WO2019058829A1 - Control device for centrifuge, centrifuge, maritime exhaust gas scrubber system, and maritime diesel engine - Google Patents

Control device for centrifuge, centrifuge, maritime exhaust gas scrubber system, and maritime diesel engine Download PDF

Info

Publication number
WO2019058829A1
WO2019058829A1 PCT/JP2018/030616 JP2018030616W WO2019058829A1 WO 2019058829 A1 WO2019058829 A1 WO 2019058829A1 JP 2018030616 W JP2018030616 W JP 2018030616W WO 2019058829 A1 WO2019058829 A1 WO 2019058829A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal separator
centrifuge
control device
solid components
deposition
Prior art date
Application number
PCT/JP2018/030616
Other languages
French (fr)
Japanese (ja)
Inventor
裕二 佐野
勇治 今井
尚史 桶谷
Original Assignee
株式会社ジャパンエンジンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンエンジンコーポレーション filed Critical 株式会社ジャパンエンジンコーポレーション
Priority to KR1020197038413A priority Critical patent/KR102358727B1/en
Priority to CN201880058376.4A priority patent/CN111050919B/en
Publication of WO2019058829A1 publication Critical patent/WO2019058829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/10Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl
    • B04B1/14Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/10Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/037Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of inertial or centrifugal separators, e.g. of cyclone type, optionally combined or associated with agglomerators

Definitions

  • the present invention is a marine exhaust gas scrubber system equipped with a scrubber for removing SOx, NOx and unburned carbon contained in exhaust gas of a marine diesel engine, and cleaning the circulating water of the scrubber system.
  • the present invention relates to a centrifugal separator, a controller of the centrifugal separator, and a marine diesel engine.
  • an exhaust gas scrubber system is used to remove particulate matter (solid components) such as unburned carbon contained in exhaust gas.
  • solid components are absorbed by scrubber water which is water for dust removal, and then separated from the scrubber water by a centrifugal separator.
  • the centrifuge the separated solid components are intermittently discharged at a timing when a predetermined amount is accumulated. If the above-mentioned discharge is carried out before the solid components are sufficiently accumulated, the amount of scrubber water discharged together with the solid components increases, and the degree of concentration decreases. On the other hand, if the solid component is accumulated too much, it solidifies and discharge becomes difficult.
  • An object of the present invention is, in view of the above-mentioned point, to make it easy to discharge a solid ingredient from a centrifuge at appropriate timing.
  • the present invention is A control device for a centrifugal separator that controls the discharge of solid components separated by the centrifugal separator, Concentration of solid components in the fluid to be treated which flows into the centrifugal separator, Cumulative deposition amount of solid components on the centrifugal separator obtained according to the flow rate of the fluid to be treated flowing into the centrifugal separator, and the separation efficiency of the centrifugal separator according to the concentration of the solid component; Deposition capacity of solid components in the above centrifuge, And a discharge timing control unit configured to determine the discharge timing of the solid component from the centrifugal separator according to the magnitude relationship of the above.
  • discharge control is performed according to the accumulated accumulation amount of solid components in the centrifuge, so it is considered with high accuracy about the solid component concentration of the waste liquid containing the solid components discharged from the centrifuge.
  • the solid component can be easily discharged at an appropriate timing.
  • solid components can be easily discharged from the centrifuge at appropriate timing.
  • the exhaust gas scrubber system includes a scrubber device 110 for capturing particulate matter (solid component) such as unburned carbon contained in exhaust gas of the diesel engine 101, and scrubber water in the scrubber device 110. And a centrifugal separator 120 for removing solid components trapped in W (fluid to be treated).
  • particulate matter solid component
  • W fluid to be treated
  • the scrubber device 110 has a scrubber 111 and absorbs the solid components in the exhaust gas sent from the diesel engine 101 via the engine exhaust pipe 102 into the scrubber water W in the scrubber 111 to remove dust, Exhaust gas from the external exhaust pipe 103.
  • a portion of the cleaned exhaust gas in the scrubber 111 can be returned to the diesel engine 101 via an exhaust gas return pipe 104 to reduce nitrogen oxides if necessary.
  • the scrubber water W stored in the scrubber 111 is circulated by a pump (not shown) via a circulation pipe 112, and a portion thereof is sent to the centrifuge 131 to be cleaned as described later.
  • the other part of the circulated scrubber water W is sprayed into the scrubber 111 through the spray nozzle 113 together with the cleaned scrubber water W, so that the concentration of the solid component of the scrubber water W is prevented from rising. It is supposed to be.
  • a part of the scrubber water W circulated through the circulation pipe 112 is sent to the centrifuge 131 through the branch pipe 121 or the concentration meter 122, the flow meter 123, and the flow control valve 124, and solid components are centrifuged. After being removed by the separator 131, it is returned to the circulation pipe 112.
  • the densitometer 122 is adapted to measure the concentration (solid component concentration, SS concentration) of solid components in the scrubber water W. Further, the flow meter 123 measures the flow rate of the scrubber water W flowing into the centrifuge 131, and controls the flow control valve 124 so that the flow rate becomes a predetermined amount.
  • the measurement values of the densitometer 122 and the flow meter 123 are continuously sent to a controller 151 (control device of the centrifugal separator) described later.
  • the centrifuge 131 has an inflow pipe 132 into which the scrubber water W flows in from the scrubber device 110, an outflow pipe 133 in which the treated scrubber water W flows out and is returned to the scrubber device 110, and an upper end A rotating body (not shown) having an opening, a rotating body lid 134 fitted to the upper end opening of the rotating body to form a rotating body, and a partition arranged with a gap from the inner surface of the rotating body lid 134 A plate 135, and a main valve 136 which moves up and down as shown by the arrow A in the figure in a state of being inserted into the rotary cylinder to open and close an outlet (not shown) formed on the side of the rotary cylinder.
  • the centrifuge 131 also has a chamber 141 formed at the upper end of the partition plate 135, in which the scrubber water W after processing overflowed from the separation chamber 137 is collected, and the scrubber water W accumulated in the chamber 141 is discharged from the discharge pipe 133.
  • the centrifuge 131 further includes a solid component discharge pipe 142 that discharges the solid component S centrifugally separated from the scrubber water W, and a valve opening / closing mechanism 143 that controls the discharge of the solid component.
  • a solid component discharge pipe 142 that discharges the solid component S centrifugally separated from the scrubber water W
  • a valve opening / closing mechanism 143 that controls the discharge of the solid component.
  • the valve opening / closing mechanism 143 receives a valve opening signal from the controller 151, opens a predetermined valve (not shown), supplies opening operation water, moves the main valve 136 downward, and discharges the separation chamber 137.
  • the outlet is opened to discharge the solid component deposited in the separation chamber 137 toward the solid component discharge pipe 142.
  • the valve is closed to stop the valve opening operation water, and then the valve (not shown) is operated based on the valve closing signal to supply the valve opening operation water to close the main valve 136 to close the valve. It is designed to stop working water.
  • Solid matter deposition and discharge operation The solid component having a specific gravity larger than that of the scrubber water W which has flowed into the centrifuge 131 is centrifugally separated by the separation plate 138 when a centrifugal force is applied in the separation chamber 137 and formed in the largest diameter portion of the separation chamber 137 Deposit in the recess including the outlet (not shown).
  • the interface I between the solid component and the scrubber water W moves toward the center of the separation chamber 137.
  • Some solid components near the interface I move along the flow of the scrubber water W and are discharged from the outflow pipe 133 to the outside.
  • the solid components deposited in the centrifugal separator 131 as described above are separated by the discharge control formed by the valve opening / closing mechanism 143 as described below, by opening the discharge port formed on the side of the rotary cylinder.
  • the waste water is discharged from the solid component discharge pipe 142 together with a part of the scrubber water W in the above to be waste.
  • the controller 151 measures the concentration (inflow concentration) of solid components in the scrubber water W flowing into the centrifuge 131 measured by the densitometer 122 and the scrubber flowing into the centrifuge 131 measured by the flow meter 123.
  • the valve opening / closing mechanism 143 is controlled based on, for example, the flow rate per unit time (inflow rate) of the water W and the deposition allowance ⁇ of the solid components that can be deposited on the centrifuge 131, and deposits in the centrifuge 131 These solid components are discharged at a predetermined timing.
  • the controller 151 performs centrifugation on the basis of the separation efficiency calculation unit for determining the separation efficiency ⁇ of the solid component based on the inflow concentration of the solid component, the inflow concentration, the separation efficiency ⁇ , and the inflow rate.
  • Cumulative accumulation amount calculation unit for calculating the accumulated accumulation amount S of solid components on the machine 131, scrubber water W when the allowable amount of accumulation of solid components set in advance in the centrifuge 131 and the discharge timing are determined
  • Accumulation allowance amount calculation unit for calculating the accumulation allowance amount ⁇ of the solid component according to the flow rate of the solid component, the accumulated accumulation amount S calculated by the accumulation accumulation amount calculation unit, and the accumulation allowance calculated by the accumulation allowance amount calculation unit
  • a discharge timing control unit that controls the valve opening / closing mechanism 143 based on the volume ⁇ .
  • the accumulated deposition amount S is calculated, for example, as follows.
  • the separation efficiency ⁇ ⁇ ⁇ may further take into account, for example, fluctuations according to the amount of deposition of solid components on the centrifuge 131, the amount of deposition may be 0 if the required control accuracy is obtained. It may be determined based on the actual measurement value of the case.
  • deposition allowance ⁇ is calculated in more detail, for example, as follows.
  • Allowable amount of deposition ⁇ preset amount of solid component accumulation ⁇ allowable amount correction value P
  • the allowable amount correction value P is, for example, as shown in FIG. 4, to correct the fluctuation of the allowable amount of deposition of the solid component on the centrifuge 131 according to the inflow rate. That is, when the inflow flow rate is small, the centrifugal force component acting on the solid component becomes relatively large, so the effect of pressing the solid component in the centrifugal direction (compaction effect) becomes large, and It is believed that the capacity that can actually be deposited may tend to be large.
  • the allowable amount correction value P can be obtained using a table or a function set in advance by an experiment based on a real machine or the like. More specifically, for example, when the maximum water flow rate of the centrifuge 131 is 3000 l / H, when the water flow rate is 1500 l / H or less (50% or less), a value in the range of 1 ⁇ P ⁇ 3.
  • a value in the range of 0.1 ⁇ P ⁇ 1 is set. More specifically, for example, when the solid component deposited in the centrifuge 131 is appropriately discharged to measure the concentration of the solid component, the value is set to a predetermined concentration (for example, 7% by weight).
  • the allowable amount correction value P may be determined so that the cumulative volume amount S becomes the deposition allowable amount ⁇ corresponding to the flow rate of the scrubber water W at that time.
  • the controller 151 compares these values, and when the cumulative deposition amount S becomes the deposition allowance ⁇ or more, the valve opening / closing mechanism By controlling 143, the solid component deposited in the centrifuge 131 is discharged.
  • the cumulative accumulation amount S of solid components in the centrifuge 131 and the accumulation allowable amount ⁇ are directly integrated, etc. by the above control, it can be determined accurately as compared with the conventional method using turbidity. Since the discharge control is performed, it is possible to easily discharge the solid component at an appropriate timing. In particular, even when the concentration of solid components tends to fluctuate depending on the operating state of the engine, such as a marine diesel engine, the accuracy of the discharge timing can be easily enhanced. Therefore, it is possible to keep the concentration degree high and easily prevent the solid components from being accumulated and solidified or clogged to make it difficult to discharge, to cause vibration or damage.
  • FIG. 3 and FIG. 4 are an example for the purpose of explanation, and are not limited to the slope of the illustrated curve or the change rate of the slope, etc., and separation according to the actual device etc.
  • the efficiency ⁇ and the allowable amount correction value P may be set so as to be obtained.
  • the separation efficiency ⁇ and the allowable amount correction value P are obtained based on the measured flow rate of the scrubber water W measured by the flow meter 123.
  • the flow rate is controlled by the flow control valve 124 If the flow rate is a constant, the separation efficiency ⁇ and / or the allowable amount correction value P may be obtained if the flow rate is kept constant, for example.
  • the present invention is not limited thereto, and control may be performed at substantially equivalent timing.
  • Various units such as or units of values may be applied.
  • the present invention is not limited to the determination of the deposition tolerance ⁇ by multiplying the preset allowable tolerance of the solid component deposition and the tolerance correction value P, and the correspondence between the flow rate of the scrubber water W and the deposition tolerance ⁇ The relationship may be maintained so that the deposition allowance ⁇ can be obtained immediately from the flow rate of the scrubber water W.
  • various methods may be used to obtain various values, such as function calculation including an approximate expression or reference to a value table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Centrifugal Separators (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

This control device (controller 151), which controls the discharge of solid components separated by a centrifuge in order to discharge the solid components from the centrifuge at an appropriate timing, is provided with an exhaust timing control unit that determines the timing to discharge solid components from the centrifuge according to the size relationship between: an allowable accumulation amount for solid components in the centrifuge; and a total accumulation amount of solid components in the centrifuge, which is determined according to the concentration of solid components in a to-be-processed fluid entering the centrifuge, the flow rate of the to-be-processed fluid entering the centrifuge, and the separation efficiency of the centrifuge based on the concentration of the solid components.

Description

遠心分離装置の制御装置、遠心分離装置、舶用排気ガススクラバーシステム、および舶用ディーゼルエンジンControl device for centrifugal separator, centrifugal separator, marine exhaust gas scrubber system, and marine diesel engine
 本発明は、船舶用ディーゼルエンジンの排気ガス中に含まれるSOx、NOx、および未燃カーボンを取り除くなどのためのスクラバーが搭載される舶用排気ガススクラバーシステム、上記スクラバーシステムの循環水を清浄化するための遠心分離装置、遠心分離装置の制御装置、および舶用ディーゼルエンジンに関するものである。 The present invention is a marine exhaust gas scrubber system equipped with a scrubber for removing SOx, NOx and unburned carbon contained in exhaust gas of a marine diesel engine, and cleaning the circulating water of the scrubber system. The present invention relates to a centrifugal separator, a controller of the centrifugal separator, and a marine diesel engine.
 船舶用ディーゼルエンジン等では、排気ガスに含まれる未燃焼カーボン等の粒子状物質(固形成分)を除去するために、排気ガススクラバーシステムが用いられる。この排気ガススクラバーシステムでは、固形成分を除塵用の水であるスクラバー水に吸収させた後、遠心分離機でスクラバー水から分離するようになっている。遠心分離機では、分離された固形成分が所定量溜まったタイミングで間欠的に排出される。上記排出は、固形成分が十分溜まらないうちに行われると、固形成分とともに排出されるスクラバー水の量が多くなり、濃縮程度が低くなる。一方、固形成分が溜まり過ぎると、固まって排出が困難になる。 In marine diesel engines and the like, an exhaust gas scrubber system is used to remove particulate matter (solid components) such as unburned carbon contained in exhaust gas. In this exhaust gas scrubber system, solid components are absorbed by scrubber water which is water for dust removal, and then separated from the scrubber water by a centrifugal separator. In the centrifuge, the separated solid components are intermittently discharged at a timing when a predetermined amount is accumulated. If the above-mentioned discharge is carried out before the solid components are sufficiently accumulated, the amount of scrubber water discharged together with the solid components increases, and the degree of concentration decreases. On the other hand, if the solid component is accumulated too much, it solidifies and discharge becomes difficult.
 そこで、遠心分離機から排出されるスクラバー水の初期濁度と、上記初期濁度に対応する変化量とから作成されたテーブルを用いて排出タイミングを制御する技術が知られている(例えば、特許文献1参照。)。 Then, the technique which controls discharge timing using the table created from the initial turbidity of scrubber water discharged from a centrifuge, and the change amount corresponding to the above-mentioned initial turbidity is known (for example, patent) Reference 1.).
特開2017-029919号公報JP, 2017-029919, A
 しかしながら、上記のように、上記濁度を制御に用いた場合は、濁度測定器の測定上限値が小さい場合などにはエンジン負荷の変化に伴う固形成分の発生量の変化に追従できないことになりがちである。また、濁度によって遠心分離機から排出される固形成分濃度を制御するため、遠心分離機の分離室から固形成分があふれ出した状態で検知するものとなり、間接的な検出をすることになる。そのような場合、必ずしも遠心分離機から適切なタイミングで固形成分を排出させることが容易でない。 However, as described above, when the above-mentioned turbidity is used for control, when the measurement upper limit value of the turbidity measuring instrument is small, etc., it can not follow the change in the amount of generation of solid components accompanying the change in engine load. I tend to be. Moreover, in order to control the solid component density | concentration discharged | emitted from a centrifuge by turbidity, it will detect in the state which the solid component overflowed from the separation chamber of a centrifuge, and will detect indirectly. In such a case, it is not always easy to discharge the solid component from the centrifuge at an appropriate timing.
 本発明は、上記の点に鑑み、遠心分離機から固形成分を適切なタイミングで排出させることが容易にできるようにすることを目的としている。 An object of the present invention is, in view of the above-mentioned point, to make it easy to discharge a solid ingredient from a centrifuge at appropriate timing.
 上記の目的を達成するため、本発明は、
 遠心分離機によって分離された固形成分の排出を制御する遠心分離機の制御装置であって、
  上記遠心分離機に流入する被処理流体における固形成分の濃度、
  上記遠心分離機に流入する被処理流体の流量、および
  上記固形成分の濃度に応じた上記遠心分離機の分離効率
 に応じて得られる上記遠心分離機への固形成分の累積堆積量と、
 上記遠心分離機における固形成分の堆積許容量と、
 の大小関係に応じて、上記遠心分離機からの固形成分の排出タイミングを決定する排出タイミング制御部を備えたことを特徴とする。
In order to achieve the above objective, the present invention is
A control device for a centrifugal separator that controls the discharge of solid components separated by the centrifugal separator,
Concentration of solid components in the fluid to be treated which flows into the centrifugal separator,
Cumulative deposition amount of solid components on the centrifugal separator obtained according to the flow rate of the fluid to be treated flowing into the centrifugal separator, and the separation efficiency of the centrifugal separator according to the concentration of the solid component;
Deposition capacity of solid components in the above centrifuge,
And a discharge timing control unit configured to determine the discharge timing of the solid component from the centrifugal separator according to the magnitude relationship of the above.
 これにより、遠心分離機への固形成分の累積堆積量に応じた排出制御がなされるので、遠心分離機から排出される固形成分を含んだ廃液の固形成分濃度について高い精度で考慮されたような適切なタイミングで固形成分を排出させることが容易にできる。 As a result, discharge control is performed according to the accumulated accumulation amount of solid components in the centrifuge, so it is considered with high accuracy about the solid component concentration of the waste liquid containing the solid components discharged from the centrifuge. The solid component can be easily discharged at an appropriate timing.
 本発明によれば、遠心分離機から固形成分を適切なタイミングで排出させることが容易にできる。 According to the present invention, solid components can be easily discharged from the centrifuge at appropriate timing.
排気ガススクラバーシステムの概略構成を示す説明図である。It is an explanatory view showing a schematic structure of an exhaust gas scrubber system. 遠心分離機の要部の構成を示す模式図である。It is a schematic diagram which shows the structure of the principal part of a centrifuge. 遠心分離機の分離効率、流入濃度、および流量の関係の例を示すグラフである。It is a graph which shows the example of the separation efficiency of a centrifuge, inflow concentration, and the relationship of the flow volume. 遠心分離機の許容量補正値Pと流入流量との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the allowable amount correction value P of a centrifuge, and an inflow rate.
 以下、本発明の実施形態として、ディーゼルエンジンの排気ガスを除塵する排気ガススクラバーシステムの例を図面に基づいて詳細に説明する。 Hereinafter, as an embodiment of the present invention, an example of an exhaust gas scrubber system for removing dust from a diesel engine exhaust gas will be described in detail based on the drawings.
 (排気ガススクラバーシステムの概略構成)
 排気ガススクラバーシステムは、図1に示すように、ディーゼルエンジン101の排気ガスに含まれる未燃焼カーボン等の粒子状物質(固形成分)を捕捉するスクラバー装置110と、上記スクラバー装置110内のスクラバー水W(被処理流体)に捕捉された固形成分を除去する遠心分離装置120とを備えている。
(Schematic configuration of exhaust gas scrubber system)
The exhaust gas scrubber system, as shown in FIG. 1, includes a scrubber device 110 for capturing particulate matter (solid component) such as unburned carbon contained in exhaust gas of the diesel engine 101, and scrubber water in the scrubber device 110. And a centrifugal separator 120 for removing solid components trapped in W (fluid to be treated).
 スクラバー装置110は、より詳しくはスクラバー111を有し、ディーゼルエンジン101からエンジン排気管102を介して送られる排気ガス中の固形成分をスクラバー111内のスクラバー水Wに吸収させて除塵し、除塵後の排気ガスを外部排気管103から排出するようになっている。スクラバー111内の清浄にされた排気ガスの一部は、必要に応じて窒素酸化物を低減するために排気ガス戻り管104を介してディーゼルエンジン101に戻され得るようになっている。スクラバー111内に貯留されるスクラバー水Wは、循環配管112を介して図示しないポンプにより循環され、その一部は後述するように遠心分離機131へ送られ清浄にされる。循環されるスクラバー水Wの他の一部は上記清浄にされたスクラバー水Wとともにスプレーノズル113を介してスクラバー111内に噴射されることにより、スクラバー水Wの固形成分濃度の上昇が防がれるようになっている。 More specifically, the scrubber device 110 has a scrubber 111 and absorbs the solid components in the exhaust gas sent from the diesel engine 101 via the engine exhaust pipe 102 into the scrubber water W in the scrubber 111 to remove dust, Exhaust gas from the external exhaust pipe 103. A portion of the cleaned exhaust gas in the scrubber 111 can be returned to the diesel engine 101 via an exhaust gas return pipe 104 to reduce nitrogen oxides if necessary. The scrubber water W stored in the scrubber 111 is circulated by a pump (not shown) via a circulation pipe 112, and a portion thereof is sent to the centrifuge 131 to be cleaned as described later. The other part of the circulated scrubber water W is sprayed into the scrubber 111 through the spray nozzle 113 together with the cleaned scrubber water W, so that the concentration of the solid component of the scrubber water W is prevented from rising. It is supposed to be.
 上記循環配管112を介して循環されるスクラバー水Wの一部は、分岐管121または濃度計122、流量計123、および流量制御バルブ124を介して遠心分離機131に送られ、固形成分が遠心分離機131により除去された後、循環配管112に戻されるようになっている。上記濃度計122は、スクラバー水W中の固形成分の濃度(固形成分濃度、SS濃度)を計測するようになっている。また、流量計123は、遠心分離機131に流入するスクラバー水Wの流量を計測し、上記流量が所定量となるように流量制御バルブ124を制御するようになっている。上記濃度計122、および流量計123の計測値は、後述するコントローラ151(遠心分離装置の制御装置)へ連続的に送られるようになっている。 A part of the scrubber water W circulated through the circulation pipe 112 is sent to the centrifuge 131 through the branch pipe 121 or the concentration meter 122, the flow meter 123, and the flow control valve 124, and solid components are centrifuged. After being removed by the separator 131, it is returned to the circulation pipe 112. The densitometer 122 is adapted to measure the concentration (solid component concentration, SS concentration) of solid components in the scrubber water W. Further, the flow meter 123 measures the flow rate of the scrubber water W flowing into the centrifuge 131, and controls the flow control valve 124 so that the flow rate becomes a predetermined amount. The measurement values of the densitometer 122 and the flow meter 123 are continuously sent to a controller 151 (control device of the centrifugal separator) described later.
 (遠心分離機131の概略構成)
 遠心分離機131は、図2に示すように、スクラバー装置110からスクラバー水Wが流入する流入管132と、処理後のスクラバー水Wが流出してスクラバー装置110に戻される流出管133と、上端が開口した回転胴(図示せず)と、回転胴の上端開口に嵌着されて回転体を形成する回転体蓋134と、回転体蓋134の内面に対して隙間を空けて配置された仕切板135と、回転胴内に挿入された状態で同図に矢印Aで示すように上下に移動して回転胴の側部に形成された排出口(図示せず)を開閉する主弁136と、主弁136と仕切板135との間に形成された分離室137と、分離室137内に上下に所定の間隔を空けて積層、配置された複数の分離板138と、流入管132から流入したスクラバー水Wを分離室137内に導く案内筒139とを備えている。遠心分離機131は、また、仕切板135の上端に形成された、分離室137からオーバーフローした処理後のスクラバー水Wが溜まるチャンバー141と、上記チャンバー141内に溜まったスクラバー水Wを流出管133を介して外部に排出する求心ポンプ140とを備えている。遠心分離機131は、さらに、スクラバー水Wから遠心分離された固形成分Sを排出する固形成分排出管142と、上記固形成分の排出を制御する弁開閉機構143とを備えている。ここで、図2においては、処理後のスクラバー水Wは、薄く網掛けして描かれ、固形成分Sは濃く網掛けして描かれている。
(Schematic Configuration of Centrifuge 131)
As shown in FIG. 2, the centrifuge 131 has an inflow pipe 132 into which the scrubber water W flows in from the scrubber device 110, an outflow pipe 133 in which the treated scrubber water W flows out and is returned to the scrubber device 110, and an upper end A rotating body (not shown) having an opening, a rotating body lid 134 fitted to the upper end opening of the rotating body to form a rotating body, and a partition arranged with a gap from the inner surface of the rotating body lid 134 A plate 135, and a main valve 136 which moves up and down as shown by the arrow A in the figure in a state of being inserted into the rotary cylinder to open and close an outlet (not shown) formed on the side of the rotary cylinder. , A separation chamber 137 formed between the main valve 136 and the partition plate 135, a plurality of separation plates 138 stacked and arranged at predetermined intervals in the separation chamber 137 at upper and lower sides, and inflow from the inflow pipe 132 The scrubber water W into the separation chamber 137 And a Ku guide tube 139. The centrifuge 131 also has a chamber 141 formed at the upper end of the partition plate 135, in which the scrubber water W after processing overflowed from the separation chamber 137 is collected, and the scrubber water W accumulated in the chamber 141 is discharged from the discharge pipe 133. And a centrifuging pump 140 for discharging to the outside through the The centrifuge 131 further includes a solid component discharge pipe 142 that discharges the solid component S centrifugally separated from the scrubber water W, and a valve opening / closing mechanism 143 that controls the discharge of the solid component. Here, in FIG. 2, the scrubber water W after the treatment is drawn to be lightly shaded and the solid component S is drawn to be thickly shaded.
 上記弁開閉機構143は、コントローラ151からのバルブ開信号を受けて所定のバルブ(図示せず)を開放し開弁作動水を供給して主弁136を下方に移動させ、分離室137の排出口を開放して、分離室137内に堆積した固形成分を固形成分排出管142に向けて排出させるようになっている。また、その後、バルブを閉じて開弁作動水を停止し、次いで、バルブ閉信号に基づいてバルブ(図示せず)が作動して閉弁作動水を供給し主弁136を閉じて、閉弁作動水を停止するようになっている。 The valve opening / closing mechanism 143 receives a valve opening signal from the controller 151, opens a predetermined valve (not shown), supplies opening operation water, moves the main valve 136 downward, and discharges the separation chamber 137. The outlet is opened to discharge the solid component deposited in the separation chamber 137 toward the solid component discharge pipe 142. After that, the valve is closed to stop the valve opening operation water, and then the valve (not shown) is operated based on the valve closing signal to supply the valve opening operation water to close the main valve 136 to close the valve. It is designed to stop working water.
 (固形成分の堆積、および排出動作)
 遠心分離機131に流入したスクラバー水Wよりも比重が大きい固形成分は、分離室137内で遠心力が付与されると分離板138によって遠心分離され、分離室137の最大径部に形成された排出口(図示せず)を含む凹部に堆積する。時間の経過とともに堆積が進むと、固形成分とスクラバー水Wとの界面Iは、分離室137の中心に向かって移動する。界面I付近の一部の固形成分は、スクラバー水Wの流れに乗って移動し、流出管133から外部へ排出される。
(Solid matter deposition and discharge operation)
The solid component having a specific gravity larger than that of the scrubber water W which has flowed into the centrifuge 131 is centrifugally separated by the separation plate 138 when a centrifugal force is applied in the separation chamber 137 and formed in the largest diameter portion of the separation chamber 137 Deposit in the recess including the outlet (not shown). As deposition progresses with time, the interface I between the solid component and the scrubber water W moves toward the center of the separation chamber 137. Some solid components near the interface I move along the flow of the scrubber water W and are discharged from the outflow pipe 133 to the outside.
 上記のようにして遠心分離機131内に堆積した固形成分は、以下のような弁開閉機構143による排出制御によって、回転胴の側部に形成された排出口が開かれることにより、分離室137の内のスクラバー水Wの一部とともに固形成分排出管142から排出されて廃棄物とされる。 The solid components deposited in the centrifugal separator 131 as described above are separated by the discharge control formed by the valve opening / closing mechanism 143 as described below, by opening the discharge port formed on the side of the rotary cylinder. The waste water is discharged from the solid component discharge pipe 142 together with a part of the scrubber water W in the above to be waste.
 (コントローラ151の構成、および固形成分の排出制御)
 コントローラ151は、濃度計122によって計測された、遠心分離機131に流入するスクラバー水W中の固形成分の濃度(流入濃度)と、流量計123によって計測された、遠心分離機131に流入するスクラバー水Wの例えば単位時間当たりの流量(流入流量)と、遠心分離機131に堆積可能な固形成分の堆積許容量βとに基づいて、弁開閉機構143を制御し、遠心分離機131内に堆積した固形成分を所定のタイミングで排出するようになっている。
(Configuration of controller 151 and discharge control of solid components)
The controller 151 measures the concentration (inflow concentration) of solid components in the scrubber water W flowing into the centrifuge 131 measured by the densitometer 122 and the scrubber flowing into the centrifuge 131 measured by the flow meter 123. The valve opening / closing mechanism 143 is controlled based on, for example, the flow rate per unit time (inflow rate) of the water W and the deposition allowance β of the solid components that can be deposited on the centrifuge 131, and deposits in the centrifuge 131 These solid components are discharged at a predetermined timing.
 より具体的には、コントローラ151は、固形成分の流入濃度に基づいて固形成分の分離効率ηを求める分離効率算出部と、上記流入濃度、分離効率η、および上記流入流量に基づいて、遠心分離機131への固形成分の累積堆積量Sを算出する累積堆積量算出部と、遠心分離機131においてあらかじめ設定された固形成分の堆積の許容量、および排出タイミングが決定される際のスクラバー水Wの流量に応じて固形成分の堆積許容量βを算出する堆積許容量算出部と、上記累積堆積量算出部によって算出された累積堆積量S、および上記堆積許容量算出部によって算出された堆積許容量βに基づいて、弁開閉機構143を制御する排出タイミング制御部とを備えて構成されている。 More specifically, the controller 151 performs centrifugation on the basis of the separation efficiency calculation unit for determining the separation efficiency η of the solid component based on the inflow concentration of the solid component, the inflow concentration, the separation efficiency η, and the inflow rate. Cumulative accumulation amount calculation unit for calculating the accumulated accumulation amount S of solid components on the machine 131, scrubber water W when the allowable amount of accumulation of solid components set in advance in the centrifuge 131 and the discharge timing are determined Accumulation allowance amount calculation unit for calculating the accumulation allowance amount β of the solid component according to the flow rate of the solid component, the accumulated accumulation amount S calculated by the accumulation accumulation amount calculation unit, and the accumulation allowance calculated by the accumulation allowance amount calculation unit And a discharge timing control unit that controls the valve opening / closing mechanism 143 based on the volume β.
 上記累積堆積量Sは、より詳しくは、例えば次のようにして算出される。 More specifically, the accumulated deposition amount S is calculated, for example, as follows.
 累積堆積量S=(流入濃度×流入流量×分離効率η)の積分値、または累積値
 ここで、上記分離効率ηは、遠心分離機131から流出するスクラバー水W中の固形成分の濃度を流出濃度とすると、
 分離効率η=(流入濃度-流出濃度)/流入濃度
と定義される。この分離効率は、実際には、例えば図3に示すように流入濃度、および流量に応じて変動し得る。すなわち、例えば、流入濃度が高いほど分離効率ηは高くなる。また、流入流量が少ないほど遠心分離機131内の滞留時間が長くなって分離効率ηは高くなる。そこで、コントローラ151の分離効率算出部は、遠心分離装置120や、排ガススクラバーシステム、ディーゼルエンジン101等の実機を用いた種々の濃度や流量についての実験などに基づいて、あらかじめテーブルや関数を設定し、これらを用いて、分離効率ηを求めることができる。なお、上記分離効率ηは、例えば、さらに遠心分離機131への固形成分の堆積量に応じた変動を考慮してもよいが、必要な制御精度が得られる場合には、堆積量が0の場合の実測値に基づいて求められるなどしてもよい。
Here, the separation efficiency 流出 drains the concentration of solid components in the scrubber water W flowing out of the centrifuge 131. If it is concentration,
Separation efficiency η = (inflow concentration−outflow concentration) / inflow concentration is defined. This separation efficiency may, in fact, vary depending on the inflow concentration and flow rate, for example as shown in FIG. That is, for example, the separation efficiency η increases as the inflow concentration increases. Further, the smaller the inflow rate, the longer the residence time in the centrifuge 131 and the higher the separation efficiency η. Therefore, the separation efficiency calculation unit of the controller 151 sets tables and functions in advance based on experiments with various concentrations and flow rates using real machines such as the centrifugal separator 120, the exhaust gas scrubber system, and the diesel engine 101. These can be used to determine the separation efficiency η. Note that, although the separation efficiency 例 え ば may further take into account, for example, fluctuations according to the amount of deposition of solid components on the centrifuge 131, the amount of deposition may be 0 if the required control accuracy is obtained. It may be determined based on the actual measurement value of the case.
 また、上記堆積許容量βは、より詳しくは、例えば次のようにして算出される。 Further, the deposition allowance β is calculated in more detail, for example, as follows.
 堆積許容量β=あらかじめ設定された固形成分の堆積の許容量×許容量補正値P
 上記許容量補正値Pは、例えば、図4に示すように、流入流量に応じた、遠心分離機131への固形成分の堆積の許容量の変動を補正するものである。すなわち、流入流量が少ない場合には、固形成分に作用する遠心力成分が相対的に大きくなるために、固形成分を遠心方向に押しつける効果(圧密効果)の影響が大きくなり、遠心分離機131に実際に堆積可能な許容量が多くなりやすい場合があると考えられる。一方、流入流量が多い場合には、スクラバー水Wの流れにおける乱流的要素が大きくなるために、固形成分が拡散する効果(拡散効果)の影響が大きくなり、遠心分離機131に実際に堆積可能な許容量が少なくなりやすい場合があると考えられる。そこで、上記分離効率ηと同様に、実機に基づく実験などによってあらかじめ設定されたテーブルや関数を用いて、許容量補正値Pを求めることができる。より具体的には、例えば、遠心分離機131の最大通水量が3000l/Hである場合に、通水量が1500l/H以下(50%以下)の場合には1≦P≦3の範囲の値が設定され、1500l/H以上(50%以上)の場合には、0.1≦P<1の範囲の値が設定される。このような値の設定は、より詳しくは、例えば、遠心分離機131に堆積した固形成分を適宜排出して固形成分の濃度を測定し、所定の濃度(例えば7重量%)になった時の累積体積量Sが、その際のスクラバー水Wの流量に対応する堆積許容量βとなるように許容量補正値Pを求めるなどすればよい。
Allowable amount of deposition β = preset amount of solid component accumulation × allowable amount correction value P
The allowable amount correction value P is, for example, as shown in FIG. 4, to correct the fluctuation of the allowable amount of deposition of the solid component on the centrifuge 131 according to the inflow rate. That is, when the inflow flow rate is small, the centrifugal force component acting on the solid component becomes relatively large, so the effect of pressing the solid component in the centrifugal direction (compaction effect) becomes large, and It is believed that the capacity that can actually be deposited may tend to be large. On the other hand, when the inflow rate is high, the turbulent elements in the flow of the scrubber water W become large, so the effect of the diffusion of the solid component (the diffusion effect) becomes large, and the sediment is actually deposited on the centrifuge 131 It is believed that the possible allowance may tend to be small. Therefore, like the separation efficiency η, the allowable amount correction value P can be obtained using a table or a function set in advance by an experiment based on a real machine or the like. More specifically, for example, when the maximum water flow rate of the centrifuge 131 is 3000 l / H, when the water flow rate is 1500 l / H or less (50% or less), a value in the range of 1 ≦ P ≦ 3. Is set, and in the case of 1500 l / H or more (50% or more), a value in the range of 0.1 ≦ P <1 is set. More specifically, for example, when the solid component deposited in the centrifuge 131 is appropriately discharged to measure the concentration of the solid component, the value is set to a predetermined concentration (for example, 7% by weight). The allowable amount correction value P may be determined so that the cumulative volume amount S becomes the deposition allowable amount β corresponding to the flow rate of the scrubber water W at that time.
 上記のようにして固形成分の累積堆積量S、および堆積許容量βが求められると、コントローラ151は、これらの値を比較し、累積堆積量Sが堆積許容量β以上になると、弁開閉機構143を制御して、遠心分離機131内に堆積した固形成分を排出させる。 When the cumulative deposition amount S of solid components and the deposition allowance β are obtained as described above, the controller 151 compares these values, and when the cumulative deposition amount S becomes the deposition allowance β or more, the valve opening / closing mechanism By controlling 143, the solid component deposited in the centrifuge 131 is discharged.
 上記のような制御によって、遠心分離機131内の固形成分の累積堆積量S、および堆積許容量βを直接的に積算等するため、従来の濁度を用いた方法と比べて精度よく求められて排出制御されるので、固形成分を適切なタイミングで排出させることが容易にできる。特に、舶用ディーゼルエンジンなどのように固形成分の濃度がエンジンの運転状態に応じて変動しがちな場合などでも、排出タイミングの精度を高めることが容易にできる。それゆえ、濃縮程度を高く保つとともに、固形成分が溜まり過ぎて固まったり詰まったりし排出が困難になることや、振動が発生したり破損が生じたりすることを容易に防止できる。 Since the cumulative accumulation amount S of solid components in the centrifuge 131 and the accumulation allowable amount β are directly integrated, etc. by the above control, it can be determined accurately as compared with the conventional method using turbidity. Since the discharge control is performed, it is possible to easily discharge the solid component at an appropriate timing. In particular, even when the concentration of solid components tends to fluctuate depending on the operating state of the engine, such as a marine diesel engine, the accuracy of the discharge timing can be easily enhanced. Therefore, it is possible to keep the concentration degree high and easily prevent the solid components from being accumulated and solidified or clogged to make it difficult to discharge, to cause vibration or damage.
 (その他の事項)
 なお、上記図3、および図4に示した特性は説明のための一例であり、図示された曲線の勾配や勾配の変化率などに限定されるものではなく、実際の装置等に応じた分離効率ηや許容量補正値Pが求められるように設定されればよい。
(Other matters)
The characteristics shown in FIG. 3 and FIG. 4 are an example for the purpose of explanation, and are not limited to the slope of the illustrated curve or the change rate of the slope, etc., and separation according to the actual device etc. The efficiency 設定 and the allowable amount correction value P may be set so as to be obtained.
 また、上記の例では、流量計123によって計測されたスクラバー水Wの実測流量に基づいて分離効率ηや許容量補正値Pが求められる例を示したが、流量制御バルブ124の制御によって流量が所定の精度内で一定に保たれる場合などには、上記流量を定数とした場合の分離効率ηおよび/または許容量補正値Pが求められるようにしてもよい。 In the above example, the separation efficiency η and the allowable amount correction value P are obtained based on the measured flow rate of the scrubber water W measured by the flow meter 123. However, the flow rate is controlled by the flow control valve 124 If the flow rate is a constant, the separation efficiency η and / or the allowable amount correction value P may be obtained if the flow rate is kept constant, for example.
 また、上記演算例は、排出タイミングの精度を高め得るメカニズムを解りやすく示すための例として説明したが、これに限らず、実質的に等価なタイミングで制御が行われればよく、パラメータの取り方や値の単位など種々適用してもよい。また、例えば、あらかじめ設定された固形成分の堆積の許容量と許容量補正値Pとを乗算して堆積許容量βを求めるのに限らず、スクラバー水Wの流量と堆積許容量βとの対応関係を保持させて、スクラバー水Wの流量から直ちに堆積許容量βを求められるようにしたりしてもよい。また、種々の値の求め方も、近似式を含む関数演算や値テーブルの参照など、種々の手法を用いてもよい。 Further, although the above calculation example has been described as an example for easily showing the mechanism that can increase the accuracy of the discharge timing, the present invention is not limited thereto, and control may be performed at substantially equivalent timing. Various units such as or units of values may be applied. Further, for example, the present invention is not limited to the determination of the deposition tolerance β by multiplying the preset allowable tolerance of the solid component deposition and the tolerance correction value P, and the correspondence between the flow rate of the scrubber water W and the deposition tolerance β The relationship may be maintained so that the deposition allowance β can be obtained immediately from the flow rate of the scrubber water W. In addition, various methods may be used to obtain various values, such as function calculation including an approximate expression or reference to a value table.
    101   ディーゼルエンジン
    102   エンジン排気管
    103   外部排気管
    104   排気ガス戻り管
    110   スクラバー装置
    111   スクラバー
    112   循環配管
    113   スプレーノズル
    120   遠心分離装置
    121   分岐管
    122   濃度計
    123   流量計
    124   流量制御バルブ
    131   遠心分離機
    132   流入管
    133   流出管
    134   回転体蓋
    135   仕切板
    136   主弁
    137   分離室
    138   分離板
    139   案内筒
    140   求心ポンプ
    141   チャンバー
    142   固形成分排出管
    143   弁開閉機構
    151   コントローラ
DESCRIPTION OF SYMBOLS 101 Diesel engine 102 Engine exhaust pipe 103 External exhaust pipe 104 Exhaust gas return pipe 110 Scrubber apparatus 111 Scrubber 112 Circulation piping 113 Spray nozzle 120 Centrifugal separator 121 Branch pipe 122 Concentration meter 123 Flow meter 124 Flow control valve 131 Inflow 132 Pipe 133 Outflow pipe 134 Rotator cover 135 Partition plate 136 Main valve 137 Separation chamber 138 Separation plate 139 Guide tube 140 Centrifugal pump 141 Chamber 142 Solid component discharge tube 143 Valve opening and closing mechanism 151 Controller

Claims (9)

  1.  遠心分離機によって分離された固形成分の排出を制御する遠心分離機の制御装置であって、
      上記遠心分離機に流入する被処理流体における固形成分の濃度、
      上記遠心分離機に流入する被処理流体の流量、および
      上記固形成分の濃度に応じた上記遠心分離機の分離効率
     に応じて得られる上記遠心分離機への固形成分の累積堆積量と、
     上記遠心分離機における固形成分の堆積許容量と、
     の大小関係に応じて、上記遠心分離機からの固形成分の排出タイミングを決定する排出タイミング制御部を備えたことを特徴とする遠心分離機の制御装置。
    A control device for a centrifugal separator that controls the discharge of solid components separated by the centrifugal separator,
    Concentration of solid components in the fluid to be treated which flows into the centrifugal separator,
    Cumulative deposition amount of solid components on the centrifugal separator obtained according to the flow rate of the fluid to be treated flowing into the centrifugal separator, and the separation efficiency of the centrifugal separator according to the concentration of the solid component;
    Deposition capacity of solid components in the above centrifuge,
    A control device for a centrifugal separator, comprising: a discharge timing control unit configured to determine a discharge timing of the solid component from the centrifugal separator according to the size relationship of the above.
  2.  請求項1の遠心分離機の制御装置であって、
     上記遠心分離機の分離効率は、さらに、上記遠心分離機に流入する被処理流体の流量に応じて定まる値であることを特徴とする遠心分離機の制御装置。
    The control device for a centrifugal separator according to claim 1, wherein
    The control device for a centrifugal separator, wherein the separation efficiency of the centrifugal separator is a value further determined according to the flow rate of the processing fluid flowing into the centrifugal separator.
  3.  請求項1および請求項2のうち何れか1項の遠心分離機の制御装置であって、
     上記遠心分離機における固形成分の堆積許容量は、上記排出タイミングが決定される際の上記被処理流体の流量に応じて定まる値であることを特徴とする遠心分離機の制御装置。
    The control device for a centrifugal separator according to any one of claims 1 and 2, wherein
    The control device for a centrifugal separator, wherein the deposition allowable amount of the solid component in the centrifugal separator is a value determined according to the flow rate of the fluid to be treated when the discharge timing is determined.
  4.  請求項3の遠心分離機の制御装置であって、
     上記遠心分離機における固形成分の堆積許容量は、上記遠心分離機においてあらかじめ設定された許容量と、上記排出タイミングが決定される際の上記被処理流体の流量とに応じて定まる値であることを特徴とする遠心分離機の制御装置。
    The control device for a centrifugal separator according to claim 3, wherein
    The deposition allowable amount of the solid component in the centrifugal separator is a value determined according to the allowable amount preset in the centrifugal separator and the flow rate of the fluid to be treated when the discharge timing is determined. Control device for a centrifuge characterized by
  5.  請求項1から請求項4のうち何れか1項の遠心分離機の制御装置であって、
     上記排出タイミング制御部は、上記濃度と上記流量と上記分離効率との積を累積して、上記累積堆積量を算出する累積堆積量算出部を備えたことを特徴とする遠心分離機の制御装置。
    The control device for a centrifuge according to any one of claims 1 to 4, wherein
    The control device of a centrifugal separator characterized in that the discharge timing control unit includes a cumulative deposition amount calculating unit that calculates the cumulative deposition amount by accumulating the product of the concentration, the flow rate, and the separation efficiency. .
  6.  請求項4、または請求項4を引用する、請求項5の遠心分離機の制御装置であって、
     上記排出タイミング制御部は、上記遠心分離機においてあらかじめ設定された許容量と、上記排出タイミングが決定される際の上記被処理流体の流量に応じた許容量補正値とを乗算して、上記遠心分離機における固形成分の堆積許容量を求める堆積許容量算出部を備えたことを特徴とする遠心分離機の制御装置。
    The control device for a centrifugal separator according to claim 5, wherein the claim 4 or claim 4 is cited, wherein
    The discharge timing control unit multiplies the allowable amount preset in the centrifugal separator by an allowable amount correction value according to the flow rate of the fluid to be processed when the discharge timing is determined, and performs the centrifugal separation. A control device for a centrifugal separator, comprising: a deposition allowance calculation unit for obtaining a deposition allowance of solid components in a separator.
  7.  請求項1から請求項6のうち何れか1項の遠心分離機の制御装置と、
     上記遠心分離機と、
     を備えたことを特徴とする遠心分離装置。
    The control apparatus for a centrifuge according to any one of claims 1 to 6.
    With the above centrifuge,
    A centrifugal separator characterized by comprising.
  8.  請求項7の遠心分離装置と、
     エンジンから排出された固形成分をスクラバー水に吸収させるスクラバーと、
     を備え、
     上記遠心分離装置は、上記スクラバー水に含まれる上記固形成分を除去するように構成されたことを特徴とする舶用排気ガススクラバーシステム。
    A centrifugal separator according to claim 7;
    A scrubber that absorbs the solid components discharged from the engine into scrubber water;
    Equipped with
    A marine exhaust gas scrubber system characterized in that the centrifugal separator is configured to remove the solid component contained in the scrubber water.
  9.  請求項8の舶用排気ガススクラバーシステムを備えたことを特徴とする舶用ディーゼルエンジン。 A marine diesel engine comprising the marine exhaust gas scrubber system according to claim 8.
PCT/JP2018/030616 2017-09-20 2018-08-20 Control device for centrifuge, centrifuge, maritime exhaust gas scrubber system, and maritime diesel engine WO2019058829A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197038413A KR102358727B1 (en) 2017-09-20 2018-08-20 Control device for centrifugal separator, centrifugal separator, marine exhaust gas scrubber system, and marine diesel engine
CN201880058376.4A CN111050919B (en) 2017-09-20 2018-08-20 Control device for centrifugal separation device, exhaust gas washing system for ship, and diesel engine for ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017180572A JP6941519B2 (en) 2017-09-20 2017-09-20 Centrifuge controller, centrifuge, marine exhaust scrubber system, and marine diesel engine
JP2017-180572 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019058829A1 true WO2019058829A1 (en) 2019-03-28

Family

ID=65810357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030616 WO2019058829A1 (en) 2017-09-20 2018-08-20 Control device for centrifuge, centrifuge, maritime exhaust gas scrubber system, and maritime diesel engine

Country Status (4)

Country Link
JP (1) JP6941519B2 (en)
KR (1) KR102358727B1 (en)
CN (1) CN111050919B (en)
WO (1) WO2019058829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108340A1 (en) * 2021-06-23 2022-12-28 Alfa Laval Corporate AB A method of operating a centrifugal separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824364A (en) * 1981-08-04 1983-02-14 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator
JPS6344954A (en) * 1986-08-13 1988-02-25 Toshiba Corp Centrifugal separator
JPH01242160A (en) * 1988-03-25 1989-09-27 Mitsubishi Kakoki Kaisha Ltd Method for controlling centrifugal separator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE348121B (en) * 1970-12-07 1972-08-28 Alfa Laval Ab
CN85105765A (en) * 1985-07-29 1987-01-28 艾尔费拉瓦尔分离技术公司 The whizzer control system
SE510541C2 (en) * 1997-09-29 1999-05-31 Alfa Laval Ab Centrifugal separator control device
JP4397516B2 (en) * 2000-10-18 2010-01-13 三菱化工機株式会社 Separator plate centrifuge and method for operating the same
SE529562C2 (en) * 2006-02-13 2007-09-18 Alfa Laval Corp Ab Ways of monitoring centrifugal separator
EP2644278B1 (en) * 2012-03-27 2014-12-10 Alfa Laval Corporate AB Centrifugal separator and method of controlling intermittent discharge
EP2808086A1 (en) * 2013-05-27 2014-12-03 Alfa Laval Corporate AB Centrifugal separator and method for determining suitable moment for removal of heavy phase content
DE102013111586A1 (en) * 2013-10-21 2015-04-23 Gea Mechanical Equipment Gmbh Process for the continuous clarification of a flowable suspension with fluctuating solids content with a centrifuge, in particular a self-emptying separator
FI20145301A (en) * 2014-03-31 2015-10-01 Waertsilae Finland Oy Procedure for checking drain time for centrifugal separator and centrifugal separator
JP5829352B1 (en) 2015-07-31 2015-12-09 三菱化工機株式会社 Centrifuge for exhaust gas scrubber and operation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824364A (en) * 1981-08-04 1983-02-14 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator
JPS6344954A (en) * 1986-08-13 1988-02-25 Toshiba Corp Centrifugal separator
JPH01242160A (en) * 1988-03-25 1989-09-27 Mitsubishi Kakoki Kaisha Ltd Method for controlling centrifugal separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108340A1 (en) * 2021-06-23 2022-12-28 Alfa Laval Corporate AB A method of operating a centrifugal separator
WO2022268516A1 (en) 2021-06-23 2022-12-29 Alfa Laval Corporate Ab A method of operating a centrifugal separator

Also Published As

Publication number Publication date
KR102358727B1 (en) 2022-02-04
JP2019055357A (en) 2019-04-11
CN111050919B (en) 2022-02-08
JP6941519B2 (en) 2021-09-29
CN111050919A (en) 2020-04-21
KR20200014820A (en) 2020-02-11

Similar Documents

Publication Publication Date Title
KR101421856B1 (en) Exhaust gas and gas scrubber fluid cleaning equipment and method
KR101776841B1 (en) Scrubber water purification system
KR102110055B1 (en) Centrifugal separator and method for operating same
WO2010064401A1 (en) Oil-water separation device
EP3500531B1 (en) Test apparatus for a waste water treatment system
KR102266818B1 (en) Method for controlling discharge timing of centrifugal separator and centrifugal separator
KR101470837B1 (en) Centrifugal filter with water separation structure and purifier system using the same
WO2019058829A1 (en) Control device for centrifuge, centrifuge, maritime exhaust gas scrubber system, and maritime diesel engine
FR3036635A1 (en) PROCESS FOR TREATING DUST REMOVED FROM A SURFACE BY A TOOL AND EQUIPMENT FOR CARRYING OUT SAID METHOD
KR20140073280A (en) Exhausy gas purifying apparatus for a ship
CN112135959B (en) Control device for solid content separator, solid content separation device, marine exhaust gas scrubbing system, and marine diesel engine
JP2011110525A (en) Foreign matter separation apparatus
JP2018083168A (en) Wastewater treatment system
JP2009148679A (en) Grit chamber and sand removing method in grit chamber
RU2337066C1 (en) Method of water purification from oil products
WO2015090967A1 (en) A fluid treatment system, a fluid processing apparatus and a method of treating a mixture
Usmanova et al. Theoretical and an experimental research of efficiency of gas purification in rotoklon with internal circulation of a liquid
JPH08257348A (en) Discharge amount-control method for circulating liquid in exhaust gas desulfurizer
RU2553304C2 (en) Scrubber
USMANOVA et al. Research of local characteristics of process of separation of a dust in a rotoklon
KR20220035531A (en) Scrubber capable of selectively supplying the cleaning liquid in accordance with pollution
JP2017225956A (en) Water treatment equipment for exhaust gas scrubber
FR2805256A1 (en) Used water treatment plant for removing resin residues from impregnation of cast metal components incorporates filter and centrifuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038413

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857950

Country of ref document: EP

Kind code of ref document: A1