WO2019059202A1 - Semiconductor lithography film forming composition, and resist pattern forming method and device - Google Patents

Semiconductor lithography film forming composition, and resist pattern forming method and device Download PDF

Info

Publication number
WO2019059202A1
WO2019059202A1 PCT/JP2018/034553 JP2018034553W WO2019059202A1 WO 2019059202 A1 WO2019059202 A1 WO 2019059202A1 JP 2018034553 W JP2018034553 W JP 2018034553W WO 2019059202 A1 WO2019059202 A1 WO 2019059202A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition according
film
compound
bond
Prior art date
Application number
PCT/JP2018/034553
Other languages
French (fr)
Japanese (ja)
Inventor
越後 雅敏
牧野嶋 高史
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2019543655A priority Critical patent/JPWO2019059202A1/en
Publication of WO2019059202A1 publication Critical patent/WO2019059202A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a semiconductor lithography film forming composition, and a method and device for forming a resist pattern.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed as a material for realizing a resist underlayer film for lithography having a selection ratio of dry etching rate smaller than that of a resist (for example, patent documents 2).
  • a repeating unit of acenaphthylene is copolymerized with a repeating unit having a substituted or non-substituted hydroxy group.
  • a resist underlayer film material containing a polymer obtained by the above method see, for example, Patent Document 3).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the present inventors are excellent in etching resistance, high heat resistance, and soluble in a solvent, and as a material applicable to a wet process, a lower layer film forming composition for lithography containing a compound of a specific structure and an organic solvent An object (see, for example, Patent Document 4) is proposed.
  • a method of forming an intermediate layer used in formation of a resist underlayer film in a three-layer process for example, a method of forming a silicon nitride film (see, for example, Patent Document 5) and a method of forming a silicon nitride film by CVD (for example, Patent Document 6) is known.
  • a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 7 and 8).
  • compositions for optical members are proposed conventionally, there is no thing which made heat resistance, transparency, and a refractive index compatible, and development of a new material is called for.
  • the present invention has been made in view of the problems of the prior art, and a composition for forming a semiconductor lithography film is applicable to form a film which is applicable to a wet process and is excellent in heat resistance, solubility and etching resistance. It aims to provide goods.
  • Another object of the present invention is to provide a composition that can be used for the production of an optical component having both heat resistance, transparency and refractive index.
  • the present inventors have found that the problems of the prior art can be solved by a specific semiconductor lithography film forming composition, and complete the present invention. It reached. That is, the present invention is as follows.
  • a semiconductor lithographic film-forming composition comprising a nitrile compound.
  • [5] The composition according to any one of [1] to [4], wherein the nitrile compound is a compound represented by the following formula (1).
  • R A is an n-valent group having 1 to 70 carbon atoms, n is an integer of 1 to 10.
  • R A is an n-valent group having 1 to 70 carbon atoms, n is an integer of 1 to 10.
  • composition of [8] The composition according to any one of [1] to [7], wherein the nitrile compound contains an aromatic ring which may have a substituent, and a nitrile group is substituted on the aromatic ring.
  • the nitrile compound is a compound represented by the following formula (2).
  • X is an aromatic ring which may have a substituent
  • Y is a group containing a ring structure
  • Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent
  • m1 is an integer of 0 or 1
  • n1 is an integer of 1 to 10
  • n2 is an integer of 1 or more.
  • the product of n1 and n2 is an integer of 1 to 10.
  • nitrile compound is a compound represented by the following formula (3) and / or a compound represented by the following formula (4).
  • X a is an aromatic ring which may have a substituent
  • n 1 is an integer of 1 to 10.
  • Each X b is independently an aromatic ring which may have a substituent
  • Y is a group containing a ring structure
  • Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent
  • n1 is each independently an integer of 1 to 10.
  • the composition according to any one of [1] to [15] which is used to form a semiconductor underlayer film.
  • An underlayer film is formed on the substrate using the composition according to any one of [1] to [16], A method of forming a resist pattern, comprising the steps of forming at least one photoresist layer on the lower layer film, and then irradiating a predetermined region of the photoresist layer with radiation to perform development. [19] A device manufactured using the composition according to any one of [1] to [17].
  • a wet process is applicable to the semiconductor lithographic film forming composition of the present invention, and a film having excellent heat resistance, solubility and etching resistance can be formed.
  • the semiconductor lithography film formation composition of this invention can be used for optical component formation, and this optical component is excellent in heat resistance, transparency, and the balance of a refractive index.
  • the present embodiment a mode for carrying out the present invention (hereinafter, also referred to as “the present embodiment”) will be described.
  • the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
  • the semiconductor lithographic film formation composition of the present embodiment contains one or more nitrile compounds.
  • the semiconductor lithography film-forming composition according to the present embodiment preferably contains two or more nitrile compounds from the viewpoint of formation of a good film, and three or more nitrile compounds from the viewpoint of retention time of the good film. Is more preferred.
  • the semiconductor lithography film formation composition of the present embodiment can be a semiconductor lower layer film formation composition, a semiconductor upper layer film formation composition, or an optical component formation composition. That is, this embodiment is also a semiconductor lower layer film forming composition, a semiconductor upper layer film forming composition, or an optical component forming composition, which contains a nitrile compound.
  • the composition of this embodiment is applicable to a wet process and is useful for forming a photoresist underlayer film excellent in heat resistance and etching resistance. Further, in the composition of the present embodiment, since the intramolecular crosslinking reaction effectively proceeds at the time of high temperature baking, deterioration of the film is suppressed, and a resist underlayer film excellent in etching resistance to oxygen plasma etching etc. is formed. Can. In addition, since the adhesion with the resist layer is also excellent, an excellent resist pattern can be formed. Furthermore, since the refractive index is high and the coloring due to a wide range of heat treatment from low temperature to high temperature is suppressed, it is also useful as various optical forming compositions.
  • the composition for forming a semiconductor lithography film of the present embodiment has a high aromatic density, so that the refractive index is high, and the coloring is suppressed also by a wide range of heat treatment from low temperature to high temperature. It can be used as a composition of The optical component is not particularly limited, but, for example, a plastic lens (a prism lens, a lenticular lens, a microlens, a Fresnel lens, a viewing angle control lens, a contrast improvement lens, etc.) other than film or sheet components Films, films for shielding electromagnetic waves, prisms, optical fibers, solder resists for flexible printed wiring, plating resists, interlayer insulating films for multilayer printed wiring boards, photosensitive optical waveguides, etc. may be mentioned.
  • a plastic lens a prism lens, a lenticular lens, a microlens, a Fresnel lens, a viewing angle control lens, a contrast improvement lens, etc.
  • composition of the present embodiment is useful as a film-forming composition for lithography for semiconductor lower layer films (hereinafter, also referred to as "lower layer film-forming material").
  • the content of the nitrile compound in the composition of the present embodiment is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, when the total amount of the composition is 100% by mass, from the viewpoint of coatability and quality stability. It is 100% by mass, more preferably 50 to 100% by mass, and still more preferably 100% by mass.
  • the lower layer film forming material of the present embodiment can be applied to a wet process, and is excellent in heat resistance and etching resistance. Furthermore, since the underlayer film forming material of the present embodiment is excellent in intermolecular crosslinking using the above-mentioned substance, degradation of the film at the time of high temperature baking is suppressed, and the underlayer film also excellent in etching resistance to oxygen plasma etching and the like. Can be formed. Furthermore, since the underlayer film forming material of the present embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained.
  • the lower layer film forming material of the present embodiment may include the already known lower layer film forming material for lithography and the like within the range where the effects of the present invention are not impaired.
  • the nitrile compound in the present embodiment contains at least one cyano group which may be referred to as a nitrile group.
  • the cyano group in this embodiment can be defined by the formula: -C ⁇ N.
  • the nitrile compound in the present embodiment may have two or more cyano groups, and the two or more cyano groups are also generally referred to as polycyano groups.
  • the molecular weight of the nitrile compound in the present embodiment is preferably in the range of 41 g / mol or more and less than 3000 g / mol, more preferably in the range of 41 g / mol or more and less than 1000 g / mol, and 100 g / mol or more and 1000 g / mol. It is more preferable to be in the range of less than 100, and even more preferable to be in the range of 100 g / mol to less than 500 g / mol.
  • the compound having a polycyano group is represented by the formula: ⁇ - (C ⁇ N) n [wherein, ⁇ is a polyvalent organic group moiety having a valence of at least 2 and n is a valence of the polyvalent organic group moiety ⁇ Is an integer equal to a number].
  • is a heterocyclic, polyvalent organic moiety.
  • is a heterocyclic group which may be saturated or unsaturated, a heterocyclic group which may be monocyclic, bicyclic, tricyclic or polycyclic, and one or more Or an organic group having a heterocyclic group which may contain the same or different hetero atoms.
  • is preferably an acyclic and multivalent organic group moiety (linear or branched) which may or may not contain one or more hetero atoms.
  • is preferably a cyclic and multivalent organic moiety which does not contain a heteroatom in the ring of the cyclic moiety.
  • the hetero atom include nitrogen, oxygen, sulfur, boron, silicon, tin, and phosphorus.
  • the compound having a polycyano group is preferably represented, for example, by the formula: N ⁇ C—R 1 —C ⁇ N [wherein, R 1 is a divalent organic group].
  • the divalent organic group is not particularly limited, and examples thereof include a hydrocarbylene group such as an alkylene group, a cycloalkylene group, an alkenylene group, a cycloalkenylene group, an alkynylene group, a cycloalkynylene group, or an arylene group. And substituted hydrocarbylene groups and the like.
  • a substituted hydrocarbylene group is a hydrocarbylene group in which one or more hydrogen atoms are substituted with a substituent such as an alkyl group.
  • the divalent organic group may contain from 1 or 2 carbon atoms or a suitable minimum number of carbon atoms forming such a group. These groups may also contain one or more heteroatoms.
  • R 1 is preferably a non-heterocyclic divalent group.
  • R 1 is preferably a non-cyclic divalent organic group (linear or branched) which may or may not contain one or more hetero atoms.
  • R 1 is preferably a cyclic divalent organic group containing no hetero atom.
  • R1 may contain one or more additional cyano groups (ie, -C ⁇ N).
  • Examples of the compound having a polycyano group include (polycyano) arene compounds, (polycyano) alkane compounds, (polycyano) alkene compounds, (polycyano) alkyne compounds, (polycyano) cycloalkane compounds, (polycyano) cycloalkene compounds, and Polycyano) cycloalkyne compounds and the like can be mentioned.
  • the (polycyano) arene compound is a compound in which at least two hydrogen atoms in the arene compound are substituted with a cyano group.
  • Examples of the (polycyano) arene compound include dicyanoarene compounds, tricyanoarene compounds and tetracyanoarene compounds.
  • Examples of (polycyano) alkane compounds include dicyanoalkane compounds, tricyanoalkane compounds and tetracyanoalkane compounds.
  • Examples of (polycyano) alkene compounds include dicyanoalkene compounds, tricyanoalkene compounds and tetracyanoalkene compounds.
  • Examples of (polycyano) alkyne compounds include dicyanoalkyne compounds, tricyanoalkyne compounds and tetracyanoalkyne compounds.
  • Examples of (polycyano) cycloalkane compounds include dicyanocycloalkane compounds, tricyanocycloalkane compounds and tetracyanocycloalkane compounds.
  • Examples of (polycyano) cycloalkene compounds include dicyanocycloalkene compounds, tricyanocycloalkene compounds and tetracyanocycloalkene compounds.
  • Examples of the (polycyano) cycloalkyne compound include dicyanocycloalkyne compounds, tricyanocycloalkyne compounds, and tetracyanocycloalkyne compounds.
  • polycyano examples include 1,2-dicyanobenzene (phthalonitrile), 1,3-dicyanobenzene (isophthalonitrile or isophthalonitrile), and 1,4-dicyanobenzene (terephthalo).
  • (polycyano) alkane compounds include malononitrile, 1,2-dicyanoethane (succinonitrile), 1,2-dicyano-1,2-diphenylethane, and 1,3-dicyanopropane (glutaronitrile).
  • (polycyano) alkene compounds include fumaronitrile, 1,3-dicyanopropene, cis-1,4-dicyano-2-butene, trans-1,4-dicyano-2-butene, 2-methylene glycol Tallonitrile, benzylidene malononitrile, 1,1,2-tricyanoethylene, 1,1,3-tricyanopropene, 1,1,4-tricyano-2-butene, 1,1,5-tricyano-2-pentene And tetracyanoethylene, 7,8,8-tetracyanoquinodimethane and 1,1,4,4-tetracyano-2-butene.
  • (polycyano) alkyne compounds include 3,3-dicyanopropyne, 3,4-dicyano-1-butyne, 3,4-dicyano-1-pentyne and 3,4-dicyano-1-pentyne 3,5-dicyano-1-pentine, 3,4-dicyano-1-hexyne, 3,5-dicyano-1-hexyne, 3,6-dicyano-1-hexyne, 4,5-dicyano-1-hexyne 4,6-dicyano-1-hexyne, 5,6-dicyano-1-hexyne, 1,3,3-tricyanopropyne, 1,3,4-tricyano-1-butyne, 1,3,4- Tricyano-1-pentine, 1,3,4-tricyano-1-pentine, 1,3,5-tricyano-1-pentine, 1,4,5-tricyano-1-pentine, 3,4,5-tricyano- 1-Hexin, 3,
  • (polycyano) cycloalkane compounds include 1,2-dicyanocyclobutane, 1,2-dicyanocyclopentane, 1,3-dicyanocyclopentane, 1,2-dicyanocyclohexane, and 1,3-dicyanocyclohexane 1,4-dicyanocyclohexane, 1,2-dicyanocycloheptane, 1,3-dicyanocycloheptane, 1,4-dicyanocycloheptane, 1,2-dicyanocyclooctane, 1,3-dicyanocyclooctane, 1, 4-dicyanocyclooctane, 1,5-dicyanocyclooctane, 1,2,4-tricyanocyclohexane, 1,3,4-tricyanocyclohexane, 1,2,4-tricyanocycloheptane, 1,3,4 -Tricyanocycloheptane, 1,2,4-tri
  • the (polycyano) cycloalkene compound examples include 1,2-dicyanocyclopentene, 1,3-dicyanocyclopentene, 1,4-dicyanocyclopentene, 1,2-dicyanocyclohexene, 1,3-dicyanohexene, 1 , 4-dicyanocyclohexene, 3,6-dicyanocyclohexene, 1,2-dicyanocycloheptene, 1,3-dicyanocycloheptene, 1,4-dicyanocycloheptene, 1,6-dicyanocyclooctene, 3, 4-dicyanocycloheptene, 1,2,3-tricyanocyclopentene, 1,2,4-tricyanocyclopentene, 1,2,4-tricyanocyclohexene, 1,3,5-tricyanocyclohexene, 1,2 , 4-tricyanocycloheptene, 1,3,4-tricyanocycloheptene,
  • the (polycyano) cycloalkyne compound examples include 1,2-dicyanocyclopentine, 1,3-dicyanocyclopentine, 1,4-dicyanocyclopentine, 1,2-dicyanocyclohexyne, 1 , 3-dicyanohexyne, 1,4-dicyanocyclohexyne, 3,6-dicyanocyclohexyne, 1,2-dicyanocycloheptin, 1,3-dicyanocycloheptene, 1,4-dicyanocycloheptin, 1, 6-dicyanocyclooctin, 3,4-dicyanocycloheptin, 1,2,3-tricyanocyclopentin, 1,2,4-tricyanocyclopentin, 1,2,4-tricyanocyclohexine, 1,3,5-tricyanocyclohexyne, 1,2,4-tricyanocycloheptin, 1,3,4-tricyanocycloheptin, 1 2,3
  • the nitrile compound in the present embodiment is preferably a compound represented by Formula (1). Moreover, it is preferable to contain 1 or more types chosen from the group which consists of a compound represented by Formula (1).
  • R A is an n-valent organic group having 1 to 70 carbon atoms, n is an integer of 1 to 10.
  • R A is an n-valent group having 1 to 70 carbon atoms, and a cyano group is bonded via this R A.
  • n valent organic group a linear hydrocarbon group, a branched hydrocarbon group, ring structure etc. are mentioned, for example, The group which these groups were combined may be sufficient.
  • the ring structure preferably contains at least one selected from the group consisting of an aromatic ring which may have a substituent and an alicyclic hydrocarbon group which may have a substituent.
  • the linear hydrocarbon group and the branched hydrocarbon group may contain an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond and the like.
  • the nitrile compound in the present embodiment is more preferably a compound represented by the following formula (2).
  • X is an aromatic ring which may have a substituent
  • Y is a group containing a ring structure
  • Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent
  • m1 is an integer of 0 or 1
  • n1 is an integer of 1 to 10
  • n2 is an integer of 1 or more.
  • the product of n1 and n2 is an integer of 1 to 10.
  • the nitrile compound in the present embodiment is more preferably a compound represented by the following formula (3) and / or a compound represented by the following formula (4).
  • X a is an aromatic ring which may have a substituent
  • n 1 is an integer of 1 to 10.
  • Each X b is independently an aromatic ring which may have a substituent
  • Y is a group containing a ring structure
  • Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent
  • n1 is each independently an integer of 1 to 10.
  • the above-mentioned alicyclic hydrocarbon group also includes a bridged alicyclic hydrocarbon group.
  • substituents include linear or branched alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group and butyl group; alkenyl groups such as vinyl group and allyl group; Cyclic hydrocarbon group; crosslinking reactive group; hetero atom; alkoxy group; halogen atom; nitro group; amino group; carboxylic acid group; thiol group; hydroxyl group; and aromatic group having 6 to 60 carbon atoms; And one or more selected from the group consisting of halogenated alkyl groups such as groups;
  • R A preferably contains a ring structure.
  • a ring structure an alicyclic hydrocarbon, an aromatic ring, etc. are mentioned, for example.
  • the alicyclic hydrocarbon in the alicyclic hydrocarbon group is not particularly limited, and examples thereof include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclooctane, cyclodecane, dicyclopentane, tricyclodecane, adamantane, norbornane and the like. It can be mentioned.
  • the aromatic ring is not particularly limited.
  • benzene biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, pyrene, pentacene, benzopyrene, dibenzochrysene, triphenylene, corannulene, coronene, ovalene, fluorene, benzofluorene And acenaphthene.
  • the group containing a ring structure represented by Y may have a substituent, benzene, diphenyl ether, diphenyl thioether, diphenylmethane, benzophenone, bisphenoxybiphenyl, bicyclohexyl, bicyclohexylmethane, bicyclohexyldimethylmethane, And a group containing at least one selected from the group consisting of a diphenylmethane structure represented by the formula (Y-1) can be mentioned suitably.
  • R 1 and R 2 each independently represent a linear or branched alkyl group having a carbon number of 1 to 10, such as methyl group, ethyl group, propyl group or butyl group; A linear or branched halogenated alkyl group having 1 to 10 carbon atoms such as a fluoromethyl group;
  • R 1 and R 2 may together form a cyclic hydrocarbon and / or aromatic ring structure.
  • the alicyclic hydrocarbon and / or the aromatic ring can be exemplified as described above.
  • the ring structure is preferably an aromatic ring, and the nitrile group in the nitrile compound is preferably substituted with the above-mentioned aromatic ring, because it is excellent in heat resistance and etching resistance.
  • the nitrile compound is preferably a compound selected from the above-mentioned formula (A) group.
  • the semiconductor lithography film forming composition preferably contains a nitrile compound having a melting point of 200 ° C. or more.
  • a commercial item may be used for the nitrile compound in this embodiment, and the compound synthesize
  • the semiconductor lithographic film formation composition of the present embodiment may contain a solvent.
  • a solvent used for a semiconductor lithography film formation composition if it is a thing which melt
  • the solvent is not particularly limited.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • Cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate
  • ethyl lactate methyl acetate, ethyl acetate
  • Ester solvents such as butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate
  • alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol
  • cyclohexanone propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, and more preferably 200 to 5,000 parts by mass with respect to 100 parts by mass of the nitrile compound from the viewpoint of solubility of the compound and film formation. More preferably, it is in parts by mass, and more preferably 200 to 1,000 parts by mass.
  • the semiconductor lithographic film formation composition of the present embodiment may contain a crosslinking agent as necessary, from the viewpoint of suppressing intermixing and the like.
  • the crosslinking agent is not particularly limited, and for example, those described in WO 2013/024779 can be used.
  • the crosslinking agent that can be used in the present embodiment is not particularly limited.
  • phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds And isocyanate compounds and azide compounds can be used singly or in combination of two or more.
  • benzoxazine compounds, epoxy compounds and cyanate compounds are preferable, and from the viewpoint of improving etching resistance, benzoxazine compounds are more preferable.
  • phenol compound known compounds can be used.
  • phenol cresols, alkylphenols such as xylenols, polyhydric phenols such as hydroquinone, and the like, polycyclic phenols such as naphthols and naphthalenediols, Examples thereof include bisphenols such as bisphenol A and bisphenol F, and polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin.
  • aralkyl type phenolic resins are preferable from the viewpoint of heat resistance and solubility.
  • a well-known thing can be used as said epoxy compound, It selects from the compound which has an epoxy group two or more in 1 molecule.
  • an epoxy compound for example, bisphenol A, bisphenol F, 3,3 ', 5,5'-tetramethyl-bisphenol F, bisphenol S, fluorene bisphenol, 2,2'-biphenol, 3,3', 5,5 Epoxides of dihydric phenols such as' -tetramethyl-4,4'-dihydroxybiphenol, resorcine, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4) -Hydroxyphenyl) ethane, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylol ethane triglycidyl ether,
  • epoxy compounds of higher valency epoxy compounds of co-condensed resin of dicyclopentadiene and phenols, epoxy compounds of phenol-aralkyl resins synthesized from phenols and paraxylylene dichloride, phenols and bischloromethylbiphenyl
  • combined from naphthols, paraxylylene dichloride etc., etc. are mentioned.
  • These epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance and solubility, solid epoxy resins at room temperature such as epoxy resins obtained from phenol aralkyl resins and biphenyl aralkyl resins are preferable.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used.
  • a cyanate compound in this embodiment the thing of the structure which substituted the hydroxyl group of the compound which has a 2 or more hydroxyl group in 1 molecule with the cyanate group is mentioned preferably.
  • the cyanate compound is preferably one having an aromatic group, and one having a structure in which the cyanate group is directly linked to the aromatic group can be suitably used.
  • a cyanate compound for example, bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethyl bisphenol F, bisphenol A novolac resin, bromine Bisphenol A, brominated phenol novolac resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus
  • cyanate compounds may be used alone or in combination of two or more.
  • the above-mentioned cyanate compound may be in the form of any of monomers, oligomers and resins.
  • amino compound examples include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'- Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-
  • amino compound 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4 4,4'-Diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3 -Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane , 2,2-bis [4- (3-aminophenoxy)
  • benzoxazine compounds examples include P-d-type benzoxazines obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzooxazines obtained from monofunctional diamines and difunctional phenols. Can be mentioned.
  • the melamine compound examples include hexamethylolmelamine, hexamethoxymethylmelamine, a compound in which 1 to 6 methylol groups of methoxylmethyl group are methoxymethylated, or a mixture thereof, hexamethoxyethylmelamine, hexaacyloxymethylmelamine, hexame
  • examples thereof include compounds in which 1 to 6 of the methylol groups of methylolmelamine are acyloxymethylated or a mixture thereof.
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, or a mixture thereof, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetramethylolamine.
  • examples thereof include compounds in which 1 to 4 methylol groups of guanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, for example, tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are methoxymethylated, or a mixture thereof.
  • examples thereof include compounds in which 1 to 4 of methylol groups of tetramethylol glycoluril are acyloxymethylated, a mixture thereof, and the like.
  • urea compound examples include tetramethylolurea, tetramethoxymethylurea, a compound in which 1 to 4 methylol groups of methoxyethylurea are methoxymethylated or a mixture thereof, and tetramethoxyethylurea.
  • a crosslinking agent having at least one allyl group may be used from the viewpoint of crosslinkability improvement.
  • the crosslinking agent having at least one allyl group is not particularly limited, and is, for example, 2,2-bis (3-allyl-4-hydroxyphenyl) propane or 1,1,1,3,3,3-hexafluoro-2 , 2-Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4- Allylphenols such as hydroxyphenyl) ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatophenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide All
  • the content of the crosslinking agent in the semiconductor lithography film-forming composition is not particularly limited, but is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, based on 100 parts by mass of the total mass of the composition. It is a department.
  • the content of the crosslinking agent in the above range when the film forming composition is used for forming a semiconductor lithography film, the occurrence of mixing phenomenon with the resist layer tends to be suppressed, and the antireflective effect is enhanced. And film formation after crosslinking tends to be enhanced.
  • Crosslinking (curing) accelerator In the semiconductor lithographic film formation composition of the present embodiment, a crosslinking accelerator (also referred to as a curing accelerator) for accelerating the crosslinking and curing reaction can be used as needed.
  • a crosslinking accelerator also referred to as a curing accelerator
  • the crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • crosslinking accelerator examples include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecen-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino) Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, tributyl phosphine, methyl diphenyl phosphine, triphenyl phosphine, organic phosphines such as diphenyl phosphine and phenyl phosphine, tetraphenyl phosphonium tetraphenyl borate, tetraphenyl Tetra-substi
  • the content of the crosslinking accelerator is usually 0.1 to 10 parts by mass when the total mass of the composition is 100 parts by mass, and is more preferably from the viewpoint of controllability and economy. Is 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • a radical polymerization initiator can be added to the semiconductor lithography film forming composition of the present embodiment as required.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or may be a thermal polymerization initiator that initiates radical polymerization by heat.
  • the radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
  • Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately adopted.
  • a radical polymerization initiator for example, 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl Ketone-based photopolymerization initiators such as propan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, methyl ethyl ketone peroxide, Cyclohexanone peroxide, methylcyclohexanone peroxyl
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpro On amidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenyl) -2-methylpro On amidine] dihydr
  • the content of the radical polymerization initiator may be a stoichiometrically necessary amount, but is 0.05 to 25 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass. Is preferably 0.1 to 10 parts by mass. If the content of the radical polymerization initiator is 0.05 parts by mass or more, the curing tends to be insufficient, and on the other hand, the content of the radical polymerization initiator is 25 parts by mass or less In such a case, the long-term storage stability at room temperature of the underlayer film-forming material tends to be prevented from being impaired.
  • the semiconductor lithographic film formation composition of the present embodiment may contain an acid generator as required, from the viewpoint of further promoting a crosslinking reaction by heat.
  • an acid generator although what generate
  • the acid generator for example, those described in WO 2013/024779 can be used.
  • the content of the acid generator in the semiconductor lithography film forming composition is not particularly limited, but is preferably 0.1 to 50 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass, More preferably, it is 0.5 to 40 parts by mass.
  • the semiconductor lithographic film formation composition of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
  • the basic compound plays the role of a quencher for the acid to prevent the acid generated in a small amount from the acid generator from proceeding with the crosslinking reaction.
  • a basic compound is not particularly limited, and examples thereof include those described in WO 2013/024779.
  • the content of the basic compound in the semiconductor lithography film-forming composition is not particularly limited, but is preferably 0.001 to 2 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass. More preferably, it is 0.01 to 1 part by mass.
  • the semiconductor lithography film formation composition of this embodiment may contain other resin and / or a compound in order to control hardening property by heat or light, or to control the absorbance.
  • other resins and / or compounds naphthol resin, xylene resin naphthol modified resin, phenol modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, tetramer Resin containing naphthalene ring such as methacrylate, vinyl naphthalene and polyacenaphthylene, biphenyl ring such as phenanthrene quinone and fluorene, hetero ring having hetero atom such as thiophene and indene, resin not containing aromatic ring; rosin based resin Examples thereof include, but not particularly limited to, resins or compounds containing an alicyclic structure such as cyclo
  • the underlayer film forming material in the present embodiment may contain known additives.
  • known additives include, but are not limited to, heat and / or light curing catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, and pigments.
  • the semiconductor lithographic film formation composition of the present embodiment preferably contains at least a nitrile compound, and further preferably contains a solvent and an acid generator.
  • the composition of the semiconductor lithography film forming composition is 1 to 30 parts by mass of the nitrile compound, 20 to 99 parts by mass of the solvent, and the acid generator
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 1 to 20 parts by mass of nitrile compound, 40 to 99 parts by mass of solvent, 0.01 to 5 parts by mass of acid generator, nitrile compound 1 to 10 More preferably, it is in an amount by mass, 90 to 99 parts by mass of a solvent, and 0.01 to 5 parts by mass of an acid generator.
  • the semiconductor lithography film formation composition of this embodiment contains a solvent, an acid generator, and a crosslinking agent at least further including a nitrile compound.
  • the composition of the semiconductor lithography film forming composition is 1 to 30 parts by mass of the nitrile compound and 20 to 99 parts by mass of the solvent.
  • the acid generator is preferably 0.01 to 10 parts by mass
  • the crosslinking agent is preferably 0.01 to 10 parts by mass, and the nitrile compound 1 to 20 parts by mass, the solvent 40 to 99 parts by mass, the acid generator 0.01 to 5 parts Part, more preferably 0.1 to 5 parts by mass of a crosslinking agent, 1 to 10 parts by mass of a nitrile compound, 90 to 99 parts by mass of a solvent, 0.01 to 5 parts by mass of an acid generator, 0.5 to 5 parts of a crosslinking agent More preferably, it is 5
  • the semiconductor lithographic film-forming composition of the present embodiment can be produced by blending the polymerizable composition produced by blending with the curing agent in a molten state or the prepolymer in a melted state by heating or the like.
  • the polymerizable composition or prepolymer has an appropriate processing temperature and a wide process temperature, is excellent in curability, and molding and curing can be efficiently performed in the process.
  • a method of forming a prepolymer or the like in the above process, a method of blending such prepolymer and the like with a filler, processing and curing, and the like to produce a composite can be advanced by a known method.
  • the underlayer film for lithography in the present embodiment is formed from the above-described semiconductor lithography film forming composition.
  • an underlayer film is formed on a substrate using the above composition, and at least one photoresist layer is formed on the underlayer film, and then the photoresist layer is formed.
  • the process includes irradiating a predetermined area with radiation and performing development. More specifically, in the resist pattern forming method of the present embodiment, a step (A-1) of forming a lower layer film on the substrate using the film forming composition of the present embodiment, and at least one of Forming a photoresist layer of the layer (A-2) and, after the step (A-2), irradiating a predetermined region of the photoresist layer with radiation to perform development (A-3) And.
  • an underlayer film is formed on a substrate using the above composition, an interlayer film is formed on the underlayer film using a resist interlayer film material, and the interlayer is formed.
  • the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Forming a pattern.
  • a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and silicon atoms on the lower layer film Forming an intermediate layer film using a resist intermediate layer film material containing B, and forming at least one photoresist layer on the intermediate layer film (B-3); After the step (B-3), a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4), and after the step (B-4), The intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Having a step (B-5) that forms a pattern.
  • the lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed of the material for forming a lower layer film of the present embodiment, and known methods can be applied.
  • a known coating method such as spin coating or screen printing or the like
  • the organic solvent is removed by volatilization, etc., and then crosslinking is performed by a known method.
  • crosslinking method include methods such as heat curing and light curing.
  • the baking temperature is not particularly limited, but is preferably 80 to 700 ° C., more preferably 200 to 550 ° C.
  • the baking time is also not particularly limited, but is preferably in the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected depending on the required performance, and is not particularly limited, but usually, it is preferably 30 to 20000 nm, more preferably 50 to 15000 nm.
  • a silicon-containing resist layer or a single layer resist composed of ordinary hydrocarbons is formed thereon, and in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to prepare a single layer resist layer not containing silicon.
  • known photoresist materials can be used as the photoresist material for forming the resist layer.
  • a silicon-containing resist layer or a single-layer resist made of ordinary hydrocarbon can be formed on the lower layer film.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and used, and is not particularly limited.
  • a silicon-containing resist material for a two-layer process a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer from the viewpoint of oxygen gas etching resistance, and an organic solvent, an acid generator, A positive photoresist material containing a basic compound and the like as needed is preferably used.
  • the silicon atom-containing polymer known polymers used in this type of resist material can be used.
  • an intermediate layer based on polysilsesquioxane is preferably used as a silicon-containing intermediate layer for the three-layer process.
  • the reflection can be effectively suppressed by giving the intermediate layer an effect as an antireflective film.
  • the k value tends to be high and the substrate reflection tends to be high. Can make the substrate reflection 0.5% or less.
  • the intermediate layer having such an antireflective effect is not limited to the following, but for exposure at 193 nm, an acid or thermally crosslinked polysilsesqui having a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Oxane is preferably used.
  • an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used.
  • a SiON film is known as an intermediate layer produced by a CVD method and having high effect as an antireflective film, although not limited thereto.
  • forming the intermediate layer by a wet process such as spin coating or screen printing rather than the CVD method is simpler and more cost effective.
  • the upper layer resist in the three-layer process may be either positive or negative, and may be the same as a commonly used single layer resist.
  • the lower layer film in the present embodiment can also be used as a general antireflective film for a single layer resist or a base material for suppressing pattern collapse.
  • the lower layer film is excellent in etching resistance for base processing, so that it can also be expected to function as a hard mask for base processing.
  • the resist layer is formed of the photoresist material
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • pre-baking is usually carried out, but it is preferable to carry out this pre-baking at 80 to 180 ° C. for 10 to 300 seconds.
  • exposure is performed according to a conventional method, and post-exposure baking (PEB) and development are performed, whereby a resist pattern can be obtained.
  • PEB post-exposure baking
  • the thickness of the resist film is not particularly limited, but generally, it is preferably 30 to 500 nm, and more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically 248 nm, 193 nm, 157 nm excimer lasers, soft X-rays of 3 to 20 nm, electron beams, X-rays and the like can be mentioned.
  • the resist pattern formed by the above-described method is such that the lower layer film suppresses the pattern collapse. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the amount of exposure required to obtain the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the underlayer film in the two-layer process.
  • gas etching etching using oxygen gas is preferable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas.
  • gas etching can be performed using only CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas.
  • the latter gas is preferably used for sidewall protection for preventing undercut of the pattern sidewall.
  • gas etching is also preferably used in etching the intermediate layer in the three-layer process.
  • gas etching the same one as described in the above two-layer process is applicable.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon-based gas with the resist pattern as a mask.
  • the lower layer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, and a silicon oxynitride film are formed by a CVD method, an ALD method, or the like.
  • the method of forming the nitride film is not limited to the following, but, for example, using the method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 5) and International Publication No. 2004/066377 (Patent Document 6) it can.
  • a photoresist film can be formed directly on such an interlayer film, an organic antireflective film (BARC) is formed by spin coating on the interlayer film, and a photoresist film is formed thereon. You may
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the reflection can be effectively suppressed by giving the resist interlayer film an effect as an antireflective film.
  • Specific materials for the polysilsesquioxane-based intermediate layer are not limited to the following, but, for example, are described in JP-A-2007-226170 (Patent Document 7) and JP-A-2007-226204 (Patent Document 8). Can be used.
  • the etching of the next substrate can also be carried out by a conventional method, for example, etching using a fluorocarbon gas as the main component if the substrate is SiO 2 or SiN, chlorine or bromine if it is p-Si, Al or W Gas-based etching can be performed.
  • a fluorocarbon gas as the main component if the substrate is SiO 2 or SiN
  • chlorine or bromine if it is p-Si, Al or W Gas-based etching can be performed.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and in general, the dry etching peeling by fluorocarbon-based gas is performed after processing the substrate. .
  • the lower layer film in the present embodiment is characterized in that the etching resistance of the substrate is excellent.
  • a known substrate can be appropriately selected and used, and although not particularly limited, Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, Al and the like can be mentioned.
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support).
  • various low-k films and stoppers thereof such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si, etc.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but it is usually preferably 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • the semiconductor lithography film formation composition of this embodiment is used for manufacture of a semiconductor device. That is, one of the present embodiments is a device including the semiconductor lithographic film formation composition of the present embodiment.
  • Examples 1 to 18, Comparative Example 1 An underlayer film forming material for lithography having the composition shown in Table 1 was prepared. Next, these underlayer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds to form underlayer films each having a film thickness of 200 nm. The following were used for the compound, the acid generator, the crosslinking agent and the organic solvent.
  • DTDPI ditertiary butyldiphenyliodonium nonafluoromethanesulfonate (made by Midori Kagaku Co., Ltd.)
  • n is an integer of 1 to 4.
  • n is an integer of 1 to 3
  • Synthesis Example 1 Synthesis of Compound (BisAPN) As a raw material, 37.1 g of bisphenol A (reagent made by Kanto Chemical Co., Ltd.) and 200 g of DMF are charged into a 1 L three-necked flask, stirred at room temperature and dissolved to obtain a solution. Obtained. Next, 58.9 g of 4-nitrophthalonitrile (reagent made by Kanto Chemical Co., Ltd.) was added to the above solution, and 50 g of DMF was added, followed by stirring and dissolution. Then, 62.2 g of potassium carbonate and 50 g of DMF were charged together, and the temperature was raised to 85 ° C. with stirring. The reaction was carried out for about 5 hours and cooled at normal temperature.
  • the cooled reaction solution was poured into 0.2 N aqueous hydrochloric acid for neutralization to precipitate a reaction product, and after filtering, the precipitate was washed with water. Then, the filtered reaction product was dried in a vacuum oven at 100 ° C. for 1 day to remove water and residual solvent, and a compound (BisAPN) represented by the following chemical formula was obtained in a yield of 80.3%.
  • Synthesis Example 2 Synthesis of Compound (BiFPN) As raw materials, 27.9 g of 4,4′-biphenol (reagent made by Kanto Chemical Co., Ltd.) and 100 mL of DMF were charged into a 1 L three-necked flask and stirred at room temperature for dissolution The solution was obtained. Next, 51.9 g of 4-nitrophthalonitrile (reagent made by Kanto Chemical Co., Ltd.) was added to the above solution, and 50 g of DMF was added, and the mixture was stirred and dissolved. Then, after 62.2 g of potassium carbonate and 50 g of DMF were charged together, the mixture was stirred and the temperature was raised to 85 ° C.
  • ethylbenzene (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a dilution solvent was added to the reaction liquid, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
  • the number average molecular weight (Mn) of the obtained dimethyl naphthalene formaldehyde resin was 562.
  • a 0.5 L four-necked flask equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared.
  • 100 g (0.51 mol) of dimethyl naphthalene formaldehyde resin obtained as described above and 0.05 g of para-toluenesulfonic acid are charged under a nitrogen stream, and the temperature is raised to 190 ° C. 2 After heating for a while, it was stirred. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was raised to 220 ° C. for reaction for 2 hours.
  • the solvent was diluted, neutralized and washed with water, and the solvent was removed under reduced pressure to obtain 126.1 g of a black-brown solid modified resin (CR-1).
  • the obtained resin (CR-1) had a number average molecular weight (Mn) of 885, a weight average molecular weight (Mw) of 2220, and a Mw / Mn of 4.17.
  • Etching equipment RIE-10NR manufactured by Samco International Output: 50W Pressure: 20 Pa Time: 2 min
  • etching resistance was evaluated in the following procedures. First, a lower layer film of novolac was produced under the same conditions as in Example 1 except that novolac (PSM 4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (A-1). Then, the above-mentioned etching test was conducted on the lower layer film of this novolak, and the etching rate at that time was measured. Next, the above-mentioned etching test was conducted similarly for the lower layer films of Examples 1 to 12 and Comparative Example 1, and the etching rate at that time was measured. And based on the etching rate of the lower layer film of novolak, etching resistance was evaluated by the following evaluation criteria.
  • each solution of the underlayer film forming material for lithography obtained in Examples 1 and 2 is applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds to obtain a 70 nm thick film.
  • the lower layer film was formed.
  • a resist solution for ArF was coated on this lower layer film, and baked at 130 ° C. for 60 seconds to form a photoresist layer with a film thickness of 140 nm.
  • the compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile 0.38 g was dissolved in 80 mL of tetrahydrofuran to make a reaction solution.
  • the reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was dropped into 400 mL of n-hexane.
  • the resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure.
  • the photoresist layer is exposed using an electron beam lithography system (manufactured by Elionix; ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), 2.38 mass% tetramethylammonium hydroxide ( By developing with TMAH) aqueous solution for 60 seconds, a positive resist pattern was obtained.
  • ELS-7500 electron beam lithography system
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH 2.38 mass% tetramethylammonium hydroxide
  • the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
  • the shape of the resist pattern after development was evaluated as “good” with no pattern collapse and good rectangularity, and evaluated as “defect” with the others. Further, as a result of the above observation, the smallest line width free from pattern collapse and having good rectangularity was used as an index of evaluation as “resolution”. Furthermore, the minimum amount of electron beam energy capable of drawing a good pattern shape is used as an index of evaluation as the "sensitivity”.
  • the evaluation results are shown in Table 2.
  • Example 15 and 16 The solution of the underlayer film forming material for lithography prepared in Examples 1 and 2 was coated on a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds to form an underlayer film of 80 nm thickness. .
  • a silicon-containing intermediate layer material was coated on this lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film with a film thickness of 35 nm.
  • the resist solution for ArF was coated on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm.
  • the silicon atom containing polymer obtained by the following was used as a silicon containing intermediate layer material.
  • the photoresist layer is mask-exposed using an electron beam lithography system (manufactured by Elionix; ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), 2.38% by mass tetramethyl ammonium hydroxide
  • ELS-7500 electron beam lithography system
  • PEB baked at 115 ° C. for 90 seconds
  • PEB 2.38% by mass tetramethyl ammonium hydroxide
  • TMAH aqueous solution
  • optical component forming compositions were prepared with the formulations shown in Table 3 below.
  • the compounds, the acid generator, the acid crosslinking agent, and the solvent used were those described above.
  • the optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer and then prebaked (also described as PB) in an oven at 110 ° C. to form an optical component-forming film with a thickness of 1 ⁇ m.
  • the prepared optical component forming composition was evaluated as “A” when film formation was good, and “C” when there was a defect in the formed film.
  • the uniform optical component forming composition was spin coated on a clean silicon wafer and then PB in an oven at 110 ° C. to form a 1 ⁇ m thick film.
  • the prepared film was evaluated as "A” when the refractive index is 1.6 or more, “B” when it is 1.55 or more and less than 1.6, and "C” when it is less than 1.55. .
  • transparency ((lambda) 632.8 nm) is 90% or more, it evaluated as "A" and less than 90% evaluated as "C.”
  • the film formation composition for lithography according to the present invention is applicable to a wet process, and can form a photoresist underlayer film excellent in heat resistance and etching resistance. And this film formation composition for lithography can suppress the deterioration of the film at the time of high temperature baking, and can form the lower layer film excellent also in the etching tolerance to oxygen plasma etching etc. Furthermore, when the lower layer film is formed, the adhesion to the resist layer is also excellent, so that an excellent resist pattern can be formed.
  • the film-forming composition according to the present invention is useful as various optical component-forming compositions because the refractive index is high and the coloration is suppressed by low-temperature to high-temperature treatment.
  • the present invention includes, for example, insulating materials for electricity, resins for resists, sealing resins for semiconductors, adhesives for printed wiring boards, electrical laminates for electrical equipment, electronic equipment and industrial equipment, etc., electrical equipment , Matrix resin of prepreg mounted on electronic equipment and industrial equipment, buildup laminate material, resin for fiber reinforced plastic, resin for sealing liquid crystal display panel, paint, various coating agents, adhesive, coating for semiconductor Resin, resin for resist for semiconductor, resin for lower layer film formation, film or sheet, plastic lens (prism lens, lenticular lens, microlens, Fresnel lens, viewing angle control lens, contrast improvement lens, etc.) , Retardation film, film for shielding electromagnetic wave, prism, optical fiber, flexi Solder resist le printed circuit, plating resist, multilayer printed wiring boards interlayer insulating film, the optical component such as a photosensitive optical waveguide, it is widely and effectively available.
  • plastic lens prisrism lens, lenticular lens, microlens, Fresnel lens, viewing angle control
  • the present invention has industrial applicability in the field of resists for lithography, underlayer films for lithography, underlayer films for multilayer resists, and optical components.

Abstract

Provided is a semiconductor lithography film forming composition containing a nitryl compound.

Description

半導体リソグラフィー膜形成組成物、並びにレジストパターン形成方法及びデバイスSemiconductor lithography film forming composition, and resist pattern forming method and device
 本発明は、半導体リソグラフィー膜形成組成物、並びにレジストパターン形成方法及びデバイスに関する。 The present invention relates to a semiconductor lithography film forming composition, and a method and device for forming a resist pattern.
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われており、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。 In the manufacture of semiconductor devices, microfabrication by lithography using a photoresist material is performed, and in recent years, with the high integration and high speed of LSI, further miniaturization by pattern rules is required. In addition, the light source for lithography used at the time of resist pattern formation is shortened in wavelength from KrF excimer laser (248 nm) to ArF excimer laser (193 nm), and the introduction of extreme ultraviolet light (EUV, 13.5 nm) It is also expected.
 レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。 When the miniaturization of the resist pattern progresses, a problem of resolution or a problem that the resist pattern falls after development occurs, so that thinning of the resist becomes desirable. However, simply reducing the thickness of the resist makes it difficult to obtain a film thickness of a resist pattern sufficient for substrate processing. Therefore, not only a resist pattern, but a resist underlayer film is produced between the resist and the semiconductor substrate to be processed, and a process for providing this resist underlayer film with a function as a mask at the time of substrate processing is also required.
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比をもつリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と、溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照)。また、レジストに比べて小さいドライエッチング速度の選択比をもつリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比をもつリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照)。 At present, various types of resist underlayer films for such processes are known. For example, unlike a conventional resist underlayer film having a high etching rate, as a material for realizing a resist underlayer film for lithography having a dry etching rate selectivity close to that of a resist, the end groups are removed by application of a predetermined energy. An underlayer film forming material for a multilayer resist process has been proposed which contains a resin component having at least a substituent which generates a sulfonic acid residue and a solvent separately (for example, see Patent Document 1). In addition, a resist underlayer film material containing a polymer having a specific repeating unit has been proposed as a material for realizing a resist underlayer film for lithography having a selection ratio of dry etching rate smaller than that of a resist (for example, patent documents 2). Furthermore, in order to realize a resist underlayer film for lithography having a dry etching rate selectivity smaller than that of a semiconductor substrate, a repeating unit of acenaphthylene is copolymerized with a repeating unit having a substituted or non-substituted hydroxy group. There has been proposed a resist underlayer film material containing a polymer obtained by the above method (see, for example, Patent Document 3).
 一方、この種のレジスト下層膜において高いエッチング耐性をもつ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。 On the other hand, as a material having high etching resistance in this type of resist underlayer film, an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known. However, from the viewpoint of the process, a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
 また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(例えば、特許文献4参照)を提案している。 Moreover, the present inventors are excellent in etching resistance, high heat resistance, and soluble in a solvent, and as a material applicable to a wet process, a lower layer film forming composition for lithography containing a compound of a specific structure and an organic solvent An object (see, for example, Patent Document 4) is proposed.
 さらに、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法としては、例えば、シリコン窒化膜の形成方法(例えば、特許文献5参照)、及びシリコン窒化膜のCVD形成方法(例えば、特許文献6参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献7及び8参照)。 Furthermore, as a method of forming an intermediate layer used in formation of a resist underlayer film in a three-layer process, for example, a method of forming a silicon nitride film (see, for example, Patent Document 5) and a method of forming a silicon nitride film by CVD (for example, Patent Document 6) is known. Further, as an interlayer material for a three-layer process, a material containing a silsesquioxane-based silicon compound is known (see, for example, Patent Documents 7 and 8).
 様々な光学部品形成組成も提案されており、例えば、アクリル系樹脂(例えば、特許文献9及び10参照)、及び/又はアリル基で誘導された特定の構造を有するポリフェノール(例えば、特許文献11参照)が提案されている。 Various optical component forming compositions have also been proposed, for example, acrylic resins (see, for example, Patent Documents 9 and 10), and / or polyphenols having specific structures derived from allyl groups (see, for example, Patent Document 11) ) Has been proposed.
特開2004-177668号公報Unexamined-Japanese-Patent No. 2004-177668 特開2004-271838号公報Unexamined-Japanese-Patent No. 2004-271838 特開2005-250434号公報JP 2005-250434 A 国際公開第2013/024779号International Publication No. 2013/024779 特開2002-334869号公報JP 2002-334869 A 国際公開第2004/066377号WO 2004/066377 特開2007-226170号公報JP 2007-226170 A 特開2007-226204号公報JP 2007-226204 A 特開2010-138393号公報Unexamined-Japanese-Patent No. 2010-138393 特開2015-174877号公報JP, 2015-174877, A 国際公開第2014/123005号International Publication No. 2014/123005
 上述したように、従来、数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。 As described above, many film-forming compositions for lithography for resist applications and film-forming compositions for lithography for lower layer films have been proposed, but wet processes such as spin coating and screen printing can be applied. As well as having high solvent solubility, none have achieved both heat resistance and etching resistance at a high level, and development of new materials is required.
 また、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を両立させたものはなく、新たな材料の開発が求められている。 Moreover, although many compositions for optical members are proposed conventionally, there is no thing which made heat resistance, transparency, and a refractive index compatible, and development of a new material is called for.
 本発明は、上記従来技術の課題に鑑みてなされたものであり、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れる膜を形成するために有用な、半導体リソグラフィー膜形成組成物を提供することを目的とする。
 また、本発明は、耐熱性、透明性及び屈折率を両立させた光学部品の作製に用いることもできる組成物を提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and a composition for forming a semiconductor lithography film is applicable to form a film which is applicable to a wet process and is excellent in heat resistance, solubility and etching resistance. It aims to provide goods.
Another object of the present invention is to provide a composition that can be used for the production of an optical component having both heat resistance, transparency and refractive index.
 本発明者らは、上記従来技術の課題を解決するために鋭意検討を重ねた結果、特定の半導体リソグラフィー膜形成組成物により、上記従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
As a result of intensive studies to solve the problems of the prior art, the present inventors have found that the problems of the prior art can be solved by a specific semiconductor lithography film forming composition, and complete the present invention. It reached.
That is, the present invention is as follows.
[1]
 ニトリル化合物を含む、半導体リソグラフィー膜形成組成物。
[2]
 前記ニトリル化合物の分子量が、41g/mol以上1000g/mol未満の範囲にある、[1]に記載の組成物。
[3]
 二種以上の異なるニトリル化合物を含む、[1]又は[2]に記載の組成物。
[4]
 三種以上の異なるニトリル化合物を含む、[1]又は[2]に記載の組成物。
[5]
 前記ニトリル化合物が、下記式(1)で表される化合物である、[1]~[4]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000007
(上記式(1)中、
 Rは、炭素数1~70のn価の基であり、
 nは、1~10の整数である。)
[6]
 前記Rが、直鎖状炭化水素基、分岐状炭化水素基及び環構造からなる群より選択される少なくとも一つを含む基である、[5]に記載の組成物。
[7]
 前記環構造が、置換基を有していてもよい芳香環及び置換基を有していてもよい脂環式炭化水素基からなる群より選択される少なくとも一つを含む、[6]に記載の組成物。
[8]
 前記ニトリル化合物が、置換基を有していてもよい芳香環を含み、ニトリル基が前記芳香環に置換している、[1]~[7]のいずれかに記載の組成物。
[9]
 前記ニトリル化合物が、下記式(2)で表される化合物である、[1]~[8]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000008
(上記式(2)中、
 Xは、置換基を有していてもよい芳香環であり、
 Yは、環構造を含む基であり、
 Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
 m1は、0又は1の整数であり、
 n1は、1~10の整数であり、n2は、1以上の整数である。
 ただし、n1とn2との積は、1~10の整数である。)
[10]
 前記ニトリル化合物が、下記式(3)で表される化合物及び/又は下記式(4)で表される化合物である、[1]~[9]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000009
(上記式(3)中、
 Xは、置換基を有していてもよい芳香環であり、n1は、1~10の整数である。)
Figure JPOXMLDOC01-appb-C000010
(上記式(4)中、
 Xは、それぞれ独立して、置換基を有していてもよい芳香環であり、
 Yは、環構造を含む基であり、
 Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
 n1は、それぞれ独立して、1~10の整数である。)
[11]
 前記式(3)で表される化合物が、下記式(A)群から選ばれる化合物であり、前記式(4)で表される化合物が、BisAPN又はBiFPNである、[10]に記載の組成物。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[12]
 融点が200℃以上のニトリル化合物を含む、[1]~[11]のいずれかに記載の組成物。
[13]
 溶媒をさらに含有する、[1]~[12]のいずれかに記載の組成物。
[14]
 硬化促進剤をさらに含有する、[1]~[13]のいずれかに記載の組成物。
[15]
 架橋剤をさらに含有する、[1]~[14]のいずれかに記載の組成物。
[16]
 半導体下層膜の形成に用いられる、[1]~[15]のいずれかに記載の組成物。
[17]
 光学部品形成に用いられる、[1]~[16]のいずれかに記載の組成物。
[18]
 基板上に、[1]~[16]のいずれかに記載の組成物を用いて下層膜を形成し、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
[19]
 [1]~[17]のいずれかに記載の組成物を用いて製造されたデバイス。
[1]
A semiconductor lithographic film-forming composition comprising a nitrile compound.
[2]
The composition according to [1], wherein the molecular weight of the nitrile compound is in the range of 41 g / mol to less than 1000 g / mol.
[3]
The composition according to [1] or [2], comprising two or more different nitrile compounds.
[4]
The composition as described in [1] or [2] which contains three or more types of different nitrile compounds.
[5]
The composition according to any one of [1] to [4], wherein the nitrile compound is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
(In the above formula (1),
R A is an n-valent group having 1 to 70 carbon atoms,
n is an integer of 1 to 10. )
[6]
The composition according to [5], wherein said R A is a group containing at least one selected from the group consisting of a linear hydrocarbon group, a branched hydrocarbon group and a ring structure.
[7]
The ring structure described in [6], comprising at least one selected from the group consisting of an aromatic ring which may have a substituent and an alicyclic hydrocarbon group which may have a substituent. Composition of
[8]
The composition according to any one of [1] to [7], wherein the nitrile compound contains an aromatic ring which may have a substituent, and a nitrile group is substituted on the aromatic ring.
[9]
The composition according to any one of [1] to [8], wherein the nitrile compound is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000008
(In the above formula (2),
X is an aromatic ring which may have a substituent,
Y is a group containing a ring structure,
Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
m1 is an integer of 0 or 1;
n1 is an integer of 1 to 10, and n2 is an integer of 1 or more.
However, the product of n1 and n2 is an integer of 1 to 10. )
[10]
The composition according to any one of [1] to [9], wherein the nitrile compound is a compound represented by the following formula (3) and / or a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000009
(In the above formula (3),
X a is an aromatic ring which may have a substituent, and n 1 is an integer of 1 to 10. )
Figure JPOXMLDOC01-appb-C000010
(In the above formula (4),
Each X b is independently an aromatic ring which may have a substituent,
Y is a group containing a ring structure,
Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
n1 is each independently an integer of 1 to 10. )
[11]
The composition according to [10], wherein the compound represented by the formula (3) is a compound selected from the following formula (A) group, and the compound represented by the formula (4) is BisAPN or BiFPN object.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[12]
The composition according to any one of [1] to [11], which comprises a nitrile compound having a melting point of 200 ° C. or higher.
[13]
The composition according to any one of [1] to [12], further comprising a solvent.
[14]
The composition according to any one of [1] to [13], further comprising a curing accelerator.
[15]
The composition according to any one of [1] to [14], further comprising a crosslinking agent.
[16]
The composition according to any one of [1] to [15], which is used to form a semiconductor underlayer film.
[17]
The composition according to any one of [1] to [16], which is used for forming an optical component.
[18]
An underlayer film is formed on the substrate using the composition according to any one of [1] to [16],
A method of forming a resist pattern, comprising the steps of forming at least one photoresist layer on the lower layer film, and then irradiating a predetermined region of the photoresist layer with radiation to perform development.
[19]
A device manufactured using the composition according to any one of [1] to [17].
 本発明の半導体リソグラフィー膜形成組成物は、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れる膜を形成できる。また、本発明の半導体リソグラフィー膜形成組成物は、光学部品形成に用いることができ、かかる光学部品は、耐熱性、透明性及び屈折率のバランスに優れる。 A wet process is applicable to the semiconductor lithographic film forming composition of the present invention, and a film having excellent heat resistance, solubility and etching resistance can be formed. Moreover, the semiconductor lithography film formation composition of this invention can be used for optical component formation, and this optical component is excellent in heat resistance, transparency, and the balance of a refractive index.
 以下、本発明を実施するための形態(以下「本実施形態」ともいう。)について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。 Hereinafter, a mode for carrying out the present invention (hereinafter, also referred to as “the present embodiment”) will be described. In addition, the following embodiment is an illustration for demonstrating this invention, and this invention is not limited only to the embodiment.
[半導体リソグラフィー膜形成組成物]
 本実施形態の半導体リソグラフィー膜形成組成物は、ニトリル化合物を一種以上含有する。本実施形態における半導体リソグラフィー膜形成組成物は、良質な膜の形成の観点から、ニトリル化合物を二種以上含有することが好ましく、良質な膜の保持時間の観点から、ニトリル化合物を三種以上含有することがより好ましい。
 本実施形態の半導体リソグラフィー膜形成組成物は、半導体下層膜形成組成物、半導体上層膜形成組成物、又は光学部品形成組成物であることができる。すなわち、本実施形態は、ニトリル化合物を含む、半導体下層膜形成組成物、半導体上層膜形成組成物、又は光学部品形成組成物でもある。
[Semiconductor lithography film forming composition]
The semiconductor lithographic film formation composition of the present embodiment contains one or more nitrile compounds. The semiconductor lithography film-forming composition according to the present embodiment preferably contains two or more nitrile compounds from the viewpoint of formation of a good film, and three or more nitrile compounds from the viewpoint of retention time of the good film. Is more preferred.
The semiconductor lithography film formation composition of the present embodiment can be a semiconductor lower layer film formation composition, a semiconductor upper layer film formation composition, or an optical component formation composition. That is, this embodiment is also a semiconductor lower layer film forming composition, a semiconductor upper layer film forming composition, or an optical component forming composition, which contains a nitrile compound.
 本実施形態の組成物は、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用である。
 また、本実施形態の組成物は、高温ベーク時に分子内架橋反応が効果的に進行することから膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト下層膜を形成することができる。加えて、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
 さらには、屈折率が高く、また低温から高温までの広範囲の熱処理による着色が抑制されることから、各種光学形成組成物としても有用である。
The composition of this embodiment is applicable to a wet process and is useful for forming a photoresist underlayer film excellent in heat resistance and etching resistance.
Further, in the composition of the present embodiment, since the intramolecular crosslinking reaction effectively proceeds at the time of high temperature baking, deterioration of the film is suppressed, and a resist underlayer film excellent in etching resistance to oxygen plasma etching etc. is formed. Can. In addition, since the adhesion with the resist layer is also excellent, an excellent resist pattern can be formed.
Furthermore, since the refractive index is high and the coloring due to a wide range of heat treatment from low temperature to high temperature is suppressed, it is also useful as various optical forming compositions.
 本実施形態の半導体リソグラフィー膜形成組成物は、芳香族密度が高いため、屈折率が高く、また低温から高温までの広範囲の熱処理によっても着色が抑制されることから、各種光学部品を形成するための組成物として使用できる。
 光学部品としては、特に限定されないが、例えば、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等が挙げられる。
The composition for forming a semiconductor lithography film of the present embodiment has a high aromatic density, so that the refractive index is high, and the coloring is suppressed also by a wide range of heat treatment from low temperature to high temperature. It can be used as a composition of
The optical component is not particularly limited, but, for example, a plastic lens (a prism lens, a lenticular lens, a microlens, a Fresnel lens, a viewing angle control lens, a contrast improvement lens, etc.) other than film or sheet components Films, films for shielding electromagnetic waves, prisms, optical fibers, solder resists for flexible printed wiring, plating resists, interlayer insulating films for multilayer printed wiring boards, photosensitive optical waveguides, etc. may be mentioned.
 本実施形態の組成物は、半導体下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)として有用である。 The composition of the present embodiment is useful as a film-forming composition for lithography for semiconductor lower layer films (hereinafter, also referred to as "lower layer film-forming material").
 本実施形態の組成物におけるニトリル化合物の含有量は、塗布性及び品質安定性の点から、組成物全量を100質量%とした場合、好ましくは1~100質量%であり、より好ましくは10~100質量%であり、さらに好ましくは50~100質量%であり、よりさらに好ましくは100質量%である。 The content of the nitrile compound in the composition of the present embodiment is preferably 1 to 100% by mass, more preferably 10 to 100% by mass, when the total amount of the composition is 100% by mass, from the viewpoint of coatability and quality stability. It is 100% by mass, more preferably 50 to 100% by mass, and still more preferably 100% by mass.
 本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は、上記物質を用いて、かつ分子間架橋に優れるため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料は、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。 The lower layer film forming material of the present embodiment can be applied to a wet process, and is excellent in heat resistance and etching resistance. Furthermore, since the underlayer film forming material of the present embodiment is excellent in intermolecular crosslinking using the above-mentioned substance, degradation of the film at the time of high temperature baking is suppressed, and the underlayer film also excellent in etching resistance to oxygen plasma etching and the like. Can be formed. Furthermore, since the underlayer film forming material of the present embodiment is also excellent in adhesion to the resist layer, an excellent resist pattern can be obtained. In addition, the lower layer film forming material of the present embodiment may include the already known lower layer film forming material for lithography and the like within the range where the effects of the present invention are not impaired.
 本実施形態におけるニトリル化合物は、ニトリル基と称することがあるシアノ基を少なくとも一つ含む。
 本実施形態におけるシアノ基は、式:-C≡Nで定義することができる。
 本実施形態におけるニトリル化合物は、2以上のシアノ基を有していてもよく、2以上のシアノ基を、総じてポリシアノ基ともいう。
 本実施形態におけるニトリル化合物の分子量は、41g/mol以上3000g/mol未満の範囲にあることが好ましく、41g/mol以上1000g/mol未満の範囲にあることがより好ましく、100g/mol以上1000g/mol未満の範囲にあることがさらに好ましく、100g/mol以上500g/mol未満の範囲にあることがよりさらに好ましい。
The nitrile compound in the present embodiment contains at least one cyano group which may be referred to as a nitrile group.
The cyano group in this embodiment can be defined by the formula: -C≡N.
The nitrile compound in the present embodiment may have two or more cyano groups, and the two or more cyano groups are also generally referred to as polycyano groups.
The molecular weight of the nitrile compound in the present embodiment is preferably in the range of 41 g / mol or more and less than 3000 g / mol, more preferably in the range of 41 g / mol or more and less than 1000 g / mol, and 100 g / mol or more and 1000 g / mol. It is more preferable to be in the range of less than 100, and even more preferable to be in the range of 100 g / mol to less than 500 g / mol.
 ポリシアノ基を有する化合物は、式:τ-(C≡N)[式中、τは価数が少なくとも2の多価の有機基部分であり、nは該多価の有機基部分τの価数に等しい整数である]で表され得る。
 τは、複素環式で多価の有機部分である。言い換えれば、τは、飽和であっても不飽和であってもよい複素環基、単環式、二環式、三環式又は多環式であってもよい複素環基、及び一つ以上の同一又は異なるヘテロ原子を含んでいてもよい複素環基を有する有機基である。
 τは、一つ以上のヘテロ原子を含んでも含まなくてもよい、非環式で多価の有機基部分(直鎖状又は分枝状)であることが好ましい。
 τは、環式部分の環内にヘテロ原子を含まない、環式で多価の有機部分であることが好ましい。
 ヘテロ原子としては、例えば、窒素、酸素、硫黄、ホウ素、ケイ素、スズ、及びリン等が挙げられる。
The compound having a polycyano group is represented by the formula: τ- (C≡N) n [wherein, τ is a polyvalent organic group moiety having a valence of at least 2 and n is a valence of the polyvalent organic group moiety τ Is an integer equal to a number].
τ is a heterocyclic, polyvalent organic moiety. In other words, τ is a heterocyclic group which may be saturated or unsaturated, a heterocyclic group which may be monocyclic, bicyclic, tricyclic or polycyclic, and one or more Or an organic group having a heterocyclic group which may contain the same or different hetero atoms.
τ is preferably an acyclic and multivalent organic group moiety (linear or branched) which may or may not contain one or more hetero atoms.
τ is preferably a cyclic and multivalent organic moiety which does not contain a heteroatom in the ring of the cyclic moiety.
Examples of the hetero atom include nitrogen, oxygen, sulfur, boron, silicon, tin, and phosphorus.
 ポリシアノ基を有する化合物は、例えば、式:N≡C-R1-C≡N[式中、R1は二価の有機基である]で表されることが好ましい。
 二価の有機基としては、特に限定されるものではないが、例えば、アルキレン基、シクロアルキレン基、アルケニレン基、シクロアルケニレン基、アルキニレン基、シクロアルキニレン基、又はアリーレン基等のヒドロカルビレン基、及び置換ヒドロカルビレン基等が挙げられる。
 置換ヒドロカルビレン基は、一つ以上の水素原子がアルキル基等の置換基で置換されたヒドロカルビレン基である。
 二価の有機基としては、1個若しくは2個から、又はかかる基を形成する炭素原子の適切な最少個数から20個の炭素原子を含み得る。また、これらの基は、一つ以上のヘテロ原子も含有してもよい。
 R1は、非複素環式で二価の基であることが好ましい。
 R1は、一つ以上のヘテロ原子を含んでも含まなくてもよい、非環式で二価の有機基(直鎖状又は分枝状)であることが好ましい。
 R1は、ヘテロ原子を含まない、環式で二価の有機基であることが好ましい。
 R1は、一つ以上の追加のシアノ基(即ち、-C≡N)を含有することがある。
The compound having a polycyano group is preferably represented, for example, by the formula: N≡C—R 1 —C≡N [wherein, R 1 is a divalent organic group].
The divalent organic group is not particularly limited, and examples thereof include a hydrocarbylene group such as an alkylene group, a cycloalkylene group, an alkenylene group, a cycloalkenylene group, an alkynylene group, a cycloalkynylene group, or an arylene group. And substituted hydrocarbylene groups and the like.
A substituted hydrocarbylene group is a hydrocarbylene group in which one or more hydrogen atoms are substituted with a substituent such as an alkyl group.
The divalent organic group may contain from 1 or 2 carbon atoms or a suitable minimum number of carbon atoms forming such a group. These groups may also contain one or more heteroatoms.
R 1 is preferably a non-heterocyclic divalent group.
R 1 is preferably a non-cyclic divalent organic group (linear or branched) which may or may not contain one or more hetero atoms.
R 1 is preferably a cyclic divalent organic group containing no hetero atom.
R1 may contain one or more additional cyano groups (ie, -C≡N).
 ポリシアノ基を有する化合物としては、例えば、(ポリシアノ)アレーン化合物、(ポリシアノ)アルカン化合物、(ポリシアノ)アルケン化合物、(ポリシアノ)アルキン化合物、(ポリシアノ)シクロアルカン化合物、(ポリシアノ)シクロアルケン化合物、及び(ポリシアノ)シクロアルキン化合物等が挙げられる。
 ここで(ポリシアノ)アレーン化合物とは、アレーン化合物中の少なくとも二つの水素原子がシアノ基で置換された化合物である。
Examples of the compound having a polycyano group include (polycyano) arene compounds, (polycyano) alkane compounds, (polycyano) alkene compounds, (polycyano) alkyne compounds, (polycyano) cycloalkane compounds, (polycyano) cycloalkene compounds, and Polycyano) cycloalkyne compounds and the like can be mentioned.
Here, the (polycyano) arene compound is a compound in which at least two hydrogen atoms in the arene compound are substituted with a cyano group.
 (ポリシアノ)アレーン化合物としては、例えば、ジシアノアレーン化合物、トリシアノアレーン化合物及びテトラシアノアレーン化合物等が挙げられる。
 (ポリシアノ)アルカン化合物としては、例えば、ジシアノアルカン化合物、トリシアノアルカン化合物及びテトラシアノアルカン化合物等が挙げられる。
 (ポリシアノ)アルケン化合物としては、例えば、ジシアノアルケン化合物、トリシアノアルケン化合物及びテトラシアノアルケン化合物等が挙げられる。
 (ポリシアノ)アルキン化合物としては、例えば、ジシアノアルキン化合物、トリシアノアルキン化合物及びテトラシアノアルキン化合物等が挙げられる。
 (ポリシアノ)シクロアルカン化合物としては、例えば、ジシアノシクロアルカン化合物、トリシアノシクロアルカン化合物及びテトラシアノシクロアルカン化合物等が挙げられる。
 (ポリシアノ)シクロアルケン化合物としては、例えば、ジシアノシクロアルケン化合物、トリシアノシクロアルケン化合物及びテトラシアノシクロアルケン化合物等が挙げられる。
 (ポリシアノ)シクロアルキン化合物としては、例えば、ジシアノシクロアルキン化合物、トリシアノシクロアルキン化合物及びテトラシアノシクロアルキン化合物等が挙げられる。
Examples of the (polycyano) arene compound include dicyanoarene compounds, tricyanoarene compounds and tetracyanoarene compounds.
Examples of (polycyano) alkane compounds include dicyanoalkane compounds, tricyanoalkane compounds and tetracyanoalkane compounds.
Examples of (polycyano) alkene compounds include dicyanoalkene compounds, tricyanoalkene compounds and tetracyanoalkene compounds.
Examples of (polycyano) alkyne compounds include dicyanoalkyne compounds, tricyanoalkyne compounds and tetracyanoalkyne compounds.
Examples of (polycyano) cycloalkane compounds include dicyanocycloalkane compounds, tricyanocycloalkane compounds and tetracyanocycloalkane compounds.
Examples of (polycyano) cycloalkene compounds include dicyanocycloalkene compounds, tricyanocycloalkene compounds and tetracyanocycloalkene compounds.
Examples of the (polycyano) cycloalkyne compound include dicyanocycloalkyne compounds, tricyanocycloalkyne compounds, and tetracyanocycloalkyne compounds.
 (ポリシアノ)アレーン化合物としては、具体的には、1,2-ジシアノベンゼン(フタロニトリル)、1,3-ジシアノベンゼン(イソフタロジニトリル又はイソフタロニトリル)、1,4-ジシアノベンゼン(テレフタロニトリル)、1,2-ジシアノナフタレン、1,3-ジシアノナフタレン、1,4-ジシアノナフタレン、1,5-ジシアノナフタレン、1,6-ジシアノナフタレン、1,7-ジシアノナフタレン、1,8-ジシアノナフタレン、2,3-ジシアノナフタレン、2,4-ジシアノナフタレン、1,1’-ビフェニル)-4,4’-ジカルボニトリル、1,2-ジシアノアントラセン、1,3-ジシアノアントラセン、1,4-ジシアノアントラセン、1,8-ジシアノアントラセン、1,9-ジシアノアントラセン、2,3-ジシアノアントラセン、2,4-ジシアノアントラセン、9,10-ジシアノアントラセン、9,10-ジシアノフェナントレン、1,2-ジシアノインデン、1,4-ジシアノインデン、2,6-ジシアノインデン、1,2-ジシアノアズレン、1,3-ジシアノアズレン、4,5-ジシアノアズレン、1,8-ジシアノフルオレン、1,9-ジシアノフルオレン、4,5-ジシアノフルオレン、2,6-ジシアノトルエン、2-シアノフェニルアセトニトリル、4-シアノフェニルアセトニトリル、1,3,5-トリシアノベンゼン、1,2,4-トリシアノベンゼン、1,2,5-トリシアノベンゼン、1,4,6-トリシアノインデン、1,3,7-トリシアノナフタレン、1,2,4,5-テトラシアノベンゼン及び1,3,5,6-テトラシアノナフタレン等が挙げられる。 Specific examples of the (polycyano) arene compound include 1,2-dicyanobenzene (phthalonitrile), 1,3-dicyanobenzene (isophthalonitrile or isophthalonitrile), and 1,4-dicyanobenzene (terephthalo). Nitrile), 1,2-dicyanonaphthalene, 1,3-dicyanonaphthalene, 1,4-dicyanonaphthalene, 1,5-dicyanonaphthalene, 1,6-dicyanonaphthalene, 1,7-dicyanonaphthalene, 1,8-dicyano Naphthalene, 2,3-dicyanonaphthalene, 2,4-dicyanonaphthalene, 1,1′-biphenyl) -4,4′-dicarbonitrile, 1,2-dicyanoanthracene, 1,3-dicyanoanthracene, 1,4 -Dicyanoanthracene, 1,8-dicyanoanthracene, 1,9-dicyanoanthrase 2,3-dicyanoanthracene, 2,4-dicyanoanthracene, 9,10-dicyanoanthracene, 9,10-dicyanophenanthrene, 1,2-dicyanoindene, 1,4-dicyanoindene, 2,6-dicyanoindene, 1,2-dicyanoazulene, 1,3-dicyanoazulene, 4,5-dicyanoazulene, 1,8-dicyanofluorene, 1,9-dicyanofluorene, 4,5-dicyanofluorene, 2,6-dicyanotoluene, 2 -Cyanophenylacetonitrile, 4-cyanophenylacetonitrile, 1,3,5-tricyanobenzene, 1,2,4-tricyanobenzene, 1,2,5-tricyanobenzene, 1,4,6-tricyanoindene , 1,3,7-tricyanonaphthalene, 1,2,4,5-tetracyanobenzene and , 3,5,6-tetra-cyano-naphthalene, and the like.
 (ポリシアノ)アルカン化合物としては、具体的には、マロノニトリル、1,2-ジシアノエタン(スクシノニトリル)、1,2-ジシアノ-1,2-ジフェニルエタン、1,3-ジシアノプロパン(グルタロニトリル)、2-メチルグルタロニトリル、1,2-ジシアノプロパン、ジメチルマロノニトリル、ジフェニルマロノニトリル、1,4-ジシアノブタン(アジポニトリル)、1,5-ジシアノペンタン(ピメロニトリル)、1,6-ジシアノへキサン(スベロニトリル)、1,7-ジシアノヘプタン、1,8-ジシアノオクタン(セバコニトリル)、3,3’-チオジプロピオニトリル、1,1,3-トリシアノプロパン、1,1,2-トリシアノプロパン、1,1,4-トリシアノブタン、1,1,5-トリシアノペンタン、1,1,6-トリシアノへキサン、1,3,5-トリシアノへキサン、1,2,5-トリシアノヘプタン、2,4,6-トリシアノオクタン、トリス(2-シアノエチル)アミン、1,1,3,3-テトラシアノプロパン、1,1,4,4-テトラシアノブタン、1,1,6,6-テトラシアノへキサン及び1,2,4,5-テトラシアノへキサン等が挙げられる。 Specific examples of (polycyano) alkane compounds include malononitrile, 1,2-dicyanoethane (succinonitrile), 1,2-dicyano-1,2-diphenylethane, and 1,3-dicyanopropane (glutaronitrile). ), 2-Methylglutaronitrile, 1,2-Dicyanopropane, Dimethylmalononitrile, Diphenylmalononitrile, 1,4-Dicyanobutane (Adiponitrile), 1,5-Dicyanopentane (Pimeronitrile), 1,6-Dicyano Xan (suberonitrile), 1,7-dicyanoheptane, 1,8-dicyanooctane (sebaconitrile), 3,3'-thiodipropionitrile, 1,1,3-tricyanopropane, 1,1,2-tricyano Propane, 1,1,4-tricyanobutane, 1,1,5-tricyanopentane, 1,1,6-tricyanohexane, 1,3,5-tricyanohexane, 1,2,5-tricyanoheptane, 2,4,6-tricyanooctane, tris (2-cyanoethyl) amine, 1,1 And 3,3,4-tetracyanopropane, 1,1,4,4-tetracyanobutane, 1,1,6,6-tetracyanohexane, 1,2,4,5-tetracyanohexane and the like.
 (ポリシアノ)アルケン化合物としては、具体的には、フマロニトリル、1,3-ジシアノプロペン、シス-1,4-ジシアノ-2-ブテン、トランス-1,4-ジシアノ-2-ブテン、2-メチレングルタロニトリル、ベンジリデンマロノニトリル、1,1,2-トリシアノエチレン、1,1,3-トリシアノプロペン、1,1,4-トリシアノ-2-ブテン、1,1,5-トリシアノ-2-ペンテン、テトラシアノエチレン、7,8,8-テトラシアノキノジメタン及び1,1,4,4-テトラシアノ-2-ブテン等が挙げられる。 Specific examples of (polycyano) alkene compounds include fumaronitrile, 1,3-dicyanopropene, cis-1,4-dicyano-2-butene, trans-1,4-dicyano-2-butene, 2-methylene glycol Tallonitrile, benzylidene malononitrile, 1,1,2-tricyanoethylene, 1,1,3-tricyanopropene, 1,1,4-tricyano-2-butene, 1,1,5-tricyano-2-pentene And tetracyanoethylene, 7,8,8-tetracyanoquinodimethane and 1,1,4,4-tetracyano-2-butene.
 (ポリシアノ)アルキン化合物としては、具体的には、3,3-ジシアノプロピン、3,4-ジシアノ-1-ブチン、3,4-ジシアノ-1-ペンチン、3,4-ジシアノ-1-ペンチン、3,5-ジシアノ-1-ペンチン、3,4-ジシアノ-1-ヘキシン、3,5-ジシアノ-1-ヘキシン、3,6-ジシアノ-1-ヘキシン、4,5-ジシアノ-1-ヘキシン、4,6-ジシアノ-1-ヘキシン、5,6-ジシアノ-1-ヘキシン、1,3,3-トリシアノプロピン、1,3,4-トリシアノ-1-ブチン、1,3,4-トリシアノ-1-ペンチン、1,3,4-トリシアノ-1-ペンチン、1,3,5-トリシアノ-1-ペンチン、1,4,5-トリシアノ-1-ペンチン、3,4,5-トリシアノ-1-ヘキシン、3,4,6-トリシアノ-1-ヘキシン、3,5,6-トリシアノ-1-ヘキシン、3,4,5-トリシアノ-1-ヘキシン及び1,1,4,4-テトラシアノ-2-ブチン等が挙げられる。 Specific examples of (polycyano) alkyne compounds include 3,3-dicyanopropyne, 3,4-dicyano-1-butyne, 3,4-dicyano-1-pentyne and 3,4-dicyano-1-pentyne 3,5-dicyano-1-pentine, 3,4-dicyano-1-hexyne, 3,5-dicyano-1-hexyne, 3,6-dicyano-1-hexyne, 4,5-dicyano-1-hexyne 4,6-dicyano-1-hexyne, 5,6-dicyano-1-hexyne, 1,3,3-tricyanopropyne, 1,3,4-tricyano-1-butyne, 1,3,4- Tricyano-1-pentine, 1,3,4-tricyano-1-pentine, 1,3,5-tricyano-1-pentine, 1,4,5-tricyano-1-pentine, 3,4,5-tricyano- 1-Hexin, 3, 4, 6 Rishiano 1-hexyne, 3,5,6 tricyano-1-hexyne, 3,4,5 tricyano-1-hexyne and 1,1,4,4-tetracyano-2-butyne, and the like.
 (ポリシアノ)シクロアルカン化合物としては、具体的には、1,2-ジシアノシクロブタン、1,2-ジシアノシクロペンタン、1,3-ジシアノシクロペンタン、1,2-ジシアノシクロヘキサン、1,3-ジシアノシクロヘキサン、1,4-ジシアノシクロヘキサン、1,2-ジシアノシクロヘプタン、1,3-ジシアノシクロヘプタン、1,4-ジシアノシクロヘプタン、1,2-ジシアノシクロオクタン、1,3-ジシアノシクロオクタン、1,4-ジシアノシクロオクタン、1,5-ジシアノシクロオクタン、1,2,4-トリシアノシクロヘキサン、1,3,4-トリシアノシクロヘキサン、1,2,4-トリシアノシクロヘプタン、1,3,4-トリシアノシクロヘプタン、1,2,4-トリシアノシクロオクタン、1,2,5-トリシアノシクロオクタン、1,3,5-トリシアノシクロオクタン、1,2,3,4-テトラシアノシクロヘキサン、2,2,4,4-テトラシクロヘキサン、1,2,3,4-テトラシアノシクロヘプタン、1,1,4,4-テトラシアノシクロヘプタン、1,2,3,4-テトラシアノシクロオクタン、1,2,3,5-テトラシアノシクロオクタン、3,3-ジメチルシクロプロパン-1,1,2,2-テトラシアノカルボニトリル及びスピロ(2.4)ヘプタン-1,1,2,2-テトラカルボニトリル等が挙げられる。 Specific examples of (polycyano) cycloalkane compounds include 1,2-dicyanocyclobutane, 1,2-dicyanocyclopentane, 1,3-dicyanocyclopentane, 1,2-dicyanocyclohexane, and 1,3-dicyanocyclohexane 1,4-dicyanocyclohexane, 1,2-dicyanocycloheptane, 1,3-dicyanocycloheptane, 1,4-dicyanocycloheptane, 1,2-dicyanocyclooctane, 1,3-dicyanocyclooctane, 1, 4-dicyanocyclooctane, 1,5-dicyanocyclooctane, 1,2,4-tricyanocyclohexane, 1,3,4-tricyanocyclohexane, 1,2,4-tricyanocycloheptane, 1,3,4 -Tricyanocycloheptane, 1,2,4-tricyanocyclooctane, 1, 1,5-tricyanocyclooctane, 1,3,5-tricyanocyclooctane, 1,2,3,4-tetracyanocyclohexane, 2,2,4,4-tetracyclohexane, 1,2,3,4- Tetracyanocycloheptane, 1,1,4,4-tetracyanocycloheptane, 1,2,3,4-tetracyanocyclooctane, 1,2,3,5-tetracyanocyclooctane, 3,3-dimethylcyclo Propane-1,1,2,2-tetracyanocarbonitrile, spiro (2.4) heptane-1,1,2,2-tetracarbonitrile and the like can be mentioned.
 (ポリシアノ)シクロアルケン化合物としては、具体的には、1,2-ジシアノシクロペンテン、1,3-ジシアノシクロペンテン、1,4-ジシアノシクロペンテン、1,2-ジシアノシクロヘキセン、1,3-ジシアノヘキセン、1,4-ジシアノシクロヘキセン、3,6-ジシアノシクロヘキセン、1,2-ジシアノシクロヘプテン、1,3-ジシアノシクロヘプテン、1,4-ジシアノシクロヘプテン、1,6-ジシアノシクロオクテン、3,4-ジシアノシクロヘプテン、1,2,3-トリシアノシクロペンテン、1,2,4-トリシアノシクロペンテン、1,2,4-トリシアノシクロヘキセン、1,3,5-トリシアノシクロヘキセン、1,2,4-トリシアノシクロヘプテン、1,3,4-トリシアノシクロヘプテン、1,2,3-トリシアノシクロオクテン、1,2,5-トリシアノシクロオクテン、1,2,3,4-テトラシアノシクロヘキセン、3,3,4,4-テトラシアノシクロヘキセン、1,2,4,5-テトラシアノシクロヘプテン、3,3,4,4-テトラシアノシクロヘプテン、1,2,3,4-テトラシアノシクロオクテン、3,3,4,4-テトラシアノシクロオクテン、トリシクロ[4.2.2.0(2,5)]デカ-3,9-ジエン-7,7,8,8-テトラカルボニトリル、1,2,6,7-テトラシアノシクロオクテン、トリシクロ[4.2.2.0(2,5)]デカ-3,9-ジエン-7,7,8,8-テトラカルボニトリル、3-メチルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジエン-7,7,8,8-テトラカルボニトリル、3-フェニルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジエン-7,7,8,8-テトラカルボニトリル、3,4-ジメチルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジエン-7,7,8,8-テトラカルボニトリル、ビシクロ[7.2.0]ウンデカ-2,4,7-トリエン-10,10,11,11-テトラカルボニトリル、ビシクロ[2.2.1]ヘプタ-5-エン-2,2,3,3-テトラカルボニトリル及びテトラシクロ[8.2.2.0(2,9).0(3,8)]テトラデカ-3(8),13-ジエン-11,11,12,12-テトラカルボニトリル等が挙げられる。 Specific examples of the (polycyano) cycloalkene compound include 1,2-dicyanocyclopentene, 1,3-dicyanocyclopentene, 1,4-dicyanocyclopentene, 1,2-dicyanocyclohexene, 1,3-dicyanohexene, 1 , 4-dicyanocyclohexene, 3,6-dicyanocyclohexene, 1,2-dicyanocycloheptene, 1,3-dicyanocycloheptene, 1,4-dicyanocycloheptene, 1,6-dicyanocyclooctene, 3, 4-dicyanocycloheptene, 1,2,3-tricyanocyclopentene, 1,2,4-tricyanocyclopentene, 1,2,4-tricyanocyclohexene, 1,3,5-tricyanocyclohexene, 1,2 , 4-tricyanocycloheptene, 1,3,4-tricyanocycloheptene, 1 2,3-Tricyanocyclooctene, 1,2,5-tricyanocyclooctene, 1,2,3,4-tetracyanocyclohexene, 3,3,4,4-tetracyanocyclohexene, 1,2,4, 5-tetracyanocycloheptene, 3,3,4,4-tetracyanocycloheptene, 1,2,3,4-tetracyanocyclooctene, 3,3,4,4-tetracyanocyclooctene, tricyclo [ 4.2.2.0 (2,5)] deca-3,9-diene-7,7,8,8-tetracarbonitrile, 1,2,6,7-tetracyanocyclooctene, tricyclo [4. 2.2.0 (2,5)] deca-3,9-diene-7,7,8,8-tetracarbonitrile, 3-methyltricyclo [4.2.2.0 (2,5)] Deca-3,9-diene-7,7,8,8-te Lacarbonitrile, 3-phenyltricyclo [4.2.2.0 (2,5)] deca-3,9-diene-7,7,8,8-tetracarbonitrile, 3,4-dimethyltricyclo [4.2.2.0 (2,5)] deca-3,9-diene-7,7,8,8-tetracarbonitrile, bicyclo [7.2.0] undeca-2,4,7- Triene-10,10,11,11-tetracarbonitrile, bicyclo [2.2.1] hept-5-ene-2,2,3,3-tetracarbonitrile and tetracyclo [8.2.2.0 ( 2, 9). 0 (3,8)] tetradeca-3 (8), 13-diene-11, 11, 12, 12-tetracarbonitrile and the like.
 (ポリシアノ)シクロアルキン化合物としては、具体的には、1,2-ジシアノシクロペンチン、1,3-ジシアノシクロペンチン、1,4-ジシアノシクロペンチン、1,2-ジシアノシクロヘキシン、1,3-ジシアノヘキシン、1,4-ジシアノシクロヘキシン、3,6-ジシアノシクロヘキシン、1,2-ジシアノシクロヘプチン、1,3-ジシアノシクロヘプテン、1,4-ジシアノシクロヘプチン、1,6-ジシアノシクロオクチン、3,4-ジシアノシクロヘプチン、1,2,3-トリシアノシクロペンチン、1,2,4-トリシアノシクロペンチン、1,2,4-トリシアノシクロヘキシン、1,3,5-トリシアノシクロヘキシン、1,2,4-トリシアノシクロヘプチン、1,3,4-トリシアノシクロヘプチン、1,2,3-トリシアノシクロオクチン、1,2,5-トリシアノシクロオクチン、1,2,3,4-テトラシアノシクロヘキシン、3,3,4,4-テトラシアノシクロヘキシン、1,2,4,5-テトラシアノシクロヘプチン、3,3,4,4-テトラシアノシクロヘプチン、1,2,3,4-テトラシアノシクロオクチン、3,3,4,4-テトラシアノシクロオクチン、トリシクロ[4.2.2.0(2,5)]デカ-3,9-ジイン-7,7,8,8-テトラカルボニトリル、1,2,6,7-テトラシアノシクロオクチン、トリシクロ[4.2.2.0(2,5)]デカ-3,9-ジイン-7,7,8,8-テトラカルボニトリル、3-メチルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジイン-7,7,8,8-テトラカルボニトリル、3-フェニルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジイン-7,7,8,8-テトラカルボニトリル、3,4-ジメチルトリシクロ[4.2.2.0(2,5)]デカ-3,9-ジイン-7,7,8,8-テトラカルボニトリル、ビシクロ[7.2.0]ウンデカ-2,4,7-トリイン-10,10,11,11-テトラカルボニトリル、ビシクロ[2.2.1]ヘプタ-5-イン-2,2,3,3-テトラカルボニトリル及びテトラシクロ[8.2.2.0(2,9).0(3,8)]テトラデカ-3(8),13-ジイン-11,11,12,12-テトラカルボニトリル等が挙げられる。 Specific examples of the (polycyano) cycloalkyne compound include 1,2-dicyanocyclopentine, 1,3-dicyanocyclopentine, 1,4-dicyanocyclopentine, 1,2-dicyanocyclohexyne, 1 , 3-dicyanohexyne, 1,4-dicyanocyclohexyne, 3,6-dicyanocyclohexyne, 1,2-dicyanocycloheptin, 1,3-dicyanocycloheptene, 1,4-dicyanocycloheptin, 1, 6-dicyanocyclooctin, 3,4-dicyanocycloheptin, 1,2,3-tricyanocyclopentin, 1,2,4-tricyanocyclopentin, 1,2,4-tricyanocyclohexine, 1,3,5-tricyanocyclohexyne, 1,2,4-tricyanocycloheptin, 1,3,4-tricyanocycloheptin, 1 2,3-Tricyanocyclooctin, 1,2,5-Tricyanocyclooctin, 1,2,3,4-Tetracyanocyclohexine, 3,3,4,4-Tetracyanocyclohexine, 1,2, 4,5-tetracyanocycloheptin, 3,3,4,4-tetracyanocycloheptin, 1,2,3,4-tetracyanocyclooctin, 3,3,4,4-tetracyanocyclooctin, Tricyclo [4.2.2.0 (2,5)] deca-3,9-diyne-7,7,8,8-tetracarbonitrile, 1,2,6,7-tetracyanocyclooctin, tricyclo [ 4.2.2.0 (2,5)] deca-3,9-diyne-7,7,8,8-tetracarbonitrile, 3-methyltricyclo [4.2.2.0 (2,5 )] Deca-3,9-Diyne-7,7,8,8-Te Lacarbonitrile, 3-phenyltricyclo [4.2.2.0 (2,5)] deca-3,9-diyne-7,7,8,8-tetracarbonitrile, 3,4-dimethyltricyclo [4.2.2.0 (2,5)] deca-3,9-diyne-7,7,8,8-tetracarbonitrile, bicyclo [7.2.0] undeca-2,4,7- Triin-10,10,11,11-tetracarbonitrile, bicyclo [2.2.1] hept-5-yne-2,2,3,3-tetracarbonitrile and tetracyclo [8.2.2.0 ( 2, 9). 0 (3, 8)] tetradeca-3 (8), 13-diyne-11, 11, 12, 12-tetracarbonitrile etc. are mentioned.
 本実施形態におけるニトリル化合物は、式(1)で表される化合物であることが好ましい。また、式(1)で表される化合物からなる群から選ばれる一種以上を含有することが好ましい。 The nitrile compound in the present embodiment is preferably a compound represented by Formula (1). Moreover, it is preferable to contain 1 or more types chosen from the group which consists of a compound represented by Formula (1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(1)中、
 Rは、炭素数1~70のn価の有機基であり、
 nは、1~10の整数である。)
(In the formula (1),
R A is an n-valent organic group having 1 to 70 carbon atoms,
n is an integer of 1 to 10. )
 Rは、炭素数1~70のn価の基であり、このRを介してシアノ基が結合している。
 上記n価の有機基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基及び環構造等が挙げられ、これらの基が組み合わされた基であってもよい。上記環構造は、置換基を有していてもよい芳香環及び置換基を有していてもよい脂環式炭化水素基からなる群より選択される少なくとも一つを含むことが好ましい。
 直鎖状炭化水素基、及び分岐状炭化水素基は、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合等を含んでいてもよい。
R A is an n-valent group having 1 to 70 carbon atoms, and a cyano group is bonded via this R A.
As said n valent organic group, a linear hydrocarbon group, a branched hydrocarbon group, ring structure etc. are mentioned, for example, The group which these groups were combined may be sufficient. The ring structure preferably contains at least one selected from the group consisting of an aromatic ring which may have a substituent and an alicyclic hydrocarbon group which may have a substituent.
The linear hydrocarbon group and the branched hydrocarbon group may contain an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond and the like.
 本実施形態におけるニトリル化合物は、下記式(2)で表される化合物であることがより好ましい。 The nitrile compound in the present embodiment is more preferably a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(上記式(2)中、
 Xは、置換基を有していてもよい芳香環であり、
 Yは、環構造を含む基であり、
 Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
 m1は、0又は1の整数であり、
 n1は、1~10の整数であり、n2は、1以上の整数である。
 ただし、n1とn2との積は、1~10の整数である。)
(In the above formula (2),
X is an aromatic ring which may have a substituent,
Y is a group containing a ring structure,
Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
m1 is an integer of 0 or 1;
n1 is an integer of 1 to 10, and n2 is an integer of 1 or more.
However, the product of n1 and n2 is an integer of 1 to 10. )
 本実施形態におけるニトリル化合物は、下記式(3)で表される化合物及び/又は下記式(4)で表される化合物であることがさらに好ましい。 The nitrile compound in the present embodiment is more preferably a compound represented by the following formula (3) and / or a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(上記式(3)中、
 Xは、置換基を有していてもよい芳香環であり、n1は、1~10の整数である。)
(In the above formula (3),
X a is an aromatic ring which may have a substituent, and n 1 is an integer of 1 to 10. )
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(上記式(4)中、
 Xは、それぞれ独立して、置換基を有していてもよい芳香環であり、
 Yは、環構造を含む基であり、
 Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
 n1は、それぞれ独立して、1~10の整数である。)
(In the above formula (4),
Each X b is independently an aromatic ring which may have a substituent,
Y is a group containing a ring structure,
Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
n1 is each independently an integer of 1 to 10. )
 ここで、上記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 また、上記置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~10の直鎖状又は分岐状のアルキル基;ビニル基、アリル基等のアルケニル基;脂環式炭化水素基;架橋性反応基;ヘテロ原子;アルコキシ基;ハロゲン原子;ニトロ基;アミノ基;カルボン酸基;チオール基;水酸基;及び、炭素数6~60の芳香族基;トリフルオロメチル基等のハロゲン化アルキル基;からなる群より選択される一種以上を有していてもよい。
Here, the above-mentioned alicyclic hydrocarbon group also includes a bridged alicyclic hydrocarbon group.
Further, examples of the substituent include linear or branched alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group and butyl group; alkenyl groups such as vinyl group and allyl group; Cyclic hydrocarbon group; crosslinking reactive group; hetero atom; alkoxy group; halogen atom; nitro group; amino group; carboxylic acid group; thiol group; hydroxyl group; and aromatic group having 6 to 60 carbon atoms; And one or more selected from the group consisting of halogenated alkyl groups such as groups;
 耐熱性及び耐エッチング性の観点から、Rは環構造を含むことが好ましい。
 環構造としては、例えば、脂環式炭化水素及び芳香環等が挙げられる。
 脂環式炭化水素基における脂環式炭化水素としては、特に限定されないが、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロオクタン、シクロデカン、ジシクロペンタン、トリシクロデカン、アダマンタン、ノルボルナン等が挙げられる。
 芳香環としては、特に限定されないが、例えば、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、ナフタセン、クリセン、ピレン、ペンタセン、ベンゾピレン、ジベンゾクリセン、トリフェニレン、コランニュレン、コロネン、オバレン、フルオレン、ベンゾフルオレン、アセナフテン等が挙げられる。
From the viewpoint of heat resistance and etching resistance, R A preferably contains a ring structure.
As a ring structure, an alicyclic hydrocarbon, an aromatic ring, etc. are mentioned, for example.
The alicyclic hydrocarbon in the alicyclic hydrocarbon group is not particularly limited, and examples thereof include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclooctane, cyclodecane, dicyclopentane, tricyclodecane, adamantane, norbornane and the like. It can be mentioned.
The aromatic ring is not particularly limited. For example, benzene, biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, naphthacene, chrysene, pyrene, pentacene, benzopyrene, dibenzochrysene, triphenylene, corannulene, coronene, ovalene, fluorene, benzofluorene And acenaphthene.
 Yで表される環構造を含む基としては、置換基を有していてもよい、ベンゼン、ジフェニルエーテル、ジフェニルチオエーテル、ジフェニルメタン、ベンゾフェノン、ビスフェノキシビフェニル、ビシクロヘキシル、ビシクロヘキシルメタン、ビシクロヘキシルジメチルメタン、及び、式(Y-1)で表されるジフェニルメタン構造、からなる群より選択される少なくとも一つを含む基を好適に挙げることができる。 The group containing a ring structure represented by Y may have a substituent, benzene, diphenyl ether, diphenyl thioether, diphenylmethane, benzophenone, bisphenoxybiphenyl, bicyclohexyl, bicyclohexylmethane, bicyclohexyldimethylmethane, And a group containing at least one selected from the group consisting of a diphenylmethane structure represented by the formula (Y-1) can be mentioned suitably.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(Y-1)中、R及びRは、それぞれ独立して、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~10の直鎖状又は分岐状のアルキル基;トリフルオロメチル基等の炭素数1~10の直鎖状又は分岐状のハロゲン化アルキル基;である。
 また、R及びRは、一緒になって、脂環式炭化水素及び/又は芳香環の環構造を形成していてもよい。脂環式炭化水素及び/又は芳香環としては、上記と同様の例示をすることができる。
In formula (Y-1), R 1 and R 2 each independently represent a linear or branched alkyl group having a carbon number of 1 to 10, such as methyl group, ethyl group, propyl group or butyl group; A linear or branched halogenated alkyl group having 1 to 10 carbon atoms such as a fluoromethyl group;
In addition, R 1 and R 2 may together form a cyclic hydrocarbon and / or aromatic ring structure. The alicyclic hydrocarbon and / or the aromatic ring can be exemplified as described above.
 耐熱性及び耐エッチング性により優れることから、環構造は芳香環であることが好ましく、ニトリル化合物中のニトリル基は上記芳香環に置換していることが好ましい。 The ring structure is preferably an aromatic ring, and the nitrile group in the nitrile compound is preferably substituted with the above-mentioned aromatic ring, because it is excellent in heat resistance and etching resistance.
 上記式(1)で表される化合物の具体例を以下に例示するが、式(1)で表される化合物は、ここで列挙した具体例に限定されるものではない。 Although the specific example of a compound represented by the said Formula (1) is illustrated below, the compound represented by Formula (1) is not limited to the specific example enumerated here.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 半導体リソグラフィー膜形成組成物の保存安定性の観点から、ニトリル化合物は上記式(A)群から選ばれる化合物であることが好ましい。 From the viewpoint of storage stability of the semiconductor lithography film-forming composition, the nitrile compound is preferably a compound selected from the above-mentioned formula (A) group.
 半導体リソグラフィー膜形成組成物の高温ベーク耐性の観点から、半導体リソグラフィー膜形成組成物としては、融点が200℃以上のニトリル化合物を含むことが好ましい。 From the viewpoint of the high temperature bake resistance of the semiconductor lithography film forming composition, the semiconductor lithography film forming composition preferably contains a nitrile compound having a melting point of 200 ° C. or more.
 本実施形態におけるニトリル化合物は、市販品を用いてもよく、有機合成手法を用いて合成した化合物を用いてもよい。 A commercial item may be used for the nitrile compound in this embodiment, and the compound synthesize | combined using the organic synthesis method may be used.
[溶媒]
 本実施形態の半導体リソグラフィー膜形成組成物は、溶媒を含有してもよい。半導体リソグラフィー膜形成組成物に用いられる溶媒としては、ニトリル化合物を少なくとも溶解するものであれば、公知のものを適宜用いることができる。
[solvent]
The semiconductor lithographic film formation composition of the present embodiment may contain a solvent. As a solvent used for a semiconductor lithography film formation composition, if it is a thing which melt | dissolves a nitrile compound at least, a well-known thing can be used suitably.
 溶媒としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、一種を単独で、或いは二種以上を組み合わせて用いることができる。 The solvent is not particularly limited. For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; Cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate, methyl acetate, ethyl acetate Ester solvents such as butyl acetate, isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate; alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol; toluene, xylene, anisole, etc. Aromatic hydrocarbons and the like. These solvents can be used alone or in combination of two or more.
 上記溶媒の中でも、安全性の観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが好ましい。 Among the above solvents, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate and anisole are preferable from the viewpoint of safety.
 溶媒の含有量は、特に限定されないが、化合物の溶解性及び製膜上の観点から、ニトリル化合物100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。 The content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, and more preferably 200 to 5,000 parts by mass with respect to 100 parts by mass of the nitrile compound from the viewpoint of solubility of the compound and film formation. More preferably, it is in parts by mass, and more preferably 200 to 1,000 parts by mass.
[架橋剤]
 本実施形態の半導体リソグラフィー膜形成組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。架橋剤としては特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
[Crosslinking agent]
The semiconductor lithographic film formation composition of the present embodiment may contain a crosslinking agent as necessary, from the viewpoint of suppressing intermixing and the like. The crosslinking agent is not particularly limited, and for example, those described in WO 2013/024779 can be used.
 本実施形態で使用可能な架橋剤としては、特に限定されないが、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられる。これらの架橋剤は、一種を単独で、或いは二種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物及びシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。 The crosslinking agent that can be used in the present embodiment is not particularly limited. For example, phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycoluril compounds, urea compounds And isocyanate compounds and azide compounds. These crosslinking agents can be used singly or in combination of two or more. Among these, benzoxazine compounds, epoxy compounds and cyanate compounds are preferable, and from the viewpoint of improving etching resistance, benzoxazine compounds are more preferable.
 前記フェノール化合物としては、公知のものが使用でき、例えば、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。 As the phenol compound, known compounds can be used. For example, in addition to phenol, cresols, alkylphenols such as xylenols, polyhydric phenols such as hydroquinone, and the like, polycyclic phenols such as naphthols and naphthalenediols, Examples thereof include bisphenols such as bisphenol A and bisphenol F, and polyfunctional phenol compounds such as phenol novolac and phenol aralkyl resin. Among them, aralkyl type phenolic resins are preferable from the viewpoint of heat resistance and solubility.
 前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有する化合物から選択される。エポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、3,3’,5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、二種以上を併用してもよい。耐熱性と溶解性の観点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂が好ましい。 A well-known thing can be used as said epoxy compound, It selects from the compound which has an epoxy group two or more in 1 molecule. As an epoxy compound, for example, bisphenol A, bisphenol F, 3,3 ', 5,5'-tetramethyl-bisphenol F, bisphenol S, fluorene bisphenol, 2,2'-biphenol, 3,3', 5,5 Epoxides of dihydric phenols such as' -tetramethyl-4,4'-dihydroxybiphenol, resorcine, naphthalenediols, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4) -Hydroxyphenyl) ethane, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylol ethane triglycidyl ether, phenol novolac, o-cresol novolac, etc. Of phenols of higher valency, epoxy compounds of co-condensed resin of dicyclopentadiene and phenols, epoxy compounds of phenol-aralkyl resins synthesized from phenols and paraxylylene dichloride, phenols and bischloromethylbiphenyl The epoxy compound of the biphenylaralkyl type phenol resin synthesize | combined from etc., the epoxy compound of the naphthol aralkyl resin compounds synthesize | combined from naphthols, paraxylylene dichloride etc., etc. are mentioned. These epoxy resins may be used alone or in combination of two or more. From the viewpoint of heat resistance and solubility, solid epoxy resins at room temperature such as epoxy resins obtained from phenol aralkyl resins and biphenyl aralkyl resins are preferable.
 前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に限定されず、公知のものを使用することができる。本実施形態におけるシアネート化合物としては、好ましくは、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独で又は二種以上を適宜組み合わせて使用してもよい。また、前記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。 The cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used. As a cyanate compound in this embodiment, the thing of the structure which substituted the hydroxyl group of the compound which has a 2 or more hydroxyl group in 1 molecule with the cyanate group is mentioned preferably. The cyanate compound is preferably one having an aromatic group, and one having a structure in which the cyanate group is directly linked to the aromatic group can be suitably used. As such a cyanate compound, for example, bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolac resin, cresol novolac resin, dicyclopentadiene novolac resin, tetramethyl bisphenol F, bisphenol A novolac resin, bromine Bisphenol A, brominated phenol novolac resin, trifunctional phenol, tetrafunctional phenol, naphthalene type phenol, biphenyl type phenol, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, dicyclopentadiene aralkyl resin, alicyclic phenol, phosphorus The thing of the structure which substituted hydroxyl groups, such as content phenol, to the cyanate group is mentioned. These cyanate compounds may be used alone or in combination of two or more. The above-mentioned cyanate compound may be in the form of any of monomers, oligomers and resins.
 前記アミノ化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が挙げられる。さらに、前記アミノ化合物としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチル-ジアミノジシクロヘキシルメタン、テトラメチル-ジアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。 Examples of the amino compound include m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'- Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) Benzene, 1,3-bis (3-ami Phenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) Phenyl] propane, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4-] (3-Aminophenoxy) phenyl] ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-chlorophenyl) fluorene, 9,9-bis (4-amino-3) -Fluorophenyl) fluorene, O-tolidine, m-tolidine, 4,4'-diaminobenzanilide, 2,2'-bis (trifluoromethane) Le) -4,4'-diaminobiphenyl, 4-aminophenyl-4-amino benzoate, 2- (4-aminophenyl) -6-amino-benzoxazole and the like. Furthermore, as the amino compound, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4 4,4'-Diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3 -Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 4,4 -Bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] Aromatic amines such as ether, diaminocyclohexane, diaminodicyclohexylmethane, dimethyl-diaminodicyclohexylmethane, tetramethyl-diaminodicyclohexylmethane, diaminodicyclohexylpropane, diaminobicyclo [2.2.1] heptane, bis (aminomethyl) bicyclo [2.2.1] Heptane, 3 (4), 8 (9) -bis (aminomethyl) tricyclo [5.2.1.02,6] decane, 1,3-bisaminomethylcyclohexane, isophorone diamine, etc. Alicyclic amines, ethylene diamide , Hexamethylene diamine, octamethylene diamine, decamethylene diamine, diethylene triamine, aliphatic amines such as triethylenetetramine, and the like.
 前記ベンゾオキサジン化合物としては、例えば、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。 Examples of the benzoxazine compounds include P-d-type benzoxazines obtained from bifunctional diamines and monofunctional phenols, and Fa-type benzooxazines obtained from monofunctional diamines and difunctional phenols. Can be mentioned.
 前記メラミン化合物としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物等が挙げられる。 Examples of the melamine compound include hexamethylolmelamine, hexamethoxymethylmelamine, a compound in which 1 to 6 methylol groups of methoxylmethyl group are methoxymethylated, or a mixture thereof, hexamethoxyethylmelamine, hexaacyloxymethylmelamine, hexame Examples thereof include compounds in which 1 to 6 of the methylol groups of methylolmelamine are acyloxymethylated or a mixture thereof.
 前記グアナミン化合物としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物等が挙げられる。 Examples of the guanamine compound include tetramethylol guanamine, tetramethoxymethyl guanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, or a mixture thereof, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetramethylolamine. Examples thereof include compounds in which 1 to 4 methylol groups of guanamine are acyloxymethylated, or a mixture thereof.
 前記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物等が挙げられる。 Specific examples of the glycoluril compound include, for example, tetramethylol glycoluril, tetramethoxy glycoluril, tetramethoxymethyl glycoluril, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are methoxymethylated, or a mixture thereof. Examples thereof include compounds in which 1 to 4 of methylol groups of tetramethylol glycoluril are acyloxymethylated, a mixture thereof, and the like.
 前記ウレア化合物としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレア等が挙げられる。 Examples of the urea compound include tetramethylolurea, tetramethoxymethylurea, a compound in which 1 to 4 methylol groups of methoxyethylurea are methoxymethylated or a mixture thereof, and tetramethoxyethylurea.
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤としては、特に限定されないが、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられる。これらは単独でも、二種類以上の混合物であってもよい。これらの中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。 In addition, in the present embodiment, a crosslinking agent having at least one allyl group may be used from the viewpoint of crosslinkability improvement. The crosslinking agent having at least one allyl group is not particularly limited, and is, for example, 2,2-bis (3-allyl-4-hydroxyphenyl) propane or 1,1,1,3,3,3-hexafluoro-2 , 2-Bis (3-allyl-4-hydroxyphenyl) propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4- Allylphenols such as hydroxyphenyl) ether, 2,2-bis (3-allyl-4-cyanatophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-cyanatophenyl) propane, bis (3-allyl-4-cyanatophenyl) sulfone, bis (3-allyl-4-cyanatophenyl) sulfide Allyl cyanates such as bis (3-allyl-4-cyanatophenyl) ether, diallyl phthalate, diallyl isophthalate, diallyl terephthalate, triallyl isocyanurate, trimethylolpropane diallyl ether, pentaerythritol allyl ether, etc. . These may be single or a mixture of two or more. Among these, 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-hydroxyphenyl) ) Allylphenols such as propane, bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide and bis (3-allyl-4-hydroxyphenyl) ether are preferred .
 半導体リソグラフィー膜形成組成物中の架橋剤の含有量は、特に限定されないが、組成物の合計質量100質量部とした場合、5~50質量部であることが好ましく、より好ましくは10~40質量部である。架橋剤の含有量を上記範囲にすることで、半導体リソグラフィー膜形成に膜形成組成物を使用した場合レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。 The content of the crosslinking agent in the semiconductor lithography film-forming composition is not particularly limited, but is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, based on 100 parts by mass of the total mass of the composition. It is a department. By setting the content of the crosslinking agent in the above range, when the film forming composition is used for forming a semiconductor lithography film, the occurrence of mixing phenomenon with the resist layer tends to be suppressed, and the antireflective effect is enhanced. And film formation after crosslinking tends to be enhanced.
[架橋(硬化)促進剤]
 本実施形態の半導体リソグラフィー膜形成組成物には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤(硬化促進剤ともいう。)を用いることができる。
[Crosslinking (curing) accelerator]
In the semiconductor lithographic film formation composition of the present embodiment, a crosslinking accelerator (also referred to as a curing accelerator) for accelerating the crosslinking and curing reaction can be used as needed.
 前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、一種を単独で、或いは二種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。 The crosslinking accelerator is not particularly limited as long as it promotes crosslinking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These crosslinking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
 前記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾール等のイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。 Examples of the crosslinking accelerator include, but are not limited to, for example, 1,8-diazabicyclo (5,4,0) undecen-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylamino) Tertiary amines such as methyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, 2,4,5- Imidazoles such as triphenylimidazole, tributyl phosphine, methyl diphenyl phosphine, triphenyl phosphine, organic phosphines such as diphenyl phosphine and phenyl phosphine, tetraphenyl phosphonium tetraphenyl borate, tetraphenyl Tetra-substituted phosphonium tetra-substituted borate such as tetraphosphorous phosphonium ethyltriphenyl borate and tetrabutyl phosphonium tetra-butyl borate tetraphenyl such as 2-ethyl-4-methylimidazole tetraphenyl borate and N-methyl morpholine tetraphenyl borate Boron salt etc. are mentioned.
 架橋促進剤の含有量としては、通常、組成物の合計質量100質量部とした場合に、好ましくは0.1~10質量部であり、制御のし易さ及び経済性の観点から、より好ましくは、0.1~5質量部であり、さらに好ましくは0.1~3質量部である。 The content of the crosslinking accelerator is usually 0.1 to 10 parts by mass when the total mass of the composition is 100 parts by mass, and is more preferably from the viewpoint of controllability and economy. Is 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
[ラジカル重合開始剤]
 本実施形態の半導体リソグラフィー膜形成組成物には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも一種とすることができる。
[Radical polymerization initiator]
A radical polymerization initiator can be added to the semiconductor lithography film forming composition of the present embodiment as required. The radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or may be a thermal polymerization initiator that initiates radical polymerization by heat. The radical polymerization initiator can be, for example, at least one selected from the group consisting of ketone photopolymerization initiators, organic peroxide polymerization initiators, and azo polymerization initiators.
 このようなラジカル重合開始剤としては、特に限定されず、従来用いられているものを適宜採用することができる。ラジカル重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。 Such a radical polymerization initiator is not particularly limited, and those conventionally used can be appropriately adopted. As a radical polymerization initiator, for example, 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl Ketone-based photopolymerization initiators such as propan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, methyl ethyl ketone peroxide, Cyclohexanone peroxide, methylcyclohexanone peroxyl Methylacetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1 1,1-Bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) ) -Cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t-butylperoxy) butane, 2,2-bis (4,4-di-t-butylperoxy) Cyclohexyl) propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3 -Tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2, 5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) ) Hexin-3, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl benzoyl peroxide, benzoylperoxide O Side, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethoxyethylperoxydicarbonate, di-2-ethoxyhexylper Oxydicarbonate, di-3-methoxybutylperoxydicarbonate, di-s-butylperoxydicarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate, α, α′-bis (neodeca) Noylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t- Hexyl peroxy neodecanoate, -Butylperoxy neodecanoate, t-hexylperoxypivalate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5- Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexanoate, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t -Butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxyisobutyrate, t-butylperoxymaleate, t-butylperoxy-3,5,5- Trimethorhexanoate, t-butyl peroxy laurate, t-butyl peroxyisop Ropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-butylperoxyacetate, t-butylperoxy-m-toluylbenzoate, t-butylperoxybenzoate, bis (t-butylperoxy) Isophthalate, 2,5-dimethyl-2,5-bis (m-toluylperoxy) hexane, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t- Organic compounds such as butylperoxyallyl monocarbonate, t-butyltrimethylsilyl peroxide, 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone and 2,3-dimethyl-2,3-diphenylbutane Peroxide type polymerization initiators can be mentioned.
 また、ラジカル重合開始剤としては、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの一種を単独で用いても二種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。 Also, as a radical polymerization initiator, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpro On amidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (2-propenyl) propionamidine] dihydro Chloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane Dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (4,5,6,7-tetrahydro-1H-1) , 3-Diazepin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (3,4,5,6-tetrahydrofuran Rimidin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'- Azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2, 2'-Azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2'-azobis [2-methyl-N- [1,1-bis (Hydroxymethyl) ethyl] propionamide], 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-methy) Lupropionamide), 2,2'-azobis (2,4,4-trimethylpentane), 2,2'-azobis (2-methylpropane), dimethyl-2,2-azobis (2-methylpropionate) And azo polymerization initiators such as 4,4′-azobis (4-cyanopentanoic acid) and 2,2′-azobis [2- (hydroxymethyl) propionitrile]. As the radical polymerization initiator in the present embodiment, one of these may be used alone, or two or more may be used in combination, and other known polymerization initiators may be further used in combination.
 前記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、ニトリル化合物を含む組成物の合計質量100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。 The content of the radical polymerization initiator may be a stoichiometrically necessary amount, but is 0.05 to 25 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass. Is preferably 0.1 to 10 parts by mass. If the content of the radical polymerization initiator is 0.05 parts by mass or more, the curing tends to be insufficient, and on the other hand, the content of the radical polymerization initiator is 25 parts by mass or less In such a case, the long-term storage stability at room temperature of the underlayer film-forming material tends to be prevented from being impaired.
[酸発生剤]
 本実施形態の半導体リソグラフィー膜形成組成物は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれも使用することができる。酸発生剤としては、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
[Acid generator]
The semiconductor lithographic film formation composition of the present embodiment may contain an acid generator as required, from the viewpoint of further promoting a crosslinking reaction by heat. As an acid generator, although what generate | occur | produces an acid by thermal decomposition, and what generate | occur | produces an acid by light irradiation etc. are known, all can be used. As the acid generator, for example, those described in WO 2013/024779 can be used.
 半導体リソグラフィー膜形成組成物中の酸発生剤の含有量は、特に限定されないが、ニトリル化合物を含む組成物の合計質量100質量部とした場合に、好ましくは0.1~50質量部であり、より好ましくは0.5~40質量部である。酸発生剤の含有量を上記範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。 The content of the acid generator in the semiconductor lithography film forming composition is not particularly limited, but is preferably 0.1 to 50 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass, More preferably, it is 0.5 to 40 parts by mass. By setting the content of the acid generator in the above range, the amount of acid generation tends to be large and the crosslinking reaction tends to be enhanced, and the occurrence of mixing phenomenon with the resist layer tends to be suppressed.
[塩基性化合物]
 本実施形態の半導体リソグラフィー膜形成組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
[Basic compound]
The semiconductor lithographic film formation composition of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
 塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。 The basic compound plays the role of a quencher for the acid to prevent the acid generated in a small amount from the acid generator from proceeding with the crosslinking reaction. Such a basic compound is not particularly limited, and examples thereof include those described in WO 2013/024779.
 半導体リソグラフィー膜形成組成物中の塩基性化合物の含有量は、特に限定されないが、ニトリル化合物を含む組成物の合計質量100質量部とした場合に、好ましくは0.001~2質量部であり、より好ましくは0.01~1質量部である。塩基性化合物の含有量を上記範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。 The content of the basic compound in the semiconductor lithography film-forming composition is not particularly limited, but is preferably 0.001 to 2 parts by mass when the total mass of the composition containing the nitrile compound is 100 parts by mass. More preferably, it is 0.01 to 1 part by mass. By making content of a basic compound into the said range, it exists in the tendency for storage stability to be improved, without impairing crosslinking reaction too much.
[その他の添加剤]
 また、本実施形態の半導体リソグラフィー膜形成組成物は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[Other additives]
Moreover, the semiconductor lithography film formation composition of this embodiment may contain other resin and / or a compound in order to control hardening property by heat or light, or to control the absorbance. As such other resins and / or compounds, naphthol resin, xylene resin naphthol modified resin, phenol modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, trimethacrylate, tetramer Resin containing naphthalene ring such as methacrylate, vinyl naphthalene and polyacenaphthylene, biphenyl ring such as phenanthrene quinone and fluorene, hetero ring having hetero atom such as thiophene and indene, resin not containing aromatic ring; rosin based resin Examples thereof include, but not particularly limited to, resins or compounds containing an alicyclic structure such as cyclodextrin, adamantane (poly) ol, tricyclodecane (poly) ol and derivatives thereof. Furthermore, the underlayer film forming material in the present embodiment may contain known additives. Examples of known additives include, but are not limited to, heat and / or light curing catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, and pigments. And thickeners, lubricants, antifoaming agents, leveling agents, UV absorbers, surfactants, colorants, nonionic surfactants and the like.
 本実施形態の半導体リソグラフィー膜形成組成物は、少なくともニトリル化合物を含み、さらに溶媒と酸発生剤とを含むことが好ましい。このとき、ニトリル化合物、溶媒、及び酸発生剤の合計を100質量部としたとき、半導体リソグラフィー膜形成組成物の組成は、ニトリル化合物1~30質量部、溶媒20~99質量部、酸発生剤0.01~10質量部であることが好ましく、ニトリル化合物1~20質量部、溶媒40~99質量部、酸発生剤0.01~5質量部であることがより好ましく、ニトリル化合物1~10質量部、溶媒90~99質量部、酸発生剤0.01~5質量部であることがさらに好ましい。
 また、本実施形態の半導体リソグラフィー膜形成組成物は、少なくともニトリル化合物を含み、さらに溶媒と酸発生剤と架橋剤とを含むことが好ましい。このとき、ニトリル化合物、溶媒、酸発生剤、及び架橋剤の合計を100質量部としたとき、半導体リソグラフィー膜形成組成物の組成は、ニトリル化合物1~30質量部、溶媒20~99質量部、酸発生剤0.01~10質量部、架橋剤0.01~10質量部であることが好ましく、ニトリル化合物1~20質量部、溶媒40~99質量部、酸発生剤0.01~5質量部、架橋剤0.1~5質量部であることがより好ましく、ニトリル化合物1~10質量部、溶媒90~99質量部、酸発生剤0.01~5質量部、架橋剤0.5~5質量部であることがさらに好ましい。
The semiconductor lithographic film formation composition of the present embodiment preferably contains at least a nitrile compound, and further preferably contains a solvent and an acid generator. At this time, when the total of the nitrile compound, the solvent and the acid generator is 100 parts by mass, the composition of the semiconductor lithography film forming composition is 1 to 30 parts by mass of the nitrile compound, 20 to 99 parts by mass of the solvent, and the acid generator The amount is preferably 0.01 to 10 parts by mass, more preferably 1 to 20 parts by mass of nitrile compound, 40 to 99 parts by mass of solvent, 0.01 to 5 parts by mass of acid generator, nitrile compound 1 to 10 More preferably, it is in an amount by mass, 90 to 99 parts by mass of a solvent, and 0.01 to 5 parts by mass of an acid generator.
Moreover, it is preferable that the semiconductor lithography film formation composition of this embodiment contains a solvent, an acid generator, and a crosslinking agent at least further including a nitrile compound. At this time, when the total of the nitrile compound, the solvent, the acid generator and the crosslinking agent is 100 parts by mass, the composition of the semiconductor lithography film forming composition is 1 to 30 parts by mass of the nitrile compound and 20 to 99 parts by mass of the solvent The acid generator is preferably 0.01 to 10 parts by mass, and the crosslinking agent is preferably 0.01 to 10 parts by mass, and the nitrile compound 1 to 20 parts by mass, the solvent 40 to 99 parts by mass, the acid generator 0.01 to 5 parts Part, more preferably 0.1 to 5 parts by mass of a crosslinking agent, 1 to 10 parts by mass of a nitrile compound, 90 to 99 parts by mass of a solvent, 0.01 to 5 parts by mass of an acid generator, 0.5 to 5 parts of a crosslinking agent More preferably, it is 5 parts by mass.
 また、本実施形態の半導体リソグラフィー膜形成組成物は溶融状態で硬化剤と配合して製造された重合性組成物あるいは前記プレポリマーを加熱等により溶融させた状態で配合して製造し得る。前記重合性組成物又はプレポリマーは適切な加工温度と広いプロセス温度を有し、硬化性に優れ、前記過程で成形及び硬化が効率的に行われることができる。 In addition, the semiconductor lithographic film-forming composition of the present embodiment can be produced by blending the polymerizable composition produced by blending with the curing agent in a molten state or the prepolymer in a melted state by heating or the like. The polymerizable composition or prepolymer has an appropriate processing temperature and a wide process temperature, is excellent in curability, and molding and curing can be efficiently performed in the process.
 前記過程でプレポリマー等を形成する方法、そのようなプレポリマー等と充填剤を配合し、加工及び硬化させて、複合体を製造する方法等は、公知の方式によって進行され得る。 A method of forming a prepolymer or the like in the above process, a method of blending such prepolymer and the like with a filler, processing and curing, and the like to produce a composite can be advanced by a known method.
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態におけるリソグラフィー用下層膜は、上述した半導体リソグラフィー膜形成組成物から形成される。
[Formation method of underlayer film for lithography and multilayer resist pattern]
The underlayer film for lithography in the present embodiment is formed from the above-described semiconductor lithography film forming composition.
 また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、本実施形態のレジストパターン形成方法は、基板上に、本実施形態の膜形成組成物を用いて下層膜を形成する工程(A-1)と、上記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、上記(A-2)工程の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。 In the method for forming a resist pattern according to this embodiment, an underlayer film is formed on a substrate using the above composition, and at least one photoresist layer is formed on the underlayer film, and then the photoresist layer is formed. The process includes irradiating a predetermined area with radiation and performing development. More specifically, in the resist pattern forming method of the present embodiment, a step (A-1) of forming a lower layer film on the substrate using the film forming composition of the present embodiment, and at least one of Forming a photoresist layer of the layer (A-2) and, after the step (A-2), irradiating a predetermined region of the photoresist layer with radiation to perform development (A-3) And.
 さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、上記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む。
Furthermore, in the circuit pattern formation method of the present embodiment, an underlayer film is formed on a substrate using the above composition, an interlayer film is formed on the underlayer film using a resist interlayer film material, and the interlayer is formed. Forming at least one photoresist layer on the film;
Irradiating a predetermined area of the photoresist layer with radiation for development to form a resist pattern;
The intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Forming a pattern.
 より詳しくは、本実施形態の回路パターン形成方法は、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、上記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、上記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、上記工程(B-3)の後、上記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、上記工程(B-4)の後、上記レジストパターンをマスクとして上記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして上記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。 More specifically, in the circuit pattern forming method of the present embodiment, a step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material of the present embodiment, and silicon atoms on the lower layer film Forming an intermediate layer film using a resist intermediate layer film material containing B, and forming at least one photoresist layer on the intermediate layer film (B-3); After the step (B-3), a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4), and after the step (B-4), The intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Having a step (B-5) that forms a pattern.
 本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させる等して除去した後、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。 The lower layer film for lithography in the present embodiment is not particularly limited as long as it is formed of the material for forming a lower layer film of the present embodiment, and known methods can be applied. For example, after the underlayer film material of the present embodiment is applied onto a substrate by a known coating method such as spin coating or screen printing or the like, the organic solvent is removed by volatilization, etc., and then crosslinking is performed by a known method. By curing, the underlayer film for lithography of the present embodiment can be formed. Examples of the crosslinking method include methods such as heat curing and light curing.
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、好ましくは80~700℃であり、より好ましくは200~550℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、好ましくは30~20000nmであり、より好ましくは50~15000nmである。 At the time of formation of the lower layer film, baking is preferably performed in order to suppress the occurrence of the mixing phenomenon with the upper layer resist and accelerate the crosslinking reaction. In this case, the baking temperature is not particularly limited, but is preferably 80 to 700 ° C., more preferably 200 to 550 ° C. The baking time is also not particularly limited, but is preferably in the range of 10 to 300 seconds. The thickness of the lower layer film can be appropriately selected depending on the required performance, and is not particularly limited, but usually, it is preferably 30 to 20000 nm, more preferably 50 to 15000 nm.
 下層膜を作製した後、2層プロセスの場合は、その上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。 After the underlayer film is formed, in the case of a two-layer process, a silicon-containing resist layer or a single layer resist composed of ordinary hydrocarbons is formed thereon, and in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to prepare a single layer resist layer not containing silicon. In this case, known photoresist materials can be used as the photoresist material for forming the resist layer.
 基板上に下層膜を作製した後、2層プロセスの場合は、その下層膜上に珪素含有レジスト層或いは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合は、その下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。 After the lower layer film is formed on the substrate, in the case of a two-layer process, a silicon-containing resist layer or a single-layer resist made of ordinary hydrocarbon can be formed on the lower layer film. In the case of the three-layer process, it is possible to form a silicon-containing intermediate layer on the lower layer film and a single-layer resist layer not containing silicon on the silicon-containing intermediate layer. In these cases, the photoresist material for forming the resist layer can be appropriately selected from known materials and used, and is not particularly limited.
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。 As a silicon-containing resist material for a two-layer process, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer from the viewpoint of oxygen gas etching resistance, and an organic solvent, an acid generator, A positive photoresist material containing a basic compound and the like as needed is preferably used. Here, as the silicon atom-containing polymer, known polymers used in this type of resist material can be used.
 3層プロセス用の珪素含有中間層としては、ポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果を有する中間層としては、以下に限定されないが、193nm露光用としては、フェニル基又は珪素-珪素結合を有する吸光基が導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。 As a silicon-containing intermediate layer for the three-layer process, an intermediate layer based on polysilsesquioxane is preferably used. There is a tendency that the reflection can be effectively suppressed by giving the intermediate layer an effect as an antireflective film. For example, in the process for 193 nm exposure, if a material having a large amount of aromatic groups and high substrate etching resistance is used as the lower layer film, the k value tends to be high and the substrate reflection tends to be high. Can make the substrate reflection 0.5% or less. The intermediate layer having such an antireflective effect is not limited to the following, but for exposure at 193 nm, an acid or thermally crosslinked polysilsesqui having a light absorbing group having a phenyl group or a silicon-silicon bond is introduced. Oxane is preferably used.
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した、反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによって中間層を形成する方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型、ネガ型のどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。 Further, an intermediate layer formed by a chemical vapor deposition (CVD) method can also be used. For example, a SiON film is known as an intermediate layer produced by a CVD method and having high effect as an antireflective film, although not limited thereto. In general, forming the intermediate layer by a wet process such as spin coating or screen printing rather than the CVD method is simpler and more cost effective. The upper layer resist in the three-layer process may be either positive or negative, and may be the same as a commonly used single layer resist.
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。 Furthermore, the lower layer film in the present embodiment can also be used as a general antireflective film for a single layer resist or a base material for suppressing pattern collapse. The lower layer film is excellent in etching resistance for base processing, so that it can also be expected to function as a hard mask for base processing.
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に限定されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。 When the resist layer is formed of the photoresist material, a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film. After the resist material is applied by spin coating or the like, pre-baking is usually carried out, but it is preferable to carry out this pre-baking at 80 to 180 ° C. for 10 to 300 seconds. Thereafter, exposure is performed according to a conventional method, and post-exposure baking (PEB) and development are performed, whereby a resist pattern can be obtained. The thickness of the resist film is not particularly limited, but generally, it is preferably 30 to 500 nm, and more preferably 50 to 400 nm.
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。 The exposure light may be appropriately selected and used according to the photoresist material to be used. In general, high energy rays having a wavelength of 300 nm or less, specifically 248 nm, 193 nm, 157 nm excimer lasers, soft X-rays of 3 to 20 nm, electron beams, X-rays and the like can be mentioned.
 上述した方法により形成されるレジストパターンは、下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。 The resist pattern formed by the above-described method is such that the lower layer film suppresses the pattern collapse. Therefore, by using the lower layer film in the present embodiment, a finer pattern can be obtained, and the amount of exposure required to obtain the resist pattern can be reduced.
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO、NH、SO、N、NO2、ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO2、ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。 Next, etching is performed using the obtained resist pattern as a mask. Gas etching is preferably used as the etching of the underlayer film in the two-layer process. As gas etching, etching using oxygen gas is preferable. In addition to oxygen gas, it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas. In addition, gas etching can be performed using only CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas. In particular, the latter gas is preferably used for sidewall protection for preventing undercut of the pattern sidewall.
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば、酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。 On the other hand, gas etching is also preferably used in etching the intermediate layer in the three-layer process. As gas etching, the same one as described in the above two-layer process is applicable. In particular, the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon-based gas with the resist pattern as a mask. Thereafter, as described above, the lower layer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask.
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献5)、国際公開第2004/066377号(特許文献6)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。 Here, when forming an inorganic hard mask intermediate layer film as an intermediate layer, a silicon oxide film, a silicon nitride film, and a silicon oxynitride film (SiON film) are formed by a CVD method, an ALD method, or the like. The method of forming the nitride film is not limited to the following, but, for example, using the method described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 5) and International Publication No. 2004/066377 (Patent Document 6) it can. Although a photoresist film can be formed directly on such an interlayer film, an organic antireflective film (BARC) is formed by spin coating on the interlayer film, and a photoresist film is formed thereon. You may
 中間層としては、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献7)、特開2007-226204号(特許文献8)に記載されたものを用いることができる。 As the intermediate layer, an intermediate layer based on polysilsesquioxane is also preferably used. There is a tendency that the reflection can be effectively suppressed by giving the resist interlayer film an effect as an antireflective film. Specific materials for the polysilsesquioxane-based intermediate layer are not limited to the following, but, for example, are described in JP-A-2007-226170 (Patent Document 7) and JP-A-2007-226204 (Patent Document 8). Can be used.
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。 In addition, the etching of the next substrate can also be carried out by a conventional method, for example, etching using a fluorocarbon gas as the main component if the substrate is SiO 2 or SiN, chlorine or bromine if it is p-Si, Al or W Gas-based etching can be performed. When the substrate is etched with a fluorocarbon gas, the silicon-containing resist in the two-layer resist process and the silicon-containing intermediate layer in the three-layer process are peeled off simultaneously with the substrate processing. On the other hand, when the substrate is etched with a chlorine-based or bromine-based gas, the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and in general, the dry etching peeling by fluorocarbon-based gas is performed after processing the substrate. .
 本実施形態における下層膜は、基板のエッチング耐性に優れるという特徴を有する。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等、種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質が用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、好ましくは50~10,000nmであり、より好ましくは75~5,000nmである。 The lower layer film in the present embodiment is characterized in that the etching resistance of the substrate is excellent. In addition, as the substrate, a known substrate can be appropriately selected and used, and although not particularly limited, Si, α-Si, p-Si, SiO 2 , SiN, SiON, W, TiN, Al and the like can be mentioned. Be The substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). As such a film to be processed, various low-k films and stoppers thereof such as Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, Al-Si, etc. A film etc. are mentioned, Usually, the material different from a base material (support body) is used. The thickness of the substrate to be processed or the film to be processed is not particularly limited, but it is usually preferably 50 to 10,000 nm, more preferably 75 to 5,000 nm.
 本実施形態の半導体リソグラフィー膜形成組成物は、半導体デバイスの製造に使用される。すなわち、本実施形態の一つは、本実施形態の半導体リソグラフィー膜形成組成物を含むデバイスである。 The semiconductor lithography film formation composition of this embodiment is used for manufacture of a semiconductor device. That is, one of the present embodiments is a device including the semiconductor lithographic film formation composition of the present embodiment.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by Examples and Comparative Examples, but the present embodiment is not limited by these examples.
(実施例1~18、比較例1)
 表1に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間ベークして、膜厚200nmの下層膜を各々作製した。
 化合物、酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
(Examples 1 to 18, Comparative Example 1)
An underlayer film forming material for lithography having the composition shown in Table 1 was prepared. Next, these underlayer film forming materials for lithography were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds to form underlayer films each having a film thickness of 200 nm.
The following were used for the compound, the acid generator, the crosslinking agent and the organic solvent.
(化合物)
 A-1:ベンゾニトリル(関東化学社製、融点:-13℃)
 A-2:イソフタロニトリル(関東化学社製、融点:163-165℃)
 BisAPN:後述の合成例1で得られた化合物
 BiFPN2:後述の合成例2で得られた化合物
 CR-1:後述の比較合成例1で得られた樹脂
(Compound)
A-1: benzonitrile (Kanto Chemical Co., melting point: -13 ° C)
A-2: Isophthalonitrile (Kanto Chemical Co., Melting Point: 163-165 ° C.)
BisAPN: compound obtained in Synthesis Example 1 described later BiFPN2: compound obtained in Synthesis Example 2 described later CR-1: resin obtained in Comparative Synthesis Example 1 described later
(酸発生剤)
 DTDPI:ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(みどり化学社製)
(Acid generator)
DTDPI: ditertiary butyldiphenyliodonium nonafluoromethanesulfonate (made by Midori Kagaku Co., Ltd.)
(架橋剤)
 三和ケミカル社製 ニカラックMX270(ニカラック)
 小西化学工業社製 ベンゾオキサジン(BF-BXZ)
 日本化薬株式会社製 ビフェニルアラルキル型エポキシ樹脂(NC-3000-L)
 小西化学工業社製 ジアリルビスフェノールA(BPA-CA)
 群栄化学工業社製 ジフェニルメタン型プロペニルフェノール樹脂(APG-2)
(Crosslinking agent)
Sanwa Chemical Corporation Nicarak MX270 (Nicarak)
Konishi Chemical Industries Benzooxazine (BF-BXZ)
Nippon Kayaku Co., Ltd. Biphenyl Aralkyl Type Epoxy Resin (NC-3000-L)
Konishi Chemical Industries, Ltd. diallyl bisphenol A (BPA-CA)
Gunei Chemical Industry Co. diphenylmethane propenyl phenol resin (APG-2)
BF-BXZ;
Figure JPOXMLDOC01-appb-C000026
BF-BXZ;
Figure JPOXMLDOC01-appb-C000026
NC-3000-L;
Figure JPOXMLDOC01-appb-C000027
(上記式中、nは1~4の整数である。)
NC-3000-L;
Figure JPOXMLDOC01-appb-C000027
(In the above formula, n is an integer of 1 to 4)
BPA-CA;
Figure JPOXMLDOC01-appb-C000028
BPA-CA;
Figure JPOXMLDOC01-appb-C000028
APG-2;
Figure JPOXMLDOC01-appb-C000029
(上記式中、nは1~3の整数である。)
APG-2;
Figure JPOXMLDOC01-appb-C000029
(In the above formula, n is an integer of 1 to 3)
(有機溶媒)
 塩化メチレン
 ジメチルスルホキシド(DMSO)
 プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
(Organic solvent)
Methylene chloride dimethyl sulfoxide (DMSO)
Propylene glycol monomethyl ether acetate (PGMEA)
(合成例1)化合物(BisAPN)の合成
 原料として、ビスフェノールA(関東化学製試薬)37.1g及び200gのDMFを1Lの3つ口フラスコに投入し、常温で撹拌し、溶解させて溶液を得た。次いで、4-ニトロフタロニトリル(関東化学製試薬)58.9gを上記溶液に加え、DMF50gを追加した後、撹拌し、溶解させた。次いで、炭酸カリウム62.2g及びDMF50gを共に投入し、撹拌し、温度を85℃まで昇温させた。5時間程度反応させ、常温で冷却させた。冷却された反応溶液を0.2N塩酸水溶液に注いで中和して、反応生成物を沈殿させ、フィルタリングした後、沈殿物を水で洗浄した。その後、フィルタリングされた反応生成物を100℃の真空オーブンで一日間乾燥させ、水と残留溶媒を除去した後、下記化学式で示される化合物(BisAPN)を80.3%の収率で収得した。
Synthesis Example 1 Synthesis of Compound (BisAPN) As a raw material, 37.1 g of bisphenol A (reagent made by Kanto Chemical Co., Ltd.) and 200 g of DMF are charged into a 1 L three-necked flask, stirred at room temperature and dissolved to obtain a solution. Obtained. Next, 58.9 g of 4-nitrophthalonitrile (reagent made by Kanto Chemical Co., Ltd.) was added to the above solution, and 50 g of DMF was added, followed by stirring and dissolution. Then, 62.2 g of potassium carbonate and 50 g of DMF were charged together, and the temperature was raised to 85 ° C. with stirring. The reaction was carried out for about 5 hours and cooled at normal temperature. The cooled reaction solution was poured into 0.2 N aqueous hydrochloric acid for neutralization to precipitate a reaction product, and after filtering, the precipitate was washed with water. Then, the filtered reaction product was dried in a vacuum oven at 100 ° C. for 1 day to remove water and residual solvent, and a compound (BisAPN) represented by the following chemical formula was obtained in a yield of 80.3%.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 なお、400MHz-1H-NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS) δ(ppm)6.9~7.5(8H,-O-C10-O-)、7.8~8.1(6H,-O-C(CN))、1.6(6H,-C(CH
 得られた化合物について、前記方法により分子量を測定した結果、480であった。
The following peaks were found by 400 MHz- 1 H-NMR, and it was confirmed that they have the chemical structure of the above formula.
1 H-NMR: (d-DMSO, internal standard TMS) δ (ppm) 6.9 to 7.5 (8 H, -O-C 6 H 10 -O-), 7.8 to 8.1 (6 H, -O-C 6 H 3 (CN ) 2), 1.6 (6H, -C (CH 3) 2)
It was 480 as a result of measuring molecular weight by the said method about the obtained compound.
(合成例2)化合物(BiFPN)の合成
 原料として、4,4’-ビフェノール(関東化学製試薬)27.9g及び100mLのDMFを1Lの3つ口フラスコに投入し、常温で撹拌し、溶解させて溶液を得た。次いで、4-ニトロフタロニトリル(関東化学製試薬)51.9gを上記溶液に添加し、DMF50gを追加した後、撹拌し、溶解させた。次いで、炭酸カリウム62.2g及びDMF50gを共に投入した後、撹拌し、温度を85℃まで昇温した。5時間程度反応させた後、常温まで冷却させた。冷却された反応溶液を0.2N塩酸水溶液に注いで中和し、反応生成物を沈殿させ、フィルタリングした後、沈殿物を水で洗浄した。その後、フィルタリングされた反応生成物を100℃の真空オーブンで一日間乾燥させた。水と残留溶媒を除去した後、下記化学式で示される化合物(BiFPN)を83%の収率で得た。
Synthesis Example 2 Synthesis of Compound (BiFPN) As raw materials, 27.9 g of 4,4′-biphenol (reagent made by Kanto Chemical Co., Ltd.) and 100 mL of DMF were charged into a 1 L three-necked flask and stirred at room temperature for dissolution The solution was obtained. Next, 51.9 g of 4-nitrophthalonitrile (reagent made by Kanto Chemical Co., Ltd.) was added to the above solution, and 50 g of DMF was added, and the mixture was stirred and dissolved. Then, after 62.2 g of potassium carbonate and 50 g of DMF were charged together, the mixture was stirred and the temperature was raised to 85 ° C. After reacting for about 5 hours, the reaction was cooled to normal temperature. The cooled reaction solution was poured into 0.2 N aqueous hydrochloric acid to be neutralized, and the reaction product was precipitated and filtered, and then the precipitate was washed with water. Thereafter, the filtered reaction product was dried in a vacuum oven at 100 ° C. for 1 day. After removing water and residual solvent, a compound (BiFPN) represented by the following chemical formula was obtained in a yield of 83%.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 なお、400MHz-1H-NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS) δ(ppm)6.9~7.5(8H,-O-C10-O-)、7.8~8.1(6H,-O-C(CN)
 得られた化合物について、前記方法により分子量を測定した結果、438であった。
The following peaks were found by 400 MHz- 1 H-NMR, and it was confirmed that they have the chemical structure of the above formula.
1 H-NMR: (d-DMSO, internal standard TMS) δ (ppm) 6.9 to 7.5 (8 H, -O-C 6 H 10 -O-), 7.8 to 8.1 (6 H, -O-C 6 H 3 (CN) 2 )
It was 438 as a result of measuring molecular weight by the said method about the obtained compound.
(比較合成例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒド樹脂の数平均分子量(Mn)は、562であった。
(Comparative Example 1)
A four-necked flask with an inner volume of 10 L capable of removing bottom and equipped with a Dimroth condenser, a thermometer and a stirrer was prepared. In this four-necked flask, 1.09 kg of 1,5-dimethylnaphthalene (7 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.), 2.1 kg of a 40% by mass formalin aqueous solution (28 mol as formaldehyde, Mitsubishi Gas Chemical (stock ) And 98 mass% sulfuric acid (Kanto Chemical Co., Ltd. product) were charged and reacted for 7 hours under reflux at 100 ° C. under normal pressure. Thereafter, 1.8 kg of ethylbenzene (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a dilution solvent was added to the reaction liquid, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
The number average molecular weight (Mn) of the obtained dimethyl naphthalene formaldehyde resin was 562.
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後、さらに1-ナフトール52.0g(0.36mol)を加え、220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、数平均分子量(Mn):885、重量平均分子量(Mw):2220、Mw/Mn:4.17であった。
Subsequently, a 0.5 L four-necked flask equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared. In this four-necked flask, 100 g (0.51 mol) of dimethyl naphthalene formaldehyde resin obtained as described above and 0.05 g of para-toluenesulfonic acid are charged under a nitrogen stream, and the temperature is raised to 190 ° C. 2 After heating for a while, it was stirred. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was raised to 220 ° C. for reaction for 2 hours. The solvent was diluted, neutralized and washed with water, and the solvent was removed under reduced pressure to obtain 126.1 g of a black-brown solid modified resin (CR-1).
The obtained resin (CR-1) had a number average molecular weight (Mn) of 885, a weight average molecular weight (Mw) of 2220, and a Mw / Mn of 4.17.
[エッチング耐性の評価]
 下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1に示す。
[Evaluation of etching resistance]
The etching test was performed under the conditions shown below to evaluate the etching resistance. The evaluation results are shown in Table 1.
(エッチング試験の条件)
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス: Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(Conditions of etching test)
Etching equipment: RIE-10NR manufactured by Samco International
Output: 50W
Pressure: 20 Pa
Time: 2 min
Etching gas: Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
 エッチング耐性の評価は、以下の手順で行った。
 まず、化合物(A-1)に代えてノボラック(群栄化学社製 PSM4357)を用いたこと以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1~12及び比較例1の下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
Evaluation of etching resistance was performed in the following procedures.
First, a lower layer film of novolac was produced under the same conditions as in Example 1 except that novolac (PSM 4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (A-1). Then, the above-mentioned etching test was conducted on the lower layer film of this novolak, and the etching rate at that time was measured.
Next, the above-mentioned etching test was conducted similarly for the lower layer films of Examples 1 to 12 and Comparative Example 1, and the etching rate at that time was measured.
And based on the etching rate of the lower layer film of novolak, etching resistance was evaluated by the following evaluation criteria.
(評価基準)
 A:ノボラックの下層膜に比べてエッチングレートが-5%未満であった。
 B:ノボラックの下層膜に比べてエッチングレートが-5%超過+5%以下であった。
 C:ノボラックの下層膜に比べてエッチングレートが+5%超過であった。
(Evaluation criteria)
A: The etching rate was less than -5% as compared to the novolak underlayer film.
B: The etching rate was higher than −5% and lower than 5% as compared with the underlayer film of novolak.
C: The etching rate exceeded + 5% as compared with the underlayer film of novolak.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
(実施例13、14)
 次に、実施例1~2で得られたリソグラフィー用下層膜形成材料の各溶液を、膜厚300nmのSiO基板上に塗布して、240℃で60秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
(Examples 13 and 14)
Next, each solution of the underlayer film forming material for lithography obtained in Examples 1 and 2 is applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds to obtain a 70 nm thick film. The lower layer film was formed. A resist solution for ArF was coated on this lower layer film, and baked at 130 ° C. for 60 seconds to form a photoresist layer with a film thickness of 140 nm. In addition, as an ArF resist solution, a compound of the following formula (11): 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass What was prepared was used.
 式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られた樹脂を凝固精製し、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。 The compound of the formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy-γ-butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyronitrile 0.38 g was dissolved in 80 mL of tetrahydrofuran to make a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was dropped into 400 mL of n-hexane. The resin thus obtained was coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記式(11)中、「40」、「40」、「20」とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。 In the above formula (11), “40”, “40”, and “20” indicate the ratio of each structural unit, and do not indicate a block copolymer.
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。 Next, the photoresist layer is exposed using an electron beam lithography system (manufactured by Elionix; ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), 2.38 mass% tetramethylammonium hydroxide ( By developing with TMAH) aqueous solution for 60 seconds, a positive resist pattern was obtained.
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。
 現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、上記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を“解像性”として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を“感度”として、評価の指標とした。
 評価結果を、表2に示す。
The shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns were observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
The shape of the resist pattern after development was evaluated as “good” with no pattern collapse and good rectangularity, and evaluated as “defect” with the others. Further, as a result of the above observation, the smallest line width free from pattern collapse and having good rectangularity was used as an index of evaluation as “resolution”. Furthermore, the minimum amount of electron beam energy capable of drawing a good pattern shape is used as an index of evaluation as the "sensitivity".
The evaluation results are shown in Table 2.
(比較例2)
 下層膜の形成を行わなかったこと以外は、実施例3と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表2に示す。
(Comparative example 2)
A photoresist layer was formed directly on the SiO 2 substrate in the same manner as in Example 3, except that the lower layer film was not formed, to obtain a positive resist pattern. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表1から明らかなように、実施例1~12では、比較例1に比して、エッチング耐性が良好であることが少なくとも確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1では、エッチング耐性が不良であった。
 また、実施例13、14においては、現像後のレジストパターン形状が良好であり、欠陥も見られないことも確認された。さらに、下層膜の形成を省略した比較例2に比べて、解像性及び感度ともに有意に優れていることも確認された。
 さらに、現像後のレジストパターン形状の相違から、実施例1~2において用いられたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことも確認された。
As is clear from Table 1, in Examples 1 to 12, it was at least confirmed that the etching resistance was better than Comparative Example 1. On the other hand, in Comparative Example 1 using CR-1 (phenol-modified dimethyl naphthalene formaldehyde resin), the etching resistance was poor.
Further, in Examples 13 and 14, it was also confirmed that the resist pattern shape after development was good, and no defect was observed. Furthermore, it was also confirmed that both the resolution and the sensitivity were significantly superior to Comparative Example 2 in which the formation of the lower layer film was omitted.
Furthermore, from the difference in the resist pattern shape after development, it was also confirmed that the underlayer film forming material for lithography used in Examples 1 and 2 had good adhesion to the resist material.
(実施例15、16)
 実施例1~2にて調製したリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、下記で得られた珪素原子含有ポリマーを用いた。
(Examples 15 and 16)
The solution of the underlayer film forming material for lithography prepared in Examples 1 and 2 was coated on a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds to form an underlayer film of 80 nm thickness. . A silicon-containing intermediate layer material was coated on this lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film with a film thickness of 35 nm. Further, the resist solution for ArF was coated on the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm. In addition, as a silicon containing intermediate layer material, the silicon atom containing polymer obtained by the following was used.
 テトラヒドロフラン(THF)200g、純水100gに、3-カルボキシルプロピルトリメトキシシラン16.6gとフェニルトリメトキシシラン7.9gと3-ヒドロキシプロピルトリメトキシシラン14.4gとを溶解させ、液温を35℃にし、シュウ酸5gを滴下し、その後80℃に昇温し、シラノールの縮合反応を行った。次に、ジエチルエーテルを200g加え、水層を分別し、有機層を超純水で2回洗浄し、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を200g加え、液温を60℃に加熱しながらの減圧下で、THF、ジエチルエーテル、水を除去し、珪素原子含有ポリマーを得た。 Dissolve 16.6 g of 3-carboxypropyltrimethoxysilane, 7.9 g of phenyltrimethoxysilane and 14.4 g of 3-hydroxypropyltrimethoxysilane in 200 g of tetrahydrofuran (THF) and 100 g of pure water, and make the liquid temperature 35 ° C. Then, 5 g of oxalic acid was added dropwise, and then the temperature was raised to 80 ° C. to carry out a condensation reaction of silanol. Next, add 200 g of diethyl ether, separate the aqueous layer, wash the organic layer twice with ultra pure water, add 200 g of propylene glycol monomethyl ether acetate (PGMEA), and reduce the pressure while heating the solution temperature to 60 ° C. Below, THF, diethyl ether and water were removed to obtain a silicon atom-containing polymer.
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。 Next, the photoresist layer is mask-exposed using an electron beam lithography system (manufactured by Elionix; ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), 2.38% by mass tetramethyl ammonium hydroxide By developing with an aqueous solution (TMAH) for 60 seconds, a 55 nm L / S (1: 1) positive resist pattern was obtained.
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。 Thereafter, dry etching of the silicon-containing intermediate layer film (SOG) is performed using the obtained resist pattern as a mask using RIE-10NR manufactured by Samco International, and then, the obtained silicon-containing intermediate layer film pattern is used as a mask. The dry etching process of the lower layer film used as the mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as the mask were sequentially performed.
 各々のエッチング条件は、下記に示すとおりである。
 (レジストパターンのレジスト中間層膜へのエッチング条件)
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 (レジスト中間膜パターンのレジスト下層膜へのエッチング条件)
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 (レジスト下層膜パターンのSiO膜へのエッチング条件)
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
The respective etching conditions are as shown below.
(Etching conditions of resist pattern to resist interlayer film)
Output: 50W
Pressure: 20 Pa
Time: 1 min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 8: 2 (sccm)
(Etching conditions for resist underlayer film pattern to resist underlayer film)
Output: 50W
Pressure: 20 Pa
Time: 2 min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
(Etching conditions for resist underlayer film pattern to SiO 2 film)
Output: 50W
Pressure: 20 Pa
Time: 2 min
Etching gas Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate = 50: 4: 3: 1 (sccm)
[評価]
 上記のようにして得られたパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
[Evaluation]
When the pattern cross section (shape of the SiO 2 film after etching) obtained as described above was observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd., the lower layer film of the present embodiment was used. It was confirmed that the shape of the SiO 2 film after etching in the multi-layered resist processing is rectangular, and no defect is observed in the example.
(実施例17~18)
 実施例1~2及び比較例1にて使用した各化合物を用いて、下記表3に示す配合で光学部品形成組成物を調製した。なお、表3中の光学部品形成組成物の各成分のうち、化合物、酸発生剤、酸架橋剤及び溶媒については、前述のものを用いた。
 均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake;PBとも記載する)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
(Examples 17 to 18)
Using the compounds used in Examples 1 and 2 and Comparative Example 1, optical component forming compositions were prepared with the formulations shown in Table 3 below. Among the components of the optical component forming composition in Table 3, the compounds, the acid generator, the acid crosslinking agent, and the solvent used were those described above.
The optical component-forming composition in a uniform state was spin-coated on a clean silicon wafer and then prebaked (also described as PB) in an oven at 110 ° C. to form an optical component-forming film with a thickness of 1 μm. The prepared optical component forming composition was evaluated as “A” when film formation was good, and “C” when there was a defect in the formed film.
 均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=589.3nm)を測定した。調製した膜について、屈折率が1.6以上の場合には「A」、1.55以上1.6未満の場合には「B」、1.55未満の場合には「C」と評価した。また透明性(λ=632.8nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。 The uniform optical component forming composition was spin coated on a clean silicon wafer and then PB in an oven at 110 ° C. to form a 1 μm thick film. The refractive index (λ = 589.3 nm) at 25 ° C. of the film was measured with a J. A. Woolam multi-incidence spectroscopy ellipsometer VASE. The prepared film was evaluated as "A" when the refractive index is 1.6 or more, "B" when it is 1.55 or more and less than 1.6, and "C" when it is less than 1.55. . Moreover, when transparency ((lambda) = 632.8 nm) is 90% or more, it evaluated as "A" and less than 90% evaluated as "C."
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 上述したとおり、本実施形態は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。 As described above, the present embodiment is not limited to the above embodiment and examples, and modifications can be made as appropriate without departing from the scope of the present invention.
 本発明に係るリソグラフィー用膜形成組成物は湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成することができる。そして、このリソグラフィー用膜形成組成物は、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。 The film formation composition for lithography according to the present invention is applicable to a wet process, and can form a photoresist underlayer film excellent in heat resistance and etching resistance. And this film formation composition for lithography can suppress the deterioration of the film at the time of high temperature baking, and can form the lower layer film excellent also in the etching tolerance to oxygen plasma etching etc. Furthermore, when the lower layer film is formed, the adhesion to the resist layer is also excellent, so that an excellent resist pattern can be formed.
 さらには屈折率が高く、また低温~高温処理によって着色が抑制されることから、本発明に係る膜形成組成物は各種光学部品形成組成物としても有用である。 Furthermore, the film-forming composition according to the present invention is useful as various optical component-forming compositions because the refractive index is high and the coloration is suppressed by low-temperature to high-temperature treatment.
 したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器、電子機器及び産業機器等に搭載される電気用積層板、電気機器、電子機器及び産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われる他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。 Therefore, the present invention includes, for example, insulating materials for electricity, resins for resists, sealing resins for semiconductors, adhesives for printed wiring boards, electrical laminates for electrical equipment, electronic equipment and industrial equipment, etc., electrical equipment , Matrix resin of prepreg mounted on electronic equipment and industrial equipment, buildup laminate material, resin for fiber reinforced plastic, resin for sealing liquid crystal display panel, paint, various coating agents, adhesive, coating for semiconductor Resin, resin for resist for semiconductor, resin for lower layer film formation, film or sheet, plastic lens (prism lens, lenticular lens, microlens, Fresnel lens, viewing angle control lens, contrast improvement lens, etc.) , Retardation film, film for shielding electromagnetic wave, prism, optical fiber, flexi Solder resist le printed circuit, plating resist, multilayer printed wiring boards interlayer insulating film, the optical component such as a photosensitive optical waveguide, it is widely and effectively available.
 本出願は、2017年9月19日出願の日本特許出願(特願2017-178844号)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-178844) filed on September 19, 2017, the contents of which are incorporated herein by reference.
 本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。 The present invention has industrial applicability in the field of resists for lithography, underlayer films for lithography, underlayer films for multilayer resists, and optical components.

Claims (19)

  1.  ニトリル化合物を含む、半導体リソグラフィー膜形成組成物。 A semiconductor lithographic film-forming composition comprising a nitrile compound.
  2.  前記ニトリル化合物の分子量が、41g/mol以上1000g/mol未満の範囲にある、請求項1に記載の組成物。 The composition according to claim 1, wherein the molecular weight of the nitrile compound is in the range of 41 g / mol or more and less than 1000 g / mol.
  3.  二種以上の異なるニトリル化合物を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, comprising two or more different nitrile compounds.
  4.  三種以上の異なるニトリル化合物を含む、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, comprising three or more different nitrile compounds.
  5.  前記ニトリル化合物が、下記式(1)で表される化合物である、請求項1~4のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     Rは、炭素数1~70のn価の基であり、
     nは、1~10の整数である。)
    The composition according to any one of claims 1 to 4, wherein the nitrile compound is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1),
    R A is an n-valent group having 1 to 70 carbon atoms,
    n is an integer of 1 to 10. )
  6.  前記Rが、直鎖状炭化水素基、分岐状炭化水素基及び環構造からなる群より選択される少なくとも一つを含む基である、請求項5に記載の組成物。 The composition according to claim 5, wherein said R A is a group containing at least one selected from the group consisting of a linear hydrocarbon group, a branched hydrocarbon group and a ring structure.
  7.  前記環構造が、置換基を有していてもよい芳香環及び置換基を有していてもよい脂環式炭化水素基からなる群より選択される少なくとも一つを含む、請求項6に記載の組成物。 The ring structure according to claim 6, wherein the ring structure comprises at least one selected from the group consisting of an aromatic ring which may have a substituent and an alicyclic hydrocarbon group which may have a substituent. Composition of
  8.  前記ニトリル化合物が、置換基を有していてもよい芳香環を含み、ニトリル基が前記芳香環に置換している、請求項1~7のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the nitrile compound contains an aromatic ring which may have a substituent, and a nitrile group is substituted on the aromatic ring.
  9.  前記ニトリル化合物が、下記式(2)で表される化合物である、請求項1~8のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、
     Xは、置換基を有していてもよい芳香環であり、
     Yは、環構造を含む基であり、
     Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
     m1は、0又は1の整数であり、
     n1は、1~10の整数であり、n2は、1以上の整数である。
     ただし、n1とn2との積は、1~10の整数である。)
    The composition according to any one of claims 1 to 8, wherein the nitrile compound is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (2),
    X is an aromatic ring which may have a substituent,
    Y is a group containing a ring structure,
    Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
    m1 is an integer of 0 or 1;
    n1 is an integer of 1 to 10, and n2 is an integer of 1 or more.
    However, the product of n1 and n2 is an integer of 1 to 10. )
  10.  前記ニトリル化合物が、下記式(3)で表される化合物及び/又は下記式(4)で表される化合物である、請求項1~9のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3)中、
     Xは、置換基を有していてもよい芳香環であり、n1は、1~10の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    (上記式(4)中、
     Xは、それぞれ独立して、置換基を有していてもよい芳香環であり、
     Yは、環構造を含む基であり、
     Zは、それぞれ独立して、単結合、エーテル結合、チオエーテル結合、カルボニル結合、-NH-結合、アミド結合、置換基を有していてもよいアルキレンからなる群より選択されるいずれかであり、
     n1は、それぞれ独立して、1~10の整数である。)
    The composition according to any one of claims 1 to 9, wherein the nitrile compound is a compound represented by the following formula (3) and / or a compound represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (3),
    X a is an aromatic ring which may have a substituent, and n 1 is an integer of 1 to 10. )
    Figure JPOXMLDOC01-appb-C000004
    (In the above formula (4),
    Each X b is independently an aromatic ring which may have a substituent,
    Y is a group containing a ring structure,
    Z is any one independently selected from the group consisting of a single bond, an ether bond, a thioether bond, a carbonyl bond, an -NH- bond, an amide bond, and an alkylene which may have a substituent,
    n1 is each independently an integer of 1 to 10. )
  11.  前記式(3)で表される化合物が、下記式(A)群から選ばれる化合物であり、前記式(4)で表される化合物が、BisAPN又はBiFPNである、請求項10に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    The composition according to claim 10, wherein the compound represented by the formula (3) is a compound selected from the following formula (A) group, and the compound represented by the formula (4) is BisAPN or BiFPN. object.
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  12.  融点が200℃以上のニトリル化合物を含む、請求項1~11のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 11, comprising a nitrile compound having a melting point of 200 属 C or higher.
  13.  溶媒をさらに含有する、請求項1~12のいずれか一項に記載の組成物。 The composition according to any one of the preceding claims, further comprising a solvent.
  14.  硬化促進剤をさらに含有する、請求項1~13のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 13, further comprising a curing accelerator.
  15.  架橋剤をさらに含有する、請求項1~14のいずれか一項に記載の組成物。 The composition according to any one of the preceding claims, further comprising a crosslinking agent.
  16.  半導体下層膜の形成に用いられる、請求項1~15のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 15, which is used to form a semiconductor underlayer film.
  17.  光学部品形成に用いられる、請求項1~16のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 16, which is used for forming an optical component.
  18.  基板上に、請求項1~16のいずれか一項に記載の組成物を用いて下層膜を形成し、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む、レジストパターン形成方法。
    An underlayer film is formed on a substrate using the composition according to any one of claims 1 to 16,
    A method of forming a resist pattern, comprising the steps of forming at least one photoresist layer on the lower layer film, and then irradiating a predetermined region of the photoresist layer with radiation to perform development.
  19.  請求項1~17のいずれか一項に記載の組成物を用いて製造されたデバイス。 A device manufactured using the composition according to any one of the preceding claims.
PCT/JP2018/034553 2017-09-19 2018-09-19 Semiconductor lithography film forming composition, and resist pattern forming method and device WO2019059202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543655A JPWO2019059202A1 (en) 2017-09-19 2018-09-19 Semiconductor lithography film forming composition, resist pattern forming method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017178844 2017-09-19
JP2017-178844 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019059202A1 true WO2019059202A1 (en) 2019-03-28

Family

ID=65809931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034553 WO2019059202A1 (en) 2017-09-19 2018-09-19 Semiconductor lithography film forming composition, and resist pattern forming method and device

Country Status (3)

Country Link
JP (1) JPWO2019059202A1 (en)
TW (1) TW201921121A (en)
WO (1) WO2019059202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100398A1 (en) * 2019-11-22 2021-05-27 富士フイルム株式会社 Composition for forming underlayer film, method for forming resist pattern, and method for manufacturing electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125839A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Composition for forming resist underlayer film and pattern forming method
WO2012117949A1 (en) * 2011-02-28 2012-09-07 Jsr株式会社 Membrane-forming composition containing silicon for multilayered resist process and pattern formation method
JP2016044272A (en) * 2014-08-25 2016-04-04 Jsr株式会社 Composition for forming film, film and manufacturing method and compound of substrate having formed pattern
JP2016060886A (en) * 2014-09-19 2016-04-25 Jsr株式会社 Composition for forming film, film, method for manufacturing patterned substrate, and compound
WO2016163456A1 (en) * 2015-04-07 2016-10-13 三菱瓦斯化学株式会社 Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, and pattern formation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180110160A (en) * 2016-02-23 2018-10-08 패들락 테라퓨틱스, 인코포레이티드 Heteroaryl inhibitors of PAD4
KR102550405B1 (en) * 2017-09-07 2023-07-04 제이에스알 가부시끼가이샤 Compositions, films, methods of forming films, and methods of producing patterned substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125839A1 (en) * 2010-03-31 2011-10-13 Jsr株式会社 Composition for forming resist underlayer film and pattern forming method
WO2012117949A1 (en) * 2011-02-28 2012-09-07 Jsr株式会社 Membrane-forming composition containing silicon for multilayered resist process and pattern formation method
JP2016044272A (en) * 2014-08-25 2016-04-04 Jsr株式会社 Composition for forming film, film and manufacturing method and compound of substrate having formed pattern
JP2016060886A (en) * 2014-09-19 2016-04-25 Jsr株式会社 Composition for forming film, film, method for manufacturing patterned substrate, and compound
WO2016163456A1 (en) * 2015-04-07 2016-10-13 三菱瓦斯化学株式会社 Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, and pattern formation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100398A1 (en) * 2019-11-22 2021-05-27 富士フイルム株式会社 Composition for forming underlayer film, method for forming resist pattern, and method for manufacturing electronic device
JPWO2021100398A1 (en) * 2019-11-22 2021-05-27
JP7301151B2 (en) 2019-11-22 2023-06-30 富士フイルム株式会社 Underlayer film forming composition, resist pattern forming method, electronic device manufacturing method

Also Published As

Publication number Publication date
JPWO2019059202A1 (en) 2020-09-03
TW201921121A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP7054459B2 (en) Lithographic film forming material, lithographic film forming composition, lithographic underlayer film and pattern forming method
JP7283515B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7194355B2 (en) Compound, resin, composition and pattern forming method
JP7360630B2 (en) Compounds, resins, compositions, and film-forming materials for lithography using the same
WO2018016615A1 (en) Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
JP7194356B2 (en) Compound, resin and composition, resist pattern forming method and circuit pattern forming method
JP7290114B2 (en) Compound, resin, composition and pattern forming method
JPWO2018016648A1 (en) Compound, resin, composition and pattern forming method
JP7205716B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7438483B2 (en) Lithography film forming material, lithography film forming composition, lithography underlayer film, and pattern forming method
JP7452947B2 (en) Compounds, resins, compositions, resist pattern forming methods, and circuit pattern forming methods
JP7205715B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7415311B2 (en) Lithography film forming material, lithography film forming composition, lithography underlayer film, and pattern forming method
JPWO2018135498A1 (en) Compound, resin, composition and pattern forming method
KR20190057060A (en) COMPOUND, RESIN, COMPOSITION, AND RESIST PATTERN FORMING METHOD
JP7445382B2 (en) Compounds, resins, compositions and pattern forming methods
WO2019059202A1 (en) Semiconductor lithography film forming composition, and resist pattern forming method and device
JP7139622B2 (en) Compound, resin, composition and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857483

Country of ref document: EP

Kind code of ref document: A1