WO2019059071A1 - Three-dimensional display device and moving body - Google Patents

Three-dimensional display device and moving body Download PDF

Info

Publication number
WO2019059071A1
WO2019059071A1 PCT/JP2018/033856 JP2018033856W WO2019059071A1 WO 2019059071 A1 WO2019059071 A1 WO 2019059071A1 JP 2018033856 W JP2018033856 W JP 2018033856W WO 2019059071 A1 WO2019059071 A1 WO 2019059071A1
Authority
WO
WIPO (PCT)
Prior art keywords
display surface
light
sub
circumferential direction
image
Prior art date
Application number
PCT/JP2018/033856
Other languages
French (fr)
Japanese (ja)
Inventor
秀也 高橋
濱岸 五郎
薫 草深
Original Assignee
公立大学法人大阪市立大学
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学, 京セラ株式会社 filed Critical 公立大学法人大阪市立大学
Publication of WO2019059071A1 publication Critical patent/WO2019059071A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume

Definitions

  • the present disclosure relates to a three-dimensional display device and a movable body.
  • Patent Document 1 a filter (parallax barrier) is used to cause a part of the image light emitted from the flat display panel to reach the right eye, and another part of the image light emitted from the display panel A three-dimensional display has been described which causes the left eye to reach.
  • the three-dimensional display device of the present disclosure includes a display panel and an optical element.
  • the display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis.
  • the left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction.
  • the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction.
  • the left sub-pixel group has sub-pixels for displaying a left-eye image.
  • the right sub-pixel group includes sub-pixels that display a right-eye image.
  • the optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The circumferential intervals at which the light reduction regions and the light transmission regions are alternately arranged are substantially equal.
  • the interval is a radius of curvature of an arc formed by a cross section of a plane orthogonal to the central axis direction of the display plane, an image pitch which is an arrangement interval of the left sub-pixel group and the right sub-pixel group, and the display plane and the It is defined based on the gap between the optical element.
  • the three-dimensional display device of the present disclosure includes a display panel and an optical element.
  • the display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis.
  • the left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction.
  • the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction.
  • the left sub-pixel group has sub-pixels for displaying a left-eye image.
  • the right sub-pixel group includes sub-pixels that display a right-eye image.
  • the optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction.
  • the first ratio and the second ratio are substantially equal.
  • the first ratio corresponds to the light reduction area corresponding to the first area with respect to an interval in which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in the first area on the display surface. It is a ratio of intervals arranged in the circumferential direction.
  • the second ratio corresponds to the two areas with respect to an interval at which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in a second area different from the first area on the display surface.
  • a light reduction area is a ratio of intervals arranged in the circumferential direction. The ratio is defined based on a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface, and a gap between the display surface and the optical element. It is determined based on the curvature.
  • the mobile unit of the present disclosure includes a three-dimensional display.
  • the three-dimensional display device includes a display panel and an optical element.
  • the display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis.
  • the display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis.
  • the left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction.
  • the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction.
  • the left sub-pixel group has sub-pixels for displaying a left-eye image.
  • the right sub-pixel group includes sub-pixels that display a right-eye image.
  • the optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region.
  • a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The circumferential intervals at which the light reduction regions and the light transmission regions are alternately arranged are substantially equal.
  • the interval is a radius of curvature of an arc formed by a cross section of a plane orthogonal to the central axis direction of the display plane, an image pitch which is an arrangement interval of the left sub-pixel group and the right sub-pixel group, and the display plane and the It is defined based on the gap between the optical element.
  • the mobile unit of the present disclosure includes a three-dimensional display.
  • the three-dimensional display device includes a display panel and an optical element.
  • the display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis.
  • the left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction.
  • the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction.
  • the left sub-pixel group has sub-pixels for displaying a left-eye image.
  • the right sub-pixel group includes sub-pixels that display a right-eye image.
  • the optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction.
  • the first ratio and the second ratio are substantially equal.
  • the first ratio corresponds to the light reduction area corresponding to the first area with respect to an interval in which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in the first area on the display surface. It is a ratio of intervals arranged in the circumferential direction.
  • the second ratio corresponds to the two areas with respect to an interval at which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in a second area different from the first area on the display surface.
  • a ratio of intervals at which the light reduction regions are arranged in the circumferential direction is a second ratio.
  • the ratio is defined based on a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface, and a gap between the display surface and the optical element. It is determined based on the curvature.
  • FIG. 1 is a view showing an example in which the three-dimensional display device of the first embodiment is viewed from a second direction.
  • FIG. 2 is a plan view of the display panel shown in FIG.
  • FIG. 3 is a plan developed view of the optical element shown in FIG.
  • FIG. 4 is a schematic view for explaining the relationship between the interocular distance, the gap, the barrier pitch, the image pitch, and the radius of curvature of the arc in the three-dimensional display device shown in FIG.
  • FIG. 5 is a plan view of the three-dimensional display shown in FIG. 1 viewed from the optical element side.
  • FIG. 6 is a diagram showing an example in which the eye of the user visually recognizes the vicinity of the end portion of the display panel.
  • FIG. 7 is a schematic view for explaining the visible region when the barrier pitch deviates from the ideal value.
  • FIG. 8A is a schematic view for explaining the visible region when the user's eye is at the reference position.
  • FIG. 8B is a schematic diagram for explaining the visible region when the user's eye is displaced by less than 2E / n from the reference position.
  • FIG. 8C is a schematic diagram for explaining the visible region when the user's eye is displaced by 2E / n from the reference position.
  • FIG. 9 is a schematic view for explaining the visible region when the user's eye is displaced in the third direction from the interocular center.
  • FIG. 10 is a diagram showing an example in which the three-dimensional display device of the second embodiment is viewed from the second direction.
  • FIG. 11 is a schematic diagram for explaining the relationship between the interocular distance, the gap, the barrier pitch, the image pitch, and the radius of curvature of the arc in the three-dimensional display device shown in FIG.
  • FIG. 12 is a view of another example of the three-dimensional display device of the first embodiment as viewed from the optical element side.
  • FIG. 13 is a view of another example of the three-dimensional display device of the first embodiment as viewed from the optical element side.
  • FIG. 14 is a schematic configuration diagram of a three-dimensional display device when the optical element of the three-dimensional display device of the first embodiment is a lenticular lens.
  • FIG. 15 is a view showing an example of a movable body on which the three-dimensional display shown in FIGS. 1 and 10 is mounted.
  • FIG. 1 is a schematic view of a planar three-dimensional display according to the prior art.
  • the arrangement of each component is defined in order to allow image light from a desired image to reach each of the left eye and right eye. ing. Specifically, relationships such as the distance from the user's eye to the parallax barrier, the distance from the parallax barrier to the display panel, the arrangement interval of the parallax barrier, and the like are defined.
  • Bp is the arrangement interval of the parallax barrier 106 (barrier pitch)
  • k is the arrangement interval on the display panel 105 of the right eye image that the right eye should recognize and the left eye image that the left eye should recognize ).
  • the above-described relationship can be established in any region on the flat display panel 105.
  • the occurrence of crosstalk can be suppressed in an arbitrary region on the display panel 105.
  • Cross talk is caused by the left eye reaching the right eye image and / or the right eye reaching the left eye image.
  • the present disclosure provides a three-dimensional display and a movable body in which an image displayed by a three-dimensional display having a curved display panel can be appropriately viewed.
  • the three-dimensional display device 3 of the first embodiment is configured to include an irradiator 4, a display panel 5, and a parallax barrier 6 as an optical element.
  • the irradiator 4 planarly illuminates the display panel 5.
  • the irradiator 4 may be configured to include a light source, a light guide plate, a diffusion plate, a diffusion sheet, and the like.
  • the irradiator 4 emits irradiation light by a light source, and makes the irradiation light uniform in the surface direction of the display panel 5 by a light guide plate, a diffusion plate, a diffusion sheet or the like. Then, the irradiator 4 emits the homogenized light toward the display panel 5.
  • the display surface 51 of the display panel 5 is a surface that forms a part of a cylindrical surface around a virtual central axis.
  • the display surface 51 is disposed inside the cylindrical surface.
  • the direction perpendicular to the central axis and along the cylindrical surface forming the display surface 51 is called the circumferential direction.
  • Circumferential direction when the eye between the centers O E of the user is at the center axis, the user is parallax direction when observing the display surface 51 of the front.
  • Circumferential direction of the center O P of the display surface 51 is the first direction.
  • the first direction is shown as the x-axis direction in FIG.
  • the direction along the central axis is called the central axis direction.
  • the central axial direction is a second direction.
  • the second direction is shown as the y-axis direction in FIG.
  • a cross section of a surface orthogonal to the second direction forms an arc.
  • a direction orthogonal to the first direction and the second direction is referred to as a third direction.
  • the third direction is shown as the z-axis direction in FIG.
  • the display panel 5 is arranged to be irradiated to the irradiator 4 from the side opposite to the center of the arc.
  • a direction corresponding to the circumferential direction is taken as a first in-plane direction (u-axis direction).
  • a direction corresponding to the central axial direction is taken as a second in-plane direction (v-axis direction).
  • the central axial direction may correspond to the second direction.
  • the display panel 5 is shown in a plane constituted by a sheet of paper, but in fact the display panel 5 has a curved surface in which the face to the user side is recessed and the xz plane The cross section according to is curved to form an arc.
  • the display surface 51 includes a plurality of divided areas arranged in a lattice along the circumferential direction and the central axis direction. One subpixel corresponds to each of the divided regions.
  • the plurality of sub-pixels are arranged in a matrix along the circumferential direction and the central axis direction.
  • the shapes of the plurality of sub-pixels are substantially equal to one another. Specifically, circumferential lengths of the plurality of sub-pixels are substantially equal. The lengths in the central axis direction of the plurality of sub-pixels are substantially equal.
  • Each subpixel corresponds to one of R (Red), G (Green), and B (Blue).
  • the three sub-pixels of R, G and B can constitute one pixel as a set.
  • One pixel is sometimes referred to as one pixel.
  • On the display surface 51 a plurality of pixels are arranged in a matrix along the circumferential direction and the central axis direction.
  • the display panel 5 is not limited to the transmissive liquid crystal panel, and may be a self-luminous display panel such as an organic EL. When the display panel 5 is a self-luminous display panel, the irradiator 4 is unnecessary.
  • the sub-pixel group Pg continuously arranged in n rows in the circumferential direction is arranged.
  • n 12.
  • Sub-pixel group Pg is repeatedly arranged adjacent to each other in the circumferential direction.
  • Sub-pixel group Pg is repeatedly arranged adjacent to a position shifted by one sub-pixel in the circumferential direction in the central axis direction.
  • Sub-pixel group Pg includes left sub-pixel group Pgl and right sub-pixel group Pgr.
  • the left sub-pixel group Pgl and the right sub-pixel group Pgr are alternately and repeatedly arranged adjacent to each other in the circumferential direction.
  • the right sub-pixel group Pgr includes sub-pixels of predetermined rows and columns similar to the left sub-pixel group Pgl. Specifically, in the right sub-pixel group Pgr, m sub-pixels P (b rows (b rows) in the central axis direction, n / 2 (n / 2 m + 1) to P (2 ⁇ m) are included.
  • a left sub-pixel group Pgl including six sub-pixels P1 to P6 arranged one by one in the central axis direction and six in the circumferential direction is arranged on the display surface 51.
  • a right sub-pixel including six sub-pixels P7 to P12 continuously arranged one by one in the central axis direction and six each in the circumferential direction adjacent to the left sub-pixel group Pgl in the circumferential direction Pixel group Pgr is arranged.
  • the left eye image is displayed on the sub-pixels P1 to P6 included in the left sub-pixel group Pgl.
  • the right eye image is displayed on the sub-pixels P7 to P12 included in the right sub-pixel group Pgr.
  • b 1, b may be any integer of 1 or more.
  • the arrangement interval of the left sub-pixel group Pgl is an image pitch k.
  • the image pitch k is the sum of the circumferential length of the left sub-pixel group Pgl and the circumferential length of the right sub-pixel group Pgr. Since the left sub-pixel group Pgl and the right sub-pixel group Pgr are alternately arranged in the circumferential direction, the image pitch k is also the arrangement interval of the left sub-pixel group Pgl and the right sub-pixel group Pgr.
  • the parallax barrier 6 is formed by a curved surface along the display surface 51.
  • the parallax barrier 6 is disposed on the center side of the circular arc with respect to the display surface 51.
  • the parallax barrier 6 is disposed apart from the display surface 51 by a gap g.
  • the parallax barrier 6 has a plurality of light reduction regions 61.
  • the plurality of light reduction regions 61 define a plurality of light transmission regions 62 that define light beam directions that are propagation directions of image light emitted from the sub-pixels.
  • a region between two light reduction regions 61 adjacent to each other is defined as a light transmission region 62. That is, the light transmitting regions 62 and the light reducing regions 61 are repeatedly and alternately arranged in the direction along the circumferential direction of the display surface 51.
  • FIG. 1 the example shown in FIG.
  • the parallax barrier 6 sets the light beam direction, which is the propagation direction of the image light emitted from the sub-pixel, for each of the plurality of light transmitting regions 62, which are a plurality of strip regions extending in a predetermined direction in the plane.
  • the predetermined direction is a direction forming a predetermined angle which is not 0 degrees with the vertical direction.
  • the plurality of light transmitting areas 62 transmit image light with a higher transmittance than the light reducing area 61.
  • the light transmitting region 62 may transmit light with a transmittance of a first predetermined value or more.
  • the first predetermined value may be, for example, 100%, or a value close to 100%.
  • the light reduction region 61 may block light with a transmittance equal to or less than a second predetermined value.
  • the second predetermined value may be, for example, 0% or a value close to 0%.
  • the light reduction area 61 may be composed of the film or plate member.
  • the film may be composed of a resin.
  • the film may be composed of other materials.
  • the plate-like member may be made of resin, metal or the like.
  • the plate-like member may be made of other materials.
  • the light reduction area 61 is not limited to a film or a plate-like member, and may be composed of other kinds of members.
  • the base of the light reduction area 61 may have the property of reducing or blocking light.
  • the base of the light reduction area 61 may contain an additive having a property of reducing or blocking light.
  • the parallax barrier 6 may be configured of a liquid crystal shutter.
  • the liquid crystal shutter can control the light transmittance in accordance with the applied voltage.
  • the liquid crystal shutter may be composed of a plurality of pixels, and may control the transmittance of light in each pixel.
  • the liquid crystal shutter can form an area with high light transmittance or an area with low light transmittance in an arbitrary shape.
  • the light transmitting region 62 may be a region having a transmittance equal to or more than a first predetermined value.
  • the light reduction region 61 may be a region having a transmittance equal to or less than a second predetermined value.
  • the arrangement interval of the light reduction region 61 in the circumferential direction is a barrier pitch Bp.
  • the barrier pitch Bp is the sum of the width in the direction corresponding to the circumferential direction of the light reduction region 61 and the width in the direction corresponding to the circumferential direction of the light transmission region 62. Since the light reduction regions 61 and the light transmission regions 62 are alternately arranged in the direction corresponding to the circumferential direction, the barrier pitch Bp is also the arrangement interval of the light reduction regions 61 and the light transmission regions 62.
  • the circumferential widths of the plurality of light reduction regions 61 are substantially equal to one another.
  • the circumferential widths of the plurality of translucent regions 62 are substantially equal to one another. Therefore, the widths of the barrier pitches Bp are equal to one another in any region of the parallax barrier 6.
  • the display panel 5 can be viewed by the user through the parallax barrier 6 from the concave side of the curved surface.
  • the user is designed to view an optimal three-dimensional image.
  • Mekan center O E is the midpoint between the left eye and the right eye of the user.
  • the center of the arc is sometimes referred to as a reference position O S.
  • the circumferential direction between the direction connecting the centers of the user's eyes and the position of the image observed by the user of the display panel 5 is parallel.
  • the barrier pitch Bp is defined such that the following equation (4) holds.
  • the interval at which the parallax barriers 6 are arranged in the circumferential direction is defined to be ((R ⁇ g) / R) ⁇ k.
  • the barrier pitch Bp is defined such that the ratio of the barrier pitch Bp to the image pitch k is ((R ⁇ g) / R).
  • the image light from the sub-pixel displaying the target eye image transmitted through the light transmitting area 62 of the parallax barrier 6 reaches the target eye of the user.
  • the target eye image is an image to be visually recognized by the target eye.
  • the non-target eye image is an image to be visually recognized by an eye other than the target eye. Specifically, when the target eye is the right eye, the target eye image is the right eye image, and the non-target eye image is the left eye image. When the target eye is a left eye, the target eye image is a left eye image, and the non-target eye image is a right eye image.
  • FIG. 5 shows an example of the parallax barrier 6 and the display surface 51 visually recognized by the right eye of the user.
  • the right visible area 51R (an area without hatching of the display surface 51 shown in FIG. 5) visible to the user's right eye includes at least a part of the right sub-pixel group Pgr, and the left sub-pixel group Pgl is not included.
  • the right eye image By displaying the right-eye image in the sub-pixels constituting the right sub-pixel group Pgr, the right eye of the user can view only the right-eye image.
  • the left visible region 51L visible to the left eye of the user includes at least a part of the left sub-pixel group Pgl and does not include the right sub-pixel group Pgr.
  • the left eye of the user can view only the left eye image.
  • the parallax between the left eye image and the right eye image allows the user to view a three-dimensional image.
  • FIG. 1 An example is shown in which the user visually recognizes the vicinity of the center in the circumferential direction of the display surface 51.
  • the barrier pitch Bp near the center is defined such that the relationships shown in Equations (2) and (3) hold, the user appropriately selects the center vicinity.
  • Three-dimensional images can be viewed.
  • the barrier pitch Bp corresponding to the vicinity of the center is particularly referred to as “Bp1”.
  • the barrier pitch Bp corresponding to the vicinity of the end in the circumferential direction of the display surface 51 will be described.
  • the barrier pitch Bp corresponding to the vicinity of the end is particularly referred to as “Bp2”. Since the interocular center O E is at the reference position O S , as shown in FIG. 6, the distance from the interocular center O E to the vicinity of the end of the display surface 51 is the curvature of the arc as in the distance to the central vicinity. It is radius R. If the barrier pitch Bp2 in the vicinity of the end is defined such that the relationships shown in Equations (2) and (3) hold similarly to the barrier pitch Bp1, the user turns the face to the vicinity of the end , 3D images in the vicinity of the end can be appropriately viewed.
  • the barrier pitch Bp is represented by the image pitch k, the radius of curvature R, and the gap g.
  • the image pitch k, the radius of curvature R, and the gap g are the same in the region corresponding to the vicinity of the center of the display surface 51 and in the region corresponding to the vicinity of the end. Therefore, the barrier pitch Bp2 and the barrier pitch Bp1 are substantially equal.
  • the barrier pitch Bp corresponding to an arbitrary area of the display surface 51 is defined such that the relationships shown in the equation (2) and the equation (3) hold similarly to the barrier pitch Bp1, the user can A three-dimensional image of an arbitrary area can be appropriately viewed.
  • the barrier pitch Bp can be defined substantially equally so that the relationship shown in the equation (3) holds in any region.
  • ⁇ Ratio of barrier pitch to image pitch> As described above, in the display surface 51, the numbers of circumferential sub-pixels included in each sub-pixel group Pg are equal. The shapes of the plurality of sub-pixels are equal. For this reason, as shown in FIGS. 2 and 5, the plurality of image pitches k are substantially equal to one another. For example, the image pitch k1 near the center (first area) on the display surface 51 and the image pitch k2 near the end (second area) are substantially equal.
  • the first ratio Bp1 / k1 near the center (first region) on the display surface 51 and the second ratio Bp2 / k2 near the end (second region) on the display surface 51 are substantially equal.
  • the first ratio Bp1 / k1 is a ratio of the barrier pitch Bp1 corresponding to the vicinity of the center to the image pitch k1 near the center on the display surface 51.
  • the image pitch k1 is an interval at which the left sub-pixel group Pgl and the right sub-pixel group Pgr are arranged in the circumferential direction.
  • the barrier pitch Bp1 is an interval at which the light reduction regions 61 are arranged in the circumferential direction.
  • the second ratio Bp2 / k2 is a ratio of the barrier pitch Bp2 corresponding to the vicinity of the end to the image pitch k2 near the end (second region) on the display surface 51.
  • the image pitch k2 is an interval at which the left sub-pixel group Pgl and the right sub-pixel group Pgr are arranged in the circumferential direction.
  • the barrier pitch Bp2 is an interval at which the light reduction regions 61 are arranged in the circumferential direction.
  • the barrier pitch Bp is a value satisfying the formula (3) (hereinafter referred to as “ideal value Bp0”).
  • the barrier pitch Bp is not limited to Bp0, and may deviate from the ideal value Bp0 within a predetermined range.
  • FIG. 7 a parallax barrier 6A having a barrier pitch Bp1 slightly different from the ideal barrier pitch Bp0 is shown by a broken line, together with the parallax barrier 6 having the ideal barrier pitch Bp0.
  • FIG. 7 a parallax barrier 6A having a barrier pitch Bp1 slightly different from the ideal barrier pitch Bp0 is shown by a broken line, together with the parallax barrier 6 having the ideal barrier pitch Bp0.
  • the parallax barrier 6A is described at a position radially shifted with respect to the parallax barrier 6, but the parallax barrier 6A has the same radial position with respect to the parallax barrier 6 is there.
  • the light reduction region 61A and the light transmission region 62A of the parallax barrier 6A are arranged in the circumferential direction, as shown in FIG. 7, for example, in the region (1), each of the light reduction region 61A and the light transmission region 62A The deviation from the light reduction area 61 and the light transmission area 62 is slight.
  • the more the user's target eye moves away from the area (1) the more the image light from the sub-pixel displaying the non-target image can be viewed.
  • image light from the sub-pixel displaying the right-eye image can reach a lot.
  • the farther from the region (1) the less the image light from the sub-pixel displaying the right-eye image reaches the right eye of the user, and the more the image light from the sub-pixel displaying the left-eye image reaches. For this reason, as the distance from the region (1) increases, the crosstalk generated in the user's eyes increases.
  • the maximum value of the displacement of the light reduction region 61A and the light transmission region 62A from the light reduction region 61 and the light transmission region 62 is less than the circumferential length Hp of the sub-pixel
  • the barrier pitch Bp may be defined to have a width corresponding to.
  • the width corresponding to the circumferential length Hp of one sub-pixel is the width of the light transmitting region 62 that transmits the image light from the image displayed in one sub-pixel, and the radius of curvature R, gap g, one sub-pixel May be defined in accordance with the circumferential length Hp of
  • the barrier pitch Bp is defined so that the target eye of the user does not visually recognize the non-target eye image longer than Hp in the circumferential direction, but the present invention is not limited thereto.
  • the barrier pitch Bp may be defined such that the user's target eye does not visually recognize non-target eye images longer than 0.5 ⁇ Hp in the circumferential direction. .
  • the barrier pitch Bp is closer to the ideal value Bp0, crosstalk generated in the user's eyes is reduced.
  • the image pitch n may be any even number.
  • the circumferential widths of the light reduction region 61 and the light transmission region 62 of the parallax barrier 6 are equal (barrier aperture ratio is 50%).
  • a left image is displayed in the left visible region 51aL.
  • N / 2-1 The entire sub-pixel of the column is included.
  • the left visible region 51aL includes less than half of one row of subpixels displaying the right image.
  • the right viewable area 51aR includes the entire (n / 2-1) row of sub-pixels displaying the right image.
  • the right visible region 51aR includes less than half of one row of subpixels displaying the right image. For this reason, crosstalk occurs in the image visually recognized by the user's eye.
  • the left visible area 51a L is moved to the left of the (n / 2-1) row. It includes all of the sub-pixels that display an image, and sub-pixels that display less than half of one column of the left image.
  • the left visible region 51aL includes half or more of one row of subpixels displaying the right-eye image.
  • the right visible region 51aR includes all the subpixels that display the right image in (n / 2-1) rows and the subpixels that display the right image in less than half of one row.
  • the right visible region 51aR includes half or more of one row of subpixels displaying the left eye image. Therefore, larger crosstalk occurs than in the case shown in FIG. 8B.
  • the image is switched such that the sub-pixel displaying the right-eye image having a half or more included in the left visible region 51aL displays the left-eye image.
  • the image is switched such that the sub-pixel displaying the left-eye image for which the right visible region 51aR includes half or more is displayed the right-eye image.
  • the aperture ratio of the parallax barrier 6 may be 50% or less. That is, the circumferential width of the light reduction area 61 may be 50% or more of the barrier pitch Bp. If the circumferential width of the light reduction area 61 is less than 50%, there are sub-pixels that emit image light that reaches both the right eye and the left eye of the user. In this case, when the right eye image is displayed on the sub pixel, the left eye visually recognizes the right eye image, and when the left eye image is displayed, the right eye visually recognizes the left eye image. That is, even if the sub-pixel displays either the left-eye image or the right-eye image, it becomes difficult to prevent the occurrence of crosstalk. Therefore, by setting the aperture ratio of the parallax barrier 6 to 50% or less, crosstalk generated in the user's eyes can be reduced.
  • the eye box EB is a range of eye positions where the two eyes of the user can appropriately view a three-dimensional image.
  • the left sub-pixel group Pgl is displayed in the left visible region 51 L viewed by the left eye on the display surface 51 Is included.
  • the right sub-pixel group Pgr is included in the right visible region 51R that is viewed by the right eye on the display surface 51. That is, the eye box EB includes the center of an arc in a cross section by a plane orthogonal to the central axis direction of the display surface 51.
  • the left visible area 51L ′ changes from the left visible area 51L.
  • the left visible area 51L ′ includes a part of the right sub-pixel group Pgr.
  • the right visible region 51R ' changes from the right visible region 51R.
  • the right visible region 51R ′ includes a part of the left sub-pixel group Pgl.
  • the left visible area 51L ′ ′ changes from the left visible area 51L
  • the left visible area 51L ′ ′ includes a part of the right sub-pixel group Pgr.
  • the right visible region 51R ' changes from the right visible region 51R.
  • the right visible region 51R ′ ′ includes a part of the left sub-pixel group Pgl. Therefore, the target eye visually recognizes a part of the non-target eye image, and crosstalk occurs.
  • the change from the left visible area 51L to the left visible area 51L ′ ′ when the interocular center O E changes to a predetermined distance to O E2 is the same as the interocular center O E to O E1. Therefore, the right sub-pixel group Pgr included in the left visible area 51L ′ ′ is a right sub-pixel included in the left visible area 51L ′. Greater than group Pgr. Similarly, the left sub-pixel groups Pgl included in the right visible region 51R "is greater than the left sub-pixel groups Pgl included in the right visible region 51R '.
  • the dimension from the reference position O S eyeboxes EB to the end of the display surface 51 side may be shorter than the dimension of the end portion opposite to the display surface 51 from the reference position O S in other words., the center in the z-axis direction of the eye box EB may be located on the opposite side of the display surface 51 with respect to the reference position O S.
  • the position in the central axis direction of the eye box EB may be arbitrary.
  • the position of the eye box EB in the central axis direction may be within the range of the width of the display surface 51 in the direction along the central axis direction.
  • the position of the eye box EB in the second direction may be outside the range of the width of the display surface 51 in the direction along the central axis direction.
  • the barrier pitch Bp is substantially equal in any region of the parallax barrier 6 and is defined based on the radius of curvature R of the arc, the image pitch k, and the gap g.
  • the ratio of the barrier pitch Bp to the image pitch k is substantially equal in any region, and is defined based on the radius of curvature R of the arc and the gap g.
  • the appropriate viewing distance is maintained at the curvature radius R of the arc, and it is possible to visually recognize a good three-dimensional image in which crosstalk is suppressed.
  • the three-dimensional display device 7 includes an irradiator 4, a display panel 5, and a parallax barrier 6 as an optical element.
  • the second embodiment only configurations different from the first embodiment will be described.
  • the composition which omits explanation in a 2nd embodiment it is the same as that of a 1st embodiment.
  • the parallax barrier 6 is disposed on the opposite side of the reference position O S with respect to the display panel 5.
  • the parallax barrier 6 is disposed on the display panel 5 side with respect to the irradiator 4.
  • the display panel 5 and the parallax barrier 6 are designed such that the difference between the appropriate viewing distance d and the gap g becomes the curvature radius R of the arc.
  • R dg formula (5)
  • the barrier pitch Bp is defined such that the following equation (8) holds.
  • the interval at which the parallax barriers 6 are arranged in the circumferential direction is defined to be ((R + g) / R) ⁇ k.
  • the barrier pitch Bp is defined such that the ratio of the barrier pitch Bp to the image pitch k is ((R + g) / R).
  • the irradiator 4 is unnecessary.
  • the display panel 5 of the second embodiment is not a self-luminous display panel.
  • the irradiator 4 is not necessary.
  • the barrier pitch Bp is substantially equal in any region of the parallax barrier 6, and the barrier pitch Bp is the curvature radius R of the arc, the image pitch It is defined based on k and gap g.
  • the ratio of the barrier pitch Bp to the image pitch k is substantially equal in any region, and the ratio is defined based on the radius of curvature R of the arc and the gap g. This allows the user to view an appropriate three-dimensional image in an arbitrary area of the display surface 51.
  • the light reduction region 61 is a plurality of strip regions extending in a predetermined direction in the plane, but the present invention is not limited to this.
  • the light reduction region 61 is a set of rectangular regions repeatedly arranged adjacent to a position shifted by a length corresponding to one sub-pixel in the circumferential direction in the central axis direction. You may The parallax barrier 6 having such a light reduction region 61 can be configured by a liquid crystal shutter.
  • n 12 in the example shown in FIG. 12, n may be 8 as in the first embodiment. n may be any even number.
  • the sub-pixel group Pg is repeatedly arranged adjacent to a position shifted by one sub-pixel in the circumferential direction in the central axis direction, but this limitation is not.
  • left sub-pixel groups Pgl composed of n / 2 rows of sub-pixels continuously in the circumferential direction may be repeatedly arranged without shifting in the central axis direction.
  • the right sub-pixel group Pgr composed of n / 2-row sub-pixels continuously in the circumferential direction may be repeatedly arranged without being shifted in the central axis direction.
  • the sub-pixel displaying the left image is given the symbol L.
  • the sub-pixel that displays the right image is labeled R.
  • n 8
  • n may be any even number.
  • the parallax barrier 6 defines the light beam direction, which is the propagation direction of the image light emitted from the sub-pixel, for each of the plurality of light transmitting regions 62 which are strip regions extending in the central axis direction.
  • the optical element is the parallax barrier 6, but the present invention is not limited to this.
  • the optical element provided in the three-dimensional display device 3 may be a lenticular lens 8.
  • the lenticular lens 8 is configured by arranging the cylindrical lenses 81 in a plane along the display surface 51.
  • the lenticular lens 8 propagates the image light emitted from a part of the sub-pixels of the display surface 51 to the position of the user's left eye and emits it from the other part of the sub-pixels The image light is propagated to the position of the user's right eye.
  • the three-dimensional display devices 3 and 7 may be mounted on the mobile unit 100 as shown in FIG.
  • the "mobile” in the present disclosure includes vehicles, ships, and aircraft.
  • the “vehicle” in the present disclosure includes, but is not limited to, a car and an industrial vehicle, and may include a railway vehicle and a living vehicle, and a fixed wing aircraft traveling on a runway.
  • Automobiles include but are not limited to passenger cars, trucks, buses, two-wheeled vehicles, trolley buses, etc., and may include other vehicles traveling on the road.
  • Industrial vehicles include industrial vehicles for agriculture and construction.
  • Industrial vehicles include, but are not limited to, forklifts and golf carts.
  • Industrial vehicles for agriculture include, but are not limited to, tractors, cultivators, transplanters, binders, combine harvesters, and lawn mowers.
  • Industrial vehicles for construction include, but are not limited to, bulldozers, scrapers, excavators, cranes, dump trucks, and road rollers. Vehicles include those that travel by human power.
  • the classification of vehicles is not limited to the above.
  • a car may include an industrial vehicle capable of traveling on a road, and a plurality of classifications may include the same vehicle.
  • the vessels in the present disclosure include marine jets, boats, and tankers.
  • the aircraft in the present disclosure includes fixed wing aircraft and rotary wing aircraft.
  • Three-dimensional display device 4 Irradiator 5
  • Parallax barrier 8 Lenticular lens 51
  • Display surface 51a Right viewable area 51b
  • Dimming area 62 Translucent area 81 Cylindrical lens 100 Moving body

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This three-dimensional display device comprises a display panel and an optical element. The display panel has a display surface having a shape that is at least a part of the shape of a cylindrical plane around the center axis. Left sub-pixel groups and right sub-pixel groups are arrayed in a grid pattern along the direction of the center axis and the circumferential direction around the center axis in the display surface. The left sub-pixel groups and the right sub-pixel groups are alternately arrayed in the circumferential direction. Each left sub-pixel group has sub pixels for displaying an image for a left eye. Each right sub-pixel group has sub pixels for displaying an image for a right eye. The optical element includes: a plurality of light-reduction regions which are arranged along the display surface 51 and in which image light from the display surface is reduced or blocked; and a plurality of light-transmissive regions through each of which the image light is transmitted at a higher transmittance than that of each light-reduction region. The plurality of light-reduction regions and the plurality of light-transmissive regions are alternately arrayed along the circumferential direction so as to be adjacent to each other. The light-reduction regions and the light-transmissive regions are alternately arrayed at approximately the same interval in the circumferential direction. This interval is defined on the basis of: the radius R of curvature of an arc formed by a cross section, of the display surface, that is taken along a plane orthogonal to the direction of the center axis; an image pitch that is the interval at which the left sub-pixel groups and the right sub-pixel groups are arranged; and the gap between the display surface and the optical element.

Description

3次元表示装置および移動体Three-dimensional display device and moving body 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年9月25日に出願された日本国特許出願2017-184198号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2017-184198 filed on Sep. 25, 2017, and the entire disclosure of the prior application is incorporated herein by reference.
 本開示は、3次元表示装置および移動体に関する。 The present disclosure relates to a three-dimensional display device and a movable body.
 従来、眼鏡を用いずに3次元表示を行う画像光の方向を規定するパララックスバリアを用いた3次元表示装置が知られている。特許文献1には、フィルタ(パララックスバリア)を用いて、平面状の表示パネルから射出された画像光の一部を右眼に到達させ、表示パネルから射出された画像光の他の一部を左眼に到達させる3次元表示装置が記載されている。 Conventionally, a three-dimensional display device using a parallax barrier that defines the direction of image light that performs three-dimensional display without using glasses is known. In Patent Document 1, a filter (parallax barrier) is used to cause a part of the image light emitted from the flat display panel to reach the right eye, and another part of the image light emitted from the display panel A three-dimensional display has been described which causes the left eye to reach.
特開平7-287196号公報Japanese Patent Laid-Open No. 7-287196
 本開示の3次元表示装置は、表示パネルと、光学素子とを備える。前記表示パネルは、中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える。前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って前記左サブピクセル群と右サブピクセル群とが格子状に配列される。前記左サブピクセル群と右サブピクセル群とが前記周方向に交互に配列される。前記左サブピクセル群は、左眼画像を表示するサブピクセルを有する。前記右サブピクセル群は、右眼画像を表示するサブピクセルを有する。前記光学素子は、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む。前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列される。前記減光領域および前記透光領域が交互に配列される前記周方向の間隔は略等しい。前記間隔は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、前記左サブピクセル群および前記右サブピクセル群の配置間隔である画像ピッチ、ならびに前記表示面と前記光学素子との間のギャップに基づいて規定される。 The three-dimensional display device of the present disclosure includes a display panel and an optical element. The display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis. The left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction. The left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction. The left sub-pixel group has sub-pixels for displaying a left-eye image. The right sub-pixel group includes sub-pixels that display a right-eye image. The optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The circumferential intervals at which the light reduction regions and the light transmission regions are alternately arranged are substantially equal. The interval is a radius of curvature of an arc formed by a cross section of a plane orthogonal to the central axis direction of the display plane, an image pitch which is an arrangement interval of the left sub-pixel group and the right sub-pixel group, and the display plane and the It is defined based on the gap between the optical element.
 本開示の3次元表示装置は、表示パネルと、光学素子とを備える。前記表示パネルは、中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える。前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って前記左サブピクセル群と右サブピクセル群とが格子状に配列される。前記左サブピクセル群と右サブピクセル群とが前記周方向に交互に配列される。前記左サブピクセル群は、左眼画像を表示するサブピクセルを有する。前記右サブピクセル群は、右眼画像を表示するサブピクセルを有する。前記光学素子は、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む。前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列される。第1の比と第2の比とは略等しい。前記第1の比は、表示面上の第1領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に配列される間隔に対する、前記第1領域に対応する前記減光領域が前記周方向に配列される間隔の比とする。前記第2の比は、表示面上の第1領域とは異なる第2領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に配列される間隔に対する、前記2領域に対応する前記減光領域が前記周方向に配列される間隔の比とする。前記比は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、および、前記表示面と前記光学素子との間のギャップに基づいて規定される、前記表示パネルの曲率に基づいて決定される。 The three-dimensional display device of the present disclosure includes a display panel and an optical element. The display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis. The left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction. The left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction. The left sub-pixel group has sub-pixels for displaying a left-eye image. The right sub-pixel group includes sub-pixels that display a right-eye image. The optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The first ratio and the second ratio are substantially equal. The first ratio corresponds to the light reduction area corresponding to the first area with respect to an interval in which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in the first area on the display surface. It is a ratio of intervals arranged in the circumferential direction. The second ratio corresponds to the two areas with respect to an interval at which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in a second area different from the first area on the display surface. A light reduction area is a ratio of intervals arranged in the circumferential direction. The ratio is defined based on a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface, and a gap between the display surface and the optical element. It is determined based on the curvature.
 本開示の移動体は、3次元表示装置を備える。前記3次元表示装置は、表示パネルと、光学素子とを備える。前記表示パネルは、中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える。前記表示パネルは、中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える。前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って前記左サブピクセル群と右サブピクセル群とが格子状に配列される。前記左サブピクセル群と右サブピクセル群とが前記周方向に交互に配列される。前記左サブピクセル群は、左眼画像を表示するサブピクセルを有する。前記右サブピクセル群は、右眼画像を表示するサブピクセルを有する。前記光学素子は、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む。前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列される。前記減光領域および前記透光領域が交互に配列される前記周方向の間隔は略等しい。前記間隔は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、前記左サブピクセル群および前記右サブピクセル群の配置間隔である画像ピッチ、ならびに前記表示面と前記光学素子との間のギャップに基づいて規定される。 The mobile unit of the present disclosure includes a three-dimensional display. The three-dimensional display device includes a display panel and an optical element. The display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis. The display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis. The left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction. The left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction. The left sub-pixel group has sub-pixels for displaying a left-eye image. The right sub-pixel group includes sub-pixels that display a right-eye image. The optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The circumferential intervals at which the light reduction regions and the light transmission regions are alternately arranged are substantially equal. The interval is a radius of curvature of an arc formed by a cross section of a plane orthogonal to the central axis direction of the display plane, an image pitch which is an arrangement interval of the left sub-pixel group and the right sub-pixel group, and the display plane and the It is defined based on the gap between the optical element.
 本開示の移動体は、3次元表示装置を備える。前記3次元表示装置は、表示パネルと、光学素子とを備える。前記表示パネルは、中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える。前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って前記左サブピクセル群と右サブピクセル群とが格子状に配列される。前記左サブピクセル群と右サブピクセル群と前記周方向に交互に配列される。前記左サブピクセル群は、左眼画像を表示するサブピクセルを有する。前記右サブピクセル群は、右眼画像を表示するサブピクセルを有する。前記光学素子は、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む。前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列される。第1の比と第2の比とは略等しい。前記第1の比は、表示面上の第1領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に配列される間隔に対する、前記第1領域に対応する前記減光領域が前記周方向に配列される間隔の比とする。前記第2の比は、表示面上の第1領域とは異なる第2領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に配列される間隔に対する、前記2領域に対応する前記減光領域が前記周方向に配列される間隔の比を第2の比とする。前記比は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、および、前記表示面と前記光学素子との間のギャップに基づいて規定される、前記表示パネルの曲率に基づいて決定される。 The mobile unit of the present disclosure includes a three-dimensional display. The three-dimensional display device includes a display panel and an optical element. The display panel comprises a display surface having the shape of at least a portion of a cylindrical surface around a central axis. The left sub-pixel group and the right sub-pixel group are arranged in a lattice along the circumferential direction around the central axis in the display surface and the central axis direction. The left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction. The left sub-pixel group has sub-pixels for displaying a left-eye image. The right sub-pixel group includes sub-pixels that display a right-eye image. The optical element is disposed along the display surface, and a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light components transmitting the image light with a higher transmittance than the light reduction region. And a translucent region of The plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction. The first ratio and the second ratio are substantially equal. The first ratio corresponds to the light reduction area corresponding to the first area with respect to an interval in which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in the first area on the display surface. It is a ratio of intervals arranged in the circumferential direction. The second ratio corresponds to the two areas with respect to an interval at which the left sub-pixel group and the right sub-pixel group are arranged in the circumferential direction in a second area different from the first area on the display surface. A ratio of intervals at which the light reduction regions are arranged in the circumferential direction is a second ratio. The ratio is defined based on a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface, and a gap between the display surface and the optical element. It is determined based on the curvature.
図1は、第1実施形態の3次元表示装置を第2方向から見た例を示す図である。FIG. 1 is a view showing an example in which the three-dimensional display device of the first embodiment is viewed from a second direction. 図2は、図1に示す表示パネルを平面に展開した図である。FIG. 2 is a plan view of the display panel shown in FIG. 図3は、図1に示す光学素子を平面に展開した図である。FIG. 3 is a plan developed view of the optical element shown in FIG. 図4は、図1に示す3次元表示装置における、眼間距離、ギャップ、バリアピッチ、画像ピッチ、および円弧の曲率半径の関係を説明するための模式図である。FIG. 4 is a schematic view for explaining the relationship between the interocular distance, the gap, the barrier pitch, the image pitch, and the radius of curvature of the arc in the three-dimensional display device shown in FIG. 図5は、図1に示す3次元表示装置を平面に展開して光学素子側から見た図である。FIG. 5 is a plan view of the three-dimensional display shown in FIG. 1 viewed from the optical element side. 図6は、利用者の眼が表示パネルの端部近傍を視認している例を示す図である。FIG. 6 is a diagram showing an example in which the eye of the user visually recognizes the vicinity of the end portion of the display panel. 図7は、バリアピッチが理想値からずれた場合の可視領域を説明するための模式図である。FIG. 7 is a schematic view for explaining the visible region when the barrier pitch deviates from the ideal value. 図8Aは、利用者の眼が基準位置にある場合の可視領域を説明するための模式図である。FIG. 8A is a schematic view for explaining the visible region when the user's eye is at the reference position. 図8Bは、利用者の眼が基準位置から2E/n未満変位した場合の可視領域を説明するための模式図である。FIG. 8B is a schematic diagram for explaining the visible region when the user's eye is displaced by less than 2E / n from the reference position. 図8Cは、利用者の眼が基準位置から2E/n、変位した場合の可視領域を説明するための模式図である。FIG. 8C is a schematic diagram for explaining the visible region when the user's eye is displaced by 2E / n from the reference position. 図9は、利用者の眼が眼間中心から第3方向に変位した場合の可視領域を説明するための模式図である。FIG. 9 is a schematic view for explaining the visible region when the user's eye is displaced in the third direction from the interocular center. 図10は、第2実施形態の3次元表示装置を第2方向から見た例を示す図である。FIG. 10 is a diagram showing an example in which the three-dimensional display device of the second embodiment is viewed from the second direction. 図11は、図10に示す3次元表示装置における、眼間距離、ギャップ、バリアピッチ、画像ピッチ、および円弧の曲率半径の関係を説明するための模式図であるFIG. 11 is a schematic diagram for explaining the relationship between the interocular distance, the gap, the barrier pitch, the image pitch, and the radius of curvature of the arc in the three-dimensional display device shown in FIG. 図12は、第1実施形態の3次元表示装置の他の例を光学素子側から見た図である。FIG. 12 is a view of another example of the three-dimensional display device of the first embodiment as viewed from the optical element side. 図13は、第1実施形態の3次元表示装置の他の例を光学素子側から見た図である。FIG. 13 is a view of another example of the three-dimensional display device of the first embodiment as viewed from the optical element side. 図14は、第1実施形態の3次元表示装置の光学素子をレンチキュラレンズとした場合の3次元表示装置の概略構成図である。FIG. 14 is a schematic configuration diagram of a three-dimensional display device when the optical element of the three-dimensional display device of the first embodiment is a lenticular lens. 図15は、図1および図10に示す3次元表示装置を搭載した移動体の例を示す図である。FIG. 15 is a view showing an example of a movable body on which the three-dimensional display shown in FIGS. 1 and 10 is mounted. 従来技術の平面状の3次元表示装置の概略図である。FIG. 1 is a schematic view of a planar three-dimensional display according to the prior art.
 上述の従来技術のような平面状の表示パネルを有する3次元表示装置においては、左眼及び右眼のそれぞれに所望の画像からの画像光を到達させるために、各構成部材の配置が規定されている。具体的には、利用者の眼からパララックスバリアまでの距離、パララックスバリアから表示パネルまでの距離、パララックスバリアの配置間隔等の関係が規定されている。 In a three-dimensional display device having a flat display panel like the above-mentioned prior art, the arrangement of each component is defined in order to allow image light from a desired image to reach each of the left eye and right eye. ing. Specifically, relationships such as the distance from the user's eye to the parallax barrier, the distance from the parallax barrier to the display panel, the arrangement interval of the parallax barrier, and the like are defined.
 具体的には、図16に示すように、従来の3次元表示装置103においては、パララックスバリア106と表示パネル105とのギャップg、および、利用者の眼とパララックスバリア106との距離dは、d:Bp=(d+g):kの関係により規定される。ここで、Bpはパララックスバリア106の配置間隔(バリアピッチ)、kは右眼が視認すべき右眼画像および左眼が視認すべき左眼画像の表示パネル105上での配置間隔(画像ピッチ)である。上述の関係は、平面状の表示パネル105上の任意の領域で成立され得る。3次元表示装置103の用途に応じた距離dによって、適宜バリアピッチBp、画像ピッチk、及びギャップgを設計することにより表示パネル105上の任意の領域でクロストークの発生が抑えられる。クロストークは、左眼に右眼画像が到達すること、及び、右眼に左眼画像が到達することの少なくとも何れかによって生じる。 Specifically, as shown in FIG. 16, in the conventional three-dimensional display device 103, the gap g between the parallax barrier 106 and the display panel 105 and the distance d between the user's eye and the parallax barrier 106. Is defined by the relationship of d: Bp = (d + g): k. Here, Bp is the arrangement interval of the parallax barrier 106 (barrier pitch), k is the arrangement interval on the display panel 105 of the right eye image that the right eye should recognize and the left eye image that the left eye should recognize ). The above-described relationship can be established in any region on the flat display panel 105. By appropriately designing the barrier pitch Bp, the image pitch k, and the gap g according to the distance d according to the application of the three-dimensional display device 103, the occurrence of crosstalk can be suppressed in an arbitrary region on the display panel 105. Cross talk is caused by the left eye reaching the right eye image and / or the right eye reaching the left eye image.
 しかし、曲面状の表示パネルを有する3次元表示装置において、利用者が表示パネル上の各領域を参照しようとすると、上述のようなギャップg,距離d,バリアピッチBp、および画像ピッチkの関係が成立しなくなる。このため、表示パネルに対向する位置に応じて、クロストークを発生させないように、バリアピッチBpを、変化させる必要が生じる。しかし、利用者の眼の位置および顔の向きを考慮して、バリアピッチBpを、位置に応じて変えるには複雑な設計を要し、容易ではない。 However, in a three-dimensional display device having a curved display panel, when the user refers to each region on the display panel, the relationship between the gap g, the distance d, the barrier pitch Bp, and the image pitch k as described above. Will not hold. For this reason, it is necessary to change the barrier pitch Bp in accordance with the position facing the display panel so as not to generate crosstalk. However, in consideration of the position of the user's eyes and the orientation of the face, changing the barrier pitch Bp depending on the position requires complicated design and is not easy.
 本開示は、曲面状の表示パネルを有する三次元表示装置により表示される画像が適切に視認されうる3次元表示装置および移動体を提供する。 The present disclosure provides a three-dimensional display and a movable body in which an image displayed by a three-dimensional display having a curved display panel can be appropriately viewed.
 以下、本開示の第1実施形態について、図面を参照して説明する。本開示における各図面は模式的なものである。図面上の寸法比率等は現実のものとは必ずしも一致していない。 Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings. Each drawing in the present disclosure is schematic. The dimensional ratios and the like in the drawings do not necessarily match the actual ones.
 第1実施形態の3次元表示装置3は、図1に示すように、照射器4と、表示パネル5と、光学素子としてのパララックスバリア6とを含んで構成される。 As shown in FIG. 1, the three-dimensional display device 3 of the first embodiment is configured to include an irradiator 4, a display panel 5, and a parallax barrier 6 as an optical element.
 照射器4は、表示パネル5を面的に照射する。照射器4は、光源、導光板、拡散板、拡散シート等を含んで構成されてよい。照射器4は、光源により照射光を射出し、導光板、拡散板、拡散シート等により照射光を表示パネル5の面方向に均一化する。そして、照射器4は均一化された光を表示パネル5の方に出射する。 The irradiator 4 planarly illuminates the display panel 5. The irradiator 4 may be configured to include a light source, a light guide plate, a diffusion plate, a diffusion sheet, and the like. The irradiator 4 emits irradiation light by a light source, and makes the irradiation light uniform in the surface direction of the display panel 5 by a light guide plate, a diffusion plate, a diffusion sheet or the like. Then, the irradiator 4 emits the homogenized light toward the display panel 5.
 表示パネル5の表示面51は、仮想的な中心軸線周りの円筒面の一部を成す面である。表示面51は、円筒面の内側に配置される。中心軸線に直交し、表示面51を形成する円筒面に沿う方向を周方向と呼ぶ。周方向は、利用者の眼間中心Oが中心軸線上にあるとき、利用者が正面の表示面51を観察する際の視差方向である。表示面51の中心Oにおける周方向は第1方向である。第1方向は、図1においてx軸方向として示される。中心軸線に沿う方向を中心軸線方向と呼ぶ。中心軸線方向は、第2方向である。第2方向は、図1においてy軸方向として示される。表示面51は、第2方向に直交する面による断面が円弧を成す。以降の説明において、第1方向および第2方向に直交する方向を第3方向という。第3方向は、図1においてz軸方向として示される。 The display surface 51 of the display panel 5 is a surface that forms a part of a cylindrical surface around a virtual central axis. The display surface 51 is disposed inside the cylindrical surface. The direction perpendicular to the central axis and along the cylindrical surface forming the display surface 51 is called the circumferential direction. Circumferential direction, when the eye between the centers O E of the user is at the center axis, the user is parallax direction when observing the display surface 51 of the front. Circumferential direction of the center O P of the display surface 51 is the first direction. The first direction is shown as the x-axis direction in FIG. The direction along the central axis is called the central axis direction. The central axial direction is a second direction. The second direction is shown as the y-axis direction in FIG. In the display surface 51, a cross section of a surface orthogonal to the second direction forms an arc. In the following description, a direction orthogonal to the first direction and the second direction is referred to as a third direction. The third direction is shown as the z-axis direction in FIG.
 表示パネル5は、円弧の中心と反対側から照射器4に照射されるように配置される。 The display panel 5 is arranged to be irradiated to the irradiator 4 from the side opposite to the center of the arc.
 図2に示すように、表示面51内において、周方向に対応する方向が第1面内方向(u軸方向)とされる。中心軸線方向に対応する方向が、第2面内方向(v軸方向)とされる。上述のように、表示面51は、中心軸線方向に曲率が無いため、中心軸線方向は第2方向に相当しうる。図2においては、説明の便宜上、紙面により構成される平面内に表示パネル5が示されているが、実際には表示パネル5は、利用者側に対する面が凹んだ曲面を有し、xz平面による断面が円弧を形成するように湾曲している。 As shown in FIG. 2, in the display surface 51, a direction corresponding to the circumferential direction is taken as a first in-plane direction (u-axis direction). A direction corresponding to the central axial direction is taken as a second in-plane direction (v-axis direction). As described above, since the display surface 51 has no curvature in the central axial direction, the central axial direction may correspond to the second direction. In FIG. 2, for convenience of explanation, the display panel 5 is shown in a plane constituted by a sheet of paper, but in fact the display panel 5 has a curved surface in which the face to the user side is recessed and the xz plane The cross section according to is curved to form an arc.
 表示面51は、周方向および中心軸線方向に沿って格子状に配列された複数の区画領域を含む。区画領域の各々には、1つのサブピクセルが対応する。複数のサブピクセルは、周方向および中心軸線方向に沿ってマトリクス状に配列されている。複数のサブピクセルの形状は互いに略等しい。具体的には、複数のサブピクセルの周方向の長さは略等しい。複数のサブピクセルの中心軸線方向の長さは略等しい。 The display surface 51 includes a plurality of divided areas arranged in a lattice along the circumferential direction and the central axis direction. One subpixel corresponds to each of the divided regions. The plurality of sub-pixels are arranged in a matrix along the circumferential direction and the central axis direction. The shapes of the plurality of sub-pixels are substantially equal to one another. Specifically, circumferential lengths of the plurality of sub-pixels are substantially equal. The lengths in the central axis direction of the plurality of sub-pixels are substantially equal.
 各サブピクセルはR(Red),G(Green),B(Blue)のいずれかの色に対応する。R,G,Bの3つのサブピクセルは、一組として1つのピクセルを構成できる。1ピクセルは、1画素と称されることがある。表示面51には、複数のピクセルが周方向および中心軸線方向に沿ってマトリクス状に配列されている。表示パネル5は、透過型の液晶パネルに限られず、有機EL等の自発光型の表示パネルであってよい。表示パネル5が自発光型の表示パネルである場合、照射器4は不要である。 Each subpixel corresponds to one of R (Red), G (Green), and B (Blue). The three sub-pixels of R, G and B can constitute one pixel as a set. One pixel is sometimes referred to as one pixel. On the display surface 51, a plurality of pixels are arranged in a matrix along the circumferential direction and the central axis direction. The display panel 5 is not limited to the transmissive liquid crystal panel, and may be a self-luminous display panel such as an organic EL. When the display panel 5 is a self-luminous display panel, the irradiator 4 is unnecessary.
 表示面51には、周方向にn列、連続して配列されたサブピクセル群Pgが配置される。図2に示した例では、n=12である。ただし、nは12に限られず、任意の偶数であってよい。サブピクセル群Pgは、周方向において隣接して繰り返し配列される。サブピクセル群Pgは、中心軸線方向において、周方向に1サブピクセル分ずれた位置に隣接して繰り返して配列される。 On the display surface 51, the sub-pixel group Pg continuously arranged in n rows in the circumferential direction is arranged. In the example shown in FIG. 2, n = 12. However, n is not limited to 12 and may be any even number. Sub-pixel group Pg is repeatedly arranged adjacent to each other in the circumferential direction. Sub-pixel group Pg is repeatedly arranged adjacent to a position shifted by one sub-pixel in the circumferential direction in the central axis direction.
 サブピクセル群Pgは、左サブピクセル群Pglおよび右サブピクセル群Pgrを含む。左サブピクセル群Pglおよび右サブピクセル群Pgrは、周方向に互いに隣接して交互に繰り返して配置される。 Sub-pixel group Pg includes left sub-pixel group Pgl and right sub-pixel group Pgr. The left sub-pixel group Pgl and the right sub-pixel group Pgr are alternately and repeatedly arranged adjacent to each other in the circumferential direction.
 左サブピクセル群Pglは、所定の行および列のサブピクセルを含む。具体的には、左サブピクセル群Pglは、中心軸線方向にb個(b行)、周方向にn/2個(n/2列)、連続して配列された((n/2)×b)個(以降において、(n/2)×b=mとする)のサブピクセルP1~Pmを含む。右サブピクセル群Pgrは、左サブピクセル群Pglと同様の所定の行および列のサブピクセルを含む。具体的には、右サブピクセル群Pgrは、中心軸線方向にb個(b行)、周方向にn/2個(n/2列)、連続して配列されたm個のサブピクセルP(m+1)~P(2×m)を含む。 The left sub-pixel group Pgl includes sub-pixels of predetermined rows and columns. Specifically, the left sub-pixel group Pgl is arranged continuously (n / 2) × b (n rows) in the central axis direction and n / 2 (n / 2 columns) in the circumferential direction. b) A plurality (hereinafter referred to as (n / 2) × b = m) of sub-pixels P1 to Pm. The right sub-pixel group Pgr includes sub-pixels of predetermined rows and columns similar to the left sub-pixel group Pgl. Specifically, in the right sub-pixel group Pgr, m sub-pixels P (b rows (b rows) in the central axis direction, n / 2 (n / 2 m + 1) to P (2 × m) are included.
 図2に示した例では、b=1である。したがって、表示面51には、中心軸線方向に1個、周方向に6個連続して配列された6個のサブピクセルP1~P6を含む左サブピクセル群Pglが配置される。表示面51には、左サブピクセル群Pglの周方向に隣接して、中心軸線方向に1個、周方向に6個ずつ連続して配置された6個のサブピクセルP7~P12を含む右サブピクセル群Pgrが配置される。 In the example shown in FIG. 2, b = 1. Therefore, on the display surface 51, a left sub-pixel group Pgl including six sub-pixels P1 to P6 arranged one by one in the central axis direction and six in the circumferential direction is arranged. On the display surface 51, a right sub-pixel including six sub-pixels P7 to P12 continuously arranged one by one in the central axis direction and six each in the circumferential direction adjacent to the left sub-pixel group Pgl in the circumferential direction Pixel group Pgr is arranged.
 左サブピクセル群Pglに含まれるサブピクセルP1~P6には、左眼画像が表示される。右サブピクセル群Pgrに含まれるサブピクセルP7~P12には、右眼画像が表示される。図2に示した例においてb=1として説明したが、bは1以上の任意の整数であってよい。 The left eye image is displayed on the sub-pixels P1 to P6 included in the left sub-pixel group Pgl. The right eye image is displayed on the sub-pixels P7 to P12 included in the right sub-pixel group Pgr. Although the example shown in FIG. 2 is described as b = 1, b may be any integer of 1 or more.
 左サブピクセル群Pglの配置間隔は画像ピッチkとされる。画像ピッチkは、左サブピクセル群Pglの周方向の長さと右サブピクセル群Pgrの周方向の長さとの合計である。左サブピクセル群Pglと右サブピクセル群Pgrとは周方向に交互に配置されるため、画像ピッチkは左サブピクセル群Pglおよび右サブピクセル群Pgrの配置間隔でもある。図2に示すように、1サブピクセルの周方向の長さがHpとされる場合、k=n×Hp=12×Hpと表されうる。 The arrangement interval of the left sub-pixel group Pgl is an image pitch k. The image pitch k is the sum of the circumferential length of the left sub-pixel group Pgl and the circumferential length of the right sub-pixel group Pgr. Since the left sub-pixel group Pgl and the right sub-pixel group Pgr are alternately arranged in the circumferential direction, the image pitch k is also the arrangement interval of the left sub-pixel group Pgl and the right sub-pixel group Pgr. As shown in FIG. 2, when the circumferential length of one sub-pixel is Hp, it can be expressed as k = n × Hp = 12 × Hp.
 図1に示したように、パララックスバリア6は、表示面51に沿う曲面により形成される。パララックスバリア6は、表示面51に対して円弧の中心側に配置される。パララックスバリア6は、表示面51からギャップg、離れて配置される。 As shown in FIG. 1, the parallax barrier 6 is formed by a curved surface along the display surface 51. The parallax barrier 6 is disposed on the center side of the circular arc with respect to the display surface 51. The parallax barrier 6 is disposed apart from the display surface 51 by a gap g.
 図3に示すように、パララックスバリア6は、複数の減光領域61を有する。複数の減光領域61は、サブピクセルから射出される画像光の伝播方向である光線方向を規定する複数の透光領域62を画定する。具体的には、互いに隣り合う2つの減光領域61の間の領域が透光領域62として画定される。すなわち、透光領域62と減光領域61とは、表示面51の周方向に沿う方向に繰り返し交互に配列される。図3に示した例では、パララックスバリア6は、面内の所定方向に伸びる複数の帯状領域である透光領域62ごとに、サブピクセルから射出される画像光の伝播方向である光線方向を規定する。所定方向は、鉛直方向と0度でない所定角度をなす方向である。パララックスバリア6がサブピクセルから射出される画像光を規定することによって、利用者の眼が視認可能な表示面51上の領域が定まる。減光領域61は、左眼画像を表示するサブピクセルから射出された画像光のうち、利用者の右眼に向かう部分を減光または遮光しうる。減光領域61は、右眼画像を表示するサブピクセルから射出された画像光のうち、利用者の左眼に向かう部分を減光しうる。 As shown in FIG. 3, the parallax barrier 6 has a plurality of light reduction regions 61. The plurality of light reduction regions 61 define a plurality of light transmission regions 62 that define light beam directions that are propagation directions of image light emitted from the sub-pixels. Specifically, a region between two light reduction regions 61 adjacent to each other is defined as a light transmission region 62. That is, the light transmitting regions 62 and the light reducing regions 61 are repeatedly and alternately arranged in the direction along the circumferential direction of the display surface 51. In the example shown in FIG. 3, the parallax barrier 6 sets the light beam direction, which is the propagation direction of the image light emitted from the sub-pixel, for each of the plurality of light transmitting regions 62, which are a plurality of strip regions extending in a predetermined direction in the plane. Specify. The predetermined direction is a direction forming a predetermined angle which is not 0 degrees with the vertical direction. By defining the image light emitted from the sub-pixels by the parallax barrier 6, an area on the display surface 51 where the eye of the user can view is determined. The light reduction region 61 can reduce or shield a portion of the image light emitted from the sub-pixel displaying the left eye image toward the user's right eye. The dimming area 61 can dim a portion of the image light emitted from the sub-pixel displaying the right-eye image toward the user's left eye.
 複数の透光領域62は、減光領域61より高い透過率で画像光を透過させる。透光領域62は、第1所定値以上の透過率で光を透過させてよい。第1所定値は、例えば100%であってよいし、100%に近い値であってよい。減光領域61は、第2所定値以下の透過率で光を遮ってよい。第2所定値は、例えば0%であってよいし、0%に近い値であってよい。減光領域61は、当該フィルムまたは板状部材で構成されてよい。フィルムは、樹脂で構成されてよい。フィルムは、他の材料で構成されてよい。板状部材は、樹脂または金属等で構成されてよい。板状部材は、他の材料で構成されてよい。減光領域61は、フィルムまたは板状部材に限られず、他の種類の部材で構成されてよい。減光領域61の基材は光を減光または遮光させる性質を有してよい。減光領域61の基材は光を減光または遮光させる性質を有する添加物が含有されてよい。 The plurality of light transmitting areas 62 transmit image light with a higher transmittance than the light reducing area 61. The light transmitting region 62 may transmit light with a transmittance of a first predetermined value or more. The first predetermined value may be, for example, 100%, or a value close to 100%. The light reduction region 61 may block light with a transmittance equal to or less than a second predetermined value. The second predetermined value may be, for example, 0% or a value close to 0%. The light reduction area 61 may be composed of the film or plate member. The film may be composed of a resin. The film may be composed of other materials. The plate-like member may be made of resin, metal or the like. The plate-like member may be made of other materials. The light reduction area 61 is not limited to a film or a plate-like member, and may be composed of other kinds of members. The base of the light reduction area 61 may have the property of reducing or blocking light. The base of the light reduction area 61 may contain an additive having a property of reducing or blocking light.
 パララックスバリア6は、液晶シャッターで構成されてよい。液晶シャッターは、印加する電圧に応じて光の透過率を制御しうる。液晶シャッターは、複数の画素で構成され、各画素における光の透過率を制御してよい。液晶シャッターは、光の透過率が高い領域または光の透過率が低い領域を任意の形状に形成しうる。パララックスバリア6が液晶シャッターで構成される場合、透光領域62は、第1所定値以上の透過率を有する領域としてよい。パララックスバリア6が液晶シャッターで構成される場合、減光領域61は、第2所定値以下の透過率を有する領域としてよい。 The parallax barrier 6 may be configured of a liquid crystal shutter. The liquid crystal shutter can control the light transmittance in accordance with the applied voltage. The liquid crystal shutter may be composed of a plurality of pixels, and may control the transmittance of light in each pixel. The liquid crystal shutter can form an area with high light transmittance or an area with low light transmittance in an arbitrary shape. When the parallax barrier 6 is formed of a liquid crystal shutter, the light transmitting region 62 may be a region having a transmittance equal to or more than a first predetermined value. When the parallax barrier 6 is configured by a liquid crystal shutter, the light reduction region 61 may be a region having a transmittance equal to or less than a second predetermined value.
 減光領域61の周方向の配置間隔はバリアピッチBpとされる。バリアピッチBpは、減光領域61の周方向に対応する方向の幅と透光領域62の周方向に対応する方向の幅との合計である。減光領域61と透光領域62とは、周方向に対応する方向に交互に配置されるため、バリアピッチBpは減光領域61および透光領域62の配置間隔でもある。 The arrangement interval of the light reduction region 61 in the circumferential direction is a barrier pitch Bp. The barrier pitch Bp is the sum of the width in the direction corresponding to the circumferential direction of the light reduction region 61 and the width in the direction corresponding to the circumferential direction of the light transmission region 62. Since the light reduction regions 61 and the light transmission regions 62 are alternately arranged in the direction corresponding to the circumferential direction, the barrier pitch Bp is also the arrangement interval of the light reduction regions 61 and the light transmission regions 62.
 複数の減光領域61の周方向の幅は互いに略等しい。複数の透光領域62の周方向の幅は互いに略等しい。したがって、バリアピッチBpの幅は、パララックスバリア6のいずれの領域においても互いに等しい。 The circumferential widths of the plurality of light reduction regions 61 are substantially equal to one another. The circumferential widths of the plurality of translucent regions 62 are substantially equal to one another. Therefore, the widths of the barrier pitches Bp are equal to one another in any region of the parallax barrier 6.
 続いて、表示パネル5とパララックスバリア6との関係について説明する。表示パネル5は、曲面の凹んだ側からパララックスバリア6を介して利用者に視認されうる。表示パネル5およびパララックスバリア6は、図1に示したように、利用者が観察する3次元画像の表示位置に顔を向け、利用者の眼間中心Oが、円弧の中心に位置する状態で、該利用者が最適な3次元画像を視認するように設計される。眼間中心Oは、利用者の左眼と右眼との中点である。以降において、円弧の中心は、基準位置Oと称されることがある。利用者の両眼の中心を結ぶ方向と、表示パネル5の利用者が観察する画像の位置での周方向は平行である。 Subsequently, the relationship between the display panel 5 and the parallax barrier 6 will be described. The display panel 5 can be viewed by the user through the parallax barrier 6 from the concave side of the curved surface. The display panel 5 and the parallax barrier 6, as shown in FIG. 1, toward the face on the display position of the three-dimensional image which the user observes the eye between the centers O E of the user is located in the center of the arc In the state, the user is designed to view an optimal three-dimensional image. Mekan center O E is the midpoint between the left eye and the right eye of the user. In the following, the center of the arc is sometimes referred to as a reference position O S. The circumferential direction between the direction connecting the centers of the user's eyes and the position of the image observed by the user of the display panel 5 is parallel.
 <バリアピッチの規定>
 眼間中心Oが基準位置Oに位置する状態において、眼間中心Oから表示面51までの距離は表示パネル5によって形成される円弧の曲率半径Rである。このため、表示パネル5およびパララックスバリア6は、式(1)に示すように、適視距離dとギャップgとの合計が円弧の曲率半径Rとなるように設計される。適視距離dは、クロストークが最も少なくなるような、パララックスバリア6の周方向に対応する方向における中心と、眼間中心Oとの間の距離である。
 R=d+g                        式(1)
<Definition of barrier pitch>
In a state where Mekan center O E is positioned at the reference position O S, the distance to the display surface 51 from Mekan center O E is the radius of curvature R of the arc formed by the display panel 5. For this reason, the display panel 5 and the parallax barrier 6 are designed such that the total of the suitable viewing distance d and the gap g becomes the radius of curvature R of the arc, as shown in the equation (1). Proper viewing distance d, such as cross-talk is minimized, and the center in the direction corresponding to the circumferential direction of the parallax barrier 6, the distance between the Mekan center O E.
R = d + g formula (1)
 バリアピッチBpは、曲率半径R、画像ピッチk、およびギャップgに基づいて規定される。具体的には、バリアピッチBpは、図4に示すように、利用者の眼間距離をEとした場合に、ギャップg、適視距離dを用いて、次の式(2)および式(3)が成り立つように規定される。
 E:d=k/2:g                    式(2)
 d:Bp=(d+g):k                 式(3)
The barrier pitch Bp is defined based on the radius of curvature R, the image pitch k, and the gap g. Specifically, as shown in FIG. 4, when the interocular distance of the user is E, the barrier pitch Bp uses the gap g and the suitable viewing distance d to set the following equation (2) and the equation (2) It is defined that 3) holds.
E: d = k / 2: g equation (2)
d: Bp = (d + g): k equation (3)
 したがって、バリアピッチBpは、次の式(4)が成り立つように規定される。
 Bp=(d/(d+g))×k=((R-g)/R)×k   式(4)
Therefore, the barrier pitch Bp is defined such that the following equation (4) holds.
Bp = (d / (d + g)) × k = ((R−g) / R) × k Formula (4)
 すなわち、パララックスバリア6が周方向に配列される間隔は、((R-g)/R)×kとなるように規定される。 That is, the interval at which the parallax barriers 6 are arranged in the circumferential direction is defined to be ((R−g) / R) × k.
 さらに言い換えれば、バリアピッチBpは、画像ピッチkに対する該バリアピッチBpの比が((R-g)/R)となるように規定される。 In other words, the barrier pitch Bp is defined such that the ratio of the barrier pitch Bp to the image pitch k is ((R−g) / R).
 このように3次元表示装置3が構成されることによって、パララックスバリア6の透光領域62を透過した対象眼画像を表示するサブピクセルからの画像光が利用者の対象眼に到達する。対象眼画像は、対象眼に視認させる画像である。非対象眼画像は、対象眼でない眼に視認させる画像である。具体的には、対象眼を右眼とした場合、対象眼画像は右眼画像であり、非対象眼画像は左眼画像である。対象眼を左眼とした場合、対象眼画像は左眼画像であり、非対象眼画像は右眼画像である。 By thus configuring the three-dimensional display device 3, the image light from the sub-pixel displaying the target eye image transmitted through the light transmitting area 62 of the parallax barrier 6 reaches the target eye of the user. The target eye image is an image to be visually recognized by the target eye. The non-target eye image is an image to be visually recognized by an eye other than the target eye. Specifically, when the target eye is the right eye, the target eye image is the right eye image, and the non-target eye image is the left eye image. When the target eye is a left eye, the target eye image is a left eye image, and the non-target eye image is a right eye image.
 図5は、利用者の右眼が視認するパララックスバリア6および表示面51の例を示している。利用者の右眼が視認しうる右可視領域51R(図5に示す表示面51のハッチングが付されていない領域)には、右サブピクセル群Pgrの少なくとも一部が含まれ、左サブピクセル群Pglが含まれない。右サブピクセル群Pgrを構成するサブピクセルに右眼画像が表示されることによって、利用者の右眼は右眼画像のみを視認することができる。同様にして、利用者の左眼が視認しうる左可視領域51Lには、左サブピクセル群Pglの少なくとも一部が含まれ、右サブピクセル群Pgrが含まれない。利用者の左眼は左眼画像のみを視認することができる。左眼画像と右眼画像との間に視差があることによって、利用者は3次元画像を視認しうる。 FIG. 5 shows an example of the parallax barrier 6 and the display surface 51 visually recognized by the right eye of the user. The right visible area 51R (an area without hatching of the display surface 51 shown in FIG. 5) visible to the user's right eye includes at least a part of the right sub-pixel group Pgr, and the left sub-pixel group Pgl is not included. By displaying the right-eye image in the sub-pixels constituting the right sub-pixel group Pgr, the right eye of the user can view only the right-eye image. Similarly, the left visible region 51L visible to the left eye of the user includes at least a part of the left sub-pixel group Pgl and does not include the right sub-pixel group Pgr. The left eye of the user can view only the left eye image. The parallax between the left eye image and the right eye image allows the user to view a three-dimensional image.
 <異なる領域ごとの複数のバリアピッチBpの関係>
 図1においては、利用者が表示面51の周方向における中央近傍を視認する例が示された。図1等を参照して既に説明したように、中央近傍のバリアピッチBpが、式(2)および式(3)に示す関係が成り立つように規定されると、利用者は適切に中央近傍の3次元画像を視認しうる。以降において、中央近傍に対応するバリアピッチBpは、特に「Bp1」と称される。
<Relationship of Multiple Barrier Pitches Bp in Different Areas>
In FIG. 1, an example is shown in which the user visually recognizes the vicinity of the center in the circumferential direction of the display surface 51. As described above with reference to FIG. 1 and the like, when the barrier pitch Bp near the center is defined such that the relationships shown in Equations (2) and (3) hold, the user appropriately selects the center vicinity. Three-dimensional images can be viewed. Hereinafter, the barrier pitch Bp corresponding to the vicinity of the center is particularly referred to as “Bp1”.
 次に、表示面51の周方向における端部近傍に対応するバリアピッチBpについて説明する。以降、端部近傍に対応するバリアピッチBpは特に「Bp2」と称される。眼間中心Oは基準位置Oにあるため、図6に示すように、眼間中心Oから表示面51の端部近傍までの距離は、中央近傍までの距離と同様に円弧の曲率半径Rである。端部近傍のバリアピッチBp2が、バリアピッチBp1と同様に、式(2)および式(3)に示す関係が成り立つように規定されると、利用者は端部近傍に顔を向けた状態で、適切に端部近傍の3次元画像を視認しうる。式(3)に示されるように、バリアピッチBpは、画像ピッチk、曲率半径R、およびギャップgによって表される。画像ピッチk、曲率半径Rおよびギャップgは、表示面51の中央近傍に対応する領域においても、端部近傍に対応する領域においても同じである。そのため、バリアピッチBp2とバリアピッチBp1とは略等しい。 Next, the barrier pitch Bp corresponding to the vicinity of the end in the circumferential direction of the display surface 51 will be described. Hereinafter, the barrier pitch Bp corresponding to the vicinity of the end is particularly referred to as “Bp2”. Since the interocular center O E is at the reference position O S , as shown in FIG. 6, the distance from the interocular center O E to the vicinity of the end of the display surface 51 is the curvature of the arc as in the distance to the central vicinity. It is radius R. If the barrier pitch Bp2 in the vicinity of the end is defined such that the relationships shown in Equations (2) and (3) hold similarly to the barrier pitch Bp1, the user turns the face to the vicinity of the end , 3D images in the vicinity of the end can be appropriately viewed. As shown in equation (3), the barrier pitch Bp is represented by the image pitch k, the radius of curvature R, and the gap g. The image pitch k, the radius of curvature R, and the gap g are the same in the region corresponding to the vicinity of the center of the display surface 51 and in the region corresponding to the vicinity of the end. Therefore, the barrier pitch Bp2 and the barrier pitch Bp1 are substantially equal.
 同様にして、表示面51の任意の領域に対応するバリアピッチBpは、バリアピッチBp1と同様に、式(2)および式(3)に示す関係が成り立つように規定されると、利用者は任意の領域の3次元画像を適切に視認しうる。このようにバリアピッチBpは、いずれの領域においても式(3)に示す関係が成り立つように、略等しく規定されることができる。 Similarly, when the barrier pitch Bp corresponding to an arbitrary area of the display surface 51 is defined such that the relationships shown in the equation (2) and the equation (3) hold similarly to the barrier pitch Bp1, the user can A three-dimensional image of an arbitrary area can be appropriately viewed. Thus, the barrier pitch Bp can be defined substantially equally so that the relationship shown in the equation (3) holds in any region.
 <画像ピッチに対するバリアピッチの比>
 上述したように、表示面51において、各サブピクセル群Pgに含まれる周方向のサブピクセルの数は等しい。複数のサブピクセルの形状は等しい。このため、図2及び図5に示されたように、複数の画像ピッチkは互いに略等しい。例えば、表示面51上の中央近傍(第1領域)における画像ピッチk1と端部近傍(第2領域)における画像ピッチk2は略等しい。
<Ratio of barrier pitch to image pitch>
As described above, in the display surface 51, the numbers of circumferential sub-pixels included in each sub-pixel group Pg are equal. The shapes of the plurality of sub-pixels are equal. For this reason, as shown in FIGS. 2 and 5, the plurality of image pitches k are substantially equal to one another. For example, the image pitch k1 near the center (first area) on the display surface 51 and the image pitch k2 near the end (second area) are substantially equal.
 したがって、表示面51上の中央近傍(第1領域)における第1の比Bp1/k1と、表示面51上の端部近傍(第2領域)における第2の比Bp2/k2とは略等しい。第1の比Bp1/k1は、表示面51上の中央近傍における画像ピッチk1に対する、中央近傍に対応するバリアピッチBp1の比である。画像ピッチk1は、左サブピクセル群Pglおよび右サブピクセル群Pgrが周方向に配列される間隔である。バリアピッチBp1は、減光領域61が周方向に配列される間隔である。第2の比Bp2/k2は、表示面51上の端部近傍(第2領域)での画像ピッチk2に対する、端部近傍に対応するバリアピッチBp2の比である。画像ピッチk2は、左サブピクセル群Pglおよび右サブピクセル群Pgrが周方向に配列される間隔である。バリアピッチBp2は、減光領域61が周方向に配列される間隔である。 Therefore, the first ratio Bp1 / k1 near the center (first region) on the display surface 51 and the second ratio Bp2 / k2 near the end (second region) on the display surface 51 are substantially equal. The first ratio Bp1 / k1 is a ratio of the barrier pitch Bp1 corresponding to the vicinity of the center to the image pitch k1 near the center on the display surface 51. The image pitch k1 is an interval at which the left sub-pixel group Pgl and the right sub-pixel group Pgr are arranged in the circumferential direction. The barrier pitch Bp1 is an interval at which the light reduction regions 61 are arranged in the circumferential direction. The second ratio Bp2 / k2 is a ratio of the barrier pitch Bp2 corresponding to the vicinity of the end to the image pitch k2 near the end (second region) on the display surface 51. The image pitch k2 is an interval at which the left sub-pixel group Pgl and the right sub-pixel group Pgr are arranged in the circumferential direction. The barrier pitch Bp2 is an interval at which the light reduction regions 61 are arranged in the circumferential direction.
 <バリアピッチの許容範囲>
 上述において、バリアピッチBpは、式(3)を満たすような値(以降、「理想値Bp0」という)であることが説明された。しかし、バリアピッチBpは、Bp0に限られず、理想値Bp0から所定範囲内でずれてよい。図7には、理想的なバリアピッチBp0を有するパララックスバリア6とともに、理想的なバリアピッチBp0から僅かに異なる幅のバリアピッチBp1を有するパララックスバリア6Aが破線で示される。便宜上、図7において、パララックスバリア6Aは、パララックスバリア6に対して径方向にずれた位置に記載されているが、パララックスバリア6Aは、パララックスバリア6に対する径方向の位置は同一である。パララックスバリア6Aの減光領域61A及び透光領域62Aが周方向に配列される場合、図7に示すように、例えば、領域(1)では、減光領域61A及び透光領域62Aの、それぞれ減光領域61及び透光領域62からのずれは僅かである。しかし、領域(1)から周方向に離れるほど(例えば、領域(2)~(5)参照)、6Aの減光領域61A及び透光領域62Aのそれぞれ減光領域61及び透光領域62のずれは大きくなる。
<Permissible range of barrier pitch>
In the above, it has been described that the barrier pitch Bp is a value satisfying the formula (3) (hereinafter referred to as “ideal value Bp0”). However, the barrier pitch Bp is not limited to Bp0, and may deviate from the ideal value Bp0 within a predetermined range. In FIG. 7, a parallax barrier 6A having a barrier pitch Bp1 slightly different from the ideal barrier pitch Bp0 is shown by a broken line, together with the parallax barrier 6 having the ideal barrier pitch Bp0. For convenience, in FIG. 7, the parallax barrier 6A is described at a position radially shifted with respect to the parallax barrier 6, but the parallax barrier 6A has the same radial position with respect to the parallax barrier 6 is there. When the light reduction region 61A and the light transmission region 62A of the parallax barrier 6A are arranged in the circumferential direction, as shown in FIG. 7, for example, in the region (1), each of the light reduction region 61A and the light transmission region 62A The deviation from the light reduction area 61 and the light transmission area 62 is slight. However, as the distance from the region (1) in the circumferential direction (see, for example, regions (2) to (5)), the shift of the light reducing region 61 and the light transmitting region 62 of the light reducing region 61A and the light transmitting region 62A of 6A, respectively Will grow.
 そのため、利用者の対象眼は、領域(1)から離れるほど、非対象画像を表示するサブピクセルからの画像光を多く視認しうる。具体的には、領域(1)から離れるほど、利用者の左眼には、左眼画像を表示するサブピクセルからの画像光が少なく到達し、右眼画像を表示するサブピクセルからの画像光が多く到達しうる。領域(1)から離れるほど、利用者の右眼には、右眼画像を表示するサブピクセルからの画像光が少なく到達し、左眼画像を表示するサブピクセルからの画像光が多く到達する。このため、領域(1)から離れるほど、利用者の眼に発生するクロストークが増大する。 Therefore, the more the user's target eye moves away from the area (1), the more the image light from the sub-pixel displaying the non-target image can be viewed. Specifically, as the user moves away from the area (1), less image light from the sub-pixel displaying the left-eye image reaches the user's left eye, and image light from the sub-pixel displaying the right-eye image Can reach a lot. The farther from the region (1), the less the image light from the sub-pixel displaying the right-eye image reaches the right eye of the user, and the more the image light from the sub-pixel displaying the left-eye image reaches. For this reason, as the distance from the region (1) increases, the crosstalk generated in the user's eyes increases.
 このようなクロストークを抑制するために、減光領域61A及び透光領域62Aの、それぞれ減光領域61及び透光領域62からのずれの最大値が、サブピクセルの周方向の長さHp未満に対応する幅となるように、バリアピッチBpが規定されてよい。1サブピクセルの周方向の長さHpに対応する幅は、1サブピクセルに表示された画像からの画像光を透過させる透光領域62の幅であり、曲率半径R、ギャップg、1サブピクセルの周方向の長さHpに応じて規定されてよい。この例では、バリアピッチBpは、利用者の対象眼が、周方向にHpより長い非対象眼画像を視認しないように規定したが、これに限られない。3次元表示装置3に要求される性能に応じて、例えば、利用者の対象眼が、周方向に0.5×Hpより長い非対象眼画像を視認しないようにバリアピッチBpが規定されてよい。ただし、既に説明されたように、バリアピッチBpは、理想値Bp0に近いほど、利用者の眼に発生するクロストークは低減される。 In order to suppress such crosstalk, the maximum value of the displacement of the light reduction region 61A and the light transmission region 62A from the light reduction region 61 and the light transmission region 62 is less than the circumferential length Hp of the sub-pixel The barrier pitch Bp may be defined to have a width corresponding to. The width corresponding to the circumferential length Hp of one sub-pixel is the width of the light transmitting region 62 that transmits the image light from the image displayed in one sub-pixel, and the radius of curvature R, gap g, one sub-pixel May be defined in accordance with the circumferential length Hp of In this example, the barrier pitch Bp is defined so that the target eye of the user does not visually recognize the non-target eye image longer than Hp in the circumferential direction, but the present invention is not limited thereto. In accordance with the performance required of the three-dimensional display device 3, for example, the barrier pitch Bp may be defined such that the user's target eye does not visually recognize non-target eye images longer than 0.5 × Hp in the circumferential direction. . However, as described above, as the barrier pitch Bp is closer to the ideal value Bp0, crosstalk generated in the user's eyes is reduced.
 <表示面における画像の切替え>
 続いて、利用者の眼が第1方向に変位することに伴う、表示面51における画像の切替えについて、図8A、図8B、および図8Cを参照して説明する。図8A、図8B、および図8Cに示す例において、画像ピッチはn=8である。しかし、画像ピッチnは任意の偶数であってよい。パララックスバリア6の減光領域61と透光領域62との周方向の幅は等しい(バリア開口率50%)。
<Switching of images on display surface>
Subsequently, switching of an image on the display surface 51 in accordance with displacement of the user's eye in the first direction will be described with reference to FIGS. 8A, 8B, and 8C. In the example shown in FIGS. 8A, 8B and 8C, the image pitch is n = 8. However, the image pitch n may be any even number. The circumferential widths of the light reduction region 61 and the light transmission region 62 of the parallax barrier 6 are equal (barrier aperture ratio is 50%).
 図8Aに示すように、利用者の眼間中心Oが基準位置Oにある場合、左可視領域51aLには、左眼画像を表示する左サブピクセル群Pglが最も多く含まれ、右眼画像を表示する右サブピクセル群Pgrが最も少なく含まれる。この状態において、利用者の眼に発生するクロストークは最も低減されている。 As shown in Figure 8A, when the eye between the centers O E of the user is at the reference position O S, the left visible 51AL, it contains the most left sub-pixel groups Pgl for displaying the left-eye image, the right eye The right sub-pixel group Pgr for displaying an image is the least included. In this state, crosstalk generated in the user's eyes is most reduced.
 図8Bに示すように、利用者の眼間中心Oが基準位置Oから第1方向に距離2E/n未満、変位した位置にある場合、左可視領域51aLには、左画像を表示する(n/2-1)列のサブピクセル全体が含まれる。左可視領域51aLには、右画像を表示する1列のサブピクセルの半分未満が含まれる。同様にして、右可視領域51aRには、右画像を表示する、(n/2-1)列のサブピクセルの全体が含まれる。右可視領域51aRには、右画像を表示する1列のサブピクセルの半分未満が含まれる。このため、利用者の眼が視認する画像にはクロストークが発生する。 As shown in FIG. 8B, when the user's interocular center O E is at a position displaced by a distance 2E / n in the first direction from the reference position O S , a left image is displayed in the left visible region 51aL. (N / 2-1) The entire sub-pixel of the column is included. The left visible region 51aL includes less than half of one row of subpixels displaying the right image. Similarly, the right viewable area 51aR includes the entire (n / 2-1) row of sub-pixels displaying the right image. The right visible region 51aR includes less than half of one row of subpixels displaying the right image. For this reason, crosstalk occurs in the image visually recognized by the user's eye.
 図8Cに示すように、利用者の眼間中心Oが基準位置Oから第1方向に距離2E/n、移動すると、左可視領域51aLには、(n/2-1)列の左画像を表示するサブピクセルの全体と、1列の半分未満の左画像を表示するサブピクセルとが含まれる。また、左可視領域51aLには、右眼画像を表示する1列のサブピクセルの半分以上が含まれる。同様にして、右可視領域51aRには、(n/2-1)列の右画像を表示するサブピクセルの全体と、1列の半分未満の右画像を表示するサブピクセルとが含まれる。また、右可視領域51aRには、左眼画像を表示する1列のサブピクセルの半分以上が含まれる。したがって、図8Bに示す場合より大きなクロストークが発生する。クロストークの発生を低減させるために、左可視領域51aLに半分以上が含まれるようになった右眼画像を表示するサブピクセルが左眼画像を表示するように、画像が切り替えられる。同様にして、右可視領域51aRに半分以上が含まれるようになった左眼画像を表示するサブピクセルが右眼画像を表示するように、画像が切り替えられる。 As shown in FIG. 8C, when the user's interocular center O E moves from the reference position O S by a distance 2E / n in the first direction, the left visible area 51a L is moved to the left of the (n / 2-1) row. It includes all of the sub-pixels that display an image, and sub-pixels that display less than half of one column of the left image. In addition, the left visible region 51aL includes half or more of one row of subpixels displaying the right-eye image. Similarly, the right visible region 51aR includes all the subpixels that display the right image in (n / 2-1) rows and the subpixels that display the right image in less than half of one row. In addition, the right visible region 51aR includes half or more of one row of subpixels displaying the left eye image. Therefore, larger crosstalk occurs than in the case shown in FIG. 8B. In order to reduce the occurrence of crosstalk, the image is switched such that the sub-pixel displaying the right-eye image having a half or more included in the left visible region 51aL displays the left-eye image. Similarly, the image is switched such that the sub-pixel displaying the left-eye image for which the right visible region 51aR includes half or more is displayed the right-eye image.
 このように、利用者の眼の第1方向の変位に伴って画像が切り替えられることにより、対象眼が周方向に1サブピクセルの半分以上の非対象眼画像を視認することが回避されうる。したがって、対象眼が、周方向に0.5×Hp以上の幅の非対象眼画像を視認するようなクロストークの発生が抑制されうる。 As described above, by switching the image according to the displacement of the user's eye in the first direction, it is possible to prevent the target eye from visually recognizing the non-target eye image of half or more of one sub-pixel in the circumferential direction. Therefore, the occurrence of crosstalk in which the target eye visually recognizes a non-target eye image having a width of 0.5 × Hp or more in the circumferential direction can be suppressed.
 <パララックスバリアの開口率>
 パララックスバリア6の開口率は50%以下であってよい。すなわち、減光領域61の周方向の幅は、バリアピッチBpの50%以上であってよい。減光領域61の周方向の幅が50%未満である場合、利用者の右眼および左眼のいずれにも到達する画像光を射出するサブピクセルが存在する。この場合、該サブピクセルに右眼画像を表示させると左眼が右眼画像を視認し、左眼画像を表示させると右眼が左眼画像を視認する。すなわち、該サブピクセルに左眼画像と右眼画像とのいずれを表示させても、クロストークの発生を防ぐことが困難となる。したがって、パララックスバリア6の開口率を50%以下とすることによって、利用者の眼に発生するクロストークが低減されうる。
<Aperture ratio of parallax barrier>
The aperture ratio of the parallax barrier 6 may be 50% or less. That is, the circumferential width of the light reduction area 61 may be 50% or more of the barrier pitch Bp. If the circumferential width of the light reduction area 61 is less than 50%, there are sub-pixels that emit image light that reaches both the right eye and the left eye of the user. In this case, when the right eye image is displayed on the sub pixel, the left eye visually recognizes the right eye image, and when the left eye image is displayed, the right eye visually recognizes the left eye image. That is, even if the sub-pixel displays either the left-eye image or the right-eye image, it becomes difficult to prevent the occurrence of crosstalk. Therefore, by setting the aperture ratio of the parallax barrier 6 to 50% or less, crosstalk generated in the user's eyes can be reduced.
 <アイボックスの範囲>
 続いて、上述のようにバリアピッチBpが規定された3次元表示装置3におけるアイボックスEBの範囲について説明する。アイボックスEBは、利用者の両眼が適切に3次元画像を視認することのできる、眼の位置の範囲である。
<Range of eye box>
Subsequently, the range of the eye box EB in the three-dimensional display device 3 in which the barrier pitch Bp is defined as described above will be described. The eye box EB is a range of eye positions where the two eyes of the user can appropriately view a three-dimensional image.
 図9に示すように、眼間中心Oが基準位置Oにある場合(図9のOE0参照)、表示面51上において左眼によって視認される左可視領域51Lに左サブピクセル群Pglが含まれる。表示面51上において右眼によって視認される右可視領域51Rに右サブピクセル群Pgrが含まれる。すなわち、アイボックスEBは、表示面51の中心軸線方向に直交する面による断面において、円弧の中心を含む。 As shown in FIG. 9, when the interocular center O E is at the reference position O S (see O E 0 in FIG. 9), the left sub-pixel group Pgl is displayed in the left visible region 51 L viewed by the left eye on the display surface 51 Is included. The right sub-pixel group Pgr is included in the right visible region 51R that is viewed by the right eye on the display surface 51. That is, the eye box EB includes the center of an arc in a cross section by a plane orthogonal to the central axis direction of the display surface 51.
 図9に示したように、表示面51から眼間中心Oまでの距離が円弧の曲率半径Rより長くなると(図9のOE1参照)、左可視領域51L’は左可視領域51Lから変化する。左可視領域51L’には右サブピクセル群Pgrの一部が含まれる。右可視領域51R’は右可視領域51Rから変化する。右可視領域51R’には、左サブピクセル群Pglの一部が含まれる。このため、対象眼が非対象眼画像の一部を視認して、クロストークが発生する。 As shown in FIG. 9, when the distance from the display surface 51 to the interocular center O E becomes longer than the curvature radius R of the arc (see O E1 in FIG. 9), the left visible area 51L ′ changes from the left visible area 51L. Do. The left visible area 51L ′ includes a part of the right sub-pixel group Pgr. The right visible region 51R 'changes from the right visible region 51R. The right visible region 51R ′ includes a part of the left sub-pixel group Pgl. For this reason, the target eye visually recognizes a part of the non-target eye image, and crosstalk occurs.
 図9に示したように、表示面51から眼間中心Oまでの距離が円弧の曲率半径Rより短くなると(図9のOE2参照)、左可視領域51L”は左可視領域51Lから変化する。左可視領域51L”には右サブピクセル群Pgrの一部が含まれる。右可視領域51R’は右可視領域51Rから変化する。右可視領域51R”には、左サブピクセル群Pglの一部が含まれる。このため、対象眼が非対象眼画像の一部を視認して、クロストークが発生する。 As shown in FIG. 9, when the distance from the display surface 51 to the interocular center O E becomes shorter than the radius of curvature R of the arc (see O E2 in FIG. 9), the left visible area 51L ′ ′ changes from the left visible area 51L The left visible area 51L ′ ′ includes a part of the right sub-pixel group Pgr. The right visible region 51R 'changes from the right visible region 51R. The right visible region 51R ′ ′ includes a part of the left sub-pixel group Pgl. Therefore, the target eye visually recognizes a part of the non-target eye image, and crosstalk occurs.
 図9に示したように、眼間中心OがOE2に所定距離変化したときの左可視領域51Lから左可視領域51L”への変化は、眼間中心OがOE1に同じ所定距離変化したときの左可視領域51Lからの左可視領域51L’への変化より大きい。このため、左可視領域51L”に含まれる右サブピクセル群Pgrは、左可視領域51L’に含まれる右サブピクセル群Pgrより大きい。同様にして、右可視領域51R”に含まれる左サブピクセル群Pglは、右可視領域51R’に含まれる左サブピクセル群Pglより大きい。したがって、表示面51から眼間中心Oまでの距離が円弧の曲率半径Rより長くなる場合に比べて、表示面51から眼間中心Oまでの距離が円弧の曲率半径Rより短くなる場合、利用者の眼にはクロストークが発生しやすい。したがって、図1に示すように、アイボックスEBの基準位置Oから表示面51側の端部までの寸法は、基準位置Oから表示面51と反対側の端部までの寸法より短くてよい。言い換えれば、アイボックスEBのz軸方向における中心は、基準位置Oに対して表示面51と反対側に位置してよい。 As shown in FIG. 9, the change from the left visible area 51L to the left visible area 51L ′ ′ when the interocular center O E changes to a predetermined distance to O E2 is the same as the interocular center O E to O E1. Therefore, the right sub-pixel group Pgr included in the left visible area 51L ′ ′ is a right sub-pixel included in the left visible area 51L ′. Greater than group Pgr. Similarly, the left sub-pixel groups Pgl included in the right visible region 51R "is greater than the left sub-pixel groups Pgl included in the right visible region 51R '. Therefore, the distance from the display surface 51 to Mekan center O E as compared with a case longer than the arc of curvature radius R, when the distance from the display surface 51 to Mekan center O E is shorter than the radius of curvature R of the arc, crosstalk is likely to occur in the eyes of the user. Thus as shown in FIG. 1, the dimension from the reference position O S eyeboxes EB to the end of the display surface 51 side may be shorter than the dimension of the end portion opposite to the display surface 51 from the reference position O S in other words., the center in the z-axis direction of the eye box EB may be located on the opposite side of the display surface 51 with respect to the reference position O S.
 アイボックスEBの中心軸線方向における位置は、任意であってよい。例えば、アイボックスEBの中心軸線方向における位置は、中心軸線方向に沿う方向における表示面51の幅の範囲内にあってよい。アイボックスEBの第2方向における位置は、中心軸線方向に沿う方向における表示面51の幅の範囲外であってよい。 The position in the central axis direction of the eye box EB may be arbitrary. For example, the position of the eye box EB in the central axis direction may be within the range of the width of the display surface 51 in the direction along the central axis direction. The position of the eye box EB in the second direction may be outside the range of the width of the display surface 51 in the direction along the central axis direction.
以上説明したように、第1実施形態において、バリアピッチBpは、パララックスバリア6のいずれの領域においても略等しく、円弧の曲率半径R、画像ピッチk、およびギャップgに基づいて規定される。言い換えれば、画像ピッチkに対するバリアピッチBpの比は、いずれの領域においても略等しく、円弧の曲率半径Rおよびギャップgに基づいて規定される。これによって、眼間中心Oが基準位置Oに位置した場合、利用者は、表示面51の任意の領域で適切な3次元画像を視認することができる。また、利用者が表示面51上の異なる位置の画像を見るために顔の向きを変えても、眼間距離E,画像ピッチk、バリアピッチBp,ギャップg等のパラメータに変化が無い。そのため、適視距離が円弧の曲率半径Rに保たれ、クロストークの抑制された良好な3次元画像を視認することができる。 As described above, in the first embodiment, the barrier pitch Bp is substantially equal in any region of the parallax barrier 6 and is defined based on the radius of curvature R of the arc, the image pitch k, and the gap g. In other words, the ratio of the barrier pitch Bp to the image pitch k is substantially equal in any region, and is defined based on the radius of curvature R of the arc and the gap g. Thus, if Mekan center O E is positioned at the reference position O S, the user can visually recognize the appropriate 3-dimensional image in an arbitrary area of the display surface 51. In addition, even if the user changes the orientation of the face to look at images at different positions on the display surface 51, there is no change in parameters such as the interocular distance E, the image pitch k, the barrier pitch Bp, and the gap g. Therefore, the appropriate viewing distance is maintained at the curvature radius R of the arc, and it is possible to visually recognize a good three-dimensional image in which crosstalk is suppressed.
 続いて、第2実施形態に係る3次元表示装置7について図面を参照して詳細に説明する。 Subsequently, the three-dimensional display device 7 according to the second embodiment will be described in detail with reference to the drawings.
 図10に示すように、第2実施形態に係る3次元表示装置7は、照射器4と、表示パネル5と、光学素子としてのパララックスバリア6とを含んで構成される。第2実施形態においては、第1実施形態と異なる構成のみについて説明する。第2実施形態において説明を省略する構成については第1実施形態と同様である。 As shown in FIG. 10, the three-dimensional display device 7 according to the second embodiment includes an irradiator 4, a display panel 5, and a parallax barrier 6 as an optical element. In the second embodiment, only configurations different from the first embodiment will be described. About the composition which omits explanation in a 2nd embodiment, it is the same as that of a 1st embodiment.
 <パララックスバリアの規定>
 パララックスバリア6は、表示パネル5に対して基準位置Oと反対側に配置される。パララックスバリア6は、照射器4に対して表示パネル5側に配置される。第2実施形態においても、利用者の眼間中心Oが基準位置Oに位置する状態で、該利用者が最適な3次元画像を視認するように設計される。このため、式(5)に示すように、表示パネル5およびパララックスバリア6は、適視距離dとギャップgとの差が円弧の曲率半径Rとなるように設計される。
 R=d-g                        式(5)
<Rules of parallax barrier>
The parallax barrier 6 is disposed on the opposite side of the reference position O S with respect to the display panel 5. The parallax barrier 6 is disposed on the display panel 5 side with respect to the irradiator 4. In the second embodiment, in a state where the eye between the centers O E of the user is positioned at the reference position O S, the user is designed to recognize the optimum three-dimensional image. For this reason, as shown in the equation (5), the display panel 5 and the parallax barrier 6 are designed such that the difference between the appropriate viewing distance d and the gap g becomes the curvature radius R of the arc.
R = dg formula (5)
 この場合、バリアピッチBpは、ギャップg、適視距離d、眼間距離Eを用いて、図11に示すように、次の式(6)および式(7)が成り立つように規定される。
 E:d=k/2:g                    式(6)
 d:Bp=(d-g):k                  式(7)
In this case, the barrier pitch Bp is defined using the gap g, the suitable viewing distance d, and the interocular distance E so that the following equations (6) and (7) are satisfied as shown in FIG.
E: d = k / 2: g equation (6)
d: Bp = (d-g): k equation (7)
 したがって、バリアピッチBpは、次の式(8)が成り立つように規定される。
 Bp=(d/(d-g))×k=((R+g)/R)×k   式(8)
Therefore, the barrier pitch Bp is defined such that the following equation (8) holds.
Bp = (d / (d−g)) × k = ((R + g) / R) × k Formula (8)
 すなわち、パララックスバリア6が周方向に配列される間隔は、((R+g)/R)×kとなるように規定される。 That is, the interval at which the parallax barriers 6 are arranged in the circumferential direction is defined to be ((R + g) / R) × k.
 さらに言い換えれば、バリアピッチBpは、画像ピッチkに対する該バリアピッチBpの比が((R+g)/R)となるように規定される。 Furthermore, in other words, the barrier pitch Bp is defined such that the ratio of the barrier pitch Bp to the image pitch k is ((R + g) / R).
 第1の実施形態において、表示パネル5が自発光型である場合、照射器4は不要であった。しかし、第2の実施形態の表示パネル5は、自発光型の表示パネルではない。照射器4は不要でない。 In the first embodiment, when the display panel 5 is a self-luminous type, the irradiator 4 is unnecessary. However, the display panel 5 of the second embodiment is not a self-luminous display panel. The irradiator 4 is not necessary.
 以上説明したように、第2実施形態において、第1実施形態と同様に、バリアピッチBpは、パララックスバリア6のいずれの領域においても略等しく、バリアピッチBpを円弧の曲率半径R、画像ピッチk、およびギャップgに基づいて規定される。言い換えれば、画像ピッチkに対するバリアピッチBpの比はいずれの領域においても略等しく、該比は円弧の曲率半径Rおよびギャップgに基づいて規定される。これによって、利用者は表示面51の任意の領域で適切な3次元画像を視認することができる。 As described above, in the second embodiment, as in the first embodiment, the barrier pitch Bp is substantially equal in any region of the parallax barrier 6, and the barrier pitch Bp is the curvature radius R of the arc, the image pitch It is defined based on k and gap g. In other words, the ratio of the barrier pitch Bp to the image pitch k is substantially equal in any region, and the ratio is defined based on the radius of curvature R of the arc and the gap g. This allows the user to view an appropriate three-dimensional image in an arbitrary area of the display surface 51.
 上述の実施形態は代表的な例として説明したが、本発明の趣旨および範囲内で、多くの変更および置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形または変更が可能である。例えば、実施形態および実施例に記載の複数の構成ブロックを1つに組合せたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the embodiments described above have been described as representative examples, it will be obvious to those skilled in the art that many modifications and substitutions are possible within the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited by the above-described embodiments, and various modifications or changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of building blocks described in the embodiment and the example into one, or to divide one building block.
 上述の実施形態では、図5に示したように、減光領域61は、面内の所定方向に伸びる複数の帯状領域としたがこの限りではない。図12に示すように、減光領域61は、中心軸線方向においては、周方向に1サブピクセルに対応する長さ分ずれた位置に隣接して繰り返して配列される矩形の領域の集合であってよい。このような減光領域61を有するパララックスバリア6は、液晶シャッターにより構成されうる。図12に示した例では、n=12であるが、第1実施形態と同様にnは8であってよい。nは任意の偶数であってよい。 In the above embodiment, as shown in FIG. 5, the light reduction region 61 is a plurality of strip regions extending in a predetermined direction in the plane, but the present invention is not limited to this. As shown in FIG. 12, the light reduction region 61 is a set of rectangular regions repeatedly arranged adjacent to a position shifted by a length corresponding to one sub-pixel in the circumferential direction in the central axis direction. You may The parallax barrier 6 having such a light reduction region 61 can be configured by a liquid crystal shutter. Although n = 12 in the example shown in FIG. 12, n may be 8 as in the first embodiment. n may be any even number.
 上述の実施形態では、図2に示したように、サブピクセル群Pgは、中心軸線方向において、周方向に1サブピクセル分ずれた位置に隣接して繰り返して配列されるとしたが、この限りではない。例えば、図13に示すように、表示面51には、周方向に連続してn/2列のサブピクセルから構成される左サブピクセル群Pglが中心軸線方向にずれずに繰り返し配列されてよい。表示面51には、周方向に連続してn/2列のサブピクセルから構成される右サブピクセル群Pgrが中心軸線方向にずれずに繰り返し配列されてよい。図13に示した例では、左画像を表示するサブピクセルにLの符号が付されている。右画像を表示するサブピクセルにRの符号が付されている。図13に示した例では、n=8であるが、nは任意の偶数であってよい。この場合、パララックスバリア6は、中心軸線方向に伸びる複数の帯状領域である透光領域62ごとに、サブピクセルから射出される画像光の伝播方向である光線方向を規定する。 In the above embodiment, as shown in FIG. 2, the sub-pixel group Pg is repeatedly arranged adjacent to a position shifted by one sub-pixel in the circumferential direction in the central axis direction, but this limitation is not. For example, as shown in FIG. 13, on the display surface 51, left sub-pixel groups Pgl composed of n / 2 rows of sub-pixels continuously in the circumferential direction may be repeatedly arranged without shifting in the central axis direction. . On the display surface 51, the right sub-pixel group Pgr composed of n / 2-row sub-pixels continuously in the circumferential direction may be repeatedly arranged without being shifted in the central axis direction. In the example shown in FIG. 13, the sub-pixel displaying the left image is given the symbol L. The sub-pixel that displays the right image is labeled R. In the example shown in FIG. 13, n = 8, but n may be any even number. In this case, the parallax barrier 6 defines the light beam direction, which is the propagation direction of the image light emitted from the sub-pixel, for each of the plurality of light transmitting regions 62 which are strip regions extending in the central axis direction.
 上述の実施形態では、光学素子がパララックスバリア6であるとしたが、これに限られない。例えば、図14に示すように、3次元表示装置3が備える光学素子は、レンチキュラレンズ8としてよい。この場合、レンチキュラレンズ8は、シリンドリカルレンズ81を、表示面51に沿う平面内に配列して構成される。レンチキュラレンズ8は、パララックスバリア6と同様に、表示面51の一部のサブピクセルから出射した画像光を、利用者の左眼の位置に伝搬させ、他の一部のサブピクセルから出射した画像光を、利用者の右眼の位置に伝搬させる。 In the above embodiment, the optical element is the parallax barrier 6, but the present invention is not limited to this. For example, as shown in FIG. 14, the optical element provided in the three-dimensional display device 3 may be a lenticular lens 8. In this case, the lenticular lens 8 is configured by arranging the cylindrical lenses 81 in a plane along the display surface 51. Like the parallax barrier 6, the lenticular lens 8 propagates the image light emitted from a part of the sub-pixels of the display surface 51 to the position of the user's left eye and emits it from the other part of the sub-pixels The image light is propagated to the position of the user's right eye.
 上述の実施形態では、図15に示すように3次元表示装置3および7は、移動体100に搭載されてよい。本開示における「移動体」には、車両、船舶、航空機を含む。本開示における「車両」には、自動車および産業車両を含むが、これに限られず、鉄道車両および生活車両、滑走路を走行する固定翼機を含めてよい。自動車は、乗用車、トラック、バス、二輪車、およびトロリーバス等を含むがこれに限られず、道路上を走行する他の車両を含んでよい。産業車両は、農業および建設向けの産業車両を含む。産業車両には、フォークリフト、およびゴルフカートを含むがこれに限られない。農業向けの産業車両には、トラクター、耕耘機、移植機、バインダー、コンバイン、および芝刈り機を含むが、これに限られない。建設向けの産業車両には、ブルドーザー、スクレーバー、ショベルカー、クレーン車、ダンプカー、およびロードローラを含むが、これに限られない。車両は、人力で走行するものを含む。なお、車両の分類は、上述に限られない。例えば、自動車には、道路を走行可能な産業車両を含んでよく、複数の分類に同じ車両が含まれてよい。本開示における船舶には、マリンジェット、ボート、タンカーを含む。本開示における航空機には、固定翼機、回転翼機を含む。 In the above-described embodiment, the three-dimensional display devices 3 and 7 may be mounted on the mobile unit 100 as shown in FIG. The "mobile" in the present disclosure includes vehicles, ships, and aircraft. The "vehicle" in the present disclosure includes, but is not limited to, a car and an industrial vehicle, and may include a railway vehicle and a living vehicle, and a fixed wing aircraft traveling on a runway. Automobiles include but are not limited to passenger cars, trucks, buses, two-wheeled vehicles, trolley buses, etc., and may include other vehicles traveling on the road. Industrial vehicles include industrial vehicles for agriculture and construction. Industrial vehicles include, but are not limited to, forklifts and golf carts. Industrial vehicles for agriculture include, but are not limited to, tractors, cultivators, transplanters, binders, combine harvesters, and lawn mowers. Industrial vehicles for construction include, but are not limited to, bulldozers, scrapers, excavators, cranes, dump trucks, and road rollers. Vehicles include those that travel by human power. The classification of vehicles is not limited to the above. For example, a car may include an industrial vehicle capable of traveling on a road, and a plurality of classifications may include the same vehicle. The vessels in the present disclosure include marine jets, boats, and tankers. The aircraft in the present disclosure includes fixed wing aircraft and rotary wing aircraft.
3,7 3次元表示装置
4   照射器
5   表示パネル
6   パララックスバリア
8   レンチキュラレンズ
51  表示面
51a 右可視領域
51b 左可視領域
61  減光領域
62  透光領域
81  シリンドリカルレンズ
100 移動体
3, 7 Three-dimensional display device 4 Irradiator 5 Display panel 6 Parallax barrier 8 Lenticular lens 51 Display surface 51a Right viewable area 51b Left viewable area 61 Dimming area 62 Translucent area 81 Cylindrical lens 100 Moving body

Claims (13)

  1.  中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える表示パネルであって、前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って格子状に配列され、左眼画像を表示するサブピクセルを有する左サブピクセル群と右眼画像を表示するサブピクセルを有する右サブピクセル群とが前記周方向に交互に配列された表示パネルと、
     前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む光学素子であって、前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列された光学素子と、
    を備え、
     前記減光領域および前記透光領域が交互に配列される前記周方向の間隔は略等しく、前記間隔は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、前記左サブピクセル群および前記右サブピクセル群の配置間隔である画像ピッチ、ならびに前記表示面と前記光学素子との間のギャップに基づいて規定される、3次元表示装置。
    A display panel comprising a display surface having a shape of at least a part of a cylindrical surface around a central axis, in a lattice shape along the circumferential direction around the central axis and the central axis in the display surface. A display panel in which left sub-pixel groups having sub-pixels representing left-eye images and right sub-pixel groups having sub-pixels representing right-eye images are alternately arranged in the circumferential direction;
    A plurality of light reduction regions disposed along the display surface and reducing or blocking image light from the display surface; and a plurality of light transmission regions transmitting the image light with a higher transmittance than the light reduction region An optical element including: the plurality of light reduction regions and the plurality of light transmission regions arranged alternately adjacent to each other along the circumferential direction;
    Equipped with
    Spacings in the circumferential direction in which the light reduction areas and the light transmission areas are alternately arranged are substantially equal, and the spacing is a curvature radius of a circular arc formed by a plane orthogonal to the central axis direction of the display surface; A three-dimensional display defined based on an image pitch which is an arrangement interval of a left sub-pixel group and the right sub-pixel group, and a gap between the display surface and the optical element.
  2.  利用者の眼の位置の範囲であるアイボックスは、前記表示面の前記中心軸線方向に直交する面による断面において、前記円弧の中心を含む請求項1に記載の3次元表示装置。 The three-dimensional display device according to claim 1, wherein an eye box which is a range of the position of the user's eyes includes the center of the circular arc in a cross section by a plane orthogonal to the central axis direction of the display surface.
  3.  前記アイボックスの、前記周方向および中心軸線方向に直交する径方向における中心は、前記円弧の中心に対して前記表示パネルと反対側にある、請求項2に記載の3次元表示装置。 The three-dimensional display according to claim 2, wherein a center of the eyebox in a radial direction orthogonal to the circumferential direction and the central axial direction is on the opposite side of the display panel with respect to the center of the arc.
  4.  前記光学素子は、前記表示面に沿って、前記表示面に対して前記円弧の中心側に配置され、
     前記曲率半径をR、前記ギャップをg、前記画像ピッチをkとすると、前記減光領域の前記周方向の配置間隔は、略((R-g)/R)×kである、請求項1から3のいずれか一項に記載の3次元表示装置。
    The optical element is disposed on the center side of the arc with respect to the display surface along the display surface,
    Assuming that the radius of curvature is R, the gap is g, and the image pitch is k, an arrangement interval of the light reduction region in the circumferential direction is approximately ((R−g) / R) × k. The three-dimensional display device according to any one of to 3.
  5.  前記光学素子は、前記表示面に沿って、前記表示面に対して前記円弧の中心と反対側に配置され、
     前記曲率半径をR、前記ギャップをg、前記画像ピッチをkとすると、前記減光領域の前記周方向の配置間隔は、略((R+g)/R)×kである、請求項1から3のいずれか一項に記載の3次元表示装置。
    The optical element is disposed on the display surface opposite to the center of the arc with respect to the display surface.
    The arrangement interval of the light reduction region in the circumferential direction is approximately ((R + g) / R) × k, where R is the radius of curvature, g is the gap, and k is the image pitch. The three-dimensional display device according to any one of the above.
  6.  前記複数の減光領域それぞれの前記周方向の幅は略等しい、請求項1から5の何れか一項に記載の3次元表示装置。 The three-dimensional display device according to any one of claims 1 to 5, wherein the circumferential widths of the plurality of light reduction regions are substantially equal.
  7.  中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える表示パネルであって、前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って格子状に配列され、左眼画像を表示する左サブピクセル群と右眼画像を表示する右サブピクセル群とが前記周方向に交互に配列された表示パネルと、
     前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記画像光を前記減光領域より多く透過させる複数の透光領域とを含む光学素子であって、前記複数の減光領域と前記複数の透光領域とは、前記周方向に沿って互いに隣接して交互に配列された光学素子と、
    を備え、
     表示面上の第1領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に交互に配列される間隔に対する、前記第1領域に対応する前記減光領域および前記透光領域が前記周方向に交互に配列される間隔の比を第1の比とし、表示面上の第1領域とは異なる第2領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に交互に配列される間隔に対する、前記2領域に対応する前記減光領域が前記周方向に交互に配列される間隔の比を第2の比とすると、第1の比と第2の比とは略等しく、前記比は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、および、前記表示面と前記光学素子との間のギャップに基づいて規定される、前記表示パネルの曲率に基づいて決定される、3次元表示装置。
    A display panel comprising a display surface having a shape of at least a part of a cylindrical surface around a central axis, in a lattice shape along the circumferential direction around the central axis and the central axis in the display surface. A display panel in which left subpixels arranged to display a left eye image and right subpixels arranged to display a right eye image are alternately arranged in the circumferential direction;
    An optical system comprising: a plurality of light reduction regions disposed along the display surface to reduce or block image light from the display surface; and a plurality of light transmission regions transmitting the image light more than the light reduction region An optical element in which the plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction;
    Equipped with
    The light reduction area and the light transmission area corresponding to the first area with respect to an interval in which the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction in the first area on the display surface The ratio of the intervals alternately arranged in the circumferential direction is taken as a first ratio, and the left sub-pixel group and the right sub-pixel group alternate in the circumferential direction in a second area different from the first area on the display surface Assuming that a ratio of intervals at which the light reduction regions corresponding to the two regions are alternately arrayed in the circumferential direction with respect to an arrayed interval is a second ratio, the first ratio and the second ratio are approximately equal. The display panel is defined based on a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface, and a gap between the display surface and the optical element. 3D determined based on curvature of Display devices.
  8.  利用者の眼の位置の範囲であるアイボックスは、前記表示面の前記中心軸線方向に直交する面による断面において、前記円弧の中心を含む請求項7に記載の3次元表示装置。 The three-dimensional display device according to claim 7, wherein an eye box which is a range of a position of the user's eyes includes the center of the circular arc in a cross section by a plane orthogonal to the central axis direction of the display surface.
  9.  利用者の眼の位置の範囲であるアイボックスの、前記周方向および前記中心軸線方向に直交する第3方向における中心は、前記円弧の中心に対して前記表示パネルと反対側にある、請求項8に記載の3次元表示装置。 The center of the eye box, which is a range of the position of the user's eyes, in the third direction orthogonal to the circumferential direction and the central axis direction is on the opposite side of the display panel with respect to the center of the arc. The three-dimensional display device according to 8.
  10.  前記光学素子は、前記表示面に沿って前記円弧の中心側に配置され、
     前記曲率半径をR、前記ギャップをgとすると、前記比は、略(R-g)/Rである、請求項7から9のいずれか一項に記載の3次元表示装置。
    The optical element is disposed at the center side of the arc along the display surface,
    The three-dimensional display according to any one of claims 7 to 9, wherein the ratio is approximately (Rg) / R, where R is the radius of curvature and g is the gap.
  11.  前記光学素子は、前記表示面に沿って前記円弧の中心と反対側に配置され、
     前記曲率半径をR、前記ギャップをgとすると、前記比は、略(R+g)/Rである、請求項7から9のいずれか一項に記載の3次元表示装置。
    The optical element is disposed on the display surface opposite to the center of the arc.
    The three-dimensional display device according to any one of claims 7 to 9, wherein the ratio is approximately (R + g) / R, where R is the radius of curvature and g is the gap.
  12.  中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える表示パネルであって、前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って格子状に配列され、左眼画像を表示するサブピクセルを有する左サブピクセル群と右眼画像を表示するサブピクセルを有する右サブピクセル群とが前記周方向に交互に配列された表示パネルと、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記減光領域より高い透過率で前記画像光を透過させる複数の透光領域とを含む光学素子であって、前記複数の減光領域と前記複数の透光領域とが前記周方向に沿って互いに隣接して交互に配列された光学素子と、を含み、前記減光領域および前記透光領域が交互に配列される周方向の間隔は略等しく、前記間隔は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、前記左サブピクセル群および前記右サブピクセル群の配置間隔である画像ピッチ、ならびに前記表示面と前記光学素子との間のギャップに基づいて規定される、3次元表示装置
     を備える移動体。
    A display panel comprising a display surface having a shape of at least a part of a cylindrical surface around a central axis, in a lattice shape along the circumferential direction around the central axis and the central axis in the display surface. A display panel in which a left sub-pixel group having sub-pixels for displaying a left-eye image and a right sub-pixel group having sub-pixels for displaying a right-eye image are alternately arranged in the circumferential direction; And a plurality of light reduction regions for reducing or blocking image light from the display surface, and a plurality of light transmission regions for transmitting the image light with a higher transmittance than the light reduction region. An element, comprising: an optical element in which the plurality of light reduction regions and the plurality of light transmission regions are alternately arranged adjacent to each other along the circumferential direction, the light reduction region and the light transmission Areas are arranged alternately Intervals in the circumferential direction are approximately equal, and the intervals are the radius of curvature of the arc of the cross section of the display surface by the plane orthogonal to the central axis direction, the arrangement interval of the left sub-pixel group and the right sub-pixel group A mobile comprising a three-dimensional display defined based on an image pitch and a gap between the display surface and the optical element.
  13.  中心軸線の周りの円筒面の少なくとも一部の形状を有する表示面を備える表示パネルであって、前記表示面内における前記中心軸線周りの周方向と、前記中心軸線方向とに沿って格子状に配列され、左眼画像を表示する左サブピクセル群と右眼画像を表示する右サブピクセル群とが前記周方向に交互に配列された表示パネルと、前記表示面に沿って配置され、前記表示面からの画像光を減光または遮光する複数の減光領域と、前記画像光を前記減光領域より多く透過させる複数の透光領域とを含む光学素子であって、前記複数の減光領域と前記複数の透光領域とは、前記周方向に沿って互いに隣接して交互に配列された光学素子と、を備え、表示面上の第1領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に交互に配列される間隔に対する、前記第1領域に対応する前記減光領域および前記透光領域が前記周方向に交互に配列される間隔の比を第1の比とし、表示面上の第1領域とは異なる第2領域で前記左サブピクセル群および前記右サブピクセル群が前記周方向に交互に配列される間隔に対する、前記2領域に対応する前記減光領域が前記周方向に交互に配列される間隔の比を第2の比とすると、第1の比と第2の比とは略等しく、前記比は、前記表示面の前記中心軸線方向に直交する面による断面の成す円弧の曲率半径、および、前記表示面と前記光学素子との間のギャップに基づいて規定される、前記表示パネルの曲率に基づいて決定される、3次元表示装置
     を備える移動体。
    A display panel comprising a display surface having a shape of at least a part of a cylindrical surface around a central axis, in a lattice shape along the circumferential direction around the central axis and the central axis in the display surface. A display panel in which left sub-pixel groups for displaying left-eye images and right sub-pixel groups for displaying right-eye images are alternately arranged in the circumferential direction, and arranged along the display surface; An optical element comprising: a plurality of light reduction regions for reducing or blocking image light from a surface; and a plurality of light transmission regions for transmitting the image light more than the light reduction region, wherein the plurality of light reduction regions And the plurality of light transmitting regions include optical elements alternately arranged adjacent to each other along the circumferential direction, and the left sub-pixel group and the right sub-pixel in the first region on the display surface Groups are arranged alternately in the circumferential direction The ratio of the light reduction area corresponding to the first area to the light separation area and the space in which the light transmission areas are alternately arranged in the circumferential direction is a first ratio, which is different from the first area on the display surface With respect to an interval in which the left sub-pixel group and the right sub-pixel group are alternately arranged in the circumferential direction in the second area, the interval in which the light reduction areas corresponding to the two areas are alternately arrayed in the circumferential direction Assuming that the ratio is a second ratio, the first ratio and the second ratio are substantially equal, and the ratio is a radius of curvature of an arc formed by a cross section of a surface orthogonal to the central axis direction of the display surface; A mobile body comprising: a three-dimensional display device which is determined based on a curvature of the display panel defined based on a gap between the display surface and the optical element.
PCT/JP2018/033856 2017-09-25 2018-09-12 Three-dimensional display device and moving body WO2019059071A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-184198 2017-09-25
JP2017184198A JP2019060989A (en) 2017-09-25 2017-09-25 Three-dimensional display device and moving body

Publications (1)

Publication Number Publication Date
WO2019059071A1 true WO2019059071A1 (en) 2019-03-28

Family

ID=65809794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033856 WO2019059071A1 (en) 2017-09-25 2018-09-12 Three-dimensional display device and moving body

Country Status (2)

Country Link
JP (1) JP2019060989A (en)
WO (1) WO2019059071A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177709A (en) * 2002-11-27 2004-06-24 Toshiba Corp Stereoscopic picture display device and stereoscopic picture display method
JP2006078597A (en) * 2004-09-07 2006-03-23 Japan Science & Technology Agency Remote communication method in which 3-dimensional display device with shooting function is used and three-dimensional display with camera which is used in the same method
JP2011107665A (en) * 2008-12-12 2011-06-02 Sony Corp Stereoscopic image display device, method for producing the same, and stereoscopic image display method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177709A (en) * 2002-11-27 2004-06-24 Toshiba Corp Stereoscopic picture display device and stereoscopic picture display method
JP2006078597A (en) * 2004-09-07 2006-03-23 Japan Science & Technology Agency Remote communication method in which 3-dimensional display device with shooting function is used and three-dimensional display with camera which is used in the same method
JP2011107665A (en) * 2008-12-12 2011-06-02 Sony Corp Stereoscopic image display device, method for producing the same, and stereoscopic image display method

Also Published As

Publication number Publication date
JP2019060989A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US11675211B2 (en) Three-dimensional display apparatus, three-dimensional display system, head up display, head up display system, three-dimensional display apparatus design method, and mobile object
US20200053352A1 (en) Three-dimensional display apparatus, three-dimensional display system, head-up display system, and mobile body
EP3882064A1 (en) Three-dimensional display device, three-dimensional display system, head-up display, and mobile object
JP2018120189A (en) Three-dimensional display device, three-dimensional display system, head-up display system and mobile body
JP7188888B2 (en) Image display device, head-up display system, and moving object
US10921588B2 (en) Three-dimensional display apparatus, head-up display system, and mobile body
EP3748417B1 (en) Head-up display and moving body comprising the head-up display
CN114503556A (en) Three-dimensional display device, controller, three-dimensional display method, three-dimensional display system, and moving object
WO2019059071A1 (en) Three-dimensional display device and moving body
JPWO2020004275A1 (en) 3D display device, control controller, 3D display method, 3D display system, and mobile
EP3757657B1 (en) Head-up display and mobile object
JP2020102772A (en) Three-dimensional display device, head-up display system, and moving body
WO2020130047A1 (en) Three-dimensional display device, three-dimensional display system, head-up display, and moving object
WO2021060011A1 (en) Parallax barrier, 3d display device, 3d display system, heads-up display, and moving body
WO2022149599A1 (en) Three-dimensional display device
WO2023228887A1 (en) Three-dimensional display device, head-up display system, and mobile body
CN114503555A (en) Three-dimensional display device, three-dimensional display system, and moving object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859810

Country of ref document: EP

Kind code of ref document: A1