inner peripheral wall of the drive cam body 41 .
 外側シール部材192は、第2リングギヤ35に対し第1リングギヤ34とは反対側において、ハウジング外筒部123と駆動カム外筒部44との間に設けられている。外側シール部材192は、内縁部のシールリップ部が駆動カム外筒部44の外周壁と摺動可能なようハウジング外筒部123に設けられている。 The outer seal member 192 is provided between the housing outer cylindrical portion 123 and the drive cam outer cylindrical portion 44 on the side opposite to the first ring gear 34 with respect to the second ring gear 35 . The outer seal member 192 is provided on the housing outer cylinder portion 123 so that the seal lip portion of the inner edge portion can slide on the outer peripheral wall of the drive cam outer cylinder portion 44 .
 ここで、外側シール部材192は、内側シール部材191の軸方向から見たとき、内側シール部材191の径方向外側に位置するよう設けられている(図1、2参照)。 Here, the outer seal member 192 is provided so as to be positioned radially outward of the inner seal member 191 when viewed from the axial direction of the inner seal member 191 (see FIGS. 1 and 2).
 上述のように、駆動カム本体41の内周壁は、内側シール部材191と摺動可能である。すなわち、内側シール部材191は、「回転部」としての駆動カム40に接触するよう設けられている。内側シール部材191は、駆動カム本体41とハウジング内筒部121との間を気密または液密にシールしている。 As described above, the inner peripheral wall of the drive cam body 41 is slidable with the inner seal member 191 . That is, the inner seal member 191 is provided so as to come into contact with the drive cam 40 as a "rotating portion". The inner seal member 191 hermetically or liquid-tightly seals between the drive cam main body 41 and the housing inner cylindrical portion 121 .
 駆動カム外筒部44の外周壁は、外側シール部材192の内縁部であるシールリップ部と摺動可能である。すなわち、外側シール部材192は、「回転部」としての駆動カム40に接触するよう設けられている。外側シール部材192は、駆動カム外筒部44の外周壁とハウジング外筒部123の内周壁との間を気密または液密にシールしている。 The outer peripheral wall of the drive cam outer cylindrical portion 44 is slidable on the seal lip portion that is the inner edge portion of the outer seal member 192 . That is, the outer seal member 192 is provided so as to come into contact with the drive cam 40 as a "rotating portion". The outer seal member 192 hermetically or liquid-tightly seals the outer peripheral wall of the drive cam outer cylindrical portion 44 and the inner peripheral wall of the housing outer cylindrical portion 123 .
 上述のように設けられた内側シール部材191、および、外側シール部材192により、電動モータ20および減速機30を収容する収容空間120を気密または液密に保持可能であり、収容空間120と、クラッチ70が設けられたクラッチ空間620との間を気密または液密に保持可能である。これにより、例えばクラッチ70において摩耗粉等の異物が発生したとしても、当該異物がクラッチ空間620から収容空間120へ侵入するのを抑制できる。そのため、異物による電動モータ20または減速機30の作動不良を抑制できる。 With the inner sealing member 191 and the outer sealing member 192 provided as described above, the accommodation space 120 that accommodates the electric motor 20 and the speed reducer 30 can be kept airtight or liquid-tight. It is possible to maintain airtightness or liquidtightness with the clutch space 620 in which 70 is provided. As a result, for example, even if foreign matter such as abrasion powder is generated in the clutch 70 , it is possible to prevent the foreign matter from entering the housing space 120 from the clutch space 620 . Therefore, malfunction of the electric motor 20 or the speed reducer 30 due to foreign matter can be suppressed.
 以下、本実施形態の各部の構成について、より詳細に説明する。 The configuration of each part of this embodiment will be described in more detail below.
 図3、5に示すように、スラストベアリング16は、軸方向から見て、スラストベアリング16の径方向における中心の位置である中央位置P1が、駆動カム溝400の駆動カム40の径方向における中心の位置である中央位置P3を通る円であるピッチ円Cp1に対し径方向内側に位置するよう設けられている。 As shown in FIGS. 3 and 5, when viewed from the axial direction, the thrust bearing 16 has a central position P1, which is the center position of the thrust bearing 16 in the radial direction. It is provided so as to be positioned radially inside a pitch circle Cp1 that is a circle passing through a center position P3 that is the position of .
 より具体的には、スラストベアリング16は、環状のバックアッププレート163、環状のレース162、および、レース162の周方向に転動可能なころ161を有し、バックアッププレート163の軸方向から見たとき、全体として環状となるよう形成されている。ここで、「スラストベアリング16の軸方向」とは、「バックアッププレート163またはレース162の軸方向」を意味する(以下、同じ)。また、「スラストベアリング16の径方向における中心の位置」とは、ころ161、レース162およびバックアッププレート163を一体に含む、全体として環状のスラストベアリング16の径方向の中心の位置を意味する。 More specifically, the thrust bearing 16 has an annular backup plate 163 , an annular race 162 , and rollers 161 that can roll in the circumferential direction of the race 162 . , is formed to be annular as a whole. Here, "the axial direction of the thrust bearing 16" means "the axial direction of the backup plate 163 or the race 162" (same below). Further, the “radial center position of the thrust bearing 16 ” means the radial center position of the generally annular thrust bearing 16 integrally including the rollers 161 , the races 162 and the backup plate 163 .
 図3に示すように、スラストベアリング16は、軸方向から見て、全体がピッチ円Cp1の径方向内側に位置するよう設けられている。より具体的には、スラストベアリング16は、軸方向から見て、レース162の外縁部、および、バックアッププレート163の外縁部がピッチ円Cp1の径方向内側に位置するよう設けられている。 As shown in FIG. 3, the thrust bearing 16 is provided so as to be positioned radially inward of the pitch circle Cp1 as viewed from the axial direction. More specifically, the thrust bearing 16 is provided so that the outer edge of the race 162 and the outer edge of the backup plate 163 are positioned radially inside the pitch circle Cp1 when viewed in the axial direction.
 トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してハウジング12で支持されている。より具体的には、スラストベアリング16のバックアッププレート163のプレート凸部165がハウジング段差面125に当接している。これにより、クラッチ70側からの軸方向の荷重は、皿ばね81、皿ばねスラストベアリング83、従動カム50、カムボール3、駆動カム40、スラストベアリング16を経由してハウジング段差面125に作用する。 The axial load received from the torque cam 2 is supported by the housing 12 via the thrust bearing 16. More specifically, the plate convex portion 165 of the backup plate 163 of the thrust bearing 16 is in contact with the housing step surface 125 . As a result, the axial load from the clutch 70 side acts on the housing step surface 125 via the disc spring 81 , disc spring thrust bearing 83 , driven cam 50 , cam ball 3 , drive cam 40 and thrust bearing 16 .
 図3~5に示すように、駆動カム本体41の中心O1を中心とし駆動カム溝400の駆動カム40の径方向における中心の位置である中央位置P3を通る円をピッチ円Cp1、スラストベアリング16の中心を中心としスラストベアリング16の径方向の中心の位置である中央位置P1を通る円を円C1とすると、駆動カム40、スラストベアリング16およびロータベアリング15は、ピッチ円Cp1の径方向内側に円C1が位置するよう設けられている。 As shown in FIGS. 3 to 5, a pitch circle Cp1 and a thrust bearing 16 are defined as a circle centered on the center O1 of the drive cam body 41 and passing through a center position P3, which is the center position of the drive cam 40 in the radial direction of the drive cam groove 400. and the center of the thrust bearing 16 passing through the center position P1, which is the radial center position of the thrust bearing 16, is a circle C1. It is provided so that the circle C1 is positioned.
 図6に示すように、従動カム本体51の中心O2を中心とし従動カム溝500の従動カム50の径方向における中心の位置である中央位置P4を通る円をピッチ円Cp2とすると、スラストベアリング16の軸方向から見て、ピッチ円Cp2は、ピッチ円Cp1と一致する(図3、4参照)。 As shown in FIG. 6, if a pitch circle Cp2 is a circle that is centered on the center O2 of the driven cam main body 51 and passes through a center position P4 that is the center position of the driven cam 50 in the radial direction of the driven cam groove 500, then the thrust bearing 16 , the pitch circle Cp2 coincides with the pitch circle Cp1 (see FIGS. 3 and 4).
 以上説明したように、本実施形態では、駆動カム40は、カムボール3が転動可能なよう駆動カム40の周方向に延びるよう形成された駆動カム溝400を有する。スラストベアリング16は、軸方向から見て、スラストベアリング16の径方向における中央位置P1が、駆動カム溝400の駆動カム40の径方向における中央位置P3を通る円であるピッチ円Cp1に対し径方向内側に位置するよう設けられている。 As described above, in this embodiment, the drive cam 40 has the drive cam groove 400 formed to extend in the circumferential direction of the drive cam 40 so that the cam ball 3 can roll. The thrust bearing 16 has a radial center position P1 of the thrust bearing 16 as viewed in the axial direction with respect to a pitch circle Cp1, which is a circle passing through a radial center position P3 of the drive cam 40 in the drive cam groove 400. It is provided so as to be located inside.
 そのため、スラストベアリングが駆動カム溝のピッチ円上に設けられる従来の構成と比べ、ロータベアリング15を小径化できる。これにより、電動モータ20を小径化でき、クラッチアクチュエータ10を小型化できる。その結果、クラッチアクチュエータ10の収容性を向上でき、低コスト化を図ることができる。 Therefore, the diameter of the rotor bearing 15 can be reduced compared to the conventional configuration in which the thrust bearing is provided on the pitch circle of the drive cam groove. As a result, the diameter of the electric motor 20 can be reduced, and the clutch actuator 10 can be reduced in size. As a result, the housing capacity of the clutch actuator 10 can be improved, and the cost can be reduced.
 なお、駆動カム40は、大きな軸方向荷重に耐えるために、高い強度および硬度を有するため、本実施形態のように、駆動カム溝400のピッチ円Cp1に対し径方向内側にスラストベアリング16を配置しても、駆動カム40が変形することなく軸方向荷重を支持可能である。したがって、スラストベアリング16により軸方向荷重を適切に支持しつつ、クラッチアクチュエータ10の小型化を実現できる。 Since the drive cam 40 has high strength and hardness to withstand a large axial load, the thrust bearing 16 is arranged radially inside the pitch circle Cp1 of the drive cam groove 400 as in the present embodiment. However, the axial load can be supported without the drive cam 40 deforming. Therefore, the axial load can be properly supported by the thrust bearing 16, and the size of the clutch actuator 10 can be reduced.
 また、本実施形態では、スラストベアリング16は、軸方向から見て、全体がピッチ円Cp1の径方向内側に位置するよう設けられている。 In addition, in the present embodiment, the thrust bearing 16 is provided so that the entirety is located radially inside the pitch circle Cp1 when viewed from the axial direction.
 そのため、ロータベアリング15をより一層小径化できる。これにより、電動モータ20をさらに小径化でき、クラッチアクチュエータ10をより一層小型化できる。 Therefore, the diameter of the rotor bearing 15 can be further reduced. As a result, the diameter of the electric motor 20 can be further reduced, and the clutch actuator 10 can be further reduced in size.
 また、本実施形態では、トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してハウジング12で支持されている。 Also, in this embodiment, the axial load received from the torque cam 2 is supported by the housing 12 via the thrust bearing 16 .
 そのため、クラッチアクチュエータ10を径方向に小型化しつつ、トルクカム2から受ける軸方向の荷重をハウジング12で確実に支持できる。 Therefore, the axial load received from the torque cam 2 can be reliably supported by the housing 12 while reducing the size of the clutch actuator 10 in the radial direction.
  (第2実施形態)
 第2実施形態によるクラッチアクチュエータを適用したクラッチ装置の一部を図7に示す。第2実施形態は、駆動カム40とスラストベアリング16とロータベアリング15との位置関係等が第1実施形態と異なる。
(Second embodiment)
FIG. 7 shows part of a clutch device to which the clutch actuator according to the second embodiment is applied. The second embodiment differs from the first embodiment in the positional relationship among the drive cam 40, the thrust bearing 16, and the rotor bearing 15, and the like.
 本実施形態では、トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してロータベアリング15で支持されている。 In this embodiment, the axial load received from the torque cam 2 is supported by the rotor bearing 15 via the thrust bearing 16 .
 より具体的には、トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してロータベアリング15の内輪151で支持されている。 More specifically, the axial load received from the torque cam 2 is supported by the inner ring 151 of the rotor bearing 15 via the thrust bearing 16 .
 より詳細には、ハウジング12は、ハウジング段差面126を有している。ハウジング段差面126は、ハウジング段差面125とハウジング板部122との間において、ハウジング板部122とは反対側を向くよう円環の平面状に形成されている。ハウジング段差面126は、ハウジング内筒部121の軸方向から見て、ハウジング段差面125に対し径方向外側に形成されている。ハウジング板部122のハウジング内筒部121側の端面とハウジング段差面126とは、ハウジング内筒部121の軸方向に所定距離離れている。 More specifically, the housing 12 has a housing step surface 126 . The housing stepped surface 126 is formed in an annular planar shape between the housing stepped surface 125 and the housing plate portion 122 so as to face the side opposite to the housing plate portion 122 . The housing stepped surface 126 is formed radially outwardly of the housing stepped surface 125 when viewed from the axial direction of the housing inner tubular portion 121 . The end surface of the housing plate portion 122 on the housing inner cylindrical portion 121 side and the housing stepped surface 126 are separated from each other by a predetermined distance in the axial direction of the housing inner cylindrical portion 121 .
 ロータベアリング15は、ハウジング段差面126に対しハウジング板部122とは反対側において、ハウジング内筒部121の径方向外側に設けられている。ロータベアリング15は、内輪151の内周壁がハウジング内筒部121の外周壁に当接し、内輪151の軸方向の一方の端面がハウジング段差面126に当接するようハウジング内筒部121に設けられている。 The rotor bearing 15 is provided on the opposite side of the housing plate portion 122 with respect to the housing stepped surface 126 and radially outside the housing inner cylindrical portion 121 . The rotor bearing 15 is provided on the housing inner cylindrical portion 121 so that the inner peripheral wall of the inner ring 151 contacts the outer peripheral wall of the housing inner cylindrical portion 121 and one axial end surface of the inner ring 151 contacts the housing stepped surface 126 . there is
 スラストベアリング16のバックアッププレート163は、プレート凸部165がロータベアリング15の内輪151のハウジング段差面126とは反対側の端面に当接するようハウジング内筒部121の径方向外側に設けられている。これにより、クラッチ70側からの軸方向の荷重は、皿ばね81、皿ばねスラストベアリング83、従動カム50、カムボール3、駆動カム40、スラストベアリング16、ロータベアリング15の内輪151を経由してハウジング段差面126に作用する。 The backup plate 163 of the thrust bearing 16 is provided radially outside the housing inner cylindrical portion 121 so that the plate convex portion 165 contacts the end surface of the inner ring 151 of the rotor bearing 15 opposite to the housing stepped surface 126 . As a result, the axial load from the clutch 70 side passes through the disk spring 81, the disk spring thrust bearing 83, the driven cam 50, the cam ball 3, the drive cam 40, the thrust bearing 16, and the inner ring 151 of the rotor bearing 15 to the housing. It acts on the step surface 126 .
 以上説明したように、本実施形態では、トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してロータベアリング15で支持されている。 As described above, in this embodiment, the axial load received from the torque cam 2 is supported by the rotor bearing 15 via the thrust bearing 16 .
 そのため、クラッチアクチュエータ10を径方向に小型化しつつ、トルクカム2から受ける軸方向の荷重をロータベアリング15で確実に支持できる。 Therefore, the axial load received from the torque cam 2 can be reliably supported by the rotor bearing 15 while the clutch actuator 10 is made compact in the radial direction.
 また、本実施形態では、トルクカム2から受ける軸方向の荷重は、スラストベアリング16を介してロータベアリング15の内輪151で支持されている。 Also, in this embodiment, the axial load received from the torque cam 2 is supported by the inner ring 151 of the rotor bearing 15 via the thrust bearing 16 .
 そのため、クラッチアクチュエータ10を径方向により一層小型化しつつ、トルクカム2から受ける軸方向の荷重をロータベアリング15の内輪151で確実に支持できる。 Therefore, the axial load received from the torque cam 2 can be reliably supported by the inner ring 151 of the rotor bearing 15 while making the clutch actuator 10 more compact in the radial direction.
  (第3実施形態)
 第3実施形態によるクラッチアクチュエータを適用したクラッチ装置の一部を図8に示す。第3実施形態は、スラストベアリング16の構成等が第1実施形態と異なる。
(Third embodiment)
FIG. 8 shows part of a clutch device to which the clutch actuator according to the third embodiment is applied. The third embodiment differs from the first embodiment in the configuration of the thrust bearing 16 and the like.
 本実施形態では、スラストベアリング16および駆動カム40は、「ハウジング筒部」としてのハウジング内筒部121の径方向外側に設けられている。スラストベアリング16の内径と駆動カム40の内径とは、同じである。ここで、「同じ」とは、スラストベアリング16の内径と駆動カム40の内径とが厳密に同じ場合に限らず、公差等により僅かに異なる場合も含むことを意味する(以下、同じ)。 In this embodiment, the thrust bearing 16 and the drive cam 40 are provided radially outside of the housing inner cylindrical portion 121 as the "housing cylindrical portion". The inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are the same. Here, "same" means not only the case where the inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are exactly the same, but also includes the case where they are slightly different due to tolerances or the like (same below).
 以上説明したように、本実施形態では、ハウジング12は、中空筒状のハウジング内筒部121を有している。スラストベアリング16および駆動カム40は、「ハウジング筒部」としてのハウジング内筒部121の径方向外側に設けられている。スラストベアリング16の内径と駆動カム40の内径とは、同じである。 As described above, in the present embodiment, the housing 12 has the housing inner cylindrical portion 121 having a hollow cylindrical shape. The thrust bearing 16 and the drive cam 40 are provided radially outside of a housing inner tubular portion 121 as a "housing tubular portion". The inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 are the same.
 このように、スラストベアリング16の内径と駆動カム40の内径とを同じにすることで、ロータベアリング15をさらに小径化できる。これにより、電動モータ20をより一層小径化でき、クラッチアクチュエータ10をさらに小型化できる。 By making the inner diameter of the thrust bearing 16 and the inner diameter of the drive cam 40 the same as described above, the diameter of the rotor bearing 15 can be further reduced. As a result, the diameter of the electric motor 20 can be further reduced, and the clutch actuator 10 can be further reduced in size.
  (他の実施形態)
 他の実施形態では、スラストベアリングは、軸方向から見て、スラストベアリングの径方向における中央位置が、駆動カム溝の駆動カムの径方向における中央位置を通る円であるピッチ円に対し径方向内側に位置するよう設けられているのであれば、軸方向から見て、全体がピッチ円の径方向内側に位置していなくてもよい。すなわち、スラストベアリングの外縁部は、ピッチ円の外側にはみ出していてもよい。
(Other embodiments)
In another embodiment, the thrust bearing is radially inward of a pitch circle, which is a circle passing through the radial center position of the drive cam in the drive cam groove, where the radial center position of the thrust bearing is seen from the axial direction. As long as it is provided so as to be positioned at , it is not necessary for the entirety to be positioned radially inside the pitch circle when viewed from the axial direction. That is, the outer edge of the thrust bearing may protrude outside the pitch circle.
 また、他の実施形態では、駆動カム溝400および従動カム溝500は、それぞれ、3つ以上であれば、いくつ形成されていてもよい。また、カムボール3も、駆動カム溝400および従動カム溝500の数に合わせ、いくつ設けられていてもよい。 Also, in other embodiments, any number of driving cam grooves 400 and driven cam grooves 500 may be formed as long as they are three or more. Also, any number of cam balls 3 may be provided according to the number of drive cam grooves 400 and driven cam grooves 500 .
 また、本開示は、内燃機関からの駆動トルクによって走行する車両に限らず、モータからの駆動トルクによって走行可能な電気自動車やハイブリッド車等に適用することもできる。 In addition, the present disclosure can be applied not only to vehicles that run by driving torque from an internal combustion engine, but also to electric vehicles, hybrid vehicles, and the like that can run by driving torque from a motor.
 また、他の実施形態では、「第2伝達部」からトルクを入力し、「クラッチ」を経由して「第1伝達部」からトルクを出力することとしてもよい。また、例えば、「第1伝達部」または「第2伝達部」の一方を回転不能に固定した場合、「クラッチ」を係合状態にすることにより、「第1伝達部」または「第2伝達部」の他方の回転を止めることができる。この場合、クラッチ装置をブレーキ装置として用いることができる。 In another embodiment, torque may be input from the "second transmission section" and output from the "first transmission section" via the "clutch". Further, for example, when one of the “first transmission portion” or the “second transmission portion” is fixed so as not to rotate, by engaging the “clutch”, the “first transmission portion” or the “second transmission portion” is fixed. The rotation of the other of the "parts" can be stopped. In this case, the clutch device can be used as a braking device.
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。 Thus, the present disclosure is not limited to the above embodiments, and can be embodied in various forms without departing from the scope of the present disclosure.
 本開示に記載のクラッチ装置の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載のクラッチ装置の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載のクラッチ装置の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The clutch system control and techniques described in the present disclosure may be provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by Alternatively, the clutch system controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the clutch device controller and techniques described in this disclosure may be a processor configured with one or more hardware logic circuits and a processor and memory programmed to perform one or more functions. may be implemented by one or more dedicated computers configured by a combination of The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 The present disclosure has been described based on the embodiments. However, the disclosure is not limited to such embodiments and structures. The present disclosure also encompasses various modifications and modifications within the range of equivalents. Also, various combinations and configurations, as well as other combinations and configurations including only one, more, or fewer elements thereof, are within the scope and spirit of this disclosure.

Claims (6)

  1.  相対回転可能な第1伝達部(61)と第2伝達部(62)との間において、前記第1伝達部と前記第2伝達部との間のトルクの伝達を許容する係合状態と、前記第1伝達部と前記第2伝達部との間のトルクの伝達を遮断する非係合状態とに状態が変化するクラッチ(70)を備えるクラッチ装置(1)に用いられるクラッチアクチュエータであって、
     ハウジング(12)と、
     前記ハウジングに固定されたステータ(21)、および、前記ステータに対し相対回転可能に設けられたロータ(23)を有し、通電により前記ロータからトルクを出力可能な電動モータ(20)と、
     前記電動モータに対し軸方向の一方側に設けられ、前記電動モータからのトルクによる回転運動を、前記ハウジングに対する軸方向の相対移動である並進運動に変換し、前記クラッチの状態を係合状態または非係合状態に変更可能なトルクカム(2)と、
     前記トルクカムからの軸方向の荷重を受ける環状のスラストベアリング(16)と、を備え、
     前記トルクカムは、前記電動モータからのトルクが入力されると前記ハウジングに対し相対回転する環状の駆動カム(40)、前記駆動カムが前記ハウジングに対し相対回転すると前記ハウジングに対し軸方向に相対移動する従動カム(50)、および、前記駆動カムと前記従動カムとの間で転動するカム転動体(3)を有し、
     前記駆動カムは、前記カム転動体が転動可能なよう前記駆動カムの周方向に延びるよう形成された駆動カム溝(400)を有し、
     前記スラストベアリングは、軸方向から見て、前記スラストベアリングの径方向における中央位置(P1)が、前記駆動カム溝の前記駆動カムの径方向における中央位置(P3)を通る円であるピッチ円(Cp1)に対し径方向内側に位置するよう設けられているクラッチアクチュエータ。
    an engagement state between the first transmission portion (61) and the second transmission portion (62) that are capable of relative rotation, allowing transmission of torque between the first transmission portion and the second transmission portion; A clutch actuator (1) for use in a clutch device (1) comprising a clutch (70) that changes between a disengaged state and a disengaged state that interrupts transmission of torque between a first transmission section and a second transmission section. ,
    a housing (12);
    an electric motor (20) having a stator (21) fixed to the housing and a rotor (23) rotatable relative to the stator, and capable of outputting torque from the rotor when energized;
    It is provided on one side in the axial direction with respect to the electric motor, and converts rotary motion due to torque from the electric motor into translational motion, which is relative movement in the axial direction with respect to the housing, and changes the state of the clutch to an engaged state or an engaged state. a torque cam (2) that can be changed to a disengaged state;
    an annular thrust bearing (16) that receives the axial load from the torque cam;
    The torque cam is an annular drive cam (40) that rotates relative to the housing when torque is input from the electric motor, and moves axially relative to the housing when the drive cam rotates relative to the housing. and a cam rolling element (3) rolling between the drive cam and the driven cam,
    The drive cam has a drive cam groove (400) formed to extend in the circumferential direction of the drive cam so that the cam rolling element can roll,
    The thrust bearing has a pitch circle ( A clutch actuator located radially inwardly of Cp1).
  2.  前記スラストベアリングは、軸方向から見て、全体が前記ピッチ円の径方向内側に位置するよう設けられている請求項1に記載のクラッチアクチュエータ。  The clutch actuator according to claim 1, wherein the thrust bearing is positioned radially inward of the pitch circle when viewed from the axial direction.
  3.  前記トルクカムから受ける軸方向の荷重は、前記スラストベアリングを介して前記ハウジングで支持されている請求項1または2に記載のクラッチアクチュエータ。 A clutch actuator according to claim 1 or 2, wherein an axial load received from said torque cam is supported by said housing via said thrust bearing.
  4.  前記ロータを前記ハウジングに対し相対回転可能に支持するロータベアリング(15)をさらに備え、
     前記トルクカムから受ける軸方向の荷重は、前記スラストベアリングを介して前記ロータベアリングで支持されている請求項1または2に記載のクラッチアクチュエータ。
    further comprising a rotor bearing (15) supporting the rotor rotatably relative to the housing;
    3. A clutch actuator according to claim 1, wherein an axial load received from said torque cam is supported by said rotor bearing via said thrust bearing.
  5.  前記ロータベアリングは、前記ハウジングに固定された内輪(151)、前記ロータに固定された外輪(152)、および、前記内輪と前記外輪との間で転動可能な軸受転動体(153)を有し、
     前記トルクカムから受ける軸方向の荷重は、前記スラストベアリングを介して前記内輪で支持されている請求項4に記載のクラッチアクチュエータ。
    The rotor bearing has an inner ring (151) fixed to the housing, an outer ring (152) fixed to the rotor, and bearing rolling elements (153) rollable between the inner ring and the outer ring. death,
    5. A clutch actuator according to claim 4, wherein an axial load received from said torque cam is supported by said inner ring via said thrust bearing.
  6.  前記ハウジングは、中空筒状のハウジング筒部(121)を有し、
     前記スラストベアリングおよび前記駆動カムは、前記ハウジング筒部の径方向外側に設けられ、
     前記スラストベアリングの内径と前記駆動カムの内径とは、同じである請求項1~5のいずれか一項に記載のクラッチアクチュエータ。
    The housing has a hollow tubular housing tubular portion (121),
    The thrust bearing and the drive cam are provided radially outside the cylindrical housing portion,
    The clutch actuator according to any one of claims 1 to 5, wherein the inner diameter of the thrust bearing and the inner diameter of the drive cam are the same.
PCT/JP2022/024288 2021-06-30 2022-06-17 Clutch actuator WO2023276715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108818 2021-06-30
JP2021108818A JP2023006290A (en) 2021-06-30 2021-06-30 clutch actuator

Publications (1)

Publication Number Publication Date
WO2023276715A1 true WO2023276715A1 (en) 2023-01-05

Family

ID=84692338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024288 WO2023276715A1 (en) 2021-06-30 2022-06-17 Clutch actuator

Country Status (2)

Country Link
JP (1) JP2023006290A (en)
WO (1) WO2023276715A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672179A (en) * 1992-06-24 1994-03-15 Borg Warner Automot Inc Device for driving four-wheel vehicle and method for distributing torque in said device
JP2013087834A (en) * 2011-10-17 2013-05-13 Jtekt Corp Driving power transmission device
JP2021021480A (en) * 2019-07-26 2021-02-18 株式会社デンソー Clutch device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672179A (en) * 1992-06-24 1994-03-15 Borg Warner Automot Inc Device for driving four-wheel vehicle and method for distributing torque in said device
JP2013087834A (en) * 2011-10-17 2013-05-13 Jtekt Corp Driving power transmission device
JP2021021480A (en) * 2019-07-26 2021-02-18 株式会社デンソー Clutch device

Also Published As

Publication number Publication date
JP2023006290A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US11808308B2 (en) Clutch device
US11802594B2 (en) Clutch device
US11796012B2 (en) Clutch device
US11808307B2 (en) Clutch device
US11808306B2 (en) Clutch device
WO2023276715A1 (en) Clutch actuator
WO2023276714A1 (en) Clutch actuator
WO2023276719A1 (en) Clutch actuator
WO2023276720A1 (en) Clutch actuator
WO2022118852A1 (en) Clutch actuator
WO2023276722A1 (en) Geared motor and clutch actuator using same
JP2023007822A (en) clutch actuator
JP2023020488A (en) clutch actuator
JP2022170458A (en) clutch actuator
WO2023276727A1 (en) Clutch actuator
WO2023276717A1 (en) Clutch actuator
JP2023079582A (en) clutch actuator
WO2022118784A1 (en) Clutch device
JP7456370B2 (en) clutch device
JP2023035018A (en) Geared motor and clutch actuator using the same
WO2023276729A1 (en) Clutch actuator
WO2023276728A1 (en) Clutch actuator and method for manufacturing same
JP2023094071A (en) clutch actuator
US20230304543A1 (en) Rotary actuator
JP2023079625A (en) clutch actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE