WO2019058980A1 - Imaging device - Google Patents
Imaging device Download PDFInfo
- Publication number
- WO2019058980A1 WO2019058980A1 PCT/JP2018/032987 JP2018032987W WO2019058980A1 WO 2019058980 A1 WO2019058980 A1 WO 2019058980A1 JP 2018032987 W JP2018032987 W JP 2018032987W WO 2019058980 A1 WO2019058980 A1 WO 2019058980A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- pixel
- contour correction
- imaging device
- video signal
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 96
- 238000012937 correction Methods 0.000 claims abstract description 192
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 230000004075 alteration Effects 0.000 claims description 10
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 230000015654 memory Effects 0.000 description 24
- 238000012545 processing Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/13—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
- H04N5/205—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
- H04N5/208—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
Definitions
- the present invention relates to an image pickup apparatus, and more particularly to an image pickup apparatus capable of outputting a video signal with an improved degree of modulation at low frequencies by performing contour correction that does not include high frequency components.
- HDTV High Definition Te leVision: high-definition television
- HDTV camera with recording unit HDTV (1080 ⁇ 1920) camera with Internet Protocol (hereinafter IP) transmission unit
- IP Internet Protocol
- higher-definition 4K (2160 ⁇ 3840) camera 8K (high-definition television) 4320 ⁇ 7680) Cameras and the like have been commercialized, and non-compression recording apparatuses using HDDs (Hard Disk Drives) have also been commercialized.
- FIG. 6 is a cross-sectional explanatory view showing the configuration of the imaging device, where (a) is a CCD sensor (imaging device), (b) is a conventional CMOS sensor (surface-illuminated CMOS imaging device), (c) is BSI ( The back side illumination) type CMOS sensor (back side illumination type CMOS image sensor) is shown.
- a microlens 91, a color filter 92, and a photodiode 93 are stacked, and a metal wiring layer 94 is formed between the photodiode 93 and the color filter 92. ing.
- Incident light collected by the micro lens 91 passes through the color filter 92, is separated into R (red), G (green) and B (blue) components, and is incident on the photodiode 93 to generate charge. Are transferred in the vertical direction and the horizontal direction to be converted into a voltage for each pixel.
- the CCD sensor has high sensitivity, it consumes a large amount of power and is difficult to integrate peripheral circuits as compared to a CMOS image sensor.
- the surface-illuminated CMOS imaging device shown in FIG. 6B has a configuration in which a transistor or the like is provided for each pixel, and although low power consumption and easy integration are possible, sensitivity is low.
- the metal wiring layer 93 is provided on the backside of the photodiode 93, so that it is highly sensitive, low power consumption, and easy to integrate.
- CMOS imaging device 4/3 or less including 8K, 1.25 type, 2/3 or less at 4K
- CMOS imaging device 4/3 or less including 8K, 1.25 type, 2/3 or less at 4K
- the metal wiring layer 94 is stacked between the first and second microlenses (on-chip lenses) 91, the degree of modulation in the low region is low.
- an optical low pass filter O-LPF; Optical Low Pass Filter
- O-LPF Optical Low Pass Filter
- the pixel pitch of the image pickup element is about 2.5 ⁇ m and about 4.5 times the green wavelength 0.55 ⁇ m, and the aberration of the high magnification zoom lens is optically It can not be corrected, and the degree of modulation at low frequencies (Modulation transfer function characteristics: MTF; Modulation Transfer Function ) Decreases.
- FIG. 7 is an explanatory view showing the relationship between the aperture value and the modulation degree. It is known that, even with an ideal lens having no aberration, the degree of modulation decreases due to optical diffraction at a green central wavelength of 0.55 ⁇ m when the number of wavelengths of the pixel pitch is reduced to a number equal to or greater than the wavelength.
- a blurred image with a pixel pitch of approximately F5 and a 400 TV line with a modulation degree of 50% or less with an F5 pixel wavelength of 4.9 wavelengths is 2/3 ⁇ 4K (2160 ⁇
- an blurred image with a modulation degree of 50% or less is obtained even at 800 TV with about F4.8.
- the modulation degree is around F4 for HDTV (1080 ⁇ 1920) cameras, around F2.8 for 4K (2160 ⁇ 3840) cameras, and around F2 for 8K (4320 ⁇ 7680) cameras.
- the degree of modulation decreases in the vicinity of the aperture opening due to aberration, and the degree of modulation decreases in the vicinity of the stop due to optical diffraction.
- Patent Document 1 describes an edge enhancement processing apparatus for passing an edge correction signal through a low pass filter (LPF; Low Pass Filter) in order to attenuate signal components and noise components around half the sampling frequency fs.
- LPF Low Pass Filter
- Patent Document 2 describes an imaging device that reduces the contour correction frequency when the degree of modulation decreases at telephoto.
- Patent Document 3 describes that edge enhancement (edge correction of a difference between pixel intervals in units of 2 or 4) is performed from a delay corresponding to a power of 2 of the basic processing rate.
- Patent Document 4 describes an imaging device that reduces the center frequency of contour correction when the aperture value is large and the degree of modulation is reduced by optical diffraction.
- the present invention has been made in view of the above circumstances, and in an imaging apparatus using a surface-illuminated CMOS imaging device having a pixel pitch of 5 wavelengths or less, the MTF at low frequencies is improved and focusing is easy even at the telephoto end. It is an object of the present invention to provide an imaging device that can
- the present invention for solving the problems of the above-described conventional example is an imaging apparatus using a CMOS imaging device whose pixel pitch is five times or less of the central wavelength of imaging light, and comprises an imaging device and color input light A color separation unit that separates each time and outputs a video signal, and a video signal of a correction target pixel to which contour correction is applied to the video signal from the color separation unit, and a pixel interval of a power of 2 from the correction target pixel.
- the difference with the video signal of the plurality of pixels is calculated, the contour correction signal is generated based on the difference addition signal obtained by adding the plurality of differences, the contour correction signal is added to the video signal of the correction target pixel, and the contour correction is performed.
- a contour correction unit for performing the processing.
- the outline correction unit calculates a difference between the video signal of the pixel to be corrected and the video signal of a plurality of pixels having a pixel interval of a power of 2 from the pixel to be corrected.
- a difference addition unit that adds the plurality of differences to generate a difference addition signal; and adjusting the difference addition signal based on the video signal level of the pixel to be corrected; and an edge correction signal corresponding to the pixel to be corrected It is characterized in that it comprises: a contour correction signal generation unit to be generated; and a contour correction signal addition unit to add a contour correction signal to a video signal of a pixel to be corrected.
- the present invention is characterized in that, in the above-mentioned imaging device, the pixel interval of the power of 2 is from 2 pixel interval to 32 pixel interval.
- the present invention is characterized in that, in the above-described imaging device, the imaging device is a surface-illuminated CMOS imaging device.
- contour correction is performed on a video signal input from a lens whose open aperture value at the telephoto end is larger than the pixel pitch of the imaging device / center wavelength or a lens with large aberration. It is characterized.
- an imaging device using a CMOS imaging device having a pixel pitch equal to or less than five times the central wavelength of imaging light comprising an imaging device, separating input light for each color and outputting a video signal A color separation unit, a video signal of a correction target pixel to which contour correction is applied to a video signal from the color separation unit, and a video signal of a plurality of pixels having a pixel interval of a power of 2 from the correction target pixel
- a contour correction unit that calculates a difference, generates an edge correction signal based on a difference addition signal obtained by adding the plurality of differences, and adds an edge correction signal to a video signal of a correction target pixel to perform edge correction Since the imaging apparatus is used, a contour correction signal containing no high frequency component is generated to emphasize the low band contour correction signal, improve the modulation degree in the low band, and focus at the telephoto end with a shallow depth of field. Can be facilitated There is a result.
- the contour correction unit calculates the difference between the video signal of the pixel to be corrected and the video signal of a plurality of pixels having a pixel interval of a power of 2 from the pixel to be corrected
- a difference addition unit that generates a difference addition signal by adding the differences of the above, and an outline that adjusts the difference addition signal based on the video signal level of the pixel to be corrected to generate an edge correction signal corresponding to the pixel to be corrected Since the imaging apparatus includes the correction signal generation unit and the contour correction signal addition unit that adds the contour correction signal to the video signal of the pixel to be corrected, the difference addition signal is appropriately adjusted to generate the contour correction signal. There is an effect that the degree of modulation in the low band can be improved.
- the image pickup apparatus since the image pickup apparatus has the pixel interval of power of 2 from 2 pixel interval to 32 pixel interval, the modulation degree of 1.05 MHz of HDTV of 2K jump operation is improved.
- the degree of modulation at 27.5 MHz, which is based on 1 MHz, can be relatively lowered, and the degree of modulation in the low band can be sufficiently improved without increasing the circuit scale too much.
- the imaging device is configured as the surface-illuminated CMOS imaging device according to the present invention, there is an effect that it is possible to realize an imaging device with improved low-frequency modulation at low cost.
- the image pickup apparatus performs the contour correction on a video signal input from a lens whose open aperture value at the telephoto end is larger than the pixel pitch of the image pickup element / center wavelength or a lens having large aberration. Therefore, it is possible to improve the degree of modulation at low cost and to facilitate focusing at the telephoto end without using an expensive and large UHDTV lens.
- An image pickup apparatus is an image pickup apparatus using a CMOS image pickup element having a pixel pitch of 5 wavelengths or less of a central wavelength of image pickup light.
- the difference between the target pixel and the video signal of the plurality of pixels which is the pixel interval of the power of 2 is calculated, and the contour correction signal is generated based on the difference addition signal obtained by adding the plurality of differences. Since the contour correction signal is added to the signal, the contour correction signal without high frequency components near fs / 2 can be obtained, and the low frequency contour correction signal is reinforced to improve the MTF in the low frequency region. Also, focusing can be facilitated at the telephoto end of the telephoto lens.
- FIG. 1 is a configuration block diagram showing a schematic configuration of the present imaging device.
- the imaging device 1 includes a color separation optical system 2, an imaging device 3 (3 R, 3 G, 3 B), a video signal processing unit 4, and a parallel / serial (P / S) conversion unit 5.
- the CPU Central Processing Unit
- the lens 7 and the view finder image display device 8.
- the color separation optical system 2 separates the incident light from the lens 7 into red (R), green (G) and blue (B).
- the image pickup device 3 is a CMOS image pickup device, the image pickup device 3R photoelectrically converts red light, the image pickup device 3G photoelectrically converts green light, and the image pickup device 3B photoelectrically converts blue light. Generates a charge according to the Here, the pixels of the imaging device 3 are arranged at a pixel pitch of 5 wavelengths or less based on the wavelength (0.55 ⁇ m) of green light.
- the color separation optical system 2 and the imaging device 3 correspond to a color separation unit described in the claims.
- the video signal processing unit 4 includes a contour correction unit 11, a gamma color correction unit 12, and a matrix unit 13, and is configured by an FPGA with a large capacity memory, an external FPGA with DDR (Double-Data-Rate) memory, etc. Ru.
- the contour correction unit 11 is a characteristic portion of the present imaging device, and performs contour correction processing for correcting the contour of the image for each of the red, green, and blue color components.
- the contour correction unit 11 includes a direct contour correction unit that performs vertical contour correction processing, and a horizontal contour correction processing unit that performs horizontal contour correction processing.
- the contour correction unit 11 generates an image of a pixel to be corrected and an image of a pixel having a pixel interval of a power of 2 (for example, an interval of 2, 4, 8, 16, 32 pixels) A contour correction signal is generated based on the sum of the difference with the signal.
- a contour correction unit 11 will be described later.
- the gamma color correction unit 12 performs processing of correcting the gradation of the image (gamma color correction).
- the matrix unit 13 performs processing to adjust the luminance and color of the video.
- the parallel / serial converter 5 converts parallel data into serial data and outputs the serial data to the outside.
- the CPU 6 controls the entire image pickup apparatus, and in particular, controls the contour correction unit 11 to realize appropriate contour correction. Further, the CPU 6 controls the level of the contour correction signal in accordance with the lens aperture value.
- the operation of the present imaging device will be briefly described.
- the light input from the lens 7 is separated into red, green, and blue components in the color separation optical system 2, and is photoelectrically converted by the imaging elements 3R, 3G, and 3B, respectively, to form an electric signal.
- the signal of each color is subjected to vertical contour correction and horizontal contour correction processing in the contour correction unit 11, gamma color correction is performed in the gamma color correction unit 12, color adjustment is performed in the matrix unit 13, and the parallel correction is performed.
- the serial data is converted into serial data by the / serial converter 5 and output to the outside as a video signal.
- FIG. 2 is a block diagram of the vertical contour correction unit of the present imaging device.
- the vertical contour correction unit 11 corrects the contour in the vertical direction by comparing video signals between pixels arranged in the vertical direction.
- the vertical contour correction unit includes a plurality of line memory units M20 to M29, a plurality of negative multipliers N20 to N24 and N26 to N30, a positive multiplier P25, and a plurality of adders 20.
- the line memory units M20 to M29, the negative multipliers N20 to N24 and N26 to N30, the positive multiplier P25, and the plurality of adders 20 to 29 correspond to the difference addition unit described in the claims.
- the video level determination unit 28 and the multipliers 29 and 32 correspond to the contour correction signal generation unit.
- the line memory unit includes an image signal of a line (referred to as 32H) to be corrected and an image of a line separated by 2, 4, 8, 16 and 32 pixels in the vertical direction from the line to be corrected which is a characteristic portion of the apparatus. A necessary video signal is held and output in order to obtain a difference from the signal.
- the line memory unit M20 stores video signals of 16 lines
- the line memory unit M21 stores video signals of 8 lines
- the line memory unit M22 stores video signals of 4 lines
- the line memory unit M23 accumulates video signals for two lines, and outputs one line each to negative multipliers N21 to N24.
- the line memory unit M24 holds the line to be corrected (32H) and the next line (31H), and sends the line to be corrected to the positive multiplier P25, the video level judgment unit 28, and the outline correction signal addition unit 33. Output.
- Line memory units M25 and M26 store video signals for two lines
- line memory unit M27 stores video signals for four lines
- line memory unit M28 stores video signals for eight lines.
- the line memory unit M29 accumulates video signals of 16 lines, and outputs the video signals to negative multipliers N26 to N30, respectively, one line at a time.
- the negative multipliers N21 to N24 multiply the video signals output from the line memory units M20 to M23 by negative coefficients, and output the result to the adders 21 to 24.
- Negative multipliers N26 to N30 multiply the video signals output from the line memory units M25 to M29 by negative coefficients, and output the result to the adders 26 to 29.
- the negative multiplier N20 multiplies the signal before correction by a negative coefficient, and outputs the result to the adder 20.
- the positive multiplier P25 multiplies the video signal of the correction target line (32H) output from the line memory M24 by a positive coefficient.
- the adders 20 to 29 add the outputs of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25, and output a difference addition signal from the adder 20.
- the adders 20 to 29 correspond to the difference addition unit in the claims.
- the coefficient of positive multiplier P25 or / and the negative multiplier such that the sum of the difference between the output from each negative multiplier and the output from positive multiplier P25 is calculated in adder 20.
- the coefficients of N20 to N24 and N26 to N30 are adjusted in accordance with an instruction from the CPU 6.
- the difference addition signal output from the adder 20 is separated from the correction target line (32H) by the power of two (here, 2, 4, 8, 16, 32) from the correction target line. It is the sum of the difference with the video signal of the line.
- the difference signal output from the adder 20 is separated from the correction target line (32H) by the power of two (here, 2, 4, 8, 16, 32) from the correction target line. It is the sum of the difference with the video signal of the line.
- the video level determination unit 28 determines the level of the video signal of the correction target line, and detects a dark portion by threshold determination.
- the multiplier 29 variably adjusts the positive / negative and amplification degree in order to attenuate the outline correction signal of the dark part. In the region where the video level is low, the video level determination unit 28 and the multiplier 29 perform control to reduce the contour correction signal in order to reduce noise due to addition of the contour correction signal. Control is performed to keep the level of the contour correction signal constant.
- the CPU 6 controls the coefficients of each of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25, and controls the positive and negative values of the amplification value to be multiplied by the multiplier 29 and the amplification degree. Specifically, the CPU 6 outputs only the video signal of the correction target line (32H) and the power of 2 from the correction target line (here, 2, 4, 8, 16, 32) from the adder 20 The coefficients are controlled so as to be the sum of the difference from the video signal of the distant line. Further, the CPU 6 of the present imaging device controls the level of the contour correction signal according to the lens aperture value in order to improve the deterioration of the degree of modulation of the video signal when the lens aperture is narrowed. Specifically, when the lens iris is on the aperture side, the coefficient of the multiplier 29 is adjusted to control to amplify the contour correction signal.
- a small amplitude / large amplitude compression limiter (hereinafter referred to as a limiter) 31 compresses if the differential addition signal has a large amplitude, and limits the compression if the differential addition signal has a small amplitude.
- Multiplier 32 multiplies the output from limiter 31 by the coefficient from multiplier 29 to produce a vertical contour correction signal of appropriate polarity and level.
- the correction signal addition unit 33 performs vertical contour correction by adding the vertical contour correction signal to the correction target line (32H) output from the line memory unit M24.
- the modulation degree of the ultra low band can be enhanced, and the high band modulation degree is relatively decreased.
- 5 MHz modulation degree defined as 100% of 0.5 MHz of National Television System Committee (NTSC) or 27.5 MHz defined as 100% of 1 MHz of 2 K transit scan HDTV
- the high frequency modulation degree such as the modulation degree is relatively reduced.
- FIG. 2 The operation of the vertical contour correction unit of the present imaging device will be described with reference to FIG.
- the pre-correction signal is input to the negative multiplier N20 and the line memory unit M20, and is stored at the timing of the clock in the line memory units M20 to M29, and the negative multipliers N21 to N30 and the positive multiplication are added line by line. Is output to the receiver P25.
- the correction target line output from the line memory unit M24 is 32H
- 0H, 16H, 24H, and 30H are input to the negative multipliers N20 to N24, respectively
- the positive multiplier P25 is input to the negative multipliers N20 to N24
- H32 is input to the negative multipliers N26 to N30
- 34H, 36H, 40H, 48H and 64H are input to the negative multipliers N26 to N30, respectively. That is, the video signal of a line separated by a power of 2 from the correction target line is input to the negative multipliers N21 to N24 and N26 to N30.
- each of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25 are multiplied by a negative or positive coefficient, added by the adders 20 to 29, and the video signal of the correction target line and the other lines
- the sum of the differences with the video signal of the above is calculated, and is output from the adder 20 as a difference addition signal.
- the differential addition signal is subjected to amplitude adjustment by the limiter 31 and further adjusted according to the video level by the multiplier 32 to generate a vertical contour correction signal, and the correction signal addition unit 33 generates the correction target line.
- the video signal and the vertical contour correction signal are added to perform contour correction in the vertical direction. In this manner, the operation of the vertical contour correction unit is performed.
- the vertical contour correction signal is generated based on the sum of the differences up to the 32 pixel interval in the vertical direction, but the sum of the differences of the 64 pixel interval and the 128 pixel interval is calculated A vertical contour correction signal may be generated.
- FIG. 3 is a configuration diagram of a horizontal contour correction unit of the present imaging device.
- the horizontal contour correction unit corrects the horizontal contour by comparing video signals between pixels arranged in the horizontal direction.
- the horizontal contour correction unit includes a plurality of pixel delay units D40 to D49, a plurality of negative multipliers N40 to N44 and N46 to N50, a positive multiplier P45, and a plurality of adders 40.
- the horizontal contour correction unit is provided with pixel delay units D40 to D49 instead of the line memory units M20 to M29 of the vertical contour correction unit shown in FIG. 2, and performs processing on pixels arranged in the horizontal direction.
- the other basic configuration and operation are the same as those of the vertical contour correction unit, and therefore detailed description will be omitted.
- the horizontal contour correction unit the sum of the difference between the video signal of the correction target pixel and the video signal of the pixel separated by 2, 4, 8, 16, 32 pixels in the horizontal direction from the correction target pixel is the adder 40.
- the signal is output as an addition difference signal from the above, and amplitude correction of the addition difference signal is performed in the small amplitude / large amplitude compression limiter 53, and is adjusted by the multiplier 54 based on the determination result in the video level determination unit 51 to correct horizontal contour.
- a signal is generated, and the video signal of the correction target pixel (32d) and the horizontal contour correction signal are added in the correction signal addition unit 55 to perform contour correction in the horizontal direction.
- peripheral pixel difference processing of one pixel interval is not performed, so that the modulation factor of the ultra low band can be enhanced, and the high band modulation factor is relatively lowered.
- FIG. 4 is a frequency axis display of differential addition signals at intervals of 2, 4, 8, and 16 pixels.
- coefficients other than 0 are set in the positive multiplier P25 and the negative multipliers N24 and N26.
- the other negative multiplier is a differential addition signal obtained from the adder 40 with the coefficient 0 set.
- the differential addition signal of 4-pixel intervals shown in FIG. 4B is a differential addition signal when the negative multipliers N23 and N27 become coefficients other than 0 in addition to the 2-pixel interval.
- coefficients other than 0 are set to the negative multipliers N22 and N28
- the differential addition signals at intervals of 16 pixels are coefficients other than 0 for the negative multipliers N21 and N29. Is a differential addition signal when is set.
- all differential addition signals of the present imaging apparatus output no video signal with improved modulation of low frequency (low frequency) because there is no high frequency component near fs / 2 including noise. It is something that can be done. Therefore, even when the input signal has a low degree of modulation, focusing at a telephoto end with a shallow depth of field can be facilitated.
- FIG. 5 A contour correction signal in the present imaging device and a signal example after contour correction will be described with reference to FIG.
- FIG. 5 is a schematic explanatory view showing a contour correction signal of the present imaging device and a signal example after contour correction.
- FIG. 5 (a) shows a signal before correction
- FIG. 5 (b) shows an edge correction signal based on a difference addition signal of 17H component / 17 pixel components (eight pixel intervals)
- FIG. 5C shows 9H component / 9 pixel components
- 4 (D) is a contour correction signal based on a 7H component / 7 pixel component (3 pixel interval) differential addition signal
- (e) is a 5H component / 5 pixel component.
- a contour correction signal based on a differential addition signal of (two pixel intervals) is a contour correction signal based on a differential addition signal of 3H component / 3 pixel components (one pixel interval), and (g) is 17H9H5H component / 17 (H) is a contour correction signal of 9H5H component / 9 pixels 5 pixel components (4 pixels 2 pixels interval) after contour correction with contour correction signal of 9 pixels 5 pixels 5 pixels component (8 pixels 4 pixels 2 pixels interval) Shows the signal after contour correction by.
- (d) and (f) are signals that are not generated by the present imaging device, but are shown for reference.
- the signal of (g) is based on the sum of the differential addition signal of 8-pixel intervals of (b), the differential addition signal of 4-pixel intervals of (c), and the differential addition signal of 2-pixel intervals of (e). This is a signal obtained by adding the generated contour correction signal and the pre-correction signal of (a).
- the signal after contour correction shown in (g) is, for example, a 17H15H13H11H9H7H5H3H contour correction signal (a contour correction signal based on a difference addition signal of 17H15H13H11H9H9H7H5H3H component / 17 pixels 15 pixels 13 pixels 11 pixels 9 pixels 5 pixels 3 pixels component)
- a contour correction signal based on a difference addition signal of 17H15H13H11H9H9H7H5H3H component / 17 pixels 15 pixels 13 pixels 11 pixels 9 pixels 5 pixels 3 pixels component
- the signal of (h) is a contour correction signal generated based on the sum of the differential addition signal of 4-pixel intervals of (c) and the differential addition signal of 2-pixel intervals of (e), (a) It is a signal obtained by adding the pre-correction signal of The signal after contour correction in (h) is, for example, a high frequency component as compared with the case where it is corrected with a 9H7H5H3H contour correction signal (a contour correction signal based on a differential addition signal of 9H7H5H3H component / 9 pixels 7 pixels 5 pixels 3 pixel components) Although it is not possible to reproduce fine outlines of the image, the outline correction signal can be enlarged because the high frequency noise is small, and the outlines can be made clear.
- the contour correction unit 11 in the image pickup apparatus using the CMOS image pickup element having a pixel interval of 5 wavelengths or less, the contour correction unit 11 generates an image signal of a pixel to be corrected.
- the difference between the correction target pixel and the video signal of a plurality of pixels having a pixel interval (2, 4, 8, 18, 32, etc.) of powers of 2 is calculated, and the difference is added based on the difference.
- the contour correction signal is generated, and the correction signal addition unit adds the contour correction signal to the video signal of the pixel to be corrected, so that a contour correction signal that does not include high frequency components near fs / 2 can be generated.
- the low-range contour correction signal can be reinforced to improve the MTF in the low range, and focusing can be facilitated even at the telephoto end of a telephoto lens with a shallow depth of field.
- the sum of the difference between the pixel to be compensated and the pixel having an interval of 2, 4, 8, 16, 32 pixels is calculated, but more line memories such as 64 pixels, 128 pixels, etc. It is also possible to use a configuration provided with a section or pixel delay section, a multiplier, and an adder, and the effect of contour correction increases as the number increases, so it is desirable to increase if the circuit scale is acceptable.
- the video level discriminator output signal controls the contour correction signal level output from the small signal large amplitude compression limiter
- the contour correction signal is controlled by controlling the video level discriminator output signal level according to the lens aperture value. It also becomes easy to control the level.
- the monitoring 1 / 3-type HD2K imaging device, the reporting 2 / 3-type 4K imaging device, and the relay 4 / 3-type 8K imaging device have the same pixel interval of 2.5 ⁇ m, and are super telephoto.
- the aberration is large, the diaphragm is dark, and the MTF is low.
- these characteristics can be allowed to improve the MTF at low frequency, and the price of the imaging device can be reduced. There is an effect that can be realized. That is, the present apparatus has an effect of enabling outline emphasis at low cost by performing electronic correction without using an expensive large-sized low-pass MTF high UHDTV lens.
- the present invention is suitable for an imaging apparatus capable of outputting a video signal with an improved degree of modulation at low frequencies by performing contour correction without high frequency components.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Picture Signal Circuits (AREA)
Abstract
An imaging device which uses a surface radiation-type CMOS imaging element having a pixel pitch of less than or equal to 5 wavelengths is provided which improves MTF at low frequencies and which facilitates focusing even at the telephoto end. This imaging device, which uses a CMOS imaging element in which the pixel pitch is less than or equal to 5 times the center wavelength of imaging light, is provided with a color separation unit 2 which decomposes the incident light by color and outputs a video signal, and a contour correction unit 11, which, for the video signal from the color separation unit, calculates the difference between the video signal of pixels to be corrected by applying contour correction, and the video signal of multiple pixels which are separated by pixel intervals that are powers-of-two pixels long from said pixel to be corrected, generates a contour correction signal on the basis of a difference summation signal obtained by adding the differences, and performs contour correction by adding the contour correction signal to the video signal of the pixels to be corrected, wherein an contour correction signal is generated which does not include a high frequency component near fs/2.
Description
本発明は、撮像装置に係り、特に高周波数成分を含まない輪郭補正を行うことにより、低周波数における変調度を改善した映像信号を出力できる撮像装置に関する。
The present invention relates to an image pickup apparatus, and more particularly to an image pickup apparatus capable of outputting a video signal with an improved degree of modulation at low frequencies by performing contour correction that does not include high frequency components.
[先行技術の説明]
CCD(Charge Coupled Device)撮像素子から出力された信号から雑音を除去するCDS(Correlated Double Sampling)と、暗電流補正と、利得可変増幅回路(Automatic Gain Control、以下AGC)と、表示装置に出力するためデジタル映像信号Viに変換するADC(Analog Digital Converter)とを内蔵したAFE(Analog Front End)が普及し、従来10ビットだったAFEのADC階調は、12ビットや14ビットが一般的となった。
また、駆動回路や読み出し回路を統合し高速読み出しを可能にしたCMOS(Compleme
ntary Metal Oxide Semiconductor)撮像素子の改良も進んできた。 [Description of Prior Art]
Outputs to the display device CDS (Correlated Double Sampling) that removes noise from the signal output from the CCD (Charge Coupled Device) imaging device, dark current correction, variable gain amplifier circuit (Automatic Gain Control, hereinafter AGC), and a display device Therefore, AFE (Analog Front End) incorporating ADC (Analog Digital Converter) to convert to digital video signal Vi has become widespread, and ADC gradation of AFE, which was 10 bits in the past, is generally 12 bits or 14 bits. The
In addition, CMOS (Compleme) that integrates driving circuits and readout circuits to enable high-speed readout
Improvements in ntary metal oxide semiconductor) imaging devices have also progressed.
CCD(Charge Coupled Device)撮像素子から出力された信号から雑音を除去するCDS(Correlated Double Sampling)と、暗電流補正と、利得可変増幅回路(Automatic Gain Control、以下AGC)と、表示装置に出力するためデジタル映像信号Viに変換するADC(Analog Digital Converter)とを内蔵したAFE(Analog Front End)が普及し、従来10ビットだったAFEのADC階調は、12ビットや14ビットが一般的となった。
また、駆動回路や読み出し回路を統合し高速読み出しを可能にしたCMOS(Compleme
ntary Metal Oxide Semiconductor)撮像素子の改良も進んできた。 [Description of Prior Art]
Outputs to the display device CDS (Correlated Double Sampling) that removes noise from the signal output from the CCD (Charge Coupled Device) imaging device, dark current correction, variable gain amplifier circuit (Automatic Gain Control, hereinafter AGC), and a display device Therefore, AFE (Analog Front End) incorporating ADC (Analog Digital Converter) to convert to digital video signal Vi has become widespread, and ADC gradation of AFE, which was 10 bits in the past, is generally 12 bits or 14 bits. The
In addition, CMOS (Compleme) that integrates driving circuits and readout circuits to enable high-speed readout
Improvements in ntary metal oxide semiconductor) imaging devices have also progressed.
更に、デジタル信号処理回路の集積化が進み、映像専用のメモリ集積DSPだけでなく、安価な汎用のFPGA(Field Programmable Gate Array)でも、複数ラインの出力信号を記憶し算術処理することが容易に実現できるようになった。
Furthermore, with the progress of integration of digital signal processing circuits, it is easy to store and arithmetic process output signals of a plurality of lines not only for video memory-integrated DSPs but also for inexpensive general-purpose FPGAs (Field Programmable Gate Arrays). It came to be realized.
それにより、画素数が百万以上のメガピクセルカメラ、HDTV(High Definition Te
leVision;高精細テレビ)カメラ、高速撮像HDTVカメラ、記録部付HDTVカメラ、Internet Protocol(以下IP)伝送部付HDTV(1080×1920)カメラ、より高精細の4K(2160×3840)カメラ、8K(4320×7680)カメラ等が製品化され、HDD(Hard Disk Drive)を用いた非圧縮の記録装置も製品化されている。 As a result, megapixel cameras with one million pixels or more, HDTV (High Definition Te
leVision: high-definition television) camera, high-speed imaging HDTV camera, HDTV camera with recording unit, HDTV (1080 × 1920) camera with Internet Protocol (hereinafter IP) transmission unit, higher-definition 4K (2160 × 3840) camera, 8K (high-definition television) 4320 × 7680) Cameras and the like have been commercialized, and non-compression recording apparatuses using HDDs (Hard Disk Drives) have also been commercialized.
leVision;高精細テレビ)カメラ、高速撮像HDTVカメラ、記録部付HDTVカメラ、Internet Protocol(以下IP)伝送部付HDTV(1080×1920)カメラ、より高精細の4K(2160×3840)カメラ、8K(4320×7680)カメラ等が製品化され、HDD(Hard Disk Drive)を用いた非圧縮の記録装置も製品化されている。 As a result, megapixel cameras with one million pixels or more, HDTV (High Definition Te
leVision: high-definition television) camera, high-speed imaging HDTV camera, HDTV camera with recording unit, HDTV (1080 × 1920) camera with Internet Protocol (hereinafter IP) transmission unit, higher-definition 4K (2160 × 3840) camera, 8K (high-definition television) 4320 × 7680) Cameras and the like have been commercialized, and non-compression recording apparatuses using HDDs (Hard Disk Drives) have also been commercialized.
[撮像素子の構成:図6]
ここで、撮像素子の構成について図6用いて説明する。図6は、撮像素子の構成を示す断面説明図であり、(a)はCCDセンサー(撮像素子)、(b)は従来型CMOSセンサー(表面照射型CMOS撮像素子)、(c)はBSI(Back Side Illumination)型CMOSセンサー(裏面照射型CMOS撮像素子)を示している。
図6(a)に示すように、CCDセンサーは、マイクロレンズ91と、カラーフィルタ92と、フォトダイオード93とが積層され、フォトダイオード93とカラーフィルタ92との間にメタル配線層94が形成されている。 [Configuration of imaging device: FIG. 6]
Here, the configuration of the imaging device will be described with reference to FIG. FIG. 6 is a cross-sectional explanatory view showing the configuration of the imaging device, where (a) is a CCD sensor (imaging device), (b) is a conventional CMOS sensor (surface-illuminated CMOS imaging device), (c) is BSI ( The back side illumination) type CMOS sensor (back side illumination type CMOS image sensor) is shown.
As shown in FIG. 6A, in the CCD sensor, amicrolens 91, a color filter 92, and a photodiode 93 are stacked, and a metal wiring layer 94 is formed between the photodiode 93 and the color filter 92. ing.
ここで、撮像素子の構成について図6用いて説明する。図6は、撮像素子の構成を示す断面説明図であり、(a)はCCDセンサー(撮像素子)、(b)は従来型CMOSセンサー(表面照射型CMOS撮像素子)、(c)はBSI(Back Side Illumination)型CMOSセンサー(裏面照射型CMOS撮像素子)を示している。
図6(a)に示すように、CCDセンサーは、マイクロレンズ91と、カラーフィルタ92と、フォトダイオード93とが積層され、フォトダイオード93とカラーフィルタ92との間にメタル配線層94が形成されている。 [Configuration of imaging device: FIG. 6]
Here, the configuration of the imaging device will be described with reference to FIG. FIG. 6 is a cross-sectional explanatory view showing the configuration of the imaging device, where (a) is a CCD sensor (imaging device), (b) is a conventional CMOS sensor (surface-illuminated CMOS imaging device), (c) is BSI ( The back side illumination) type CMOS sensor (back side illumination type CMOS image sensor) is shown.
As shown in FIG. 6A, in the CCD sensor, a
マイクロレンズ91によって集光された入射光は、カラーフィルタ92を通過して、R(赤),G(緑),B(青)の成分に分解され、フォトダイオード93に入射されて電荷が発生し、垂直方向及び水平方向に転送されて画素毎の電圧に変換される。
CCDセンサーは、感度は高いものの、消費電力が大きく、CMOS撮像素子に比べて周辺回路の集積が困難である。 Incident light collected by themicro lens 91 passes through the color filter 92, is separated into R (red), G (green) and B (blue) components, and is incident on the photodiode 93 to generate charge. Are transferred in the vertical direction and the horizontal direction to be converted into a voltage for each pixel.
Although the CCD sensor has high sensitivity, it consumes a large amount of power and is difficult to integrate peripheral circuits as compared to a CMOS image sensor.
CCDセンサーは、感度は高いものの、消費電力が大きく、CMOS撮像素子に比べて周辺回路の集積が困難である。 Incident light collected by the
Although the CCD sensor has high sensitivity, it consumes a large amount of power and is difficult to integrate peripheral circuits as compared to a CMOS image sensor.
図6(b)に示す表面照射型CMOS撮像素子は、画素毎にトランジスタ等が設けられた構成であり、低消費電力、集積化が容易であるものの、感度は低い。
図6(c)に示す裏面照射型CMOS撮像素子は、メタル配線層93がフォトダイオード93の裏面側に設けられており、高感度で、低消費電力、集積化が容易である。 The surface-illuminated CMOS imaging device shown in FIG. 6B has a configuration in which a transistor or the like is provided for each pixel, and although low power consumption and easy integration are possible, sensitivity is low.
In the backside illuminated CMOS imaging device shown in FIG. 6C, themetal wiring layer 93 is provided on the backside of the photodiode 93, so that it is highly sensitive, low power consumption, and easy to integrate.
図6(c)に示す裏面照射型CMOS撮像素子は、メタル配線層93がフォトダイオード93の裏面側に設けられており、高感度で、低消費電力、集積化が容易である。 The surface-illuminated CMOS imaging device shown in FIG. 6B has a configuration in which a transistor or the like is provided for each pixel, and although low power consumption and easy integration are possible, sensitivity is low.
In the backside illuminated CMOS imaging device shown in FIG. 6C, the
特に、一般的な低価格の表面照射型CMOS撮像素子(8Kで1.25型を含め4/3型以下、4Kで2/3型以下)は、5波長以下の画素間隔で、フォトダイオード93とマイクロレンズ(オンチップレンズ)91との間にメタル配線層94が積層されているため、低域の変調度が低い。
また、対域外の高域成分の折り返しの偽信号のモアレを抑圧するために光学低域通過フィルタ(O-LPF;Optical Low Pass Filter)を挿入すると、更に変調度が低くなる。 In particular, a general-purpose low-cost surface-illuminated CMOS imaging device (4/3 or less including 8K, 1.25 type, 2/3 or less at 4K) hasphotodiode 93 with pixel spacing of 5 wavelengths or less. Since the metal wiring layer 94 is stacked between the first and second microlenses (on-chip lenses) 91, the degree of modulation in the low region is low.
In addition, if an optical low pass filter (O-LPF; Optical Low Pass Filter) is inserted to suppress moire of aliasing of high frequency components outside the range, the degree of modulation further decreases.
また、対域外の高域成分の折り返しの偽信号のモアレを抑圧するために光学低域通過フィルタ(O-LPF;Optical Low Pass Filter)を挿入すると、更に変調度が低くなる。 In particular, a general-purpose low-cost surface-illuminated CMOS imaging device (4/3 or less including 8K, 1.25 type, 2/3 or less at 4K) has
In addition, if an optical low pass filter (O-LPF; Optical Low Pass Filter) is inserted to suppress moire of aliasing of high frequency components outside the range, the degree of modulation further decreases.
更に、2/3型4Kと1.25型8Kにおいては、撮像素子の画素ピッチが約2.5μmと緑波長0.55μmの約4.5倍となり、高倍率ズームレンズの収差を光学的に補正しきれず、低域での変調度(変調伝達関数特性:MTF;Modulation Transfer Function
)が低下する。 Furthermore, in 2/3 type 4K and 1.25 type 8K, the pixel pitch of the image pickup element is about 2.5 μm and about 4.5 times the green wavelength 0.55 μm, and the aberration of the high magnification zoom lens is optically It can not be corrected, and the degree of modulation at low frequencies (Modulation transfer function characteristics: MTF; Modulation Transfer Function
) Decreases.
)が低下する。 Furthermore, in 2/3 type 4K and 1.25 type 8K, the pixel pitch of the image pickup element is about 2.5 μm and about 4.5 times the green wavelength 0.55 μm, and the aberration of the high magnification zoom lens is optically It can not be corrected, and the degree of modulation at low frequencies (Modulation transfer function characteristics: MTF; Modulation Transfer Function
) Decreases.
図7は、絞り値と変調度の関係を示す説明図である。
収差のない理想レンズでも、画素ピッチの波長数以上に絞ると、緑の中心波長0.55μmの光学回折により変調度が低下することが知られている。
例えば、1/3型HDTV(1080×1920)カメラでは、画素ピッチが4.9波長に対し、約F5で400TV本でも変調度50%以下のぼけた画像となり、2/3型4K(2160×3840)カメラでは、画素ピッチが4.5波長に対し、約F4.8で800TV本でも変調度50%以下のぼけた画像となる。 FIG. 7 is an explanatory view showing the relationship between the aperture value and the modulation degree.
It is known that, even with an ideal lens having no aberration, the degree of modulation decreases due to optical diffraction at a green central wavelength of 0.55 μm when the number of wavelengths of the pixel pitch is reduced to a number equal to or greater than the wavelength.
For example, with a 1/3 type HDTV (1080 × 1920) camera, a blurred image with a pixel pitch of approximately F5 and a 400 TV line with a modulation degree of 50% or less with an F5 pixel wavelength of 4.9 wavelengths is 2/3 × 4K (2160 × With the camera, with the camera, for a pixel pitch of 4.5 wavelengths, an blurred image with a modulation degree of 50% or less is obtained even at 800 TV with about F4.8.
収差のない理想レンズでも、画素ピッチの波長数以上に絞ると、緑の中心波長0.55μmの光学回折により変調度が低下することが知られている。
例えば、1/3型HDTV(1080×1920)カメラでは、画素ピッチが4.9波長に対し、約F5で400TV本でも変調度50%以下のぼけた画像となり、2/3型4K(2160×3840)カメラでは、画素ピッチが4.5波長に対し、約F4.8で800TV本でも変調度50%以下のぼけた画像となる。 FIG. 7 is an explanatory view showing the relationship between the aperture value and the modulation degree.
It is known that, even with an ideal lens having no aberration, the degree of modulation decreases due to optical diffraction at a green central wavelength of 0.55 μm when the number of wavelengths of the pixel pitch is reduced to a number equal to or greater than the wavelength.
For example, with a 1/3 type HDTV (1080 × 1920) camera, a blurred image with a pixel pitch of approximately F5 and a 400 TV line with a modulation degree of 50% or less with an F5 pixel wavelength of 4.9 wavelengths is 2/3 × 4K (2160 × With the camera, with the camera, for a pixel pitch of 4.5 wavelengths, an blurred image with a modulation degree of 50% or less is obtained even at 800 TV with about F4.8.
実際のレンズでは、一般的に、HDTV(1080×1920)カメラ用でF4付近、4K(2160×3840)カメラ用でF2.8付近、8K(4320×7680)カメラ用でF2付近において変調度が最も高く、絞り開放付近では収差のため変調度が低下し、絞り切り付近では光学回折のため変調度が低下する。
In an actual lens, in general, the modulation degree is around F4 for HDTV (1080 × 1920) cameras, around F2.8 for 4K (2160 × 3840) cameras, and around F2 for 8K (4320 × 7680) cameras. At the highest, the degree of modulation decreases in the vicinity of the aperture opening due to aberration, and the degree of modulation decreases in the vicinity of the stop due to optical diffraction.
一方、望遠ズームレンズは、望遠端の絞り値が3.7から5.3と5.6に近く、エクステンダと称する焦点距離を2倍にする補助レンズを挿入すると絞り値が倍になり、望遠端の絞り値が7.4から10.6と5.6よりはるかに大きくなる。
更に、望遠端では収差のため変調度が低下する。そのため、望遠端ではfs/2付近の信号成分はほとんどなく、雑音が主成分となる。 On the other hand, in the telephoto zoom lens, when the stop value at the telephoto end is close to 3.7 to 5.3 and 5.6, inserting an auxiliary lens called an extender that doubles the focal length doubles the stop value, The aperture values at the ends become much larger than 7.4 to 10.6 and 5.6.
Furthermore, at the telephoto end, the degree of modulation is reduced due to the aberration. Therefore, at the telephoto end, there are almost no signal components near fs / 2, and noise is the main component.
更に、望遠端では収差のため変調度が低下する。そのため、望遠端ではfs/2付近の信号成分はほとんどなく、雑音が主成分となる。 On the other hand, in the telephoto zoom lens, when the stop value at the telephoto end is close to 3.7 to 5.3 and 5.6, inserting an auxiliary lens called an extender that doubles the focal length doubles the stop value, The aperture values at the ends become much larger than 7.4 to 10.6 and 5.6.
Furthermore, at the telephoto end, the degree of modulation is reduced due to the aberration. Therefore, at the telephoto end, there are almost no signal components near fs / 2, and noise is the main component.
[関連技術]
尚、撮像装置に関する従来技術としては、特開2007-49216号公報「輪郭強調処理装置及び輪郭強調処理方法」(特許文献1)、特開平7-264442号公報「固体撮像装置」(特許文献2)、特開2003-333369号公報「画像処理装置および方法、記録媒体、並びにプログラム」(特許文献3)、特開2009-303206号公報「個体撮像装置及び監視システム」(特許文献4)がある。 [Related Art]
In addition, as a prior art regarding an imaging device, Unexamined-Japanese-Patent No. 2007-49216 "outline emphasis processing apparatus and outline emphasis processing method" (patent document 1), Unexamined-Japanese-Patent No. 7-264442 "solid-state imaging apparatus" (patent document 2) Japanese Patent Application Laid-Open No. 2003-333369 "Image processing apparatus and method, recording medium, and program" (patent document 3) Japanese Patent Application Laid-Open No. 2009-303206 "Individual image pickup apparatus and monitoring system" (patent document 4) .
尚、撮像装置に関する従来技術としては、特開2007-49216号公報「輪郭強調処理装置及び輪郭強調処理方法」(特許文献1)、特開平7-264442号公報「固体撮像装置」(特許文献2)、特開2003-333369号公報「画像処理装置および方法、記録媒体、並びにプログラム」(特許文献3)、特開2009-303206号公報「個体撮像装置及び監視システム」(特許文献4)がある。 [Related Art]
In addition, as a prior art regarding an imaging device, Unexamined-Japanese-Patent No. 2007-49216 "outline emphasis processing apparatus and outline emphasis processing method" (patent document 1), Unexamined-Japanese-Patent No. 7-264442 "solid-state imaging apparatus" (patent document 2) Japanese Patent Application Laid-Open No. 2003-333369 "Image processing apparatus and method, recording medium, and program" (patent document 3) Japanese Patent Application Laid-Open No. 2009-303206 "Individual image pickup apparatus and monitoring system" (patent document 4) .
特許文献1には、サンプリング周波数fsの半分付近の信号成分と雑音成分を減衰させるため、輪郭補正信号を、低域通過フィルタ(LPF;Low Pass Filter)を通過させる輪郭強調処理装置が記載されている。
特許文献2には、望遠で変調度が低下する場合に、輪郭補正周波数を低下させる撮像装置が記載されている。Patent Document 1 describes an edge enhancement processing apparatus for passing an edge correction signal through a low pass filter (LPF; Low Pass Filter) in order to attenuate signal components and noise components around half the sampling frequency fs. There is.
Patent Document 2 describes an imaging device that reduces the contour correction frequency when the degree of modulation decreases at telephoto.
特許文献2には、望遠で変調度が低下する場合に、輪郭補正周波数を低下させる撮像装置が記載されている。
また、特許文献3には、基本処理レートの2の累乗数に対応した遅延から輪郭強調(2又は4の単位の画素間隔の差分の輪郭補正)を行うことが記載されている。
特許文献4には、絞り値が大きく、光学回折で変調度が低下すると、輪郭補正の中心周波数を低下させる撮像装置が記載されている。 Further,Patent Document 3 describes that edge enhancement (edge correction of a difference between pixel intervals in units of 2 or 4) is performed from a delay corresponding to a power of 2 of the basic processing rate.
Patent Document 4 describes an imaging device that reduces the center frequency of contour correction when the aperture value is large and the degree of modulation is reduced by optical diffraction.
特許文献4には、絞り値が大きく、光学回折で変調度が低下すると、輪郭補正の中心周波数を低下させる撮像装置が記載されている。 Further,
上述したように、従来の撮像装置では、表面照射型CMOS撮像素子を用いたUHDTV(Ultra High Definition TeleVision:超高精細テレビ)カメラにおいては、画素ピッチが撮像光の中心波長の5波長以下になると、低周波数におけるMTFが低下するという問題点があった。
また、望遠ズームレンズの望遠端では、特にレンズ収差と回折からMTFが低下し、焦点合わせが困難であるという問題点があった。 As described above, in a conventional imaging device, in a UHDTV (Ultra High Definition TeleVision: ultra high definition television) camera using a surface-illuminated CMOS imaging device, if the pixel pitch is equal to or less than five wavelengths of the central wavelength of imaging light There is a problem that MTF at low frequencies is lowered.
In addition, at the telephoto end of the telephoto zoom lens, the MTF particularly decreases due to lens aberration and diffraction, which causes a problem that focusing is difficult.
また、望遠ズームレンズの望遠端では、特にレンズ収差と回折からMTFが低下し、焦点合わせが困難であるという問題点があった。 As described above, in a conventional imaging device, in a UHDTV (Ultra High Definition TeleVision: ultra high definition television) camera using a surface-illuminated CMOS imaging device, if the pixel pitch is equal to or less than five wavelengths of the central wavelength of imaging light There is a problem that MTF at low frequencies is lowered.
In addition, at the telephoto end of the telephoto zoom lens, the MTF particularly decreases due to lens aberration and diffraction, which causes a problem that focusing is difficult.
本発明は上記実状に鑑みて為されたもので、画素ピッチが5波長以下の表面照射型CMOS撮像素子を用いた撮像装置において、低周波数におけるMTFを改善し、望遠端でも焦点合わせを容易にすることができる撮像装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in an imaging apparatus using a surface-illuminated CMOS imaging device having a pixel pitch of 5 wavelengths or less, the MTF at low frequencies is improved and focusing is easy even at the telephoto end. It is an object of the present invention to provide an imaging device that can
上記従来例の問題点を解決するための本発明は、画素ピッチが撮像光の中心波長の5倍以下であるCMOS撮像素子を用いた撮像装置であって、撮像素子を備え、入力光を色毎に分解して映像信号を出力する色分解部と、色分解部からの映像信号について、輪郭補正を施す補正対象の画素の映像信号と、当該補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正対象画素の映像信号に輪郭補正信号を加算して輪郭補正を行う輪郭補正部とを備えたことを特徴としている。
The present invention for solving the problems of the above-described conventional example is an imaging apparatus using a CMOS imaging device whose pixel pitch is five times or less of the central wavelength of imaging light, and comprises an imaging device and color input light A color separation unit that separates each time and outputs a video signal, and a video signal of a correction target pixel to which contour correction is applied to the video signal from the color separation unit, and a pixel interval of a power of 2 from the correction target pixel The difference with the video signal of the plurality of pixels is calculated, the contour correction signal is generated based on the difference addition signal obtained by adding the plurality of differences, the contour correction signal is added to the video signal of the correction target pixel, and the contour correction is performed. And a contour correction unit for performing the processing.
また、本発明は、上記撮像装置において、輪郭補正部が、補正対象の画素の映像信号と、補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算して差分加算信号を生成する差分加算部と、差分加算信号を、補正対象の画素の映像信号レベルに基づいて調整して補正対象の画素に対応する輪郭補正信号を生成する輪郭補正信号生成部と、補正対象の画素の映像信号に輪郭補正信号を加算する輪郭補正信号加算部とを備えたことを特徴としている。
Further, according to the present invention, in the imaging device, the outline correction unit calculates a difference between the video signal of the pixel to be corrected and the video signal of a plurality of pixels having a pixel interval of a power of 2 from the pixel to be corrected. A difference addition unit that adds the plurality of differences to generate a difference addition signal; and adjusting the difference addition signal based on the video signal level of the pixel to be corrected; and an edge correction signal corresponding to the pixel to be corrected It is characterized in that it comprises: a contour correction signal generation unit to be generated; and a contour correction signal addition unit to add a contour correction signal to a video signal of a pixel to be corrected.
また、本発明は、上記撮像装置において、2の累乗の画素間隔を、2画素間隔から32画素間隔までとすることを特徴としている。
Furthermore, the present invention is characterized in that, in the above-mentioned imaging device, the pixel interval of the power of 2 is from 2 pixel interval to 32 pixel interval.
また、本発明は、上記撮像装置において、撮像素子を表面照射型のCMOS撮像素子としたことを特徴としている。
Furthermore, the present invention is characterized in that, in the above-described imaging device, the imaging device is a surface-illuminated CMOS imaging device.
また、本発明は、上記撮像装置において、望遠端の開放絞り値が、撮像素子の画素ピッチ/中心波長より大きいレンズ、又は収差の大きいレンズから入力される映像信号について、輪郭補正を行うことを特徴としている。
Further, according to the present invention, in the imaging device described above, contour correction is performed on a video signal input from a lens whose open aperture value at the telephoto end is larger than the pixel pitch of the imaging device / center wavelength or a lens with large aberration. It is characterized.
本発明によれば、画素ピッチが撮像光の中心波長の5倍以下であるCMOS撮像素子を用いた撮像装置であって、撮像素子を備え、入力光を色毎に分解して映像信号を出力する色分解部と、色分解部からの映像信号について、輪郭補正を施す補正対象の画素の映像信号と、当該補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正対象画素の映像信号に輪郭補正信号を加算して輪郭補正を行う輪郭補正部とを備えた撮像装置としているので、高周波成分を含まない輪郭補正信号を生成して、低域の輪郭補正信号を強調し、低域における変調度を改善し、被写界深度の浅い望遠端における焦点合わせを容易にすることができる効果がある。
According to the present invention, an imaging device using a CMOS imaging device having a pixel pitch equal to or less than five times the central wavelength of imaging light, comprising an imaging device, separating input light for each color and outputting a video signal A color separation unit, a video signal of a correction target pixel to which contour correction is applied to a video signal from the color separation unit, and a video signal of a plurality of pixels having a pixel interval of a power of 2 from the correction target pixel A contour correction unit that calculates a difference, generates an edge correction signal based on a difference addition signal obtained by adding the plurality of differences, and adds an edge correction signal to a video signal of a correction target pixel to perform edge correction Since the imaging apparatus is used, a contour correction signal containing no high frequency component is generated to emphasize the low band contour correction signal, improve the modulation degree in the low band, and focus at the telephoto end with a shallow depth of field. Can be facilitated There is a result.
また、本発明によれば、輪郭補正部が、補正対象の画素の映像信号と、補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算して差分加算信号を生成する差分加算部と、差分加算信号を、補正対象の画素の映像信号レベルに基づいて調整して補正対象の画素に対応する輪郭補正信号を生成する輪郭補正信号生成部と、補正対象の画素の映像信号に輪郭補正信号を加算する輪郭補正信号加算部とを備えた上記撮像装置としているので、差分加算信号を適切に調整して輪郭補正信号を生成することができ、低域における変調度を改善することができる効果がある。
Further, according to the present invention, the contour correction unit calculates the difference between the video signal of the pixel to be corrected and the video signal of a plurality of pixels having a pixel interval of a power of 2 from the pixel to be corrected A difference addition unit that generates a difference addition signal by adding the differences of the above, and an outline that adjusts the difference addition signal based on the video signal level of the pixel to be corrected to generate an edge correction signal corresponding to the pixel to be corrected Since the imaging apparatus includes the correction signal generation unit and the contour correction signal addition unit that adds the contour correction signal to the video signal of the pixel to be corrected, the difference addition signal is appropriately adjusted to generate the contour correction signal. There is an effect that the degree of modulation in the low band can be improved.
また、本発明によれば、2の累乗の画素間隔を、2画素間隔から32画素間隔までとする上記撮像装置としているので、2Kの飛越操作のHDTVの1.05MHzの変調度を改善すると共に、1MHz基準の27.5MHzの変調度を相対的に低下させることができ、回路規模をあまり大きくすることなく、低域における変調度を十分改善することができる効果がある。
Further, according to the present invention, since the image pickup apparatus has the pixel interval of power of 2 from 2 pixel interval to 32 pixel interval, the modulation degree of 1.05 MHz of HDTV of 2K jump operation is improved. The degree of modulation at 27.5 MHz, which is based on 1 MHz, can be relatively lowered, and the degree of modulation in the low band can be sufficiently improved without increasing the circuit scale too much.
また、本発明によれば、撮像素子を表面照射型のCMOS撮像素子とした上記撮像装置としているので、低コストで低域の変調度を改善した撮像素子を実現することができる効果がある。
Further, according to the present invention, since the imaging device is configured as the surface-illuminated CMOS imaging device according to the present invention, there is an effect that it is possible to realize an imaging device with improved low-frequency modulation at low cost.
また、本発明によれば、望遠端の開放絞り値が、撮像素子の画素ピッチ/中心波長より大きいレンズ、又は収差の大きいレンズから入力される映像信号について、輪郭補正を行う上記撮像装置としているので、高価で大型のUHDTV専用レンズを使用することなく、低コストで低域における変調度を改善して、望遠端での焦点合わせを容易にすることができる効果がある。
Further, according to the present invention, the image pickup apparatus performs the contour correction on a video signal input from a lens whose open aperture value at the telephoto end is larger than the pixel pitch of the image pickup element / center wavelength or a lens having large aberration. Therefore, it is possible to improve the degree of modulation at low cost and to facilitate focusing at the telephoto end without using an expensive and large UHDTV lens.
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係る撮像装置は、画素ピッチが撮像光の中心波長の5波長以下のCMOS撮像素子を用いた撮像装置において、輪郭補正を施す補正対象の画素の映像信号と、当該補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正対象画素の映像信号に輪郭補正信号を加算するようにしているので、fs/2付近の高周波成分を含まない輪郭補正信号とすることができ、低域の輪郭補正信号を補強して、低域におけるMTFを改善し、望遠レンズの望遠端においても焦点合わせを容易にすることができるものである。 Embodiments of the present invention will be described with reference to the drawings.
[Overview of the embodiment]
An image pickup apparatus according to an embodiment of the present invention is an image pickup apparatus using a CMOS image pickup element having a pixel pitch of 5 wavelengths or less of a central wavelength of image pickup light. The difference between the target pixel and the video signal of the plurality of pixels which is the pixel interval of the power of 2 is calculated, and the contour correction signal is generated based on the difference addition signal obtained by adding the plurality of differences. Since the contour correction signal is added to the signal, the contour correction signal without high frequency components near fs / 2 can be obtained, and the low frequency contour correction signal is reinforced to improve the MTF in the low frequency region. Also, focusing can be facilitated at the telephoto end of the telephoto lens.
[実施の形態の概要]
本発明の実施の形態に係る撮像装置は、画素ピッチが撮像光の中心波長の5波長以下のCMOS撮像素子を用いた撮像装置において、輪郭補正を施す補正対象の画素の映像信号と、当該補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正対象画素の映像信号に輪郭補正信号を加算するようにしているので、fs/2付近の高周波成分を含まない輪郭補正信号とすることができ、低域の輪郭補正信号を補強して、低域におけるMTFを改善し、望遠レンズの望遠端においても焦点合わせを容易にすることができるものである。 Embodiments of the present invention will be described with reference to the drawings.
[Overview of the embodiment]
An image pickup apparatus according to an embodiment of the present invention is an image pickup apparatus using a CMOS image pickup element having a pixel pitch of 5 wavelengths or less of a central wavelength of image pickup light. The difference between the target pixel and the video signal of the plurality of pixels which is the pixel interval of the power of 2 is calculated, and the contour correction signal is generated based on the difference addition signal obtained by adding the plurality of differences. Since the contour correction signal is added to the signal, the contour correction signal without high frequency components near fs / 2 can be obtained, and the low frequency contour correction signal is reinforced to improve the MTF in the low frequency region. Also, focusing can be facilitated at the telephoto end of the telephoto lens.
[実施の形態に係る撮像装置の概略構成:図1]
本発明の実施の形態に係る撮像装置(本撮像装置)の概略構成について図1を用いて説明する。図1は、本撮像装置の概略構成を示す構成ブロック図である。
図1に示すように、本撮像装置1は、色分解光学系2と、撮像素子3(3R,3G,3B)と、映像信号処理部4と、パラレル/シリアル(P/S)変換部5と、CPU(Cent
ral Processing Unit)6とを備えており、レンズ7及びビューファインダー(映像表示装置)8に接続されている。 [Schematic Configuration of Imaging Device According to Embodiment: FIG. 1]
A schematic configuration of an imaging apparatus (main imaging apparatus) according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration block diagram showing a schematic configuration of the present imaging device.
As shown in FIG. 1, theimaging device 1 includes a color separation optical system 2, an imaging device 3 (3 R, 3 G, 3 B), a video signal processing unit 4, and a parallel / serial (P / S) conversion unit 5. And the CPU (Cent
ral Processing Unit) 6 and is connected to the lens 7 and the view finder (image display device) 8.
本発明の実施の形態に係る撮像装置(本撮像装置)の概略構成について図1を用いて説明する。図1は、本撮像装置の概略構成を示す構成ブロック図である。
図1に示すように、本撮像装置1は、色分解光学系2と、撮像素子3(3R,3G,3B)と、映像信号処理部4と、パラレル/シリアル(P/S)変換部5と、CPU(Cent
ral Processing Unit)6とを備えており、レンズ7及びビューファインダー(映像表示装置)8に接続されている。 [Schematic Configuration of Imaging Device According to Embodiment: FIG. 1]
A schematic configuration of an imaging apparatus (main imaging apparatus) according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration block diagram showing a schematic configuration of the present imaging device.
As shown in FIG. 1, the
ral Processing Unit) 6 and is connected to the lens 7 and the view finder (image display device) 8.
本撮像装置1の各部について説明する。
色分解光学系2は、レンズ7から入射された入射光を赤色(R)と、緑色(G)と、青色(B)に色分解する。
撮像素子3は、CMOS撮像素子であり、撮像素子3Rは赤色光を光電変換し、撮像素子3Gは緑色光を光電変換し、撮像素子3Bは青色光を光電変換して、各色の光の強弱に応じた電荷を発生する。
ここで、撮像素子3は、緑色光の波長(0.55μm)を基準として5波長以下の画素ピッチで画素が配列されている。
色分解光学系2及び撮像素子3は、請求項に記載した色分解部に相当している。 Each part of theimaging device 1 will be described.
The color separationoptical system 2 separates the incident light from the lens 7 into red (R), green (G) and blue (B).
Theimage pickup device 3 is a CMOS image pickup device, the image pickup device 3R photoelectrically converts red light, the image pickup device 3G photoelectrically converts green light, and the image pickup device 3B photoelectrically converts blue light. Generates a charge according to the
Here, the pixels of theimaging device 3 are arranged at a pixel pitch of 5 wavelengths or less based on the wavelength (0.55 μm) of green light.
The color separationoptical system 2 and the imaging device 3 correspond to a color separation unit described in the claims.
色分解光学系2は、レンズ7から入射された入射光を赤色(R)と、緑色(G)と、青色(B)に色分解する。
撮像素子3は、CMOS撮像素子であり、撮像素子3Rは赤色光を光電変換し、撮像素子3Gは緑色光を光電変換し、撮像素子3Bは青色光を光電変換して、各色の光の強弱に応じた電荷を発生する。
ここで、撮像素子3は、緑色光の波長(0.55μm)を基準として5波長以下の画素ピッチで画素が配列されている。
色分解光学系2及び撮像素子3は、請求項に記載した色分解部に相当している。 Each part of the
The color separation
The
Here, the pixels of the
The color separation
映像信号処理部4は、輪郭補正部11と、ガンマ色補正部12と、マトリクス部13とを備え、大容量メモリ内蔵FPGAや、DDR(Double-Data-Rate)メモリ外付けFPGA等で構成される。
The video signal processing unit 4 includes a contour correction unit 11, a gamma color correction unit 12, and a matrix unit 13, and is configured by an FPGA with a large capacity memory, an external FPGA with DDR (Double-Data-Rate) memory, etc. Ru.
輪郭補正部11は、本撮像装置の特徴部分であり、赤、緑、青の各色成分毎に、映像の輪郭を補正する輪郭補正処理を行う。
輪郭補正部11は、垂直輪郭補正処理を行う直輪郭補正部と、水平輪郭補正処理を行う水平輪郭補正処理部とを備えている。 Thecontour correction unit 11 is a characteristic portion of the present imaging device, and performs contour correction processing for correcting the contour of the image for each of the red, green, and blue color components.
Thecontour correction unit 11 includes a direct contour correction unit that performs vertical contour correction processing, and a horizontal contour correction processing unit that performs horizontal contour correction processing.
輪郭補正部11は、垂直輪郭補正処理を行う直輪郭補正部と、水平輪郭補正処理を行う水平輪郭補正処理部とを備えている。 The
The
そして、本撮像装置の特徴として、輪郭補正部11は、補正対象の画素の映像信号と、2の累乗の画素間隔(例えば、2,4,8,16,32画素間隔)となる画素の映像信号との差分の合計に基づいて、輪郭補正信号を生成する。輪郭補正部11の構成及び動作については後述する。
Then, as a feature of the present imaging device, the contour correction unit 11 generates an image of a pixel to be corrected and an image of a pixel having a pixel interval of a power of 2 (for example, an interval of 2, 4, 8, 16, 32 pixels) A contour correction signal is generated based on the sum of the difference with the signal. The configuration and operation of the contour correction unit 11 will be described later.
ガンマ色補正部12は、画像の階調を補正(ガンマ色補正)する処理を行う。
マトリクス部13は、映像の輝度や色を調整する処理を行う。
パラレル/シリアル変換部5は、パラレルデータをシリアルデータに変換して、外部に出力する。
CPU6は、撮像装置全体の制御を行うものであり、特に、輪郭補正部11の制御を行って適切な輪郭補正を実現する。
また、CPU6は、レンズ絞り値に応じて輪郭補正信号のレベルを制御する。 The gammacolor correction unit 12 performs processing of correcting the gradation of the image (gamma color correction).
Thematrix unit 13 performs processing to adjust the luminance and color of the video.
The parallel /serial converter 5 converts parallel data into serial data and outputs the serial data to the outside.
TheCPU 6 controls the entire image pickup apparatus, and in particular, controls the contour correction unit 11 to realize appropriate contour correction.
Further, theCPU 6 controls the level of the contour correction signal in accordance with the lens aperture value.
マトリクス部13は、映像の輝度や色を調整する処理を行う。
パラレル/シリアル変換部5は、パラレルデータをシリアルデータに変換して、外部に出力する。
CPU6は、撮像装置全体の制御を行うものであり、特に、輪郭補正部11の制御を行って適切な輪郭補正を実現する。
また、CPU6は、レンズ絞り値に応じて輪郭補正信号のレベルを制御する。 The gamma
The
The parallel /
The
Further, the
本撮像装置の動作について簡単に説明する。
レンズ7から入力された光は、色分解光学系2において赤、緑、青の成分に分離され、それぞれ、撮像素子3R,3G,3Bで光電変換されて電気信号となる。
そして、各色の信号は、輪郭補正部11において、それぞれ垂直輪郭補正及び水平輪郭補正処理を施され、ガンマ色補正部12でガンマ色補正が為され、マトリクス部13で色調整を施され、パラレル/シリアル変換部5でシリアルデータに変換されて、映像信号として外部に出力される。 The operation of the present imaging device will be briefly described.
The light input from the lens 7 is separated into red, green, and blue components in the color separationoptical system 2, and is photoelectrically converted by the imaging elements 3R, 3G, and 3B, respectively, to form an electric signal.
The signal of each color is subjected to vertical contour correction and horizontal contour correction processing in thecontour correction unit 11, gamma color correction is performed in the gamma color correction unit 12, color adjustment is performed in the matrix unit 13, and the parallel correction is performed. The serial data is converted into serial data by the / serial converter 5 and output to the outside as a video signal.
レンズ7から入力された光は、色分解光学系2において赤、緑、青の成分に分離され、それぞれ、撮像素子3R,3G,3Bで光電変換されて電気信号となる。
そして、各色の信号は、輪郭補正部11において、それぞれ垂直輪郭補正及び水平輪郭補正処理を施され、ガンマ色補正部12でガンマ色補正が為され、マトリクス部13で色調整を施され、パラレル/シリアル変換部5でシリアルデータに変換されて、映像信号として外部に出力される。 The operation of the present imaging device will be briefly described.
The light input from the lens 7 is separated into red, green, and blue components in the color separation
The signal of each color is subjected to vertical contour correction and horizontal contour correction processing in the
[垂直輪郭補正部の構成:図2]
次に、本撮像装置の特徴部分である、輪郭補正部11の垂直輪郭補正部の構成について図2を用いて説明する。図2は、本撮像装置の垂直輪郭補正部の構成図である。
垂直輪郭補正部11は、垂直方向に配列された画素間の映像信号を比較して、垂直方向の輪郭を補正するものである。
図2に示すように、垂直輪郭補正部は、複数のラインメモリ部M20~M29と、複数の負の乗算器N20~N24及びN26~N30と、正の乗算器P25と、複数の加算器20~29と、映像レベル判定器28と、乗算器29,32と、小振幅大振幅圧縮制限器31と、補正信号加算部33とを備えている。 [Configuration of vertical contour correction unit: FIG. 2]
Next, the configuration of the vertical contour correction unit of thecontour correction unit 11, which is a characteristic part of the present imaging device, will be described using FIG. FIG. 2 is a block diagram of the vertical contour correction unit of the present imaging device.
The verticalcontour correction unit 11 corrects the contour in the vertical direction by comparing video signals between pixels arranged in the vertical direction.
As shown in FIG. 2, the vertical contour correction unit includes a plurality of line memory units M20 to M29, a plurality of negative multipliers N20 to N24 and N26 to N30, a positive multiplier P25, and a plurality ofadders 20. , A video level determination unit 28, multipliers 29 and 32, a small amplitude / large amplitude compression limiter 31, and a correction signal addition unit 33.
次に、本撮像装置の特徴部分である、輪郭補正部11の垂直輪郭補正部の構成について図2を用いて説明する。図2は、本撮像装置の垂直輪郭補正部の構成図である。
垂直輪郭補正部11は、垂直方向に配列された画素間の映像信号を比較して、垂直方向の輪郭を補正するものである。
図2に示すように、垂直輪郭補正部は、複数のラインメモリ部M20~M29と、複数の負の乗算器N20~N24及びN26~N30と、正の乗算器P25と、複数の加算器20~29と、映像レベル判定器28と、乗算器29,32と、小振幅大振幅圧縮制限器31と、補正信号加算部33とを備えている。 [Configuration of vertical contour correction unit: FIG. 2]
Next, the configuration of the vertical contour correction unit of the
The vertical
As shown in FIG. 2, the vertical contour correction unit includes a plurality of line memory units M20 to M29, a plurality of negative multipliers N20 to N24 and N26 to N30, a positive multiplier P25, and a plurality of
ここで、ラインメモリ部M20~M29と、負の乗算器N20~N24及びN26~N30と、正の乗算器P25と、複数の加算器20~29とが請求項に記載した差分加算部に相当し、映像レベル判定器28と、乗算器29,32が輪郭補正信号生成部に相当している。
Here, the line memory units M20 to M29, the negative multipliers N20 to N24 and N26 to N30, the positive multiplier P25, and the plurality of adders 20 to 29 correspond to the difference addition unit described in the claims. The video level determination unit 28 and the multipliers 29 and 32 correspond to the contour correction signal generation unit.
垂直輪郭補正部の各部について説明する。
ラインメモリ部は、補正対象となるライン(32Hとする)の映像信号と、本装置の特徴部分である補正対象ラインから垂直方向に2,4,8,16,32画素だけ離れたラインの映像信号との差分を求めるために、必要な映像信号を保持して出力するものである。 Each part of the vertical contour correction unit will be described.
The line memory unit includes an image signal of a line (referred to as 32H) to be corrected and an image of a line separated by 2, 4, 8, 16 and 32 pixels in the vertical direction from the line to be corrected which is a characteristic portion of the apparatus. A necessary video signal is held and output in order to obtain a difference from the signal.
ラインメモリ部は、補正対象となるライン(32Hとする)の映像信号と、本装置の特徴部分である補正対象ラインから垂直方向に2,4,8,16,32画素だけ離れたラインの映像信号との差分を求めるために、必要な映像信号を保持して出力するものである。 Each part of the vertical contour correction unit will be described.
The line memory unit includes an image signal of a line (referred to as 32H) to be corrected and an image of a line separated by 2, 4, 8, 16 and 32 pixels in the vertical direction from the line to be corrected which is a characteristic portion of the apparatus. A necessary video signal is held and output in order to obtain a difference from the signal.
具体的には、ラインメモリ部M20は16ライン分の映像信号を蓄積し、ラインメモリ部M21は8ライン分の映像信号を蓄積し、ラインメモリ部M22は4ライン分の映像信号を蓄積し、ラインメモリ部M23は2ライン分の映像信号を蓄積して、それぞれ1ラインずつ負の乗算器N21~N24に出力する。
Specifically, the line memory unit M20 stores video signals of 16 lines, the line memory unit M21 stores video signals of 8 lines, and the line memory unit M22 stores video signals of 4 lines, The line memory unit M23 accumulates video signals for two lines, and outputs one line each to negative multipliers N21 to N24.
ラインメモリ部M24は、補正対象ライン(32H)とその次のライン(31H)とを保持して、補正対象ラインを正の乗算器P25、映像レベル判定器28、及び輪郭補正信号加算部33に出力する。
The line memory unit M24 holds the line to be corrected (32H) and the next line (31H), and sends the line to be corrected to the positive multiplier P25, the video level judgment unit 28, and the outline correction signal addition unit 33. Output.
また、ラインメモリ部M25及びM26は、それぞれ2ライン分の映像信号を蓄積し、ラインメモリ部M27は4ライン分の映像信号を蓄積し、ラインメモリ部M28は8ライン分の映像信号を蓄積し、ラインメモリ部M29は16ライン分の映像信号を蓄積して、それぞれ1ラインずつ負の乗算器N26~N30に出力する。
Line memory units M25 and M26 store video signals for two lines, line memory unit M27 stores video signals for four lines, and line memory unit M28 stores video signals for eight lines. The line memory unit M29 accumulates video signals of 16 lines, and outputs the video signals to negative multipliers N26 to N30, respectively, one line at a time.
負の乗算器N21~N24は、ラインメモリ部M20~M23から出力された映像信号に負の係数を乗算し、加算器21~24に出力する。
負の乗算器N26~N30は、ラインメモリ部M25~M29から出力された映像信号に負の係数を乗算し、加算器26~29に出力する。
負の乗算器N20は、補正前の信号に負の係数を乗算し、加算器20に出力する。
正の乗算器P25は、ラインメモリM24から出力された補正対象ライン(32H)の映像信号に、正の係数を乗算する。 The negative multipliers N21 to N24 multiply the video signals output from the line memory units M20 to M23 by negative coefficients, and output the result to theadders 21 to 24.
Negative multipliers N26 to N30 multiply the video signals output from the line memory units M25 to M29 by negative coefficients, and output the result to the adders 26 to 29.
The negative multiplier N20 multiplies the signal before correction by a negative coefficient, and outputs the result to theadder 20.
The positive multiplier P25 multiplies the video signal of the correction target line (32H) output from the line memory M24 by a positive coefficient.
負の乗算器N26~N30は、ラインメモリ部M25~M29から出力された映像信号に負の係数を乗算し、加算器26~29に出力する。
負の乗算器N20は、補正前の信号に負の係数を乗算し、加算器20に出力する。
正の乗算器P25は、ラインメモリM24から出力された補正対象ライン(32H)の映像信号に、正の係数を乗算する。 The negative multipliers N21 to N24 multiply the video signals output from the line memory units M20 to M23 by negative coefficients, and output the result to the
Negative multipliers N26 to N30 multiply the video signals output from the line memory units M25 to M29 by negative coefficients, and output the result to the adders 26 to 29.
The negative multiplier N20 multiplies the signal before correction by a negative coefficient, and outputs the result to the
The positive multiplier P25 multiplies the video signal of the correction target line (32H) output from the line memory M24 by a positive coefficient.
加算器20~29は、負の乗算器N20~N24、N26~N30と、正の乗算器P25の出力を加算して、加算器20から差分加算信号を出力する。加算器20~29は、請求項における差分加算部に相当している。
ここで、加算器20において、各負の乗算器からの出力と正の乗算器P25からの出力との差分の合計が算出されるよう、正の乗算器P25の係数又は/及び負の乗算器N20~N24、N26~N30の係数がCPU6からの指示により調整されている。 Theadders 20 to 29 add the outputs of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25, and output a difference addition signal from the adder 20. The adders 20 to 29 correspond to the difference addition unit in the claims.
Here, the coefficient of positive multiplier P25 or / and the negative multiplier such that the sum of the difference between the output from each negative multiplier and the output from positive multiplier P25 is calculated inadder 20. The coefficients of N20 to N24 and N26 to N30 are adjusted in accordance with an instruction from the CPU 6.
ここで、加算器20において、各負の乗算器からの出力と正の乗算器P25からの出力との差分の合計が算出されるよう、正の乗算器P25の係数又は/及び負の乗算器N20~N24、N26~N30の係数がCPU6からの指示により調整されている。 The
Here, the coefficient of positive multiplier P25 or / and the negative multiplier such that the sum of the difference between the output from each negative multiplier and the output from positive multiplier P25 is calculated in
つまり、加算器20から出力される差分加算信号は、補正対象ライン(32H)の映像信号と、補正対象ラインから2の累乗数(ここでは、2,4,8,16,32)だけ離れたラインの映像信号との差分の合計となる。
このように2の累乗数の間隔で差分信号を求め、加算して輪郭補正信号を生成することで、高周波数成分のない輪郭補正信号を生成できるものである。 That is, the difference addition signal output from theadder 20 is separated from the correction target line (32H) by the power of two (here, 2, 4, 8, 16, 32) from the correction target line. It is the sum of the difference with the video signal of the line.
As described above, by obtaining a difference signal at intervals of powers of 2 and adding them to generate a contour correction signal, it is possible to generate a contour correction signal without high frequency components.
このように2の累乗数の間隔で差分信号を求め、加算して輪郭補正信号を生成することで、高周波数成分のない輪郭補正信号を生成できるものである。 That is, the difference addition signal output from the
As described above, by obtaining a difference signal at intervals of powers of 2 and adding them to generate a contour correction signal, it is possible to generate a contour correction signal without high frequency components.
映像レベル判定器28は、補正対象ラインの映像信号のレベルを判定して、しきい値判定により暗部を検出する。
乗算器29は、暗部の輪郭補正信号を減衰させるため、正負及び増幅度を可変調整する。
映像レベル判定器28及び乗算器29により、映像レベルが低い領域では、輪郭補正信号付加によるノイズを低減するために、輪郭補正信号を小さくする制御を行い、任意の映像レベル以上の場合には、輪郭補正信号のレベルを一定とする制御を行う。 The videolevel determination unit 28 determines the level of the video signal of the correction target line, and detects a dark portion by threshold determination.
Themultiplier 29 variably adjusts the positive / negative and amplification degree in order to attenuate the outline correction signal of the dark part.
In the region where the video level is low, the videolevel determination unit 28 and the multiplier 29 perform control to reduce the contour correction signal in order to reduce noise due to addition of the contour correction signal. Control is performed to keep the level of the contour correction signal constant.
乗算器29は、暗部の輪郭補正信号を減衰させるため、正負及び増幅度を可変調整する。
映像レベル判定器28及び乗算器29により、映像レベルが低い領域では、輪郭補正信号付加によるノイズを低減するために、輪郭補正信号を小さくする制御を行い、任意の映像レベル以上の場合には、輪郭補正信号のレベルを一定とする制御を行う。 The video
The
In the region where the video level is low, the video
CPU6は、各負の乗算器N20~N24,N26~N30と正の乗算器P25の係数を制御すると共に、乗算器29で乗算される増幅値の正負及び増幅度を制御する。
具体的には、CPU6は、加算器20からの出力が、補正対象ライン(32H)の映像信号と、補正対象ラインから2の累乗数(ここでは、2,4,8,16,32)だけ離れたラインの映像信号との差分の合計となるよう、係数を制御する。
また、本撮像装置のCPU6は、レンズ絞りを絞った場合の映像信号変調度の劣化を改善するために、レンズ絞り値に応じて輪郭補正信号のレベルを制御する。具体的には、レンズアイリスが絞り側になると、乗算器29の係数を調整して、輪郭補正信号を増幅する制御を行う。 TheCPU 6 controls the coefficients of each of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25, and controls the positive and negative values of the amplification value to be multiplied by the multiplier 29 and the amplification degree.
Specifically, theCPU 6 outputs only the video signal of the correction target line (32H) and the power of 2 from the correction target line (here, 2, 4, 8, 16, 32) from the adder 20 The coefficients are controlled so as to be the sum of the difference from the video signal of the distant line.
Further, theCPU 6 of the present imaging device controls the level of the contour correction signal according to the lens aperture value in order to improve the deterioration of the degree of modulation of the video signal when the lens aperture is narrowed. Specifically, when the lens iris is on the aperture side, the coefficient of the multiplier 29 is adjusted to control to amplify the contour correction signal.
具体的には、CPU6は、加算器20からの出力が、補正対象ライン(32H)の映像信号と、補正対象ラインから2の累乗数(ここでは、2,4,8,16,32)だけ離れたラインの映像信号との差分の合計となるよう、係数を制御する。
また、本撮像装置のCPU6は、レンズ絞りを絞った場合の映像信号変調度の劣化を改善するために、レンズ絞り値に応じて輪郭補正信号のレベルを制御する。具体的には、レンズアイリスが絞り側になると、乗算器29の係数を調整して、輪郭補正信号を増幅する制御を行う。 The
Specifically, the
Further, the
小振幅大振幅圧縮制限器(以下、制限器とする)31は、差分加算信号が大振幅であれば圧縮し、小振幅の場合には圧縮を制限する。
乗算器32は、制限器31からの出力に乗算器29からの係数を乗算して、適切な極性及びレベルの垂直輪郭補正信号を生成する。
補正信号加算部33は、ラインメモリ部M24から出力される補正対象ライン(32H)に、垂直輪郭補正信号を加算して、垂直輪郭補正を行う。 A small amplitude / large amplitude compression limiter (hereinafter referred to as a limiter) 31 compresses if the differential addition signal has a large amplitude, and limits the compression if the differential addition signal has a small amplitude.
Multiplier 32 multiplies the output from limiter 31 by the coefficient from multiplier 29 to produce a vertical contour correction signal of appropriate polarity and level.
The correctionsignal addition unit 33 performs vertical contour correction by adding the vertical contour correction signal to the correction target line (32H) output from the line memory unit M24.
乗算器32は、制限器31からの出力に乗算器29からの係数を乗算して、適切な極性及びレベルの垂直輪郭補正信号を生成する。
補正信号加算部33は、ラインメモリ部M24から出力される補正対象ライン(32H)に、垂直輪郭補正信号を加算して、垂直輪郭補正を行う。 A small amplitude / large amplitude compression limiter (hereinafter referred to as a limiter) 31 compresses if the differential addition signal has a large amplitude, and limits the compression if the differential addition signal has a small amplitude.
The correction
このように、本撮像装置では、1画素間隔の周辺画素差分処理を行わないため、超低域の変調度を増強でき、高域変調度を相対的に低下させるものである。
例えば、NTSC(National Television System Committee;全米テレビジョンシステム委員会)の0.5MHzを100%として定義される5MHz変調度や、2Kの飛越走査のHDTVの1MHzを100%として定義される27.5MHz変調度等の高域変調度を相対的に低下させる。 As described above, in the present imaging device, since the peripheral pixel difference processing of one pixel interval is not performed, the modulation degree of the ultra low band can be enhanced, and the high band modulation degree is relatively decreased.
For example, 5 MHz modulation degree defined as 100% of 0.5 MHz of National Television System Committee (NTSC) or 27.5 MHz defined as 100% of 1 MHz of 2 K transit scan HDTV The high frequency modulation degree such as the modulation degree is relatively reduced.
例えば、NTSC(National Television System Committee;全米テレビジョンシステム委員会)の0.5MHzを100%として定義される5MHz変調度や、2Kの飛越走査のHDTVの1MHzを100%として定義される27.5MHz変調度等の高域変調度を相対的に低下させる。 As described above, in the present imaging device, since the peripheral pixel difference processing of one pixel interval is not performed, the modulation degree of the ultra low band can be enhanced, and the high band modulation degree is relatively decreased.
For example, 5 MHz modulation degree defined as 100% of 0.5 MHz of National Television System Committee (NTSC) or 27.5 MHz defined as 100% of 1 MHz of 2 K transit scan HDTV The high frequency modulation degree such as the modulation degree is relatively reduced.
[垂直輪郭補正部の動作:図2]
本撮像装置の垂直輪郭補正部の動作について図2を用いて説明する。
補正前信号は、負の乗算器N20及びラインメモリ部M20に入力され、ラインメモリ部M20~M29において、クロックのタイミングで、蓄積されると共に1ラインずつ負の乗算器N21~N30及び正の乗算器P25に出力される。 [Operation of Vertical Contour Correction Unit: FIG. 2]
The operation of the vertical contour correction unit of the present imaging device will be described with reference to FIG.
The pre-correction signal is input to the negative multiplier N20 and the line memory unit M20, and is stored at the timing of the clock in the line memory units M20 to M29, and the negative multipliers N21 to N30 and the positive multiplication are added line by line. Is output to the receiver P25.
本撮像装置の垂直輪郭補正部の動作について図2を用いて説明する。
補正前信号は、負の乗算器N20及びラインメモリ部M20に入力され、ラインメモリ部M20~M29において、クロックのタイミングで、蓄積されると共に1ラインずつ負の乗算器N21~N30及び正の乗算器P25に出力される。 [Operation of Vertical Contour Correction Unit: FIG. 2]
The operation of the vertical contour correction unit of the present imaging device will be described with reference to FIG.
The pre-correction signal is input to the negative multiplier N20 and the line memory unit M20, and is stored at the timing of the clock in the line memory units M20 to M29, and the negative multipliers N21 to N30 and the positive multiplication are added line by line. Is output to the receiver P25.
具体的には、ラインメモリ部M24から出力される補正対象ラインを32Hとすると、負の乗算器N20~N24には、それぞれ、0H,16H,24H,30Hが入力され、正の乗算器P25にはH32が入力され、負の乗算器N26~N30には、それぞれ34H,36H,40H,48H,64Hが入力される。
すなわち、補正対象ラインから2の累乗だけ離れたラインの映像信号が負の乗算器N21~N24,N26~N30に入力される。 Specifically, assuming that the correction target line output from the line memory unit M24 is 32H, 0H, 16H, 24H, and 30H are input to the negative multipliers N20 to N24, respectively, and the positive multiplier P25 is input to the negative multipliers N20 to N24. H32 is input to the negative multipliers N26 to N30, and 34H, 36H, 40H, 48H and 64H are input to the negative multipliers N26 to N30, respectively.
That is, the video signal of a line separated by a power of 2 from the correction target line is input to the negative multipliers N21 to N24 and N26 to N30.
すなわち、補正対象ラインから2の累乗だけ離れたラインの映像信号が負の乗算器N21~N24,N26~N30に入力される。 Specifically, assuming that the correction target line output from the line memory unit M24 is 32H, 0H, 16H, 24H, and 30H are input to the negative multipliers N20 to N24, respectively, and the positive multiplier P25 is input to the negative multipliers N20 to N24. H32 is input to the negative multipliers N26 to N30, and 34H, 36H, 40H, 48H and 64H are input to the negative multipliers N26 to N30, respectively.
That is, the video signal of a line separated by a power of 2 from the correction target line is input to the negative multipliers N21 to N24 and N26 to N30.
そして、各負の乗算器N20~N24、N26~N30、正の乗算器P25において負又は正の係数が乗算され、加算器20~29で加算されて、補正対象ラインの映像信号と他のラインの映像信号との差分の合計が算出されて、加算器20から差分加算信号として出力される。
Then, each of the negative multipliers N20 to N24 and N26 to N30 and the positive multiplier P25 are multiplied by a negative or positive coefficient, added by the adders 20 to 29, and the video signal of the correction target line and the other lines The sum of the differences with the video signal of the above is calculated, and is output from the adder 20 as a difference addition signal.
差分加算信号は、制限器31で振幅調整が施され、更に乗算器32において映像レベルに応じた調整が為されて、垂直輪郭補正信号が生成され、補正信号加算部33において、補正対象ラインの映像信号と垂直輪郭補正信号とが加算されて、垂直方向の輪郭補正が行われる。
このようにして垂直輪郭補正部の動作が行われるものである。 The differential addition signal is subjected to amplitude adjustment by thelimiter 31 and further adjusted according to the video level by the multiplier 32 to generate a vertical contour correction signal, and the correction signal addition unit 33 generates the correction target line. The video signal and the vertical contour correction signal are added to perform contour correction in the vertical direction.
In this manner, the operation of the vertical contour correction unit is performed.
このようにして垂直輪郭補正部の動作が行われるものである。 The differential addition signal is subjected to amplitude adjustment by the
In this manner, the operation of the vertical contour correction unit is performed.
尚、本実施の形態においては、垂直方向に32画素間隔までの差分の合計に基づいて垂直輪郭補正信号を生成するようにしているが、64画素間隔や128画素間隔の差分の合計を求めて垂直輪郭補正信号を生成してもよい。
In the present embodiment, the vertical contour correction signal is generated based on the sum of the differences up to the 32 pixel interval in the vertical direction, but the sum of the differences of the 64 pixel interval and the 128 pixel interval is calculated A vertical contour correction signal may be generated.
[水平輪郭補正部の構成:図3]
次に、本撮像装置の特徴部分である、水平輪郭補正部の構成について図3を用いて説明する。図3は、本撮像装置の水平輪郭補正部の構成図である。
水平輪郭補正部は、水平方向に配列された画素間の映像信号を比較して、水平方向の輪郭を補正するものである。
図3に示すように、水平輪郭補正部は、複数の画素遅延部D40~D49と、複数の負の乗算器N40~N44及びN46~N50と、正の乗算器P45と、複数の加算器40~49と、映像レベル判定器51と、乗算器52,54と、小振幅大振幅圧縮制限器53と、補正信号加算部55とを備えている。 [Configuration of Horizontal Contour Correction Unit: FIG. 3]
Next, the configuration of the horizontal contour correction unit, which is a characteristic part of the present imaging device, will be described with reference to FIG. FIG. 3 is a configuration diagram of a horizontal contour correction unit of the present imaging device.
The horizontal contour correction unit corrects the horizontal contour by comparing video signals between pixels arranged in the horizontal direction.
As shown in FIG. 3, the horizontal contour correction unit includes a plurality of pixel delay units D40 to D49, a plurality of negative multipliers N40 to N44 and N46 to N50, a positive multiplier P45, and a plurality ofadders 40. To 49, an image level determination unit 51, multipliers 52 and 54, a small amplitude / large amplitude compression limiter 53, and a correction signal addition unit 55.
次に、本撮像装置の特徴部分である、水平輪郭補正部の構成について図3を用いて説明する。図3は、本撮像装置の水平輪郭補正部の構成図である。
水平輪郭補正部は、水平方向に配列された画素間の映像信号を比較して、水平方向の輪郭を補正するものである。
図3に示すように、水平輪郭補正部は、複数の画素遅延部D40~D49と、複数の負の乗算器N40~N44及びN46~N50と、正の乗算器P45と、複数の加算器40~49と、映像レベル判定器51と、乗算器52,54と、小振幅大振幅圧縮制限器53と、補正信号加算部55とを備えている。 [Configuration of Horizontal Contour Correction Unit: FIG. 3]
Next, the configuration of the horizontal contour correction unit, which is a characteristic part of the present imaging device, will be described with reference to FIG. FIG. 3 is a configuration diagram of a horizontal contour correction unit of the present imaging device.
The horizontal contour correction unit corrects the horizontal contour by comparing video signals between pixels arranged in the horizontal direction.
As shown in FIG. 3, the horizontal contour correction unit includes a plurality of pixel delay units D40 to D49, a plurality of negative multipliers N40 to N44 and N46 to N50, a positive multiplier P45, and a plurality of
つまり、水平輪郭補正部は、図2に示した垂直輪郭補正部のラインメモリ部M20~M29の代わりに、画素遅延部D40~D49が設けられ、水平方向に配列された画素について処理を行う点が異なるが、その他の基本的な構成及び動作は垂直輪郭補正部と同等であるため、詳細な説明は省略する。
That is, the horizontal contour correction unit is provided with pixel delay units D40 to D49 instead of the line memory units M20 to M29 of the vertical contour correction unit shown in FIG. 2, and performs processing on pixels arranged in the horizontal direction. However, the other basic configuration and operation are the same as those of the vertical contour correction unit, and therefore detailed description will be omitted.
そして、水平輪郭補正部では、補正対象画素の映像信号と、当該補正対象画素から水平方向に2,4,8,16,32画素だけ離れた画素の映像信号との差分の合計が加算器40から加算差分信号として出力され、小振幅大振幅圧縮制限器53において、加算差分信号の振幅補正が行われ、映像レベル判定器51での判定結果に基づいて乗算器54で調整されて水平輪郭補正信号が生成され、補正信号加算部55において、補正対象画素(32d)の映像信号と水平輪郭補正信号とが加算されて、水平方向の輪郭補正が行われる。
Then, in the horizontal contour correction unit, the sum of the difference between the video signal of the correction target pixel and the video signal of the pixel separated by 2, 4, 8, 16, 32 pixels in the horizontal direction from the correction target pixel is the adder 40. The signal is output as an addition difference signal from the above, and amplitude correction of the addition difference signal is performed in the small amplitude / large amplitude compression limiter 53, and is adjusted by the multiplier 54 based on the determination result in the video level determination unit 51 to correct horizontal contour. A signal is generated, and the video signal of the correction target pixel (32d) and the horizontal contour correction signal are added in the correction signal addition unit 55 to perform contour correction in the horizontal direction.
水平方向の輪郭補正においても、1画素間隔の周辺画素差分処理を行わないため、超低域の変調度を増強でき、高域変調度を相対的に低下させるものである。
Also in the contour correction in the horizontal direction, peripheral pixel difference processing of one pixel interval is not performed, so that the modulation factor of the ultra low band can be enhanced, and the high band modulation factor is relatively lowered.
[本撮像装置における差分加算信号の例:図4]
ここで、本撮像装置における差分加算信号の例について図4を用いて説明する。図4は、2,4,8,16画素間隔の差分加算信号の周波数軸表示である。
図2を例として説明すると、図4(a)に示す2画素間隔の差分加算信号は、正の乗算器P25と、負の乗算器N24及びN26に0(ゼロ)以外の係数が設定され、他の負の乗算器には係数0が設定された状態で、加算器40から得られる差分加算信号である。 [Example of a differential addition signal in the present imaging device: FIG. 4]
Here, an example of the differential addition signal in the present imaging device will be described with reference to FIG. FIG. 4 is a frequency axis display of differential addition signals at intervals of 2, 4, 8, and 16 pixels.
Referring to FIG. 2 as an example, in the differential addition signal of 2-pixel intervals shown in FIG. 4A, coefficients other than 0 (zero) are set in the positive multiplier P25 and the negative multipliers N24 and N26. The other negative multiplier is a differential addition signal obtained from theadder 40 with the coefficient 0 set.
ここで、本撮像装置における差分加算信号の例について図4を用いて説明する。図4は、2,4,8,16画素間隔の差分加算信号の周波数軸表示である。
図2を例として説明すると、図4(a)に示す2画素間隔の差分加算信号は、正の乗算器P25と、負の乗算器N24及びN26に0(ゼロ)以外の係数が設定され、他の負の乗算器には係数0が設定された状態で、加算器40から得られる差分加算信号である。 [Example of a differential addition signal in the present imaging device: FIG. 4]
Here, an example of the differential addition signal in the present imaging device will be described with reference to FIG. FIG. 4 is a frequency axis display of differential addition signals at intervals of 2, 4, 8, and 16 pixels.
Referring to FIG. 2 as an example, in the differential addition signal of 2-pixel intervals shown in FIG. 4A, coefficients other than 0 (zero) are set in the positive multiplier P25 and the negative multipliers N24 and N26. The other negative multiplier is a differential addition signal obtained from the
同様に、図4(b)に示す4画素間隔の差分加算信号は、2画素間隔の場合に加えて、負の乗算器N23とN27が0以外の係数となった場合の差分加算信号であり、8画素間隔の差分加算信号は、更に負の乗算器N22とN28に0以外の係数が設定され、16画素間隔の差分加算信号は、更に負の乗算器N21とN29にも0以外の係数が設定された場合の差分加算信号である。
Similarly, the differential addition signal of 4-pixel intervals shown in FIG. 4B is a differential addition signal when the negative multipliers N23 and N27 become coefficients other than 0 in addition to the 2-pixel interval. For the differential addition signal at intervals of 8 pixels, coefficients other than 0 are set to the negative multipliers N22 and N28, and the differential addition signals at intervals of 16 pixels are coefficients other than 0 for the negative multipliers N21 and N29. Is a differential addition signal when is set.
図4に示すように、本撮像装置の差分加算信号は、いずれも、雑音も含めてfs/2付近の高周波成分がないため、低周波数(低域)の変調度を改善した映像信号を出力することができるものである。
そのため、入力信号が変調度の低い状態であっても、被写界深度の浅い望遠端での焦点合わせを容易にすることができるものである。 As shown in FIG. 4, all differential addition signals of the present imaging apparatus output no video signal with improved modulation of low frequency (low frequency) because there is no high frequency component near fs / 2 including noise. It is something that can be done.
Therefore, even when the input signal has a low degree of modulation, focusing at a telephoto end with a shallow depth of field can be facilitated.
そのため、入力信号が変調度の低い状態であっても、被写界深度の浅い望遠端での焦点合わせを容易にすることができるものである。 As shown in FIG. 4, all differential addition signals of the present imaging apparatus output no video signal with improved modulation of low frequency (low frequency) because there is no high frequency component near fs / 2 including noise. It is something that can be done.
Therefore, even when the input signal has a low degree of modulation, focusing at a telephoto end with a shallow depth of field can be facilitated.
[本撮像装置における輪郭補正:図5]
本撮像装置における輪郭補正信号及び輪郭補正後の信号例について図5を用いて説明する。図5は、本撮像装置の輪郭補正信号及び輪郭補正後の信号例を示す模式説明図である。
図5(a)は、補正前信号、(b)は、17H成分/17画素成分(8画素間隔)の差分加算信号に基づく輪郭補正信号、(c)は、9H成分/9画素成分(4画素間隔)の差分加算信号に基づく輪郭補正信号、(d)は、7H成分/7画素成分(3画素間隔)の差分加算信号に基づく輪郭補正信号、(e)は、5H成分/5画素成分(2画素間隔)の差分加算信号に基づく輪郭補正信号、(f)は、3H成分/3画素成分(1画素間隔)の差分加算信号に基づく輪郭補正信号、(g)は、17H9H5H成分/17画素9画素5画素成分(8画素4画素2画素間隔)の輪郭補正信号による輪郭補正後の信号、(h)は、9H5H成分/9画素5画素成分(4画素2画素間隔)の輪郭補正信号による輪郭補正後の信号を示している。
ここで、(d)と(f)は、本撮像装置では生成されない信号であるが、参考のために示している。 [Contour correction in this imaging device: FIG. 5]
A contour correction signal in the present imaging device and a signal example after contour correction will be described with reference to FIG. FIG. 5 is a schematic explanatory view showing a contour correction signal of the present imaging device and a signal example after contour correction.
FIG. 5 (a) shows a signal before correction, FIG. 5 (b) shows an edge correction signal based on a difference addition signal of 17H component / 17 pixel components (eight pixel intervals), and FIG. 5C shows 9H component / 9 pixel components (4 (D) is a contour correction signal based on a 7H component / 7 pixel component (3 pixel interval) differential addition signal, and (e) is a 5H component / 5 pixel component. A contour correction signal based on a differential addition signal of (two pixel intervals), (f) is a contour correction signal based on a differential addition signal of 3H component / 3 pixel components (one pixel interval), and (g) is 17H9H5H component / 17 (H) is a contour correction signal of 9H5H component / 9pixels 5 pixel components (4 pixels 2 pixels interval) after contour correction with contour correction signal of 9 pixels 5 pixels 5 pixels component (8 pixels 4 pixels 2 pixels interval) Shows the signal after contour correction by.
Here, (d) and (f) are signals that are not generated by the present imaging device, but are shown for reference.
本撮像装置における輪郭補正信号及び輪郭補正後の信号例について図5を用いて説明する。図5は、本撮像装置の輪郭補正信号及び輪郭補正後の信号例を示す模式説明図である。
図5(a)は、補正前信号、(b)は、17H成分/17画素成分(8画素間隔)の差分加算信号に基づく輪郭補正信号、(c)は、9H成分/9画素成分(4画素間隔)の差分加算信号に基づく輪郭補正信号、(d)は、7H成分/7画素成分(3画素間隔)の差分加算信号に基づく輪郭補正信号、(e)は、5H成分/5画素成分(2画素間隔)の差分加算信号に基づく輪郭補正信号、(f)は、3H成分/3画素成分(1画素間隔)の差分加算信号に基づく輪郭補正信号、(g)は、17H9H5H成分/17画素9画素5画素成分(8画素4画素2画素間隔)の輪郭補正信号による輪郭補正後の信号、(h)は、9H5H成分/9画素5画素成分(4画素2画素間隔)の輪郭補正信号による輪郭補正後の信号を示している。
ここで、(d)と(f)は、本撮像装置では生成されない信号であるが、参考のために示している。 [Contour correction in this imaging device: FIG. 5]
A contour correction signal in the present imaging device and a signal example after contour correction will be described with reference to FIG. FIG. 5 is a schematic explanatory view showing a contour correction signal of the present imaging device and a signal example after contour correction.
FIG. 5 (a) shows a signal before correction, FIG. 5 (b) shows an edge correction signal based on a difference addition signal of 17H component / 17 pixel components (eight pixel intervals), and FIG. 5C shows 9H component / 9 pixel components (4 (D) is a contour correction signal based on a 7H component / 7 pixel component (3 pixel interval) differential addition signal, and (e) is a 5H component / 5 pixel component. A contour correction signal based on a differential addition signal of (two pixel intervals), (f) is a contour correction signal based on a differential addition signal of 3H component / 3 pixel components (one pixel interval), and (g) is 17H9H5H component / 17 (H) is a contour correction signal of 9H5H component / 9
Here, (d) and (f) are signals that are not generated by the present imaging device, but are shown for reference.
(g)の信号は、(b)の8画素間隔の差分加算信号と、(c)の4画素間隔の差分加算信号と、(e)の2画素間隔の差分加算信号との合計に基づいて生成された輪郭補正信号と、(a)の補正前信号とを加算して得られる信号である。
(g)に示した輪郭補正後の信号は、例えば、17H15H13H11H9H7H5H3H輪郭補正信号(17H15H13H11H9H7H5H3H成分/17画素15画素13画素11画素9画素7画素5画素3画素成分の差分加算信号に基づく輪郭補正信号)で補正した場合と比べると、高周波数成分の細かい輪郭を再生できないものの、高域雑音が少ないので、輪郭補正信号を大きくすることができ、強く輪郭補正でき、輪郭を十分明瞭にすることができるものである。 The signal of (g) is based on the sum of the differential addition signal of 8-pixel intervals of (b), the differential addition signal of 4-pixel intervals of (c), and the differential addition signal of 2-pixel intervals of (e). This is a signal obtained by adding the generated contour correction signal and the pre-correction signal of (a).
The signal after contour correction shown in (g) is, for example, a 17H15H13H11H9H7H5H3H contour correction signal (a contour correction signal based on a difference addition signal of 17H15H13H11H9H9H7H5H3H component / 17 pixels 15pixels 13 pixels 11 pixels 9 pixels 5 pixels 3 pixels component) Compared to the case where correction is made with the above, although the fine contours of high frequency components can not be reproduced, the high frequency noise is small, so the contour correction signal can be enlarged, the contour can be strongly corrected, and the contour can be made sufficiently clear. It is a thing.
(g)に示した輪郭補正後の信号は、例えば、17H15H13H11H9H7H5H3H輪郭補正信号(17H15H13H11H9H7H5H3H成分/17画素15画素13画素11画素9画素7画素5画素3画素成分の差分加算信号に基づく輪郭補正信号)で補正した場合と比べると、高周波数成分の細かい輪郭を再生できないものの、高域雑音が少ないので、輪郭補正信号を大きくすることができ、強く輪郭補正でき、輪郭を十分明瞭にすることができるものである。 The signal of (g) is based on the sum of the differential addition signal of 8-pixel intervals of (b), the differential addition signal of 4-pixel intervals of (c), and the differential addition signal of 2-pixel intervals of (e). This is a signal obtained by adding the generated contour correction signal and the pre-correction signal of (a).
The signal after contour correction shown in (g) is, for example, a 17H15H13H11H9H7H5H3H contour correction signal (a contour correction signal based on a difference addition signal of 17H15H13H11H9H9H7H5H3H component / 17 pixels 15
また、(h)の信号は、(c)の4画素間隔の差分加算信号と、(e)の2画素間隔の差分加算信号との合計に基づいて生成された輪郭補正信号と、(a)の補正前信号とを加算して得られる信号である。
(h)の輪郭補正後の信号は、例えば、9H7H5H3H輪郭補正信号(9H7H5H3H成分/9画素7画素5画素3画素成分の差分加算信号に基づく輪郭補正信号)で補正した場合と比べると、高周波成分の細かい輪郭を再生できないが、高域雑音が少ないので、輪郭補正信号を大きくすることができ、輪郭を明瞭にすることができるものである。 Also, the signal of (h) is a contour correction signal generated based on the sum of the differential addition signal of 4-pixel intervals of (c) and the differential addition signal of 2-pixel intervals of (e), (a) It is a signal obtained by adding the pre-correction signal of
The signal after contour correction in (h) is, for example, a high frequency component as compared with the case where it is corrected with a 9H7H5H3H contour correction signal (a contour correction signal based on a differential addition signal of 9H7H5H3H component / 9 pixels 7pixels 5 pixels 3 pixel components) Although it is not possible to reproduce fine outlines of the image, the outline correction signal can be enlarged because the high frequency noise is small, and the outlines can be made clear.
(h)の輪郭補正後の信号は、例えば、9H7H5H3H輪郭補正信号(9H7H5H3H成分/9画素7画素5画素3画素成分の差分加算信号に基づく輪郭補正信号)で補正した場合と比べると、高周波成分の細かい輪郭を再生できないが、高域雑音が少ないので、輪郭補正信号を大きくすることができ、輪郭を明瞭にすることができるものである。 Also, the signal of (h) is a contour correction signal generated based on the sum of the differential addition signal of 4-pixel intervals of (c) and the differential addition signal of 2-pixel intervals of (e), (a) It is a signal obtained by adding the pre-correction signal of
The signal after contour correction in (h) is, for example, a high frequency component as compared with the case where it is corrected with a 9H7H5H3H contour correction signal (a contour correction signal based on a differential addition signal of 9H7H5H3H component / 9 pixels 7
そのため、望遠端における開放絞り値が、画素ピッチ/撮像光の中心波長の値より大きいレンズ、又は収差が大きいレンズなど、低周波数において変調度が低い特性を有するレンズを用いた場合にも、被写界深度の浅い望遠端での焦点合わせを容易にすることができるものである。
Therefore, even when using a lens having a low modulation factor at low frequencies, such as a lens whose open aperture value at the telephoto end is larger than the pixel pitch / the value of the central wavelength of imaging light, or a lens having a large aberration, It is possible to facilitate focusing at a telephoto end with a shallow depth of field.
したがって、図7に示した、アスペクト比16:9の撮像素子のサイズとレンズの口径比による変調度の変化のように、口径比Fの超望遠ズームレンズの変調度が低下しても、輪郭補正が容易になる。
Therefore, as shown in FIG. 7, even if the modulation factor of the super telephoto zoom lens with the aperture ratio F decreases, as in the case of the change of the modulation factor due to the size of the imaging device with an aspect ratio of 16: 9 and the aperture ratio of the lens shown in FIG. Correction becomes easy.
[実施の形態の効果]
本発明の実施の形態に係る撮像装置によれば、画素間隔が5波長以下のCMOS撮像素子を用いた撮像装置において、輪郭補正部11が、輪郭補正を施す補正対象の画素の映像信号と、補正対象画素と2の累乗の画素間隔(2,4,8,18,32等)となる複数の画素の映像信号との差分をそれぞれ算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正信号加算部が、補正対象画素の映像信号に輪郭補正信号を加算するようにしているので、fs/2付近の高周波成分が含まれない輪郭補正信号を生成でき、低域の輪郭補正信号を補強して、低域におけるMTFを改善し、被写界深度の浅い望遠レンズの望遠端においても焦点合わせを容易にすることができる効果がある。 [Effect of the embodiment]
According to the image pickup apparatus of the embodiment of the present invention, in the image pickup apparatus using the CMOS image pickup element having a pixel interval of 5 wavelengths or less, thecontour correction unit 11 generates an image signal of a pixel to be corrected. The difference between the correction target pixel and the video signal of a plurality of pixels having a pixel interval (2, 4, 8, 18, 32, etc.) of powers of 2 is calculated, and the difference is added based on the difference. The contour correction signal is generated, and the correction signal addition unit adds the contour correction signal to the video signal of the pixel to be corrected, so that a contour correction signal that does not include high frequency components near fs / 2 can be generated. There is an effect that the low-range contour correction signal can be reinforced to improve the MTF in the low range, and focusing can be facilitated even at the telephoto end of a telephoto lens with a shallow depth of field.
本発明の実施の形態に係る撮像装置によれば、画素間隔が5波長以下のCMOS撮像素子を用いた撮像装置において、輪郭補正部11が、輪郭補正を施す補正対象の画素の映像信号と、補正対象画素と2の累乗の画素間隔(2,4,8,18,32等)となる複数の画素の映像信号との差分をそれぞれ算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、補正信号加算部が、補正対象画素の映像信号に輪郭補正信号を加算するようにしているので、fs/2付近の高周波成分が含まれない輪郭補正信号を生成でき、低域の輪郭補正信号を補強して、低域におけるMTFを改善し、被写界深度の浅い望遠レンズの望遠端においても焦点合わせを容易にすることができる効果がある。 [Effect of the embodiment]
According to the image pickup apparatus of the embodiment of the present invention, in the image pickup apparatus using the CMOS image pickup element having a pixel interval of 5 wavelengths or less, the
また、本撮像装置では、補償対象画素と、2,4,8,16,32画素間隔となる画素との差分の合計を算出しているが、64画素、128画素等、より多くのラインメモリ部又は画素遅延部、乗算器、加算器を備えた構成としてもよく、多いほど輪郭補正の効果は大きくなるため、回路規模が許容されるならば、多くすることが望ましい。
また、映像レベル判定器出力信号が小信号大振幅圧縮制限器から出力する輪郭補正信号レベルを制御することから、レンズ絞り値に応じて映像レベル判定器出力信号レベルを制御することにより輪郭補正信号レベルを制御することも容易となる。 Further, in the present imaging device, the sum of the difference between the pixel to be compensated and the pixel having an interval of 2, 4, 8, 16, 32 pixels is calculated, but more line memories such as 64 pixels, 128 pixels, etc. It is also possible to use a configuration provided with a section or pixel delay section, a multiplier, and an adder, and the effect of contour correction increases as the number increases, so it is desirable to increase if the circuit scale is acceptable.
In addition, since the video level discriminator output signal controls the contour correction signal level output from the small signal large amplitude compression limiter, the contour correction signal is controlled by controlling the video level discriminator output signal level according to the lens aperture value. It also becomes easy to control the level.
また、映像レベル判定器出力信号が小信号大振幅圧縮制限器から出力する輪郭補正信号レベルを制御することから、レンズ絞り値に応じて映像レベル判定器出力信号レベルを制御することにより輪郭補正信号レベルを制御することも容易となる。 Further, in the present imaging device, the sum of the difference between the pixel to be compensated and the pixel having an interval of 2, 4, 8, 16, 32 pixels is calculated, but more line memories such as 64 pixels, 128 pixels, etc. It is also possible to use a configuration provided with a section or pixel delay section, a multiplier, and an adder, and the effect of contour correction increases as the number increases, so it is desirable to increase if the circuit scale is acceptable.
In addition, since the video level discriminator output signal controls the contour correction signal level output from the small signal large amplitude compression limiter, the contour correction signal is controlled by controlling the video level discriminator output signal level according to the lens aperture value. It also becomes easy to control the level.
64画素間隔の差分を加えて輪郭補正信号を生成すれば、例えば、2Kの飛越操作のHDTVの0.5MHz変調度を改善することができ、更に128画素間隔の差分を加えれば、2Kの飛越操作のHDTVの0.25MHzの変調度を改善することができる効果がある。
If a difference of 64 pixel intervals is added to generate a contour correction signal, for example, the 0.5 MHz modulation factor of HDTV of 2K jump operation can be improved, and if a difference of 128 pixel intervals is further added, 2K jumps There is an effect that it is possible to improve the modulation degree of 0.25 MHz of operation HDTV.
また、監視用1/3型HD2K撮像素子と、報道用2/3型4K撮像素子と、中継用4/3型8K撮像素子は、2.5μmの同一画素間隔となっており、超望遠での収差が大きく、絞りが暗く、MTFが低い状態になるが、本装置によれば、それらの特性を許容して、低周波でのMTFを改善することができ、撮像装置の低価格化を実現できる効果がある。
つまり、本装置は、高価で大型の低域MTFの高いUHDTVレンズを使用することなく、電子的に補正することにより、低コストで輪郭強調を可能とする効果がある。 In addition, themonitoring 1 / 3-type HD2K imaging device, the reporting 2 / 3-type 4K imaging device, and the relay 4 / 3-type 8K imaging device have the same pixel interval of 2.5 μm, and are super telephoto. The aberration is large, the diaphragm is dark, and the MTF is low. However, according to this device, these characteristics can be allowed to improve the MTF at low frequency, and the price of the imaging device can be reduced. There is an effect that can be realized.
That is, the present apparatus has an effect of enabling outline emphasis at low cost by performing electronic correction without using an expensive large-sized low-pass MTF high UHDTV lens.
つまり、本装置は、高価で大型の低域MTFの高いUHDTVレンズを使用することなく、電子的に補正することにより、低コストで輪郭強調を可能とする効果がある。 In addition, the
That is, the present apparatus has an effect of enabling outline emphasis at low cost by performing electronic correction without using an expensive large-sized low-pass MTF high UHDTV lens.
更に、本装置によれば、監視用1/3型HD2Kカメラや4Kカメラや8Kカメラの拡販だけではなく、放送局や中継会社が多数保有している2Kカメラのファームウェアバージョンアップによる画質向上にも活用することができる効果がある。
Furthermore, according to this device, not only sales expansion of surveillance 1/3 type HD2K cameras, 4K cameras and 8K cameras, but also image quality improvement by upgrading firmware versions of 2K cameras owned by many broadcast stations and relay companies There is an effect that can be utilized.
本発明は、高周波数成分のない輪郭補正を行うことにより、低周波数における変調度を改善した映像信号を出力できる撮像装置に適している。この出願は、2017年9月25日に出願された日本出願特願2017-183338を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
The present invention is suitable for an imaging apparatus capable of outputting a video signal with an improved degree of modulation at low frequencies by performing contour correction without high frequency components. This application claims the benefit of priority based on Japanese Patent Application No. 2017-183338 filed on Sep. 25, 2017, the entire disclosure of which is incorporated herein by reference.
1…撮像装置、 2…色分解光学系、 3,3R,3G,3B…撮像素子、 4…映像信号処理部、 5…パラレル/シリアル変換部、 6…CPU、 7…レンズ、 8…ビューファインダー、 11…輪郭補正部、 12…ガンマ色補正部、 13…MATRIX部、 M20~M29…ラインメモリ部、 N20~N24,N26~N30,N40~N44,N46~N50…負の乗算器、 P25,P45…正の乗算器、 20~29,40~49…加算器、 28,51…映像レベル判定器、 29,30,52,54…乗算器、 31,53…小振幅大振幅圧縮制限器、 33,55…補正信号加算部、 D40~D49…画素遅延部、 91…マイクロレンズ、 92…カラーフィルタ、 93…フォトダイオード、 94…メタル配線層
DESCRIPTION OF SYMBOLS 1 ... Imaging device, 2 ... color separation optical system, 3, 3R, 3G, 3B ... Imaging device, 4 ... Video signal processing part, 5 ... Parallel / serial conversion part, 6 ... CPU, 7 ... Lens, 8 ... Viewfinder 11 Contour correction unit 12 Gamma color correction unit 13 MATRIX unit M20 to M29 Line memory unit N20 to N24 N26 to N30 N40 to N44 N46 to N50 Negative multiplier P25 P45: Positive multiplier, 20 to 29, 40 to 49: Adder, 28, 51: Video level determiner, 29, 30, 52, 54: Multiplier, 31, 53: Small amplitude, large amplitude compression limiter, 33, 55 ... correction signal addition unit, D40 to D49 ... pixel delay unit, 91 ... microlens, 92 ... color filter, 93 ... photodiode, 94 Metal wiring layer
Claims (5)
- 画素ピッチが撮像光の中心波長の5倍以下であるCMOS撮像素子を用いた撮像装置であって、
前記撮像素子を備え、入力光を色毎に分解して映像信号を出力する色分解部と、
前記色分解部からの映像信号について、輪郭補正を施す補正対象の画素の映像信号と、当該補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算した差分加算信号に基づいて輪郭補正信号を生成し、前記補正対象画素の映像信号に前記輪郭補正信号を加算して輪郭補正を行う輪郭補正部を備えたことを特徴とする撮像装置。 An imaging apparatus using a CMOS imaging device having a pixel pitch equal to or less than five times the central wavelength of imaging light,
A color separation unit that includes the image pickup element and separates input light into each color to output a video signal;
With respect to the video signal from the color separation unit, the difference between the video signal of the pixel to be corrected to be subjected to contour correction and the video signal of a plurality of pixels having pixel intervals of a power of 2 from the pixel to be corrected is calculated. A contour correction unit is provided, which generates a contour correction signal based on a difference addition signal obtained by adding the plurality of differences, adds the contour correction signal to the video signal of the correction target pixel, and performs contour correction. Imaging device. - 輪郭補正部が、補正対象の画素の映像信号と、前記補正対象の画素から2の累乗の画素間隔となる複数の画素の映像信号との差分を算出し、当該複数の差分を加算して差分加算信号を生成する差分加算部と、
前記差分加算信号を、前記補正対象の画素の映像信号レベルに基づいて調整して前記補正対象の画素に対応する輪郭補正信号を生成する輪郭補正信号生成部と、
前記補正対象の画素の映像信号に前記輪郭補正信号を加算する輪郭補正信号加算部とを備えたことを特徴とする請求項1記載の撮像装置。 The contour correction unit calculates a difference between the video signal of the pixel to be corrected and the video signal of the plurality of pixels which is a pixel interval of a power of 2 from the pixel to be corrected, adds the plurality of differences and calculates a difference A differential addition unit that generates an addition signal;
A contour correction signal generation unit which adjusts the difference addition signal based on the video signal level of the pixel to be corrected to generate a contour correction signal corresponding to the pixel to be corrected;
The image pickup apparatus according to claim 1, further comprising: a contour correction signal addition unit that adds the contour correction signal to the video signal of the pixel to be corrected. - 2の累乗の画素間隔を、2画素間隔から32画素間隔までとすることを特徴とする請求項1又は2記載の撮像装置。 The image pickup apparatus according to claim 1 or 2, wherein the pixel interval of the power of 2 is from 2 pixel intervals to 32 pixel intervals.
- 撮像素子を表面照射型のCMOS撮像素子としたことを特徴とする請求項1乃至3のいずれか記載の撮像装置。 The imaging device according to any one of claims 1 to 3, wherein the imaging device is a surface-illuminated CMOS imaging device.
- 望遠端の開放絞り値が、撮像素子の画素ピッチ/中心波長より大きいレンズ、又は収差の大きいレンズから入力される映像信号について、輪郭補正を行うことを特徴とする請求項1乃至4のいずれか記載の撮像装置。 5. The contour correction is performed on an image signal input from a lens having an aperture value at the telephoto end larger than a pixel pitch of the image pickup element / center wavelength or a lens having a large aberration. The imaging device of description.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019543544A JP6827121B2 (en) | 2017-09-25 | 2018-09-06 | Imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-183338 | 2017-09-25 | ||
JP2017183338 | 2017-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058980A1 true WO2019058980A1 (en) | 2019-03-28 |
Family
ID=65810813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032987 WO2019058980A1 (en) | 2017-09-25 | 2018-09-06 | Imaging device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6827121B2 (en) |
WO (1) | WO2019058980A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260421A (en) * | 2003-02-25 | 2004-09-16 | Fujitsu General Ltd | Contour correction circuit |
WO2015129120A1 (en) * | 2014-02-26 | 2015-09-03 | 富士フイルム株式会社 | Method for manufacturing image-capturing module, and device for manufacturing image-capturing module |
WO2016152343A1 (en) * | 2015-03-20 | 2016-09-29 | 株式会社日立国際電気 | Image-capture device and image-capture method |
-
2018
- 2018-09-06 WO PCT/JP2018/032987 patent/WO2019058980A1/en active Application Filing
- 2018-09-06 JP JP2019543544A patent/JP6827121B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260421A (en) * | 2003-02-25 | 2004-09-16 | Fujitsu General Ltd | Contour correction circuit |
WO2015129120A1 (en) * | 2014-02-26 | 2015-09-03 | 富士フイルム株式会社 | Method for manufacturing image-capturing module, and device for manufacturing image-capturing module |
WO2016152343A1 (en) * | 2015-03-20 | 2016-09-29 | 株式会社日立国際電気 | Image-capture device and image-capture method |
Also Published As
Publication number | Publication date |
---|---|
JP6827121B2 (en) | 2021-02-10 |
JPWO2019058980A1 (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8391637B2 (en) | Image processing device and image processing method | |
EP2471258B1 (en) | Reducing noise in a color image | |
US7898583B2 (en) | Image processing device, image processing method, and image sensing apparatus | |
WO2018198766A1 (en) | Solid-state image capturing device and electronic instrument | |
JP4682181B2 (en) | Imaging apparatus and electronic information device | |
JP2008113236A (en) | Shading correction method and device in imaging apparatus | |
US9995931B2 (en) | Method for correcting contour distortions of lenses | |
JP6456001B2 (en) | Imaging apparatus and imaging method | |
JP6602390B2 (en) | Imaging apparatus and imaging method | |
JP6827121B2 (en) | Imaging device | |
JP2012134745A (en) | Image signal processing device | |
CN108432239B (en) | Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus | |
Theuwissen | Image processing chain in digital still cameras | |
US10348984B2 (en) | Image pickup device and image pickup method which performs diagonal pixel offset and corrects a reduced modulation depth in a diagonal direction | |
JP4687454B2 (en) | Image processing apparatus and imaging apparatus | |
JP2017103603A (en) | Image pickup device, imaging apparatus, and imaging method | |
JP6932053B2 (en) | Imaging device | |
JP2006157344A (en) | Imaging apparatus | |
JP4500106B2 (en) | IMAGING DEVICE AND IMAGING DEVICE ADJUSTING METHOD | |
JP7025161B2 (en) | Imaging device | |
JP2004201203A (en) | Imaging device and digital image pickup apparatus equipped with the same | |
JP3916233B2 (en) | Image pickup device and digital image pickup apparatus including the same | |
JP2015177257A (en) | Solid state image pickup device | |
JP2016072649A (en) | Imaging apparatus and imaging method thereof | |
WO2019058981A1 (en) | Imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18858951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019543544 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18858951 Country of ref document: EP Kind code of ref document: A1 |