WO2019059032A1 - Exhaust gas purification filter - Google Patents

Exhaust gas purification filter Download PDF

Info

Publication number
WO2019059032A1
WO2019059032A1 PCT/JP2018/033529 JP2018033529W WO2019059032A1 WO 2019059032 A1 WO2019059032 A1 WO 2019059032A1 JP 2018033529 W JP2018033529 W JP 2018033529W WO 2019059032 A1 WO2019059032 A1 WO 2019059032A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
combustion
catalyst layer
nox reduction
Prior art date
Application number
PCT/JP2018/033529
Other languages
French (fr)
Japanese (ja)
Inventor
知弘 足立
一樹 白田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019059032A1 publication Critical patent/WO2019059032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof

Definitions

  • the present invention relates to an exhaust gas purification filter used to purify the exhaust gas of an internal combustion engine such as a diesel engine.
  • PM Particulate Matter
  • NOx nitrogen oxides
  • DPF heat-resistant exhaust gas purification filter
  • the DPF collects PM.
  • pressure loss increases as PM is collected. Therefore, when the pressure loss of the DPF rises, it is necessary to regenerate the DPF.
  • the DPF is heated by a burner or a heater to burn the deposited PM, convert it to carbon dioxide gas, and release it to the outside.
  • the catalyst is supported on the DPF, and the PM is burned by the catalytic action.
  • the combustion operation by a burner or a heater can be reduced.
  • the PM combustion catalyst is supported in advance on the DPF made of heat resistant ceramic, it is possible to carry out the combustion reaction as well as the PM collection.
  • platinum group metals such as platinum and palladium are widely used as PM combustion catalysts.
  • the method of removing NOx is to perform selective catalytic reduction (SCR) using a reducing agent.
  • SCR selective catalytic reduction
  • an SCR filter in which a NOx reduction and removal catalyst is supported on a filter base made of a ceramic honeycomb, and ammonia as a reducing agent are used.
  • ammonia reduces NOx contained in the exhaust gas and converts it to nitrogen. That is, NOx is removed from the exhaust gas that has passed through the SCR filter.
  • Urea water is generally used as a source of ammonia. Urea water can be supplied upstream of the SCR filter to hydrolyze urea in the exhaust gas to produce ammonia.
  • diesel engine exhaust gas purification systems often include a DPF having a function of collecting PM and an SCR filter having a function of purifying NOx separately as described above (for example, refer to Patent Document 1).
  • a platinum group metal used as a PM combustion catalyst has a strong oxidizing action, and thus oxidizes ammonia.
  • SCRF even if ammonia is supplied from the upstream side, the function of reducing and removing NOx is impaired by the platinum group metal used for the PM combustion catalyst.
  • an object of the present invention is to provide an exhaust gas purification filter having high PM combustion performance that can be burned at a lower temperature and NOx reduction performance in one filter substrate.
  • the present invention comprises a porous filter base having a plurality of cells partitioned by cell walls, a PM combustion catalyst which burns and purifies PM, and an NOx reduction and removal catalyst which reduces and purifies NOx.
  • the PM combustion catalyst forms a PM combustion catalyst layer included in part or all of the surface of the cell wall on the side where the exhaust gas flows.
  • the NOx reduction and removal catalyst forms a NOx reduction catalyst layer contained in part or all of the surface of the cell wall on the side where the exhaust gas flows out.
  • the PM combustion catalyst is a molten salt type catalyst including a composite oxide of cesium and vanadium in which the molar ratio of cesium to vanadium (Cs / V) is 0.5 ⁇ Cs / V ⁇ 1.5.
  • the molten salt type catalyst containing a composite oxide of cesium and vanadium is a direct oxidation type catalyst that burns PM using oxygen in the gas phase.
  • the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase. Therefore, in the combustion of PM involving catalyst (solid) -PM (solid) -oxygen (gas), when the catalyst becomes a liquid phase, the contact with PM increases dramatically, and high PM combustion performance is expressed. It is considered.
  • the composite oxide of cesium and vanadium is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in a temperature range where the exhaust gas temperature is relatively low, ammonia can be supplied to the NOx reduction catalyst layer located downstream of the exhaust gas flow without being oxidized, and NOx reduction performance can be exhibited.
  • FIG. 1 is a cross-sectional view showing a part of an exhaust gas purification filter according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a part of an exhaust gas purification filter according to a second embodiment of the present invention.
  • the exhaust gas purification filter 1 is provided, for example, in an exhaust passage (not shown) of an internal combustion engine such as a diesel engine, and collects particulate matter (hereinafter referred to as PM) in exhaust gas. It is a thing.
  • a reducing agent supply device (not shown) can be disposed on the upstream side of the exhaust gas purification filter 1.
  • the exhaust gas purification filter 1 has a porous filter base 4 having a plurality of cells 3 partitioned by cell walls 2, a PM combustion catalyst layer 5 including a PM combustion catalyst for burning and purifying PM, and NOx. And the NOx reduction catalyst layer 6 including the NOx reduction removal catalyst to be purified.
  • the filter substrate 4 is a wall flow type structure. That is, a plurality of cells 3 partitioned by the cell walls 2 are provided, and the end portions of adjacent cells 3 are alternately sealed. Thus, two types of cells 3 are adjacent to each other via the cell wall 2. The first is the exhaust gas inflow side cell 3 which is open at the upstream side of the exhaust gas and the downstream side is closed. The second is the exhaust gas outlet side cell 3 in which the upstream side of the exhaust gas is blocked and the downstream side is open.
  • the PM combustion catalyst layer 5 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows. Further, the NOx reduction catalyst layer 6 is provided on the entire surface of the cell wall 2 on the exhaust gas outflow side.
  • the exhaust gas purification filter 1 has the PM combustion catalyst layer 5 disposed on the upstream side and the NOx reduction catalyst layer 6 disposed on the downstream side across the cell wall 2.
  • the exhaust gas purification filter 1 can circulate the exhaust gas through the pores provided in the cell wall 2 of the filter substrate 4.
  • the exhaust gas contains harmful substances such as PM and NOx.
  • PM is collected by the inside and the surface of the cell wall 2 on the side where the exhaust gas flows in, and further by the PM combustion catalyst layer 5.
  • the NOx in the exhaust gas moves to the downstream side of the filter substrate 4 through the pores of the cell wall 2.
  • a reducing agent such as ammonia
  • NOx is reduced and removed by the NOx reduction catalyst contained in the NOx reduction catalyst layer 6.
  • PM in the collected exhaust gas is burned and removed promptly by the PM combustion catalyst contained in the PM combustion catalyst layer 5.
  • the exhaust gas purification filter 1 of the present embodiment particularly has the following configuration.
  • the material of the filter substrate 4 may be a porous material made of heat-resistant ceramic, metal material or the like.
  • heat resistant ceramics silicon carbide (SiC), cordierite, silicon nitride, aluminum titanate etc. can be used, for example.
  • metal material for example, a stainless alloy, an Fe-Cr-Al alloy or the like can be used.
  • silicon carbide or cordierite is preferable from the viewpoint of heat resistance and catalyst coatability.
  • the average pore diameter of the pores provided in the cell wall 2 is not particularly limited. For example, by setting the average pore diameter to 5 ⁇ m to 50 ⁇ m, it is possible to efficiently collect PM while suppressing an excessive increase in pressure loss at the time of PM deposition.
  • the cross-sectional shape of the cell 3 is not particularly limited. From the viewpoint of increasing the contact area between the catalyst and PM, it is preferable to use any one of four to octagonal shapes.
  • the formation density of the cells 3 is not particularly limited.
  • the number of cells 3 is preferably 200 to 400 cells per square inch from the viewpoint that the contact area between the catalyst and PM can be increased. By setting the number of cells to 200 cells or more, the contact area between the catalyst and PM can be sufficiently secured. Further, by setting the number of cells to 400 cells or less, clogging due to PM deposition on the cells 3 can be less likely to occur.
  • the PM combustion catalyst of the present embodiment is a molten salt type catalyst including a composite oxide of cesium and vanadium (hereinafter, described as a Cs-V composite oxide).
  • the molar ratio of cesium to vanadium (Cs / V) is 0.5 ⁇ Cs / V ⁇ 1.5.
  • the molten salt type catalyst containing the Cs-V complex oxide is a direct oxidation type catalyst that burns PM using oxygen in the gas phase.
  • the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase.
  • the catalyst in the combustion of PM involving catalyst (solid)-PM (solid)-oxygen (gas), the catalyst is in a liquid phase, the contact with PM is dramatically increased, and PM combustion in a low temperature range It can be performed. From the above, it is considered that the molten salt type catalyst containing the Cs-V complex oxide exhibits high PM combustion performance.
  • the PM combustion catalyst preferably includes a carrier for holding the Cs-V complex oxide.
  • the Cs-V complex oxide alone has high PM flammability, there is a concern that the contact ratio between PM and the catalyst is lowered due to the low specific surface area of the catalyst, and the combustion reaction is unlikely to occur.
  • the carrier when the carrier is not used, there is a concern that aggregation easily occurs under the influence of temperature and composition fluctuation of the exhaust gas, and PM combustion activity decreases. Therefore, by holding the Cs-V complex oxide in contact with the surface of the carrier, the specific surface area of the Cs-V complex oxide can be increased to suppress aggregation in a high temperature atmosphere.
  • the carrier for example, Al 2 O 3 , SiO 2 , TiO 2 , CeO 2 , ZrO 2 , CeO 2 -ZrO 2 , MgO or the like can be used.
  • the thickness of the PM combustion catalyst layer 5 is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the PM combustion catalyst layer 5 is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the PM combustion catalyst layer 5 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows, but may be provided on a part of the surface. In the case of providing them all, although the entire area of the surface of the cell wall 2 can be catalyzed, it may cause an increase in pressure loss. Therefore, the PM combustion performance of the exhaust gas purification filter 1 and the pressure can be reduced by making the length of the PM combustion catalyst layer 5 shorter than the length (depth) of the cell 3 and providing it on a part of the surface of the cell wall 2 It is preferable to adjust the balance of losses.
  • a part of the PM combustion catalyst may enter into the cell wall 2. Thereby, the combustion of PM collected deep in the cell wall 2 can be promoted.
  • pressure loss increases, so it is necessary to adjust the amount of PM combustion catalyst that enters inside.
  • the Cs-V complex oxide can promote the PM combustion reaction utilizing oxygen in the gas phase in a temperature range lower than that in the case of using a platinum group metal. That is, it can be said that high PM combustion performance is exhibited.
  • zeolite containing a base metal component selected from one or more of V 2 O 5 -TiO 2 -WO 3 , TiO 2 -WO 3 , copper and iron components can be used.
  • zeolite containing a copper component is preferable from the viewpoint of NOx reduction performance and heat resistance.
  • the NOx reduction catalyst layer 6 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows out, but may be provided on part of the surface. In the case of providing them all, although the entire area of the surface of the cell wall 2 can be catalyzed, it may cause an increase in pressure loss.
  • the NOx reduction performance of the exhaust gas purification filter 1 and the pressure loss You can also adjust the balance.
  • a part of the NOx reduction catalyst may enter into the cell wall 2.
  • the reduction of NOx can be promoted.
  • a large amount of the NOx reduction catalyst enters the inside of the cell wall 2, this causes an increase in pressure loss, so it is necessary to adjust the amount of the NOx reduction catalyst introduced inside.
  • the NOx in the exhaust gas flowing into the exhaust gas purification filter 1 moves to the downstream side of the filter substrate 4 through the pores of the cell wall 2 together with the reducing agent (ammonia) supplied from the upstream side of the exhaust gas purification filter 1.
  • the NOx in the exhaust gas having moved to the downstream side of the filter substrate 4 is reduced and removed by the NOx reduction catalyst contained in the NOx reduction catalyst layer 6 provided on the surface of the cell wall 2 on the exhaust gas outflow side.
  • the collected PM is oxygen in the gas phase at a temperature range lower than that in the case of using a platinum group metal by the catalytic action of the Cs-V complex oxide contained in the PM combustion catalyst layer 5 at the time of filter regeneration treatment. React with it and burn off quickly.
  • the exhaust gas purification filter 1 is, as shown in FIG. 2, a porous filter base 4 having a plurality of cells 3 partitioned by cell walls 2 and a particulate matter combustion catalyst for burning and purifying particulate matter.
  • a PM combustion catalyst layer 5 that is a first catalyst layer that includes the catalyst and a NOx reduction catalyst layer 6 that is a second catalyst layer that includes a NOx reduction catalyst that reduces and purifies NOx are provided.
  • the PM combustion catalyst layer 5 is provided on part or all of the surface of the cell wall 2 on the side where the exhaust gas flows. Further, the NOx reduction catalyst layer 6 is provided on part or all of the surface of the cell wall 2 on the side where the exhaust gas flows out.
  • the exhaust gas purification filter 1 can circulate the exhaust gas through the pores provided in the cell wall 2 of the filter substrate 4.
  • the exhaust gas contains harmful substances such as particulate matter and NOx. Among them, particulate matter is collected by the inside and the surface of the cell wall 2 and further by the PM combustion catalyst layer 5. Further, NOx in the exhaust gas moves to the downstream side of the filter base 4 through the pores of the cell wall 2.
  • the reducing agent such as ammonia is supplied from the upstream side of the exhaust gas purification filter 1 to make the NOx reduction catalyst contained in the NOx reduction catalyst layer 6 work to reduce and remove it.
  • the reducing agent such as ammonia
  • the particulate matter in the exhaust gas collected in the PM combustion catalyst layer 5 is promptly burned and removed by the particulate matter combustion catalyst contained in the PM combustion catalyst layer 5.
  • the exhaust gas purification filter 1 of the present embodiment particularly has the following configuration.
  • the filter substrate 4 has a wall flow type structure, and includes a plurality of cells 3 partitioned by the cell walls 2, and the end portions of adjacent cells are alternately sealed. Thus, two types of cells 3 are adjacent to each other via the cell wall 2.
  • the first is an exhaust gas inflow cell in which the upstream side of the exhaust gas is opened as the inlet 7 and the downstream side is closed to form the back 8.
  • the second is an exhaust gas outflow cell in which the upstream side of the exhaust gas is closed to form a back 9 and the downstream side is opened as the outlet 10.
  • the material of the filter substrate 4 may be a porous material made of heat-resistant ceramic, metal material or the like.
  • heat resistant ceramics silicon carbide (SiC), cordierite, silicon nitride, aluminum titanate etc. can be used, for example.
  • metal material for example, a stainless alloy, an Fe-Cr-Al alloy or the like can be used.
  • silicon carbide is preferable from the viewpoint of heat resistance and catalyst coatability.
  • the average pore diameter of the pores provided in the cell wall 2 is not particularly limited, but can be, for example, 5 ⁇ m to 50 ⁇ m. When the average pore size is 5 ⁇ m or more, an excessive increase in pressure loss can be suppressed even if particulate matter is deposited.
  • the cross-sectional shape of the cell 3 is not particularly limited, but is preferably any one of four to octagonal from the viewpoint that the contact area between the catalyst and the particulate matter can be increased.
  • the formation density of the cells 3 is not particularly limited, but the number of the cells 3 is preferably 200 to 400 cells per square inch from the viewpoint that the contact area between the catalyst and the particulate matter can be increased as described above. .
  • the number of cells is preferably 200 to 400 cells per square inch from the viewpoint that the contact area between the catalyst and the particulate matter can be increased as described above. .
  • the number of cells By setting the number of cells to 200 cells or more, the contact area between the catalyst and the particulate matter can be sufficiently secured.
  • the number of cells to 400 cells or less, clogging due to particulate matter deposition on the cells 3 can be less likely to occur.
  • the particulate matter combustion catalyst of the present embodiment is a molten salt type catalyst including a composite oxide of cesium and vanadium (hereinafter, described as a Cs-V composite oxide).
  • the molar ratio of cesium to vanadium (Cs / V) is 0.5 ⁇ Cs / V ⁇ 1.5.
  • the molten salt type catalyst containing the Cs-V complex oxide is a direct oxidation type catalyst that burns particulate matter using oxygen in the gas phase.
  • the molten salt catalyst melts in the vicinity of the reaction temperature with the particulate matter to form a liquid phase.
  • the particulate matter combustion catalyst preferably includes a carrier for retaining the Cs-V complex oxide.
  • Cs-V complex oxide alone has high particulate matter combustibility, the contact ratio between particulate matter and catalyst decreases due to the low specific surface area of the catalyst, which may make it difficult to cause a combustion reaction. is there.
  • the carrier in the case where the carrier is not used, there is a risk that aggregation may be easily performed and particulate matter combustion activity may be reduced under the influence of temperature and composition fluctuations of the exhaust gas. Therefore, by bringing the Cs-V complex oxide into contact with the surface of the carrier and holding it, aggregation in a high temperature atmosphere can be suppressed while increasing the specific surface area of the Cs-V complex oxide.
  • the carrier for example, Al 2 O 3 , SiO 2 , TiO 2 , CeO 2 , ZrO 2 , CeO 2 -ZrO 2 , MgO or the like can be used.
  • the particulate matter combustion catalyst forms a PM combustion catalyst layer 5 on the inlet 7 side of the filter base 4 across the cell wall 2, and the NOx reduction catalyst on the outlet 10 side across the cell wall 2.
  • the NOx reduction catalyst layer 6 is formed. Either or both of the particulate matter combustion catalyst and the reduction catalyst may be present in the cell wall 2, but the abundance ratio in the cell wall 2 is 50% or less in order to reduce pressure loss desirable.
  • the PM combustion catalyst layer 5 is thicker as going from the inlet 7 of the filter substrate 4 to the depth, and the NOx reduction catalyst layer 6 is formed thicker as it goes from the depth of the filter substrate 4 to the outlet 10 It is characterized by The thicknesses of the PM combustion catalyst layer 5 and the NOx reduction catalyst layer 6 may be changed linearly, but may be changed stepwise, such as stepwise. Further, since the pressure difference can be provided only by changing either one of the thickness of the PM combustion catalyst layer 5 and the thickness of the NOx reduction catalyst layer 6, it is sufficient to change at least one of the thicknesses.
  • the thickness of the PM combustion catalyst layer 5 is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the PM combustion catalyst layer 5 is preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the Cs-V complex oxide is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in the temperature range where the exhaust gas temperature is relatively low, the ammonia can be supplied to the NOx reduction catalyst layer 6 located downstream of the exhaust gas flow without being oxidized, and the NOx reduction performance can be exhibited.
  • zeolite containing a base metal component selected from one or more of V 2 O 5 -TiO 2 -WO 3 , TiO 2 -WO 3 , copper and iron components can be used.
  • zeolite containing a copper component is preferable from the viewpoint of NOx reduction performance and heat resistance.
  • the Cs-V complex oxide has a weak interaction with ammonia acting as a reducing agent in the NOx reduction reaction, the reducing agent such as ammonia is added from the upstream side of the exhaust gas purification filter 1 in a relatively low temperature range. Even when supplied, the Cs-V complex oxide can be circulated to the downstream side of the filter substrate 4 without oxidizing the reducing agent.
  • the catalyst of the Cs-V complex oxide contained in the PM combustion catalyst layer 5 has oxygen of the collected PM in the gas phase in a temperature range lower than that of a catalyst using a platinum group metal. It can be made to react quickly and burn off.
  • high PM combustion performance can be exhibited in the cell 3 on the exhaust gas inflow side, and NOx reduction performance can be exhibited also on the cell 3 on the exhaust gas outflow side.
  • the PM combustion catalyst layer 5 is made thicker as going from the inlet 7 of the filter base 4 to the inner side, or from the back of the filter base 4 to the outlet 10.
  • the NOx reduction catalyst layer 6 thicker as it goes, it is possible to make a difference in pressure loss. Since the air passes preferentially through the low pressure drop, the exhaust gas will flow preferentially in the vicinity of the inlet 7 of the filter substrate 4.
  • NOx reduction catalyst NOx reduction catalyst
  • the creepage distance in which the exhaust gas flows through the NOx reduction catalyst layer 6 can be lengthened, and the PM combustion catalyst layer 5 and the NOx reduction catalyst layer As compared with the case where the thickness of 6 is made uniform, NOx can be purified with high efficiency.
  • the exhaust gas purification filter 1 in the exhaust gas purification filter 1, can exhibit high particulate matter combustion performance in the cell 3 on the exhaust gas inflow side, and can exhibit NOx reduction performance in the cell 3 on the exhaust gas outflow side. Can be provided.
  • the exhaust gas purification filter 1 reduces the NOx by the porous filter base 4 having the plurality of cells 3 partitioned by the cell walls 2, the PM combustion catalyst that burns and cleans the PM, and And a NOx reduction and removal catalyst for purification.
  • the PM combustion catalyst is included in part or all of the surface of the cell wall 2 on the side where the exhaust gas flows, and forms a PM combustion catalyst layer 5.
  • the NOx reduction and removal catalyst is included in part or all of the surface of the cell wall 2 on the side where the exhaust gas flows out, and forms the NOx reduction catalyst layer 6.
  • the PM combustion catalyst is a molten salt type catalyst containing a composite oxide of cesium and vanadium, wherein the molar ratio of cesium to vanadium (Cs / V) is 0.5 ⁇ Cs / V ⁇ 1.5. There is.
  • the molten salt type catalyst containing a composite oxide of cesium and vanadium is a direct oxidation type catalyst that burns PM using oxygen in the gas phase.
  • the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase. Therefore, in the combustion of PM involving catalyst (solid) -PM (solid) -oxygen (gas), when the catalyst becomes a liquid phase, the contact with PM increases dramatically, and high PM combustion performance is expressed. Conceivable.
  • the composite oxide of cesium and vanadium is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in the temperature range where exhaust gas temperature is relatively low, ammonia can be supplied to the NOx reduction catalyst layer 6 located downstream of the exhaust gas flow without oxidizing ammonia, so the exhaust gas purification filter 1 has NOx reduction performance. Can be demonstrated.
  • an exhaust gas purification filter having high PM combustion performance and NOx reduction performance can be provided.
  • the exhaust gas purification filter 1 is a wall flow type filter base 4 having a plurality of cells partitioned by porous cell walls 2 and particles supported on the filter base 4 to burn and purify particulate matter.
  • a NOx reduction catalyst for purifying NOx is provided.
  • the particulate matter combustion catalyst forms a first catalyst layer on the inlet 7 side of the filter substrate 4 with the cell wall 2 interposed therebetween, and the NOx reduction catalyst forms a second catalyst layer on the outlet 10 side with the cell wall 2 interposed therebetween.
  • the first catalyst layer is formed thicker as it goes from the inlet 7 of the filter substrate 4 to the back, or the second catalyst layer is formed thicker as it goes from the back of the filter substrate 4 to the outlet 10 It is good to be doing.
  • the particulate matter combustion catalyst is a cesium-vanadium composite oxide in which the molar ratio of cesium to vanadium (Cs / V) is 0.5 ⁇ Cs / V ⁇ 1.5, It may be a molten salt type catalyst containing a cerium-containing oxide.
  • the particulate matter combustion catalyst comprising a catalyst comprising a composite oxide of vanadium and cesium, does not require the NO 2 in the combustion of the soot, the exhaust gas particulate containing NO 2 Even if some of the cell wall 2 carrying the material combustion catalyst may permeate, the particulate matter combustion catalyst staying in the cell 3 on the inflow side has a large particle size compared to NO 2 It can be burned.
  • the fact that the exhaust gas containing NO 2 permeates through a part of the cell wall 2 supporting the particulate matter combustion catalyst means that the exhaust gas flows on the surface of the NOx reduction catalyst at the outlet 10 side of the filter substrate 4 The distance can be increased, and efficient NOx purification can be performed.
  • the thickness of the first catalyst layer may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the particulate matter combustion catalyst may be supported on an oxide carrier.
  • fine unevenness of the carrier suppresses unintended movement of the molten salt catalyst in the liquid phase.
  • the specific surface area of the molten salt catalyst can be increased, and the contact with combustion and combustion can be promoted.
  • the exhaust gas purification filter according to the present invention has both high PM combustion performance and NOx reduction performance, the exhaust gas purification filter for purifying the exhaust gas generated from various internal combustion engines and the catalyst DPF for purifying the exhaust gas of a diesel engine It is useful as etc.

Abstract

An exhaust gas purification filter comprises a porous filter base material having a plurality of cells demarcated by cell walls, a PM combustion catalyst layer including a PM combustion catalyst that combusts and purifies PM, and a NOx reduction catalyst layer including a NOx reduction/removal catalyst that reduces and purifies NOx. The PM combustion catalyst layer comprises part or all of the surface of the cell walls on the side at which exhaust gas flows in. The NOx reduction catalyst layer comprises part or all of the surface of the cell walls on the side at which the exhaust gas flows out. The PM combustion catalyst is configured as a molten salt catalyst which includes a composite oxide of cesium and vanadium and in which the molar ratio (Cs/V) of cesium to vanadium is 0.5 ≤ Cs/V ≤ 1.5, whereby there is obtained an exhaust gas purification filter has both high PM combustion performance and high NOx reduction performance.

Description

排ガス浄化フィルタExhaust gas purification filter
 本発明は、ディーゼルエンジン等の内燃機関の排ガスの浄化に使用される排ガス浄化フィルタに関するものである。 The present invention relates to an exhaust gas purification filter used to purify the exhaust gas of an internal combustion engine such as a diesel engine.
 ディーゼルエンジンの排ガスには、固体状炭素微粒子や、液体又は固体状の高分子量炭化水素微粒子などの粒子状物質(PM:Particulate Matter)や、窒素酸化物(NOx)が有害成分として含まれている。これらを除去する方法が種々検討されている。 Exhaust gas from diesel engines contains particulate matter (PM: Particulate Matter) such as solid carbon particulates, liquid or solid high molecular weight hydrocarbon particulates, and nitrogen oxides (NOx) as harmful components. . Various methods for removing these have been studied.
 PMを除去する一つの方法は、セラミックハニカム、セラミックフォーム、金属発泡体等の耐熱性の排ガス浄化フィルタ(DPF:Diesel Particulate Filter)を用いるものである。この方法では、DPFがPMを捕集する。DPFはPMの捕集に伴って、圧力損失が上昇してしまう。そこで、DPFの圧力損失が上昇した場合には、DPFを再生する必要がある。DPFの再生では、バーナー又はヒーター等でDPFを加熱し、堆積したPMを燃焼させ、炭酸ガスに変えて外部に放出する。 One method of removing PM is to use a heat-resistant exhaust gas purification filter (DPF: Diesel Particulate Filter) such as ceramic honeycomb, ceramic foam, metal foam or the like. In this method, the DPF collects PM. In the DPF, pressure loss increases as PM is collected. Therefore, when the pressure loss of the DPF rises, it is necessary to regenerate the DPF. In the regeneration of the DPF, the DPF is heated by a burner or a heater to burn the deposited PM, convert it to carbon dioxide gas, and release it to the outside.
 DPFの再生には、別の方法もある。触媒をDPFに担持し、触媒作用によりPMを燃焼させるものである。この方法では、バーナー又はヒーターなどによる燃焼操作を軽減することができる。例えば、耐熱性セラミックからなるDPFに予めPM燃焼触媒を担持させておくと、PMの捕集と共に燃焼反応を行わせることが可能である。PM燃焼性能(PMを低い温度で燃焼させる性能)および耐久性の観点から、PM燃焼触媒には白金やパラジウム等の白金族金属が広く使用される。 There are other ways to regenerate the DPF. The catalyst is supported on the DPF, and the PM is burned by the catalytic action. In this method, the combustion operation by a burner or a heater can be reduced. For example, when the PM combustion catalyst is supported in advance on the DPF made of heat resistant ceramic, it is possible to carry out the combustion reaction as well as the PM collection. From the viewpoint of PM combustion performance (performance of burning PM at a low temperature) and durability, platinum group metals such as platinum and palladium are widely used as PM combustion catalysts.
 また、NOxを除去する方法は、還元剤を用いて選択的触媒還元(SCR)を行うものである。この方法では主に、セラミックハニカムからなるフィルタ基材にNOx還元除去触媒を担持したSCRフィルタと、還元剤としてアンモニア等が用いられる。そして、排ガスがSCRフィルタを通過する際に、SCRフィルタ上ではアンモニアが排ガスに含まれるNOxの還元をして、窒素に変える。つまり、SCRフィルタを通過した排ガスからNOxが除去される。アンモニアの供給源としては、一般に尿素水が用いられる。尿素水をSCRフィルタの上流側で供給すると、排ガス中で尿素を加水分解して、アンモニアを生成することができる。 Further, the method of removing NOx is to perform selective catalytic reduction (SCR) using a reducing agent. In this method, mainly, an SCR filter in which a NOx reduction and removal catalyst is supported on a filter base made of a ceramic honeycomb, and ammonia as a reducing agent are used. Then, when the exhaust gas passes through the SCR filter, on the SCR filter, ammonia reduces NOx contained in the exhaust gas and converts it to nitrogen. That is, NOx is removed from the exhaust gas that has passed through the SCR filter. Urea water is generally used as a source of ammonia. Urea water can be supplied upstream of the SCR filter to hydrolyze urea in the exhaust gas to produce ammonia.
 ディーゼルエンジンの排ガス浄化システムでは、厳しい排ガス基準をクリアするために、上述のような、PMを捕集する機能を有するDPFとNOxを浄化する機能を有するSCRフィルタとを別個に備えることが多い(例えば、特許文献1参照)。 In order to meet strict exhaust gas standards, diesel engine exhaust gas purification systems often include a DPF having a function of collecting PM and an SCR filter having a function of purifying NOx separately as described above ( For example, refer to Patent Document 1).
 このような排ガス浄化システムは高コストであり、システムの占有体積が大きいといった課題もある。そのため排ガス浄化システムに対して、低コスト化、コンパクト化への要望が高まっている。これらの要望に応えるために、DPFにPM燃焼触媒とNOxを還元除去するためのSCR触媒を担持したSCRF(SCR on Filter)が開示されている(例えば、特許文献2参照)。 Such an exhaust gas purification system is expensive and has a problem that the volume occupied by the system is large. Therefore, there is an increasing demand for cost reduction and downsizing of the exhaust gas purification system. In order to meet these needs, there is disclosed an SCRF (SCR on Filter) in which a DPF carries an PM combustion catalyst and an SCR catalyst for reducing and removing NOx (see, for example, Patent Document 2).
 このようなSCRFでは、フィルタ基材にNOx還元除去触媒は担持されているが、PM燃焼触媒までを担持する場合、NOx還元除去触媒とPM燃焼触媒の組み合わせを考慮する必要があった。 In such SCRF, although the NOx reduction and removal catalyst is supported on the filter substrate, it is necessary to consider the combination of the NOx reduction and removal catalyst and the PM combustion catalyst when supporting up to the PM combustion catalyst.
 なぜならば、NOx還元除去触媒とPM燃焼触媒とを併用することはNOxを還元除去する機能が損なわれてしまうためである。より詳しく説明すると、PM燃焼触媒として用いる白金族金属は、強い酸化作用を有しているために、アンモニアを酸化してしまうという事例があげられる。SCRFにおいて、上流側からアンモニアを供給してもPM燃焼触媒に使用した白金族金属によって、NOxを還元除去する機能が損なわれてしまうためである。 The reason is that the combined use of the NOx reduction and removal catalyst and the PM combustion catalyst impairs the function of reducing and removing NOx. More specifically, a platinum group metal used as a PM combustion catalyst has a strong oxidizing action, and thus oxidizes ammonia. In SCRF, even if ammonia is supplied from the upstream side, the function of reducing and removing NOx is impaired by the platinum group metal used for the PM combustion catalyst.
 つまり、NOxを還元除去するという機能を損うことのないPM燃焼触媒を用いて、フィルタに堆積したPMをより低い温度で燃焼させることまでは、配慮がされていなかった。 That is, no consideration was given to burning the PM deposited on the filter at a lower temperature using the PM combustion catalyst that does not impair the function of reducing and removing NOx.
 そこで本発明は、一つのフィルタ基材において、より低い温度で燃焼できるという高いPM燃焼性能と、NOx還元性能とを併せ持つ排ガス浄化フィルタを提供することを目的とする。 Therefore, an object of the present invention is to provide an exhaust gas purification filter having high PM combustion performance that can be burned at a lower temperature and NOx reduction performance in one filter substrate.
特開2014-224536号公報JP 2014-224536 A 特開2015-186802号公報JP, 2015-186802, A
 従来のSCRFでは、フィルタに堆積したPMを非常に高い温度で燃焼させる必要があった。 In the conventional SCRF, it is necessary to burn the PM deposited on the filter at a very high temperature.
 本発明は、セル壁で区画された複数のセルを有する多孔質のフィルタ基材と、PMを燃焼して浄化するPM燃焼触媒と、NOxを還元して浄化するNOx還元除去触媒とを備えている。また、PM燃焼触媒は、排ガスが流入する側の前記セル壁の表面の一部または全部に含まれるPM燃焼触媒層を形成している。また、NOx還元除去触媒は、排ガスが流出する側の前記セル壁の表面の一部または全部に含まれるNOx還元触媒層を形成している。また、PM燃焼触媒は、バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である、セシウムとバナジウムの複合酸化物を含む溶融塩型触媒である。 The present invention comprises a porous filter base having a plurality of cells partitioned by cell walls, a PM combustion catalyst which burns and purifies PM, and an NOx reduction and removal catalyst which reduces and purifies NOx. There is. In addition, the PM combustion catalyst forms a PM combustion catalyst layer included in part or all of the surface of the cell wall on the side where the exhaust gas flows. Further, the NOx reduction and removal catalyst forms a NOx reduction catalyst layer contained in part or all of the surface of the cell wall on the side where the exhaust gas flows out. In addition, the PM combustion catalyst is a molten salt type catalyst including a composite oxide of cesium and vanadium in which the molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5.
 セシウムとバナジウムの複合酸化物を含む溶融塩型触媒は、気相中の酸素を利用してPMを燃焼させる、直接酸化型の触媒である。また、溶融塩型触媒は、PMとの反応温度近傍において溶融し、液相となる。そのため、触媒(固体)-PM(固体)-酸素(気体)が関与するPMの燃焼において、触媒が液相となることでPMとの接触が飛躍的に増大し、高いPM燃焼性能を発現すると考えられている。また、セシウムとバナジウムの複合酸化物は、NOx還元反応において還元剤として作用するアンモニアとの相互作用が弱いという特徴を有する。したがって、排ガス温度が比較的低い温度域においては、アンモニアを酸化することなく、排ガス流れの下流に位置するNOx還元触媒層に供給することができ、NOx還元性能を発揮することができる。 The molten salt type catalyst containing a composite oxide of cesium and vanadium is a direct oxidation type catalyst that burns PM using oxygen in the gas phase. In addition, the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase. Therefore, in the combustion of PM involving catalyst (solid) -PM (solid) -oxygen (gas), when the catalyst becomes a liquid phase, the contact with PM increases dramatically, and high PM combustion performance is expressed. It is considered. Further, the composite oxide of cesium and vanadium is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in a temperature range where the exhaust gas temperature is relatively low, ammonia can be supplied to the NOx reduction catalyst layer located downstream of the exhaust gas flow without being oxidized, and NOx reduction performance can be exhibited.
 これにより、高いPM燃焼性能と、NOx還元性能とを併せ持つ排ガス浄化フィルタを提供することができる。 As a result, it is possible to provide an exhaust gas purification filter having both high PM combustion performance and NOx reduction performance.
図1は、本発明の第1の実施の形態における排ガス浄化フィルタの一部を示す断面図である。FIG. 1 is a cross-sectional view showing a part of an exhaust gas purification filter according to a first embodiment of the present invention. 図2は、本発明の第2の実施の形態における排ガス浄化フィルタの一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of an exhaust gas purification filter according to a second embodiment of the present invention.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施の形態)
 本発明の一様態について添付図面を用いて説明する。
First Embodiment
One embodiment of the present invention will be described with reference to the attached drawings.
 図1に示すように、排ガス浄化フィルタ1は、例えば、ディーゼルエンジン等の内燃機関の排気通路(図示せず)に設けられ、排ガス中の粒子状物質(以下、PMと記載)を捕集するものである。排ガス浄化フィルタ1の上流側において、還元剤の供給装置(図示せず)を配置することができるものである。 As shown in FIG. 1, the exhaust gas purification filter 1 is provided, for example, in an exhaust passage (not shown) of an internal combustion engine such as a diesel engine, and collects particulate matter (hereinafter referred to as PM) in exhaust gas. It is a thing. On the upstream side of the exhaust gas purification filter 1, a reducing agent supply device (not shown) can be disposed.
 排ガス浄化フィルタ1は、セル壁2で区画された複数のセル3を有する多孔質のフィルタ基材4と、PMを燃焼して浄化するPM燃焼触媒を含むPM燃焼触媒層5と、NOxを還元して浄化するNOx還元除去触媒を含むNOx還元触媒層6とを備える。 The exhaust gas purification filter 1 has a porous filter base 4 having a plurality of cells 3 partitioned by cell walls 2, a PM combustion catalyst layer 5 including a PM combustion catalyst for burning and purifying PM, and NOx. And the NOx reduction catalyst layer 6 including the NOx reduction removal catalyst to be purified.
 フィルタ基材4は、ウォールフロー型の構造である。すなわち、セル壁2で区画された複数のセル3を備え、隣接するセル3の端部が交互に目封じされている。これにより、二つの種類のセル3がセル壁2を介して隣接した構成となっている。一つ目は、排ガスの上流側を開口し、下流側が閉塞した排ガス流入側のセル3である。二つ目は、排ガスの上流側が閉塞し、下流側が開口した排ガス流出側のセル3である。 The filter substrate 4 is a wall flow type structure. That is, a plurality of cells 3 partitioned by the cell walls 2 are provided, and the end portions of adjacent cells 3 are alternately sealed. Thus, two types of cells 3 are adjacent to each other via the cell wall 2. The first is the exhaust gas inflow side cell 3 which is open at the upstream side of the exhaust gas and the downstream side is closed. The second is the exhaust gas outlet side cell 3 in which the upstream side of the exhaust gas is blocked and the downstream side is open.
 PM燃焼触媒層5は、排ガスが流入する側のセル壁2の表面の全部に設けられている。また、NOx還元触媒層6は、排ガスが流出する側のセル壁2の表面の全部に設けられている。 The PM combustion catalyst layer 5 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows. Further, the NOx reduction catalyst layer 6 is provided on the entire surface of the cell wall 2 on the exhaust gas outflow side.
 つまり、排ガス浄化フィルタ1は、セル壁2を挟んで上流側にPM燃焼触媒層5、下流側にNOx還元触媒層6を配置したものである。 That is, the exhaust gas purification filter 1 has the PM combustion catalyst layer 5 disposed on the upstream side and the NOx reduction catalyst layer 6 disposed on the downstream side across the cell wall 2.
 排ガス浄化フィルタ1は、フィルタ基材4のセル壁2に設けられた細孔を通じて排ガスを流通させることができる。排ガス中には、PMやNOxなどの有害物質が含まれている。このうちPMは、排ガスが流入する側のセル壁2の内部および表面、さらにはPM燃焼触媒層5により捕集される。排ガス中のNOxは、セル壁2の細孔を通じてフィルタ基材4の下流側に移動する。排ガスが排ガス浄化フィルタ1を通過するときに、排ガス浄化フィルタ1の上流側からアンモニア等の還元剤を供給すると、NOx還元触媒層6に含まれるNOx還元触媒によって、NOxが還元除去される。フィルタ再生処理時に、捕集された排ガス中のPMは、PM燃焼触媒層5に含まれるPM燃焼触媒によって、速やかに燃焼除去される。 The exhaust gas purification filter 1 can circulate the exhaust gas through the pores provided in the cell wall 2 of the filter substrate 4. The exhaust gas contains harmful substances such as PM and NOx. Among these, PM is collected by the inside and the surface of the cell wall 2 on the side where the exhaust gas flows in, and further by the PM combustion catalyst layer 5. The NOx in the exhaust gas moves to the downstream side of the filter substrate 4 through the pores of the cell wall 2. When the exhaust gas passes through the exhaust gas purification filter 1, when a reducing agent such as ammonia is supplied from the upstream side of the exhaust gas purification filter 1, NOx is reduced and removed by the NOx reduction catalyst contained in the NOx reduction catalyst layer 6. At the time of filter regeneration treatment, PM in the collected exhaust gas is burned and removed promptly by the PM combustion catalyst contained in the PM combustion catalyst layer 5.
 本実施の形態の排ガス浄化フィルタ1は、特に以下の構成を備えたものである。 The exhaust gas purification filter 1 of the present embodiment particularly has the following configuration.
 フィルタ基材4の材質は、耐熱性セラミックスや金属材料等からなる多孔質材料であればよい。耐熱性セラミックスとしては、例えば炭化ケイ素(SiC)、コージェライト、窒化ケイ素、チタン酸アルミニウム等を用いることができる。金属材料としては、例えばステンレス合金、Fe-Cr-Al合金等を用いることができる。これらの中でも、耐熱性および触媒塗工性の観点から、炭化ケイ素あるいはコージェライトが好ましい。 The material of the filter substrate 4 may be a porous material made of heat-resistant ceramic, metal material or the like. As heat resistant ceramics, silicon carbide (SiC), cordierite, silicon nitride, aluminum titanate etc. can be used, for example. As the metal material, for example, a stainless alloy, an Fe-Cr-Al alloy or the like can be used. Among these, silicon carbide or cordierite is preferable from the viewpoint of heat resistance and catalyst coatability.
 セル壁2に設けられた細孔の平均細孔径は特に限定されない。例えば、平均細孔径を5μm~50μmとすることで、効率よくPMを捕集しつつ、PM堆積時の圧力損失の過度の上昇を抑制することができる。 The average pore diameter of the pores provided in the cell wall 2 is not particularly limited. For example, by setting the average pore diameter to 5 μm to 50 μm, it is possible to efficiently collect PM while suppressing an excessive increase in pressure loss at the time of PM deposition.
 セル3の断面形状は特に限定されない。触媒とPMの接触面積を大きくできるという観点から、4~8角形のうちのいずれかの形状にすることが好ましい。 The cross-sectional shape of the cell 3 is not particularly limited. From the viewpoint of increasing the contact area between the catalyst and PM, it is preferable to use any one of four to octagonal shapes.
 また、セル3の形成密度は特に限定されない。上記と同様に、触媒とPMの接触面積を大きくできるという観点から、セル3の数は1平方インチあたり200~400セルであることが好ましい。セル数を200セル以上にすることで、触媒とPMの接触面積を十分に確保することができる。また、セル数を400セル以下にすることで、セル3へのPM堆積による目詰まりを生じにくくすることができる。 Further, the formation density of the cells 3 is not particularly limited. Similarly to the above, the number of cells 3 is preferably 200 to 400 cells per square inch from the viewpoint that the contact area between the catalyst and PM can be increased. By setting the number of cells to 200 cells or more, the contact area between the catalyst and PM can be sufficiently secured. Further, by setting the number of cells to 400 cells or less, clogging due to PM deposition on the cells 3 can be less likely to occur.
 また、本実施の形態のPM燃焼触媒は、セシウムとバナジウムの複合酸化物(以下、Cs-V複合酸化物と記載)を含む溶融塩型触媒である。バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である。Cs-V複合酸化物を含む溶融塩型触媒は、気相中の酸素を利用してPMを燃焼させる、直接酸化型の触媒である。また、溶融塩型触媒は、PMとの反応温度近傍において溶融し、液相となる。そのため、触媒(固体)-PM(固体)-酸素(気体)が関与するPMの燃焼において、触媒が液相となることでPMとの接触が飛躍的に増大し、低い温度域でPMの燃焼を行うことができる。以上のことから、Cs-V複合酸化物を含む溶融塩型触媒は、高いPM燃焼性能を発現すると考えられている。 Further, the PM combustion catalyst of the present embodiment is a molten salt type catalyst including a composite oxide of cesium and vanadium (hereinafter, described as a Cs-V composite oxide). The molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5. The molten salt type catalyst containing the Cs-V complex oxide is a direct oxidation type catalyst that burns PM using oxygen in the gas phase. In addition, the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase. Therefore, in the combustion of PM involving catalyst (solid)-PM (solid)-oxygen (gas), the catalyst is in a liquid phase, the contact with PM is dramatically increased, and PM combustion in a low temperature range It can be performed. From the above, it is considered that the molten salt type catalyst containing the Cs-V complex oxide exhibits high PM combustion performance.
 上述のCs-V複合酸化物としては、例えば、Cs11(Cs:V=0.5:1.0)、CsVO(Cs:V=1.0:1.0)、Cs10(Cs:V=1.7:1.0)、Cs321861(Cs:V=1.8:1.0)、Cs(Cs:V=2.0:1.0)、CsVO(Cs:V=3.0:1.0)などを挙げることができる。この中でも、PM燃焼活性と化学的安定性の観点から、バナジウムに対するセシウムのモル比(Cs/V)がCs/V=0.5であるCs11、あるいはCs/V=1.0であるCsVOを含むことが好ましい。 As the above-mentioned Cs-V complex oxide, for example, Cs 2 V 4 O 11 (Cs: V = 0.5: 1.0), CsVO 3 (Cs: V = 1.0: 1.0), Cs 5 V 3 O 10 (Cs: V = 1.7: 1.0), Cs 32 V 18 O 61 (Cs: V = 1.8: 1.0), Cs 4 V 2 O 7 (Cs: V = 2.0: 1.0), Cs 3 VO 4 (Cs: V = 3.0: 1.0), and the like. Among these, from the viewpoint of PM combustion activity and chemical stability, Cs 2 V 4 O 11 where the molar ratio of cesium to vanadium (Cs / V) is Cs / V = 0.5, or Cs / V = 1. preferably comprises a CSVO 3 is 0.
 また、PM燃焼触媒には、Cs-V複合酸化物を保持するための担体を含むことが好ましい。Cs-V複合酸化物は単独でも高いPM燃焼性を有しているが、触媒の比表面積が低いためにPMと触媒との接触率が低下し、燃焼反応が起こり難いことが懸念される。また、担体を用いない場合には、排ガスの温度及び組成変動の影響を受けて容易に凝集してしまい、PM燃焼活性が低下するということが懸念される。そこで、Cs-V複合酸化物を担体の表面に接触させて保持することにより、Cs-V複合酸化物の比表面積を増加させて、高温雰囲気下での凝集を抑制することができる。担体としては、例えばAl、SiO、TiO、CeO、ZrO、CeO-ZrO、MgOなどを用いることができる。 Further, the PM combustion catalyst preferably includes a carrier for holding the Cs-V complex oxide. Although the Cs-V complex oxide alone has high PM flammability, there is a concern that the contact ratio between PM and the catalyst is lowered due to the low specific surface area of the catalyst, and the combustion reaction is unlikely to occur. In addition, when the carrier is not used, there is a concern that aggregation easily occurs under the influence of temperature and composition fluctuation of the exhaust gas, and PM combustion activity decreases. Therefore, by holding the Cs-V complex oxide in contact with the surface of the carrier, the specific surface area of the Cs-V complex oxide can be increased to suppress aggregation in a high temperature atmosphere. As the carrier, for example, Al 2 O 3 , SiO 2 , TiO 2 , CeO 2 , ZrO 2 , CeO 2 -ZrO 2 , MgO or the like can be used.
 また、PM燃焼触媒層5の厚みは、10μm以上50μm以下であることが好ましい。PM燃焼触媒層5の厚みを10μm以上とすることにより、流入したPMがセル壁2の内部に入り込む量を低減させることができる。すなわち、PM堆積過程における深層ろ過(セル壁2の内部におけるろ過)の割合を減少させることで、PM堆積時の圧力損失の増大を抑制することができる。また、PM燃焼触媒層5の厚みを50μm以下とすることにより、触媒コート後の初期圧損を低く保ちつつ、セル壁2の表面とPM燃焼触媒層5との接着性を確保できる。 The thickness of the PM combustion catalyst layer 5 is preferably 10 μm or more and 50 μm or less. By setting the thickness of the PM combustion catalyst layer 5 to 10 μm or more, the amount of inflowing PM can be reduced to the inside of the cell wall 2. That is, by reducing the rate of depth filtration (filtration inside the cell wall 2) in the PM deposition process, it is possible to suppress an increase in pressure loss during PM deposition. Further, by setting the thickness of the PM combustion catalyst layer 5 to 50 μm or less, the adhesion between the surface of the cell wall 2 and the PM combustion catalyst layer 5 can be secured while keeping the initial pressure loss after the catalyst coating low.
 なお、本実施の形態では、PM燃焼触媒層5を排ガスが流入する側のセル壁2の表面の全部に設けたが、一部に設けてもよい。全部に設けた場合、セル壁2の表面の全域で触媒作用を発揮できるが、圧力損失の増大を招く場合がある。そこで、PM燃焼触媒層5の長さをセル3の長さ(奥行)に比べて短くして、セル壁2の表面の一部に設けることで、排ガス浄化フィルタ1のPM燃焼性能と、圧力損失のバランスを調整することが好ましい。 In the present embodiment, the PM combustion catalyst layer 5 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows, but may be provided on a part of the surface. In the case of providing them all, although the entire area of the surface of the cell wall 2 can be catalyzed, it may cause an increase in pressure loss. Therefore, the PM combustion performance of the exhaust gas purification filter 1 and the pressure can be reduced by making the length of the PM combustion catalyst layer 5 shorter than the length (depth) of the cell 3 and providing it on a part of the surface of the cell wall 2 It is preferable to adjust the balance of losses.
 また、PM燃焼触媒の一部がセル壁2の内部に入り込んでもよい。これにより、セル壁2の内部で深層捕集されたPMの燃焼を促進することができる。ただし、PM燃焼触媒が多量にセル壁2の内部に入り込むと、圧力損失の増大を招くため、内部に入り込むPM燃焼触媒の量を調整する必要がある。 In addition, a part of the PM combustion catalyst may enter into the cell wall 2. Thereby, the combustion of PM collected deep in the cell wall 2 can be promoted. However, if a large amount of PM combustion catalyst enters the inside of the cell wall 2, pressure loss increases, so it is necessary to adjust the amount of PM combustion catalyst that enters inside.
 また、Cs-V複合酸化物は、白金族金属を用いた場合に比べて低い温度域で、気相中の酸素を利用したPM燃焼反応を促進させることができる。すなわち、高いPM燃焼性能を発現すると言える。 In addition, the Cs-V complex oxide can promote the PM combustion reaction utilizing oxygen in the gas phase in a temperature range lower than that in the case of using a platinum group metal. That is, it can be said that high PM combustion performance is exhibited.
 また、NOx還元反応において還元剤として作用するアンモニアとの相互作用が弱いという特徴も有する。すなわち、アンモニアは比較的低い温度域においてCs-V複合酸化物によって酸化されることが少ない。Cs-V複合酸化物の高いPM撚焼性能と合わせると、排ガス浄化フィルタ1の上流側でアンモニア等の還元剤を供給しても、排ガス流れの下流に位置するNOx還元触媒層6へ供給することができ、NOx還元性能を発揮させることができる。 It also has a feature that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. That is, ammonia is less oxidized by the Cs-V complex oxide in a relatively low temperature range. When combined with the high PM twisting performance of the Cs-V complex oxide, even if a reducing agent such as ammonia is supplied on the upstream side of the exhaust gas purification filter 1, it is supplied to the NOx reduction catalyst layer 6 located downstream of the exhaust gas flow. The NOx reduction performance can be demonstrated.
 NOx還元触媒層6に含まれるNOx還元触媒としては、既に知られているものを使用することができる。例えば、V-TiO-WO、TiO-WO、銅および鉄成分の中の1種以上から選択される卑金属成分を含むゼオライトなどを用いることができる。中でも、NOx還元性能と耐熱性の観点から、銅成分を含むゼオライトが好ましい。 As the NOx reduction catalyst contained in the NOx reduction catalyst layer 6, those already known can be used. For example, a zeolite containing a base metal component selected from one or more of V 2 O 5 -TiO 2 -WO 3 , TiO 2 -WO 3 , copper and iron components can be used. Among them, zeolite containing a copper component is preferable from the viewpoint of NOx reduction performance and heat resistance.
 なお、本実施の形態では、NOx還元触媒層6を排ガスが流出する側のセル壁2の表面の全部に設けたが、一部に設けてもよい。全部に設けた場合、セル壁2の表面の全域で触媒作用を発揮できるが、圧力損失の増大を招く場合がある。NOx還元触媒層6の長さをセル3の長さ(奥行)に比べて短くして、セル壁2の表面の一部に設けることで、排ガス浄化フィルタ1のNOx還元性能と、圧力損失のバランスを調整することもできる。 In the present embodiment, the NOx reduction catalyst layer 6 is provided on the entire surface of the cell wall 2 on the side where the exhaust gas flows out, but may be provided on part of the surface. In the case of providing them all, although the entire area of the surface of the cell wall 2 can be catalyzed, it may cause an increase in pressure loss. By setting the length of the NOx reduction catalyst layer 6 shorter than the length (depth) of the cell 3 and providing it on a part of the surface of the cell wall 2, the NOx reduction performance of the exhaust gas purification filter 1 and the pressure loss You can also adjust the balance.
 また、NOx還元触媒の一部がセル壁2の内部に入り込んでもよい。これにより、セル壁2の内部を排ガスが通過する際にNOxの還元を促進することができる。ただし、NOx還元触媒が多量にセル壁2の内部に入り込むと、圧力損失の増大を招くため、内部に入り込むNOx還元触媒の量を調整する必要がある。 In addition, a part of the NOx reduction catalyst may enter into the cell wall 2. Thereby, when the exhaust gas passes through the inside of the cell wall 2, the reduction of NOx can be promoted. However, if a large amount of the NOx reduction catalyst enters the inside of the cell wall 2, this causes an increase in pressure loss, so it is necessary to adjust the amount of the NOx reduction catalyst introduced inside.
 上記構成において、排ガス浄化フィルタ1に流入した排ガス中のPMは、排ガスが流入する側のセル壁2の内部および表面、さらにはPM燃焼触媒層5により捕集される。 In the above configuration, PM in the exhaust gas flowing into the exhaust gas purification filter 1 is collected by the inside and the surface of the cell wall 2 on the side where the exhaust gas flows in, and further by the PM combustion catalyst layer 5.
 排ガス浄化フィルタ1に流入した排ガス中のNOxは、排ガス浄化フィルタ1の上流側から供給された還元剤(アンモニア)とともに、セル壁2の細孔を通じてフィルタ基材4の下流側へ移動する。フィルタ基材4の下流側へ移動した排ガス中のNOxは、排ガスが流出する側のセル壁2の表面に設けられたNOx還元触媒層6に含まれるNOx還元触媒によって、還元除去される。 The NOx in the exhaust gas flowing into the exhaust gas purification filter 1 moves to the downstream side of the filter substrate 4 through the pores of the cell wall 2 together with the reducing agent (ammonia) supplied from the upstream side of the exhaust gas purification filter 1. The NOx in the exhaust gas having moved to the downstream side of the filter substrate 4 is reduced and removed by the NOx reduction catalyst contained in the NOx reduction catalyst layer 6 provided on the surface of the cell wall 2 on the exhaust gas outflow side.
 捕集されたPMは、フィルタ再生処理時にPM燃焼触媒層5に含まれるCs-V複合酸化物の触媒作用により、白金族金属を用いた場合に比べて低い温度域で、気相中の酸素と反応し、速やかに燃焼除去される。 The collected PM is oxygen in the gas phase at a temperature range lower than that in the case of using a platinum group metal by the catalytic action of the Cs-V complex oxide contained in the PM combustion catalyst layer 5 at the time of filter regeneration treatment. React with it and burn off quickly.
 その結果、排ガス浄化フィルタ1において、排ガスが流入する側のセル3で高いPM燃焼性能を、排ガスが流出する側のセル3でNOx還元性能を発現する。すなわち、一つのフィルタ基材4において、高いPM燃焼性能とNOx還元性能の双方を併せ持つ排ガス浄化フィルタ1を提供することができる。 As a result, in the exhaust gas purification filter 1, high PM combustion performance is exhibited in the cell 3 on the exhaust gas inflow side, and NOx reduction performance is exhibited in the cell 3 on the exhaust gas outflow side. That is, it is possible to provide the exhaust gas purification filter 1 having both high PM combustion performance and NOx reduction performance with one filter base 4.
 (第2の実施の形態)
 DPFの流出側に均一にNOx還元触媒をコートする構成において、一部のガスはNOx還元触媒に接触する沿面距離が短く、NOx還元触媒を効果的に働かせることができない場合があることを見出した。そこで、さらにNOxを効率的に除去することができる排ガス浄化フィルタの構成について説明をする。
Second Embodiment
In the configuration in which the NOx reduction catalyst is coated uniformly on the outlet side of the DPF, it was found that there is a case where a part of the gas has a short creepage distance in contact with the NOx reduction catalyst and can not effectively operate the NOx reduction catalyst. . Therefore, the configuration of an exhaust gas purification filter capable of further efficiently removing NOx will be described.
 排ガス浄化フィルタ1は、図2に示すように、セル壁2で区画された複数のセル3を有する多孔質のフィルタ基材4と、粒子状物質を燃焼して浄化する粒子状物質燃焼触媒を含む第一触媒層であるPM燃焼触媒層5と、NOxを還元して浄化するNOx還元触媒を含む第二触媒層であるNOx還元触媒層6とを備える。 The exhaust gas purification filter 1 is, as shown in FIG. 2, a porous filter base 4 having a plurality of cells 3 partitioned by cell walls 2 and a particulate matter combustion catalyst for burning and purifying particulate matter. A PM combustion catalyst layer 5 that is a first catalyst layer that includes the catalyst and a NOx reduction catalyst layer 6 that is a second catalyst layer that includes a NOx reduction catalyst that reduces and purifies NOx are provided.
 PM燃焼触媒層5は、排ガスが流入する側のセル壁2の表面の一部または全部に設けられている。また、NOx還元触媒層6は、排ガスが流出する側のセル壁2の表面の一部または全部に設けられている。 The PM combustion catalyst layer 5 is provided on part or all of the surface of the cell wall 2 on the side where the exhaust gas flows. Further, the NOx reduction catalyst layer 6 is provided on part or all of the surface of the cell wall 2 on the side where the exhaust gas flows out.
 排ガス浄化フィルタ1は、フィルタ基材4のセル壁2に設けられた細孔を通じて排ガスを流通させることができる。 The exhaust gas purification filter 1 can circulate the exhaust gas through the pores provided in the cell wall 2 of the filter substrate 4.
 排ガス中には、粒子状物質やNOxなどの有害物質が含まれている。このうち粒子状物質は、セル壁2の内部および表面、さらにはPM燃焼触媒層5により捕集される。また、排ガス中のNOxは、セル壁2の細孔を通じてフィルタ基材4の下流側に移動する。 The exhaust gas contains harmful substances such as particulate matter and NOx. Among them, particulate matter is collected by the inside and the surface of the cell wall 2 and further by the PM combustion catalyst layer 5. Further, NOx in the exhaust gas moves to the downstream side of the filter base 4 through the pores of the cell wall 2.
 排ガスを排ガス浄化フィルタ1へ通過させるときに、排ガス浄化フィルタ1の上流側からアンモニア等の還元剤を供給することにより、NOx還元触媒層6に含まれるNOx還元触媒を働かせて、還元除去させることができる。 When allowing the exhaust gas to pass through the exhaust gas purification filter 1, the reducing agent such as ammonia is supplied from the upstream side of the exhaust gas purification filter 1 to make the NOx reduction catalyst contained in the NOx reduction catalyst layer 6 work to reduce and remove it. Can.
 フィルタ再生処理時に、PM燃焼触媒層5に含まれる粒子状物質燃焼触媒によって、PM燃焼触媒層5に捕集された排ガス中の粒子状物質は、速やかに燃焼除去される。 At the time of the filter regeneration process, the particulate matter in the exhaust gas collected in the PM combustion catalyst layer 5 is promptly burned and removed by the particulate matter combustion catalyst contained in the PM combustion catalyst layer 5.
 本実施の形態の排ガス浄化フィルタ1は、特に以下の構成を備えたものである。 The exhaust gas purification filter 1 of the present embodiment particularly has the following configuration.
 フィルタ基材4は、ウォールフロー型の構造であり、セル壁2で区画された複数のセル3を備え、隣接するセルの端部が交互に目封じされている。これにより、二つの種類のセル3がセル壁2を介して隣接した構成となっている。一つ目は、排ガスの上流側を流入口7として開口し、下流側が閉塞し奥8を形成した排ガス流入セルである。二つ目は、排ガスの上流側が閉塞し奥9を形成し、下流側が流出口10として開口した排ガス流出セルである。 The filter substrate 4 has a wall flow type structure, and includes a plurality of cells 3 partitioned by the cell walls 2, and the end portions of adjacent cells are alternately sealed. Thus, two types of cells 3 are adjacent to each other via the cell wall 2. The first is an exhaust gas inflow cell in which the upstream side of the exhaust gas is opened as the inlet 7 and the downstream side is closed to form the back 8. The second is an exhaust gas outflow cell in which the upstream side of the exhaust gas is closed to form a back 9 and the downstream side is opened as the outlet 10.
 フィルタ基材4の材質は、耐熱性セラミックスや金属材料等からなる多孔質材料であればよい。耐熱性セラミックスとしては、例えば、炭化ケイ素(SiC)、コージェライト、窒化ケイ素、チタン酸アルミニウム等を用いることができる。金属材料としては、例えば、ステンレス合金、Fe-Cr-Al合金等を用いることができる。これらの中でも、耐熱性および触媒塗工性の観点から、炭化ケイ素が好ましい。セル壁2に設けられた細孔の平均細孔径は特に限定されないが、例えば、5μm~50μmとすることができる。平均細孔径が5μm以上の場合には、粒子状物質が堆積しても圧力損失の過度の上昇を抑制することができる。また、平均細孔径が50μm以下の場合には、粒子状物質の過度の素抜けを抑制することができる。セル3の断面形状は特に限定されないが、触媒と粒子状物質の接触面積を大きくできるという観点から、4~8角形のうちのいずれかであることが好ましい。 The material of the filter substrate 4 may be a porous material made of heat-resistant ceramic, metal material or the like. As heat resistant ceramics, silicon carbide (SiC), cordierite, silicon nitride, aluminum titanate etc. can be used, for example. As the metal material, for example, a stainless alloy, an Fe-Cr-Al alloy or the like can be used. Among these, silicon carbide is preferable from the viewpoint of heat resistance and catalyst coatability. The average pore diameter of the pores provided in the cell wall 2 is not particularly limited, but can be, for example, 5 μm to 50 μm. When the average pore size is 5 μm or more, an excessive increase in pressure loss can be suppressed even if particulate matter is deposited. In addition, when the average pore size is 50 μm or less, excessive loss of particulate matter can be suppressed. The cross-sectional shape of the cell 3 is not particularly limited, but is preferably any one of four to octagonal from the viewpoint that the contact area between the catalyst and the particulate matter can be increased.
 また、セル3の形成密度は特に限定されないが、上記と同様に触媒と粒子状物質の接触面積を大きくできるという観点から、セル3の数は1平方インチあたり200~400セルであることが好ましい。セル数を200セル以上とすることで、触媒と粒子状物質の接触面積を十分に確保することができる。また、セル数を400セル以下とすることで、セル3への粒子状物質堆積による目詰まりを生じにくくすることができる。 The formation density of the cells 3 is not particularly limited, but the number of the cells 3 is preferably 200 to 400 cells per square inch from the viewpoint that the contact area between the catalyst and the particulate matter can be increased as described above. . By setting the number of cells to 200 cells or more, the contact area between the catalyst and the particulate matter can be sufficiently secured. In addition, by setting the number of cells to 400 cells or less, clogging due to particulate matter deposition on the cells 3 can be less likely to occur.
 また、本実施の形態の粒子状物質燃焼触媒は、セシウムとバナジウムの複合酸化物(以下、Cs-V複合酸化物と記載)を含む溶融塩型触媒である。バナジウムに対するセシウムのモル比(Cs/V)は0.5≦Cs/V≦1.5である。Cs-V複合酸化物を含む溶融塩型触媒は、気相中の酸素を利用して粒子状物質を燃焼させる、直接酸化型の触媒である。また、溶融塩型触媒は、粒子状物質との反応温度近傍において溶融し、液相となる。そのため、触媒(固体)-粒子状物質(固体)-酸素(気体)が関与する粒子状物質の燃焼において、触媒が液相となることで粒子状物質との接触が飛躍的に増大し、高い粒子状物質燃焼性能を発現すると考えられている。 In addition, the particulate matter combustion catalyst of the present embodiment is a molten salt type catalyst including a composite oxide of cesium and vanadium (hereinafter, described as a Cs-V composite oxide). The molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5. The molten salt type catalyst containing the Cs-V complex oxide is a direct oxidation type catalyst that burns particulate matter using oxygen in the gas phase. In addition, the molten salt catalyst melts in the vicinity of the reaction temperature with the particulate matter to form a liquid phase. Therefore, in the combustion of particulate matter involving catalyst (solid)-particulate matter (solid)-oxygen (gas), the catalyst becomes a liquid phase and contact with particulate matter is dramatically increased, which is high. It is believed to exhibit particulate matter combustion performance.
 上述のCs-V複合酸化物としては、例えば、Cs11(Cs:V=0.5:1.0)、CsVO(Cs:V=1.0:1.0)、Cs10(Cs:V=1.7:1.0)、Cs321861(Cs:V=1.8:1.0)、Cs(Cs:V=2.0:1.0)、CsVO(Cs:V=3.0:1.0)などを挙げることができる。この中でも、粒子状物質燃焼活性と化学的安定性の観点から、バナジウムに対するセシウムのモル比(Cs/V)がCs/V=0.5であるCs11、あるいはCs/V=1.0であるCsVOを含むことが好ましい。 As the above-mentioned Cs-V complex oxide, for example, Cs 2 V 4 O 11 (Cs: V = 0.5: 1.0), CsVO 3 (Cs: V = 1.0: 1.0), Cs 5 V 3 O 10 (Cs: V = 1.7: 1.0), Cs 32 V 18 O 61 (Cs: V = 1.8: 1.0), Cs 4 V 2 O 7 (Cs: V = 2.0: 1.0), Cs 3 VO 4 (Cs: V = 3.0: 1.0), and the like. Among them, from the viewpoint of particulate matter combustion activity and chemical stability, Cs 2 V 4 O 11 where the molar ratio of cesium to vanadium (Cs / V) is Cs / V = 0.5, or Cs / V = It is preferred to include CsVO 3 which is 1.0.
 また、粒子状物質燃焼触媒には、Cs-V複合酸化物を保持するための担体を含むことが好ましい。Cs-V複合酸化物は単独でも高い粒子状物質燃焼性を有しているが、触媒の比表面積が低いために粒子状物質と触媒との接触率が低下し、燃焼反応が起こり難い恐れがある。また、担体を用いない場合には、排ガスの温度及び組成変動の影響を受けて、容易に凝集し、粒子状物質燃焼活性が低下する恐れがある。そのため、担体の表面にCs-V複合酸化物を接触させて保持することにより、Cs-V複合酸化物の比表面積を増加させつつ、高温雰囲気下での凝集を抑制することができる。担体としては、例えばAl、SiO、TiO、CeO、ZrO、CeO-ZrO、MgOなどを用いることができる。 In addition, the particulate matter combustion catalyst preferably includes a carrier for retaining the Cs-V complex oxide. Although Cs-V complex oxide alone has high particulate matter combustibility, the contact ratio between particulate matter and catalyst decreases due to the low specific surface area of the catalyst, which may make it difficult to cause a combustion reaction. is there. In addition, in the case where the carrier is not used, there is a risk that aggregation may be easily performed and particulate matter combustion activity may be reduced under the influence of temperature and composition fluctuations of the exhaust gas. Therefore, by bringing the Cs-V complex oxide into contact with the surface of the carrier and holding it, aggregation in a high temperature atmosphere can be suppressed while increasing the specific surface area of the Cs-V complex oxide. As the carrier, for example, Al 2 O 3 , SiO 2 , TiO 2 , CeO 2 , ZrO 2 , CeO 2 -ZrO 2 , MgO or the like can be used.
 また、前記粒子状物質燃焼触媒は、セル壁2を挟んでフィルタ基材4の流入口7側にPM燃焼触媒層5をなし、前記NOx還元触媒はセル壁2を挟んで流出口10側にNOx還元触媒層6を形成している。粒子状物質燃焼触媒および還元触媒のどちらか、または両方ともセル壁2内部に存在してもよいが、圧力損失を低減するためにセル壁2内部での存在比率が50%以下であることが望ましい。 Further, the particulate matter combustion catalyst forms a PM combustion catalyst layer 5 on the inlet 7 side of the filter base 4 across the cell wall 2, and the NOx reduction catalyst on the outlet 10 side across the cell wall 2. The NOx reduction catalyst layer 6 is formed. Either or both of the particulate matter combustion catalyst and the reduction catalyst may be present in the cell wall 2, but the abundance ratio in the cell wall 2 is 50% or less in order to reduce pressure loss desirable.
 PM燃焼触媒層5は、フィルタ基材4の流入口7から奥へ行くにしたがって厚く、NOx還元触媒層6は、フィルタ基材4の奥から流出口10へ行くにしたがって厚く形成していることを特徴とするものである。PM燃焼触媒層5およびNOx還元触媒層6の厚みは線形的に変化してもよいが、例えば階段状のような段階的に変化する形状でもよい。また、PM燃焼触媒層5とNOx還元触媒層6の厚みはどちらか一方を変化させるだけでも圧力差を設けることができるので、少なくともどちらか一方の厚みを変化させれば良い。 The PM combustion catalyst layer 5 is thicker as going from the inlet 7 of the filter substrate 4 to the depth, and the NOx reduction catalyst layer 6 is formed thicker as it goes from the depth of the filter substrate 4 to the outlet 10 It is characterized by The thicknesses of the PM combustion catalyst layer 5 and the NOx reduction catalyst layer 6 may be changed linearly, but may be changed stepwise, such as stepwise. Further, since the pressure difference can be provided only by changing either one of the thickness of the PM combustion catalyst layer 5 and the thickness of the NOx reduction catalyst layer 6, it is sufficient to change at least one of the thicknesses.
 また、PM燃焼触媒層5の厚みは、10μm以上100μm以下であることが好ましい。PM燃焼触媒層5の厚みを10μm以上とすることにより、流入した粒子状物質がセル壁2の内部に入り込む量を低減し、深層ろ過の割合を減少させることができる。深層ろ過の割合を減少させることで粒子状物質堆積時の圧力損失の増大を抑制できる。またPM燃焼触媒層5の厚みを100μm以下とすることにより、触媒コート後の初期圧損を低く保ちつつ、セル壁2の表面とPM燃焼触媒層5との接着性を確保できる。 The thickness of the PM combustion catalyst layer 5 is preferably 10 μm or more and 100 μm or less. By setting the thickness of the PM combustion catalyst layer 5 to 10 μm or more, the amount of the inflowing particulate matter entering the inside of the cell wall 2 can be reduced, and the depth filtration rate can be reduced. By reducing the depth filtration rate, it is possible to suppress an increase in pressure loss during particulate matter deposition. Further, by setting the thickness of the PM combustion catalyst layer 5 to 100 μm or less, the adhesiveness between the surface of the cell wall 2 and the PM combustion catalyst layer 5 can be secured while keeping the initial pressure loss after the catalyst coating low.
 また、Cs-V複合酸化物は、NOx還元反応において還元剤として作用するアンモニアとの相互作用が弱いという特徴を有する。したがって、排ガス温度が比較的低い温度域においては、アンモニアを酸化することなく、排ガス流れの下流に位置するNOx還元触媒層6に供給することができ、NOx還元性能を発揮することができる。 In addition, the Cs-V complex oxide is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in the temperature range where the exhaust gas temperature is relatively low, the ammonia can be supplied to the NOx reduction catalyst layer 6 located downstream of the exhaust gas flow without being oxidized, and the NOx reduction performance can be exhibited.
 NOx還元触媒層6に含まれるNOx還元触媒としては、既に知られているものを使用することができる。例えば、V-TiO-WO、TiO-WO、銅および鉄成分の中の1種以上から選択される卑金属成分を含むゼオライトなどを用いることができる。中でも、NOx還元性能と耐熱性の観点から、銅成分を含むゼオライトが好ましい。 As the NOx reduction catalyst contained in the NOx reduction catalyst layer 6, those already known can be used. For example, a zeolite containing a base metal component selected from one or more of V 2 O 5 -TiO 2 -WO 3 , TiO 2 -WO 3 , copper and iron components can be used. Among them, zeolite containing a copper component is preferable from the viewpoint of NOx reduction performance and heat resistance.
 上記構成により、排ガス浄化フィルタ1に流入した排ガス中のPMは、排ガスが流入する側のセル壁2の内部および表面、さらにはPM燃焼触媒層5に捕集される。排ガス浄化フィルタ1の上流側から供給された還元剤(アンモニア)とともに、排ガス浄化フィルタ1に流入した排ガス中のNOxは、セル壁2の細孔を通じてフィルタ基材4の下流側へ移動し、排ガスが流出する側のセル壁2の表面に設けられたNOx還元触媒層6に含まれるNOx還元触媒によって、還元除去される。 With the above configuration, PM in the exhaust gas flowing into the exhaust gas purification filter 1 is collected on the inside and the surface of the cell wall 2 on the side where the exhaust gas flows in, and further on the PM combustion catalyst layer 5. With the reducing agent (ammonia) supplied from the upstream side of the exhaust gas purification filter 1, NOx in the exhaust gas flowing into the exhaust gas purification filter 1 moves to the downstream side of the filter substrate 4 through the pores of the cell wall 2, The catalyst is reduced and removed by the NOx reduction catalyst contained in the NOx reduction catalyst layer 6 provided on the surface of the cell wall 2 on the side where it flows out.
 ここで、Cs-V複合酸化物は、NOx還元反応において還元剤として作用するアンモニアとの相互作用が弱いので、比較的低い温度域において、排ガス浄化フィルタ1の上流側からアンモニア等の還元剤を供給しても、Cs-V複合酸化物は、還元剤を酸化させることなく、フィルタ基材4の下流側へ流通させることができる。フィルタ再生処理時に、PM燃焼触媒層5に含まれるCs-V複合酸化物の触媒は、白金族金属を用いた触媒に比べて、低い温度域で、捕集されたPMを気相中の酸素と反応させ、速やかに燃焼除去させることができる。その結果、排ガス浄化フィルタ1において、排ガスが流入する側のセル3では高いPM燃焼性能を発現し、排ガスが流出する側のセル3でもNOx還元性能を発現することができる。 Here, since the Cs-V complex oxide has a weak interaction with ammonia acting as a reducing agent in the NOx reduction reaction, the reducing agent such as ammonia is added from the upstream side of the exhaust gas purification filter 1 in a relatively low temperature range. Even when supplied, the Cs-V complex oxide can be circulated to the downstream side of the filter substrate 4 without oxidizing the reducing agent. During the filter regeneration process, the catalyst of the Cs-V complex oxide contained in the PM combustion catalyst layer 5 has oxygen of the collected PM in the gas phase in a temperature range lower than that of a catalyst using a platinum group metal. It can be made to react quickly and burn off. As a result, in the exhaust gas purification filter 1, high PM combustion performance can be exhibited in the cell 3 on the exhaust gas inflow side, and NOx reduction performance can be exhibited also on the cell 3 on the exhaust gas outflow side.
 特に、本実施の形態では、排ガス浄化フィルタ1内部において、フィルタ基材4の流入口7から奥へ行くにしたがってPM燃焼触媒層5を厚く、または、フィルタ基材4の奥から流出口10へ行くにしたがってNOx還元触媒層6を厚く形成することで、圧力損失に差を設けることができる。空気は圧力損失の低いところを優先的に通過するため、排ガスは、フィルタ基材4の流入口7付近を優先的に流れるようになる。結果、排ガスがNOx還元触媒層6(NOx還元触媒)の表面を流れる距離、すなわち、排ガスがNOx還元触媒層6を流れる沿面距離を長くすることができ、PM燃焼触媒層5とNOx還元触媒層6の厚みをそれぞれ均一にした場合に比べて、高い効率でNOxを浄化できる。 In particular, in the present embodiment, in the exhaust gas purification filter 1, the PM combustion catalyst layer 5 is made thicker as going from the inlet 7 of the filter base 4 to the inner side, or from the back of the filter base 4 to the outlet 10. By making the NOx reduction catalyst layer 6 thicker as it goes, it is possible to make a difference in pressure loss. Since the air passes preferentially through the low pressure drop, the exhaust gas will flow preferentially in the vicinity of the inlet 7 of the filter substrate 4. As a result, the distance in which the exhaust gas flows on the surface of the NOx reduction catalyst layer 6 (NOx reduction catalyst), that is, the creepage distance in which the exhaust gas flows through the NOx reduction catalyst layer 6 can be lengthened, and the PM combustion catalyst layer 5 and the NOx reduction catalyst layer As compared with the case where the thickness of 6 is made uniform, NOx can be purified with high efficiency.
 すなわち、排ガス浄化フィルタ1において、排ガスが流入する側のセル3で高い粒子状物質燃焼性能を発現し、排ガスが流出する側のセル3でNOx還元性能を発現することができる排ガス浄化フィルタ1を提供することができる。 That is, in the exhaust gas purification filter 1, the exhaust gas purification filter 1 can exhibit high particulate matter combustion performance in the cell 3 on the exhaust gas inflow side, and can exhibit NOx reduction performance in the cell 3 on the exhaust gas outflow side. Can be provided.
 以上説明したように、排ガス浄化フィルタ1は、セル壁2で区画された複数のセル3を有する多孔質のフィルタ基材4と、PMを燃焼して浄化するPM燃焼触媒と、NOxを還元して浄化するNOx還元除去触媒とを備えている。PM燃焼触媒は、排ガスが流入する側のセル壁2の表面の一部または全部に含まれ、PM燃焼触媒層5を形成している。また、NOx還元除去触媒は、排ガスが流出する側のセル壁2の表面の一部または全部に含まれ、NOx還元触媒層6を形成している。そして、PM燃焼触媒は、バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である、セシウムとバナジウムの複合酸化物を含む溶融塩型触媒である構成としている。 As described above, the exhaust gas purification filter 1 reduces the NOx by the porous filter base 4 having the plurality of cells 3 partitioned by the cell walls 2, the PM combustion catalyst that burns and cleans the PM, and And a NOx reduction and removal catalyst for purification. The PM combustion catalyst is included in part or all of the surface of the cell wall 2 on the side where the exhaust gas flows, and forms a PM combustion catalyst layer 5. Further, the NOx reduction and removal catalyst is included in part or all of the surface of the cell wall 2 on the side where the exhaust gas flows out, and forms the NOx reduction catalyst layer 6. And, the PM combustion catalyst is a molten salt type catalyst containing a composite oxide of cesium and vanadium, wherein the molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5. There is.
 セシウムとバナジウムの複合酸化物を含む溶融塩型触媒は、気相中の酸素を利用してPMを燃焼させる、直接酸化型の触媒である。また、溶融塩型触媒は、PMとの反応温度近傍において溶融し、液相となる。そのため、触媒(固体)-PM(固体)-酸素(気体)が関与するPMの燃焼において、触媒が液相となることでPMとの接触が飛躍的に増大し、高いPM燃焼性能を発現すると考えられる。 The molten salt type catalyst containing a composite oxide of cesium and vanadium is a direct oxidation type catalyst that burns PM using oxygen in the gas phase. In addition, the molten salt catalyst melts in the vicinity of the reaction temperature with PM and becomes a liquid phase. Therefore, in the combustion of PM involving catalyst (solid) -PM (solid) -oxygen (gas), when the catalyst becomes a liquid phase, the contact with PM increases dramatically, and high PM combustion performance is expressed. Conceivable.
 また、セシウムとバナジウムの複合酸化物は、NOx還元反応において還元剤として作用するアンモニアとの相互作用が弱いという特徴を有する。したがって、排ガス温度が比較的低い温度域においては、アンモニアを酸化することなく、排ガス流れの下流に位置するNOx還元触媒層6にアンモニアを供給することができるので、排ガス浄化フィルタ1はNOx還元性能を発揮することができる。 Further, the composite oxide of cesium and vanadium is characterized in that the interaction with ammonia acting as a reducing agent in the NOx reduction reaction is weak. Therefore, in the temperature range where exhaust gas temperature is relatively low, ammonia can be supplied to the NOx reduction catalyst layer 6 located downstream of the exhaust gas flow without oxidizing ammonia, so the exhaust gas purification filter 1 has NOx reduction performance. Can be demonstrated.
 したがって、高いPM燃焼性能と、NOx還元性能とを併せ持つ排ガス浄化フィルタを提供することができる。 Therefore, an exhaust gas purification filter having high PM combustion performance and NOx reduction performance can be provided.
 また、排ガス浄化フィルタ1は、多孔質のセル壁2で区画された複数のセルを有するウォールフロー型のフィルタ基材4と、フィルタ基材4に担持し粒子状物質を燃焼して浄化する粒子状物質燃焼触媒と、NOxを浄化するNOx還元触媒とを備えている。また、粒子状物質燃焼触媒はセル壁2を挟んでフィルタ基材4の流入口7側に第一触媒層をなし、NOx還元触媒はセル壁2を挟んで流出口10側に第二触媒層をなしている。さらに、少なくとも、第一触媒層をフィルタ基材4の流入口7から奥へ行くにしたがって厚く形成し、または、第二触媒層をフィルタ基材4の奥から流出口10へ行くにしたがって厚く形成しているものとしてもよい。 Further, the exhaust gas purification filter 1 is a wall flow type filter base 4 having a plurality of cells partitioned by porous cell walls 2 and particles supported on the filter base 4 to burn and purify particulate matter. And a NOx reduction catalyst for purifying NOx. Further, the particulate matter combustion catalyst forms a first catalyst layer on the inlet 7 side of the filter substrate 4 with the cell wall 2 interposed therebetween, and the NOx reduction catalyst forms a second catalyst layer on the outlet 10 side with the cell wall 2 interposed therebetween. I am Furthermore, at least the first catalyst layer is formed thicker as it goes from the inlet 7 of the filter substrate 4 to the back, or the second catalyst layer is formed thicker as it goes from the back of the filter substrate 4 to the outlet 10 It is good to be doing.
 これにより、触媒層の厚みに変化を設けることで圧力損失に差を設けることができる。空気は圧力損失の低いところを優先的に通過するため、フィルタ基材4の流入口7付近を優先的に流れるようになる。結果、排ガスがNOx還元触媒の表面を流れる距離、すなわち排ガスがNOx還元触媒を流れる沿面距離を長くすることができ、高い効率でNOxを浄化できる。 Thereby, a difference can be provided to the pressure loss by providing a change to the thickness of the catalyst layer. Since air passes preferentially through the low pressure drop, it preferentially flows near the inlet 7 of the filter substrate 4. As a result, the distance in which the exhaust gas flows on the surface of the NOx reduction catalyst, that is, the creepage distance in which the exhaust gas flows in the NOx reduction catalyst can be increased, and NOx can be purified with high efficiency.
 また、排ガス浄化フィルタ1において、粒子状物質燃焼触媒は、バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である、セシウムとバナジウムの複合酸化物と、セリウム含有酸化物とを含む溶融塩型触媒としてもよい。 In the exhaust gas purification filter 1, the particulate matter combustion catalyst is a cesium-vanadium composite oxide in which the molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5, It may be a molten salt type catalyst containing a cerium-containing oxide.
 一般的な白金族を含む粒子状物質燃焼触媒では、効果的にススを燃焼するためには排ガスに含まれるNOを使用する必要がある。すなわち、粒子状物質燃焼触媒を担持したセル壁2全域にわたり排ガスを透過させて、NOを粒子状物質燃焼触媒に接触させなければならない。しかし、本実施の形態のような、バナジウムとセシウムの複合酸化物からなる触媒を備えた粒子状物質燃焼触媒では、ススの燃焼においてNOを必要としないので、NOを含む排ガスが粒子状物質燃焼触媒を担持したセル壁2の一部を透過してしまうことがあっても、流入側のセル3内に停留する粒子状物質燃焼触媒によって、NOに比べて粒子径の大きなススを燃焼させることができる。 In a general platinum group-containing particulate matter combustion catalyst, it is necessary to use the NO 2 contained in the exhaust gas in order to burn the soot effectively. That is, the exhaust gas must permeate through the entire cell wall 2 supporting the particulate matter combustion catalyst to bring the NO 2 into contact with the particulate matter combustion catalyst. However, as in this embodiment, the particulate matter combustion catalyst comprising a catalyst comprising a composite oxide of vanadium and cesium, does not require the NO 2 in the combustion of the soot, the exhaust gas particulate containing NO 2 Even if some of the cell wall 2 carrying the material combustion catalyst may permeate, the particulate matter combustion catalyst staying in the cell 3 on the inflow side has a large particle size compared to NO 2 It can be burned.
 さらに、NOを含む排ガスが粒子状物質燃焼触媒を担持したセル壁2の一部を透過してしまうことは、フィルタ基材4の流出口10側において、排ガスがNOx還元触媒の表面を流れる距離を長くすることができ、効率的なNOx浄化ができる。 Furthermore, the fact that the exhaust gas containing NO 2 permeates through a part of the cell wall 2 supporting the particulate matter combustion catalyst means that the exhaust gas flows on the surface of the NOx reduction catalyst at the outlet 10 side of the filter substrate 4 The distance can be increased, and efficient NOx purification can be performed.
 また、排ガス浄化フィルタは、第一触媒層の厚みが10μm以上100μm以下であることとしてもよい。 In the exhaust gas purification filter, the thickness of the first catalyst layer may be 10 μm or more and 100 μm or less.
 これにより、粒子状物質燃焼に必要な触媒量を満たしかつ、圧力損失が高くなりすぎない。 As a result, the amount of catalyst necessary for particulate matter combustion is satisfied, and the pressure loss does not become too high.
 また、排ガス浄化フィルタは、粒子状物質燃焼触媒は、酸化物担体に担持されていることとしてもよい。 In the exhaust gas purification filter, the particulate matter combustion catalyst may be supported on an oxide carrier.
 これにより、担体の微細な凹凸が液相となった溶融塩型触媒の意図しない移動を抑制すると考えられる。また、溶融塩型触媒が担体の表面を覆うことにより、溶融塩型触媒の比表面積が大きくなり、ススとの接触および燃焼を促進することができる。 Thus, it is considered that fine unevenness of the carrier suppresses unintended movement of the molten salt catalyst in the liquid phase. In addition, by covering the surface of the carrier with the molten salt catalyst, the specific surface area of the molten salt catalyst can be increased, and the contact with combustion and combustion can be promoted.
 本発明にかかる排ガス浄化フィルタは、高いPM燃焼性能と、NOx還元性能とを併せ持つものであるので、各種内燃機関から発生する排ガスを浄化する排ガス浄化フィルタや、ディーゼルエンジンの排ガスを浄化する触媒DPF等として有用である。 Since the exhaust gas purification filter according to the present invention has both high PM combustion performance and NOx reduction performance, the exhaust gas purification filter for purifying the exhaust gas generated from various internal combustion engines and the catalyst DPF for purifying the exhaust gas of a diesel engine It is useful as etc.
 1  排ガス浄化フィルタ
 2  セル壁
 3  セル
 4  フィルタ基材
 5  PM燃焼触媒層
 6  NOx還元触媒層
 7  流入口
 8  奥
 9  奥
 10  流出口
1 exhaust gas purification filter 2 cell wall 3 cell 4 filter base material 5 PM combustion catalyst layer 6 NOx reduction catalyst layer 7 inlet 8 back 9 back 10 outlet

Claims (5)

  1. セル壁で区画された複数のセルを有する多孔質のフィルタ基材と、
    PMを燃焼して浄化するPM燃焼触媒と、
    排ガスが流入する側の前記セル壁の表面の一部または全部に前記PM燃焼触媒が含まれたPM燃焼触媒層と、
    NOxを還元して浄化するNOx還元除去触媒と、
    排ガスが流出する側の前記セル壁の表面の一部または全部に前記NOx還元除去触媒が含まれたNOx還元触媒層とを備え、
    前記PM燃焼触媒は、バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である、セシウムとバナジウムの複合酸化物を含む溶融塩型触媒である、排ガス浄化フィルタ。
    A porous filter substrate having a plurality of cells partitioned by cell walls;
    PM combustion catalyst that burns and cleans PM,
    A PM combustion catalyst layer in which the PM combustion catalyst is contained in part or all of the surface of the cell wall on the side where exhaust gas flows;
    A NOx reduction and removal catalyst that reduces and purifies NOx;
    A NOx reduction catalyst layer including the NOx reduction and removal catalyst on part or all of the surface of the cell wall on the side where the exhaust gas flows out;
    The PM combustion catalyst is a molten salt catalyst containing cesium and vanadium complex oxide, wherein the molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5. filter.
  2. 多孔質のセル壁で区画された複数のセルを有するウォールフロー型のフィルタ基材と、前記フィルタ基材に担持し粒子状物質を燃焼して浄化する粒子状物質燃焼触媒と、NOxを浄化するNOx還元触媒とを備え、前記粒子状物質燃焼触媒は前記セル壁を挟んで前記フィルタ基材の流入口側に第一触媒層をなし、前記NOx還元触媒は前記第二触媒層が前記セル壁を挟んで流出口側に第二触媒層をなし、少なくとも、前記第一触媒層を前記フィルタ基材の流入口から奥へ行くにしたがって厚く、または第二触媒層を前記フィルタ基材の奥から流出口へ行くにしたがって厚く形成していることを特徴とする排ガス浄化フィルタ。 A wall flow type filter substrate having a plurality of cells partitioned by porous cell walls, a particulate matter combustion catalyst supported on the filter substrate and burning and purifying particulate matter, and NOx purification The particulate matter combustion catalyst comprises a first catalyst layer on the inlet side of the filter base with the cell wall interposed therebetween, and the NOx reduction catalyst comprises the second catalyst layer in the cell wall Form a second catalyst layer on the outlet side, and at least the first catalyst layer becomes thicker as it goes deeper from the inlet of the filter substrate, or the second catalyst layer is viewed from the back of the filter substrate An exhaust gas purification filter characterized by being formed thicker as it goes to the outlet.
  3. 前記粒子状物質燃焼触媒は、バナジウムに対するセシウムのモル比(Cs/V)が0.5≦Cs/V≦1.5である、セシウムとバナジウムの複合酸化物と、セリウム含有酸化物とを含む溶融塩型触媒であることを特徴とする請求項2記載の排ガス浄化フィルタ。 The particulate matter combustion catalyst includes a composite oxide of cesium and vanadium and a cerium-containing oxide, wherein a molar ratio of cesium to vanadium (Cs / V) is 0.5 ≦ Cs / V ≦ 1.5. The exhaust gas purification filter according to claim 2, which is a molten salt type catalyst.
  4. 前記第一触媒層の厚みが10μm以上100μm以下であることを特徴とする請求項2記載の排ガス浄化フィルタ。 The exhaust gas purification filter according to claim 2, wherein the thickness of the first catalyst layer is 10 μm to 100 μm.
  5. 前記粒子状物質燃焼触媒は、酸化物担体に担持されていることを特徴とする請求項3記載の排ガス浄化フィルタ。 The exhaust gas purification filter according to claim 3, wherein the particulate matter combustion catalyst is supported by an oxide carrier.
PCT/JP2018/033529 2017-09-21 2018-09-11 Exhaust gas purification filter WO2019059032A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017180919 2017-09-21
JP2017-180920 2017-09-21
JP2017-180919 2017-09-21
JP2017180920 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019059032A1 true WO2019059032A1 (en) 2019-03-28

Family

ID=65810949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033529 WO2019059032A1 (en) 2017-09-21 2018-09-11 Exhaust gas purification filter

Country Status (1)

Country Link
WO (1) WO2019059032A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144528A (en) * 1995-08-30 1997-06-03 Haldor Topsoe As Treating method of exhaust gas from diesel engine and catalytic device
JP2008188511A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Exhaust gas cleaning filter and its manufacturing method
WO2012147333A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Molten salt-type off gas purification catalyst and off gas purification filter
JP2014104391A (en) * 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd Exhaust gas purification filter
JP2016002534A (en) * 2014-06-19 2016-01-12 株式会社豊田中央研究所 Catalyst for exhaust gas purification, method for manufacturing the same, and exhaust gas purification method using the catalyst
WO2017001829A1 (en) * 2015-06-28 2017-01-05 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144528A (en) * 1995-08-30 1997-06-03 Haldor Topsoe As Treating method of exhaust gas from diesel engine and catalytic device
JP2008188511A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Exhaust gas cleaning filter and its manufacturing method
WO2012147333A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Molten salt-type off gas purification catalyst and off gas purification filter
JP2014104391A (en) * 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd Exhaust gas purification filter
JP2016002534A (en) * 2014-06-19 2016-01-12 株式会社豊田中央研究所 Catalyst for exhaust gas purification, method for manufacturing the same, and exhaust gas purification method using the catalyst
WO2017001829A1 (en) * 2015-06-28 2017-01-05 Johnson Matthey Public Limited Company Catalytic wall-flow filter having a membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SARACCO, G ET AL.: "Development of catalysts based on pyrovanadates for diesel soot combustion", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 21, no. 4, 1999 - 7 February 1999 (1999-02-07), pages 233 - 242, XP055584482, ISSN: 0926-3373, DOI: 10.1016/S0926-3373(99)00026-0 *

Similar Documents

Publication Publication Date Title
US8844274B2 (en) Compact diesel engine exhaust treatment system
US7211232B1 (en) Refractory exhaust filtering method and apparatus
JP5193437B2 (en) Exhaust gas purification catalyst
US9441517B2 (en) Diesel engine exhaust treatment system
JP2011509826A (en) Catalyst filter
JP2006520264A5 (en)
JP2008309160A (en) Exhaust emission purifier using particulate matter-containing exhaust emission controlling filter
JP2010269205A (en) Catalyst for cleaning exhaust gas
EP3081284A1 (en) Exhaust gas purification apparatus
JP4758071B2 (en) PM-containing exhaust gas purification filter, exhaust gas purification method, and purification apparatus
JP6865664B2 (en) Oxidation catalyst device for exhaust gas purification
JP4006645B2 (en) Exhaust gas purification device
KR20120095747A (en) Multi-functional particulate filter and exhaust gas filtering device using this
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JP4218559B2 (en) Diesel exhaust gas purification device
JP5070173B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP2008229459A (en) Exhaust gas cleaning device
WO2019059032A1 (en) Exhaust gas purification filter
KR101488198B1 (en) Multi-functional particulate filter and exhaust gas filtering device using this
JP2006077672A (en) Exhaust emission control filter and exhaust emission control device
JP2014001679A (en) Catalytic converter
JP2006257920A (en) Exhaust emission control device
JP2006346656A (en) Catalyst for cleaning exhaust gas, and its manufacturing method
JP2006082000A (en) Catalyst for diesel exhaust emission purification
KR20220075000A (en) Diesel particulate filter device comprising composite catalyst layer and method for forming composite catalyst layer of diesel particulate filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858798

Country of ref document: EP

Kind code of ref document: A1