WO2019059177A1 - Linear hydraulic power generation device - Google Patents

Linear hydraulic power generation device Download PDF

Info

Publication number
WO2019059177A1
WO2019059177A1 PCT/JP2018/034460 JP2018034460W WO2019059177A1 WO 2019059177 A1 WO2019059177 A1 WO 2019059177A1 JP 2018034460 W JP2018034460 W JP 2018034460W WO 2019059177 A1 WO2019059177 A1 WO 2019059177A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
bucket
water flow
present
power generation
Prior art date
Application number
PCT/JP2018/034460
Other languages
French (fr)
Japanese (ja)
Inventor
始 後閑
Original Assignee
始 後閑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 始 後閑 filed Critical 始 後閑
Publication of WO2019059177A1 publication Critical patent/WO2019059177A1/en
Priority to PH12020500496A priority Critical patent/PH12020500496A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/02Buckets; Bucket-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a linear hydroelectric generator.
  • the linear hydroelectric power generation apparatus mainly utilizes water energy energy of a cross flow such as a river and a canal, and a plurality of turbines arranged at intervals in the extension direction of the water flow respectively have their respective generators. It is made to drive.
  • a plurality of water turbine generators are arranged at intervals in the extension direction of the flow channel, and the electric power of each water turbine generator is integrated to produce integrated electric power. It is a row of continuous water flow generators.
  • a conventional hydroelectric power generation apparatus utilizes stored water energy such as a dam, and rotates a water turbine by the drop of the stored water (see, for example, Patent Document 1).
  • the conventional hydroelectric power generation system is a full-color hydroelectric generator, and is completely unrelated to the utilization of the crossflow water flow energy of the flowing water in order to generate power continuously by the flowing water.
  • the conventional hydroelectric power generation apparatus mainly utilizes only the falling energy (potential energy) of the water power from a high place.
  • the conventional hydroelectric power generation device has a problem that the facility location of the hydroelectric power generation device is restricted to the vicinity of a dam having a large difference in elevation.
  • high power generation capacity is mainly assumed.
  • the conventional hydroelectric power generation apparatus also has a problem that equipment required for the hydroelectric power generation apparatus increases in size.
  • since such a conventional hydroelectric power plant is installed in a mountainous area, there is a problem that high voltage long distance power transmission is also required for the power transmission path.
  • An object of the present invention is to provide a hydroelectric power generator capable of a facility of a desired size for any space in various places with a low head.
  • a linear hydroelectric power generation apparatus comprises a water flow channel having a gradient and flowing water, a plurality of water wheels disposed in the water flow channel at intervals in the extension direction of the water flow channel, and the water wheel And a generator driven by each of the plurality of buckets, wherein the water turbine has a rotating shaft extending in the width direction of the water flow passage, and a plurality of buckets spaced in the circumferential direction of the rotating shaft.
  • the water depth of the water flow passage is twice or more the depth at which the bucket is submerged in the water flow, or the amount of water passing through the water flow passage is two times the amount of water of the water flow blocking resistance of the bucket More than double.
  • the water wheel further includes support plates on both sides in the width direction of the bucket, and the support plates are respectively fixed on both sides in the width direction of the bucket.
  • the water wheel is a bucket auxiliary that extends from a radially inner end of one of the buckets or from the bucket toward the rotation shaft between two buckets disposed adjacent to a circumferential direction of the rotation shaft. It has a flowing water return portion extending between the radially inner end of the plate and the radially outer end of the other bucket.
  • the linear hydroelectric power generation apparatus utilizes cross flow energy of flowing water, which is based on the water power and amount of water flow.
  • a water quantity of a depth twice or more the depth to which the buckets receive water pressure is secured below the bucket.
  • the linear hydroelectric power generation device According to the linear hydroelectric power generation device according to the present invention, even if the water power of the entire water flow is reduced by the pressure receiving resistance of the bucket of the water turbine by rotating the water turbine, the bucket of the water turbine is flowing into the water In a water flow channel having a water depth twice or more the depth of the inundation, these become a combined flow power by the water flow force formed below the water turbine, the water flow channel between the water turbines, and the gradient of the water flow channel. Then, the water power reduced by rotating the water turbine one after another will increase again while flowing toward the next water turbine. As a result, from each generator disposed along the water flow passage, it is possible to take out equal amounts of power according to the flow passage and the flow rate.
  • the linear hydroelectric power generation device by using a desired number of water wheels having buckets, it is possible to efficiently receive the water power of a water flow with a small head, and further, a river, a canal, etc.
  • the synergetic effect of the "water volume” and the “water velocity” energy (kinetic energy) together with the continuous accumulation of electric power from the multiple generators can increase the power generation capacity. Therefore, according to the linear hydroelectric power generation apparatus according to the present invention, a facility of a desired size can be provided for any space in various places with a small head.
  • the flowing water return portion can at least partially close the gap formed between the buckets, so that the water enters the water wheel. It can be suppressed.
  • the pressure receiving surface of the bucket is a pressure receiving surface curved in a semi-cylindrical shape in a fluid flow direction as viewed in the axial direction of the rotation shaft.
  • the bucket may have a linear (planar) pressure receiving surface at a tip end portion of the bucket as viewed in the axial direction of the rotation shaft.
  • the flowing water return portion is connected to the radially inner end of the one bucket and the radially outer end of the other bucket,
  • the gap corresponding to the flowing water return portion which is formed between two buckets disposed adjacent to the circumferential direction of the rotation shaft, may be closed.
  • the water wheel further includes a bucket reinforcing portion that extends in the circumferential direction of the rotation shaft and integrally fixes the respective tips of the buckets.
  • the water flow passage may have a fluid inflow blocking portion that blocks the inflow of fluid.
  • the present invention it is possible to provide a hydroelectric power generation device capable of a facility of a desired size for any space in various places with a low head. Therefore, according to the present invention, a wide range of equipment is possible from large-capacity power supply to small-capacity power supply.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 2 is a front view showing FIG. 1 from the BB cross-sectional direction. It is CC sectional drawing of FIG. 2B. It is DD sectional drawing of FIG. 3A.
  • FIG. 6A It is CC sectional drawing of FIG. 6A. It is the figure which showed the form of the bucket applicable to the water turbine of the linear hydraulic power unit which concerns on this invention by the cross section equivalent to the CC cross section of FIG. 2B.
  • FIG. 7 is a front view showing a linear hydroelectric power generation device according to another modification of the present invention, as seen from the direction corresponding to the cross section BB of FIG. 1.
  • FIG. 8A It is a modification of the linear hydraulic power unit concerning Drawing 8A, and is the sectional view showing the modification concerned in the section equivalent to the CC section of Drawing 8A.
  • FIG. 8B is a cross-sectional view showing another modified example of the linear hydroelectric power generation apparatus according to FIG.
  • FIG. 8A is a cross section corresponding to the CC cross section of FIG. 8A.
  • FIG. 8B is a further modified example of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modified example in a cross section corresponding to the CC cross section of FIG. 8A.
  • FIG. 1 shows a linear hydroelectric power generation device 100 according to a first embodiment of the present invention.
  • reference numeral 10 is a water flow passage through which water (fluid) flows.
  • the water flow path 10 takes in the water power of a water flow such as discharged water from a river, and allows water from a river or the like to flow while holding the water power over a long distance.
  • the white arrow in FIG. 1 indicates the water flow direction.
  • the water flow passage 10 extends linearly in a plan view (plan view) shown in FIG.
  • the water flow passage 10 is a water flow passage having a slope.
  • the slope means an inclination (angle) ⁇ with respect to the horizontal plane.
  • the water flow passage 10 is installed so as to decrease at an angle ⁇ from the upstream to the downstream of the water flow, as described later.
  • the angle ⁇ of the water flow passage 10 is, for example, 1 mmrad (milliradian) to 2 mmrad (milliradian).
  • the water flow passage 10 is a water flow passage having a U-shaped (u-shaped) cross section in a front view of FIG. 2B.
  • the water flow passage 10 is formed in a U-shaped upward direction defined by a flat bottom wall 11 and two side walls 12 which rise upward from both widthwise ends of the bottom wall 11. Rectangular trough channel.
  • the water flow passage 10 is a prefabricated construction water flow passage.
  • the water flow passage 10 is manufactured as at least one water flow passage member (flow passage member), and is formed by assembling the member at a facility site.
  • the water flow passage 10 of FIG. 1 is a water flow passage formed as a single water flow passage member.
  • the water flow passage member can be made of, for example, a material such as metal or concrete.
  • the water flow passage 10 can be extended over a long distance by being connected and assembled as a plurality of water flow passage members.
  • Reference numeral 20 is a water wheel disposed in the water flow passage 10. As shown in FIG. 1 and the like, a plurality of water wheels 20 are disposed in the water flow passage 10 at intervals in the extension direction of the water flow passage 10. In the present embodiment, two water wheels 20 are disposed in one water flow passage 10. However, according to the present invention, when it is intended to take out a large amount of electric power, it is preferable that the number of water wheels 20 be more.
  • the water wheel 20 has a rotating shaft 21 extending in the width direction of the water flow passage 10.
  • the rotation shaft 21 is rotatably supported on the side wall 12 of the water flow passage 10 via a bearing 22.
  • the bearing 22 may be integrally formed with the side wall 12.
  • the water wheel 20 has a width W 20 (hereinafter, also referred to as “water wheel width W 20”) extending in the width direction of the water flow passage 10.
  • the water turbine 20 has an outer diameter of diameter R20.
  • the distance between the two water turbines 20 is a distance L20 between the centers of the two rotation shafts 21 (hereinafter, also referred to as “water turbine pitch length L20”).
  • the inter-turbine pitch length L20 can be set in relation to the angle ⁇ . For example, it is desirable that the inter-turbine pitch length L20 be a length that recovers to a constant flow velocity.
  • the water wheel 20 has a plurality of buckets 23.
  • the bucket 23 has a bucket width W23 extending in the extension direction of the rotary shaft 21, and has a pressure receiving surface for receiving water as described later.
  • twelve buckets 23 are arranged at intervals in the circumferential direction of the rotary shaft 21 as viewed in the axial direction of the rotary shaft 21.
  • the buckets 23 each have a pressure receiving surface 24 curved in the water flow direction in an axial view.
  • the curved pressure receiving surface 24 is a pressure receiving surface that is curved in a semi-cylindrical shape in the water flow direction as viewed in the axial direction of the rotation shaft 21.
  • the curved pressure receiving surface 24 has a radius of curvature r24.
  • the bucket 23 has a linear pressure receiving surface 25 at the tip end of the bucket 23 (radially outer end of the bucket 23) in the axial direction.
  • the pressure receiving surface 25 is configured by making the section from the tip of the curved pressure receiving surface 24 to the outermost diameter of the water wheel 20 linear in an axial view.
  • Each of the linear pressure receiving surfaces 25 functions as a water scraping portion extending over the bucket width W 23 to receive the water power of the straight water flow along the water flow passage 10 together with the curved pressure receiving surface 24. It can be converted to a rotational force.
  • each of the linear pressure receiving surfaces 25 functions as a guide surface as described later.
  • the water wheel 20 has a pressure receiving area S20 in which the water wheel 20 receives water.
  • the pressure receiving area S20 of the water turbine 20 is a pressure receiving area when the bucket 23 reaches the lowest point in a front view of the water wheel 20.
  • the water immersion depth D20 of the water turbine 20 is equal to the water turbine radial direction length L23 of the bucket 23.
  • the water depth D10 of the water flow passage 10 is a depth at which the bucket 23 of the water turbine 20 is submerged in the water flow, and in the present embodiment, the water depth D10 is twice or more of the water immersion depth D20 of the water turbine 20.
  • a region from the water surface F to the water immersion depth D20 of the water wheel 20 is a pressure receiving water flow layer.
  • a region from the inundation depth D20 of the water wheel 20 to the bottom surface 10f of the water flow passage 10 is a water flow layer in which the water power of the water flow is not affected by the water wheel 20.
  • the volume of the water flow layer (hereinafter also referred to as “water flow layer volume”) that travels downstream through the flow channel area S10-1 of the water flow layer is the water flow. It is the product of the flow passage area S 10-1 of the layer and the length in the extension direction of the flowing water passage 10.
  • the flooded flow layer volume integral serves as a volume when the flow passage area S10-1 of the flooded flow layer travels downstream, and increases the flow power.
  • the volume of the pressure receiving water flow layer (hereinafter also referred to as "pressure receiving water flow layer volume”), which proceeds downstream through the flow channel area S10-2 of the pressure receiving water flow layer, is the pressure receiving water flow.
  • the water wheel 20 further includes a bucket auxiliary plate 27 extending from the bucket 23 toward the rotation shaft 21.
  • the bucket auxiliary plate 27 is configured in a linear shape extending toward the rotation shaft 21 in an axial direction.
  • the bucket auxiliary plate 27 is configured integrally with the bucket 23.
  • one surface of the bucket auxiliary plate 27 (the same surface as the curved pressure receiving surfaces 24 and 25) can also function as the auxiliary pressure receiving surface 26.
  • the bucket auxiliary plate 27 forms an annular gap S with the rotary shaft 21 in the axial direction.
  • the gap S functions as a hole for escaping droplets from the water surface F.
  • the gap S can suppress the resistance of the air (wind) received by the water wheel 20 while the water wheel 20 is rotating.
  • the gap S can also exhibit the function of ensuring the efficient rotation operation of the water wheel 20.
  • the water turbine 20 further has the support plate 28 in the width direction both sides of the bucket 23.
  • the two support plates 28 are respectively fixed to both sides in the width direction of the bucket 23.
  • the support plates 28 are respectively disk-shaped plate members.
  • the support plates 28 are respectively welded to the widthwise ends of the buckets 23.
  • the two support plates 28 are respectively fixed to both sides in the width direction of the bucket auxiliary plate 27 by a method such as welding similarly to the bucket 23.
  • the bearing 22 is interposed between the rotating shaft 21 of the water wheel 20 and the support plate 28, but the bearing 22 can be omitted.
  • the water wheel 20 further includes a bucket reinforcing portion 29 which extends in the circumferential direction of the rotating shaft 21 and integrally fixes the respective tips of the buckets 23. ing.
  • the bucket reinforcing portion 29 may be, for example, a piano wire or a steel wire which goes around the circumferential direction of the rotating shaft 21.
  • the bucket reinforcing portion 29 is provided at one location at the center of the bucket width W23.
  • a plurality of bucket reinforcing portions 29 can be provided at intervals in the direction of the bucket width W23.
  • the bucket reinforcing portion 29 has a circular shape in the axial direction but may have a polygonal shape in which the tip end of the bucket 23 is linearly connected.
  • the linear hydroelectric power generation apparatus 100 has the generator 30 driven by the water mill 20.
  • the generator 30 is drivably coupled to the rotation shaft 21 of the water wheel 20 via the power transmission device 40.
  • the power transmission device 40 transmits the rotational force and rotational speed of the water wheel 20 to the generator 30.
  • the power transmission device 40 is a belt type power transmission device.
  • the power transmission device 40 includes an input pulley 41 fixed to the rotation shaft 21 of the water wheel 20, an output pulley 42 fixed to the input rotation shaft of the generator 30, and the input pulley 41 and the output pulley 42. It has a V-belt 43 stretched between them.
  • the input pulley 41 and the output pulley 42 variable pulleys, the rotational force and the rotational speed input to the generator 30 can be appropriately changed.
  • a fluid such as a lockup torque converter is provided between at least one of the rotary shaft 21 of the water wheel 20 and the input pulley 41 and between the output pulley 42 and the input rotary shaft of the generator 30.
  • a joint can be interposed.
  • the power transmission device 40 can be replaced with a belt-type power transmission device to be a chain-type power transmission device.
  • the power transmission device 40 is a chain type instead of the belt type, power transmission efficiency is improved as compared with the belt type.
  • the rotational force and the rotational speed input to the generator 30 can be appropriately changed by changing the gear.
  • the water velocity V of the water intake 10a of the water flow passage 10 is 3 to 5 m / s.
  • the angle ⁇ of the water flow passage 10 is preferably set to 1 mmrad (milliradian) to 2 mmrad (milliradian). If the angle ⁇ is more than that, the flow of water can be maintained.
  • the numerical values of the angle ⁇ are exemplary. According to the present invention, the numerical value of the angle ⁇ can be appropriately changed. For example, the angle ⁇ may be 1 ° to 2 °.
  • specific dimensions, structures, etc. of the length, size, depth (water depth), inclination, etc. of the water flow channel 10 are the “water volume”, “water velocity”, It can be determined by “power generation plan (electric power production plan)”.
  • the water depth D10 of the water flow passage 10 needs to be twice or more the water depth of the water immersion depth D20 of the water wheel 20.
  • a region from the water surface F to the water immersion depth D20 of the water turbine 20 is a pressure receiving water flow layer to which the water turbine 20 receives water power.
  • the region up to the bottom surface 10 f of the water flow is a water flow layer in which the water power of the water flow is not affected by the water wheel 20.
  • the water depth D10 of the water flow passage 10 is 550 mm
  • the immersion depth D20 of the water turbine 20 is 250 mm
  • the remaining depth Df is 300 mm. Note that these numerical values are exemplary. According to the present invention, these numerical values can be changed as appropriate.
  • the diameter R20 of the water wheel 20 is 1000 mm.
  • the curvature radius R24 of the curved pressure receiving surface 24 of the bucket 23 is 125 mm.
  • the extension length L25 of the linear pressure receiving surface 25 of the bucket 23 is 50 mm.
  • the water pump radial direction length (length of the pressure receiving surface 26) L27 of the bucket auxiliary plate 27 is 50 mm.
  • the water wheel width W20 is 1000 mm. Note that these numerical values are also illustrative. According to the present invention, these numerical values can also be changed as appropriate.
  • the number of buckets 23 can be ten.
  • the bucket width W23 be equal to or greater than one measure (about 303 mm).
  • the rotational speed of the generator 30 is 200 to 300 rpm.
  • the generator 30 is connected to both sides of the water wheel 20, but can be connected to only at least one side.
  • the pulley ratio of the input pulley 41 and the output pulley 42 is set to 3 to 5. Note that these numerical values are also illustrative. According to the present invention, these numerical values can be changed as appropriate.
  • the generator 30 can be directly connected to the rotating shaft 21 of the water wheel 20 or indirectly connected via a lockup torque converter.
  • the specific dimensions, structures, etc. of the number, size, output power, shape, etc. of the generators 30 are also included in the “water volume”, “water velocity”, “power generation plan (electric power Production plan) can be determined.
  • the flow passage area S10 of the water flow passage 10 is twice or more the pressure receiving area S20 of the water turbine 20.
  • the value of "more than 2 times" is a value obtained experimentally to obtain appropriate water power.
  • the water power obtained by the gradient of the water flow channel 10 and the water power of the water flow (water flowing through the aquifer flow layer) of the water depth portion not directly related to the rotation of the water turbine 20 directly are synthesized.
  • the water depth D10 of the water flow passage 10 is twice or more the water depth of the water immersion depth D20 of the water turbine 20 from the water surface F when the water turbine 20 is submerged.
  • a water depth portion not directly related to the water turbine 20 below the water turbine 20 in this embodiment, the remaining depth Df
  • the water flow of the region's aquifer flow layer and the water flow of the water flow obtained by the gradient of the flow passage 10 while flowing along the flow passage 10 are combined.
  • the linear hydroelectric power generation apparatus 100 by using a desired number of water wheels 20 having the buckets 23, the water power of the water flow can be efficiently received, and furthermore, the river and the waterway
  • the combined effect of “water volume” and “water velocity” energy (kinetic energy), etc. and continuous accumulation of electric power from multiple generators can increase power generation.
  • the length of the water flow channel for example, according to the "water volume”, “water velocity”, and “power generation plan (electric power production plan)” , Size, depth (water depth), inclination, etc., number of water wheels, arrangement interval, etc., axial length of rotary shaft, size (diameter), shape, etc., number of buckets (pressure receiving surface), size (diameter)
  • a facility of a desired size can be obtained for any space of various places with a small head. Therefore, according to the linear hydroelectric power generation device 100 according to the present embodiment, a wide range of equipment is possible from the supply of a large amount of power to the supply of a small amount of power.
  • the water wheel peripheral water flow volume VL can be five times or more of the water wheel flooded volume (water force resistance volume) VW.
  • the water flow volume around the water wheel VL means “the water flow volume between the diameters of the water wheels among the water flow volumes around one water wheel”
  • “hydraulic water immersion volume VW” means “the volume of the water turbine submersed in the water in a water flow path.” That is, in the present embodiment, the “length in the extension direction of the water flow passage 10” in the “water wheel peripheral water flow volume VL” is “the diameter R20 of the water wheel 20”. In this case, regardless of the water resistance of the water mill 20, the next water mill 20 can be driven continuously. In the present embodiment, when the distance between the water turbines 20 (water turbine pitch length L20) is 1 m, the plurality of water turbines 20 disposed from upstream to downstream rotate continuously and easily. In FIG. 3A as well, the area enclosed by a broken line and the area enclosed by a one-dot chain line are written smaller than they actually are in order to avoid overlapping with the outlines of other parts.
  • the pressure receiving surface 24 of the bucket 23 is curved in a semi-cylindrical shape toward the water flow direction as viewed in the axial direction. It is a face.
  • the curved pressure receiving surface 24 of the bucket 23 receives the water power of the water flow more efficiently, the power generation capacity can be further increased.
  • the bucket 23 has a linear pressure receiving surface 25 at the tip of the bucket 23 in the axial direction.
  • the linear pressure receiving surface 25 of the bucket 23 serves as a guiding surface and can efficiently guide the water to the bucket 23 along the flow of the water flow, thereby further increasing the power generation. It can be done.
  • the water wheel 20 further includes a bucket auxiliary plate 27 extending from the bucket 23 toward the rotation shaft 21 of the water wheel 20.
  • the pressure receiving surface 26 of the bucket auxiliary plate 27 receives the water power of the water flow together with the bucket 23, whereby the power generation capacity can be further increased.
  • the water turbine 20 further has the support plate (support disc) 28 on both sides in the width direction of the bucket 23 28 are respectively fixed to the width direction both sides of the bucket 23.
  • the support plate (support disc) 28 on both sides in the width direction of the bucket 23 28 are respectively fixed to the width direction both sides of the bucket 23.
  • the rigidity of the entire water turbine 20 is increased, it is possible to improve the durability of the water turbine 20 and, in turn, the durability of the entire linear hydroelectric power generation apparatus 100.
  • the rigidity of the entire water turbine 20 is increased, the water turbine 20 is structurally stable. Thereby, since the water mill 20 rotates more efficiently, power generation capacity can be increased more.
  • the water wheel 20 extends in the circumferential direction of the rotating shaft 21 and is fixed to each tip of the bucket 23 It further has a bucket reinforcing portion 29.
  • the rigidity of the entire water turbine 20 is increased, it is possible to improve the durability of the water turbine 20 and, in turn, the durability of the entire linear hydroelectric power generation apparatus 100.
  • the rigidity of the entire water turbine 20 is increased, the water turbine 20 is structurally stable. Thereby, since the water mill 20 rotates more efficiently, power generation capacity can be increased more.
  • the water flow passage 10 is a prefabricated construction water flow passage.
  • the prefabricated construction flow channel 10 can be formed by manufacturing the flow channel in advance as at least one flow channel member and assembling the component at a facility site. In this case, the assembly and disassembly of the water flow passage 10 makes it possible to install and remove the water flow passage 10.
  • an inflow blocking facility such as a water gate
  • the facility location is a disaster area under circumstances such as typhoon, heavy rain, abnormal weather, etc.
  • safety can also be ensured, since the intake can be easily and quickly released from the disaster area by controlling the intake.
  • FIG. 4 a linear hydroelectric power generation apparatus 200 according to a second embodiment of the present invention will be described.
  • portions substantially the same as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the linear hydroelectric power generation device 200 includes two linear hydroelectric power generation devices, a first linear hydroelectric power generation device 200A and a second linear hydroelectric power generation device 200B.
  • the first linear hydroelectric power generation apparatus 200A and the second linear hydroelectric power generation apparatus 200B are respectively configured by two water flow channels of a first flow channel 10A and a second flow channel 10B.
  • each of the first water flow passage 10A and the second water flow passage 10B is a water passage which takes in the water power of the water flow such as the discharged water from the river.
  • each of the first water flow passage 10A and the second water flow passage 10B extends linearly in a plan view shown in FIG. 4 similarly to the water flow passage 10 of the first embodiment.
  • the first water flow passage 10A is a water passage having a water flow passage width W10A of 2000 mm.
  • the first water flow passage 10A has a fluid inflow blocking portion 15 that blocks the inflow of water.
  • the fluid inflow blocking unit 15 can interrupt the inflow of water manually or by electric control or the like.
  • the fluid inflow blocking unit 15 shuts off the first water flow passage 10A, thereby safety of the first linear hydroelectric power generation apparatus 200A. Secure the sex.
  • the fluid inflow blocking unit 15 is an openable / closable lock provided at the intake port 10 a of the first water flow passage 10A.
  • the obstacle exclusion facility 16 is provided at the water intake port 10a of the first water flow path 10A.
  • the obstacle removal facility 16 is a facility for preventing foreign matter and the like from interfering with a water wheel or the like. Examples of the obstacle removal facility 16 include a protective net that captures foreign matter such as wood and stone.
  • the water turbine 20A in the first water flow passage 10A, a plurality of identical water turbines 20A are arranged at intervals in the extending direction of the first water flow passage 10A.
  • the water turbine 20A has an inter-water turbine pitch length L20 of 5000 mm in the extending direction of the first water flow passage 10A.
  • the water wheel 20A is a water wheel having 22 buckets 23.
  • the diameter R20 of the water turbine 20A is 1000 mm as in the first embodiment, but the water turbine width W20 is 1600 mm.
  • the water depth D10A of the first water flow passage 10A is at least twice as large as the water immersion depth D20 of the water turbine 20 from the water surface F when the water turbine 20A is flooded, as in the first embodiment. Although it is water depth, in the present embodiment, the water depth D10 of the first water flow passage 10A is 800 mm.
  • the second water flow passage 10B is also a canal with a water flow passage width W10B of 2000 mm.
  • a fluid inflow blocking portion 15 is provided at the intake port 10a of the second water flow passage 10B as in the first linear hydroelectric power generation apparatus 200A.
  • the fluid inflow blocking unit 15 also shuts off the second water flow passage 10B, thereby safety of the second linear hydroelectric power generation apparatus 200B. Secure the sex.
  • the obstacle exclusion facility 16 is provided also in the water intake port 10a of the second water flow passage 10B.
  • a plurality of different water turbines 20A, 20B, 20C, 20D and 20E are disposed in the second water flow passage 10B at intervals in the extending direction of the second water flow passage 10B.
  • each of the water mills 20B, 20C, 20D and 20E is a water mill having 22 buckets 23 like the water mill 20A.
  • the diameter R20 of the water turbines 20B, 20C, 20D and 20E is 1000 mm as in the first embodiment, but the water wheel width W20 is 1200 mm, 1000 mm, 600 mm and 400 mm.
  • the water mill 20E is two water mills arranged at an interval WS.
  • the distance WS is 1000 mm.
  • the central region of the flow channel width W10B of the second flow channel 10B can be effectively used.
  • the water depth D10B of the second water flow passage 10B is also twice or more than the water immersion depth D20 of the water turbine 20B from the water surface F in the water submerged state of the water turbine 20A as in the first embodiment.
  • the water depth D10 of the second water flow passage 10B is also 800 mm.
  • said numerical value is an exemplary numerical value based on the result of experimenting in each river, for example.
  • different water mills 20A, 20B, 20C, 20D and 20E are disposed in the second water flow course 10B of the same water flow path width W10B, but these water mills 20A, 20B, 20C, 20D and Each 20E can be used alone.
  • the water wheel 20C can be disposed at an interval on one middle water river (water flow channel) as a middle water river wheel.
  • the water wheel 20D can be disposed at an interval on one small amount of river (water flow path) as a small amount of water for a small amount of river. That is, according to the present embodiment, it is possible to provide a hydraulic power generation apparatus having a water wheel width suitable for the canal according to the amount of water of the river.
  • the first linear hydroelectric power generation apparatus 200A includes a plurality of current collectors 50 corresponding to the respective generators 30.
  • the second linear hydraulic power generation device 200B also has a plurality of current collectors 50 corresponding to the respective generators 30.
  • the electricity extracted from the generators 30 is collected by the current collectors 50 corresponding to the respective generators 30.
  • the electricity is collected via the step-up transformer or the like in the simplified power plant. It is distributed to various places through transmission lines.
  • the second water flow passage 10B can be a water flow passage in which the water flow passage width W10B tapers as the water flow passage width W10B goes from upstream to downstream in the plan view of FIG. .
  • the water velocity of the second water flow passage 10B becomes faster as the water flow passage width W10B becomes narrower from upstream to downstream.
  • the water mills 20A, 20B, 20C, 20D and 20E are sequentially arranged as going from the upstream to the downstream as in the second water flow passage 10B of FIG. Similar to the passage 10B, power can be taken out evenly from the respective generators 30 arranged along the flowing water passage.
  • FIG. 5 a linear hydroelectric power generation apparatus 300 according to a third embodiment of the present invention will be described.
  • portions substantially the same as those of the other embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the water wheel 60 is used as the plurality of water wheels disposed in the water flow passage 10.
  • the water wheel 60 has two water wheels 20 arranged in parallel in the width direction of the water flow passage 10.
  • the rotation shaft 61 of the water wheel 60 is a rotation shaft in which the rotation shafts 21 of the two water wheels 20 are integrally formed.
  • the rotation shaft 61 of the water wheel 60 is rotatably supported via a bearing 22 with respect to a reinforcing support 17 which stands from the bottom wall 11 of the water flow passage 10. Thereby, the water wheel 60 can simultaneously rotate integrally the two water wheels 20 by rotation of the rotating shaft 61.
  • a large pressure receiving area S23 of the bucket 23 can be secured without increasing one bucket width W23 (water wheel width). Further, in this case, since the central portion in the length direction (water flow channel width direction) of the rotating shaft 61 is supported by the reinforcing support column 17, it is possible to suppress bending or the like occurring in the rotating shaft 21.
  • the bucket auxiliary plate 27 connects the rotating shaft 61 and the bucket 23.
  • the gap S of the bucket auxiliary plate 27 is configured as an opening formed in the bucket auxiliary plate 27. It is preferable to use a compound water wheel such as the water wheel 60, for example, in a large water flow channel having a water flow channel width W10 of 2 m or more.
  • FIGS. 6A and 6B a linear hydroelectric power generation apparatus 400 according to a modification of the present invention will be described with reference to FIGS. 6A and 6B.
  • portions substantially the same as those of the other embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the water depth D10 of the water flow passage 10 is shallow and the water depth D10 of the water flow passage 10 can not secure a water depth of twice or more of the water immersion depth D20 of the water turbine 20.
  • the lateral width (waterway width W10) of the water flow passage 10 is enlarged by that amount to compensate for the insufficient flow rate of the water flow force of the water flow.
  • the width direction gap ⁇ S70 between the side wall 12 of the water flow passage 10 and the water wheel 70 is We secure widely.
  • the flow passage area S10 of the water flow passage 10 can be made twice or more the pressure receiving area S70 of the water wheel 70 by adjusting the width direction gap ⁇ S70. That is, the amount of water passing through the water flow passage 10 can be twice or more the amount of water of the water flow blocking resistance of the bucket 23.
  • the water flow passage 10 can be applied to, for example, a shallow agricultural water passage.
  • the bottom width W11 of the water flow passage 10 is a width that can sufficiently ensure the width direction gap ⁇ S70 between the water flow passage 10 and the water wheel 70.
  • the water power may flow while flowing toward the next water wheel 70 .
  • the flow of water obtained by the gradient of the water flow channel 10 and the flow of water not directly contributing to the rotation of the water turbine 70 on both sides of the water turbine 70 (the flow channel area from which the pressure receiving area S70 of the water turbine 70 is removed (S10 The water power of the water flow) is combined.
  • the water power reduced by rotating the water wheel 70 one after another will increase again while flowing toward the next water wheel 70.
  • the flow channel area S10 of the water flow channel 10 is ⁇ (width WF of water surface F) + (bottom width W11 of water flow channel 10) ⁇ ⁇ D10 / 2.
  • the water depth D10 of the water flow passage 10 is 230 mm, and the diameter R70 of the water wheel 70 is 600 mm. Further, while the water wheel width W70 of the water wheel 70 is 250 mm, the bottom width W11 of the water flow passage 10 is 400 mm. Thus, 75 mm is secured as a width direction gap ⁇ S 70 between the side wall 12 of the water flow passage 10 and the water wheel 70.
  • the water immersion depth D70 of the water wheel 70 is 180 mm. Further, a diameter L27 of the bucket auxiliary plate 27 in the water turbine radial direction is 30 mm.
  • the water turbine radial direction length L23 of the bucket 23 is 150 mm obtained by dividing the water turbine radial direction length L27 of the bucket auxiliary plate 27 from the water immersion depth D70 of the water turbine 70.
  • these numerical values are exemplary. According to the present invention, these numerical values can be changed as appropriate.
  • the bucket 23 of the water wheel 70 is eighteen pieces.
  • the curved pressure receiving surfaces 24 of the buckets 23 are directed to the bucket 23 of the water wheel 20 in the water flow direction in the circumferential direction of the rotary shaft 21 as viewed in the axial direction of the rotary shaft 21. Curved with a radius of curvature R24 that is greater than the radius of curvature of.
  • the linear pressure receiving surface 25 is omitted.
  • the water wheel used in this example is not limited to the water wheel 70. As a water mill used by this example, the above-mentioned water mill 20 grade
  • FIG. 7 shows two variations of the pressure receiving surface of the bucket 23 in one drawing.
  • the reference numeral 24 'in FIG. 7 in the first variation, as viewed in the axial direction of the rotary shaft 21, the circumferential direction of the rotary shaft 21 with respect to a straight line radially extending from the rotary shaft 21 of the water wheel 20.
  • the pressure receiving surface 24 ' is curved in the water flow direction.
  • trapezoidal trapezoidal pressure receiving surface 25 ' which is recessed toward the water flow direction.
  • the trapezoidal pressure receiving surface 25 ' is configured by a straight line. Therefore, a part of the trapezoidal pressure-receiving surface 25 ′ functions as a linear pressure-receiving surface 25.
  • the bucket auxiliary plate 27 forms an annular gap S with the rotation shaft 21 in the axial direction.
  • the bucket auxiliary plate 27 forms an opening A27 between each other in the circumferential direction.
  • Each of the openings A 27 communicates the gap S to the outside.
  • the gap S functions as a hole for escaping the splash splashed from the water surface F when the water wheel 20 is rotated.
  • the inventor 20 receives the resistance in the reverse direction to the rotation direction of the water wheel 20 and rotates. It came to recognize that the speed would not increase. Then, as a result of further intensive studies and researches, the inventor of the present invention has confirmed that one of the causes that the rotational speed of the water turbine 20 does not increase is the water expelled from the bucket 23 of the water turbine 20.
  • the water expelled from the bucket 23 is scattered as a large amount of droplets.
  • the immersion depth D20 of the bucket 23 is deep, for example, when the bucket 23 is 250 mm or more, the amount of splashes scattered to the downstream side of the water wheel 20 is large.
  • the inundation depth D20 of the bucket 23 is deep, a large amount of droplets rotate around the water wheel 20 and scatter on the upper upstream side of the water wheel 20. The large amount of droplets scattered to the upper upstream side of the water wheel 20 in this manner suppresses the rotation speed of the water wheel 20 and prevents the rotation speed of the water wheel 20 from increasing.
  • the inventor of the present invention has proposed that the radially inner end portion of one bucket (the bucket that precedes in the rotational direction of the water turbine) and the other of the two buckets disposed adjacent to each other in the circumferential direction of the rotating shaft 21.
  • a flowing water return portion is provided extending between the bucket (the radially outer end of the bucket which is backward with respect to the bucket preceding in the direction of rotation of the water wheel).
  • FIG. 8A is a front view showing a linear hydroelectric power generation device 500 according to another modified example of the present invention from the direction corresponding to the cross section BB of FIG. 8B is a cross-sectional view taken along the line CC in FIG. 8A.
  • the water wheel 80 is a long-wing water wheel having a plurality of long blades, like the water wheel 20.
  • the water wheel 80 as shown in FIG. 8A etc., includes a plurality of buckets 83 spaced in the circumferential direction of the rotary shaft 21 between two axially spaced support plates 28. , And a flush water return unit 87 disposed between the buckets 83.
  • the power transmission device 40 is a chain type power transmission device.
  • the power transmission device 40 includes an input gear 811 fixed to the rotation shaft 21 of the water wheel 80, an output gear 822 fixed to the input rotation shaft of the generator 30, and the input gear 811 and the output gear 822. It has a gear chain 833 bridged between them.
  • the water wheel 80 has eight long wings.
  • the long wing is composed of a bucket 23 and a bucket auxiliary plate 27.
  • the long wing is composed of a flat bucket 83.
  • the bucket 83 has a bucket width W83 extending in the axial direction, like the bucket 23.
  • the widthwise side ends of the buckets 83 are each fixed to the support plate 28 by a method such as welding as with the buckets 23.
  • the bucket 83 like the bucket 23, closes the axial direction between the two support plates 28.
  • the bucket 83 has a predetermined water turbine radial direction length L83, as shown in FIG. 8B.
  • the radially inner end 83 a of the bucket 83 is disposed at a position close to the rotation shaft 21.
  • the portion closest to the rotating shaft 21 is taken as the radially inner end 83 e 1 of the bucket 83.
  • the radially outer end 83 b of the bucket 83 is disposed at the radially outer position of the water wheel 80.
  • the radially outer portion (tip) of the water turbine 80 among the radially outer end portions 83 b of the bucket 83 is used as the radially outer end 83 e 2 of the bucket 83.
  • the bucket 83 forms an annular gap (in-vehicle hollow portion) S between itself and the rotation shaft 21 in the axial direction.
  • the radially inner end 83 e 1 of the bucket 83 forms a gap A 83 between the radially inner ends 83 e 1 of the buckets 83 adjacent to each other in the circumferential direction.
  • the clearance A83 corresponds to the opening A27 of the water wheel 20.
  • the water wheel 80 has the flowing water return portion 87 between the two buckets 83 arranged adjacent to each other.
  • the flowing water rebounding portion 87 has, similarly to the bucket 83, a flowing water rebounding portion width W87 extending in the axial direction. Similar to the bucket 83, the widthwise side ends of the flowing water return portion 87 are fixed to the support plate 28 by a method such as welding. Thus, in the present embodiment, the flowing water return portion 87, together with the bucket 83, closes the axial direction of the two support plates 28.
  • the flowing water return portion 87 includes the radially inner end 83a of one bucket 83 and the other bucket 83 of the two buckets 83 arranged adjacent to each other. It extends between the radially outer end 83b.
  • a portion close to the radially inner end 83a of one bucket 83 is the radially inner end 87a of the flowing water return portion 87
  • a portion close to the radially outer end 83b of the other bucket 83 is the flowing water
  • the radially outer end 87 b of the rebound portion 87 is the radially inner end 83a of the two buckets 83 arranged adjacent to each other. It extends between the radially outer end 83b.
  • the radially inner end 87 a of the flowing water return portion 87 extends toward the radially inner end 83 a of the one bucket 83, and the radial direction of the flowing water return portion 87.
  • the outer end 87 b extends toward the radially outer end 83 b of the other bucket 83.
  • the flush water rebounding portion 87 can close at least a part of the gap A 83 corresponding to the flush water rebounding portion 87 in the axial direction view shown in FIG. 8B.
  • the flowing water return portion 87 can partially close the in-vehicle hollow portion S with respect to the outside world.
  • the water in the water flow passage 10 can be prevented from entering the in-vehicle cavity S from the radially outer side of the rotary shaft 21 in the axial direction view shown in FIG. 8B.
  • the flowing water rebounding portion 87 can connect the radially inner end 87 a of the flowing water rebounding portion 87 to the radially inner end 83 a of the one bucket 83. Further, the flowing water rebounding portion 87 can connect the radially outer end portion 87 b of the flowing water rebound portion 87 to the radially outer end portion 83 b of the other bucket 83. In the present embodiment, the flowing water return portion 87 is connected to the radially inner end 83a of one bucket 83 and the radially outer end 83b of the other bucket 83, as viewed in the axial direction shown in FIG. 8B.
  • the water in the water flow passage 10 can be prevented from entering the in-vehicle cavity S from the radially outer side of the rotation shaft 21 in the axial direction view shown in FIG. 8B.
  • the widthwise side ends of the flowing water return portion 87 are respectively connected to the support plate 28 in the same manner as the bucket 83.
  • the flowing water return portion 87 can completely close the plurality of gaps A 83 arranged in the circumferential direction, as viewed in the axial direction shown in FIG. 8B.
  • the flush water return portion 87 can make the entire in-vehicle cavity S into a closed space closed in the circumferential direction. This makes it possible to almost completely prevent the water in the water flow passage 10 from entering the in-vehicle cavity S.
  • the power transmission device 40 is a chain type power transmission device.
  • the power transmission device 40 includes an input gear 811 fixed to the rotation shaft 21 of the water wheel 80, an output gear 822 fixed to the input rotation shaft of the generator 30, and the input gear 811 and the output gear 822. It has a gear chain 833 bridged between them.
  • FIG. 8B the left side of the drawing is the upstream side of the flow passage 10
  • the right side of the drawing is the downstream side of the flow passage 10.
  • the bucket 83 at position A receives water from the upstream.
  • the water power received by the pressure receiving surface 84 of the bucket 83 at the position A rotates the water wheel 80 counterclockwise with respect to the drawing.
  • a part of the water received by the bucket 83 at the position A is guided along the pressure receiving surface 84 of the bucket 83 toward the in-vehicle cavity S.
  • the water guided toward the in-vehicle cavity S by the bucket 83 at the position A is blocked by the flowing water return portion 87 between the location A and the position H. I will not enter S.
  • the position between the bucket 83 at the position A and the bucket 83 at the position B located downstream of the bucket 83 is below the water surface F.
  • the water between the bucket 83 at position A and the bucket 83 at position B may enter the in-vehicle cavity S by being blocked by the flowing water return portion 87 between the position A and the position B. Absent.
  • the flowing water return portion 87 prevents the water from entering the in-vehicle cavity S while Allow water to drain downstream.
  • the flowing water return portion 87 discharges the water to the downstream side while preventing the water from entering the in-vehicle cavity S.
  • the water collected between the position C and the position D and collected between the bucket 83 and the flowing water return portion 87 is discharged radially outward by the rotation of the water wheel 80 (so-called centrifugal force).
  • the linear hydroelectric power generation apparatus 500 which concerns on this embodiment has the following effects by using the water turbine 80 which provided the running water return part 87.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • a large power can be obtained by securing a large flow force (water velocity V, water amount of the flow passage 10) of the flow passage 10.
  • the rotational resistance that may be generated when the unnecessary water flow force from the bucket 83 enters the in-vehicle cavity S is suppressed, and the reduction of the rotational speed of the water wheel 80 can be suppressed. For this reason, according to the present embodiment, it is possible to obtain larger power.
  • the resistance of the water expelled from the bucket 83 is suppressed. For this reason, according to the present embodiment, it is possible to obtain larger power.
  • the rotational speed and rotational torque of the water wheel 80 can be increased by the reaction force obtained by the flowing water return portion 87 repelling the water power entering the water wheel 80.
  • the water wheel 80 can be hollowed while preventing the inflow of water flow force into the water wheel 80. For this reason, according to this embodiment, weight reduction of the water wheel 80 can be achieved.
  • the strength of the bucket 83 (long wing) can be improved. That is, the flowing water return portion 87 functions as a reinforcing material of the bucket 83. For this reason, according to the present embodiment, the strength of the bucket 83 and hence the strength of the water wheel 80 can be improved. In other words, according to the present embodiment, the durability of the linear hydroelectric power generation device can be improved.
  • the water wheel 80 provided with the flowing water return portion 87 between the two buckets 83 arranged adjacent to each other in the circumferential direction of the rotating shaft 21 is used. It is possible to obtain a power generation device excellent in power generation efficiency comparable to that of the Pelton turbine. Therefore, according to the linear hydroelectric power generation apparatus 500 which concerns on this embodiment, large electric power can be efficiently obtained also in the canal with a small height difference, etc., without utilizing big head, such as a dam.
  • the flowing water return portion 87 is connected to the radially inner end 83 a of one bucket 83 and the radially outer end 83 b of the other bucket 83.
  • the strength of the bucket 83 can be further improved.
  • the flowing water return portion 87 is connected to the radially inner end 83 a of one bucket 83 and the radially outer end 83 b of the other bucket 83. In this case, in any of the radially inner end 83 a and the radially outer end 83 b of the bucket 83, deformation that may occur due to the water force is suppressed.
  • the radially inner end portions 83a of the buckets 83 are curved surfaces that are convex radially inward toward the rotation shaft 21 in the axial direction as shown in FIG. 8B.
  • the radially inner end portion 83 a of the bucket 83 is configured to have a curvature radius R 87 as viewed in the axial direction.
  • the bucket 83 and the running water return part 87 are separately comprised, for example, are connected using means, such as welding.
  • the bucket 83 and the flush water return portion 87 can be, for example, an integrally formed product formed by performing a pressing process or the like on a single plate material.
  • the specification of the water flow path 10 is as follows.
  • the water depth D10 is 500 mm.
  • the water immersion depth D80 of the water wheel 80 is 250 mm.
  • the present embodiment is suitable for use in a water flow channel having a water velocity V of 2 m / s to less than 5 m / s.
  • the specifications of the water wheel 80 are as follows.
  • the water wheel 80 has eight long wings.
  • the long wing is a flat bucket 83.
  • the diameter R80 of the water wheel 80 is 1000 mm.
  • the water wheel width W80 is 1000 mm.
  • the bucket width W83 is preferably 1 inch (about 303 mm) or more.
  • the water turbine radial direction length L83 of the bucket 83 is 250 mm.
  • the length L 87 of the flowing water return portion 87 is 350 mm in the axial direction.
  • the radius of curvature R87 of the radially inner end portion 83a of the bucket 83 is the radius of curvature as viewed in the axial direction, and the radius can be set as appropriate.
  • an angle ⁇ between the bucket 83 and the flowing water return portion 87 is 75 degrees.
  • the specifications of the power transmission device 40 are as follows.
  • the gear number G1 of the input gear 811 is 65 pitches.
  • the gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 5: 1.
  • the rotational torque of the water wheel 80 shown in FIG. 8A can be 550 ⁇ 9.8 Nm (550 kgf).
  • FIG. 9A is a modified example of the linear hydroelectric power generation device according to FIGS. 8A and 8B, and is a cross-sectional view showing the modified example in a cross section corresponding to the CC cross section of FIG. 8A.
  • the specifications of the water flow passage 10 and the water wheel 80 are the same as those of the linear hydroelectric power generation apparatus shown in FIGS. 8A and 8B.
  • the specifications of the power transmission device 40 are as follows.
  • the diameter of the input gear 811 is reduced in the power transmission device 40 of FIG. 8A.
  • the gear number G1 of the input gear 811 is 39 pitches, and the gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 3: 1.
  • 150 rpm or more can be ensured as rotation speed of the generator 30 by using according to these conditions under the flowing water channel 10 of the specification mentioned above.
  • the rotational torque of the water wheel 80 of the water wheel 80 shown in FIG. 9A can be 450 ⁇ 9.8 Nm (450 kgf).
  • the linear hydroelectric power generation device it is preferable to change the number of long blades of the water wheel 80 according to the water velocity V of the water flow passage 10. As a specific example, it is preferable to decrease the number of long blades of the water wheel 80 as the water velocity V increases.
  • 9B is another modification of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modification in a cross section corresponding to a cross section taken along a line CC in FIG. 8A.
  • the standard of the water flow passage 10 is basically the same as that of the linear hydroelectric power generator of FIG. 8A etc., but in the present embodiment, the water velocity V is for use in the water flow passage of 5 m / s or more. It is suitable.
  • the specifications of the water wheel 80 are as follows.
  • the water wheel 80 has six long wings.
  • the long blade is composed of a flat plate bucket 83 as in the linear hydroelectric power generation apparatus of FIG. 8A and the like.
  • the diameter R80 of the water wheel 80, the water wheel width W80, and the bucket width W83 are the same as those of the linear hydroelectric power generation device of FIG. 8A and the like.
  • the hydraulic turbine radial direction length L83 of the bucket 83 is 250 mm.
  • the length L 87 of the flowing water return portion 87 is 430 mm in the axial direction.
  • the radius of curvature R87 of the radially inner end portion 83a of the bucket 83 is the radius of curvature as viewed in the axial direction, and the radius can be set as appropriate.
  • the standard of the power transmission device 40 is the same as that of the power transmission device 40 of FIG. 9A.
  • the gear number G1 of the input gear 811 is 39 pitches.
  • the gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 3: 1.
  • the rotational torque of the water wheel 80 shown in FIG. 9B can be 250 ⁇ 9.8 Nm (250 kgf).
  • FIG. 10 is a further modified example of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modified example in a cross section corresponding to a cross section taken along line CC of FIG. 8A.
  • the flowing water rebounding portion 87 can be applied to the water wheel 20 of FIG. 3A or the like.
  • the radially inner end 87a of the flowing water return portion 87 is a connection portion between the bucket 23 and the bucket auxiliary plate 27 along the radial direction of the rotary shaft 21 in the axial direction view shown in FIG.
  • the radially inner end 27a of the bucket auxiliary plate 27 can be disposed at any position.
  • the radially inner end 87 a of the flowing water return portion 87 is connected to the radially inner end 27 a of the bucket auxiliary plate 27.
  • the radially inner end 87 e 1 of the flowing water return portion 87 coincides with the radially inner end of the bucket auxiliary plate 27.
  • the “connection portion between the bucket 23 and the bucket auxiliary plate 27” corresponds to the radially inner end 23 a of the bucket 23 when the water wheel 20 is viewed as the bucket 23 alone.
  • the said connection part is corresponded to the radial direction outer side edge part 27b of the said bucket auxiliary plate 27, when the water turbine 20 is seen by the bucket auxiliary plate 27 single-piece
  • the “radially outer end portion of the other bucket” to which the other one of the flowing water return parts 87 is connected can be a portion of the bucket 23 having the linear pressure receiving surface 25.
  • the radially outer end portion 87 b of the flowing water return portion 87 is connected to the radially outer end portion (tip portion) 23 b of the bucket 23.
  • the flowing water return portion 87 be extended so as to coincide with a straight line that forms the pressure receiving surface 25 in an axial view as shown in FIG.
  • the radially outer end 87 e 2 of the flowing water return portion 87 coincides with the radially outer end (tip) of the bucket 23.
  • the bucket 23 and the flowing water return portion 87 are formed by, for example, pressing a single plate material. That is, in the present embodiment, the bucket 23 and the flush water return part 87 are an integrally molded product.
  • each water flow passage is preferably linear as shown in a plan view of FIG. 1 and the like, but according to the present invention, each water flow passage is curved. You can also.
  • the long wing of the water wheel can be configured of only a bucket, or either of a bucket and a bucket auxiliary plate.
  • each configuration of the linear hydroelectric power generation device according to each embodiment described above for example, each configuration of the long blade and bucket of the water turbine, and each configuration of the linear hydroelectric power generation device according to the modification described above, for example, the long blade of the water turbine
  • the respective configurations of the buckets can be used by appropriately replacing each other or in combination.
  • the diameter of the water wheel can be changed as appropriate. In particular, if the diameter of the water wheel is reduced, the rotational speed of the water wheel can be increased.

Abstract

Provided is a hydraulic power generation device with which, using the cross-flow water power of a river with a small fall, makes it possible to provide a facility having a desired size with respect to an arbitrary space. The linear hydraulic power generation device 100 comprises: a flow pathway 10 having a slope; a plurality of water wheels 80 arranged in the flow pathway 10; and a generator driven by means of the water wheels 80. The water wheels 80 include a rotating shaft 21, and a plurality of buckets 83 arranged in the circumferential direction of the rotating shaft 21. The flow pathway 10 has a water depth D10 which is more than or equal to twice a depth D80 at which the buckets 83 are immerged in running water. The water wheels 80 further include support plates on both sides in the width direction of the buckets 83. The support plates are respectively fixed to both sides in the width direction of the buckets 83. The water wheels 80 include running water rejection units 87 each disposed between two buckets 83 arranged adjacent to each other in the circumferential direction of the rotating shaft 21, the running water rejection units 87 extending between a radially inner end portion 83a of one bucket 83 and a radially outer end portion 83b of another bucket 83.

Description

リニア水力発電装置Linear hydroelectric generator
 [関連技術]
 この出願は、2017年9月21日付で日本国特許庁に対して出願された特願2017-181769号、及び、2018年3月12日付で日本国特許庁に対して出願された特願2018-044764号に関する優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
[Related Art]
This application is related to Japanese Patent Application No. 2017-181769 filed with the Japanese Patent Office on September 21, 2017, and Japanese Patent Application No. 2018 filed on March 12, 2018 with the Japanese Patent Office. No. -044764, the entire disclosure of which is incorporated herein by reference.
 本発明は、リニア水力発電装置に関するものである。リニア水力発電装置は、例えば、河川、用水路等の、横流の水流の水勢力エネルギーを主として活用し、流水路の延在方向に間隔を置いて配置された複数の水車がそれぞれ、各発電機を駆動させるものである。言い換えれば、本発明に係るリニア水力発電装置は、複数の水車発電機を流水路の延在方向に間隔を置いて配置し、各水車発電機の電力を集積して総合電力を生産する、長列の連続水流発電装置である。 The present invention relates to a linear hydroelectric generator. The linear hydroelectric power generation apparatus mainly utilizes water energy energy of a cross flow such as a river and a canal, and a plurality of turbines arranged at intervals in the extension direction of the water flow respectively have their respective generators. It is made to drive. In other words, in the linear hydroelectric power generation apparatus according to the present invention, a plurality of water turbine generators are arranged at intervals in the extension direction of the flow channel, and the electric power of each water turbine generator is integrated to produce integrated electric power. It is a row of continuous water flow generators.
 安全性(原子力発電等の危険発電を抑止する)、地球温暖化等の問題から、近年、地球環境にやさしい水力発電装置が必要視されてきた。従来の水力発電装置としては、ダム等の貯水エネルギーを利用し、当該貯水の落下により水車を回転させるものであった(例えば、特許文献1参照。)。 In recent years, there has been a need for a hydroelectric device that is friendly to the global environment because of problems with safety (suppressing dangerous power generation such as nuclear power generation) and global warming. A conventional hydroelectric power generation apparatus utilizes stored water energy such as a dam, and rotates a water turbine by the drop of the stored water (see, for example, Patent Document 1).
特開2001-172948号公報JP 2001-172948
 しかしながら、このように、従来の水力発電装置は、位置エネルギーによる水力発電機一色であり、流水によって連続的に電力を発生させるために、流水の横流水流エネルギーを活用するものとは全く無関係であった。即ち、従来の水力発電装置は、主として高所からの水勢力の落下エネルギー(位置エネルギー)のみを利用したものである。このため、従来の水力発電装置には、水力発電装置の施設場所が高低差の大きなダム周辺等に制限されるという問題がある。また、こうした従来の水力発電装置の場合、主として高い発電能力を想定している。このため、従来の水力発電装置には、水力発電装置に要する設備が大型化するという問題もある。またこうした従来の水力発電装置は、山岳地域に施設するため、送電経路にも高電圧遠距離送電を必要とするという問題がある。 However, as described above, the conventional hydroelectric power generation system is a full-color hydroelectric generator, and is completely unrelated to the utilization of the crossflow water flow energy of the flowing water in order to generate power continuously by the flowing water. The That is, the conventional hydroelectric power generation apparatus mainly utilizes only the falling energy (potential energy) of the water power from a high place. For this reason, the conventional hydroelectric power generation device has a problem that the facility location of the hydroelectric power generation device is restricted to the vicinity of a dam having a large difference in elevation. Moreover, in the case of such a conventional hydroelectric power generation apparatus, high power generation capacity is mainly assumed. For this reason, the conventional hydroelectric power generation apparatus also has a problem that equipment required for the hydroelectric power generation apparatus increases in size. In addition, since such a conventional hydroelectric power plant is installed in a mountainous area, there is a problem that high voltage long distance power transmission is also required for the power transmission path.
 本発明の目的は、落差の少ない様々な場所の、任意のスペースに対して、所望の大きさの施設が可能な、水力発電装置を提供することである。 An object of the present invention is to provide a hydroelectric power generator capable of a facility of a desired size for any space in various places with a low head.
 本発明に係るリニア水力発電装置は、勾配を有して流水が流れる流水路と、前記流水路内に、当該流水路の延在方向に間隔を置いて配置された複数の水車と、前記水車によってそれぞれ駆動される発電機と、を有し、前記水車は、前記流水路の幅方向に延在する回転軸と、前記回転軸の周方向に間隔を置いて配置された複数のバケットと、を有し、前記流水路の水深は、前記バケットが前記流水に浸水する深さの2倍以上であり、又は、前記流水路を通過する水量は、前記バケットの水流妨害抵抗分の水量の2倍以上である。 A linear hydroelectric power generation apparatus according to the present invention comprises a water flow channel having a gradient and flowing water, a plurality of water wheels disposed in the water flow channel at intervals in the extension direction of the water flow channel, and the water wheel And a generator driven by each of the plurality of buckets, wherein the water turbine has a rotating shaft extending in the width direction of the water flow passage, and a plurality of buckets spaced in the circumferential direction of the rotating shaft. The water depth of the water flow passage is twice or more the depth at which the bucket is submerged in the water flow, or the amount of water passing through the water flow passage is two times the amount of water of the water flow blocking resistance of the bucket More than double.
 更に、本発明に係るリニア水力発電装置において、前記水車は、前記バケットの幅方向両側に支持板を更に有し、前記支持板は、それぞれ、前記バケットの幅方向両側に固定されており、更に、前記水車は、前記回転軸の周方向に隣接して配置された2つのバケットの間に、一方の前記バケットの径方向内側端部又は前記バケットから前記回転軸に向かって延在するバケット補助板の径方向内側端部と、他方の前記バケットの径方向外側端部との間を延在する流水跳ね返し部を有している。 Furthermore, in the linear hydroelectric power generation device according to the present invention, the water wheel further includes support plates on both sides in the width direction of the bucket, and the support plates are respectively fixed on both sides in the width direction of the bucket. The water wheel is a bucket auxiliary that extends from a radially inner end of one of the buckets or from the bucket toward the rotation shaft between two buckets disposed adjacent to a circumferential direction of the rotation shaft. It has a flowing water return portion extending between the radially inner end of the plate and the radially outer end of the other bucket.
 本発明に係るリニア水力発電装置は、水流の水勢力と水量とを根源とする、流水の横流水流エネルギーを活用するものである。流水路の延在方向に間隔を置いて配置した複数の水車を、当該間隔で稼動させるために、バケットの下方に、当該バケットが水圧を受ける深さの2倍以上の深さの水量を確保し、当該水量の流水を水車の下方に遊水させることにより得られる水流エネルギーを活用し、又は、前記流水路を通過する水量は、前記バケットの水流妨害抵抗分の水量の2倍以上を確保し、当該バケットの周囲を流れる水流により得られる水流エネルギーを活用する。本発明に係るリニア水力発電装置によれば、水車を回転させることによる、当該水車のバケットの受圧抵抗によって水流全体の水勢力が減少しても、当該水勢力には、水車のバケットが流水に浸水する深さの2倍以上の水深を有する流水路において、水車下方に形成された遊水流勢力と、水車間の流水路と、当該流水路の勾配とにより、これらが合成水流勢力となることで、次々と水車を回転させることによって減少した水勢力は、次の水車に向かって流動する間に再び高まることになる。これにより、流水路に沿って配置された各発電機からは、その流水路、流量に応じた大小の均等な電力を取り出すことができる。 The linear hydroelectric power generation apparatus according to the present invention utilizes cross flow energy of flowing water, which is based on the water power and amount of water flow. In order to operate a plurality of water wheels arranged at intervals in the extension direction of the water flow channel at the intervals, a water quantity of a depth twice or more the depth to which the buckets receive water pressure is secured below the bucket Use the water flow energy obtained by making the water flow of the said water flow below the water wheel, or the amount of water passing through the water flow channel secures at least twice the amount of water of the water flow blocking resistance of the bucket And utilizing the flow energy obtained by the flow of water flowing around the bucket. According to the linear hydroelectric power generation device according to the present invention, even if the water power of the entire water flow is reduced by the pressure receiving resistance of the bucket of the water turbine by rotating the water turbine, the bucket of the water turbine is flowing into the water In a water flow channel having a water depth twice or more the depth of the inundation, these become a combined flow power by the water flow force formed below the water turbine, the water flow channel between the water turbines, and the gradient of the water flow channel. Then, the water power reduced by rotating the water turbine one after another will increase again while flowing toward the next water turbine. As a result, from each generator disposed along the water flow passage, it is possible to take out equal amounts of power according to the flow passage and the flow rate.
 また、本発明に係るリニア水力発電装置によれば、バケットを有する、所望数の水車を使用することによって落差の少ない水流の水勢力を効率的に受けることができ、更に、河川、用水路等の「水量」と「水速度」のエネルギー(運動エネルギー)との相乗効果と、複数の発電機からの連続的な電力の集積とが相俟って、発電力を増大させることができる。従って、本発明に係るリニア水力発電装置によれば、落差の少ない様々な場所の、任意のスペースに対して、所望の大きさの施設が可能になる。 In addition, according to the linear hydroelectric power generation device according to the present invention, by using a desired number of water wheels having buckets, it is possible to efficiently receive the water power of a water flow with a small head, and further, a river, a canal, etc. The synergetic effect of the "water volume" and the "water velocity" energy (kinetic energy) together with the continuous accumulation of electric power from the multiple generators can increase the power generation capacity. Therefore, according to the linear hydroelectric power generation apparatus according to the present invention, a facility of a desired size can be provided for any space in various places with a small head.
 加えて、本発明に係るリニア水力発電装置によれば、前記流水跳ね返し部は、前記バケット間に形成される隙間を、少なくとも部分的に閉じることができるので、水が水車内に進入することを抑制することができる。 In addition, according to the linear hydroelectric power generation device according to the present invention, the flowing water return portion can at least partially close the gap formed between the buckets, so that the water enters the water wheel. It can be suppressed.
 本発明に係るリニア水力発電装置において、前記バケットの受圧面は、前記回転軸の軸方向視で、流体の流れ方向に向かって半円筒形に湾曲した受圧面であることが好ましい。 In the linear hydraulic power generator according to the present invention, preferably, the pressure receiving surface of the bucket is a pressure receiving surface curved in a semi-cylindrical shape in a fluid flow direction as viewed in the axial direction of the rotation shaft.
 本発明に係るリニア水力発電装置において、前記バケットは、前記回転軸の軸方向視で、当該バケットの先端部に直線形(平面状)の受圧面を有するものとすることができる。 In the linear hydroelectric power generation device according to the present invention, the bucket may have a linear (planar) pressure receiving surface at a tip end portion of the bucket as viewed in the axial direction of the rotation shaft.
 本発明に係るリニア水力発電装置において、前記流水跳ね返し部は、前記一方の前記バケットの前記径方向内側端部と、前記他方の前記バケットの前記径方向外側端部とに連結されており、前記回転軸の周方向に隣接して配置された2つのバケットの間に形成された、当該流水跳ね返し部に対応する隙間を閉じているものとすることができる。 In the linear hydroelectric power generation apparatus according to the present invention, the flowing water return portion is connected to the radially inner end of the one bucket and the radially outer end of the other bucket, The gap corresponding to the flowing water return portion, which is formed between two buckets disposed adjacent to the circumferential direction of the rotation shaft, may be closed.
 本発明に係るリニア水力発電装置において、前記水車は、前記回転軸の周方向に延在して前記バケットの先端のそれぞれを一体に固定するバケット補強部を更に有することが好ましい。 In the linear hydroelectric power generation apparatus according to the present invention, preferably, the water wheel further includes a bucket reinforcing portion that extends in the circumferential direction of the rotation shaft and integrally fixes the respective tips of the buckets.
 本発明に係るリニア水力発電装置において、前記流水路は、流体の流入を遮断する流体流入遮断部を有するものとすることができる。 In the linear hydroelectric power generation device according to the present invention, the water flow passage may have a fluid inflow blocking portion that blocks the inflow of fluid.
 本発明によれば、落差の少ない様々な場所の、任意のスペースに対して、所望の大きさの施設が可能な、水力発電装置を提供することができる。従って、本発明によれば、大容量の電力供給から小容量の電力供給に至るまで幅広い範囲の設備が可能となる。 According to the present invention, it is possible to provide a hydroelectric power generation device capable of a facility of a desired size for any space in various places with a low head. Therefore, according to the present invention, a wide range of equipment is possible from large-capacity power supply to small-capacity power supply.
本発明の第1実施形態に係るリニア水力発電装置の平面図である。It is a top view of the linear hydraulic power unit concerning a 1st embodiment of the present invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA of FIG. 図1をB-B断面方向から示す正面図である。FIG. 2 is a front view showing FIG. 1 from the BB cross-sectional direction. 図2BのC-C断面図である。It is CC sectional drawing of FIG. 2B. 図3AのD-D断面図である。It is DD sectional drawing of FIG. 3A. 本発明の第2実施形態に係るリニア水力発電装置の平面図である。It is a top view of the linear hydraulic power unit concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係るリニア水力発電装置を、図1のB-B断面相当の断面で示した図である。It is the figure which showed the linear hydroelectric power generating apparatus which concerns on 3rd Embodiment of this invention with the cross section equivalent to the BB cross section of FIG. 本発明の変形例に係るリニア水力発電装置を、図3AのD-D断面相当の断面で示した図である。It is the figure which showed the linear hydraulic power unit concerning the modification of the present invention by the section equivalent to the DD section of Drawing 3A. 図6AのC-C断面図である。It is CC sectional drawing of FIG. 6A. 本発明に係るリニア水力発電装置の水車に適用可能なバケットの形態を、図2BのC-C断面相当の断面で示した図である。It is the figure which showed the form of the bucket applicable to the water turbine of the linear hydraulic power unit which concerns on this invention by the cross section equivalent to the CC cross section of FIG. 2B. 本発明の他の変形例に係るリニア水力発電装置を、図1のB-B断面に相当する方向から示す正面図である。FIG. 7 is a front view showing a linear hydroelectric power generation device according to another modification of the present invention, as seen from the direction corresponding to the cross section BB of FIG. 1. 図8AのC-C断面図である。It is CC sectional drawing of FIG. 8A. 図8Aに係るリニア水力発電装置の変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。It is a modification of the linear hydraulic power unit concerning Drawing 8A, and is the sectional view showing the modification concerned in the section equivalent to the CC section of Drawing 8A. 図8Aに係るリニア水力発電装置の他の変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。FIG. 8B is a cross-sectional view showing another modified example of the linear hydroelectric power generation apparatus according to FIG. 8A, as a cross section corresponding to the CC cross section of FIG. 8A. 図8Aに係るリニア水力発電装置の更なる変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。FIG. 8B is a further modified example of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modified example in a cross section corresponding to the CC cross section of FIG. 8A.
 以下、図面を参照して、本発明の様々な実施形態に係るリニア水力発電装置について説明をする。 Hereinafter, linear hydroelectric power generation apparatuses according to various embodiments of the present invention will be described with reference to the drawings.
 図1には、本発明の第1実施形態に係るリニア水力発電装置100を示す。 FIG. 1 shows a linear hydroelectric power generation device 100 according to a first embodiment of the present invention.
 図1中、符号10は、水(流体)が流れる流水路である。流水路10は、河川からの放流水等の水流の水勢力を取水し、当該水勢力を長距離にわたって保持しつつ、河川等からの水を流動させる。図1中、白抜き矢印は、水流方向を示す。本実施形態では、流水路10は、図1に示す平面視(平面図)で、直線状に延在している。 In FIG. 1, reference numeral 10 is a water flow passage through which water (fluid) flows. The water flow path 10 takes in the water power of a water flow such as discharged water from a river, and allows water from a river or the like to flow while holding the water power over a long distance. The white arrow in FIG. 1 indicates the water flow direction. In the present embodiment, the water flow passage 10 extends linearly in a plan view (plan view) shown in FIG.
 また、本実施形態では、図2Aに示すように、流水路10は、勾配を有した流水路である。ここで、勾配は、水平面に対する傾き(角度)θを意味する。詳細には、流水路10は、後述するように、水流の上流から下流に向かって角度θで下がっていくように施設されている。流水路10の角度θは、例えば、1mmrad(ミリラジアン)~2mmrad(ミリラジアン)とする。 Moreover, in the present embodiment, as shown in FIG. 2A, the water flow passage 10 is a water flow passage having a slope. Here, the slope means an inclination (angle) θ with respect to the horizontal plane. In detail, the water flow passage 10 is installed so as to decrease at an angle θ from the upstream to the downstream of the water flow, as described later. The angle θ of the water flow passage 10 is, for example, 1 mmrad (milliradian) to 2 mmrad (milliradian).
 また、本実施形態では、流水路10は、図2Bの正面視で、断面U字(u字)状の流水路である。詳細には、図2Bに示すように、流水路10は、平板状の底壁11と、底壁11の幅方向両端から上向きに起立する2つの側壁12とで区画された、コの字上向きの長方形トラフ型水路である。 Further, in the present embodiment, the water flow passage 10 is a water flow passage having a U-shaped (u-shaped) cross section in a front view of FIG. 2B. Specifically, as shown in FIG. 2B, the water flow passage 10 is formed in a U-shaped upward direction defined by a flat bottom wall 11 and two side walls 12 which rise upward from both widthwise ends of the bottom wall 11. Rectangular trough channel.
 更に、本実施形態では、流水路10は、プレハブ工法式の流水路である。詳細には、図1に示すように、流水路10は、少なくとも1つの流水路部材(流路部材)として製作され、当該部材を施設現場で組み立てることで形成される。例えば、図1の流水路10は、1つの流水路部材として形成された流水路である。流水路部材は、例えば、金属、コンクリート等の材料で構成することができる。流水路10は、複数の流水路部材として、互いに接続して組み立てられることにより、長距離にわたって延在させることができる。 Furthermore, in the present embodiment, the water flow passage 10 is a prefabricated construction water flow passage. In detail, as shown in FIG. 1, the water flow passage 10 is manufactured as at least one water flow passage member (flow passage member), and is formed by assembling the member at a facility site. For example, the water flow passage 10 of FIG. 1 is a water flow passage formed as a single water flow passage member. The water flow passage member can be made of, for example, a material such as metal or concrete. The water flow passage 10 can be extended over a long distance by being connected and assembled as a plurality of water flow passage members.
 符号20は、流水路10内に配置された水車である。図1等に示すように、流水路10内には、複数の水車20が流水路10の延在方向に間隔を置いて配置されている。本実施形態では、1つの流水路10内に、2つの水車20が配置されている。但し、本発明によれば、大きな電力を取り出すことを目的にする場合、水車20は、より多数であることが好ましい。 Reference numeral 20 is a water wheel disposed in the water flow passage 10. As shown in FIG. 1 and the like, a plurality of water wheels 20 are disposed in the water flow passage 10 at intervals in the extension direction of the water flow passage 10. In the present embodiment, two water wheels 20 are disposed in one water flow passage 10. However, according to the present invention, when it is intended to take out a large amount of electric power, it is preferable that the number of water wheels 20 be more.
 水車20は、流水路10の幅方向に延在する回転軸21を有している。本実施形態では、回転軸21は、ベアリング22を介して流水路10の側壁12上に回転可能に支持されている。ベアリング22は、側壁12と一体に形成してもよい。水車20は、流水路10の幅方向に延在する幅W20(以下、「水車幅W20」ともいう。)を有している。また、図2A等に示すように、水車20は、直径R20の外径を有している。2つの水車20の間の間隔は、2つの回転軸21の中心間の距離L20(以下、「水車間ピッチ長さL20」ともいう。)である。水車間ピッチ長さL20は、角度θとの関係で設定することができる。例えば、水車間ピッチ長さL20は、一定の流速に回復する長さとすることが望ましい。 The water wheel 20 has a rotating shaft 21 extending in the width direction of the water flow passage 10. In the present embodiment, the rotation shaft 21 is rotatably supported on the side wall 12 of the water flow passage 10 via a bearing 22. The bearing 22 may be integrally formed with the side wall 12. The water wheel 20 has a width W 20 (hereinafter, also referred to as “water wheel width W 20”) extending in the width direction of the water flow passage 10. Moreover, as shown to FIG. 2A etc., the water turbine 20 has an outer diameter of diameter R20. The distance between the two water turbines 20 is a distance L20 between the centers of the two rotation shafts 21 (hereinafter, also referred to as “water turbine pitch length L20”). The inter-turbine pitch length L20 can be set in relation to the angle θ. For example, it is desirable that the inter-turbine pitch length L20 be a length that recovers to a constant flow velocity.
 また、水車20は、複数のバケット23を有している。図2Bに示すように、バケット23は、回転軸21の延在方向に延びるバケット幅W23を有し、後述するように、水を受ける受圧面を有している。図3Aに示すように、本実施形態では、回転軸21の軸方向視で、12個のバケット23が回転軸21の周方向に間隔を置いて配置されている。 Further, the water wheel 20 has a plurality of buckets 23. As shown in FIG. 2B, the bucket 23 has a bucket width W23 extending in the extension direction of the rotary shaft 21, and has a pressure receiving surface for receiving water as described later. As shown in FIG. 3A, in the present embodiment, twelve buckets 23 are arranged at intervals in the circumferential direction of the rotary shaft 21 as viewed in the axial direction of the rotary shaft 21.
 本実施形態では、バケット23は、それぞれ、図3A等に示すように、軸方向視で、水の流れ方向に向かって湾曲した受圧面24を有している。本実施形態では、湾曲した受圧面24は、回転軸21の軸方向視で、水の流れ方向に向かって半円筒形に湾曲した受圧面である。本実施形態では、湾曲した受圧面24は、曲率半径r24で構成されている。 In the present embodiment, as shown in FIG. 3A and the like, the buckets 23 each have a pressure receiving surface 24 curved in the water flow direction in an axial view. In the present embodiment, the curved pressure receiving surface 24 is a pressure receiving surface that is curved in a semi-cylindrical shape in the water flow direction as viewed in the axial direction of the rotation shaft 21. In the present embodiment, the curved pressure receiving surface 24 has a radius of curvature r24.
 更に、本実施形態では、バケット23は、図3A等に示すように、軸方向視で、バケット23の先端部(バケット23の径方向外側端部)に直線形の受圧面25を有している。詳細には、図3Aに示すように、受圧面25は、軸方向視で、湾曲した受圧面24の先端から水車20の最外径までの間を直線形とすることにより構成されている。直線形の受圧面25は、それぞれ、バケット幅W23にわたって延在する水掻き部として機能することで、流水路10に沿った直進水流の水勢力を、湾曲した受圧面24と共に受けて、水車20の回転力に変換することができる。更に、直線形の受圧面25は、それぞれ、後述のとおり、案内面として機能する。 Furthermore, in the present embodiment, as shown in FIG. 3A etc., the bucket 23 has a linear pressure receiving surface 25 at the tip end of the bucket 23 (radially outer end of the bucket 23) in the axial direction. There is. In detail, as shown in FIG. 3A, the pressure receiving surface 25 is configured by making the section from the tip of the curved pressure receiving surface 24 to the outermost diameter of the water wheel 20 linear in an axial view. Each of the linear pressure receiving surfaces 25 functions as a water scraping portion extending over the bucket width W 23 to receive the water power of the straight water flow along the water flow passage 10 together with the curved pressure receiving surface 24. It can be converted to a rotational force. Furthermore, each of the linear pressure receiving surfaces 25 functions as a guide surface as described later.
 図3Bに示すように、本実施形態では、水車20は、水車20が水を受ける受圧面積S20を有している。水車20の受圧面積S20は、図3Bに示すように、水車20の正面視で、バケット23が最下点に達した時点での受圧面積である。詳細には、水車20の受圧面積S20は、水車20が浸水した状態での水面Fからの水車20の浸水深さD20と、バケット幅W23との積(S20=D20×W23)である。本実施形態では、水車20の浸水深さD20は、バケット23の水車径方向長さL23と等しい。また、本実施形態では、流水路10の流路面積S10は、流水路10の水深D10と、流水路10の幅W10(以下、「流水路幅W10」ともいう。)との積(S10=D10×W10)である。本実施形態では、後述するように、流水路10の水深D10は、水車20のバケット23が流水に浸水する深さ、本実施形態では、水車20の浸水深さD20の2倍以上としている。 As shown in FIG. 3B, in the present embodiment, the water wheel 20 has a pressure receiving area S20 in which the water wheel 20 receives water. As shown in FIG. 3B, the pressure receiving area S20 of the water turbine 20 is a pressure receiving area when the bucket 23 reaches the lowest point in a front view of the water wheel 20. Specifically, the pressure receiving area S20 of the water wheel 20 is the product (S20 = D20 × W23) of the water immersion depth D20 of the water wheel 20 from the water surface F when the water wheel 20 is submerged, and the bucket width W23. In the present embodiment, the water immersion depth D20 of the water turbine 20 is equal to the water turbine radial direction length L23 of the bucket 23. Further, in the present embodiment, the flow passage area S10 of the flowing water passage 10 is the product (S10 =) of the depth D10 of the flowing water passage 10 and the width W10 of the flowing water passage 10 (hereinafter also referred to as "flowing water passage width W10"). D10 × W10). In the present embodiment, as described later, the water depth D10 of the water flow passage 10 is a depth at which the bucket 23 of the water turbine 20 is submerged in the water flow, and in the present embodiment, the water depth D10 is twice or more of the water immersion depth D20 of the water turbine 20.
 また、本実施形態では、流水路10の水深D10のうち、水面Fから水車20の浸水深さD20までの領域は、受圧水流層となる。本実施形態では、図3Bの一点鎖線で囲まれた領域で示すように、受圧水流層の流路面積S10-2は、流水路幅W10と水車20の浸水深さD20との積(S10-2=W10×D20)である。更に本実施形態では、水車20の浸水深さD20から流水路10の底面10fまでの領域は、水流の水勢力が水車20の影響を受けない遊水流層となる。本実施形態では、水車20の浸水深さD20から流水路10の底面10fまでの、水深D10に対する残部の深さ(以下、単に「残部深さ」ともいう。)をDfとすると、図3Bの破線で囲まれた領域で示すように、遊水流層の流路面積S10-1は、流水路幅W10と残部深さDfとの積(S10-1=W10×Df)である。即ち、本実施形態では、流水路10の流路面積S10は、受圧水流層の流路面積S10-2と、遊水流層の流路面積S10-1との和である。更に、流水路10を流れる水のうち、遊水流層の流路面積S10-1を通って下流に進む、遊水流層の体積(以下、「遊水流層体積」ともいう。)は、遊水流層の流路面積S10-1と、流水路10の延在方向の長さとの積である。この遊水流層体積分が、遊水流層の流路面積S10-1が下流に進んだときの体積となって、水流勢力を増加させる。なお、流水路10を流れる水のうち、受圧水流層の流路面積S10-2を通って下流に進む、受圧水流層の体積(以下、「受圧水流層体積」ともいう。)は、受圧水流層の流路面積S10-2と、流水路10の延在方向の長さとの積である。なお、図3Bでは、一点差線で囲まれた領域及び破線で囲まれた領域は、他の部分の外形線との重複を避けるため、実際よりも、小さく表記されている。 Further, in the present embodiment, in the water depth D10 of the water flow passage 10, a region from the water surface F to the water immersion depth D20 of the water wheel 20 is a pressure receiving water flow layer. In the present embodiment, as shown by the area surrounded by the alternate long and short dash line in FIG. 3B, the flow passage area S10-2 of the pressure receiving water flow layer is the product of the flow channel width W10 and the water immersion depth D20 of the water turbine 20 (S10- 2 = W10 × D20). Furthermore, in the present embodiment, a region from the inundation depth D20 of the water wheel 20 to the bottom surface 10f of the water flow passage 10 is a water flow layer in which the water power of the water flow is not affected by the water wheel 20. In this embodiment, assuming that the depth of the remaining portion from the inundation depth D20 of the water wheel 20 to the bottom surface 10f of the water flow path 10 with respect to the water depth D10 (hereinafter, also simply referred to as “remaining depth”) is Df. As shown by the area surrounded by the broken line, the flow passage area S10-1 of the water flow layer is the product (S10-1 = W10 × Df) of the flow channel width W10 and the remaining depth Df. That is, in the present embodiment, the flow passage area S10 of the water flow passage 10 is the sum of the flow passage area S10-2 of the pressure receiving water flow layer and the flow passage area S10-1 of the water flow layer. Furthermore, in the water flowing through the flowing water channel 10, the volume of the water flow layer (hereinafter also referred to as "water flow layer volume") that travels downstream through the flow channel area S10-1 of the water flow layer is the water flow. It is the product of the flow passage area S 10-1 of the layer and the length in the extension direction of the flowing water passage 10. The flooded flow layer volume integral serves as a volume when the flow passage area S10-1 of the flooded flow layer travels downstream, and increases the flow power. In the water flowing through the flowing water channel 10, the volume of the pressure receiving water flow layer (hereinafter also referred to as "pressure receiving water flow layer volume"), which proceeds downstream through the flow channel area S10-2 of the pressure receiving water flow layer, is the pressure receiving water flow. It is the product of the flow passage area S10-2 of the bed and the length in the extension direction of the water flow passage 10. In addition, in FIG. 3B, the area surrounded by the dashed-dotted line and the area surrounded by the broken line are described smaller than the actual size in order to avoid overlapping with the outline of the other part.
 更に、本実施形態では、水車20は、バケット23から回転軸21に向かって延在するバケット補助板27を更に有している。詳細には、バケット補助板27は、図3Aに示すように、軸方向視で、回転軸21に向かって延在する直線形で構成されている。本実施形態では、バケット補助板27は、バケット23と一体に構成されている。図3Aに示すように、バケット補助板27の一方の面(湾曲した受圧面24及び25と同一の面)も、補助的な受圧面26として機能させることができる。なお、本実施形態では、バケット補助板27は、図3Aに示すように、軸方向視で、回転軸21との間に環状の隙間Sを形成している。隙間Sは、水面Fから飛沫を逃がす穴として機能する。また、隙間Sは、水車20の回転中に当該水車20が受ける空気(風)の抵抗を抑えることができる。これにより、隙間Sは、水車20の効率的な回転動作を保証する機能も発揮させることができる。 Furthermore, in the present embodiment, the water wheel 20 further includes a bucket auxiliary plate 27 extending from the bucket 23 toward the rotation shaft 21. In detail, as shown in FIG. 3A, the bucket auxiliary plate 27 is configured in a linear shape extending toward the rotation shaft 21 in an axial direction. In the present embodiment, the bucket auxiliary plate 27 is configured integrally with the bucket 23. As shown in FIG. 3A, one surface of the bucket auxiliary plate 27 (the same surface as the curved pressure receiving surfaces 24 and 25) can also function as the auxiliary pressure receiving surface 26. In the present embodiment, as shown in FIG. 3A, the bucket auxiliary plate 27 forms an annular gap S with the rotary shaft 21 in the axial direction. The gap S functions as a hole for escaping droplets from the water surface F. Further, the gap S can suppress the resistance of the air (wind) received by the water wheel 20 while the water wheel 20 is rotating. Thus, the gap S can also exhibit the function of ensuring the efficient rotation operation of the water wheel 20.
 また、本実施形態では、図3B等に示すように、水車20は、バケット23の幅方向両側に支持板28を更に有している。2つの支持板28は、それぞれ、バケット23の幅方向両側に固定されている。本実施形態では、支持板28は、それぞれ、円盤状の板部材である。本実施形態では、支持板28は、それぞれ、バケット23の幅方向端に溶接されている。また本実施形態では、図3Bに示すように、2つの支持板28は、それぞれ、バケット補助板27の幅方向両側に、バケット23と同様、溶接等の方法により固定されている。なお、本実施形態では、水車20の回転軸21と支持板28との間にベアリング22を介在させているが、当該ベアリング22は省略することができる。 Moreover, in this embodiment, as shown to FIG. 3B etc., the water turbine 20 further has the support plate 28 in the width direction both sides of the bucket 23. As shown in FIG. The two support plates 28 are respectively fixed to both sides in the width direction of the bucket 23. In the present embodiment, the support plates 28 are respectively disk-shaped plate members. In the present embodiment, the support plates 28 are respectively welded to the widthwise ends of the buckets 23. Further, in the present embodiment, as shown in FIG. 3B, the two support plates 28 are respectively fixed to both sides in the width direction of the bucket auxiliary plate 27 by a method such as welding similarly to the bucket 23. In the present embodiment, the bearing 22 is interposed between the rotating shaft 21 of the water wheel 20 and the support plate 28, but the bearing 22 can be omitted.
 加えて、図3A等に示すように、本実施形態では、水車20は、回転軸21の周方向に延在してバケット23の先端のそれぞれを一体に固定するバケット補強部29を更に有している。バケット補強部29としては、例えば、回転軸21の周方向を周回する、ピアノ線又はスチール線が挙げられる。本実施形態では、図2Bに示すように、バケット補強部29は、バケット幅W23の中心の1箇所に設けられている。ただし、バケット補強部29は、バケット幅W23の方向に間隔を置いて複数設けることもできる。なお、本実施形態では、バケット補強部29は、図3Aに示すように、軸方向視で、円形としたが、バケット23の先端を直線的に繋いだ多角形としてもよい。 In addition, as shown in FIG. 3A etc., in the present embodiment, the water wheel 20 further includes a bucket reinforcing portion 29 which extends in the circumferential direction of the rotating shaft 21 and integrally fixes the respective tips of the buckets 23. ing. The bucket reinforcing portion 29 may be, for example, a piano wire or a steel wire which goes around the circumferential direction of the rotating shaft 21. In the present embodiment, as shown in FIG. 2B, the bucket reinforcing portion 29 is provided at one location at the center of the bucket width W23. However, a plurality of bucket reinforcing portions 29 can be provided at intervals in the direction of the bucket width W23. In the present embodiment, as shown in FIG. 3A, the bucket reinforcing portion 29 has a circular shape in the axial direction but may have a polygonal shape in which the tip end of the bucket 23 is linearly connected.
 また、図2Bに示すように、リニア水力発電装置100は、水車20によって駆動される発電機30を有している。本実施形態では、発電機30は、動力伝達装置40を介して、水車20の回転軸21に駆動結合されている。動力伝達装置40は、水車20の回転力及び回転速度を発電機30に伝達する。 Moreover, as shown to FIG. 2B, the linear hydroelectric power generation apparatus 100 has the generator 30 driven by the water mill 20. As shown in FIG. In the present embodiment, the generator 30 is drivably coupled to the rotation shaft 21 of the water wheel 20 via the power transmission device 40. The power transmission device 40 transmits the rotational force and rotational speed of the water wheel 20 to the generator 30.
 本実施形態では、動力伝達装置40は、ベルト式の動力伝達装置である。詳細には、動力伝達装置40は、水車20の回転軸21に固定された入力プーリ41と、発電機30の入力回転軸に固定された出力プーリ42と、これら入力プーリ41及び出力プーリ42の間に掛け渡されたVベルト43を有している。本実施形態では、入力プーリ41及び出力プーリ42を可変プーリとすることにより、発電機30に入力される回転力及び回転速度を適宜変更できるようにしている。また、本発明によれば、水車20の回転軸21と入力プーリ41との間及び出力プーリ42と発電機30の入力回転軸との間の少なくとも一方に、ロックアップ式のトルクコンバータ等の流体継手を介在させることができる。また、本発明によれば、動力伝達装置40は、ベルト式の動力伝達装置に換えて、チェーン式の動力伝達装置とすることもできる。動力伝達装置40をベルト式に代えてチェーン式とした場合、ベルト式に比べて動力伝達効率が向上する。特に、ギアチェーン式とした場合、ギアを変更することにより、発電機30に入力される回転力及び回転速度を適宜変更できる。 In the present embodiment, the power transmission device 40 is a belt type power transmission device. Specifically, the power transmission device 40 includes an input pulley 41 fixed to the rotation shaft 21 of the water wheel 20, an output pulley 42 fixed to the input rotation shaft of the generator 30, and the input pulley 41 and the output pulley 42. It has a V-belt 43 stretched between them. In this embodiment, by making the input pulley 41 and the output pulley 42 variable pulleys, the rotational force and the rotational speed input to the generator 30 can be appropriately changed. Further, according to the present invention, a fluid such as a lockup torque converter is provided between at least one of the rotary shaft 21 of the water wheel 20 and the input pulley 41 and between the output pulley 42 and the input rotary shaft of the generator 30. A joint can be interposed. Further, according to the present invention, the power transmission device 40 can be replaced with a belt-type power transmission device to be a chain-type power transmission device. When the power transmission device 40 is a chain type instead of the belt type, power transmission efficiency is improved as compared with the belt type. In particular, in the case of the gear chain type, the rotational force and the rotational speed input to the generator 30 can be appropriately changed by changing the gear.
 図2Aに示すように、本実施形態では、水車20の直径R20を1000mmとした場合、流水路10の取水口10aの水速度Vは、3~5m/sとしている。また、本実施形態では、流水路10の角度θは、1mmrad(ミリラジアン)~2mmrad(ミリラジアン)とすることが好ましい。角度θがそれ以上あれば、水の流れを維持することができる。なお、角度θの数値は例示的なものである。本発明によれば、角度θの数値は適宜変更することができ、例えば、角度θは、1°~2°でもよい。 As shown in FIG. 2A, in the present embodiment, when the diameter R20 of the water wheel 20 is 1000 mm, the water velocity V of the water intake 10a of the water flow passage 10 is 3 to 5 m / s. Further, in the present embodiment, the angle θ of the water flow passage 10 is preferably set to 1 mmrad (milliradian) to 2 mmrad (milliradian). If the angle θ is more than that, the flow of water can be maintained. The numerical values of the angle θ are exemplary. According to the present invention, the numerical value of the angle θ can be appropriately changed. For example, the angle θ may be 1 ° to 2 °.
 なお、本実施形態において、流水路10の長さ、大きさ、深さ(水深)、傾き等の、具体的な寸法、構造等は、流水路10の「水量」、「水速度」、「発電計画(電力生産計画)」によって決定することができる。 In the present embodiment, specific dimensions, structures, etc. of the length, size, depth (water depth), inclination, etc. of the water flow channel 10 are the “water volume”, “water velocity”, It can be determined by “power generation plan (electric power production plan)”.
 また、図3A及び図3Bに示すように、本実施形態において、流水路10の水深D10は、水車20の浸水深さD20に対して2倍以上の水深が必要である。この場合、流水路10の水深D10のうち、水面Fから水車20の浸水深さD20までの領域は、水車20が水勢力を受ける受圧水流層となり、水車20の浸水深さD20から流水路10の底面10fまでの領域は、水流の水勢力が水車20の影響を受けない遊水流層となる。本実施形態では、流水路10の水深D10は、550mm、水車20の浸水深さD20は、250mm、残部深さDfは、300mmである。なお、これらの数値は例示的なものである。本発明によれば、これらの数値は適宜変更することができる。 Further, as shown in FIGS. 3A and 3B, in the present embodiment, the water depth D10 of the water flow passage 10 needs to be twice or more the water depth of the water immersion depth D20 of the water wheel 20. In this case, in the water depth D10 of the water flow passage 10, a region from the water surface F to the water immersion depth D20 of the water turbine 20 is a pressure receiving water flow layer to which the water turbine 20 receives water power. The region up to the bottom surface 10 f of the water flow is a water flow layer in which the water power of the water flow is not affected by the water wheel 20. In the present embodiment, the water depth D10 of the water flow passage 10 is 550 mm, the immersion depth D20 of the water turbine 20 is 250 mm, and the remaining depth Df is 300 mm. Note that these numerical values are exemplary. According to the present invention, these numerical values can be changed as appropriate.
 図3Aに示すように、本実施形態では、水車20の直径R20は、1000mmとしている。また、バケット23の湾曲した受圧面24の曲率半径R24は、125mmとしている。また、バケット23の直線形の受圧面25の延在長さL25は、50mmとしている。更に、バケット補助板27の水車径方向長さ(受圧面26の長さ)L27は、50mmとしている。また、図3Bに示すように、本実施形態において、水車幅W20は、1000mmとしている。なお、これらの数値も例示的なものである。本発明によれば、これらの数値も適宜変更することができる。例えば、バケット23は、10個とすることができる。また、バケット幅W23は、1尺(約303mm)以上とすることが好ましい。 As shown in FIG. 3A, in the present embodiment, the diameter R20 of the water wheel 20 is 1000 mm. The curvature radius R24 of the curved pressure receiving surface 24 of the bucket 23 is 125 mm. The extension length L25 of the linear pressure receiving surface 25 of the bucket 23 is 50 mm. Furthermore, the water pump radial direction length (length of the pressure receiving surface 26) L27 of the bucket auxiliary plate 27 is 50 mm. Moreover, as shown to FIG. 3B, in this embodiment, the water wheel width W20 is 1000 mm. Note that these numerical values are also illustrative. According to the present invention, these numerical values can also be changed as appropriate. For example, the number of buckets 23 can be ten. In addition, it is preferable that the bucket width W23 be equal to or greater than one measure (about 303 mm).
 なお、本実施形態において、水車20の個数、配置間隔等、回転軸の軸方向長さ、大きさ(径)、形状等、バケット23(湾曲した受圧面24,直線形の受圧面25)の数、大きさ(径方向長さ、軸方向幅)、形状等の、具体的な寸法、構造等も、流水路10の「水量」、「水速度」、「発電計画(電力生産計画)」によって決定することができる。 In the present embodiment, the number of water wheels 20, the arrangement interval, etc., the axial length of the rotation shaft, the size (diameter), the shape, etc. of the bucket 23 (curved pressure receiving surface 24, linear pressure receiving surface 25) Number, size (radial length, axial width), shape, etc., as well as specific dimensions, structures, etc., “water volume” of the water flow passage 10, “water speed”, “power generation plan (electric power production plan)” It can be determined by
 また、本実施形態では、発電機30の回転数は、200~300rpmとしている。また、図1に示すように、本実施形態では、発電機30は、水車20の両側に接続されているが、少なくともいずれか一方の側にのみ、接続させることができる。また、図2Bに示すように、動力伝達装置40において、入力プーリ41及び出力プーリ42のプーリ比は、3~5としている。なお、これらの数値も例示的なものである。本発明によれば、これらの数値は適宜変更することができる。更に、発電機30は、水車20の回転軸21に対して直結させ、或いは、ロックアップ式のトルクコンバータを介して間接的に連結させることができる。 Further, in the present embodiment, the rotational speed of the generator 30 is 200 to 300 rpm. Further, as shown in FIG. 1, in the present embodiment, the generator 30 is connected to both sides of the water wheel 20, but can be connected to only at least one side. Further, as shown in FIG. 2B, in the power transmission device 40, the pulley ratio of the input pulley 41 and the output pulley 42 is set to 3 to 5. Note that these numerical values are also illustrative. According to the present invention, these numerical values can be changed as appropriate. Furthermore, the generator 30 can be directly connected to the rotating shaft 21 of the water wheel 20 or indirectly connected via a lockup torque converter.
 なお、本実施形態において、発電機30の個数、大きさ、出力電力、形状等の、具体的な寸法、構造等も、流水路10の「水量」、「水速度」、「発電計画(電力生産計画)」によって決定することができる。 In the present embodiment, the specific dimensions, structures, etc. of the number, size, output power, shape, etc. of the generators 30 are also included in the “water volume”, “water velocity”, “power generation plan (electric power Production plan) can be determined.
 図3Bに示すように、本実施形態に係るリニア水力発電装置100では、流水路10の流路面積S10は、水車20の受圧面積S20の2倍以上としている。この「2倍以上」という数値は、適切な水勢力を得るために、実験的に求められた数値である。この場合、水車20を回転させることによる、当該水車20のバケット23の受水抵抗(受圧抵抗)によって水流全体の水勢力が減少しても、当該水勢力には、次の水車20に向かって流動する間に、流水路10の勾配によって得られる水勢力と、直接水車20の回転に直接関連しない水深部分の流水(遊水流層を通る流水)の水勢力とが合成される。このため、次々と水車20を回転させることによって減少した水勢力は、次の水車20に向かって流動する間に再び高まることになる。これにより、流水路10に沿って配置された各発電機30からは、その河川(流水路)、水量(流量)に応じた大小の均等な電力を取り出すことができる。 As shown in FIG. 3B, in the linear hydroelectric power generation device 100 according to the present embodiment, the flow passage area S10 of the water flow passage 10 is twice or more the pressure receiving area S20 of the water turbine 20. The value of "more than 2 times" is a value obtained experimentally to obtain appropriate water power. In this case, even if the water power of the entire water flow is reduced due to the receiving resistance (pressure receiving resistance) of the bucket 23 of the relevant water turbine 20 by rotating the water turbine 20, the water content does not move toward the next water turbine 20. While flowing, the water power obtained by the gradient of the water flow channel 10 and the water power of the water flow (water flowing through the aquifer flow layer) of the water depth portion not directly related to the rotation of the water turbine 20 directly are synthesized. For this reason, the water power reduced by rotating the water wheel 20 one after another will increase again while flowing toward the next water wheel 20. Thereby, from each generator 30 arrange | positioned along the water flow path 10, the large and small equal electric power according to the river (water flow path) and water quantity (flow volume) can be taken out.
 詳細には、図3Bに示すように、流水路10の水深D10は、水車20が浸水した状態での水面Fからの水車20の浸水深さD20に対して2倍以上の水深である。この場合、水車20の浸水深さD20の2倍以上の水深D10を有する流水路10において、水車20よりも下方の、水車20に直接関連しない水深部分(本実施形態では、残部深さDfの領域の遊水流層)の水流の水勢力と、流水路10に沿って流動中に流水路10の勾配によって得られる水流の水勢力とが合成される。 Specifically, as shown in FIG. 3B, the water depth D10 of the water flow passage 10 is twice or more the water depth of the water immersion depth D20 of the water turbine 20 from the water surface F when the water turbine 20 is submerged. In this case, in the water flow passage 10 having a water depth D10 at least twice the inundation depth D20 of the water turbine 20, a water depth portion not directly related to the water turbine 20 below the water turbine 20 (in this embodiment, the remaining depth Df The water flow of the region's aquifer flow layer) and the water flow of the water flow obtained by the gradient of the flow passage 10 while flowing along the flow passage 10 are combined.
 また、本実施形態に係るリニア水力発電装置100によれば、バケット23を有する、所望数の水車20を使用することによって、水流の水勢力を効率的に受けることができ、更に、河川、用水路等の「水量」と「水速度」のエネルギー(運動エネルギー)との相乗効果と、複数の発電機からの連続的な電力の集積とが相俟って、発電力を増大させることができる。従って、本実施形態に係るリニア水力発電装置100によれば、河川、用水路等の「水量」、「水速度」、「発電計画(電力生産計画)」に応じて、例えば、流水路の長さ、大きさ、深さ(水深)、傾き等、水車の個数、配置間隔等、回転軸の軸方向長さ、大きさ(径)、形状等、バケット(受圧面)の数、大きさ(径方向長さ、軸方向幅)、形状等を、適宜、設定することにより、落差の少ない様々な場所の、任意のスペースに対して、所望の大きさの施設が可能になる。従って、本実施形態に係るリニア水力発電装置100によれば、大容量の電力供給から小容量の電力供給に至るまで幅広い範囲の設備が可能となる。 Further, according to the linear hydroelectric power generation apparatus 100 according to the present embodiment, by using a desired number of water wheels 20 having the buckets 23, the water power of the water flow can be efficiently received, and furthermore, the river and the waterway The combined effect of “water volume” and “water velocity” energy (kinetic energy), etc. and continuous accumulation of electric power from multiple generators can increase power generation. Therefore, according to the linear hydroelectric power generation apparatus 100 according to the present embodiment, the length of the water flow channel, for example, according to the "water volume", "water velocity", and "power generation plan (electric power production plan)" , Size, depth (water depth), inclination, etc., number of water wheels, arrangement interval, etc., axial length of rotary shaft, size (diameter), shape, etc., number of buckets (pressure receiving surface), size (diameter) By appropriately setting the direction length, the axial width), the shape, etc., a facility of a desired size can be obtained for any space of various places with a small head. Therefore, according to the linear hydroelectric power generation device 100 according to the present embodiment, a wide range of equipment is possible from the supply of a large amount of power to the supply of a small amount of power.
 特に図3Aに示すように、本実施形態に係るリニア水力発電装置100では、水車周辺水流体積VLは、水車浸水体積(水勢力抵抗体積)VWの5倍以上とすることができる。本実施形態では、図3Aの破線で囲まれた領域で示すように、「水車周辺水流体積VL」とは、「1つの水車の周辺の水流体積のうち、当該水車の直径間における水流体積」をいう。また本実施形態では、図3Aの一点鎖線で囲まれた領域で示すように、「水車浸水体積VW」とは、「流水路内の水に浸水している水車の体積」をいう。即ち、本実施形態では、「水車周辺水流体積VL」における、「流水路10の延在方向の長さ」は、「水車20の直径R20」である。この場合、水車20の水勢力抵抗分に関係なく、次の水車20も連続的に駆動させることができる。本実施形態では、水車20の間隔(水車間ピッチ長さL20)が1mあれば、上流から下流にかけて配置された、複数の水車20はそれぞれ、連続的かつ容易に回転する。なお、図3Aでも、破線で囲まれた領域及び一点差線で囲まれた領域は、他の部分の外形線との重複を避けるため、実際よりも、小さく表記されている。 In particular, as shown in FIG. 3A, in the linear hydroelectric power generation device 100 according to the present embodiment, the water wheel peripheral water flow volume VL can be five times or more of the water wheel flooded volume (water force resistance volume) VW. In the present embodiment, as shown by the region surrounded by the broken line in FIG. 3A, “the water flow volume around the water wheel VL” means “the water flow volume between the diameters of the water wheels among the water flow volumes around one water wheel” Say Moreover, in this embodiment, as shown by the area | region enclosed with the dashed-dotted line of FIG. 3A, "hydraulic water immersion volume VW" means "the volume of the water turbine submersed in the water in a water flow path." That is, in the present embodiment, the “length in the extension direction of the water flow passage 10” in the “water wheel peripheral water flow volume VL” is “the diameter R20 of the water wheel 20”. In this case, regardless of the water resistance of the water mill 20, the next water mill 20 can be driven continuously. In the present embodiment, when the distance between the water turbines 20 (water turbine pitch length L20) is 1 m, the plurality of water turbines 20 disposed from upstream to downstream rotate continuously and easily. In FIG. 3A as well, the area enclosed by a broken line and the area enclosed by a one-dot chain line are written smaller than they actually are in order to avoid overlapping with the outlines of other parts.
 また、本実施形態に係るリニア水力発電装置100では、バケット23の湾曲した受圧面24は、図3Aに示すように、軸方向視で、水の流れ方向に向かって半円筒形に湾曲した受圧面である。この場合、バケット23の湾曲した受圧面24が水流の水勢力をより効率的に受けることから、発電力をより増大させることができる。 Moreover, in the linear hydroelectric power generation device 100 according to the present embodiment, as shown in FIG. 3A, the pressure receiving surface 24 of the bucket 23 is curved in a semi-cylindrical shape toward the water flow direction as viewed in the axial direction. It is a face. In this case, since the curved pressure receiving surface 24 of the bucket 23 receives the water power of the water flow more efficiently, the power generation capacity can be further increased.
 また、本実施形態に係るリニア水力発電装置100では、バケット23は、図3Aに示すように、軸方向視で、当該バケット23の先端部に直線形の受圧面25を有している。この場合、バケット23の入水直後に、バケット23の直線形の受圧面25が案内面として、バケット23に水を、水流の流れに沿って効率的に導くことができることから、発電力をより増大させることができる。 Further, in the linear hydroelectric power generation apparatus 100 according to the present embodiment, as shown in FIG. 3A, the bucket 23 has a linear pressure receiving surface 25 at the tip of the bucket 23 in the axial direction. In this case, immediately after the bucket 23 enters the water, the linear pressure receiving surface 25 of the bucket 23 serves as a guiding surface and can efficiently guide the water to the bucket 23 along the flow of the water flow, thereby further increasing the power generation. It can be done.
 また、本実施形態に係るリニア水力発電装置100では、水車20は、バケット23から水車20の回転軸21に向かって延在するバケット補助板27を更に有している。この場合、バケット補助板27の受圧面26が、後述するように、バケット23と共に水流の水勢力を受けることにより、発電力をより増大させることができる。 Further, in the linear hydroelectric power generation device 100 according to the present embodiment, the water wheel 20 further includes a bucket auxiliary plate 27 extending from the bucket 23 toward the rotation shaft 21 of the water wheel 20. In this case, as described later, the pressure receiving surface 26 of the bucket auxiliary plate 27 receives the water power of the water flow together with the bucket 23, whereby the power generation capacity can be further increased.
 また、本実施形態に係るリニア水力発電装置100では、図3B等に示すように、水車20は、バケット23の幅方向両側に支持板(支持円板)28を更に有し、2つの支持板28は、それぞれ、バケット23の幅方向両側に固定されている。この場合、水車20全体の剛性が高まることから、水車20の耐久性、ひいては、リニア水力発電装置100全体の耐久性を向上させることができる。また、水車20全体の剛性が高まることから、水車20が構造的に安定する。これにより、水車20がより効率的に回転することから、発電力をより増大させることができる。 Further, in the linear hydroelectric power generation device 100 according to the present embodiment, as shown in FIG. 3B and the like, the water turbine 20 further has the support plate (support disc) 28 on both sides in the width direction of the bucket 23 28 are respectively fixed to the width direction both sides of the bucket 23. In this case, since the rigidity of the entire water turbine 20 is increased, it is possible to improve the durability of the water turbine 20 and, in turn, the durability of the entire linear hydroelectric power generation apparatus 100. In addition, since the rigidity of the entire water turbine 20 is increased, the water turbine 20 is structurally stable. Thereby, since the water mill 20 rotates more efficiently, power generation capacity can be increased more.
 また、本実施形態に係るリニア水力発電装置100では、図2B及び図3A等に示すように、水車20は、回転軸21の周方向に延在してバケット23の先端のそれぞれに固定されたバケット補強部29を更に有している。この場合、水車20全体の剛性が高まることから、水車20の耐久性、ひいては、リニア水力発電装置100全体の耐久性を向上させることができる。また、水車20全体の剛性が高まることから、水車20が構造的に安定する。これにより、水車20がより効率的に回転することから、発電力をより増大させることができる。 Further, in the linear hydroelectric power generation device 100 according to the present embodiment, as shown in FIG. 2B and FIG. 3A etc., the water wheel 20 extends in the circumferential direction of the rotating shaft 21 and is fixed to each tip of the bucket 23 It further has a bucket reinforcing portion 29. In this case, since the rigidity of the entire water turbine 20 is increased, it is possible to improve the durability of the water turbine 20 and, in turn, the durability of the entire linear hydroelectric power generation apparatus 100. In addition, since the rigidity of the entire water turbine 20 is increased, the water turbine 20 is structurally stable. Thereby, since the water mill 20 rotates more efficiently, power generation capacity can be increased more.
 また、図1に示すように、本実施形態に係るリニア水力発電装置100では、流水路10は、プレハブ工法式の流水路である。プレハブ工法式の流水路10は、流水路を予め、少なくとも1つの流路部材として製作し、当該部材を施設現場で組み立てることにより形成することができる。この場合、流水路10の組立て及び分解により、流水路10の施設及び撤去が可能となる。特に、後述するように、流水路10の取水口10aに水門等の、水の流入を阻止する流入阻止設備を配置すれば、台風、豪雨、異常気象等の状況下において、施設場所が災害区域に指定された場合、取水口の制御により、当該災害区域から容易かつ迅速に開放できるため、安全性も確保される。 Moreover, as shown in FIG. 1, in the linear hydroelectric power generation device 100 according to the present embodiment, the water flow passage 10 is a prefabricated construction water flow passage. The prefabricated construction flow channel 10 can be formed by manufacturing the flow channel in advance as at least one flow channel member and assembling the component at a facility site. In this case, the assembly and disassembly of the water flow passage 10 makes it possible to install and remove the water flow passage 10. In particular, as described later, if an inflow blocking facility such as a water gate is installed at the water intake 10a of the water flow passage 10, the facility location is a disaster area under circumstances such as typhoon, heavy rain, abnormal weather, etc. In addition, safety can also be ensured, since the intake can be easily and quickly released from the disaster area by controlling the intake.
 次に、図4を参照して、本発明の第2実施形態に係るリニア水力発電装置200について説明をする。なお、以下の説明において、第1実施形態と実質的に同一の部分は同一の符号をもって、その説明を省略する。 Next, referring to FIG. 4, a linear hydroelectric power generation apparatus 200 according to a second embodiment of the present invention will be described. In the following description, portions substantially the same as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施形態に係るリニア水力発電装置200は、第1リニア水力発電装置200Aと、第2リニア水力発電装置200Bとの、2つのリニア水力発電装置を有している。また、第1リニア水力発電装置200A及び第2リニア水力発電装置200Bは、それぞれ、第1流水路10Aと第2流水路10Bとの、2つの流水路で構成されている。本実施形態では、第1流水路10A及び第2流水路10Bは、それぞれ、河川からの放流水等の水流の水勢力を取水した用水路である。本実施形態では、第1流水路10A及び第2流水路10Bは、それぞれ、第1実施形態の流水路10と同様、図4に示す平面視で、直線状に延在している。 The linear hydroelectric power generation device 200 according to the present embodiment includes two linear hydroelectric power generation devices, a first linear hydroelectric power generation device 200A and a second linear hydroelectric power generation device 200B. The first linear hydroelectric power generation apparatus 200A and the second linear hydroelectric power generation apparatus 200B are respectively configured by two water flow channels of a first flow channel 10A and a second flow channel 10B. In the present embodiment, each of the first water flow passage 10A and the second water flow passage 10B is a water passage which takes in the water power of the water flow such as the discharged water from the river. In the present embodiment, each of the first water flow passage 10A and the second water flow passage 10B extends linearly in a plan view shown in FIG. 4 similarly to the water flow passage 10 of the first embodiment.
 本実施形態では、第1流水路10Aは、流水路幅W10Aが2000mmの用水路である。本実施形態では、第1流水路10Aは、水の流入を遮断する流体流入遮断部15を有する。流体流入遮断部15は、手動により、又は、電気制御等により、水の流入を断続させることができる。流体流入遮断部15は、台風、豪雨、異常気象等の状況下において、施設場所が災害区域に指定された場合、第1流水路10Aを遮断することにより、第1リニア水力発電装置200Aの安全性を確保する。本実施形態では、流体流入遮断部15は、第1流水路10Aの取水口10aに設けられた、開閉可能な水門である。また、本実施形態では、第1流水路10Aの取水口10aには、障害物排除設備16が設けられている。障害物排除設備16は、水車等に異物等を干渉させないための設備である。障害物排除設備16としては、例えば、木材、石等の異物を捕捉する防護ネット等が挙げられる。 In the present embodiment, the first water flow passage 10A is a water passage having a water flow passage width W10A of 2000 mm. In the present embodiment, the first water flow passage 10A has a fluid inflow blocking portion 15 that blocks the inflow of water. The fluid inflow blocking unit 15 can interrupt the inflow of water manually or by electric control or the like. When the facility location is designated as a disaster area under conditions such as a typhoon, heavy rain, abnormal weather, etc., the fluid inflow blocking unit 15 shuts off the first water flow passage 10A, thereby safety of the first linear hydroelectric power generation apparatus 200A. Secure the sex. In the present embodiment, the fluid inflow blocking unit 15 is an openable / closable lock provided at the intake port 10 a of the first water flow passage 10A. Further, in the present embodiment, the obstacle exclusion facility 16 is provided at the water intake port 10a of the first water flow path 10A. The obstacle removal facility 16 is a facility for preventing foreign matter and the like from interfering with a water wheel or the like. Examples of the obstacle removal facility 16 include a protective net that captures foreign matter such as wood and stone.
 また、本実施形態では、第1流水路10A内には、同一の水車20Aが第1流水路10Aの延在方向に間隔を置いて複数配置されている。本実施形態では、水車20Aは、第1流水路10Aの延在方向における、水車間ピッチ長さL20は、5000mmとしている。また、本実施形態では、水車20Aは、22個のバケット23を有した水車である。本実施形態では、水車20Aの直径R20は、第1実施形態と同様、1000mmであるが、水車幅W20は、1600mmである。更に、本実施形態では、第1流水路10Aの水深D10Aは、第1実施形態と同様、水車20Aが浸水した状態での水面Fからの水車20の浸水深さD20に対して2倍以上の水深であるが、本実施形態では、第1流水路10Aの水深D10は、800mmである。 Further, in the present embodiment, in the first water flow passage 10A, a plurality of identical water turbines 20A are arranged at intervals in the extending direction of the first water flow passage 10A. In the present embodiment, the water turbine 20A has an inter-water turbine pitch length L20 of 5000 mm in the extending direction of the first water flow passage 10A. Further, in the present embodiment, the water wheel 20A is a water wheel having 22 buckets 23. In the present embodiment, the diameter R20 of the water turbine 20A is 1000 mm as in the first embodiment, but the water turbine width W20 is 1600 mm. Furthermore, in the present embodiment, the water depth D10A of the first water flow passage 10A is at least twice as large as the water immersion depth D20 of the water turbine 20 from the water surface F when the water turbine 20A is flooded, as in the first embodiment. Although it is water depth, in the present embodiment, the water depth D10 of the first water flow passage 10A is 800 mm.
 また、本実施形態では、第2流水路10Bも、流水路幅W10Bが2000mmの用水路である。本実施形態では、第2流水路10Bの取水口10aにも、第1リニア水力発電装置200Aと同様、流体流入遮断部15が設けられている。流体流入遮断部15も、台風、豪雨、異常気象等の状況下において、施設場所が災害区域に指定された場合、第2流水路10Bを遮断することにより、第2リニア水力発電装置200Bの安全性を確保する。また、本実施形態では、第2流水路10Bの取水口10aにも、障害物排除設備16が設けられている。 Further, in the present embodiment, the second water flow passage 10B is also a canal with a water flow passage width W10B of 2000 mm. In the present embodiment, a fluid inflow blocking portion 15 is provided at the intake port 10a of the second water flow passage 10B as in the first linear hydroelectric power generation apparatus 200A. When the facility location is designated as a disaster area under conditions such as a typhoon, heavy rain, abnormal weather, etc., the fluid inflow blocking unit 15 also shuts off the second water flow passage 10B, thereby safety of the second linear hydroelectric power generation apparatus 200B. Secure the sex. Further, in the present embodiment, the obstacle exclusion facility 16 is provided also in the water intake port 10a of the second water flow passage 10B.
 更に、本実施形態では、第2流水路10B内には、異なる水車20A、20B、20C、20D及び20Eが第2流水路10Bの延在方向に間隔を置いて複数配置されている。本実施形態では、水車20B、20C、20D及び20Eは、それぞれ、水車20Aと同様、22個のバケット23を有した水車である。本実施形態では、水車20B、20C、20D及び20Eの直径R20は、第1実施形態と同様、1000mmであるが、水車幅W20は、1200mm、1000mm、600mm及び400mmである。特に、本実施形態では、水車20Eは、間隔WSで配置された2つの水車である。なお、本実施形態では、間隔WSは、1000mmである。水車20Eによれば、第2流水路10Bの流水路幅W10Bの中央の領域を有効に利用することができる。更に、本実施形態では、第2流水路10Bの水深D10Bも、第1実施形態と同様、水車20Aが浸水した状態での水面Fからの水車20Bの浸水深さD20に対して2倍以上の水深であるが、本実施形態では、第2流水路10Bの水深D10も、800mmである。なお、上記の数値は、例えば、各河川で実験した結果に基づく、例示的な数値である。 Furthermore, in the present embodiment, a plurality of different water turbines 20A, 20B, 20C, 20D and 20E are disposed in the second water flow passage 10B at intervals in the extending direction of the second water flow passage 10B. In the present embodiment, each of the water mills 20B, 20C, 20D and 20E is a water mill having 22 buckets 23 like the water mill 20A. In the present embodiment, the diameter R20 of the water turbines 20B, 20C, 20D and 20E is 1000 mm as in the first embodiment, but the water wheel width W20 is 1200 mm, 1000 mm, 600 mm and 400 mm. In particular, in the present embodiment, the water mill 20E is two water mills arranged at an interval WS. In the present embodiment, the distance WS is 1000 mm. According to the water wheel 20E, the central region of the flow channel width W10B of the second flow channel 10B can be effectively used. Furthermore, in the present embodiment, the water depth D10B of the second water flow passage 10B is also twice or more than the water immersion depth D20 of the water turbine 20B from the water surface F in the water submerged state of the water turbine 20A as in the first embodiment. Although it is water depth, in the present embodiment, the water depth D10 of the second water flow passage 10B is also 800 mm. In addition, said numerical value is an exemplary numerical value based on the result of experimenting in each river, for example.
 また、本実施形態は、同一流水路幅W10Bの第2流水路10Bに、異なる水車20A、20B、20C、20D及び20Eを配置したものであるが、これらの水車20A、20B、20C、20D及び20Eは、それぞれ、単独で使用することができる。例えば、水車20Cは、中水量の河川用の水車として、1つの中水量河川(流水路)に間隔を置いて配置することができる。また、例えば、水車20Dは、小水量の河川用の水車として、1つの小水量河川(流水路)に間隔を置いて配置することができる。即ち、本実施形態によれば、河川の水量に応じた、用水路に適した水車幅の水力発電装置を提供することができる。 Further, in this embodiment, different water mills 20A, 20B, 20C, 20D and 20E are disposed in the second water flow course 10B of the same water flow path width W10B, but these water mills 20A, 20B, 20C, 20D and Each 20E can be used alone. For example, the water wheel 20C can be disposed at an interval on one middle water river (water flow channel) as a middle water river wheel. Also, for example, the water wheel 20D can be disposed at an interval on one small amount of river (water flow path) as a small amount of water for a small amount of river. That is, according to the present embodiment, it is possible to provide a hydraulic power generation apparatus having a water wheel width suitable for the canal according to the amount of water of the river.
 なお、本実施形態では、第1リニア水力発電装置200Aは、各発電機30に対応する集電盤50を複数有している。第2リニア水力発電装置200Bも、第1リニア水力発電装置200Aと同様、各発電機30に対応する集電盤50を複数有している。本実施形態では、発電機30から取り出された電気はそれぞれ、各発電機30に対応する集電盤50で集電される。本実施形態では、第1リニア水力発電装置200A及び第2リニア水力発電装置200Bで集電された電気は、簡易発電所に送られたのち、当該簡易発電所内の昇圧変圧器等を介して、送電線を通して各所に配電される。 In the present embodiment, the first linear hydroelectric power generation apparatus 200A includes a plurality of current collectors 50 corresponding to the respective generators 30. Similarly to the first linear hydraulic power generation device 200A, the second linear hydraulic power generation device 200B also has a plurality of current collectors 50 corresponding to the respective generators 30. In the present embodiment, the electricity extracted from the generators 30 is collected by the current collectors 50 corresponding to the respective generators 30. In the present embodiment, after the electricity collected by the first linear hydroelectric power generation apparatus 200A and the second linear hydroelectric power generation apparatus 200B is sent to the simplified power plant, the electricity is collected via the step-up transformer or the like in the simplified power plant. It is distributed to various places through transmission lines.
 また、本実施形態の変形例として、第2流水路10Bは、図4の平面視で、流水路幅W10Bを上流から下流に向かうに従って、流水路幅W10Bが先細る流水路とすることができる。この場合、第2流水路10Bの水速度は、上流から下流に向かって流水路幅W10Bが狭くなるに従って速くなる。このため、流水路幅W10Bが狭くなる場合、図4の第2流水路10Bのように、上流から下流に向かうに従って、水車20A、20B、20C、20D及び20Eを順次配置すれば、第2流水路10Bと同様に、流水路に沿って配置された各発電機30からは、均等に電力を取り出すことができる。 Further, as a modified example of the present embodiment, the second water flow passage 10B can be a water flow passage in which the water flow passage width W10B tapers as the water flow passage width W10B goes from upstream to downstream in the plan view of FIG. . In this case, the water velocity of the second water flow passage 10B becomes faster as the water flow passage width W10B becomes narrower from upstream to downstream. For this reason, when the water flow passage width W10B becomes narrow, if the water mills 20A, 20B, 20C, 20D and 20E are sequentially arranged as going from the upstream to the downstream as in the second water flow passage 10B of FIG. Similar to the passage 10B, power can be taken out evenly from the respective generators 30 arranged along the flowing water passage.
 次に、図5を参照して、本発明の第3実施形態に係るリニア水力発電装置300について説明をする。なお、以下の説明において、他の実施形態と実質的に同一の部分は同一の符号をもって、その説明を省略する。 Next, referring to FIG. 5, a linear hydroelectric power generation apparatus 300 according to a third embodiment of the present invention will be described. In the following description, portions substantially the same as those of the other embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 本実施形態に係るリニア水力発電装置300では、流水路10内に配置される複数の水車として、水車60を使用している。本実施形態では、水車60は、2つの水車20を流水路10の幅方向に並列に配置したものである。本実施形態では、水車60の回転軸61は、2つの水車20の回転軸21を一体に構成した回転軸である。水車60の回転軸61は、流水路10の底壁11から起立する補強支柱17に対してベアリング22を介して回転可能に支持されている。これにより、水車60は、回転軸61の回転によって2つの水車20を同時に一体的に回転させることができる。この場合、1つのバケット幅W23(水車幅)を大きくすることなく、バケット23の受圧面積S23を大きく確保することができる。また、この場合、回転軸61の長さ方向(流水路幅方向)中央部が補強支柱17で支持されるため、回転軸21に生じる撓み等を抑制することができる。なお、本実施形態では、バケット補助板27は、回転軸61とバケット23とを連結している。本実施形態では、バケット補助板27の隙間Sは、バケット補助板27に形成された開口部として構成されている。水車60のような複合式の水車は、例えば、流水路幅W10が2m以上の、水量の大きな流水路で使用することが好適である。 In the linear hydroelectric power generation device 300 according to the present embodiment, the water wheel 60 is used as the plurality of water wheels disposed in the water flow passage 10. In the present embodiment, the water wheel 60 has two water wheels 20 arranged in parallel in the width direction of the water flow passage 10. In the present embodiment, the rotation shaft 61 of the water wheel 60 is a rotation shaft in which the rotation shafts 21 of the two water wheels 20 are integrally formed. The rotation shaft 61 of the water wheel 60 is rotatably supported via a bearing 22 with respect to a reinforcing support 17 which stands from the bottom wall 11 of the water flow passage 10. Thereby, the water wheel 60 can simultaneously rotate integrally the two water wheels 20 by rotation of the rotating shaft 61. In this case, a large pressure receiving area S23 of the bucket 23 can be secured without increasing one bucket width W23 (water wheel width). Further, in this case, since the central portion in the length direction (water flow channel width direction) of the rotating shaft 61 is supported by the reinforcing support column 17, it is possible to suppress bending or the like occurring in the rotating shaft 21. In the present embodiment, the bucket auxiliary plate 27 connects the rotating shaft 61 and the bucket 23. In the present embodiment, the gap S of the bucket auxiliary plate 27 is configured as an opening formed in the bucket auxiliary plate 27. It is preferable to use a compound water wheel such as the water wheel 60, for example, in a large water flow channel having a water flow channel width W10 of 2 m or more.
 次に、図6A及び図6Bを参照して、本発明の変形例に係るリニア水力発電装置400について説明をする。なお、以下の説明において、他の実施形態と実質的に同一の部分は同一の符号をもって、その説明を省略する。 Next, a linear hydroelectric power generation apparatus 400 according to a modification of the present invention will be described with reference to FIGS. 6A and 6B. In the following description, portions substantially the same as those of the other embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 本例に係るリニア水力発電装置400は、流水路10の水深D10が浅く、当該流水路10の水深D10が、水車20の浸水深さD20に対して2倍以上の水深を確保できない場合を想定した例である。この例は、水流が少ない場合、その分だけ、流水路10の横幅(水路幅W10)を拡大して、水流の流水勢力の不足分の流量を補うものとする。 In the linear hydroelectric power generation apparatus 400 according to this example, it is assumed that the water depth D10 of the water flow passage 10 is shallow and the water depth D10 of the water flow passage 10 can not secure a water depth of twice or more of the water immersion depth D20 of the water turbine 20. Example. In this example, when the water flow is small, the lateral width (waterway width W10) of the water flow passage 10 is enlarged by that amount to compensate for the insufficient flow rate of the water flow force of the water flow.
 図6A等に示すように、本例に係るリニア水力発電装置400では、流水路の水深を大きく確保するのに代えて、流水路10の側壁12と水車70との間の幅方向隙間ΔS70を広く確保している。これにより、水量を増やして水勢力を確保している。流水路10の流路面積S10は、幅方向隙間ΔS70を調整することにより、水車70の受圧面積S70の2倍以上とすることができる。即ち、流水路10を通過する水量は、バケット23の水流妨害抵抗分の水量の2倍以上とすることができる。この場合、流水路10は、例えば、水深の浅い農業用水路に適用させることができる。 As shown in FIG. 6A and the like, in the linear hydroelectric power generation apparatus 400 according to this example, the width direction gap ΔS70 between the side wall 12 of the water flow passage 10 and the water wheel 70 is We secure widely. As a result, the amount of water is increased to secure the water power. The flow passage area S10 of the water flow passage 10 can be made twice or more the pressure receiving area S70 of the water wheel 70 by adjusting the width direction gap ΔS70. That is, the amount of water passing through the water flow passage 10 can be twice or more the amount of water of the water flow blocking resistance of the bucket 23. In this case, the water flow passage 10 can be applied to, for example, a shallow agricultural water passage.
 詳細には、流水路10の底幅W11は、流水路10と水車70との間の幅方向隙間ΔS70を十分確保できる幅となっている。この場合、水車70を回転させることによる、当該水車20のバケット23の受水抵抗によって水流全体の水勢力が減少しても、当該水勢力には、次の水車70に向かって流動する間に、流水路10の勾配によって得られる水勢力と、水車70の両側で直接水車70の回転に寄与しない水流(水車70の受圧面積S70が除かれた流路面積(S10-S70:受圧水流層の幅方向両側に隣接する遊水流層)を通る水流)の水勢力とが合成される。このため、次々と水車70を回転させることによって減少した水勢力は、次の水車70に向かって流動する間に再び高まることになる。これにより、本例に係るリニア水力発電装置400においても、流水路10に沿って配置された各発電機30からは、その河川、水量に応じた大小の均等な電力を取り出すことができる。なお、本例では、水面Fの幅WFとすると、流水路10の流路面積S10は、{(水面Fの幅WF)+(流水路10の底幅W11)}×D10/2である。また、本例では、水車70の受圧面積S70は、バケット23の受圧面積S23とバケット補助板27の受圧面積S27との和(S70=S23+S27)である。 In detail, the bottom width W11 of the water flow passage 10 is a width that can sufficiently ensure the width direction gap ΔS70 between the water flow passage 10 and the water wheel 70. In this case, even if the water power of the entire water flow is reduced due to the receiving resistance of the bucket 23 of the water wheel 20 by rotating the water wheel 70, the water power may flow while flowing toward the next water wheel 70 , The flow of water obtained by the gradient of the water flow channel 10 and the flow of water not directly contributing to the rotation of the water turbine 70 on both sides of the water turbine 70 (the flow channel area from which the pressure receiving area S70 of the water turbine 70 is removed (S10 The water power of the water flow) is combined. For this reason, the water power reduced by rotating the water wheel 70 one after another will increase again while flowing toward the next water wheel 70. As a result, even in the linear hydroelectric power generation apparatus 400 according to the present embodiment, it is possible to take out equal amounts of power, which are large and small, according to the river and the amount of water from the generators 30 arranged along the water flow passage 10. In this example, assuming that the width WF of the water surface F, the flow channel area S10 of the water flow channel 10 is {(width WF of water surface F) + (bottom width W11 of water flow channel 10)} × D10 / 2. Moreover, in this example, the pressure receiving area S70 of the water wheel 70 is the sum of the pressure receiving area S23 of the bucket 23 and the pressure receiving area S27 of the bucket auxiliary plate 27 (S70 = S23 + S27).
 具体的には、流水路10の水深D10は、230mmであり、水車70の直径R70は、600mmである。また、水車70の水車幅W70が250mmであるのに対し、流水路10の底幅W11を400mmとしている。これにより、流水路10の側壁12と水車70との間の幅方向隙間ΔS70として、75mmが確保されている。水車70の浸水深さD70は、180mmとしている。またバケット補助板27の水車径方向長さL27は、30mmである。このため、バケット23の水車径方向長さL23は、水車70の浸水深さD70からバケット補助板27の水車径方向長さL27を除算した150mmである。なお、これらの数値は例示的なものである。本発明によれば、これらの数値は適宜変更することができる。 Specifically, the water depth D10 of the water flow passage 10 is 230 mm, and the diameter R70 of the water wheel 70 is 600 mm. Further, while the water wheel width W70 of the water wheel 70 is 250 mm, the bottom width W11 of the water flow passage 10 is 400 mm. Thus, 75 mm is secured as a width direction gap ΔS 70 between the side wall 12 of the water flow passage 10 and the water wheel 70. The water immersion depth D70 of the water wheel 70 is 180 mm. Further, a diameter L27 of the bucket auxiliary plate 27 in the water turbine radial direction is 30 mm. Therefore, the water turbine radial direction length L23 of the bucket 23 is 150 mm obtained by dividing the water turbine radial direction length L27 of the bucket auxiliary plate 27 from the water immersion depth D70 of the water turbine 70. Note that these numerical values are exemplary. According to the present invention, these numerical values can be changed as appropriate.
 また、図6Bに示すように、本例では、水車70のバケット23は、18個である。また、バケット23の湾曲した受圧面24は、それぞれ、図6Bに示すように、回転軸21の軸方向視で、回転軸21の周方向の水の流れ方向に向かって、水車20のバケット23の曲率半径よりも大きな曲率半径R24で湾曲している。本例では、直線形の受圧面25は省略されている。なお、本例で使用される水車は、水車70に限定されるものではない。本例で使用される水車としては、例えば、上述の水車20等を使用することができる。 Moreover, as shown to FIG. 6B, in this example, the bucket 23 of the water wheel 70 is eighteen pieces. Further, as shown in FIG. 6B, the curved pressure receiving surfaces 24 of the buckets 23 are directed to the bucket 23 of the water wheel 20 in the water flow direction in the circumferential direction of the rotary shaft 21 as viewed in the axial direction of the rotary shaft 21. Curved with a radius of curvature R24 that is greater than the radius of curvature of. In the present example, the linear pressure receiving surface 25 is omitted. The water wheel used in this example is not limited to the water wheel 70. As a water mill used by this example, the above-mentioned water mill 20 grade | etc., Can be used, for example.
 ここで、図7を参照して、本発明に係るリニア水力発電装置の水車に適用可能なバケット23の形態について説明をする。なお、以下の説明において、他の実施形態と実質的に同一の部分は同一の符号をもって、その説明を省略する。 Here, with reference to FIG. 7, the form of the bucket 23 applicable to the water turbine of the linear hydroelectric power generation apparatus which concerns on this invention is demonstrated. In the following description, portions substantially the same as those of the other embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図7は、バケット23の受圧面の2つのバリエーションを1つの図面で示したものである。まず1つ目のバリエーションは、図7の符号24´に示すように、回転軸21の軸方向視で、水車20の回転軸21から放射状に延びる直線に対して、回転軸21の周方向の水の流れ方向に向かって湾曲した受圧面24´である。次いで、2つ目のバリエーションは、図7の符号25´´に示すように、回転軸21の軸方向視で、水車20の回転軸21から放射状に延びる直線に対して、回転軸21の周方向の水の流れ方向に向かって窪んだ台形状の受圧面25´である。本実施形態では、台形状の受圧面25´は、直線で構成されている。このため、台形状の受圧面25´の一部は、直線形の受圧面25として機能する。 FIG. 7 shows two variations of the pressure receiving surface of the bucket 23 in one drawing. First, as shown by the reference numeral 24 'in FIG. 7, in the first variation, as viewed in the axial direction of the rotary shaft 21, the circumferential direction of the rotary shaft 21 with respect to a straight line radially extending from the rotary shaft 21 of the water wheel 20. The pressure receiving surface 24 'is curved in the water flow direction. Next, as shown by reference numeral 25 ′ ′ in FIG. 7, in the second variation, the circumference of the rotary shaft 21 with respect to a straight line radially extending from the rotary shaft 21 of the water wheel 20 in the axial direction of the rotary shaft 21. It is trapezoidal trapezoidal pressure receiving surface 25 'which is recessed toward the water flow direction. In the present embodiment, the trapezoidal pressure receiving surface 25 'is configured by a straight line. Therefore, a part of the trapezoidal pressure-receiving surface 25 ′ functions as a linear pressure-receiving surface 25.
 ところで、上述の各水車では、例えば、既に図3Aを参照して説明したように、バケット補助板27は、軸方向視で、回転軸21との間に環状の隙間Sを形成している。バケット補助板27は、互いの周方向の相互間に開口部A27を形成している。開口部A27がそれぞれ、隙間Sを外界に通じさせている。これにより、隙間Sは、水車20を回転させたときに、水面Fから飛び散る飛沫を逃がす穴として機能する。 By the way, in each of the above-mentioned water turbines, for example, as described with reference to FIG. 3A, the bucket auxiliary plate 27 forms an annular gap S with the rotation shaft 21 in the axial direction. The bucket auxiliary plate 27 forms an opening A27 between each other in the circumferential direction. Each of the openings A 27 communicates the gap S to the outside. Thereby, the gap S functions as a hole for escaping the splash splashed from the water surface F when the water wheel 20 is rotated.
 しかしながら、本願発明者は、試験・研究の結果、水流の水勢力が大きい場合、例えば、水速度Vが6m/s以上の場合、水車20が回転方向に対して逆向きの抵抗を受け、回転速度が上昇しなくなってしまうことを認識するに至った。そして、本願発明者は、更に鋭意試験・研究の結果、水車20の回転速度が上昇しない原因の1つは、当該水車20のバケット23から吐き出される水にあることを確かめた。 However, according to the test and research, when the water power of the water flow is large, for example, when the water velocity V is 6 m / s or more, the inventor 20 receives the resistance in the reverse direction to the rotation direction of the water wheel 20 and rotates. It came to recognize that the speed would not increase. Then, as a result of further intensive studies and researches, the inventor of the present invention has confirmed that one of the causes that the rotational speed of the water turbine 20 does not increase is the water expelled from the bucket 23 of the water turbine 20.
 具体的には、水速度Vが6m/sの場合、水車20の下流側では、バケット23から吐き出される水は多量の飛沫となって飛散する。特にバケット23の浸水深さD20が深い場合、例えば、バケット23が250mm以上の場合、水車20の下流側に飛散する飛沫量は大きい。またバケット23の浸水深さD20が深い場合、多量の飛沫が水車20を一回りして当該水車20の上流側上部に飛散する。このように水車20の上流側上部に飛散した大量の飛沫は、当該水車20の回転速度を抑制し、当該水車20の回転速度が上昇することを妨げる。 Specifically, when the water velocity V is 6 m / s, on the downstream side of the water turbine 20, the water expelled from the bucket 23 is scattered as a large amount of droplets. In particular, when the immersion depth D20 of the bucket 23 is deep, for example, when the bucket 23 is 250 mm or more, the amount of splashes scattered to the downstream side of the water wheel 20 is large. In addition, when the inundation depth D20 of the bucket 23 is deep, a large amount of droplets rotate around the water wheel 20 and scatter on the upper upstream side of the water wheel 20. The large amount of droplets scattered to the upper upstream side of the water wheel 20 in this manner suppresses the rotation speed of the water wheel 20 and prevents the rotation speed of the water wheel 20 from increasing.
 この結果、水車20の回転によれば、実際に、発電機30の発電定格回転数としては十分な回転数(例えば、90rpm)が得られるものの、理想的には、それ以上の回転数(例えば、150rpm)が得られると考えられる。 As a result, according to the rotation of the water wheel 20, although a rotation speed (for example, 90 rpm) sufficient as the power generation rated rotation speed of the generator 30 can actually be obtained, the rotation speed higher than that (ideally, for example) , 150 rpm) is considered to be obtained.
 そこで、本願発明者は、回転軸21の周方向に隣接して配置された2つのバケットの間に、一方のバケット(水車の回転方向に先行するバケット)の径方向内側端部と、他方のバケット(前記水車の回転方向に先行する前記バケットに対して後方のバケット)の径方向外側端部との間を延在する流水跳ね返し部を設けた。 Therefore, the inventor of the present invention has proposed that the radially inner end portion of one bucket (the bucket that precedes in the rotational direction of the water turbine) and the other of the two buckets disposed adjacent to each other in the circumferential direction of the rotating shaft 21. A flowing water return portion is provided extending between the bucket (the radially outer end of the bucket which is backward with respect to the bucket preceding in the direction of rotation of the water wheel).
 図8Aは、本発明の他の変形例に係るリニア水力発電装置500を、図1のB-B断面に相当する方向から示す正面図である。また図8Bは、図8AのC-C断面図である。 FIG. 8A is a front view showing a linear hydroelectric power generation device 500 according to another modified example of the present invention from the direction corresponding to the cross section BB of FIG. 8B is a cross-sectional view taken along the line CC in FIG. 8A.
 図8A等に示すように、本実施形態に係るリニア水力発電装置500では、水車80は、水車20と同様、複数の長翼を有する長翼水車である。水車80は、図8A等に示すように、軸方向に間隔を置いて配置された2つの支持板28の間に、回転軸21の周方向に間隔を置いて配置された複数のバケット83と、当該バケット83の間に配置された流水跳ね返し部87とを有している。また本実施形態では、動力伝達装置40は、チェーン式の動力伝達装置である。詳細には、動力伝達装置40は、水車80の回転軸21に固定された入力ギア811と、発電機30の入力回転軸に固定された出力ギア822と、これら入力ギア811及び出力ギア822の間に掛け渡されたギアチェーン833を有している。 As shown in FIG. 8A and the like, in the linear hydroelectric power generation device 500 according to the present embodiment, the water wheel 80 is a long-wing water wheel having a plurality of long blades, like the water wheel 20. The water wheel 80, as shown in FIG. 8A etc., includes a plurality of buckets 83 spaced in the circumferential direction of the rotary shaft 21 between two axially spaced support plates 28. , And a flush water return unit 87 disposed between the buckets 83. Further, in the present embodiment, the power transmission device 40 is a chain type power transmission device. Specifically, the power transmission device 40 includes an input gear 811 fixed to the rotation shaft 21 of the water wheel 80, an output gear 822 fixed to the input rotation shaft of the generator 30, and the input gear 811 and the output gear 822. It has a gear chain 833 bridged between them.
 また図8Bに示すように、本実施形態では、水車80は、8枚の長翼を有している。 Further, as shown in FIG. 8B, in the present embodiment, the water wheel 80 has eight long wings.
 図3Aの水車20等では、前記長翼は、バケット23及びバケット補助板27からなる。これに対し、本実施形態では、図8Bに示すように、前記長翼は、平板のバケット83からなる。 In the water wheel 20 and the like of FIG. 3A, the long wing is composed of a bucket 23 and a bucket auxiliary plate 27. On the other hand, in the present embodiment, as shown in FIG. 8B, the long wing is composed of a flat bucket 83.
 本実施形態では、図8Aに示すように、バケット83は、バケット23と同様、軸方向に延びるバケット幅W83を有している。図8Aに示すように、バケット83の幅方向側端は、それぞれ、バケット23と同様、支持板28に対して溶接等の方法によって固定されている。これにより、本実施形態では、バケット83は、バケット23と同様、2つの支持板28の軸方向間を閉じている。 In the present embodiment, as shown in FIG. 8A, the bucket 83 has a bucket width W83 extending in the axial direction, like the bucket 23. As shown in FIG. 8A, the widthwise side ends of the buckets 83 are each fixed to the support plate 28 by a method such as welding as with the buckets 23. Thus, in the present embodiment, the bucket 83, like the bucket 23, closes the axial direction between the two support plates 28.
 更に本実施形態では、バケット83は、図8Bに示すように、所定の水車径方向長さL83を有している。本実施形態では、バケット83の径方向内側端部83aは、回転軸21に近い位置に配置されている。特に本実施形態では、バケット83の径方向内側端部83aのうち、回転軸21に最も近い部分を、バケット83の径方向内側端83e1とする。また本実施形態では、バケット83の径方向外側端部83bは、水車80の径方向外側の位置に配置されている。特に本実施形態では、バケット83の径方向外側端部83bのうち、最も水車80の径方向外側の部分(先端)を、バケット83の径方向外側端83e2とする。 Furthermore, in the present embodiment, the bucket 83 has a predetermined water turbine radial direction length L83, as shown in FIG. 8B. In the present embodiment, the radially inner end 83 a of the bucket 83 is disposed at a position close to the rotation shaft 21. In particular, in the present embodiment, of the radially inner end portion 83 a of the bucket 83, the portion closest to the rotating shaft 21 is taken as the radially inner end 83 e 1 of the bucket 83. Further, in the present embodiment, the radially outer end 83 b of the bucket 83 is disposed at the radially outer position of the water wheel 80. In particular, in the present embodiment, the radially outer portion (tip) of the water turbine 80 among the radially outer end portions 83 b of the bucket 83 is used as the radially outer end 83 e 2 of the bucket 83.
 バケット83は、図8Bに示すように、軸方向視で、回転軸21との間に環状の隙間(車内空洞部)Sを形成している。バケット83の径方向内側端83e1は、周方向に互いに隣り合うバケット83の径方向内側端83e1の間に隙間A83を形成する。隙間A83は、水車20の開口部A27に相当する。 As shown in FIG. 8B, the bucket 83 forms an annular gap (in-vehicle hollow portion) S between itself and the rotation shaft 21 in the axial direction. The radially inner end 83 e 1 of the bucket 83 forms a gap A 83 between the radially inner ends 83 e 1 of the buckets 83 adjacent to each other in the circumferential direction. The clearance A83 corresponds to the opening A27 of the water wheel 20.
 これに対し、本実施形態では、水車80は、隣接して配置された2つのバケット83の間に、流水跳ね返し部87を有している。本実施形態では、図8Aに示すように、流水跳ね返し部87は、バケット83と同様、軸方向に延びる流水跳ね返し部幅W87を有している。流水跳ね返し部87の幅方向側端は、それぞれ、バケット83と同様、支持板28に対して溶接等の方法によって固定されている。これにより、本実施形態では、流水跳ね返し部87は、バケット83と共に、2つの支持板28の軸方向間を閉じている。 On the other hand, in the present embodiment, the water wheel 80 has the flowing water return portion 87 between the two buckets 83 arranged adjacent to each other. In the present embodiment, as shown in FIG. 8A, the flowing water rebounding portion 87 has, similarly to the bucket 83, a flowing water rebounding portion width W87 extending in the axial direction. Similar to the bucket 83, the widthwise side ends of the flowing water return portion 87 are fixed to the support plate 28 by a method such as welding. Thus, in the present embodiment, the flowing water return portion 87, together with the bucket 83, closes the axial direction of the two support plates 28.
 また本実施形態では、流水跳ね返し部87は、図8Bに示すように、隣接して配置された2つのバケット83のうち、一方のバケット83の径方向内側端部83aと、他方のバケット83の径方向外側端部83bとの間を延在している。本実施形態では、一方のバケット83の径方向内側端部83aに近い部分が流水跳ね返し部87の径方向内側端部87aであり、他方のバケット83の径方向外側端部83bに近い部分が流水跳ね返し部87の径方向外側端部87bである。 Further, in the present embodiment, as shown in FIG. 8B, the flowing water return portion 87 includes the radially inner end 83a of one bucket 83 and the other bucket 83 of the two buckets 83 arranged adjacent to each other. It extends between the radially outer end 83b. In the present embodiment, a portion close to the radially inner end 83a of one bucket 83 is the radially inner end 87a of the flowing water return portion 87, and a portion close to the radially outer end 83b of the other bucket 83 is the flowing water The radially outer end 87 b of the rebound portion 87.
 本実施形態では、上述のように、流水跳ね返し部87の径方向内側端部87aが一方のバケット83の径方向内側端部83aに向かって延在していると共に、流水跳ね返し部87の径方向外側端部87bが他方のバケット83の径方向外側端部83bに向かって延在している。これにより、流水跳ね返し部87は、図8Bに示す軸方向視で、当該流水跳ね返し部87に対応する隙間A83の、少なくとも一部を閉じることができる。なお、言い換えれば、流水跳ね返し部87は、図8Bに示す軸方向視で、外界に対して車内空洞部Sを部分的に閉じることができる。これにより、流水路10の水が、図8Bに示す軸方向視で、回転軸21の径方向外側から車内空洞部Sに進入することを抑制することができる。 In the present embodiment, as described above, the radially inner end 87 a of the flowing water return portion 87 extends toward the radially inner end 83 a of the one bucket 83, and the radial direction of the flowing water return portion 87. The outer end 87 b extends toward the radially outer end 83 b of the other bucket 83. Thereby, the flush water rebounding portion 87 can close at least a part of the gap A 83 corresponding to the flush water rebounding portion 87 in the axial direction view shown in FIG. 8B. In other words, in the axial direction view shown in FIG. 8B, the flowing water return portion 87 can partially close the in-vehicle hollow portion S with respect to the outside world. Thus, the water in the water flow passage 10 can be prevented from entering the in-vehicle cavity S from the radially outer side of the rotary shaft 21 in the axial direction view shown in FIG. 8B.
 本発明によれば、流水跳ね返し部87は、当該流水跳ね返し部87の径方向内側端部87aを、一方のバケット83の径方向内側端部83aに連結することができる。また流水跳ね返し部87は、当該流水跳ね返し部87の径方向外側端部87bを、他方のバケット83の径方向外側端部83bに連結することができる。本実施形態では、流水跳ね返し部87は、一方のバケット83の径方向内側端部83aと、他方のバケット83の径方向外側端部83bとに連結されており、図8Bに示す軸方向視で、回転軸21の周方向に隣接して配置された2つのバケットの間に形成された、当該流水跳ね返し部87に対応する隙間A83を閉じている。これにより、流水路10の水が、図8Bに示す軸方向視で、回転軸21の径方向外側から車内空洞部Sに進入することを阻止することができる。 According to the present invention, the flowing water rebounding portion 87 can connect the radially inner end 87 a of the flowing water rebounding portion 87 to the radially inner end 83 a of the one bucket 83. Further, the flowing water rebounding portion 87 can connect the radially outer end portion 87 b of the flowing water rebound portion 87 to the radially outer end portion 83 b of the other bucket 83. In the present embodiment, the flowing water return portion 87 is connected to the radially inner end 83a of one bucket 83 and the radially outer end 83b of the other bucket 83, as viewed in the axial direction shown in FIG. 8B. A gap A83 corresponding to the flowing water return portion 87, which is formed between two buckets arranged adjacent to each other in the circumferential direction of the rotary shaft 21, is closed. Thus, the water in the water flow passage 10 can be prevented from entering the in-vehicle cavity S from the radially outer side of the rotation shaft 21 in the axial direction view shown in FIG. 8B.
 更に流水跳ね返し部87の幅方向側端は、それぞれ、バケット83と同様、支持板28に対して連結されている。これにより、流水跳ね返し部87は、周方向に配置された複数の隙間A83をそれぞれ、図8Bに示す軸方向視で、完全に閉じることができる。言い換えれば、流水跳ね返し部87は、車内空洞部S全体を周方向に閉じられた閉空間とすることができる。これにより、流水路10の水が車内空洞部Sに進入することをほぼ完全に阻止することができる。 Further, the widthwise side ends of the flowing water return portion 87 are respectively connected to the support plate 28 in the same manner as the bucket 83. Thus, the flowing water return portion 87 can completely close the plurality of gaps A 83 arranged in the circumferential direction, as viewed in the axial direction shown in FIG. 8B. In other words, the flush water return portion 87 can make the entire in-vehicle cavity S into a closed space closed in the circumferential direction. This makes it possible to almost completely prevent the water in the water flow passage 10 from entering the in-vehicle cavity S.
 本実施形態では、動力伝達装置40は、チェーン式の動力伝達装置である。詳細には、動力伝達装置40は、水車80の回転軸21に固定された入力ギア811と、発電機30の入力回転軸に固定された出力ギア822と、これら入力ギア811及び出力ギア822の間に掛け渡されたギアチェーン833を有している。 In the present embodiment, the power transmission device 40 is a chain type power transmission device. Specifically, the power transmission device 40 includes an input gear 811 fixed to the rotation shaft 21 of the water wheel 80, an output gear 822 fixed to the input rotation shaft of the generator 30, and the input gear 811 and the output gear 822. It has a gear chain 833 bridged between them.
 次に、図8B等を参照して、水車80の動作について説明する。図8Bにおいて、図面左側は流水路10の上流側であり、図面右側は流水路10の下流流側である。 Next, operation of the water wheel 80 will be described with reference to FIG. 8B and the like. In FIG. 8B, the left side of the drawing is the upstream side of the flow passage 10, and the right side of the drawing is the downstream side of the flow passage 10.
 図8Bにおいて、水車80は、位置Aのバケット83が上流からの水を受ける。このとき、位置Aのバケット83が当該バケット83の受圧面84で受けた水勢力は、水車80を図面に対して反時計回りに回転させる。その一方で、位置Aのバケット83が受けた水の一部は、当該バケット83の受圧面84に沿って車内空洞部Sに向かって案内される。 In FIG. 8B, in the water wheel 80, the bucket 83 at position A receives water from the upstream. At this time, the water power received by the pressure receiving surface 84 of the bucket 83 at the position A rotates the water wheel 80 counterclockwise with respect to the drawing. On the other hand, a part of the water received by the bucket 83 at the position A is guided along the pressure receiving surface 84 of the bucket 83 toward the in-vehicle cavity S.
 しかしながら、本実施形態では、位置Aのバケット83によって車内空洞部Sに向かって案内された水は、位置Aと位置Hとの間の流水跳ね返し部87によって塞き止められることによって、車内空洞部Sに進入することがない。また位置Aのバケット83よりも下流に位置する位置Bのバケット83との間は、水面Fよりも下の位置にある。しかしながら、位置Aのバケット83と位置Bのバケット83との間の水は、位置Aと位置Bとの間の流水跳ね返し部87によって塞き止められることによって、車内空洞部Sに進入することがない。 However, in the present embodiment, the water guided toward the in-vehicle cavity S by the bucket 83 at the position A is blocked by the flowing water return portion 87 between the location A and the position H. I will not enter S. The position between the bucket 83 at the position A and the bucket 83 at the position B located downstream of the bucket 83 is below the water surface F. However, the water between the bucket 83 at position A and the bucket 83 at position B may enter the in-vehicle cavity S by being blocked by the flowing water return portion 87 between the position A and the position B. Absent.
 位置Bのバケット83も同様であり、またバケット83が位置Cにあるときも、位置B及び位置Cの間では、流水跳ね返し部87が車内空洞部Sへの水の進入を阻止しつつ、当該水を下流側に吐き出させる。また、位置C及び位置Dの間では、流水跳ね返し部87が車内空洞部Sへの水の進入を阻止しつつ、当該水を下流側に吐き出させる。特に、位置C及び位置Dの間に移動したバケット83及び流水跳ね返し部87の間に溜まった水は、水車80の回転(いわゆる遠心力)により径方向外側に放水される。 The same applies to the bucket 83 at the position B, and also when the bucket 83 is at the position C, between the position B and the position C, the flowing water return portion 87 prevents the water from entering the in-vehicle cavity S while Allow water to drain downstream. In addition, between the position C and the position D, the flowing water return portion 87 discharges the water to the downstream side while preventing the water from entering the in-vehicle cavity S. In particular, the water collected between the position C and the position D and collected between the bucket 83 and the flowing water return portion 87 is discharged radially outward by the rotation of the water wheel 80 (so-called centrifugal force).
 更に水車80が回転し、バケット83が位置D、E,F、Hに進む場合も、同様で、残った水は、流水跳ね返し部87によって、車内空洞部Sに進入することがなく、水車80の回転により径方向外側に放水される。 Furthermore, even when the water wheel 80 rotates and the bucket 83 advances to the positions D, E, F, H, the remaining water does not enter the in-vehicle cavity S by the flowing water return portion 87, and the water wheel 80 Water is discharged radially outward by the rotation of.
 本実施形態に係るリニア水力発電装置500は、流水跳ね返し部87を設けた水車80を用いたことにより、次のような効果を奏する。 The linear hydroelectric power generation apparatus 500 which concerns on this embodiment has the following effects by using the water turbine 80 which provided the running water return part 87. FIG.
 (1)流水路10の水流勢力(水速度V、流水路10の水量)を大きく確保することにより、大電力を得ることができる。
 (2)バケット83からの不要水流勢力が車内空洞部Sに進入することによって生じ得る回転抵抗が抑制され、水車80の回転速度の低下を抑えることができる。このため、本実施形態によれば、より大きな電力を得ることができる。
 (3)バケット83から吐き出される水の抵抗が抑制される。このため、本実施形態によれば、より大きな電力を得ることができる。
 (4)流水跳ね返し部87が水車80に進入する水勢力を跳ね返すことによって得られる反動力によって、水車80の回転速度・回転トルクを上昇させることができる。このため、本実施形態によれば、より大きな電力を得ることができる。
 (5)水車80内への水流勢力の浸入を防止しつつ、当該水車80を空洞化させることができる。このため、本実施形態によれば、水車80の軽量化を図ることができる。
 (6)バケット83(長翼)の強度を向上させることができる。即ち、流水跳ね返し部87は、バケット83の補強材として機能する。このため、本実施形態によれば、バケット83の強度、ひいては、水車80の強度を向上させることができる。言い換えれば、本実施形態によれば、リニア水力発電装置の耐久性を向上させることができる。
(1) A large power can be obtained by securing a large flow force (water velocity V, water amount of the flow passage 10) of the flow passage 10.
(2) The rotational resistance that may be generated when the unnecessary water flow force from the bucket 83 enters the in-vehicle cavity S is suppressed, and the reduction of the rotational speed of the water wheel 80 can be suppressed. For this reason, according to the present embodiment, it is possible to obtain larger power.
(3) The resistance of the water expelled from the bucket 83 is suppressed. For this reason, according to the present embodiment, it is possible to obtain larger power.
(4) The rotational speed and rotational torque of the water wheel 80 can be increased by the reaction force obtained by the flowing water return portion 87 repelling the water power entering the water wheel 80. For this reason, according to the present embodiment, it is possible to obtain larger power.
(5) The water wheel 80 can be hollowed while preventing the inflow of water flow force into the water wheel 80. For this reason, according to this embodiment, weight reduction of the water wheel 80 can be achieved.
(6) The strength of the bucket 83 (long wing) can be improved. That is, the flowing water return portion 87 functions as a reinforcing material of the bucket 83. For this reason, according to the present embodiment, the strength of the bucket 83 and hence the strength of the water wheel 80 can be improved. In other words, according to the present embodiment, the durability of the linear hydroelectric power generation device can be improved.
 本実施形態に係るリニア水力発電装置500によれば、回転軸21の周方向に隣接して配置された2つのバケット83の間に、流水跳ね返し部87を設けた水車80を用いたことにより、ペルトン水車に匹敵する発電効率に優れた発電装置を得ることができる。従って、本実施形態に係るリニア水力発電装置500によれば、ダム等の大きな落差を利用することなく、高低差の小さい用水路等においても、効率良く大きな電力を得ることができる。 According to the linear hydroelectric power generation device 500 according to the present embodiment, the water wheel 80 provided with the flowing water return portion 87 between the two buckets 83 arranged adjacent to each other in the circumferential direction of the rotating shaft 21 is used. It is possible to obtain a power generation device excellent in power generation efficiency comparable to that of the Pelton turbine. Therefore, according to the linear hydroelectric power generation apparatus 500 which concerns on this embodiment, large electric power can be efficiently obtained also in the canal with a small height difference, etc., without utilizing big head, such as a dam.
 特に本実施形態では、流水跳ね返し部87は、一方のバケット83の径方向内側端部83aと、他方のバケット83の径方向外側端部83bとに連結されている。この場合、バケット83の強度をより向上させることができる。特に本実施形態では、流水跳ね返し部87は、一方のバケット83の径方向内側端部83aと、他方のバケット83の径方向外側端部83bとに連結されている。この場合、バケット83の径方向内側端部83a及び径方向外側端部83bのいずれにおいても、水勢力によって生じ得る変形が抑制される。 In particular, in the present embodiment, the flowing water return portion 87 is connected to the radially inner end 83 a of one bucket 83 and the radially outer end 83 b of the other bucket 83. In this case, the strength of the bucket 83 can be further improved. In particular, in the present embodiment, the flowing water return portion 87 is connected to the radially inner end 83 a of one bucket 83 and the radially outer end 83 b of the other bucket 83. In this case, in any of the radially inner end 83 a and the radially outer end 83 b of the bucket 83, deformation that may occur due to the water force is suppressed.
 また本実施形態では、バケット83の径方向内側端部83aは、図8Bに示すように、それぞれ、軸方向視で、回転軸21に向かって径方向内側に凸の湾曲面である。本実施形態では、バケット83の径方向内側端部83aは、軸方向視で、曲率半径R87で構成されている。この場合、バケット83の径方向内側端部83aと、流水跳ね返し部87の径方向内側端部87aとの間が滑らかに繋がることにより、水の放出をよりスムースに行うことができる。なお、本実施形態では、バケット83及び流水跳ね返し部87は、別体で構成されており、例えば、溶接等の手段を用いて接続されている。但し、本発明によれば、バケット83及び流水跳ね返し部87は、例えば、一枚の板材に対してプレス加工等を行うことによって形成された一体成形物とすることも可能である。 Further, in the present embodiment, the radially inner end portions 83a of the buckets 83 are curved surfaces that are convex radially inward toward the rotation shaft 21 in the axial direction as shown in FIG. 8B. In the present embodiment, the radially inner end portion 83 a of the bucket 83 is configured to have a curvature radius R 87 as viewed in the axial direction. In this case, by smoothly connecting the radially inner end 83 a of the bucket 83 and the radially inner end 87 a of the flowing water return portion 87, water can be more smoothly discharged. In addition, in this embodiment, the bucket 83 and the running water return part 87 are separately comprised, for example, are connected using means, such as welding. However, according to the present invention, the bucket 83 and the flush water return portion 87 can be, for example, an integrally formed product formed by performing a pressing process or the like on a single plate material.
 なお、図8Aを参照すれば、本実施形態では、流水路10の規格は、次のとおりである。水深D10は500mmである。水車80の浸水深さD80は250mmである。また本実施形態は、水速度Vが2m/s~5m/s未満の流水路での使用に適している。 In addition, if FIG. 8A is referred to, in this embodiment, the specification of the water flow path 10 is as follows. The water depth D10 is 500 mm. The water immersion depth D80 of the water wheel 80 is 250 mm. Further, the present embodiment is suitable for use in a water flow channel having a water velocity V of 2 m / s to less than 5 m / s.
 また本実施形態では、水車80の規格は、次のとおりである。水車80は、8枚の長翼を有している。前記長翼は、平板のバケット83である。水車80の直径R80は、1000mmである。水車幅W80は1000mmである。バケット幅W83は1尺(約303mm)以上とすることが好ましい。また図8Bを参照すれば、バケット83の水車径方向長さL83は、250mmである。更に図8Bを参照すれば、流水跳ね返し部87の長さL87は、軸方向視で350mmである。またバケット83の径方向内側端部83aの曲率半径R87は、軸方向視の曲率半径であり、当該半径は適宜設定することができる。なお、本実施形態では、バケット83と流水跳ね返し部87とのなす角度αは、75度である。 Further, in the present embodiment, the specifications of the water wheel 80 are as follows. The water wheel 80 has eight long wings. The long wing is a flat bucket 83. The diameter R80 of the water wheel 80 is 1000 mm. The water wheel width W80 is 1000 mm. The bucket width W83 is preferably 1 inch (about 303 mm) or more. Further, referring to FIG. 8B, the water turbine radial direction length L83 of the bucket 83 is 250 mm. Still referring to FIG. 8B, the length L 87 of the flowing water return portion 87 is 350 mm in the axial direction. The radius of curvature R87 of the radially inner end portion 83a of the bucket 83 is the radius of curvature as viewed in the axial direction, and the radius can be set as appropriate. In the present embodiment, an angle α between the bucket 83 and the flowing water return portion 87 is 75 degrees.
 また図8Aを参照すれば、本実施形態では、動力伝達装置40の規格は、次のとおりである。入力ギア811のギア数G1は65ピッチである。出力ギア822のギア数G2は13ピッチである。即ち、本実施形態では、入力ギア811と出力ギア822とのギア比は5:1である。本実施形態では、上述した規格の流水路10の下、これらの条件に従って使用することにより、発電機30の回転数として、発電機の定格回転数=200~300rpmを確保することができる。また本実施形態によれば、図8Aに示す水車80の回転トルクは550×9.8Nm(550kgf)を得ることができる。 Referring to FIG. 8A, in the present embodiment, the specifications of the power transmission device 40 are as follows. The gear number G1 of the input gear 811 is 65 pitches. The gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 5: 1. In this embodiment, by using the flow channel 10 of the above-mentioned standard according to these conditions, it is possible to secure the rated rotational speed of the generator = 200 to 300 rpm as the rotational speed of the generator 30. Further, according to the present embodiment, the rotational torque of the water wheel 80 shown in FIG. 8A can be 550 × 9.8 Nm (550 kgf).
 図9Aは、図8A及び図8Bに係るリニア水力発電装置の変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。 FIG. 9A is a modified example of the linear hydroelectric power generation device according to FIGS. 8A and 8B, and is a cross-sectional view showing the modified example in a cross section corresponding to the CC cross section of FIG. 8A.
 本実施形態では、流水路10及び水車80の規格は、図8A及び図8Bに示したリニア水力発電装置と同様である。 In the present embodiment, the specifications of the water flow passage 10 and the water wheel 80 are the same as those of the linear hydroelectric power generation apparatus shown in FIGS. 8A and 8B.
 本実施形態では、動力伝達装置40の規格は、次のとおりである。本実施形態では、図8Aの動力伝達装置40において、入力ギア811を小径化している。本実施形態では、入力ギア811のギア数G1は39ピッチであり、出力ギア822のギア数G2は13ピッチである。即ち、本実施形態では、入力ギア811と出力ギア822とのギア比は3:1である。本実施形態では、上述した規格の流水路10の下、これらの条件に従って使用することにより、発電機30の回転数として、150rpm以上を確保することができる。また本実施形態によれば、図9Aに示す水車80の水車80の回転トルクは450×9.8Nm(450kgf)を得ることができる。 In the present embodiment, the specifications of the power transmission device 40 are as follows. In the present embodiment, the diameter of the input gear 811 is reduced in the power transmission device 40 of FIG. 8A. In the present embodiment, the gear number G1 of the input gear 811 is 39 pitches, and the gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 3: 1. In this embodiment, 150 rpm or more can be ensured as rotation speed of the generator 30 by using according to these conditions under the flowing water channel 10 of the specification mentioned above. Moreover, according to this embodiment, the rotational torque of the water wheel 80 of the water wheel 80 shown in FIG. 9A can be 450 × 9.8 Nm (450 kgf).
 また本発明に係るリニア水力発電装置によれば、流水路10の水速度Vに応じて、水車80の長翼の翼数を変更することが好ましい。具体例としては、水車80の長翼の翼数は、水速度Vの上昇に従って減少させることが好ましい。 Further, according to the linear hydroelectric power generation device according to the present invention, it is preferable to change the number of long blades of the water wheel 80 according to the water velocity V of the water flow passage 10. As a specific example, it is preferable to decrease the number of long blades of the water wheel 80 as the water velocity V increases.
 図9Bは、図8Aに係るリニア水力発電装置の他の変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。 9B is another modification of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modification in a cross section corresponding to a cross section taken along a line CC in FIG. 8A.
 本実施形態では、流水路10の規格は、基本的に、図8A等のリニア水力発電装置と同様であるが、本実施形態は、水速度Vが5m/s以上の流水路での使用に適しているである。 In the present embodiment, the standard of the water flow passage 10 is basically the same as that of the linear hydroelectric power generator of FIG. 8A etc., but in the present embodiment, the water velocity V is for use in the water flow passage of 5 m / s or more. It is suitable.
 また本実施形態では、水車80の規格は、次のとおりである。水車80は、6枚の長翼を有している。前記長翼は、図8A等のリニア水力発電装置と同様、平板のバケット83からなる。水車80の直径R80、水車幅W80及びバケット幅W83は図8A等のリニア水力発電装置と同様である。バケット83の水車径方向長さL83は、250mmである。流水跳ね返し部87の長さL87は、軸方向視で430mmである。またバケット83の径方向内側端部83aの曲率半径R87は、軸方向視の曲率半径であり、当該半径は適宜設定することができる。 Further, in the present embodiment, the specifications of the water wheel 80 are as follows. The water wheel 80 has six long wings. The long blade is composed of a flat plate bucket 83 as in the linear hydroelectric power generation apparatus of FIG. 8A and the like. The diameter R80 of the water wheel 80, the water wheel width W80, and the bucket width W83 are the same as those of the linear hydroelectric power generation device of FIG. 8A and the like. The hydraulic turbine radial direction length L83 of the bucket 83 is 250 mm. The length L 87 of the flowing water return portion 87 is 430 mm in the axial direction. The radius of curvature R87 of the radially inner end portion 83a of the bucket 83 is the radius of curvature as viewed in the axial direction, and the radius can be set as appropriate.
 また本実施形態では、動力伝達装置40の規格は、図9Aの動力伝達装置40と同様である。入力ギア811のギア数G1は39ピッチである。出力ギア822のギア数G2は13ピッチである。即ち、本実施形態では、入力ギア811と出力ギア822とのギア比は3:1である。本実施形態では、上述した規格の流水路10の下、これらの条件に従って使用することにより、発電機30の回転数として、発電機の定格回転数=250rpm以上を確保することができる。また本実施形態によれば、図9Bに示す水車80の回転トルクは250×9.8Nm(250kgf)を得ることができる。 Further, in the present embodiment, the standard of the power transmission device 40 is the same as that of the power transmission device 40 of FIG. 9A. The gear number G1 of the input gear 811 is 39 pitches. The gear number G2 of the output gear 822 is 13 pitches. That is, in the present embodiment, the gear ratio between the input gear 811 and the output gear 822 is 3: 1. In the present embodiment, by using the flow channel 10 of the above-described standard according to these conditions, it is possible to ensure the rated rotational speed of the generator = 250 rpm or more as the rotational speed of the generator 30. Further, according to the present embodiment, the rotational torque of the water wheel 80 shown in FIG. 9B can be 250 × 9.8 Nm (250 kgf).
 図10は、図8Aに係るリニア水力発電装置の更なる変形例であって、当該変形例を、図8AのC-C断面相当の断面で示す断面図である。 FIG. 10 is a further modified example of the linear hydroelectric power generation apparatus according to FIG. 8A, and is a cross-sectional view showing the modified example in a cross section corresponding to a cross section taken along line CC of FIG. 8A.
 本発明に従えば、流水跳ね返し部87は、図3A等の水車20に適用することができる。図10の実施形態では、流水跳ね返し部87の径方向内側端部87aは、図10に示す軸方向視で、回転軸21の径方向に沿って、バケット23とバケット補助板27との連結部分とバケット補助板27の径方向内側端部27aとの間のいずれかの位置に配置することができる。本実施形態では、流水跳ね返し部87の径方向内側端部87aは、バケット補助板27の径方向内側端部27aに連結されている。特に本実施形態では、流水跳ね返し部87の径方向内側端87e1は、バケット補助板27の径方向内側端と一致している。なお、「バケット23とバケット補助板27との連結部分」は、水車20をバケット23単体で見た場合、当該バケット23の径方向内側端部23aに相当する。また、当該連結部分は、水車20をバケット補助板27単体で見た場合、当該バケット補助板27の径方向外側端部27bに相当する。 According to the present invention, the flowing water rebounding portion 87 can be applied to the water wheel 20 of FIG. 3A or the like. In the embodiment of FIG. 10, the radially inner end 87a of the flowing water return portion 87 is a connection portion between the bucket 23 and the bucket auxiliary plate 27 along the radial direction of the rotary shaft 21 in the axial direction view shown in FIG. And the radially inner end 27a of the bucket auxiliary plate 27 can be disposed at any position. In the present embodiment, the radially inner end 87 a of the flowing water return portion 87 is connected to the radially inner end 27 a of the bucket auxiliary plate 27. In particular, in the present embodiment, the radially inner end 87 e 1 of the flowing water return portion 87 coincides with the radially inner end of the bucket auxiliary plate 27. The “connection portion between the bucket 23 and the bucket auxiliary plate 27” corresponds to the radially inner end 23 a of the bucket 23 when the water wheel 20 is viewed as the bucket 23 alone. Moreover, the said connection part is corresponded to the radial direction outer side edge part 27b of the said bucket auxiliary plate 27, when the water turbine 20 is seen by the bucket auxiliary plate 27 single-piece | unit.
 これに対し、流水跳ね返し部87の他方が連結される、「他方のバケットの径方向外側端部」は、バケット23のうち、直線形の受圧面25を有する部分とすることができる。本実施形態では、流水跳ね返し部87の径方向外側端部87bは、バケット23の径方向外側端部(先端部)23bに連結されている。この場合、流水跳ね返し部87は、図10に示すように軸方向視で、受圧面25を形作る直線と一致するように延在させることが好ましい。また本実施形態では、流水跳ね返し部87の径方向外側端87e2は、バケット23の径方向外側端(先端)と一致している。 On the other hand, the “radially outer end portion of the other bucket” to which the other one of the flowing water return parts 87 is connected can be a portion of the bucket 23 having the linear pressure receiving surface 25. In the present embodiment, the radially outer end portion 87 b of the flowing water return portion 87 is connected to the radially outer end portion (tip portion) 23 b of the bucket 23. In this case, it is preferable that the flowing water return portion 87 be extended so as to coincide with a straight line that forms the pressure receiving surface 25 in an axial view as shown in FIG. Further, in the present embodiment, the radially outer end 87 e 2 of the flowing water return portion 87 coincides with the radially outer end (tip) of the bucket 23.
 本実施形態では、バケット23及び流水跳ね返し部87は、例えば、一枚の板材に対してプレス加工等を行うことによって形作られている。即ち、本実施形態では、バケット23及び流水跳ね返し部87は、一体成形物である。 In the present embodiment, the bucket 23 and the flowing water return portion 87 are formed by, for example, pressing a single plate material. That is, in the present embodiment, the bucket 23 and the flush water return part 87 are an integrally molded product.
 上述したところは、本発明の数種の実施形態を開示したにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。例えば、上述の各実施形態において、各流水路は、図1等の平面視で示すように、直線状であることが好ましいが、本発明によれば、各流水路は、曲線状とすることもできる。また上述の各実施形態では、前記水車の長翼は、バケットのみ、又は、バケット及びバケット補助板のいずれか一方で構成することができる。上述した各実施形態に係るリニア水力発電装置の各構成、例えば、水車の長翼及びバケットの各構成、並びに、上述した変形例に係るリニア水力発電装置の各構成、例えば、水車の長翼及びバケットの各構成は、それぞれ、互いに適宜に置き換えて、又は、組み合わせて使用することができる。更に本発明は、上述のとおり、水車の直径は、適宜変更することができる。特に、水車の直径を小さくすれば、水車の回転速度を大きく得ることができる。 The foregoing merely discloses several embodiments of the present invention, and various modifications may be made in accordance with the appended claims. For example, in each of the embodiments described above, each water flow passage is preferably linear as shown in a plan view of FIG. 1 and the like, but according to the present invention, each water flow passage is curved. You can also. Further, in each of the embodiments described above, the long wing of the water wheel can be configured of only a bucket, or either of a bucket and a bucket auxiliary plate. Each configuration of the linear hydroelectric power generation device according to each embodiment described above, for example, each configuration of the long blade and bucket of the water turbine, and each configuration of the linear hydroelectric power generation device according to the modification described above, for example, the long blade of the water turbine The respective configurations of the buckets can be used by appropriately replacing each other or in combination. Furthermore, in the present invention, as described above, the diameter of the water wheel can be changed as appropriate. In particular, if the diameter of the water wheel is reduced, the rotational speed of the water wheel can be increased.
 10:流水路, 11:底壁, 12:側壁, 15:水門, 16:障害物排除設備, 17:補強支柱, 20:水車, 20A~20E:水車, 70:水車, 80:水車, 21:回転軸, 22:ベアリング, 23:バケット, 23a:バケットの径方向内側端部, 23b:バケットの径方向外側端部, 24:受圧面, 24´:受圧面, 25:受圧面, 25´:受圧面, 26:受圧面, 27:バケット補強板, 27a:バケット補強板の径方向内側端部, 27b:バケット補強板の径方向外側端部, 28:支持板, 29:バケット補強部, 30:発電機, 40:動力伝達装置, 50:集電盤, 60:水車, 70:水車, 80:水車, 83:バケット, 83a:バケットの径方向内側端部, 83b:バケットの径方向外側端部, 84:受圧面, 87:流水跳ね返し部, 87a:流水跳ね返し部の径方向内側端部, 87b:流水跳ね返し部の径方向外側端部,100:リニア水力発電装置, 200:リニア水力発電装置, 300:リニア水力発電装置, 400:リニア水力発電装置, 500:リニア水力発電装置, D10:流水路の水深, D20:水車の浸水深さ, D80:水車の浸水深さ, Df:残部深さ, L20:水車間ピッチ長さ(水車の間の間隔), L23:バケットの水車径方向長さ, L83:バケットの水車径方向長さ, L25:直線形の受圧面の延在長さ, L27:バケット補助板の水車径方向長さ, R87:流水跳ね返し部の径方向内側端部の曲率半径, L87:流水跳ね返し部の水車径方向長さ, R24:バケットの曲率半径, S10:流路面積, S10-1:遊水流層の流路面積, S10-2:受圧水流層の流路面積, S20:水車の受圧面積, S23:バケットの受圧面積, S27:バケット補強板の受圧面積, S70:水車の受圧面積, VL:水車周辺水流体積, VW:水車浸水体積, W10:流水路幅, W10A:第1流水路の流水路幅, W10B:第2流水路の流水路幅, W20:水車幅, W23:バケット幅, WF:水面幅
 
10: water flow path, 11: bottom wall, 12: side wall, 15: water gate, 16: obstacle elimination equipment, 17: reinforcement post, 20: water wheel, 20A to 20E: water wheel, 70: water wheel, 80: water wheel, 21: Rotating shaft, 22: Bearing, 23: Bucket, 23a: Radial inner end of bucket, 23b: Radial outer end of bucket, 24: Pressure receiving surface, 24 ': Pressure receiving surface, 25: Pressure receiving surface, 25': Pressure receiving surface, 26: Pressure receiving surface, 27: Bucket reinforcing plate, 27a: Radial inner end of bucket reinforcing plate, 27b: Radial outer end of bucket reinforcing plate, 28: Support plate, 29: Bucket reinforcing portion, 30 : Generator, 40: Power transmission, 50: Current collector, 60: Water wheel, 70: Water wheel, 80: Water wheel, 83: Bucket, 83a: Radial inner end of bucket, 83b: Radial outer end of bucket Department, 8 A pressure receiving surface 87 A flowing water return portion 87a A radially inner end of the flowing water return portion 87b A radially outer end of the flowing water return portion 100 A linear hydroelectric power generation apparatus 200 A linear hydroelectric power generation apparatus 300 Linear hydroelectric power generation equipment, 400: Linear hydroelectric power generation equipment, 500: Linear hydroelectric power generation equipment, D10: Water flow channel depth, D20: Water car immersion depth, D80: Water car immersion depth, Df: Remaining depth, L20: L23 pitch length (distance between the mills), L23: Bucket radial length, L83: Bucket radial length, L25: Length of linear pressure receiving surface, L27: Bucket support Radial length of plate, R87: Curvature radius of radial inner end of flowing water return part, L87: Longitudinal diameter of flowing water return part, R24: Curvature radius of bucket, S10: Flow Area, S10-1: Flow area of flooded bed, S10-2: Flow area of pressurized water bed, S20: Pressure receiving area of water wheel, S23: Pressure receiving area of bucket, S27: Pressure receiving area of bucket reinforcement plate, S70 : Water receiving pressure area, VL: Water flow volume around water wheel, VW: Water flooding volume, W10: Water flow width, W10A: Water flow width of first water flow, W10B: Water flow width of second water flow, W20: Water water Width, W23: Bucket width, WF: Water surface width

Claims (6)

  1.  勾配を有して流水が流れる流水路と、
     前記流水路内に、当該流水路の延在方向に間隔を置いて配置された複数の水車と、
     前記水車によって駆動される発電機と、を有し、
     前記水車は、
      前記流水路の幅方向に延在する回転軸と、
      前記回転軸の周方向に間隔を置いて配置された複数のバケットと、
     を有し、
     前記流水路の水深は、前記バケットが前記流水に浸水する深さの2倍以上であり、
    又は、
     前記流水路を通過する水量は、前記バケットの水流妨害抵抗分の水量の2倍以上である、リニア水力発電装置において、
     前記水車は、前記バケットの幅方向両側に支持板を更に有し、
     前記支持板は、それぞれ、前記バケットの幅方向両側に固定されており、
     更に、前記水車は、前記回転軸の周方向に隣接して配置された2つのバケットの間に、一方の前記バケットの径方向内側端部又は前記バケットから前記回転軸に向かって延在するバケット補助板の径方向内側端部と、他方の前記バケットの径方向外側端部との間を延在する流水跳ね返し部を有している、リニア水力発電装置。
    A flowing channel with a gradient and flowing water;
    A plurality of water wheels disposed in the water flow passage at intervals in the extension direction of the water flow passage;
    And a generator driven by the water wheel,
    The water wheel is
    An axis of rotation extending in the width direction of the water flow path;
    A plurality of buckets spaced circumferentially about the axis of rotation;
    Have
    The water depth of the water flow passage is twice or more the depth at which the bucket is submerged in the water flow,
    Or
    In the linear hydroelectric power generation system, the amount of water passing through the water flow passage is at least twice the amount of water of the water flow blocking resistance of the bucket,
    The water wheel further includes support plates on both sides in the width direction of the bucket,
    The support plates are respectively fixed on both sides in the width direction of the bucket,
    Furthermore, the water wheel is a bucket extending from a radially inner end of one of the buckets or from the bucket toward the rotation shaft between two buckets disposed circumferentially adjacent to the rotation shaft. A linear hydroelectric power generation apparatus, comprising: a flowing water return portion extending between a radially inner end of the auxiliary plate and a radially outer end of the other bucket.
  2.  前記バケットの受圧面は、前記回転軸の軸方向視で、流体の流れ方向に向かって半円筒形に湾曲した受圧面である、請求項1に記載のリニア水力発電装置。 The linear hydraulic power generator according to claim 1, wherein the pressure receiving surface of the bucket is a pressure receiving surface curved in a semi-cylindrical shape in a fluid flow direction as viewed in the axial direction of the rotation shaft.
  3.  前記バケットは、前記回転軸の軸方向視で、当該バケットの先端部に直線形の受圧面を有する、請求項1又は2に記載のリニア水力発電装置。 The linear hydroelectric power generation device according to claim 1, wherein the bucket has a linear pressure receiving surface at a tip end portion of the bucket in an axial direction of the rotation shaft.
  4.  前記流水跳ね返し部は、前記一方の前記バケットの前記径方向内側端部と、前記他方の前記バケットの前記径方向外側端部とに連結されており、前記回転軸の周方向に隣接して配置された2つのバケットの間に形成された、当該流水跳ね返し部に対応する隙間を閉じている、請求項1乃至3のいずれか1項に記載のリニア水力発電装置。 The flowing water return portion is connected to the radially inner end of the one bucket and the radially outer end of the other bucket, and is disposed adjacent to the circumferential direction of the rotation shaft The linear hydroelectric power generation device according to any one of claims 1 to 3, wherein a gap corresponding to the flowing water return portion, which is formed between the two buckets being closed, is closed.
  5.  前記水車は、前記回転軸の周方向に延在して前記バケットの先端のそれぞれを一体に固定するバケット補強部を更に有する、請求項1乃至4のいずれか1項に記載のリニア水力発電装置。 The linear hydroelectric power generation device according to any one of claims 1 to 4, wherein the water wheel further includes a bucket reinforcing portion extending in a circumferential direction of the rotation shaft and integrally fixing each of the tips of the buckets. .
  6.  前記流水路は、流体の流入を遮断する流体流入遮断部を有する、請求項1乃至5のいずれか1項に記載のリニア水力発電装置。 The linear hydroelectric power generation device according to any one of claims 1 to 5, wherein the water flow path has a fluid inflow blocking portion that blocks the inflow of fluid.
PCT/JP2018/034460 2017-09-21 2018-09-18 Linear hydraulic power generation device WO2019059177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12020500496A PH12020500496A1 (en) 2017-09-21 2020-03-11 Linear hydraulic power generation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-181769 2017-09-21
JP2017181769 2017-09-21
JP2018-044764 2018-03-12
JP2018044764A JP6442095B1 (en) 2017-09-21 2018-03-12 Linear hydroelectric generator

Publications (1)

Publication Number Publication Date
WO2019059177A1 true WO2019059177A1 (en) 2019-03-28

Family

ID=64668694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034460 WO2019059177A1 (en) 2017-09-21 2018-09-18 Linear hydraulic power generation device

Country Status (3)

Country Link
JP (1) JP6442095B1 (en)
PH (1) PH12020500496A1 (en)
WO (1) WO2019059177A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158763A (en) 2019-03-25 2020-10-01 東ソー株式会社 Resin composition and film for lid material
JP2023103571A (en) * 2022-01-14 2023-07-27 トヨタ自動車株式会社 Hydro power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043702A (en) * 1975-04-16 1977-08-23 Lui Gotti Water wheel assembly
JP3174549U (en) * 2012-01-13 2012-03-29 関越技研株式会社 Watermill equipment
JP2013151871A (en) * 2012-01-24 2013-08-08 Cygnus:Kk Flowing water using type small hydraulic power generation device
JP3185257U (en) * 2012-06-05 2013-08-08 王秉逸 Hydroelectric generator
JP2014070555A (en) * 2012-09-28 2014-04-21 Yamatatsugumi:Kk Blade processing member for water turbine, processed blade member and water turbine using processed blade member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043702A (en) * 1975-04-16 1977-08-23 Lui Gotti Water wheel assembly
JP3174549U (en) * 2012-01-13 2012-03-29 関越技研株式会社 Watermill equipment
JP2013151871A (en) * 2012-01-24 2013-08-08 Cygnus:Kk Flowing water using type small hydraulic power generation device
JP3185257U (en) * 2012-06-05 2013-08-08 王秉逸 Hydroelectric generator
JP2014070555A (en) * 2012-09-28 2014-04-21 Yamatatsugumi:Kk Blade processing member for water turbine, processed blade member and water turbine using processed blade member

Also Published As

Publication number Publication date
PH12020500496A1 (en) 2021-03-01
JP2019056363A (en) 2019-04-11
JP6442095B1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US6431821B1 (en) High torque impulse turbine
US9512815B2 (en) Multipurpose rotary device and generating system including same
CN104340339B (en) Tidal generating set and its installation frame
JP5283755B2 (en) Hydroelectric power generation equipment
CA2683450A1 (en) Hydroelectric power device
RU2461731C2 (en) Hydraulic turbine
KR20120120941A (en) A bidirectional water turbine
KR20060050090A (en) Power generation system using fluid
WO2019059177A1 (en) Linear hydraulic power generation device
MX2012009557A (en) Rotational force generating device and a centripetally acting type of water turbine using the same.
AU2010219135A1 (en) Water wheel
JP6954739B2 (en) Rotor for generator
JP3143189U (en) Small hydroelectric generator
WO2010086958A1 (en) Hydraulic power generation device
EP3735529B1 (en) Hydraulic turbine
KR101172847B1 (en) Powerplant system
US20190277243A1 (en) Generator device
KR101243830B1 (en) Drag type water current turbine having energy concentrating device
JP5036155B2 (en) Mounting method of seat liner in hydraulic machine
Chattha et al. Design of a cross flow turbine for a micro-hydro power application
JP2015031229A (en) Small hydraulic power generating device
JPH04292577A (en) Hydraulic prime mover
DE102016006164B3 (en) Tiefschlachtiges waterwheel for hydroelectric engines
KR102616864B1 (en) hydro power plant
KR102637470B1 (en) Impeller system for prefabricated small hydro power generation that can change the angle of the guide vane and vane of the water wheel system according to the flow rate and head of the farm discharge water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859365

Country of ref document: EP

Kind code of ref document: A1