WO2019059060A1 - Area light source device and luminance distribution adjusting plate - Google Patents

Area light source device and luminance distribution adjusting plate Download PDF

Info

Publication number
WO2019059060A1
WO2019059060A1 PCT/JP2018/033768 JP2018033768W WO2019059060A1 WO 2019059060 A1 WO2019059060 A1 WO 2019059060A1 JP 2018033768 W JP2018033768 W JP 2018033768W WO 2019059060 A1 WO2019059060 A1 WO 2019059060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light transmission
opening ratio
illuminance distribution
Prior art date
Application number
PCT/JP2018/033768
Other languages
French (fr)
Japanese (ja)
Inventor
麻理衣 西川
谷口 幸夫
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019059060A1 publication Critical patent/WO2019059060A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • the present invention relates to a surface light source device and an illuminance distribution adjusting plate used for the surface light source device.
  • a surface light source device that emits planar light is widely used, for example, as a backlight that illuminates a liquid crystal display panel incorporated in a liquid crystal display device from the back side.
  • the surface light source device for a liquid crystal display device is roughly classified into an edge light type in which a light source is disposed on the side of an optical member and a direct type in which a light source is disposed directly below an optical member.
  • a light emitting diode (LED) is used as the light source.
  • an edge light type surface light source device In a liquid crystal display device for vehicles, an edge light type surface light source device has conventionally been used as a back light from the viewpoint of easy thinning.
  • a liquid crystal display device for vehicles in order to secure visibility under the external light which inserts from a window, displaying brightly is called for.
  • displaying brightly In order to obtain as bright a display as possible with an edge light type surface light source device, it is necessary to closely arrange a large number of light sources on the side of the optical member.
  • liquid crystal display devices for vehicles are often disposed in a narrow space, and if a large number of light sources are densely disposed in this narrow space, it is not possible to sufficiently dissipate the heat generated from the light sources.
  • an edge light type surface light source device when used as a backlight of a liquid crystal display device for a vehicle, if it is intended to obtain sufficient brightness, the heat generated from the light source can not be sufficiently dissipated.
  • the display device may be heated to a high temperature, which may cause a malfunction.
  • a direct type surface light source device can be used as a backlight, a plurality of light sources can be arranged separately from each other, so heat generated from the light sources can be properly dissipated. Therefore, in a liquid crystal display device for vehicles, it is required to make the surface light source device thinner while using a direct type surface light source device as a backlight.
  • an illuminance distribution adjustment plate is disposed between the light source and the liquid crystal display panel, and the surface is made by the illuminance distribution adjustment plate.
  • a technique for adjusting the illuminance distribution in the light emitting surface of the light source device is known.
  • JP2012-174372A discloses a lighting unit having an LED light source and a reflection plate made of a material that reflects light without transmitting light.
  • a plurality of light passage holes arranged in a matrix are formed in the reflection plate.
  • the opening area of each of the plurality of light passing holes is smaller as the distance from the facing portion facing the LED light source is shorter.
  • the light passing hole decreases as the light passing hole is closer to a position where the density of light directly arriving from the LED light source is high, and the light passing hole at a position where the density of light directly arriving from the LED light source is low Will increase the amount of light passing.
  • the distribution of light passing through the reflection plate can be made to approach uniformly, and the distribution of illumination light of the illumination device can be made to approach uniform.
  • the reflection plate is formed to have a square shape in plan view. Therefore, the plan view shape of the entire lighting unit formed by arranging the reflection plates in the longitudinal direction and the lateral direction is limited to a shape in which the ratio of the longitudinal length to the lateral length is an integer ratio. Ru. That is, in the lighting unit disclosed in JP2012-174372A, there is a limit to the design of the plan view shape of the whole lighting unit.
  • the present invention has been made in view of these points, and it is an object of the present invention to improve the degree of freedom in the design of the plan view shape of the surface light source device.
  • the surface light source device of the present invention is A light source, and an illuminance distribution adjusting plate disposed opposite to the light source and adjusting an illuminance distribution of light emitted from the light source;
  • the illuminance distribution adjustment plate is
  • the substrate includes a plurality of light transmission holes for transmitting the light.
  • the substrate has one or more compartmental areas, Each divided region has a rectangular shape having a long side and a short side in plan view, In each compartment area, The divided area is further divided into a plurality of regularly arranged element areas, One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
  • the light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
  • the iso-aperture line passing through the curvature point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
  • the illuminance distribution adjustment board of the present invention is An irradiance distribution adjusting plate disposed opposite to a light source and adjusting an irradiance distribution of light emitted from the light source,
  • the substrate includes a plurality of light transmission holes for transmitting the light.
  • the substrate has one or more compartmental areas, Each divided region has a rectangular shape having a long side and a short side in plan view, In each compartment area, The divided area is further divided into a plurality of regularly arranged element areas, One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
  • the light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
  • the iso-aperture line passing through the curvature point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
  • FIG. 1 is a view for explaining an embodiment according to the present invention, and is a perspective view schematically showing an example of a display device provided with a display panel and a surface light source device.
  • FIG. 2 is a perspective view schematically showing an example of a surface light source device.
  • FIG. 3 is a plan view showing an example of the illuminance distribution adjustment plate incorporated in the surface light source device.
  • FIG. 4 is a cross-sectional view of the surface light source device corresponding to the line IV-IV in FIG.
  • FIG. 5 is a plan view showing one sectioned area of the illuminance distribution adjusting plate, showing an example of an arrangement pattern of element areas and light transmission holes.
  • FIG. 6 is a diagram showing an example of equal aperture ratio lines passing through a plurality of light transmission holes.
  • FIG. 7 is a diagram showing an example of equal aperture ratio lines passing through light transmission holes and imaginary equal aperture ratio points.
  • FIG. 8 is a diagram for explaining a method of calculating the position of the virtual equal aperture
  • the terms “plate”, “sheet” and “film” are not distinguished from one another based only on the difference in designation.
  • “plate” is a concept that also includes members that may be called “sheets” and “films”. Therefore, for example, “illuminance distribution adjustment plate” may be “illuminance distribution adjustment sheet” or “illuminance distribution adjustment” It can not be distinguished only by the difference of a name and the member called film.
  • plate surface refers to a plate-shaped member (sheet-shaped member (sheet-shaped member) when the target plate-shaped (sheet-shaped, film-shaped) member is viewed globally and generally. It refers to the surface that coincides with the planar direction of the member (film-like member).
  • the normal direction of the surface and plate-like (sheet-like, film-like) members means the normal to the surface of the object and plate-like (sheet-like, film-like) members. It points to the direction.
  • FIG. 1 is a view schematically showing an example of a display device provided with a display panel and a surface light source device
  • FIG. 2 is a perspective view schematically showing an example of the surface light source device.
  • the display device 10 is a device that displays, for example, a moving image, a still image, text information, and a video composed of a combination of these on the display panel 15.
  • the display device 10 is a vehicle-mounted liquid crystal display device.
  • the display device 10 shown in FIG. 1 includes a surface light source device 20 having a light exit surface 20a, and a display panel 15 disposed to face the light exit surface 20a.
  • the display panel 15 is configured as a liquid crystal display panel, and thus the display device 10 is configured as a liquid crystal display device.
  • the surface light source device 20 constitutes a so-called direct backlight, and illuminates the display panel 15 from the back side of the display panel 15, that is, the side opposite to the observer 5.
  • the display panel 15 is disposed such that the display surface 15 a on which an image is displayed faces the opposite side of the surface light source device 20. Thereby, the display surface 15 a of the display panel 15 forms the display surface 10 a of the display device 10.
  • the display panel 15 is formed in a rectangular shape when viewed in the normal direction of the display panel 15, that is, in a plan view.
  • the display panel 15 of the present embodiment is a transmissive liquid crystal display panel, transmits part of light incident from the surface light source device 20 to the display panel 15, and displays an image on the display surface 15a.
  • the display panel 15 includes a liquid crystal layer having a liquid crystal material, and the light transmittance of the display panel 15 changes in accordance with the strength of the electric field applied to the liquid crystal layer.
  • a liquid crystal display panel having a pair of polarizing plates and a liquid crystal cell (liquid crystal layer) disposed between the pair of polarizing plates can be used.
  • the polarizing plate separates incident light into two orthogonal polarization components, transmits polarization components in one direction, and absorbs polarization components in the other direction orthogonal to the one direction. It has a polarizer with a function.
  • the liquid crystal cell has a pair of support plates and a liquid crystal disposed between the pair of support plates. The liquid crystal cell is configured such that an electric field can be applied to each region forming one pixel, and the alignment of liquid crystals of the liquid crystal cell to which the electric field is applied is changed.
  • the polarization component in a specific direction (direction parallel to the transmission axis) emitted from the surface light source device 20 and transmitted through the polarizing plate disposed on the surface light source device 20 side of the liquid crystal cell is, for example, a liquid crystal cell not applied with an electric field.
  • the polarization direction is rotated by 90.degree.
  • the polarization direction is maintained.
  • the polarization component in the specific direction transmitted through the polarizing plate disposed on the surface light source device 20 side of the liquid crystal cell is disposed on the opposite side to the surface light source device 20 of the liquid crystal cell depending on the presence or absence of the electric field application to the liquid crystal cell. It is possible to control whether the light is further transmitted through another polarizing plate or absorbed and blocked by the other polarizing plate.
  • the surface light source device 20 has a light emitting surface 20a for emitting planar light, and is a so-called direct type in which a light source 22 is provided in a region facing the light emitting surface 20a in the normal direction of the light emitting surface 20a. It is configured as a back light.
  • the surface light source device 20 of the present embodiment includes a light source 22 and an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of the light emitted from the light source 22.
  • the surface light source device 20 further includes a base laminate 30 supporting the light source 22, a spacer 23, a diffusion plate 26, a first optical sheet 27, and a second optical sheet 28.
  • the spacer 23 and the illuminance distribution adjusting plate 40 are sequentially stacked on the base laminate 30, and separated from the illuminance distribution adjusting plate 40 by a predetermined distance, and the diffusion plate 26, the first optical sheet 27 and the first A stack of two optical sheets 28 is arranged in order.
  • the second optical sheet 28 forms the light exit surface 20 a of the surface light source device 20.
  • the light source 22 is configured of, for example, a light emitting diode (LED) or the like, and is disposed to face the illuminance distribution adjustment plate 40.
  • the light sources 22 are arranged or aligned along the first direction d 1 parallel to the plate surface of the surface light source device 20, and It is arranged along the second direction d 2 intersecting the parallel and the first direction d 1 to the plate surface of the light source device 20.
  • the first direction d 1 and the second direction d 2 are orthogonal.
  • a plurality of light sources 22 are two-dimensionally arranged along the first direction d 1 and the second direction d 2.
  • a surface light source device 20 may have a plurality of light sources 22 arranged in a row along the first direction d 1 and the second direction d 2, one light source 22 only May be included. It is preferable that the output of each light source 22, that is, the lighting and extinguishing of each light source 22, and / or the brightness at the time of lighting each light source 22 can be adjusted independently from the outputs of the other light sources 22.
  • the contour of the illuminance distribution adjusting plate 40 has a rectangular shape in plan view.
  • the first direction d 1 and the second direction d 2 can be arbitrarily defined, in the example shown, so that the first direction d 1 forms a parallel to the one side of the rectangular shape forming the contour of the illuminance distribution adjusting plate 40 is defined, the second direction d 2 is defined as to be parallel with other one side perpendicular to the one side.
  • the first direction d 1 is defined so as to form a parallel to the long sides of the rectangular shape forming the contour of the illuminance distribution adjusting plate 40
  • the second direction d 2 is parallel to the short sides of the rectangular Defined to make
  • the spacer 23 is a member for supporting the illuminance distribution adjusting plate 40, and has a function of keeping the predetermined distance between the base laminate 30 and the illuminance distribution adjusting plate 40. As shown in FIG. 2, the spacer 23 has a wall 24 that divides between two adjacent light sources 22, whereby the spacer 23 is surrounded by the wall 24 corresponding to each light source 22. The opening 25 is formed.
  • the openings 25 are provided corresponding to the arrangement pattern of the light sources 22. That is, the spacer 23, while being arranged in the first direction d 1, arranged in the second direction d 2, has a plurality of openings 25. In the present embodiment, each opening 25 is formed in a rectangular shape in plan view.
  • Such a spacer 23 may be, for example, polycarbonate resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile-styrene-acrylate copolymer resin (ASA resin), acrylonitrile-ethylene-propylene-diene-styrene copolymer resin AES resin), polymethyl methacrylate resin (PMMA resin), polyacetal resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, or a mixture of two or more of these resins can be used.
  • the spacer 23 is preferably made of a material having high reflectivity to light in the visible light wavelength range.
  • FIG. 3 is a plan view showing the illuminance distribution adjustment plate 40 incorporated in the surface light source device 20. As shown in FIG. In FIG. 3, the positions of the light source 22 disposed on the back side of the illuminance distribution adjustment plate 40 and the openings 25 of the spacer 23 are indicated by broken lines.
  • the illuminance distribution adjusting plate 40 includes a base 41 on which a plurality of light transmission holes 45 for transmitting light emitted from the light source 22 are formed. In FIG. 3, the light transmission holes 45 are not shown.
  • the base material 41 of the illuminance distribution adjusting plate 40 has one or more divided areas Aa corresponding to the light sources 22. That is, one division area Aa is provided in the base 41 for one light source 22.
  • the substrate 41 has while being arranged along the first direction d 1, arranged along the second direction d 2, a plurality of divided areas Aa.
  • region divided by the dashed-dotted line in the base material 41 has shown each division area Aa.
  • Each divided area Aa has a rectangular shape (rectangular shape) having a long side 42 and a short side 43 in plan view.
  • the long side 42 and the short side 43 have different lengths from each other, and the long side 42 has a length larger than the length of the short side 43.
  • the long side 42 of the partition area Aa extends along the first direction d 1
  • the short side 43 of the partition area Aa extends along the second direction d 2. Accordingly, the long side 42 of the divided area Aa and the long side of the illuminance distribution adjustment plate 40 are parallel to each other, and the short side 43 of the divided area Aa and the short side of the illuminance distribution adjusting plate 40 are parallel to each other.
  • long side 42 of the partition area Aa extends along the second direction d 2
  • the short side 43 of the partition area Aa may extend along the first direction d 1.
  • the long side 42 of the divided area Aa is parallel to the short side of the illuminance distribution adjustment plate 40
  • the short side 43 of the divided area Aa is parallel to the long side of the illuminance distribution adjustment plate 40.
  • Each divided area Aa is further divided into a plurality of regularly arranged element areas Ab. The specific shape and arrangement pattern of the element region Ab will be described later.
  • division lines La that define adjacent division areas Aa of the base material 41 are defined along the wall 24 of the spacer 23.
  • the dividing line La is defined to be located in a region facing the wall 24 of the spacer 23 along the normal direction of the illuminance distribution adjustment plate 40.
  • partition lines La as a whole, a plurality of partition lines La extending in a second direction d 2 is arranged in the first direction d 1, of the plurality extending in a first direction d 1 are arranged in the second direction d 2
  • the division lines La are defined to form a grid.
  • the long sides 42 of the partition area Aa is made from a portion of the division line La extending in a first direction d 1
  • the short side 43 of the partition area Aa is division line La extending in a second direction d 2
  • the partitioned regions Aa has a width W 1 in the first direction d 1, and a width W 2 in the second direction d 2.
  • the width W 1 corresponds to the length along the long side 42 of the partition area Aa
  • the width W 2 corresponding to the length along the short side 43 of the partition area Aa.
  • the width W 1 and the width W 2 can be, for example, 5 mm or more and 50 mm or less.
  • each divided area Aa has a rectangular shape having the long side 42 and the short side 43 in plan view, and the lengths of the long side 42 and the short side 43 It is possible to change independently. Therefore, the illuminance distribution adjusting plate 40 can be configured by arranging the divided areas Aa having a rectangular shape configured by the long side 42 and the short side 43 of an arbitrary length. Therefore, the lengths of the long side and the short side of the illuminance distribution adjusting plate 40 can be increased with a high degree of freedom, respectively, as compared to the conventional illuminance distribution adjusting plate configured by arranging the divided areas having a square shape in plan view. It can be set. That is, it is possible to improve the degree of freedom in designing the planar light source shape of the surface light source device 20.
  • FIG. 4 shows a cross section of the surface light source device 20 corresponding to the line IV-IV in FIG.
  • FIG. 4 shows a cross section of the surface light source device 20 corresponding to one sectioned area Aa in the base material 41 of the illuminance distribution adjusting plate 40.
  • the base laminate 30 supports the light source 22 and has a function of supplying power to the light source 22.
  • the base laminate 30 includes the base 31, the bonding layer 32, the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflecting layer 36.
  • the base 31 is a member that functions as a base that holds the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflection layer 36.
  • the material of the base material 31 is not particularly limited as long as the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflecting layer 36 can be properly held, but, for example, metal or resin may be used.
  • the heat generated by the light source 22 can be dissipated toward the back side of the surface light source device 20 via the substrate 31. It is more preferable because it can.
  • the thickness of the base 31 can be, for example, 0.5 mm or more and 10 mm or less.
  • the base 31 may be a part of the housing of the surface light source device 20.
  • the film substrate 33 is a member that functions as a base for holding the wiring layer 34, and forms a printed wiring board together with the wiring layer 34.
  • the film substrate 33 shown in FIG. 4 is formed of a flexible resin film, whereby the film substrate 33 forms a flexible printed wiring board together with the wiring layer 34.
  • the thickness of the film substrate 33 can be, for example, 10 ⁇ m or more and 500 ⁇ m or less. By using a thinner substrate than the conventional rigid substrate as the film substrate 33, the surface light source device 20 can be thinned.
  • the material of the film substrate 33 may be appropriately selected in consideration of insulation, heat resistance, durability, dimensional stability at heating, mechanical strength and the like, and examples thereof include polyimide (PI) and polyethylene naphthalate (PEN), polyethylene terephthalate (PET) can be used.
  • PI polyimide
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the film substrate 33 is fixed to the base 31 via the bonding layer 32.
  • the bonding layer 32 is not particularly limited as long as the film substrate 33 can be appropriately fixed to the base 31.
  • a double-sided tape can be used as the bonding layer 32.
  • an appropriate adhesive or adhesive may be used as the bonding layer 32.
  • the wiring layer 34 is provided on the film substrate 33 and has a function of supplying power to the light source 22. Therefore, the wiring layer 34 is preferably formed of a highly conductive metal material.
  • a metal material which forms the wiring layer 34 metal materials, such as copper, aluminum, gold, silver etc. or these alloys, can be mentioned, for example.
  • the wiring layer 34 can be formed using a subtraction method. That is, the wiring layer 34 having a desired pattern can be formed by patterning a metal layer such as copper foil disposed on the film substrate 33 by etching using a photolithographic technique.
  • the wiring layer 34 is not limited to this, and may be formed using another method such as an additive method or a semi-additive method.
  • an electrode part is provided in the connection part with the light source 22 and other wiring or connectors in the wiring layer 34.
  • a resist layer 35 is provided on the wiring layer 34 and the film substrate 33 exposed from the wiring layer 34.
  • the resist layer 35 is provided so as to cover the wiring layer 34 and the film substrate 33 exposed from the wiring layer 34 except for the portions to be the electrode portions of the wiring layer 34.
  • the resist layer 35 has a function of protecting the wiring layer 34 and preventing a short circuit between the wiring layer 34 and other members.
  • resin materials such as polyester resin, epoxy resin, epoxy resin and phenol resin, epoxy acrylate resin, silicone resin can be used.
  • the resist layer 35 is provided with a resin layer so as to cover the whole of the wiring layer 34 and the film substrate 33, and the electrode portion is exposed at a portion to be the electrode portion of the wiring layer 34 by etching using photolithography technology. It can be formed by providing an opening.
  • the light reflection layer 36 is a layer provided to improve the utilization efficiency of the light emitted from the light source 22, and is emitted from the light source 22 and reflected by the illuminance distribution adjusting plate 40, and the light path thereof is directed to the light reflection layer 36 side. It has a function of reflecting the light bent toward the illumination distribution adjusting plate 40 again. Therefore, the light reflecting layer 36 is preferably a layer having high reflectivity to light in the visible light wavelength range.
  • the light reflecting layer 36 is disposed on the same side as the light source 22 of the illuminance distribution adjusting plate 40 in parallel with the illuminance distribution adjusting plate 40. In the example shown in FIG. 4, the light reflecting layer 36 is laminated on the resist layer 35 except for the place where the light source 22 is to be disposed.
  • the light reflecting layer 36 is disposed so as to surround the light source 22 in plan view. Further, in the illustrated example, the light reflection layer 36 is provided to expose the inner peripheral edge portion surrounding the light source 22 of the resist layer 35.
  • the light reflection layer 36 is not limited to this, for example, the inner peripheral edge of the resist layer 35 matches the inner peripheral edge of the light reflection layer 36 so that the inner peripheral edge of the resist layer 35 surrounding the light source 22 is not exposed. It may be provided as such.
  • a layer formed of a white resin material can be used as the light reflection layer 36.
  • the light source 22 is connected to the electrode portion of the wiring layer 34 via the conductive connection layer 37.
  • the conductive connection layer 37 for example, a layer made of solder, a conductive adhesive or the like can be used.
  • the diffusion plate 26 is a plate-like member having a function of diffusing the light incident on the diffusion plate 26, whereby the in-plane distribution of the illuminance is made uniform, and the light transmitting holes 45 of the illuminance distribution adjusting plate 40 are made. It can make the image unnoticeable.
  • the diffusion plate 26 is not particularly limited as long as it is a member having a light diffusion function, and for example, a resin plate or a glass plate having fine irregularities on the surface, and a resin plate having diffusion particles inside And glass plates can be used.
  • the first optical sheet 27 in the present embodiment changes the traveling direction of light incident from the light source 22 side to emit it from the display panel 15 side, and the illuminance in the normal direction of the first optical sheet 27 is intensively improved It is a condensing sheet for making it
  • the condensing sheet of the present embodiment is a sheet having a plurality of unit prisms arranged along a direction on the sheet surface.
  • this light collecting sheet for example, "BEF" (registered trademark) available from 3M Company in the United States can be used.
  • the second optical sheet 28 in the present embodiment transmits a polarization component in a direction parallel to the transmission axis, and reflects the polarization component in a direction parallel to a reflection axis orthogonal to the transmission axis. It is.
  • this reflection type polarizing plate light of a polarization component which is emitted from the surface light source device 20 and can not be effectively used in the display panel 15 is prevented from being incident on the display panel 15 and being absorbed by the polarizing plate can do. Therefore, the utilization efficiency of the light source light can be improved, and the illuminance characteristic can be improved.
  • this reflection type polarizing plate for example, "DBEF" (registered trademark) available from 3M Company in the United States can be used.
  • each of the diffusion plate 26, the first optical sheet 27 and the second optical sheet 28 it is preferable to use one having a high visible light transmittance as each of the diffusion plate 26, the first optical sheet 27 and the second optical sheet 28. .
  • FIG. 5 is a plan view showing one sectioned area Aa of the illuminance distribution adjusting plate 40, and showing an example of an arrangement pattern of the element area Ab and the light transmission holes 45.
  • the illuminance distribution adjusting plate 40 includes a base 41 on which a plurality of light transmission holes 45 for transmitting light emitted from the light source 22 are formed.
  • the illuminance distribution adjusting plate 40 also has a function of improving the utilization efficiency of the light emitted from the light source 22, and reflects the light incident on the illuminance distribution adjusting plate 40 so that the light path is directed to the light reflecting layer 36 side. It is configured to be able to bend.
  • the base material 41 of the illuminance distribution adjusting plate 40 be a layer having high reflectivity to light in the visible light wavelength range.
  • the base 41 is formed of, for example, a white resin material.
  • the substrate 41 may be formed of a foamed resin such as foamed polyethylene terephthalate (foamed PET).
  • the illuminance distribution adjusting plate 40 has a base 41 formed of a material having low light transmittance, and the light transmitting holes 45 are physical holes formed in the base 41, that is, Although it is formed as a through hole extending from one of the two main surfaces of the opposing base material 41 to the other main surface, the specific configuration of the light transmission hole 45 is not limited to this.
  • the light transmission hole 45 may be formed as a portion through which light can be transmitted from one side to the other side of the normal direction to the plate surface of the illuminance distribution adjustment plate 40, for example, the illuminance distribution adjustment plate 40
  • the light transmitting hole 45 has a transparent plate-like transparent substrate, and a light reflecting layer provided on the transparent substrate, particularly on the main surface of the transparent substrate on the light source 22 side. It may be configured as an opening provided in the reflective layer. In this case, the transparent substrate may not be provided with physical holes.
  • the light emitted from the light source 22 toward the illuminance distribution adjustment plate 40 is reflected by the illuminance distribution adjustment plate 40 and travels toward the light reflecting layer 36 side.
  • the light incident on the light reflecting layer 36 is reflected by the light reflecting layer 36 and travels toward the illuminance distribution adjustment plate 40.
  • the light passes through the light transmission holes 45 and the illuminance distribution adjustment plate 40 to the display panel 15 side (the diffusion plate in FIG. 4) 26) and emit.
  • a direction substantially parallel to the plate surface of the illuminance distribution adjustment plate 40 while emitting light from the light source 22 and repeating reflection between the illuminance distribution adjustment plate 40 and the light reflection layer 36 (as an example, a first direction d in FIG.
  • the light traveling to 1 ) decreases in illuminance as it gets away from the light source 22.
  • the spacer 23 When the spacer 23 is made of a material having high reflectivity to light in the visible light wavelength range, it travels in a direction substantially parallel to the plate surface of the illuminance distribution adjustment plate 40 and is incident on the wall 24 of the spacer 23 The reflected light is reflected by the spacer 23 and bent toward the light source 22 side. Thereby, the utilization efficiency of the light radiate
  • Partition area Aa is further partitioned into a plurality of regularly arranged element regions Ab.
  • the element regions Ab and the light transmission holes 45 formed in the element regions Ab will be described with reference to FIGS. 5 to 7.
  • FIG. 5 is a plan view showing one sectioned area Aa of the illuminance distribution adjusting plate 40, and showing an example of an arrangement pattern of the element area Ab and the light transmission holes 45. As shown in FIG.
  • each element region Ab has an outline of a rectangular shape, especially a square shape in plan view, but the shape of the element region Ab is not limited thereto.
  • each element region Ab may have an outline having another shape such as a triangle or a hexagon in a plan view.
  • a plurality of element areas Ab are“ ordered regularly ” means that a plurality of element areas Ab having the same shape and size are arranged at the same pitch. ing.
  • the present invention is not limited thereto, and the plurality of element regions Ab may have two or more types of shapes, sizes or It may have an orientation.
  • the plurality of element areas Ab include element areas Ab 0 overlapping with the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41.
  • the element region Ab 0 overlaps with the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41 if at least a part of the element region Ab 0 is along the normal direction of the substrate 41 When projected onto the light source 22, the light source 22 overlaps with the light source 22.
  • the vertices are shared by a plurality of element regions Ab 0 and / or sides overlaps the center of the light source 22 when projected to the light source 22 along the normal direction of the substrate 41, a plurality of element regions Ab
  • the plurality of element regions Ab 0 including the apexes and / or sides are respectively projected onto the light source 22 along the normal direction of the base 41, the light source 22 overlaps with the light source 22. .
  • the element regions Ab 0 other element regions Ab one of the light transmitting hole 45 are respectively formed.
  • each element area Ab other than the element area Ab 0 is defined such that one light transmission hole 45 is included.
  • a plurality of division lines Lb extending to d 1 are defined to form a lattice.
  • Each element region Ab has a width W 3 in the first direction d 1, and a width W 4 in the second direction d 2.
  • the width W 3 and a width W 4 may be, for example 0.2mm or 10mm or less.
  • an element area Ab in which the light transmission hole 45 is not formed may be present in the element area Ab 0 and the element area Ab located in the vicinity of the element area Ab 0 . That is, in the planar view of the illuminance distribution adjustment plate 40, in the element area Ab located in the predetermined area overlapping the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41, light transmission There may be an element region Ab in which the hole 45 is not formed. In other words, one light transmission hole 45 is formed in each of the element regions Ab located in a region other than the predetermined region overlapping the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41. In the example shown in FIG.
  • the element region Ab 0 no light transmitting hole 45 is formed, the element region Ab other than element regions Ab 0, one of the light transmitting hole 45 are respectively formed.
  • the light transmitting hole 45 in the element region Ab 0 may be formed. That is, all elements region Ab including element regions Ab 0, may be one of the light transmitting hole 45 are formed respectively.
  • the element area Ab is located in an area other than the predetermined area means that the center of the element area Ab (in the present embodiment, the center of the light transmission hole 45 formed in the element area Ab) is the predetermined area. It means to be located in the area other than.
  • the predetermined area is, for example, a point in the divided area Aa that overlaps the center of the light source 22 when projected onto the light source 22 along the normal direction of the base material 41, that is, in the present embodiment, It can be an area at a distance of 5 mm or less from the center O 1 along the surface direction of the base 41.
  • the predetermined region is the outline and the inside of a circle with a radius of 5 mm centered on the center O 1 in a plan view of the base 41.
  • each light transmission hole 45 coincides with the centers of the element regions Ab in which the light transmission holes 45 are disposed.
  • Each light transmission hole 45 has a circular outline in plan view.
  • light emitted from the light source 22 and transmitted through the light transmission holes 45 is isotropically emitted from the light transmission holes 45 in the surface direction of the base 41. Therefore, the in-plane uniformity of the illuminance of the illumination light emitted from the surface light source device 20 can be improved.
  • the present invention is not limited to this, and each light transmission hole 45 may be formed to have another planar shape such as an ellipse, a triangle, a rectangle, or a hexagon in a plan view.
  • the light transmitting hole 45 is not formed in the element region Ab 0, not limited to this, the light transmitting hole 45 in the element region Ab 0 may be formed . That is, one light transmission hole 45 may be formed in each of all the element regions Ab included in the divided region Aa.
  • the light transmission hole 45 has a predetermined aperture ratio with respect to the area of the element region Ab in which the light transmission hole 45 is formed.
  • the aperture ratio of the light transmission hole 45 means the area S of the element region Ab in which the light transmission hole 45 is formed in the area S a of the light transmission hole 45 in plan view of the illuminance distribution adjustment plate 40 It refers to the ratio to b (S a / S b ).
  • the aperture ratio of the light transmitting hole 45 is changed so as to increase toward the element region Ab 0 the peripheral divided area Aa.
  • the plurality of element regions Ab have the same area. Accordingly, the aperture ratio of the light transmitting hole 45 is changed so as to increase toward the element region Ab 0 the peripheral divided area Aa.
  • a line passing through the virtual equal aperture ratio point P is taken as an equal aperture ratio line 50.
  • an example of the equal aperture ratio line 50 is shown by a dashed dotted line.
  • FIG. 6 is a diagram showing an example of equal aperture ratio lines 50 passing through a plurality of light transmission holes 45
  • FIG. 7 shows an example of equal aperture ratio lines 50 passing light transmission holes 45 and virtual equal opening ratio point P.
  • the equal aperture ratio line 50 has an elliptical shape in plan view.
  • the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel with the long side 42 of the divided area Aa in plan view.
  • the iso-aperture line 50 has a major axis 52 and a minor axis 53 orthogonal to the major axis 52.
  • the major axis 52 and the minor axis 53 have different lengths, and the major axis 52 has a length greater than the length of the minor axis 53.
  • a method of defining an equal aperture line 50 through the center of any light transmission hole will be described.
  • the curve passing through the center of any light transmission hole 451 and the centers of other light transmission holes 451 having the same aperture ratio as the light transmission hole 451 has an equal aperture ratio Line 50;
  • the equal aperture ratio line 50 passing through the center of any light transmission hole 451 has an elliptical shape.
  • an ellipse passing through the center of an arbitrary light transmission hole 451 and the center of another light transmission hole 451 having an aperture ratio equal to the aperture ratio of the light transmission hole 451 in a plan view is determined as one.
  • the equal aperture ratio line 50 consisting of the ellipse is defined. That is, the equal aperture ratio line 50 passing through the center of any light transmission hole 451 and the centers of other light transmission holes 451 having the same aperture ratio as the light transmission hole 451 has an elliptical shape in plan view It can also be said that an ellipse passing through the plurality of light transmission holes 451 having the same aperture ratio is determined as one.
  • the number of ellipses passing through the four light transmission holes 452 having equal aperture ratios is not fixed.
  • the position of a virtual equal opening ratio point P assumed to have an aperture ratio equal to that of the light transmission hole 452 is calculated in the divided area Aa, and the center of the light transmission hole 452 passes through the virtual equal opening ratio point P
  • the curve be an equal aperture line 50. Assuming that a light transmission hole centered at the point P is present, it can be assumed that this light transmission hole will have an aperture ratio equal to the aperture ratio of the light transmission hole 452 It is a point.
  • the equal aperture ratio line 50 has an elliptical shape in plan view
  • the equal aperture ratio line 50 passing through the center of the arbitrary light transmission hole 452 and the virtual equal aperture ratio point P has an elliptical shape.
  • FIG. 8 is an enlarged view of a portion surrounded by an alternate long and short dash line indicated by VIII in FIG.
  • the aperture ratio of one light transmission hole 453a is smaller than the aperture ratio of the light transmission aperture 452, and the other light transmission aperture 453b
  • the two light transmission holes 453 a and 453 b having an opening ratio larger than the light transmission hole 452 are specified.
  • the virtual equal aperture ratio point P is located on a line segment Lc connecting the center Oa of the light transmission hole 453a and the center Ob of the light transmission hole 453b at a distance away from the center Oa toward the center Ob by a distance a I assume.
  • the distance a is obtained by the following equation (1), where Ra is the aperture ratio of the light transmission hole 453a, Rb is the aperture ratio of the light transmission hole 453b, and D is the distance between the center Oa and the center Ob.
  • Can. a (Rb / (Ra + Rb)) x D formula (1)
  • any light transmission hole 452 has an opening ratio equal to the opening ratio of the light transmission hole 452 in plan view using the virtual equal opening ratio point P whose position is calculated in this manner.
  • an equal aperture ratio line 50 consisting of the ellipse is defined. That is, the equal aperture ratio line 50 passing through the virtual equal aperture ratio point P assumed to have the center of an arbitrary light transmission hole 452 and the aperture ratio equal to the opening ratio of the light transmission hole 452 has an elliptical shape in plan view It can be said that having has a single ellipse which passes through the center of the light transmission hole 452 and the virtual equal aperture ratio point P.
  • the light transmission hole 45 having an aperture ratio larger than the aperture ratio at the equal aperture ratio line 50 does not exist inside the arbitrary equal aperture ratio line 50. Moreover, the light transmission hole 45 having an aperture ratio smaller than the aperture ratio at the equal aperture ratio line 50 does not exist outside the arbitrary equal aperture ratio line 50.
  • the plurality of light transmission holes are arranged to form an equal aperture ratio line having a perfect circular shape.
  • the aperture ratio of the light transmission holes near the long side of the partition region is The aperture ratio of the light transmission holes in the vicinity of the short side is largely different.
  • the aperture ratio of the light transmission holes in the vicinity of the long side of the divided region, in particular, in the vicinity of the center of the long side is smaller than the aperture ratio of the light transmission holes in the vicinity of the short side of the divided region.
  • unevenness may occur in the illuminance of light emitted from the illuminance distribution adjustment plate near the long side and near the short side of the divided area. That is, illuminance unevenness may occur in the light emitting surface of the surface light source device provided with the illuminance distribution adjusting plate.
  • the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending parallel to the long side 42 of the divided area Aa in plan view,
  • the difference between the aperture ratio of the light transmission holes 45 near the long side 42 of the divided area Aa and the aperture ratio of the light transmission holes 45 near the short side 43 can be reduced. Therefore, it is possible to suppress uneven illuminance of light emitted from the illuminance distribution adjustment plate 40 which may occur between the vicinity of the long side 42 and the vicinity of the short side 43 of the divided area Aa. That is, it is possible to effectively suppress the illuminance unevenness in the light emitting surface 20 a of the surface light source device 20 provided with the illuminance distribution adjusting plate 40.
  • the length of the divided region having a relatively small opening ratio of light transmission holes In the vicinity of the side, the width along the direction connecting the centers of the adjacent light transmission holes of the base material present between the adjacent light transmission holes is relatively large.
  • the base material existing between the adjacent light transmission holes is along the direction connecting the centers of the adjacent light transmission holes. The width is relatively small.
  • the base material existing between adjacent light transmission holes in the vicinity of the short side of the divided area is compared with the stress caused by the external force or vibration. It concentrates on a portion having a very small width, and in this portion, breakage such as cracking or breakage may occur.
  • the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending parallel to the long side 42 of the divided area Aa in plan view,
  • the width of the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the long side 42 of the divided area Aa and the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa The difference between the width and the width can be reduced. Therefore, when an external force, vibration or the like is applied to the illuminance distribution adjusting plate 40, a stress caused by the external force or vibration is present between adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. Concentration on the substrate 41 can be suppressed. That is, when external force or vibration is applied to the illuminance distribution adjusting plate 40, the illuminance distribution adjusting plate 40 can be effectively prevented from being damaged.
  • the ratio of length W 5 of the major axis of length W 6 of the minor axis of the ellipse forming the equivalent aperture ratio line 50 (W 6 / W 5) is of the short side 43 of the partition area Aa of the length W 2
  • the ratio (W 2 / W 1 ) to the length W 1 of the long side 42 is preferably 0.8 times or more and 1.2 times or less. More preferably, the ratio (W 6 / W 5 ) is not less than 0.9 times and not more than 1.1 times the ratio (W 2 / W 1 ).
  • the difference between the aperture ratio of the light transmission holes 45 near the long side 42 of the divided area Aa and the aperture ratio of the light transmission holes 45 near the short side 43 can be further reduced. Further, the width of the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the long side 42 of the divided area Aa and the group existing between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. The difference with the width of the material 41 can be further reduced.
  • the surface light source device 20 includes a light source 22 and an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of light emitted from the light source 22.
  • a plurality of light transmission holes 45 for transmitting light the base material 41 has one or more divided regions Aa, and each divided region Aa has a long side 42 and a short length in plan view In each divided area Aa, the divided area Aa is further divided into a plurality of regularly arranged element areas Ab, and the light source 22 is arranged along the normal direction of the base 41.
  • Each light transmission hole 45 is formed in each of the element regions Ab located in a region other than the predetermined region overlapping with the light source 22 when projected onto the light transmission hole 45, and the light transmission hole 45 is formed in the light transmission hole 45.
  • An equal aperture ratio line 50 passing through a virtual equal aperture ratio point P assumed to have an aperture ratio has an elliptical shape having a major axis 52 extending parallel to the long side 42 in plan view.
  • the illuminance distribution adjusting plate 40 of the present embodiment is an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of the light emitted from the light source 22, and a plurality of light transmission holes for transmitting light.
  • the substrate 41 includes a base 41 formed with 45.
  • the base 41 has one or more partition areas Aa, and each partition area Aa has a rectangular shape having a long side 42 and a short side 43 in plan view, In each divided area Aa, the divided area Aa is further divided into a plurality of regularly arranged element areas Ab, and when projected onto the light source 22 along the normal direction of the base material 41, the divided area Aa is overlapped with the light source 22
  • One light transmission hole 45 is formed in each of the element regions Ab located in the regions other than the region, and the light transmission hole 45 has a predetermined aperture ratio to the area of the element region Ab in which the light transmission holes 45 are formed.
  • the equal aperture ratio line 50 passing through P has an elliptical shape having a major axis 52 extending in parallel with the long side 42 in a plan view.
  • each divided area Aa has a rectangular shape having the long side 42 and the short side 43 in plan view, and the long side 42 and the short side 43 It is possible to change the lengths of the two independently of one another. Therefore, the illuminance distribution adjusting plate 40 can be configured by arranging the divided areas Aa having a rectangular shape configured by the long side 42 and the short side 43 of an arbitrary length. Therefore, the lengths of the long side and the short side of the illuminance distribution adjusting plate 40 can be increased with a high degree of freedom, respectively, as compared to the conventional illuminance distribution adjusting plate configured by arranging the divided areas having a square shape in plan view. It can be set. That is, it is possible to improve the degree of freedom in designing the planar light source shape of the surface light source device 20.
  • the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel to the long side 42 of the divided area Aa in plan view, the opening of the light transmission hole 45 near the long side 42 of the divided area Aa The difference between the ratio and the aperture ratio of the light transmission holes 45 near the short side 43 can be reduced. Therefore, it is possible to suppress uneven illuminance of light emitted from the illuminance distribution adjustment plate 40 which may occur between the vicinity of the long side 42 and the vicinity of the short side 43 of the divided area Aa. That is, it is possible to effectively suppress the illuminance unevenness in the light emitting surface 20 a of the surface light source device 20 provided with the illuminance distribution adjusting plate 40.
  • the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel to the long side 42 of the divided area Aa in plan view, adjacent light transmission holes in the vicinity of the long side 42 of the divided area Aa
  • the difference between the width of the base material 41 present between 45 and the width of the base material 41 present between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa can be reduced. Therefore, when an external force, vibration or the like is applied to the illuminance distribution adjusting plate 40, a stress caused by the external force or vibration is present between adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. Concentration on the substrate 41 can be suppressed. That is, when external force or vibration is applied to the illuminance distribution adjusting plate 40, the illuminance distribution adjusting plate 40 can be effectively prevented from being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To improve the freedom of design of the plan-view shape of an area light source device. [Solution] A base material (41) of a luminance distribution adjusting plate (40) of an area light source device (20) includes one or more compartment regions (Aa). Each of the compartment regions has a rectangular shape having long sides (42) and short sides (43) in plan view. In each compartment region, the compartment region is further divided into a plurality of element regions (Ab) that are regularly arranged. Each of element regions that are positioned in regions other than a predetermined region overlapping a light source when projected onto the light source in a direction normal to the base material has a light transmitting hole (45). The light transmitting hole has a predetermined opening ratio with respect to the area of the element region in which the light transmitting hole is formed. An equi-opening ratio line (50) passing between the center of an arbitrary light transmitting hole and the center of another light transmitting hole having an opening ratio equal to the opening ratio of the light transmitting hole, or a virtual equi-opening ratio point (P) assumed to have an opening ratio equal to the opening ratio of the light transmitting hole has, in plan view, the shape of an ellipse having a major axis (52) extending in parallel with the long sides.

Description

面光源装置及び照度分布調整板Surface light source device and illuminance distribution adjustment plate
 本発明は、面光源装置、及び、この面光源装置に用いられる照度分布調整板に関する。 The present invention relates to a surface light source device and an illuminance distribution adjusting plate used for the surface light source device.
 面状に発光する面光源装置が、例えば液晶表示装置に組み込まれた液晶表示パネルを背面側から照明するバックライトとして、広く普及している。液晶表示装置用の面光源装置は、大別すると、光学部材の側方に光源を配置するエッジライト型と、光学部材の直下に光源を配置する直下型と、に分類される。光源としては、例えば発光ダイオード(LED)が用いられる。 A surface light source device that emits planar light is widely used, for example, as a backlight that illuminates a liquid crystal display panel incorporated in a liquid crystal display device from the back side. The surface light source device for a liquid crystal display device is roughly classified into an edge light type in which a light source is disposed on the side of an optical member and a direct type in which a light source is disposed directly below an optical member. For example, a light emitting diode (LED) is used as the light source.
 車載用の液晶表示装置においては、薄型化が容易である点から、従来、バックライトとしてエッジライト型の面光源装置が用いられてきた。このような車載用の液晶表示装置では、窓から差し込む外光の下での視認性を確保するために、明るく表示することが求められる。エッジライト型の面光源装置でできるだけ明るい表示を得ようとすると、光学部材の側方に多数の光源を密に配置する必要がある。ここで、車載用の液晶表示装置は狭い空間に配置されることが多く、この狭い空間内に多数の光源が密に配置されると、光源から生じる熱を十分に放熱することができなくなる。すなわち、車載用の液晶表示装置のバックライトとして、エッジライト型の面光源装置を用いた場合、十分な明るさを得ようとすると、光源から生じる熱を十分に放熱することができずに液晶表示装置が高温になり、誤動作を生じる虞もある。その一方、バックライトとして直下型の面光源装置を用いることができれば、複数の光源を互いに離間して配置することができるので、光源から生じる熱を適切に放熱することができる。したがって、車載用の液晶表示装置においては、バックライトとして直下型の面光源装置を用いながら、この面光源装置を薄型化することが求められる。 In a liquid crystal display device for vehicles, an edge light type surface light source device has conventionally been used as a back light from the viewpoint of easy thinning. In such a liquid crystal display device for vehicles, in order to secure visibility under the external light which inserts from a window, displaying brightly is called for. In order to obtain as bright a display as possible with an edge light type surface light source device, it is necessary to closely arrange a large number of light sources on the side of the optical member. Here, liquid crystal display devices for vehicles are often disposed in a narrow space, and if a large number of light sources are densely disposed in this narrow space, it is not possible to sufficiently dissipate the heat generated from the light sources. That is, when an edge light type surface light source device is used as a backlight of a liquid crystal display device for a vehicle, if it is intended to obtain sufficient brightness, the heat generated from the light source can not be sufficiently dissipated. The display device may be heated to a high temperature, which may cause a malfunction. On the other hand, if a direct type surface light source device can be used as a backlight, a plurality of light sources can be arranged separately from each other, so heat generated from the light sources can be properly dissipated. Therefore, in a liquid crystal display device for vehicles, it is required to make the surface light source device thinner while using a direct type surface light source device as a backlight.
 直下型の面光源装置において、面光源装置を薄型化しながらムラのない映像を表示するために、光源と液晶表示パネルとの間に照度分布調整板を配置して、この照度分布調整板により面光源装置の発光面内の照度分布を調整する技術が知られている。 In the direct type surface light source device, in order to display an image without unevenness while thinning the surface light source device, an illuminance distribution adjustment plate is disposed between the light source and the liquid crystal display panel, and the surface is made by the illuminance distribution adjustment plate. There is known a technique for adjusting the illuminance distribution in the light emitting surface of the light source device.
 JP2012-174372Aには、LED光源と、光を透過せずに光を反射する材質からなる反射プレートと、を有する照明ユニットが開示されている。反射プレートにはマトリクス状に配列された複数の光通過孔が形成されている。複数の光通過孔の各々の開口面積は、LED光源と対向する対向部からの距離が短いほど小さくなっている。このような照明ユニットによれば、LED光源から直接到達する光の密度が高い位置に近い光通過孔ほど光通過量が少なくなり、LED光源から直接到達する光の密度が低い位置の光通過孔は光通過量が多くなる。これにより、反射プレートを通過する光の分布を均一に近づけることができ、照明装置の照射光の分布を均一に近づけることができる。 JP2012-174372A discloses a lighting unit having an LED light source and a reflection plate made of a material that reflects light without transmitting light. A plurality of light passage holes arranged in a matrix are formed in the reflection plate. The opening area of each of the plurality of light passing holes is smaller as the distance from the facing portion facing the LED light source is shorter. According to such a lighting unit, the light passing hole decreases as the light passing hole is closer to a position where the density of light directly arriving from the LED light source is high, and the light passing hole at a position where the density of light directly arriving from the LED light source is low Will increase the amount of light passing. As a result, the distribution of light passing through the reflection plate can be made to approach uniformly, and the distribution of illumination light of the illumination device can be made to approach uniform.
 JP2012-174372Aに開示された照明ユニットでは、反射プレートは平面視において正方形形状を有するように形成されている。したがって、この反射プレートを縦方向及び横方向に配列して形成される照明ユニット全体の平面視形状は、縦方向の長さと横方向の長さとの比が整数どうしの比になる形状に限定される。すなわち、JP2012-174372Aに開示された照明ユニットでは、照明ユニット全体の平面視形状の設計に限界があった。 In the lighting unit disclosed in JP2012-174372A, the reflection plate is formed to have a square shape in plan view. Therefore, the plan view shape of the entire lighting unit formed by arranging the reflection plates in the longitudinal direction and the lateral direction is limited to a shape in which the ratio of the longitudinal length to the lateral length is an integer ratio. Ru. That is, in the lighting unit disclosed in JP2012-174372A, there is a limit to the design of the plan view shape of the whole lighting unit.
 本発明は、このような点に鑑みてなされたものであり、面光源装置の平面視形状の設計の自由度を向上させることを目的とする。 The present invention has been made in view of these points, and it is an object of the present invention to improve the degree of freedom in the design of the plan view shape of the surface light source device.
 本発明の面光源装置は、
 光源と、前記光源と対向して配置され前記光源から出射した光の照度分布を調整する照度分布調整板とを備え、
 前記照度分布調整板は、
 前記光を透過させる複数の光透過孔が形成された基材を備え、
 前記基材は、1以上の区画領域を有し、
 各区画領域は、平面視において長辺及び短辺を有する長方形形状を有し、
 各区画領域において、
  当該区画領域は、規則的に配列された複数の要素領域にさらに区分けされ、
  前記基材の法線方向に沿って前記光源に投影したときに前記光源と重なる所定の領域以外の領域に位置する要素領域には、それぞれ一つの前記光透過孔が形成され、
  前記光透過孔は、当該光透過孔が形成された要素領域の面積に対する所定の開口率を有し、
  任意の前記光透過孔の中心と、当該光透過孔の開口率と等しい開口率を有する他の光透過孔の中心又は当該光透過孔の開口率と等しい開口率を有すると仮定した仮想等開口率点と、を通る等開口率線は、平面視において、前記長辺と平行に延びる長軸を有する楕円形状を有する。
The surface light source device of the present invention is
A light source, and an illuminance distribution adjusting plate disposed opposite to the light source and adjusting an illuminance distribution of light emitted from the light source;
The illuminance distribution adjustment plate is
The substrate includes a plurality of light transmission holes for transmitting the light.
The substrate has one or more compartmental areas,
Each divided region has a rectangular shape having a long side and a short side in plan view,
In each compartment area,
The divided area is further divided into a plurality of regularly arranged element areas,
One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
The light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
A virtual equal aperture assumed to have the center of any light transmitting hole and the centers of other light transmitting holes having an opening ratio equal to the opening ratio of the light transmitting hole or the opening ratio equal to the opening ratio of the light transmitting hole The iso-aperture line passing through the curvature point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
 本発明の照度分布調整板は、
 光源と対向して配置され前記光源から出射した光の照度分布を調整する照度分布調整板であって、
 前記光を透過させる複数の光透過孔が形成された基材を備え、
 前記基材は、1以上の区画領域を有し、
 各区画領域は、平面視において長辺及び短辺を有する長方形形状を有し、
 各区画領域において、
  当該区画領域は、規則的に配列された複数の要素領域にさらに区分けされ、
  前記基材の法線方向に沿って前記光源に投影したときに前記光源と重なる所定の領域以外の領域に位置する要素領域には、それぞれ一つの前記光透過孔が形成され、
  前記光透過孔は、当該光透過孔が形成された要素領域の面積に対する所定の開口率を有し、
  任意の前記光透過孔の中心と、当該光透過孔の開口率と等しい開口率を有する他の光透過孔の中心又は当該光透過孔の開口率と等しい開口率を有すると仮定した仮想等開口率点と、を通る等開口率線は、平面視において、前記長辺と平行に延びる長軸を有する楕円形状を有する。
The illuminance distribution adjustment board of the present invention is
An irradiance distribution adjusting plate disposed opposite to a light source and adjusting an irradiance distribution of light emitted from the light source,
The substrate includes a plurality of light transmission holes for transmitting the light.
The substrate has one or more compartmental areas,
Each divided region has a rectangular shape having a long side and a short side in plan view,
In each compartment area,
The divided area is further divided into a plurality of regularly arranged element areas,
One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
The light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
A virtual equal aperture assumed to have the center of any light transmitting hole and the centers of other light transmitting holes having an opening ratio equal to the opening ratio of the light transmitting hole or the opening ratio equal to the opening ratio of the light transmitting hole The iso-aperture line passing through the curvature point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
[発明の効果]
 本発明によれば、面光源装置の平面視形状の設計の自由度を向上させることができる。
[Effect of the invention]
According to the present invention, it is possible to improve the degree of freedom in designing the planar light source shape of the surface light source device.
図1は、本発明による一実施の形態を説明するための図であって、表示パネル及び面光源装置を備えた表示装置の一例を概略的に示す斜視図である。FIG. 1 is a view for explaining an embodiment according to the present invention, and is a perspective view schematically showing an example of a display device provided with a display panel and a surface light source device. 図2は、面光源装置の一例を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of a surface light source device. 図3は、面光源装置に組み込まれた照度分布調整板の一例を示す平面図である。FIG. 3 is a plan view showing an example of the illuminance distribution adjustment plate incorporated in the surface light source device. 図4は、図3のIV-IV線に対応した面光源装置の断面を示す図である。FIG. 4 is a cross-sectional view of the surface light source device corresponding to the line IV-IV in FIG. 図5は、照度分布調整板の一つの区画領域を示す平面図であって、要素領域及び光透過孔の配置パターンの一例を示す図である。FIG. 5 is a plan view showing one sectioned area of the illuminance distribution adjusting plate, showing an example of an arrangement pattern of element areas and light transmission holes. 図6は、複数の光透過孔を通る等開口率線の例を示す図である。FIG. 6 is a diagram showing an example of equal aperture ratio lines passing through a plurality of light transmission holes. 図7は、光透過孔及び仮想等開口率点を通る等開口率線の例を示す図である。FIG. 7 is a diagram showing an example of equal aperture ratio lines passing through light transmission holes and imaginary equal aperture ratio points. 図8は、仮想等開口率点の位置の算出方法について説明するための図である。FIG. 8 is a diagram for explaining a method of calculating the position of the virtual equal aperture ratio point.
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of easy illustration and understanding, the scale, vertical and horizontal dimensional ratios, etc. are exaggerated and changed from those of a real thing as appropriate.
 本明細書において、「板」、「シート」、「フィルム」の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「板」は「シート」や「フィルム」と呼ばれ得るような部材をも含む概念であり、したがって、例えば、「照度分布調整板」は、「照度分布調整シート」や「照度分布調整フィルム」と呼ばれる部材と、呼称の違いのみにおいて区別され得ない。 In the present specification, the terms "plate", "sheet" and "film" are not distinguished from one another based only on the difference in designation. For example, "plate" is a concept that also includes members that may be called "sheets" and "films". Therefore, for example, "illuminance distribution adjustment plate" may be "illuminance distribution adjustment sheet" or "illuminance distribution adjustment" It can not be distinguished only by the difference of a name and the member called film.
 また、「板面(シート面、フィルム面)」とは、対象となる板状(シート状、フィルム状)の部材を全体的かつ大局的に見た場合において対象となる板状部材(シート状部材、フィルム状部材)の平面方向と一致する面のことを指す。なお、本明細書において、面及び板状(シート状、フィルム状)の部材の法線方向とは、対象となる面及び板状(シート状、フィルム状)の部材の板面への法線方向のことを指す。 In addition, “plate surface (sheet surface, film surface)” refers to a plate-shaped member (sheet-shaped member (sheet-shaped member) when the target plate-shaped (sheet-shaped, film-shaped) member is viewed globally and generally. It refers to the surface that coincides with the planar direction of the member (film-like member). In this specification, the normal direction of the surface and plate-like (sheet-like, film-like) members means the normal to the surface of the object and plate-like (sheet-like, film-like) members. It points to the direction.
 さらに、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。 Furthermore, as used herein, the terms such as “parallel”, “orthogonal”, “identical”, values of length and angle, etc., which specify the shape and geometrical conditions and their degree, etc. Without being bound by the meaning, it shall be interpreted including the extent to which the same function can be expected.
 図1~図8は、本発明による一実施の形態を説明するための図である。このうち図1は、表示パネルと面光源装置を備えた表示装置の一例を概略的に示す図であり、図2は、面光源装置の一例を概略的に示す斜視図である。 1 to 8 are diagrams for explaining an embodiment according to the present invention. Among these, FIG. 1 is a view schematically showing an example of a display device provided with a display panel and a surface light source device, and FIG. 2 is a perspective view schematically showing an example of the surface light source device.
 本実施の形態の表示装置10は、例えば動画、静止画、文字情報や、これらの組み合わせで構成された映像を表示パネル15に表示する装置である。本実施の形態では、表示装置10が車載用の液晶表示装置である例について説明するが、これに限られることなく、本発明の表示装置10は、室内又は屋外において、広告、プレゼンテーション、テレビジョン映像、各種情報の表示等、様々な用途に使用され得る。図1に示された表示装置10は、出光面20aを有する面光源装置20と、出光面20aと対向して配置された表示パネル15と、を有している。図示された例では、表示パネル15は液晶表示パネルとして構成されており、したがって表示装置10は液晶表示装置として構成されている。本実施の形態では、面光源装置20はいわゆる直下型のバックライトを構成しており、表示パネル15の背面側すなわち観察者5と反対側から表示パネル15を照明する。 The display device 10 according to the present embodiment is a device that displays, for example, a moving image, a still image, text information, and a video composed of a combination of these on the display panel 15. In the present embodiment, an example in which the display device 10 is a vehicle-mounted liquid crystal display device will be described. However, the present invention is not limited to this. It can be used for various applications such as displaying images and various information. The display device 10 shown in FIG. 1 includes a surface light source device 20 having a light exit surface 20a, and a display panel 15 disposed to face the light exit surface 20a. In the illustrated example, the display panel 15 is configured as a liquid crystal display panel, and thus the display device 10 is configured as a liquid crystal display device. In the present embodiment, the surface light source device 20 constitutes a so-called direct backlight, and illuminates the display panel 15 from the back side of the display panel 15, that is, the side opposite to the observer 5.
 図示された例では、表示パネル15は、映像が表示される表示面15aが面光源装置20の反対側を向くように配置されている。これにより、表示パネル15の表示面15aが表示装置10の表示面10aを形成する。表示パネル15は、表示パネル15の法線方向から見て、すなわち平面視において、矩形形状に形成されている。 In the illustrated example, the display panel 15 is disposed such that the display surface 15 a on which an image is displayed faces the opposite side of the surface light source device 20. Thereby, the display surface 15 a of the display panel 15 forms the display surface 10 a of the display device 10. The display panel 15 is formed in a rectangular shape when viewed in the normal direction of the display panel 15, that is, in a plan view.
 本実施の形態の表示パネル15は、透過型の液晶表示パネルであり、面光源装置20から表示パネル15に入射した光の一部を透過させ、表示面15aに映像を表示させる。表示パネル15は、液晶材料を有する液晶層を含んでおり、表示パネル15の光透過率は、液晶層に印加される電界の強度に応じて変化する。このような表示パネル15の一例として、一対の偏光板と、一対の偏光板間に配置された液晶セル(液晶層)と、を有する液晶表示パネルを用いることができる。この液晶表示パネルにおいて、偏光板は、入射した光を直交する二つの偏光成分に分解し、一方の方向の偏光成分を透過させ、前記一方の方向に直交する他方の方向の偏光成分を吸収する機能を有した偏光子を有する。液晶セルは、一対の支持板と、一対の支持板間に配置された液晶と、を有する。液晶セルは、一つの画素を形成する領域毎に電界が印加され得るようになっており、電界が印加された液晶セルの液晶の配向は変化するようになる。面光源装置20から出射し、液晶セルの面光源装置20側に配置された偏光板を透過した特定方向(透過軸と平行な方向)の偏光成分は、一例として、電界印加されていない液晶セルを通過する際にはその偏光方向を90°回転させ、電界印加されている液晶セルを通過する際にはその偏光方向を維持する。これにより、液晶セルへの電界印加の有無によって、液晶セルの面光源装置20側に配置された偏光板を透過した特定方向の偏光成分が、液晶セルの面光源装置20と反対側に配置された他の偏光板をさらに透過するか、あるいは、当該他の偏光板で吸収されて遮断されるか、を制御することができる。 The display panel 15 of the present embodiment is a transmissive liquid crystal display panel, transmits part of light incident from the surface light source device 20 to the display panel 15, and displays an image on the display surface 15a. The display panel 15 includes a liquid crystal layer having a liquid crystal material, and the light transmittance of the display panel 15 changes in accordance with the strength of the electric field applied to the liquid crystal layer. As an example of such a display panel 15, a liquid crystal display panel having a pair of polarizing plates and a liquid crystal cell (liquid crystal layer) disposed between the pair of polarizing plates can be used. In this liquid crystal display panel, the polarizing plate separates incident light into two orthogonal polarization components, transmits polarization components in one direction, and absorbs polarization components in the other direction orthogonal to the one direction. It has a polarizer with a function. The liquid crystal cell has a pair of support plates and a liquid crystal disposed between the pair of support plates. The liquid crystal cell is configured such that an electric field can be applied to each region forming one pixel, and the alignment of liquid crystals of the liquid crystal cell to which the electric field is applied is changed. The polarization component in a specific direction (direction parallel to the transmission axis) emitted from the surface light source device 20 and transmitted through the polarizing plate disposed on the surface light source device 20 side of the liquid crystal cell is, for example, a liquid crystal cell not applied with an electric field. When passing through the liquid crystal cell, the polarization direction is rotated by 90.degree., And when passing through a liquid crystal cell to which an electric field is applied, the polarization direction is maintained. Thereby, the polarization component in the specific direction transmitted through the polarizing plate disposed on the surface light source device 20 side of the liquid crystal cell is disposed on the opposite side to the surface light source device 20 of the liquid crystal cell depending on the presence or absence of the electric field application to the liquid crystal cell. It is possible to control whether the light is further transmitted through another polarizing plate or absorbed and blocked by the other polarizing plate.
 面光源装置20は、面状の光を出射する出光面20aを有しており、出光面20aの法線方向に出光面20aと対向する領域内に光源22が設けられた、いわゆる直下型のバックライトとして構成されている。本実施の形態の面光源装置20は、光源22と、光源22と対向して配置され光源22から出射した光の照度分布を調整する照度分布調整板40とを備えている。図2に示された例では、面光源装置20は、光源22を支持するベース積層体30、スペーサ23、拡散板26、第1光学シート27及び第2光学シート28をさらに有している。図示された例では、ベース積層体30上にスペーサ23及び照度分布調整板40が順に積層され、照度分布調整板40から所定の距離だけ離間して、拡散板26、第1光学シート27及び第2光学シート28の積層体が順に配置されている。そして、第2光学シート28が面光源装置20の出光面20aをなしている。 The surface light source device 20 has a light emitting surface 20a for emitting planar light, and is a so-called direct type in which a light source 22 is provided in a region facing the light emitting surface 20a in the normal direction of the light emitting surface 20a. It is configured as a back light. The surface light source device 20 of the present embodiment includes a light source 22 and an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of the light emitted from the light source 22. In the example shown in FIG. 2, the surface light source device 20 further includes a base laminate 30 supporting the light source 22, a spacer 23, a diffusion plate 26, a first optical sheet 27, and a second optical sheet 28. In the illustrated example, the spacer 23 and the illuminance distribution adjusting plate 40 are sequentially stacked on the base laminate 30, and separated from the illuminance distribution adjusting plate 40 by a predetermined distance, and the diffusion plate 26, the first optical sheet 27 and the first A stack of two optical sheets 28 is arranged in order. The second optical sheet 28 forms the light exit surface 20 a of the surface light source device 20.
 光源22は、例えば発光ダイオード(LED)等で構成され、照度分布調整板40と対向して配置されている。本実施の形態では、図3によく示されているように、光源22は、面光源装置20の板面に平行な第1方向dに沿って並べて配置されるすなわち配列されるとともに、面光源装置20の板面に平行且つ第1方向dと交差する第2方向dに沿って配列される。とりわけ本実施の形態では、第1方向dと第2方向dとは直交している。すわなち、本実施の形態では、複数の光源22が第1方向d及び第2方向dに沿って二次元的に配列される。なお、これに限られず、面光源装置20は、第1方向d又は第2方向dに沿って一列に配列された複数の光源22を有していてもよいし、一つの光源22のみを有していてもよい。なお、各光源22の出力、すなわち、各光源22の点灯及び消灯、及び/又は、各光源22の点灯時の明るさは、他の光源22の出力から独立して調節され得ることが好ましい。 The light source 22 is configured of, for example, a light emitting diode (LED) or the like, and is disposed to face the illuminance distribution adjustment plate 40. In the present embodiment, as well illustrated in FIG. 3, the light sources 22 are arranged or aligned along the first direction d 1 parallel to the plate surface of the surface light source device 20, and It is arranged along the second direction d 2 intersecting the parallel and the first direction d 1 to the plate surface of the light source device 20. Especially in this embodiment, the first direction d 1 and the second direction d 2 are orthogonal. Nachi Suwa, in the present embodiment, a plurality of light sources 22 are two-dimensionally arranged along the first direction d 1 and the second direction d 2. Incidentally, not limited to this, a surface light source device 20 may have a plurality of light sources 22 arranged in a row along the first direction d 1 and the second direction d 2, one light source 22 only May be included. It is preferable that the output of each light source 22, that is, the lighting and extinguishing of each light source 22, and / or the brightness at the time of lighting each light source 22 can be adjusted independently from the outputs of the other light sources 22.
 図3に示された例では、照度分布調整板40の輪郭は平面視において矩形形状を有している。第1方向d及び第2方向dは任意に定義できるが、図示された例では、第1方向dは照度分布調整板40の輪郭をなす矩形形状の1辺と平行をなすように定義され、第2方向dは当該1辺と直交する他の1辺と平行をなすように定義される。とりわけ図示された例では、第1方向dは照度分布調整板40の輪郭をなす矩形形状の長辺と平行をなすように定義され、第2方向dは当該矩形形状の短辺と平行をなすように定義される。 In the example shown in FIG. 3, the contour of the illuminance distribution adjusting plate 40 has a rectangular shape in plan view. Although the first direction d 1 and the second direction d 2 can be arbitrarily defined, in the example shown, so that the first direction d 1 forms a parallel to the one side of the rectangular shape forming the contour of the illuminance distribution adjusting plate 40 is defined, the second direction d 2 is defined as to be parallel with other one side perpendicular to the one side. Especially in the illustrated example, the first direction d 1 is defined so as to form a parallel to the long sides of the rectangular shape forming the contour of the illuminance distribution adjusting plate 40, the second direction d 2 is parallel to the short sides of the rectangular Defined to make
 スペーサ23は、照度分布調整板40を支持する部材であり、ベース積層体30と照度分布調整板40との間を所定の距離に保つ機能を有している。図2に示されているように、スペーサ23は、隣り合う二つの光源22の間を仕切る壁部24を有しており、これにより、各光源22に対応して、壁部24で囲まれた開口25が形成されている。図示された例では、スペーサ23は、平面視において、第1方向dに配列され第2方向dに延びる複数の壁部24と、第2方向dに配列され第1方向dに延びる複数の壁部24と、が格子状をなすように配置されている。開口25は、光源22の配置パターンに対応して設けられる。すなわち、スペーサ23は、第1方向dに配列されるとともに、第2方向dに配列された、複数の開口25を有している。本実施の形態では、各開口25は、平面視において矩形をなして形成されている。このようなスペーサ23は、例えばポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、アクリロニトリル-スチレン-アクリレート共重合樹脂(ASA樹脂)、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合樹脂(AES樹脂)、ポリメチルメタクリレート樹脂(PMMA樹脂)、ポリアセタール樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、又はこれらの樹脂を2種以上混合した混合物等で形成することができる。とりわけスペーサ23は、可視光波長域の光に対する高い反射性を有する材料で構成されることが好ましい。 The spacer 23 is a member for supporting the illuminance distribution adjusting plate 40, and has a function of keeping the predetermined distance between the base laminate 30 and the illuminance distribution adjusting plate 40. As shown in FIG. 2, the spacer 23 has a wall 24 that divides between two adjacent light sources 22, whereby the spacer 23 is surrounded by the wall 24 corresponding to each light source 22. The opening 25 is formed. In the illustrated example, the spacer 23, in plan view, a plurality of wall portions 24 which are arranged in a first direction d 1 extending in the second direction d 2, in the first direction d 1 are arranged in the second direction d 2 A plurality of extending wall portions 24 are arranged in a grid shape. The openings 25 are provided corresponding to the arrangement pattern of the light sources 22. That is, the spacer 23, while being arranged in the first direction d 1, arranged in the second direction d 2, has a plurality of openings 25. In the present embodiment, each opening 25 is formed in a rectangular shape in plan view. Such a spacer 23 may be, for example, polycarbonate resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile-styrene-acrylate copolymer resin (ASA resin), acrylonitrile-ethylene-propylene-diene-styrene copolymer resin AES resin), polymethyl methacrylate resin (PMMA resin), polyacetal resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, or a mixture of two or more of these resins can be used. In particular, the spacer 23 is preferably made of a material having high reflectivity to light in the visible light wavelength range.
 図3は、面光源装置20に組み込まれた照度分布調整板40を示す平面図である。図3では、照度分布調整板40の背面側に配置される光源22及びスペーサ23の開口25の位置が破線で示されている。照度分布調整板40は、光源22から出射した光を透過させるための複数の光透過孔45が形成された基材41を備えている。なお、図3では、光透過孔45の図示は省略されている。照度分布調整板40の基材41は、各光源22に対応した1以上の区画領域Aaを有している。すなわち、基材41には、一つの光源22に対して一つの区画領域Aaが設けられている。したがって、基材41は、第1方向dに沿って配列されるとともに、第2方向dに沿って配列された、複数の区画領域Aaを有している。図3では、基材41における一点鎖線で区画された領域がそれぞれの区画領域Aaを示している。 FIG. 3 is a plan view showing the illuminance distribution adjustment plate 40 incorporated in the surface light source device 20. As shown in FIG. In FIG. 3, the positions of the light source 22 disposed on the back side of the illuminance distribution adjustment plate 40 and the openings 25 of the spacer 23 are indicated by broken lines. The illuminance distribution adjusting plate 40 includes a base 41 on which a plurality of light transmission holes 45 for transmitting light emitted from the light source 22 are formed. In FIG. 3, the light transmission holes 45 are not shown. The base material 41 of the illuminance distribution adjusting plate 40 has one or more divided areas Aa corresponding to the light sources 22. That is, one division area Aa is provided in the base 41 for one light source 22. Accordingly, the substrate 41 has while being arranged along the first direction d 1, arranged along the second direction d 2, a plurality of divided areas Aa. In FIG. 3, the area | region divided by the dashed-dotted line in the base material 41 has shown each division area Aa.
 各区画領域Aaは平面視において長辺42及び短辺43を有する矩形形状(長方形形状)を有している。長辺42と短辺43とは、互いに異なる長さを有しており、長辺42は、短辺43の長さよりも大きい長さを有している。図3に示された例では、区画領域Aaの長辺42は第1方向dに沿って延びており、区画領域Aaの短辺43は第2方向dに沿って延びている。したがって、区画領域Aaの長辺42と照度分布調整板40の長辺とは平行をなしており、区画領域Aaの短辺43と照度分布調整板40の短辺とは平行をなしている。なお、これに限られず、区画領域Aaの長辺42が第2方向dに沿って延び、区画領域Aaの短辺43が第1方向dに沿って延びていてもよい。この場合、区画領域Aaの長辺42と照度分布調整板40の短辺とが平行をなし、区画領域Aaの短辺43と照度分布調整板40の長辺とが平行をなす。なお、各区画領域Aaは、規則的に配列された複数の要素領域Abにさらに区分けされる。要素領域Abの具体的な形状及び配列パターンについては後述する。 Each divided area Aa has a rectangular shape (rectangular shape) having a long side 42 and a short side 43 in plan view. The long side 42 and the short side 43 have different lengths from each other, and the long side 42 has a length larger than the length of the short side 43. In the example shown in FIG. 3, the long side 42 of the partition area Aa extends along the first direction d 1, the short side 43 of the partition area Aa extends along the second direction d 2. Accordingly, the long side 42 of the divided area Aa and the long side of the illuminance distribution adjustment plate 40 are parallel to each other, and the short side 43 of the divided area Aa and the short side of the illuminance distribution adjusting plate 40 are parallel to each other. Note that the present invention is not limited thereto, long side 42 of the partition area Aa extends along the second direction d 2, the short side 43 of the partition area Aa may extend along the first direction d 1. In this case, the long side 42 of the divided area Aa is parallel to the short side of the illuminance distribution adjustment plate 40, and the short side 43 of the divided area Aa is parallel to the long side of the illuminance distribution adjustment plate 40. Each divided area Aa is further divided into a plurality of regularly arranged element areas Ab. The specific shape and arrangement pattern of the element region Ab will be described later.
 図3に示された例では、基材41の隣り合う区画領域Aaを区画する区画線Laは、スペーサ23の壁部24に沿って定義される。言い換えると、区画線Laは、照度分布調整板40の法線方向に沿ってスペーサ23の壁部24と対向する領域内に位置するように定義される。結果として、区画線Laは、全体として、第1方向dに配列され第2方向dに延びる複数の区画線Laと、第2方向dに配列され第1方向dに延びる複数の区画線Laと、が格子状をなすように定義される。図示された例では、区画領域Aaの長辺42は、第1方向dに延びる区画線Laの一部からなり、区画領域Aaの短辺43は、第2方向dに延びる区画線Laの一部からなる。図示された例では、各区画領域Aaは、第1方向dに沿った幅Wと、第2方向dに沿った幅Wとを有する。図3に示された例では、幅Wは区画領域Aaの長辺42に沿った長さに対応し、幅Wは区画領域Aaの短辺43に沿った長さに対応する。この幅W及び幅Wは、例えば5mm以上50mm以下とすることができる。 In the example shown in FIG. 3, division lines La that define adjacent division areas Aa of the base material 41 are defined along the wall 24 of the spacer 23. In other words, the dividing line La is defined to be located in a region facing the wall 24 of the spacer 23 along the normal direction of the illuminance distribution adjustment plate 40. As a result, partition lines La, as a whole, a plurality of partition lines La extending in a second direction d 2 is arranged in the first direction d 1, of the plurality extending in a first direction d 1 are arranged in the second direction d 2 The division lines La are defined to form a grid. In the illustrated example, the long sides 42 of the partition area Aa is made from a portion of the division line La extending in a first direction d 1, the short side 43 of the partition area Aa is division line La extending in a second direction d 2 It consists of a part of In the illustrated example, the partitioned regions Aa has a width W 1 in the first direction d 1, and a width W 2 in the second direction d 2. In the example shown in FIG. 3, the width W 1 corresponds to the length along the long side 42 of the partition area Aa, the width W 2 corresponding to the length along the short side 43 of the partition area Aa. The width W 1 and the width W 2 can be, for example, 5 mm or more and 50 mm or less.
 本実施の形態の照度分布調整板40は、各区画領域Aaが、平面視において長辺42及び短辺43を有する長方形形状を有しており、長辺42及び短辺43の長さを互いに独立して変更することが可能である。したがって、任意の長さの長辺42及び短辺43で構成される長方形形状を有した区画領域Aaを配列して、照度分布調整板40を構成することができる。したがって、平面視において正方形形状を有する区画領域を配列して構成される従来の照度分布調整板と比較して、照度分布調整板40の長辺及び短辺の長さを、それぞれ高い自由度で設定することができる。すなわち、面光源装置20の平面視形状の設計の自由度を向上させることが可能となる。 In the illuminance distribution adjusting plate 40 of the present embodiment, each divided area Aa has a rectangular shape having the long side 42 and the short side 43 in plan view, and the lengths of the long side 42 and the short side 43 It is possible to change independently. Therefore, the illuminance distribution adjusting plate 40 can be configured by arranging the divided areas Aa having a rectangular shape configured by the long side 42 and the short side 43 of an arbitrary length. Therefore, the lengths of the long side and the short side of the illuminance distribution adjusting plate 40 can be increased with a high degree of freedom, respectively, as compared to the conventional illuminance distribution adjusting plate configured by arranging the divided areas having a square shape in plan view. It can be set. That is, it is possible to improve the degree of freedom in designing the planar light source shape of the surface light source device 20.
 図4に、図3のIV-IV線に対応した面光源装置20の断面を示す。とりわけ図4は、照度分布調整板40の基材41における一つの区画領域Aaに対応する面光源装置20の断面を示している。 FIG. 4 shows a cross section of the surface light source device 20 corresponding to the line IV-IV in FIG. In particular, FIG. 4 shows a cross section of the surface light source device 20 corresponding to one sectioned area Aa in the base material 41 of the illuminance distribution adjusting plate 40.
 ベース積層体30は、光源22を支持するとともに、光源22に対して電源を供給する機能を有する。図3に示された例では、ベース積層体30は、基材31、接合層32、フィルム基板33、配線層34、レジスト層35及び光反射層36を有している。 The base laminate 30 supports the light source 22 and has a function of supplying power to the light source 22. In the example shown in FIG. 3, the base laminate 30 includes the base 31, the bonding layer 32, the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflecting layer 36.
 基材31は、フィルム基板33、配線層34、レジスト層35及び光反射層36を保持する基材として機能する部材である。基材31の材料としては、フィルム基板33、配線層34、レジスト層35及び光反射層36を適切に保持することができるものであれば特に限られないが、例えば金属や樹脂等を用いることができる。とりわけアルミニウム等の熱伝導性の良い金属材料で形成された基材31を用いると、光源22で生じた熱をこの基材31を介して面光源装置20の背面側へ向けて放熱することができるので、より好ましい。この基材31の厚さは、例えば0.5mm以上10mm以下とすることができる。なお、基材31は、面光源装置20の筐体の一部をなしていてもよい。 The base 31 is a member that functions as a base that holds the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflection layer 36. The material of the base material 31 is not particularly limited as long as the film substrate 33, the wiring layer 34, the resist layer 35, and the light reflecting layer 36 can be properly held, but, for example, metal or resin may be used. Can. In particular, when using a substrate 31 formed of a metal material with good thermal conductivity such as aluminum, the heat generated by the light source 22 can be dissipated toward the back side of the surface light source device 20 via the substrate 31. It is more preferable because it can. The thickness of the base 31 can be, for example, 0.5 mm or more and 10 mm or less. The base 31 may be a part of the housing of the surface light source device 20.
 フィルム基板33は、配線層34を保持する基材として機能する部材であり、配線層34とともにプリント配線板を形成する。図4に示されたフィルム基板33は、可撓性を有する樹脂フィルムで形成されており、これによりフィルム基板33は、配線層34とともにフレキシブルプリント配線板を形成する。このフィルム基板33の厚さは、例えば10μm以上500μm以下とすることができる。フィルム基板33として、従来のリジッド基板よりも薄い基板を用いることにより、面光源装置20を薄型化することができる。フィルム基板33の材料としては、絶縁性、耐熱性、耐久性、加熱時の寸法安定性、機械的強度等を考慮して適宜選択され得るが、例えば、ポリイミド(PI)や、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)を用いることができる。 The film substrate 33 is a member that functions as a base for holding the wiring layer 34, and forms a printed wiring board together with the wiring layer 34. The film substrate 33 shown in FIG. 4 is formed of a flexible resin film, whereby the film substrate 33 forms a flexible printed wiring board together with the wiring layer 34. The thickness of the film substrate 33 can be, for example, 10 μm or more and 500 μm or less. By using a thinner substrate than the conventional rigid substrate as the film substrate 33, the surface light source device 20 can be thinned. The material of the film substrate 33 may be appropriately selected in consideration of insulation, heat resistance, durability, dimensional stability at heating, mechanical strength and the like, and examples thereof include polyimide (PI) and polyethylene naphthalate ( PEN), polyethylene terephthalate (PET) can be used.
 フィルム基板33は、接合層32を介して基材31に固定される。接合層32は、フィルム基板33を適切に基材31に固定できるものであれば特に限られない。一例として、接合層32として両面テープを用いることができる。その他にも、接合層32として適宜の接着材や粘着材が用いられてもよい。 The film substrate 33 is fixed to the base 31 via the bonding layer 32. The bonding layer 32 is not particularly limited as long as the film substrate 33 can be appropriately fixed to the base 31. As an example, a double-sided tape can be used as the bonding layer 32. Besides, an appropriate adhesive or adhesive may be used as the bonding layer 32.
 配線層34は、フィルム基板33上に設けられ、光源22に対して電源を供給する機能を有する。そのため、配線層34は、導電性の高い金属材料で形成されることが好ましい。配線層34を形成する金属材料としては、例えば、銅、アルミニウム、金、銀等又はこれらの合金等の金属材料を挙げることができる。一例として、配線層34は、サブトラクト法を用いて形成することができる。すなわち、フィルム基板33上に配置された銅箔等の金属層を、フォトリソグラフィー技術を用いたエッチングによりパターニングすることにより、所望のパターンを有する配線層34を形成することができる。なお、これに限られず、配線層34は、アディティブ法やセミアディティブ法等の他の方法を用いて形成されてもよい。なお、配線層34における、光源22や他の配線又はコネクタとの接続部には、電極部が設けられる。 The wiring layer 34 is provided on the film substrate 33 and has a function of supplying power to the light source 22. Therefore, the wiring layer 34 is preferably formed of a highly conductive metal material. As a metal material which forms the wiring layer 34, metal materials, such as copper, aluminum, gold, silver etc. or these alloys, can be mentioned, for example. As an example, the wiring layer 34 can be formed using a subtraction method. That is, the wiring layer 34 having a desired pattern can be formed by patterning a metal layer such as copper foil disposed on the film substrate 33 by etching using a photolithographic technique. The wiring layer 34 is not limited to this, and may be formed using another method such as an additive method or a semi-additive method. In addition, an electrode part is provided in the connection part with the light source 22 and other wiring or connectors in the wiring layer 34.
 配線層34、及び、配線層34から露出したフィルム基板33上には、レジスト層35が設けられる。とりわけレジスト層35は、配線層34の電極部となる箇所を除いて、配線層34、及び、配線層34から露出したフィルム基板33を覆うようにして設けられる。このレジスト層35は、配線層34を保護するとともに、配線層34と他の部材との間の短絡を防止する機能を有する。レジスト層35の材料としては、例えば、ポリエステル系樹脂、エポキシ系樹脂、エポキシ系及びフェノール系樹脂、エポキシアクリレート樹脂、シリコーン系樹脂等の樹脂材料を用いることができる。レジスト層35は、一例として、配線層34及びフィルム基板33全体を覆うように樹脂層を設け、フォトリソグラフィー技術を用いたエッチングにより配線層34の電極部となる箇所に、当該電極部を露出させる開口を設けることにより形成することができる。 A resist layer 35 is provided on the wiring layer 34 and the film substrate 33 exposed from the wiring layer 34. In particular, the resist layer 35 is provided so as to cover the wiring layer 34 and the film substrate 33 exposed from the wiring layer 34 except for the portions to be the electrode portions of the wiring layer 34. The resist layer 35 has a function of protecting the wiring layer 34 and preventing a short circuit between the wiring layer 34 and other members. As a material of the resist layer 35, for example, resin materials such as polyester resin, epoxy resin, epoxy resin and phenol resin, epoxy acrylate resin, silicone resin can be used. As an example, the resist layer 35 is provided with a resin layer so as to cover the whole of the wiring layer 34 and the film substrate 33, and the electrode portion is exposed at a portion to be the electrode portion of the wiring layer 34 by etching using photolithography technology. It can be formed by providing an opening.
 光反射層36は、光源22から出射した光の利用効率を向上させるために設けられる層であり、光源22から出射して照度分布調整板40で反射されてその光路を光反射層36側に向けて曲げられた光を、再び照度分布調整板40へ向けて反射させる機能を有する。そのため、光反射層36は、可視光波長域の光に対する高い反射性を有する層であることが好ましい。また、光反射層36は、照度分布調整板40の光源22と同じ側に照度分布調整板40と平行をなして配置される。図4に示された例では、光反射層36は、光源22が配置されるべき箇所を除いて、レジスト層35上に積層されている。図示された例では、光反射層36は、平面視において光源22を囲むようにして配置されている。また、図示された例では、光反射層36は、レジスト層35の光源22を囲む内周縁部を露出させるようにして設けられている。なお、これに限られず、光反射層36は、例えばレジスト層35の光源22を囲む内周縁部が露出しないように、レジスト層35の内周縁部と光反射層36の内周縁部が一致するようにして設けられていてもよい。光反射層36としては、例えば白色の樹脂材料で形成された層を用いることができる。 The light reflection layer 36 is a layer provided to improve the utilization efficiency of the light emitted from the light source 22, and is emitted from the light source 22 and reflected by the illuminance distribution adjusting plate 40, and the light path thereof is directed to the light reflection layer 36 side. It has a function of reflecting the light bent toward the illumination distribution adjusting plate 40 again. Therefore, the light reflecting layer 36 is preferably a layer having high reflectivity to light in the visible light wavelength range. The light reflecting layer 36 is disposed on the same side as the light source 22 of the illuminance distribution adjusting plate 40 in parallel with the illuminance distribution adjusting plate 40. In the example shown in FIG. 4, the light reflecting layer 36 is laminated on the resist layer 35 except for the place where the light source 22 is to be disposed. In the illustrated example, the light reflecting layer 36 is disposed so as to surround the light source 22 in plan view. Further, in the illustrated example, the light reflection layer 36 is provided to expose the inner peripheral edge portion surrounding the light source 22 of the resist layer 35. The light reflection layer 36 is not limited to this, for example, the inner peripheral edge of the resist layer 35 matches the inner peripheral edge of the light reflection layer 36 so that the inner peripheral edge of the resist layer 35 surrounding the light source 22 is not exposed. It may be provided as such. As the light reflection layer 36, for example, a layer formed of a white resin material can be used.
 光源22は、導電接続層37を介して配線層34の電極部に接続されている。導電接続層37としては、例えば、はんだ、導電性接着剤等からなる層を用いることができる。 The light source 22 is connected to the electrode portion of the wiring layer 34 via the conductive connection layer 37. As the conductive connection layer 37, for example, a layer made of solder, a conductive adhesive or the like can be used.
 拡散板26は、当該拡散板26に入射した光を拡散する機能を有した板状部材であり、これにより、照度の面内分布を均一化させ、照度分布調整板40の光透過孔45の像を目立たなくさせることができる。拡散板26としては、光拡散機能を有する部材であれば特に限定されることなく使用可能であるが、例えば、表面に微細な凹凸を有する樹脂板やガラス板、内部に拡散粒子を有する樹脂板やガラス板を用いることができる。 The diffusion plate 26 is a plate-like member having a function of diffusing the light incident on the diffusion plate 26, whereby the in-plane distribution of the illuminance is made uniform, and the light transmitting holes 45 of the illuminance distribution adjusting plate 40 are made. It can make the image unnoticeable. The diffusion plate 26 is not particularly limited as long as it is a member having a light diffusion function, and for example, a resin plate or a glass plate having fine irregularities on the surface, and a resin plate having diffusion particles inside And glass plates can be used.
 本実施の形態における第1光学シート27は、光源22側から入射した光の進行方向を変化させて表示パネル15側から出射させ、第1光学シート27の法線方向における照度を集中的に向上させるための集光シートである。本実施の形態の集光シートは、そのシート面上のある方向に沿って配列された複数の単位プリズムを有したシートである。この集光シートとしては、例えば米国3M社から入手可能な「BEF」(登録商標)を用いることができる。 The first optical sheet 27 in the present embodiment changes the traveling direction of light incident from the light source 22 side to emit it from the display panel 15 side, and the illuminance in the normal direction of the first optical sheet 27 is intensively improved It is a condensing sheet for making it The condensing sheet of the present embodiment is a sheet having a plurality of unit prisms arranged along a direction on the sheet surface. As this light collecting sheet, for example, "BEF" (registered trademark) available from 3M Company in the United States can be used.
 また、本実施の形態における第2光学シート28は、その透過軸と平行な方向の偏光成分を透過させ、その透過軸に直交する反射軸と平行な方向の偏光成分を反射する反射型偏光板である。この反射型偏光板によれば、面光源装置20から出射し表示パネル15で有効に利用され得ない偏光成分の光が、当該表示パネル15へ入射して偏光板で吸収されてしまうことを防止することができる。したがって、光源光の利用効率を向上させて、照度特性を改善することができる。この反射型偏光板としては、例えば米国3M社から入手可能な「DBEF」(登録商標)を用いることができる。 In addition, the second optical sheet 28 in the present embodiment transmits a polarization component in a direction parallel to the transmission axis, and reflects the polarization component in a direction parallel to a reflection axis orthogonal to the transmission axis. It is. According to this reflection type polarizing plate, light of a polarization component which is emitted from the surface light source device 20 and can not be effectively used in the display panel 15 is prevented from being incident on the display panel 15 and being absorbed by the polarizing plate can do. Therefore, the utilization efficiency of the light source light can be improved, and the illuminance characteristic can be improved. As this reflection type polarizing plate, for example, "DBEF" (registered trademark) available from 3M Company in the United States can be used.
 このような拡散板26、第1光学シート27及び第2光学シート28としては、いずれも、面光源装置20の十分な照度を確保する観点から、可視光透過率の高いものを用いることが好ましい。 From the viewpoint of securing sufficient illuminance of the surface light source device 20, it is preferable to use one having a high visible light transmittance as each of the diffusion plate 26, the first optical sheet 27 and the second optical sheet 28. .
 次に、照度分布調整板40について詳述していく。図5は、照度分布調整板40の一つの区画領域Aaを示す平面図であって、要素領域Ab及び光透過孔45の配置パターンの一例を示す図である。照度分布調整板40は、光源22から出射した光を透過させる複数の光透過孔45が形成された基材41を備えている。照度分布調整板40は、光源22から出射した光の利用効率を向上させる機能も有しており、当該照度分布調整板40に入射した光を反射させてその光路を光反射層36側に向けて曲げることができるように構成されている。このため、照度分布調整板40の基材41は、可視光波長域の光に対する高い反射性を有する層であることが好ましい。基材41は、例えば白色の樹脂材料で形成される。一例として、基材41は、発泡ポリエチレンテレフタレート(発泡PET)等の発泡樹脂で形成されてもよい。 Next, the illuminance distribution adjustment plate 40 will be described in detail. FIG. 5 is a plan view showing one sectioned area Aa of the illuminance distribution adjusting plate 40, and showing an example of an arrangement pattern of the element area Ab and the light transmission holes 45. As shown in FIG. The illuminance distribution adjusting plate 40 includes a base 41 on which a plurality of light transmission holes 45 for transmitting light emitted from the light source 22 are formed. The illuminance distribution adjusting plate 40 also has a function of improving the utilization efficiency of the light emitted from the light source 22, and reflects the light incident on the illuminance distribution adjusting plate 40 so that the light path is directed to the light reflecting layer 36 side. It is configured to be able to bend. For this reason, it is preferable that the base material 41 of the illuminance distribution adjusting plate 40 be a layer having high reflectivity to light in the visible light wavelength range. The base 41 is formed of, for example, a white resin material. As an example, the substrate 41 may be formed of a foamed resin such as foamed polyethylene terephthalate (foamed PET).
 本実施の形態では、照度分布調整板40は、低い光透過性を有する材料で形成された基材41を有し、光透過孔45は、基材41に形成された物理的な孔、すなわち対向する基材41の二つの主面のうちの一方の主面から他方の主面へ延びる貫通孔として形成されているが、光透過孔45の具体的構成は、これに限られない。光透過孔45は、照度分布調整板40の板面への法線方向の一方側から他方側へ光が透過可能な部分として形成されていればよく、例えば、照度分布調整板40が、光透過性を有する板状の透明基材と、この透明基材上とりわけ透明基材の光源22側の主面上に設けられた光反射層と、を有し、光透過孔45が、この光反射層内に設けられた開口部として構成されてもよい。この場合、透明基材には物理的な孔を設けなくてもよい。 In the present embodiment, the illuminance distribution adjusting plate 40 has a base 41 formed of a material having low light transmittance, and the light transmitting holes 45 are physical holes formed in the base 41, that is, Although it is formed as a through hole extending from one of the two main surfaces of the opposing base material 41 to the other main surface, the specific configuration of the light transmission hole 45 is not limited to this. The light transmission hole 45 may be formed as a portion through which light can be transmitted from one side to the other side of the normal direction to the plate surface of the illuminance distribution adjustment plate 40, for example, the illuminance distribution adjustment plate 40 The light transmitting hole 45 has a transparent plate-like transparent substrate, and a light reflecting layer provided on the transparent substrate, particularly on the main surface of the transparent substrate on the light source 22 side. It may be configured as an opening provided in the reflective layer. In this case, the transparent substrate may not be provided with physical holes.
 図4に示されているように、光源22から照度分布調整板40へ向けて出射した光は、照度分布調整板40で反射されて光反射層36側へ向けて進む。光反射層36に入射した光は、当該光反射層36で反射されて照度分布調整板40へ向けて進む。これを繰り返した光が照度分布調整板40の光透過孔45のいずれかに入射すると、当該光は光透過孔45を透過して照度分布調整板40から表示パネル15側(図4では拡散板26側)へ向けて出射する。このとき、光源22から出射して照度分布調整板40と光反射層36との間で反射を繰り返しながら照度分布調整板40の板面と略平行な方向(一例として図4の第1方向d)に進む光は、光源22から離れるにしたがって照度が低下していく。しかし、本実施の形態の照度分布調整板40では、上述のように、複数の光透過孔45が、光源22の直上に対面する区画領域Aaの中心Oから離れるほどその開口面積が大きくなるパターンにて配置されている。これにより、各光透過孔45を透過して出射する光の照度の均一化が図られる。なお、スペーサ23が、可視光波長域の光に対する高い反射性を有する材料で構成されている場合、照度分布調整板40の板面と略平行な方向に進み、スペーサ23の壁部24に入射した光は、当該スペーサ23で反射され光源22側へ向けてその光路を曲げられる。これにより、光源22から出射した光の利用効率をさらに向上させることができる。 As shown in FIG. 4, the light emitted from the light source 22 toward the illuminance distribution adjustment plate 40 is reflected by the illuminance distribution adjustment plate 40 and travels toward the light reflecting layer 36 side. The light incident on the light reflecting layer 36 is reflected by the light reflecting layer 36 and travels toward the illuminance distribution adjustment plate 40. When light repeating this is incident on any of the light transmission holes 45 of the illuminance distribution adjustment plate 40, the light passes through the light transmission holes 45 and the illuminance distribution adjustment plate 40 to the display panel 15 side (the diffusion plate in FIG. 4) 26) and emit. At this time, a direction substantially parallel to the plate surface of the illuminance distribution adjustment plate 40 while emitting light from the light source 22 and repeating reflection between the illuminance distribution adjustment plate 40 and the light reflection layer 36 (as an example, a first direction d in FIG. The light traveling to 1 ) decreases in illuminance as it gets away from the light source 22. However, in the illuminance distribution adjusting plate 40 according to the present embodiment, as described above, the more the light transmission holes 45 are away from the center O 1 of the section area Aa facing immediately above the light source 22, the larger the opening area becomes. It is arranged in a pattern. Thereby, the illuminance of the light transmitted through each light transmission hole 45 and emitted can be made uniform. When the spacer 23 is made of a material having high reflectivity to light in the visible light wavelength range, it travels in a direction substantially parallel to the plate surface of the illuminance distribution adjustment plate 40 and is incident on the wall 24 of the spacer 23 The reflected light is reflected by the spacer 23 and bent toward the light source 22 side. Thereby, the utilization efficiency of the light radiate | emitted from the light source 22 can further be improved.
 区画領域Aaは、規則的に配列された複数の要素領域Abにさらに区分けされる。図5~図7を参照して、要素領域Ab、及び、各要素領域Ab内に形成される光透過孔45について説明する。図5は、照度分布調整板40の一つの区画領域Aaを示す平面図であって、要素領域Ab及び光透過孔45の配置パターンの一例を示す図である。 Partition area Aa is further partitioned into a plurality of regularly arranged element regions Ab. The element regions Ab and the light transmission holes 45 formed in the element regions Ab will be described with reference to FIGS. 5 to 7. FIG. 5 is a plan view showing one sectioned area Aa of the illuminance distribution adjusting plate 40, and showing an example of an arrangement pattern of the element area Ab and the light transmission holes 45. As shown in FIG.
 図示された例では、要素領域Abは、第1方向dに沿って配列されるとともに、第2方向dに沿って配列されている。すわなち、本実施の形態では、複数の要素領域Abが第1方向d及び第2方向dに沿って二次元的に配列されている。図5では、二点鎖線で区画された領域がそれぞれの要素領域Abを示している。図示された例では、各要素領域Abは平面視で矩形形状、とりわけ正方形形状、の輪郭を有しているが、要素領域Abの形状はこれに限られない。例えば、各要素領域Abは、平面視において三角形、六角形等の他の形状からなる輪郭を有していてもよい。なお、本明細書において、複数の要素領域Abが「規則的に配列」されるとは、同一の形状及び大きさを有する複数の要素領域Abが同一のピッチで並べられていることを意味している。図5に示された例では、複数の要素領域Abが全て同一の形状及び大きさを有しているが、これに限られず、複数の要素領域Abは、2種類以上の形、大きさ又は向きを有していてもよい。 In the illustrated example, the element region Ab, as well are arranged along the first direction d 1, it is arranged along the second direction d 2. Nachi Suwa, in the present embodiment, a plurality of element regions Ab are two-dimensionally arranged along the first direction d 1 and the second direction d 2. In FIG. 5, the regions partitioned by two-dot chain lines indicate the respective element regions Ab. In the illustrated example, each element region Ab has an outline of a rectangular shape, especially a square shape in plan view, but the shape of the element region Ab is not limited thereto. For example, each element region Ab may have an outline having another shape such as a triangle or a hexagon in a plan view. Note that, in the present specification, that “a plurality of element areas Ab are“ ordered regularly ”” means that a plurality of element areas Ab having the same shape and size are arranged at the same pitch. ing. In the example shown in FIG. 5, although all of the plurality of element regions Ab have the same shape and size, the present invention is not limited thereto, and the plurality of element regions Ab may have two or more types of shapes, sizes or It may have an orientation.
 図5には、照度分布調整板40の背面側に配置される光源22の位置が破線で示されている。複数の要素領域Abは、基材41の法線方向に沿って光源22に投影したときに光源22と重なる要素領域Abを含んでいる。要素領域Abが、基材41の法線方向に沿って光源22に投影したときに光源22と重なるとは、当該要素領域Abの少なくとも一部が、基材41の法線方向に沿って光源22に投影したときに光源22と重なることを指す。例えば、複数の要素領域Abに共有された頂点及び/又は辺が、基材41の法線方向に沿って光源22に投影したときに光源22の中心と重なるように、複数の要素領域Abが配置されている場合には、当該頂点及び/又は辺を含む複数の要素領域Abがそれぞれ、基材41の法線方向に沿って光源22に投影したときに光源22と重なることになる。 In FIG. 5, the position of the light source 22 disposed on the back side of the illuminance distribution adjustment plate 40 is indicated by a broken line. The plurality of element areas Ab include element areas Ab 0 overlapping with the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41. The element region Ab 0 overlaps with the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41 if at least a part of the element region Ab 0 is along the normal direction of the substrate 41 When projected onto the light source 22, the light source 22 overlaps with the light source 22. For example, as the vertices are shared by a plurality of element regions Ab 0 and / or sides overlaps the center of the light source 22 when projected to the light source 22 along the normal direction of the substrate 41, a plurality of element regions Ab In the case where the plurality of element regions Ab 0 including the apexes and / or sides are respectively projected onto the light source 22 along the normal direction of the base 41, the light source 22 overlaps with the light source 22. .
 図5に示された例では、要素領域Ab以外の要素領域Abには、それぞれ一つの光透過孔45が形成されている。言い換えると、要素領域Ab以外の各要素領域Abは、それぞれ一つの光透過孔45が含まれるようにして定義される。したがって、図示された例では、第1方向dに隣り合う二つの光透過孔45の間、及び、第2方向dに隣り合う二つの光透過孔45の間に、それぞれ隣り合う要素領域Abを区画する区画線Lbが位置するようになる。結果として、図示された例では、区画線Lbは、全体として、第1方向dに配列され第2方向dに延びる複数の区画線Lbと、第2方向dに配列され第1方向dに延びる複数の区画線Lbと、が格子状をなすように定義される。各要素領域Abは、第1方向dに沿った幅Wと、第2方向dに沿った幅Wとを有する。この幅W及び幅Wは、例えば0.2mm以上10mm以下とすることができる。 In the example shown in FIG. 5, the element regions Ab 0 other element regions Ab, one of the light transmitting hole 45 are respectively formed. In other words, each element area Ab other than the element area Ab 0 is defined such that one light transmission hole 45 is included. Thus, in the example shown, between two light transmitting hole 45 adjacent in the first direction d 1, and, between two light transmitting hole 45 adjacent in the second direction d 2, element regions adjacent each The dividing line Lb which divides Ab comes to be located. As a result, in the example shown, lane lines Lb as a whole, a plurality of partition lines Lb extending in the second direction d 2 is arranged in the first direction d 1, the first direction is arranged in the second direction d 2 A plurality of division lines Lb extending to d 1 are defined to form a lattice. Each element region Ab has a width W 3 in the first direction d 1, and a width W 4 in the second direction d 2. The width W 3 and a width W 4 may be, for example 0.2mm or 10mm or less.
 要素領域Ab、及び、要素領域Abの近傍に位置する要素領域Abの中には、光透過孔45が形成されていない要素領域Abが存在してもよい。すなわち、照度分布調整板40の平面視において、基材41の法線方向に沿って光源22に投影したときに光源22と重なる所定の領域内に位置する要素領域Abの中には、光透過孔45が形成されていない要素領域Abが存在してもよい。換言すると、基材41の法線方向に沿って光源22に投影したときに光源22と重なる所定の領域以外の領域に位置する要素領域Abに、それぞれ一つの光透過孔45が形成される。図5に示された例では、要素領域Abには光透過孔45が形成されておらず、要素領域Ab以外の要素領域Abに、それぞれ一つの光透過孔45が形成されている。これに限られず、要素領域Abにも光透過孔45が形成されてもよい。すなわち、要素領域Abを含めて全ての要素領域Abに、それぞれ一つの光透過孔45が形成されてもよい。ここで、要素領域Abが所定の領域以外の領域に位置するとは、当該要素領域Abの中心(本実施の形態では当該要素領域Abに形成された光透過孔45の中心)が、所定の領域以外の領域に位置することを意味する。なお、所定の領域は、一例として、区画領域Aaにおける、基材41の法線方向に沿って光源22に投影したときに光源22の中心と重なる点、すなわち本実施の形態では区画領域Aaの中心O、から基材41の板面方向に沿って5mm以内の距離にある領域とすることができる。この場合、所定の領域は、基材41の平面視において、中心Oを中心とする半径5mmの円の輪郭及び内部となる。 In the element area Ab 0 and the element area Ab located in the vicinity of the element area Ab 0 , an element area Ab in which the light transmission hole 45 is not formed may be present. That is, in the planar view of the illuminance distribution adjustment plate 40, in the element area Ab located in the predetermined area overlapping the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41, light transmission There may be an element region Ab in which the hole 45 is not formed. In other words, one light transmission hole 45 is formed in each of the element regions Ab located in a region other than the predetermined region overlapping the light source 22 when projected onto the light source 22 along the normal direction of the substrate 41. In the example shown in FIG. 5, the element region Ab 0 no light transmitting hole 45 is formed, the element region Ab other than element regions Ab 0, one of the light transmitting hole 45 are respectively formed. Not limited thereto, the light transmitting hole 45 in the element region Ab 0 may be formed. That is, all elements region Ab including element regions Ab 0, may be one of the light transmitting hole 45 are formed respectively. Here, that the element area Ab is located in an area other than the predetermined area means that the center of the element area Ab (in the present embodiment, the center of the light transmission hole 45 formed in the element area Ab) is the predetermined area. It means to be located in the area other than. The predetermined area is, for example, a point in the divided area Aa that overlaps the center of the light source 22 when projected onto the light source 22 along the normal direction of the base material 41, that is, in the present embodiment, It can be an area at a distance of 5 mm or less from the center O 1 along the surface direction of the base 41. In this case, the predetermined region is the outline and the inside of a circle with a radius of 5 mm centered on the center O 1 in a plan view of the base 41.
 図5に示された例では、各光透過孔45の中心と当該光透過孔45が配置された要素領域Abの中心とは一致している。各光透過孔45は、平面視において円形の輪郭を有している。この場合、光源22から出射して各光透過孔45を透過した光は、当該光透過孔45から、基材41の板面方向において等方的に出射する。したがって、面光源装置20から出射する照明光の照度の面内均一性を向上させることができる。ただし、これに限られず、各光透過孔45は、平面視において楕円形、三角形、矩形、六角形等の他の平面形状を有するように形成してもよい。 In the example shown in FIG. 5, the centers of the light transmission holes 45 coincide with the centers of the element regions Ab in which the light transmission holes 45 are disposed. Each light transmission hole 45 has a circular outline in plan view. In this case, light emitted from the light source 22 and transmitted through the light transmission holes 45 is isotropically emitted from the light transmission holes 45 in the surface direction of the base 41. Therefore, the in-plane uniformity of the illuminance of the illumination light emitted from the surface light source device 20 can be improved. However, the present invention is not limited to this, and each light transmission hole 45 may be formed to have another planar shape such as an ellipse, a triangle, a rectangle, or a hexagon in a plan view.
 なお、図5に示された例では、要素領域Abには光透過孔45が形成されていないが、これに限られず、要素領域Abにも光透過孔45が形成されていてもよい。すなわち、区画領域Aaに含まれるすべての要素領域Abに、それぞれ一つの光透過孔45が形成されていてもよい。 In the example shown in FIG. 5, the light transmitting hole 45 is not formed in the element region Ab 0, not limited to this, the light transmitting hole 45 in the element region Ab 0 may be formed . That is, one light transmission hole 45 may be formed in each of all the element regions Ab included in the divided region Aa.
 光透過孔45は、当該光透過孔45が形成された要素領域Abの面積に対する所定の開口率を有している。本明細書において、光透過孔45の開口率とは、照度分布調整板40の平面視における、光透過孔45の面積Sの、当該光透過孔45が形成された要素領域Abの面積Sに対する割合(S/S)を指す。 The light transmission hole 45 has a predetermined aperture ratio with respect to the area of the element region Ab in which the light transmission hole 45 is formed. In the present specification, the aperture ratio of the light transmission hole 45 means the area S of the element region Ab in which the light transmission hole 45 is formed in the area S a of the light transmission hole 45 in plan view of the illuminance distribution adjustment plate 40 It refers to the ratio to b (S a / S b ).
 光透過孔45の寸法は、要素領域Abから区画領域Aaの周縁に向かうにつれて大きくなるように変化している。その一方、照度分布調整板40の平面視において、複数の要素領域Abは互いに同一の面積を有している。したがって、光透過孔45の開口率は、要素領域Abから区画領域Aaの周縁に向かうにつれて大きくなるように変化する。ただし、図5に示された例では、区画領域Aaの周縁近傍において、とりわけ区画領域Aaの隅部近傍において、光透過孔45の開口率が一定となる領域を有している。 Dimensions of the light transmitting hole 45 is changed so as to increase toward the element region Ab 0 the peripheral divided area Aa. On the other hand, in plan view of the illuminance distribution adjustment plate 40, the plurality of element regions Ab have the same area. Accordingly, the aperture ratio of the light transmitting hole 45 is changed so as to increase toward the element region Ab 0 the peripheral divided area Aa. However, in the example shown in FIG. 5, there is a region where the aperture ratio of the light transmission holes 45 is constant in the vicinity of the periphery of the divided region Aa, particularly in the vicinity of the corner of the divided region Aa.
 任意の光透過孔45の中心と、当該光透過孔45の開口率と等しい開口率を有する他の光透過孔45の中心又は当該光透過孔45の開口率と等しい開口率を有すると仮定した仮想等開口率点Pと、を通る線を、等開口率線50とする。図5に、等開口率線50の例を一点鎖線で示す。 It is assumed that the center of any light transmission hole 45 and the center of another light transmission hole 45 having an opening ratio equal to the opening ratio of the light transmission hole 45 or the opening ratio equal to the opening ratio of the light transmission hole 45 A line passing through the virtual equal aperture ratio point P is taken as an equal aperture ratio line 50. In FIG. 5, an example of the equal aperture ratio line 50 is shown by a dashed dotted line.
 図6は、複数の光透過孔45を通る等開口率線50の例を示す図であり、図7は、光透過孔45及び仮想等開口率点Pを通る等開口率線50の例を示す図である。図5~図7に示すように、等開口率線50は、平面視において楕円形状を有している。とりわけ、等開口率線50は、平面視において、区画領域Aaの長辺42と平行に延びる長軸52を有する楕円形状を有している。さらに詳細には、等開口率線50は、長軸52と、長軸52と直交する短軸53とを有している。長軸52と短軸53とは、互いに異なる長さを有しており、長軸52は、短軸53の長さよりも大きい長さを有している。 FIG. 6 is a diagram showing an example of equal aperture ratio lines 50 passing through a plurality of light transmission holes 45, and FIG. 7 shows an example of equal aperture ratio lines 50 passing light transmission holes 45 and virtual equal opening ratio point P. FIG. As shown in FIGS. 5 to 7, the equal aperture ratio line 50 has an elliptical shape in plan view. In particular, the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel with the long side 42 of the divided area Aa in plan view. More specifically, the iso-aperture line 50 has a major axis 52 and a minor axis 53 orthogonal to the major axis 52. The major axis 52 and the minor axis 53 have different lengths, and the major axis 52 has a length greater than the length of the minor axis 53.
 任意の光透過孔の中心を通る等開口率線50を画定する方法について説明する。図6に示された例では、任意の光透過孔451の中心と、当該光透過孔451の開口率と等しい開口率を有する他の光透過孔451の中心と、を通る曲線が等開口率線50である。この等開口率線50が平面視において楕円形状をなす場合、任意の光透過孔451の中心を通る等開口率線50が楕円形状を有するものとする。換言すると、平面視において、任意の光透過孔451の中心と、当該光透過孔451の開口率と等しい開口率を有する他の光透過孔451の中心と、を通る楕円が一つに定まるときに、当該楕円からなる等開口率線50が画定される。すなわち、任意の光透過孔451の中心と、当該光透過孔451の開口率と等しい開口率を有する他の光透過孔451の中心を通る等開口率線50が、平面視において楕円形状を有するとは、等しい開口率を有する複数の光透過孔451を通る楕円が一つに定まることであるともいえる。 A method of defining an equal aperture line 50 through the center of any light transmission hole will be described. In the example shown in FIG. 6, the curve passing through the center of any light transmission hole 451 and the centers of other light transmission holes 451 having the same aperture ratio as the light transmission hole 451 has an equal aperture ratio Line 50; When the equal aperture ratio line 50 has an elliptical shape in plan view, the equal aperture ratio line 50 passing through the center of any light transmission hole 451 has an elliptical shape. In other words, when an ellipse passing through the center of an arbitrary light transmission hole 451 and the center of another light transmission hole 451 having an aperture ratio equal to the aperture ratio of the light transmission hole 451 in a plan view is determined as one. Then, the equal aperture ratio line 50 consisting of the ellipse is defined. That is, the equal aperture ratio line 50 passing through the center of any light transmission hole 451 and the centers of other light transmission holes 451 having the same aperture ratio as the light transmission hole 451 has an elliptical shape in plan view It can also be said that an ellipse passing through the plurality of light transmission holes 451 having the same aperture ratio is determined as one.
 図7に示された例では、等しい開口率を有する四つの光透過孔452を通る楕円は、一つに定まらない。この場合、区画領域Aa内に、光透過孔452と等しい開口率を有すると仮定した仮想等開口率点Pの位置を算出し、光透過孔452の中心と仮想等開口率点Pとを通る曲線を等開口率線50とする。仮想等開口率点Pは、当該点Pを中心とする光透過孔が存在したとすると、この光透過孔は、光透過孔452の開口率と等しい開口率を有するであろうと想定できる仮想的な点である。この等開口率線50が平面視において楕円形状をなす場合、任意の光透過孔452の中心及び仮想等開口率点Pを通る等開口率線50が楕円形状を有するものとする。 In the example shown in FIG. 7, the number of ellipses passing through the four light transmission holes 452 having equal aperture ratios is not fixed. In this case, the position of a virtual equal opening ratio point P assumed to have an aperture ratio equal to that of the light transmission hole 452 is calculated in the divided area Aa, and the center of the light transmission hole 452 passes through the virtual equal opening ratio point P Let the curve be an equal aperture line 50. Assuming that a light transmission hole centered at the point P is present, it can be assumed that this light transmission hole will have an aperture ratio equal to the aperture ratio of the light transmission hole 452 It is a point. When the equal aperture ratio line 50 has an elliptical shape in plan view, the equal aperture ratio line 50 passing through the center of the arbitrary light transmission hole 452 and the virtual equal aperture ratio point P has an elliptical shape.
 図8を参照して、仮想等開口率点Pの位置の算出方法について説明する。図8は、図7におけるVIIIが付された一点鎖線で囲まれた部分を拡大して示す図である。まず、区画領域Aa内に位置する隣り合う二つの光透過孔453a,453bであって、一方の光透過孔453aの開口率が光透過孔452の開口率よりも小さく、他方の光透過孔453bの開口率が光透過孔452の開口率よりも大きい、二つの光透過孔453a,453bを特定する。 A method of calculating the position of the virtual equal aperture ratio point P will be described with reference to FIG. FIG. 8 is an enlarged view of a portion surrounded by an alternate long and short dash line indicated by VIII in FIG. First, in the two adjacent light transmission holes 453a and 453b located in the divided area Aa, the aperture ratio of one light transmission hole 453a is smaller than the aperture ratio of the light transmission aperture 452, and the other light transmission aperture 453b The two light transmission holes 453 a and 453 b having an opening ratio larger than the light transmission hole 452 are specified.
 仮想等開口率点Pは、光透過孔453aの中心Oaと光透過孔453bの中心Obとを結ぶ線分Lc上において、中心Oaから中心Obへ向かって距離aだけ離間した位置に存在するものとする。このとき、距離aは、光透過孔453aの開口率をRa、光透過孔453bの開口率をRb、中心Oaと中心Obとの間の距離をDとして、以下の式(1)で求めることができる。
 a=(Rb/(Ra+Rb))×D ・・・式(1)
The virtual equal aperture ratio point P is located on a line segment Lc connecting the center Oa of the light transmission hole 453a and the center Ob of the light transmission hole 453b at a distance away from the center Oa toward the center Ob by a distance a I assume. At this time, the distance a is obtained by the following equation (1), where Ra is the aperture ratio of the light transmission hole 453a, Rb is the aperture ratio of the light transmission hole 453b, and D is the distance between the center Oa and the center Ob. Can.
a = (Rb / (Ra + Rb)) x D formula (1)
 このようにしてその位置が算出された仮想等開口率点Pを用いて、平面視において、任意の光透過孔452の中心と、当該光透過孔452の開口率と等しい開口率を有すると仮定した仮想等開口率点Pと、を通る楕円が一つに定まるときに、当該楕円からなる等開口率線50が画定される。すなわち、任意の光透過孔452の中心と、当該光透過孔452の開口率と等しい開口率を有すると仮定した仮想等開口率点Pを通る等開口率線50が、平面視において楕円形状を有するとは、光透過孔452の中心と仮想等開口率点Pとを通る楕円が一つに定まることであるともいえる。 It is assumed that the center of any light transmission hole 452 has an opening ratio equal to the opening ratio of the light transmission hole 452 in plan view using the virtual equal opening ratio point P whose position is calculated in this manner. When an ellipse passing through the virtual equal aperture ratio point P is determined to be one, an equal aperture ratio line 50 consisting of the ellipse is defined. That is, the equal aperture ratio line 50 passing through the virtual equal aperture ratio point P assumed to have the center of an arbitrary light transmission hole 452 and the aperture ratio equal to the opening ratio of the light transmission hole 452 has an elliptical shape in plan view It can be said that having has a single ellipse which passes through the center of the light transmission hole 452 and the virtual equal aperture ratio point P.
 図5に示された例では、任意の等開口率線50の内側には、当該等開口率線50における開口率よりも大きい開口率を有した光透過孔45は存在しない。また、任意の等開口率線50の外側には、当該等開口率線50における開口率よりも小さい開口率を有した光透過孔45は存在しない。 In the example shown in FIG. 5, the light transmission hole 45 having an aperture ratio larger than the aperture ratio at the equal aperture ratio line 50 does not exist inside the arbitrary equal aperture ratio line 50. Moreover, the light transmission hole 45 having an aperture ratio smaller than the aperture ratio at the equal aperture ratio line 50 does not exist outside the arbitrary equal aperture ratio line 50.
 JP2012-174372Aに開示された従来の照明ユニットでは、複数の光透過孔は、真円形状を有する等開口率線を形成するように配置されていた。ここで、長方形形状を有する区画領域内に、真円形状を有する等開口率線を形成するように複数の光透過孔を配置した場合、区画領域の長辺近傍の光透過孔の開口率が短辺近傍の光透過孔の開口率と大きく異なることになる。詳細には、区画領域の長辺近傍とりわけ長辺の中央近傍の光透過孔の開口率は、区画領域の短辺近傍の光透過孔の開口率よりも小さくなる。これにより、区画領域の長辺近傍と短辺近傍とで、照度分布調整板から出射する光の照度にムラが生じ得る。すなわち、照度分布調整板を備えた面光源装置の出光面内に照度ムラを生じ得る。 In the conventional illumination unit disclosed in JP2012-174372A, the plurality of light transmission holes are arranged to form an equal aperture ratio line having a perfect circular shape. Here, in the case where a plurality of light transmission holes are arranged so as to form an equal aperture ratio line having a perfect circular shape in the rectangular region, the aperture ratio of the light transmission holes near the long side of the partition region is The aperture ratio of the light transmission holes in the vicinity of the short side is largely different. Specifically, the aperture ratio of the light transmission holes in the vicinity of the long side of the divided region, in particular, in the vicinity of the center of the long side is smaller than the aperture ratio of the light transmission holes in the vicinity of the short side of the divided region. Thereby, unevenness may occur in the illuminance of light emitted from the illuminance distribution adjustment plate near the long side and near the short side of the divided area. That is, illuminance unevenness may occur in the light emitting surface of the surface light source device provided with the illuminance distribution adjusting plate.
 これに対して、本実施の形態の照度分布調整板40では、等開口率線50が、平面視において、区画領域Aaの長辺42と平行に延びる長軸52を有する楕円形状を有するので、区画領域Aaの長辺42近傍の光透過孔45の開口率と短辺43近傍の光透過孔45の開口率との間の差を小さくすることができる。したがって、区画領域Aaの長辺42近傍と短辺43近傍との間で生じ得る、照度分布調整板40から出射する光の照度ムラを抑制することができる。すなわち、照度分布調整板40を備えた面光源装置20の出光面20a内の照度ムラを効果的に抑制することができる。 On the other hand, in the illuminance distribution adjusting plate 40 of the present embodiment, the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending parallel to the long side 42 of the divided area Aa in plan view, The difference between the aperture ratio of the light transmission holes 45 near the long side 42 of the divided area Aa and the aperture ratio of the light transmission holes 45 near the short side 43 can be reduced. Therefore, it is possible to suppress uneven illuminance of light emitted from the illuminance distribution adjustment plate 40 which may occur between the vicinity of the long side 42 and the vicinity of the short side 43 of the divided area Aa. That is, it is possible to effectively suppress the illuminance unevenness in the light emitting surface 20 a of the surface light source device 20 provided with the illuminance distribution adjusting plate 40.
 また、長方形形状を有する区画領域内に、真円形状を有する等開口率線を形成するように複数の光透過孔を配置した場合、光透過孔の開口率が相対的に小さい区画領域の長辺近傍では、隣り合う光透過孔間に存在する基材の、当該隣り合う光透過孔の中心どうしを結ぶ方向に沿った幅は比較的大きくなる。その一方、光透過孔の開口率が相対的に大きい区画領域の短辺近傍では、隣り合う光透過孔間に存在する基材の、当該隣り合う光透過孔の中心どうしを結ぶ方向に沿った幅は比較的小さくなる。したがって、照度分布調整板に外力や振動等が印加された場合に、当該外力や振動等に起因する応力が、区画領域の短辺近傍における、隣り合う光透過孔間に存在する基材が比較的小さい幅を有する部分に集中し、この部分に亀裂や破断等の破損が生じ得る。 In addition, when a plurality of light transmission holes are arranged so as to form a true circular shape equal opening ratio line in a divided region having a rectangular shape, the length of the divided region having a relatively small opening ratio of light transmission holes In the vicinity of the side, the width along the direction connecting the centers of the adjacent light transmission holes of the base material present between the adjacent light transmission holes is relatively large. On the other hand, in the vicinity of the short side of the divided area where the aperture ratio of the light transmission holes is relatively large, the base material existing between the adjacent light transmission holes is along the direction connecting the centers of the adjacent light transmission holes. The width is relatively small. Therefore, when an external force or vibration is applied to the illuminance distribution adjusting plate, the base material existing between adjacent light transmission holes in the vicinity of the short side of the divided area is compared with the stress caused by the external force or vibration. It concentrates on a portion having a very small width, and in this portion, breakage such as cracking or breakage may occur.
 これに対して、本実施の形態の照度分布調整板40では、等開口率線50が、平面視において、区画領域Aaの長辺42と平行に延びる長軸52を有する楕円形状を有するので、区画領域Aaの長辺42近傍における、隣り合う光透過孔45間に存在する基材41の幅と、区画領域Aaの短辺43近傍における、隣り合う光透過孔45間に存在する基材41の幅との差を小さくすることができる。したがって、照度分布調整板40に外力や振動等が印加された場合に、当該外力や振動等に起因する応力が、区画領域Aaの短辺43近傍における、隣り合う光透過孔45間に存在する基材41に集中することを抑制することができる。すなわち、照度分布調整板40に外力や振動等が印加された場合に、照度分布調整板40が破損することを効果的に防止することができる。 On the other hand, in the illuminance distribution adjusting plate 40 of the present embodiment, the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending parallel to the long side 42 of the divided area Aa in plan view, The width of the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the long side 42 of the divided area Aa and the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa The difference between the width and the width can be reduced. Therefore, when an external force, vibration or the like is applied to the illuminance distribution adjusting plate 40, a stress caused by the external force or vibration is present between adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. Concentration on the substrate 41 can be suppressed. That is, when external force or vibration is applied to the illuminance distribution adjusting plate 40, the illuminance distribution adjusting plate 40 can be effectively prevented from being damaged.
 なお、等開口率線50をなす楕円の短軸の長さWの長軸の長さWに対する比(W/W)は、区画領域Aaの短辺43の長さWの長辺42の長さWに対する比(W/W)の0.8倍以上1.2倍以下であることが好ましい。さらに好ましくは、比(W/W)は、比(W/W)の0.9倍以上1.1倍以下である。すなわち、
 (W/W)×0.8≦(W/W)≦(W/W)×1.2 ・・・式(2)
であることが好ましく、
 (W/W)×0.9≦(W/W)≦(W/W)×1.1 ・・・式(3)
であることがさらに好ましい。
Incidentally, the ratio of length W 5 of the major axis of length W 6 of the minor axis of the ellipse forming the equivalent aperture ratio line 50 (W 6 / W 5) is of the short side 43 of the partition area Aa of the length W 2 The ratio (W 2 / W 1 ) to the length W 1 of the long side 42 is preferably 0.8 times or more and 1.2 times or less. More preferably, the ratio (W 6 / W 5 ) is not less than 0.9 times and not more than 1.1 times the ratio (W 2 / W 1 ). That is,
(W 2 / W 1 ) × 0.8 ≦ (W 6 / W 5 ) ≦ (W 2 / W 1 ) × 1.2 Formula (2)
Is preferably
(W 2 / W 1 ) × 0.9 ≦ (W 6 / W 5 ) ≦ (W 2 / W 1 ) × 1.1 Formula (3)
It is further preferred that
 この場合、区画領域Aaの長辺42近傍の光透過孔45の開口率と短辺43近傍の光透過孔45の開口率との間の差をさらに小さくすることができる。また、区画領域Aaの長辺42近傍における、隣り合う光透過孔45間に存在する基材41の幅と、区画領域Aaの短辺43近傍における、隣り合う光透過孔45間に存在する基材41の幅との差をさらに小さくすることができる。 In this case, the difference between the aperture ratio of the light transmission holes 45 near the long side 42 of the divided area Aa and the aperture ratio of the light transmission holes 45 near the short side 43 can be further reduced. Further, the width of the base material 41 existing between the adjacent light transmission holes 45 in the vicinity of the long side 42 of the divided area Aa and the group existing between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. The difference with the width of the material 41 can be further reduced.
 本実施の形態の面光源装置20は、光源22と、光源22と対向して配置され光源22から出射した光の照度分布を調整する照度分布調整板40とを備え、照度分布調整板40は、光を透過させる複数の光透過孔45が形成された基材41を備え、基材41は、1以上の区画領域Aaを有し、各区画領域Aaは、平面視において長辺42及び短辺43を有する長方形形状を有し、各区画領域Aaにおいて、当該区画領域Aaは、規則的に配列された複数の要素領域Abにさらに区分けされ、基材41の法線方向に沿って光源22に投影したときに光源22と重なる所定の領域以外の領域に位置する要素領域Abには、それぞれ一つの光透過孔45が形成され、光透過孔45は、当該光透過孔45が形成された要素領域Abの面積に対する所定の開口率を有し、任意の光透過孔45の中心と、当該光透過孔45の開口率と等しい開口率を有する他の光透過孔45の中心又は当該光透過孔45の開口率と等しい開口率を有すると仮定した仮想等開口率点Pと、を通る等開口率線50は、平面視において、長辺42と平行に延びる長軸52を有する楕円形状を有する。 The surface light source device 20 according to the present embodiment includes a light source 22 and an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of light emitted from the light source 22. A plurality of light transmission holes 45 for transmitting light, the base material 41 has one or more divided regions Aa, and each divided region Aa has a long side 42 and a short length in plan view In each divided area Aa, the divided area Aa is further divided into a plurality of regularly arranged element areas Ab, and the light source 22 is arranged along the normal direction of the base 41. Each light transmission hole 45 is formed in each of the element regions Ab located in a region other than the predetermined region overlapping with the light source 22 when projected onto the light transmission hole 45, and the light transmission hole 45 is formed in the light transmission hole 45. The place for the area of the element region Ab And the center of any light transmission hole 45 and the center of another light transmission hole 45 having an opening ratio equal to that of the light transmission hole 45 or equal to the opening ratio of the light transmission hole 45 An equal aperture ratio line 50 passing through a virtual equal aperture ratio point P assumed to have an aperture ratio has an elliptical shape having a major axis 52 extending parallel to the long side 42 in plan view.
 本実施の形態の照度分布調整板40は、光源22と対向して配置され光源22から出射した光の照度分布を調整する照度分布調整板40であって、光を透過させる複数の光透過孔45が形成された基材41を備え、基材41は、1以上の区画領域Aaを有し、各区画領域Aaは、平面視において長辺42及び短辺43を有する長方形形状を有し、各区画領域Aaにおいて、当該区画領域Aaは、規則的に配列された複数の要素領域Abにさらに区分けされ、基材41の法線方向に沿って光源22に投影したときに光源22と重なる所定の領域以外の領域に位置する要素領域Abには、それぞれ一つの光透過孔45が形成され、光透過孔45は、当該光透過孔45が形成された要素領域Abの面積に対する所定の開口率を有し、任意の光透過孔45の中心と、当該光透過孔45の開口率と等しい開口率を有する他の光透過孔45の中心又は当該光透過孔45の開口率と等しい開口率を有すると仮定した仮想等開口率点Pと、を通る等開口率線50は、平面視において、長辺42と平行に延びる長軸52を有する楕円形状を有する。 The illuminance distribution adjusting plate 40 of the present embodiment is an illuminance distribution adjusting plate 40 which is disposed to face the light source 22 and adjusts the illuminance distribution of the light emitted from the light source 22, and a plurality of light transmission holes for transmitting light. The substrate 41 includes a base 41 formed with 45. The base 41 has one or more partition areas Aa, and each partition area Aa has a rectangular shape having a long side 42 and a short side 43 in plan view, In each divided area Aa, the divided area Aa is further divided into a plurality of regularly arranged element areas Ab, and when projected onto the light source 22 along the normal direction of the base material 41, the divided area Aa is overlapped with the light source 22 One light transmission hole 45 is formed in each of the element regions Ab located in the regions other than the region, and the light transmission hole 45 has a predetermined aperture ratio to the area of the element region Ab in which the light transmission holes 45 are formed. Have any light transmission A virtual equal aperture ratio point assumed to have a center of 45 and a center of another light transmission hole 45 having an aperture ratio equal to the aperture ratio of the light transmission hole 45 or an aperture ratio equal to the aperture ratio of the light transmission hole 45 The equal aperture ratio line 50 passing through P has an elliptical shape having a major axis 52 extending in parallel with the long side 42 in a plan view.
 このような面光源装置20及び照度分布調整板40によれば、各区画領域Aaが、平面視において長辺42及び短辺43を有する長方形形状を有しており、長辺42及び短辺43の長さを互いに独立して変更することが可能である。したがって、任意の長さの長辺42及び短辺43で構成される長方形形状を有した区画領域Aaを配列して、照度分布調整板40を構成することができる。したがって、平面視において正方形形状を有する区画領域を配列して構成される従来の照度分布調整板と比較して、照度分布調整板40の長辺及び短辺の長さを、それぞれ高い自由度で設定することができる。すなわち、面光源装置20の平面視形状の設計の自由度を向上させることが可能となる。 According to such a surface light source device 20 and the illuminance distribution adjusting plate 40, each divided area Aa has a rectangular shape having the long side 42 and the short side 43 in plan view, and the long side 42 and the short side 43 It is possible to change the lengths of the two independently of one another. Therefore, the illuminance distribution adjusting plate 40 can be configured by arranging the divided areas Aa having a rectangular shape configured by the long side 42 and the short side 43 of an arbitrary length. Therefore, the lengths of the long side and the short side of the illuminance distribution adjusting plate 40 can be increased with a high degree of freedom, respectively, as compared to the conventional illuminance distribution adjusting plate configured by arranging the divided areas having a square shape in plan view. It can be set. That is, it is possible to improve the degree of freedom in designing the planar light source shape of the surface light source device 20.
 また、等開口率線50が、平面視において、区画領域Aaの長辺42と平行に延びる長軸52を有する楕円形状を有するので、区画領域Aaの長辺42近傍の光透過孔45の開口率と短辺43近傍の光透過孔45の開口率との間の差を小さくすることができる。したがって、区画領域Aaの長辺42近傍と短辺43近傍との間で生じ得る、照度分布調整板40から出射する光の照度ムラを抑制することができる。すなわち、照度分布調整板40を備えた面光源装置20の出光面20a内の照度ムラを効果的に抑制することができる。 Further, since the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel to the long side 42 of the divided area Aa in plan view, the opening of the light transmission hole 45 near the long side 42 of the divided area Aa The difference between the ratio and the aperture ratio of the light transmission holes 45 near the short side 43 can be reduced. Therefore, it is possible to suppress uneven illuminance of light emitted from the illuminance distribution adjustment plate 40 which may occur between the vicinity of the long side 42 and the vicinity of the short side 43 of the divided area Aa. That is, it is possible to effectively suppress the illuminance unevenness in the light emitting surface 20 a of the surface light source device 20 provided with the illuminance distribution adjusting plate 40.
 さらに、等開口率線50が、平面視において、区画領域Aaの長辺42と平行に延びる長軸52を有する楕円形状を有するので、区画領域Aaの長辺42近傍における、隣り合う光透過孔45間に存在する基材41の幅と、区画領域Aaの短辺43近傍における、隣り合う光透過孔45間に存在する基材41の幅との差を小さくすることができる。したがって、照度分布調整板40に外力や振動等が印加された場合に、当該外力や振動等に起因する応力が、区画領域Aaの短辺43近傍における、隣り合う光透過孔45間に存在する基材41に集中することを抑制することができる。すなわち、照度分布調整板40に外力や振動等が印加された場合に、照度分布調整板40が破損することを効果的に防止することができる。 Furthermore, since the equal aperture ratio line 50 has an elliptical shape having a major axis 52 extending in parallel to the long side 42 of the divided area Aa in plan view, adjacent light transmission holes in the vicinity of the long side 42 of the divided area Aa The difference between the width of the base material 41 present between 45 and the width of the base material 41 present between the adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa can be reduced. Therefore, when an external force, vibration or the like is applied to the illuminance distribution adjusting plate 40, a stress caused by the external force or vibration is present between adjacent light transmission holes 45 in the vicinity of the short side 43 of the divided area Aa. Concentration on the substrate 41 can be suppressed. That is, when external force or vibration is applied to the illuminance distribution adjusting plate 40, the illuminance distribution adjusting plate 40 can be effectively prevented from being damaged.

Claims (2)

  1.  光源と、前記光源と対向して配置され前記光源から出射した光の照度分布を調整する照度分布調整板とを備えた面光源装置であって、
     前記照度分布調整板は、
     前記光を透過させる複数の光透過孔が形成された基材を備え、
     前記基材は、1以上の区画領域を有し、
     各区画領域は、平面視において長辺及び短辺を有する長方形形状を有し、
     各区画領域において、
      当該区画領域は、規則的に配列された複数の要素領域にさらに区分けされ、
      前記基材の法線方向に沿って前記光源に投影したときに前記光源と重なる所定の領域以外の領域に位置する要素領域には、それぞれ一つの前記光透過孔が形成され、
      前記光透過孔は、当該光透過孔が形成された要素領域の面積に対する所定の開口率を有し、
      任意の前記光透過孔の中心と、当該光透過孔の開口率と等しい開口率を有する他の光透過孔の中心又は当該光透過孔の開口率と等しい開口率を有すると仮定した仮想等開口率点と、を通る等開口率線は、平面視において、前記長辺と平行に延びる長軸を有する楕円形状を有する、面光源装置。
    A surface light source device comprising: a light source; and an illuminance distribution adjusting plate disposed opposite to the light source and adjusting an illuminance distribution of light emitted from the light source,
    The illuminance distribution adjustment plate is
    The substrate includes a plurality of light transmission holes for transmitting the light.
    The substrate has one or more compartmental areas,
    Each divided region has a rectangular shape having a long side and a short side in plan view,
    In each compartment area,
    The divided area is further divided into a plurality of regularly arranged element areas,
    One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
    The light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
    A virtual equal aperture assumed to have the center of any light transmitting hole and the centers of other light transmitting holes having an opening ratio equal to the opening ratio of the light transmitting hole or the opening ratio equal to the opening ratio of the light transmitting hole An iso-aperture line passing through a point point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
  2.  光源と対向して配置され前記光源から出射した光の照度分布を調整する照度分布調整板であって、
     前記光を透過させる複数の光透過孔が形成された基材を備え、
     前記基材は、1以上の区画領域を有し、
     各区画領域は、平面視において長辺及び短辺を有する長方形形状を有し、
     各区画領域において、
      当該区画領域は、規則的に配列された複数の要素領域にさらに区分けされ、
      前記基材の法線方向に沿って前記光源に投影したときに前記光源と重なる所定の領域以外の領域に位置する要素領域には、それぞれ一つの前記光透過孔が形成され、
      前記光透過孔は、当該光透過孔が形成された要素領域の面積に対する所定の開口率を有し、
      任意の前記光透過孔の中心と、当該光透過孔の開口率と等しい開口率を有する他の光透過孔の中心又は当該光透過孔の開口率と等しい開口率を有すると仮定した仮想等開口率点と、を通る等開口率線は、平面視において、前記長辺と平行に延びる長軸を有する楕円形状を有する、照度分布調整板。
    An irradiance distribution adjusting plate disposed opposite to a light source and adjusting an irradiance distribution of light emitted from the light source,
    The substrate includes a plurality of light transmission holes for transmitting the light.
    The substrate has one or more compartmental areas,
    Each divided region has a rectangular shape having a long side and a short side in plan view,
    In each compartment area,
    The divided area is further divided into a plurality of regularly arranged element areas,
    One light transmission hole is formed in each of the element regions located in a region other than the predetermined region overlapping with the light source when projected onto the light source along the normal direction of the substrate;
    The light transmission hole has a predetermined aperture ratio to the area of the element region in which the light transmission hole is formed,
    A virtual equal aperture assumed to have the center of any light transmitting hole and the centers of other light transmitting holes having an opening ratio equal to the opening ratio of the light transmitting hole or the opening ratio equal to the opening ratio of the light transmitting hole An illuminance distribution adjusting plate, wherein an equal aperture ratio line passing through the index point has an elliptical shape having a major axis extending parallel to the long side in a plan view.
PCT/JP2018/033768 2017-09-22 2018-09-12 Area light source device and luminance distribution adjusting plate WO2019059060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182916A JP6888501B2 (en) 2017-09-22 2017-09-22 Surface light source device and illuminance distribution adjustment plate
JP2017-182916 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059060A1 true WO2019059060A1 (en) 2019-03-28

Family

ID=65810797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033768 WO2019059060A1 (en) 2017-09-22 2018-09-12 Area light source device and luminance distribution adjusting plate

Country Status (2)

Country Link
JP (1) JP6888501B2 (en)
WO (1) WO2019059060A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086347A1 (en) * 2006-01-27 2007-08-02 Opto Design, Inc. Planar illumination light source device and planar illumination device using the same
JP2012174372A (en) * 2011-02-17 2012-09-10 Sharp Corp Lighting apparatus, and liquid crystal display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272245A (en) * 2009-05-19 2010-12-02 Toshiba Corp Backlight unit and liquid crystal display equipped with this

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086347A1 (en) * 2006-01-27 2007-08-02 Opto Design, Inc. Planar illumination light source device and planar illumination device using the same
JP2012174372A (en) * 2011-02-17 2012-09-10 Sharp Corp Lighting apparatus, and liquid crystal display

Also Published As

Publication number Publication date
JP6888501B2 (en) 2021-06-16
JP2019061739A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US8506151B2 (en) Backlight unit
US7824091B2 (en) Backlight arrangement
US20070064444A1 (en) Display device
US9885824B2 (en) Illumination apparatus, liquid-crystal display apparatus, and electronic device
US9025087B2 (en) Liquid crystal display device and television receiver
US8804066B2 (en) Backlight unit and liquid crystal display device having the same
JP2002124112A (en) Backlight and liquid crystal display device
WO2006019967A2 (en) Display with bright backlight
JP2007258152A (en) Backlight unit and display device provided with the same
JP2019185921A (en) Illuminating device and display device comprising the same
JP6180312B2 (en) LED backlight
TWI225139B (en) Panel light source device and back light module for liquid crystal device
WO2019177090A1 (en) Planar light source device, laminate used in planar light source device, and display apparatus
JP5470506B1 (en) Planar illumination device and display device having planar illumination device
JP2019179711A (en) Surface light source device, laminate used for surface light source device, and display device
JP6888501B2 (en) Surface light source device and illuminance distribution adjustment plate
JP6748950B2 (en) Surface light source device and illuminance distribution adjustment plate
JP2019160633A (en) Surface light source device
JP2019061738A (en) Surface light source device and illuminance distribution adjustment plate
JP2019175808A (en) Surface light source device
CN110609413A (en) Illumination device and display device
JP2020119711A (en) Surface light source device and display device
JP2020004658A (en) Illuminance distribution adjustment plate, surface light source device and display device
JP2020009661A (en) Surface light source device and display device
KR102321473B1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859737

Country of ref document: EP

Kind code of ref document: A1