WO2019058740A1 - Biological information measurement device - Google Patents

Biological information measurement device Download PDF

Info

Publication number
WO2019058740A1
WO2019058740A1 PCT/JP2018/027395 JP2018027395W WO2019058740A1 WO 2019058740 A1 WO2019058740 A1 WO 2019058740A1 JP 2018027395 W JP2018027395 W JP 2018027395W WO 2019058740 A1 WO2019058740 A1 WO 2019058740A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
sensor
biological information
temperature
control unit
Prior art date
Application number
PCT/JP2018/027395
Other languages
French (fr)
Japanese (ja)
Inventor
小林 浩紀
敏和 河村
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019058740A1 publication Critical patent/WO2019058740A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present disclosure relates to a biological information measurement device.
  • the present invention aims to save power of a biological information measurement device.
  • a biometric sensor that measures predetermined biometric information of a user
  • a temperature sensor that measures the temperature of the user
  • a biological information measurement apparatus comprising: a control unit that controls an operation of the biological sensor based on a change in the temperature measured by the temperature sensor.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a biological information measurement device according to a first embodiment. An example of a state of a living body information measuring device at the time of measurement is shown. It is a schematic flowchart which shows an example of the process performed by a biometric information measuring apparatus.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of a biological information measurement device according to a second embodiment. 7 is a timing chart for explaining an operation example of the biological information measurement device according to the second embodiment. It is an explanatory view of a living body information measuring device provided with a mounting tool.
  • FIG. 1 is a diagram showing an example of a hardware configuration of a biological information measuring device 1 according to an embodiment.
  • the biological information measuring device 1 includes an optical head 10 (an example of a biological sensor), an infrared sensor 12 (denoted as “IR sensor” in FIG. 1) (an example of a temperature sensor), and an AD converter 13 ("ADC in FIG. “Indicated), a microcomputer 14 (indicated as“ MCU ”in FIG. 1) (an example of a control unit), a battery 16, and a memory 18.
  • the optical head 10, the microcomputer 14, the battery 16, and the memory 18 form the optical sensor unit 2
  • the infrared sensor 12 and the AD converter 13 form the infrared sensor unit 3.
  • the optical sensor unit 2 and the infrared sensor unit 3 may be electrically connected to each other by a wire such as a harness or a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • the optical sensor unit 2 and the infrared sensor unit 3 may be formed as an integral unit.
  • the optical head 10 measures predetermined biometric information of the user.
  • the predetermined biological information is, for example, a pulse wave or hemoglobin concentration.
  • the optical head 10 includes a light emitting unit 20 and a light receiving unit 30.
  • the light emitting unit 20 is provided in a housing (not shown), and emits light toward the outside through a sensing window (not shown).
  • the light emitting unit 20 is formed of, for example, an LED (Light-Emitting Diode).
  • the light receiving unit 30 is provided in the same housing (not shown) as the light emitting unit 20, and receives light through a sensing window (not shown).
  • the light receiving unit 30 is formed of, for example, a photodiode.
  • the optical head 10 contacts the living body (for example, the forehead of the user) to the sensing window.
  • the living body for example, the forehead of the user
  • the light emitting unit 20 emits light to the outside
  • part of the light passes through the living body toward the light receiving unit 30 side.
  • part of the light passing through the living body enters the light receiving unit 30.
  • the light receiving unit 30 generates an electrical signal according to the light reception result.
  • This electrical signal includes information inside the living body (for example, a pulse wave).
  • the electrical signal from the light receiving unit 30 is given to the microcomputer 14.
  • biometric information of the user is provided to the microcomputer 14.
  • the infrared sensor 12 is a non-contact temperature sensor that measures temperature based on infrared rays incident from a sensing unit (not shown). In addition, temperature measurement can be performed at high speed and in a non-contact manner by using infrared rays.
  • the AD converter 13 converts the electrical signal (analog signal) from the infrared sensor 12 into a digital signal and supplies the digital signal to the microcomputer 14. Thus, temperature information of the user is given to the microcomputer 14.
  • the microcomputer 14 controls the optical head 10 and the infrared sensor 12. Further, the microcomputer 14 determines the presence or absence of abnormality of the user based on the biological information obtained from the optical head 10.
  • the microcomputer 14 controls the operation of the optical head 10 based on the temperature information of the user obtained from the infrared sensor 12. For example, the microcomputer 14 determines whether or not there is a change in temperature that is equal to or greater than a predetermined value Th.
  • the predetermined value Th is arbitrary, but corresponds to the value of the temperature change that occurs when the user has a possibility of abnormality.
  • the difference in temperature may be a difference in temperature between relatively short time points, for example, a change in temperature between about 1 minute and 5 minutes.
  • a temperature change detection event an event in which the microcomputer 14 determines that there is a change in temperature that is equal to or greater than a predetermined value Th.
  • the microcomputer 14 starts the operation of the optical head 10 based on the temperature change detection event.
  • the battery 16 supplies power to the infrared sensor 12, the AD converter 13, and the microcomputer 14.
  • the battery 16 may supply power directly to the optical head 10 or may supply power via the microcomputer 14 or the like.
  • one common battery 16 is used as a power source of the infrared sensor 12 and the optical head 10.
  • the memory 18 stores various data and programs used for processing in the microcomputer 14.
  • FIG. 2 shows an example of the state of the biological information measuring device 1 at the time of measurement.
  • the biological information measurement device 1 is attached or attached to the user S so as to sense the head (forehead) of the user S, as shown in FIG.
  • the optical head 10 of the optical sensor unit 2 may be in contact with the forehead of the user S (for example, pressed), and the infrared sensor 12 of the infrared sensor unit 3 may face the forehead of the user S without contact.
  • the optical sensor unit 2 can measure a pulse wave or the like on the forehead of the user S.
  • the infrared sensor unit 3 can measure the temperature at the amount of the user S. Since the temperature at the forehead of the user S correlates to the temperature of the user S, it can be effectively used to evaluate the temperature of the user S.
  • the biological information measuring device 1 is preferably used in a system that monitors an abnormality of a worker. In such a system, long-time measurement is required to be able to cope with long-time work.
  • the microcomputer 14 starts the operation of the optical head 10 based on the temperature change detection event, so that compared with the case where the operation of the optical head 10 is always continued, the microcomputer 14 Power saving can be achieved.
  • the optical head 10 operates when there is a change in temperature above the predetermined value Th, there is a high possibility that the optical head 10 operates only in a situation where it is highly necessary to determine the presence or absence of an abnormality of the user. Become. This is because, for example, an abnormality such as heat stroke often involves a rapid change in body temperature. Therefore, according to the present embodiment, power saving of the biological information measuring device 1 can be achieved without substantially inhibiting the monitoring capability of the optical sensor unit 2.
  • FIG. 3 is a schematic flowchart showing an example of processing executed by the biological information measurement device 1. The process shown in FIG. 3 is repeatedly performed for each operation clock (described later) in the power-on state of the biological information measuring device 1.
  • step S300 the microcomputer 14 determines whether it is the first process after the biological information measuring device 1 is turned on. If the determination result is "YES", the process proceeds to step S302. Otherwise, the process proceeds to step S304.
  • step S302 the microcomputer 14 sets the operation clock to the first clock.
  • step S304 the microcomputer 14 sets an operation clock according to the state of the under-monitoring flag F.
  • the under-monitoring flag F is a flag that indicates whether the user is being monitored by the optical sensor unit 2, and when it is “1”, it represents “under monitoring”.
  • the initial value of the monitoring flag F (value at power on) is "0".
  • the microcomputer 14 sets or maintains the operation clock as the first clock, and when the monitoring flag F is "1", the operation clock is the second clock. Set or maintain.
  • the second clock has a cycle shorter than that of the first clock.
  • step S306 the microcomputer 14 operates the infrared sensor unit 3 to acquire the current value of the temperature information.
  • the microcomputer 14 stores the acquired temperature information in the memory 18.
  • the memory 18 may hold a predetermined number of temperature information in a FIFO (first-in, first-out) format.
  • step S308 the microcomputer 14 determines whether the monitoring flag F is "0". If the determination result is "YES”, the process proceeds to step S310; otherwise, the process proceeds to step S320.
  • step S310 the microcomputer 14 determines, based on the temperature information in the memory 18, whether or not there is a change in temperature that is equal to or greater than a predetermined value Th. For example, when the absolute value of the difference between the previous value and the current value of the temperature information is a predetermined value Th, the microcomputer 14 may determine that there is a change in temperature that is equal to or higher than the predetermined value Th. Alternatively, when the absolute value of the difference between the average value of the temperature information and the previous value of the temperature information for a predetermined period of time before the present from the present is the predetermined value Th, the microcomputer 14 It may be determined that there has been a change. If the determination result is "YES", the process proceeds to step S312.
  • step S302 or step S304 the processing of the next cycle is performed from step S300 (the same applies to the part leading to "return" in FIG. 3).
  • step S312 the microcomputer 14 sets the monitoring flag F to "1".
  • step S314 the microcomputer 14 activates the optical head 10 in a state in which the optical head 10 can be supplied with power from the battery 16. That is, the microcomputer 14 shifts the optical head 10 from, for example, the sleep mode to the active mode.
  • the microcomputer 14 starts the timer Tm.
  • the timer Tm times out in a predetermined time.
  • the predetermined time corresponds to one measurement time by the optical sensor unit 2.
  • step S320 the microcomputer 14 operates the optical head 10 to acquire the current value of the biological information.
  • the microcomputer 14 stores the acquired biological information in the memory 18.
  • the memory 18 may hold a predetermined number of biological information in a FIFO format. The predetermined number is equal to or more than the number of biological information obtained in one measurement time by the optical sensor unit 2.
  • the biometric information in the memory 18 may be cleared when the monitoring flag F becomes "0".
  • step S322 the microcomputer 14 determines whether the timer Tm has timed out. If the determination result is "YES”, the process proceeds to step S324. Otherwise, the process of the current cycle ends as it is.
  • step S324 the microcomputer 14 determines the presence or absence of an abnormality of the user based on the biological information in the memory 18. For example, when the pulse wave is an abnormal value, the microcomputer 14 determines that there is an abnormality. If the determination result is "YES", the process proceeds to step S326. Otherwise, the process proceeds to step S328.
  • the microcomputer 14 outputs an alarm for notifying the user of an abnormality.
  • the alarm may be output as voice or display. Alternatively, the alert may be sent to another peripheral terminal or server (not shown).
  • the process of FIG. 3 may be exited and the process may be shifted to another process (process at the time of abnormality).
  • step S328 the microcomputer 14 releases the power supply state from the battery 16 to the optical head 10, and stops the optical head 10. That is, the microcomputer 14 shifts the optical head 10 from, for example, the active mode to the sleep mode.
  • step S330 the microcomputer 14 sets (resets) the in-monitoring flag F to "0".
  • step S330 ends, the process of the current cycle ends.
  • the power saving of the biological information measuring device 1 is compared to the case where the operation of the optical head 10 is always continued. Can be implemented.
  • the infrared sensor unit 3 operates at the first clock before the temperature change detection event occurs, power consumption can be reduced as compared with the case where the infrared sensor unit 3 operates at the second clock. Thereby, power saving of the biological information measuring device 1 can be further achieved.
  • the infrared sensor unit 3 operates at the second clock, but the infrared sensor unit 3 continues the operation at the first clock. The operation may be stopped. If the infrared sensor unit 3 operates while the monitoring flag F is "1", it is also possible to determine the presence or absence of an abnormality of the user in consideration of the temperature information after the temperature change detection event.
  • second embodiment replacing the above-described embodiment (hereinafter, referred to as “first embodiment”) will be described.
  • first embodiment another embodiment replacing the above-described embodiment
  • second embodiment components that may be the same as those of the first embodiment described above may be given the same reference numerals and descriptions thereof may be omitted.
  • FIG. 4 is a diagram illustrating an example of a hardware configuration of a biological information measurement device 1A according to a second embodiment.
  • the biological information measuring apparatus 1A is a microcomputer 19 in addition to the microcomputer 14A (denoted as "MCU" in FIG. 4) (an example of the second control unit) of the biological information measuring apparatus 1 according to the first embodiment described above.
  • MCU microcomputer
  • the infrared sensor unit 3A according to the second embodiment is different from the infrared sensor unit 3 according to the first embodiment described above in that the microcomputer 19 is provided.
  • the microcomputer 14A is referred to as "optical sensor computer 14A”
  • the microcomputer 19 is referred to as "infrared sensor computer 19".
  • the AD converter 13 converts the electrical signal (analog signal) from the infrared sensor 12 into a digital signal and supplies the digital signal to the infrared sensor computer 19. Thus, the temperature information of the user is given to the infrared sensor computer 19.
  • the infrared sensor computer 19 controls the operation of the infrared sensor 12. Further, the infrared sensor computer 19 determines whether or not there is a change in temperature that is equal to or greater than a predetermined value Th. The infrared sensor computer 19 provides a trigger signal for activating the optical head 10 to the optical sensor computer 14A based on a temperature change detection event.
  • the optical sensor computer 14A controls the optical head 10.
  • the optical sensor computer 14A starts the operation of the optical head 10 based on the reception event of the trigger signal.
  • the optical sensor computer 14A similarly determines the presence or absence of an abnormality of the user based on the biological information obtained from the optical head 10.
  • FIG. 5 is a timing chart for explaining an operation example of the biological information measurement apparatus 1A according to the second embodiment.
  • a trigger signal is transmitted to the optical sensor computer 14A (step S502).
  • the optical sensor computer 14A receives the trigger signal (step S510)
  • the optical sensor computer 14A starts the operation of the optical head 10 (step S512).
  • the optical sensor computer 14A determines the presence / absence of abnormality of the user based on the biological information obtained from the optical head 10 (step S514).
  • each of the optical head 10 and the infrared sensor 12 can be separately controlled by using two microcomputers (the optical sensor computer 14A and the infrared sensor computer 19).
  • the optical sensor computer 14A itself can be stopped before the optical head 10 is activated, and power saving of the biological information measuring device 1A can be achieved.
  • the mounting method (mounting tool) of the biological information measuring device 1 will be described.
  • the biological information measurement device 1 according to the above-described first embodiment will be described, the same applies to the biological information measurement device 1A according to the above-described second embodiment.
  • FIG. 6 is an explanatory view of the biological information measuring device 1 provided with a mounting tool, and is a schematic view seen in the vertical direction.
  • the X1 direction is a front direction
  • the X2 direction is a rear direction
  • the Z1 direction is an upper direction
  • Y1 and Y2 are horizontal directions.
  • the amount of user S is located in the X2 direction.
  • the outline of the head of the user S (the outline at the height of the forehead) is schematically shown by a dotted line 800 in FIG.
  • the biological information measuring device 1 may include a mounting tool 600 as shown in FIG.
  • the mounting tool 600 has a main body portion 602.
  • the mounting tool 600 can be mounted on the head of the user S in such a manner that the main body portion 602 comes to the forehead of the user S.
  • the main body 602 holds the optical sensor unit 2 and the infrared sensor unit 3 on the side facing the forehead of the user S.
  • the optical sensor unit 2 and the infrared sensor unit 3 may be fixed to the main body portion 602 with a fixing tool such as a screw, or may be fixed to the main body portion 602 by another method.
  • the optical sensor unit 2 abuts on the forehead, and the infrared sensor unit 3 faces the forehead at a predetermined distance.
  • a mounting band 604 is provided on the main body portion 602.
  • the mounting band 604 is a band hung around the head.
  • the mounting band 604 may be a rubber-like elastic body so as to cope with individual differences in the size of the head, and may have a length adjustment unit (not shown).
  • the mounting tool 600 may be configured integrally with a tool mounted on the head of the user S, such as a helmet.
  • the distance between the forehead of the user S and the infrared sensor 12 (the distance in the X2 direction) can be kept substantially constant during the measurement. Thereby, even when the user S can not maintain a stable posture during measurement, stable measurement is possible.
  • the infrared sensor unit 3 is separate from the optical sensor unit 2 in the embodiment described above, the infrared sensor 12 may be incorporated in the optical sensor unit 2.
  • the infrared sensor 12 is used in the Example mentioned above, a contact-type temperature sensor may be used.
  • the contact-type temperature sensor is arranged to contact the user's forehead at the time of measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Provided is a biological information measurement device which includes: a biosensor that measures predetermined biological information of a user; a temperature sensor that measures the temperature of the user; and a control unit that controls operation of the biosensor on the basis of changes in the temperature measured by the temperature sensor.

Description

生体情報測定装置Biological information measuring device
 本開示は、生体情報測定装置に関する。 The present disclosure relates to a biological information measurement device.
 各種の生体センサにより所定間隔でデータ取得を行って生体情報を生成する技術が知られている。 There is known a technique of acquiring data at predetermined intervals by various biometric sensors to generate biological information.
国際公開WO2005/34742号パンフレットInternational Publication WO 2005/34742 Pamphlet
 しかしながら、上記のような従来技術では、生体情報測定装置の省電力化を図ることが難しい。例えば、作業者の異常監視を行うシステムに関しては、長時間の作業に対応できるように長時間測定が求められる。バッテリの大型化は、長時間測定を可能とするが、装置の大型化等の弊害を招く。 However, with the above-described conventional techniques, it is difficult to save power of the biological information measurement device. For example, in the case of a system for monitoring an abnormality of a worker, a long time measurement is required to be able to cope with a long time work. Increasing the size of the battery enables measurement for a long time, but causes negative effects such as increasing the size of the device.
 そこで、1つの側面では、本発明は、生体情報測定装置の省電力化を図ることを目的とする。 Therefore, in one aspect, the present invention aims to save power of a biological information measurement device.
 1つの側面では、ユーザの所定生体情報を測定する生体センサと、
 前記ユーザの温度を測定する温度センサと、
 前記温度センサが測定した前記温度の変化に基づいて、前記生体センサの動作を制御する制御部とを備える、生体情報測定装置が提供される。
In one aspect, a biometric sensor that measures predetermined biometric information of a user;
A temperature sensor that measures the temperature of the user;
There is provided a biological information measurement apparatus, comprising: a control unit that controls an operation of the biological sensor based on a change in the temperature measured by the temperature sensor.
 1つの側面では、本発明によれば、生体情報測定装置の省電力化を図ることが可能となる。 In one aspect, according to the present invention, it is possible to save power of the biological information measurement device.
実施例1による生体情報測定装置のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a biological information measurement device according to a first embodiment. 測定時の生体情報測定装置の状態の一例を示す。An example of a state of a living body information measuring device at the time of measurement is shown. 生体情報測定装置により実行される処理の一例を示す概略フローチャートである。It is a schematic flowchart which shows an example of the process performed by a biometric information measuring apparatus. 実施例2による生体情報測定装置のハードウェア構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a hardware configuration of a biological information measurement device according to a second embodiment. 実施例2による生体情報測定装置の動作例の説明するためのタイミングチャートである。7 is a timing chart for explaining an operation example of the biological information measurement device according to the second embodiment. 装着具を備える生体情報測定装置の説明図である。It is an explanatory view of a living body information measuring device provided with a mounting tool.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Hereinafter, each example will be described in detail with reference to the attached drawings.
 図1は、一実施例による生体情報測定装置1のハードウェア構成の一例を示す図である。 FIG. 1 is a diagram showing an example of a hardware configuration of a biological information measuring device 1 according to an embodiment.
 生体情報測定装置1は、光学ヘッド10(生体センサの一例)と、赤外線センサ12(図1では"IRセンサ"と表記)(温度センサの一例)と、AD変換器13(図1では"ADC"と表記)と、マイクロコンピュータ14(図1では"MCU"と表記)(制御部の一例)と、バッテリ16と、メモリ18とを含む。 The biological information measuring device 1 includes an optical head 10 (an example of a biological sensor), an infrared sensor 12 (denoted as "IR sensor" in FIG. 1) (an example of a temperature sensor), and an AD converter 13 ("ADC in FIG. “Indicated), a microcomputer 14 (indicated as“ MCU ”in FIG. 1) (an example of a control unit), a battery 16, and a memory 18.
 本実施例では、一例として、光学ヘッド10、マイクロコンピュータ14,バッテリ16、及びメモリ18は、光学式センサユニット2を形成し、赤外線センサ12及びAD変換器13は、赤外線センサユニット3を形成する。光学式センサユニット2と赤外線センサユニット3とは、例えばハーネスやFPC(flexible printed circuit)などの有線で電気的に接続されてよい。但し、変形例では、光学式センサユニット2及び赤外線センサユニット3は、一体のユニットとして形成されてもよい。 In the present embodiment, as an example, the optical head 10, the microcomputer 14, the battery 16, and the memory 18 form the optical sensor unit 2, and the infrared sensor 12 and the AD converter 13 form the infrared sensor unit 3. . The optical sensor unit 2 and the infrared sensor unit 3 may be electrically connected to each other by a wire such as a harness or a flexible printed circuit (FPC). However, in the modification, the optical sensor unit 2 and the infrared sensor unit 3 may be formed as an integral unit.
 光学ヘッド10は、ユーザの所定生体情報を測定する。所定生体情報は、例えば脈波やヘモグロビン濃度等である。光学ヘッド10は、発光部20と、受光部30とを含む。 The optical head 10 measures predetermined biometric information of the user. The predetermined biological information is, for example, a pulse wave or hemoglobin concentration. The optical head 10 includes a light emitting unit 20 and a light receiving unit 30.
 発光部20は、筐体(図示せず)内に設けられ、センシング窓(図示せず)を介して外部に向けて光を照射する。発光部20は、例えばLED(Light-Emitting Diode)により形成される。 The light emitting unit 20 is provided in a housing (not shown), and emits light toward the outside through a sensing window (not shown). The light emitting unit 20 is formed of, for example, an LED (Light-Emitting Diode).
 受光部30は、発光部20と同じ筐体(図示せず)内に設けられ、センシング窓(図示せず)を介して光を受光する。受光部30は、例えばフォトダイオードにより形成される。 The light receiving unit 30 is provided in the same housing (not shown) as the light emitting unit 20, and receives light through a sensing window (not shown). The light receiving unit 30 is formed of, for example, a photodiode.
 測定時、光学ヘッド10は、センシング窓に生体(例えばユーザの額)が接触する。この接触状態で、発光部20が外部へと光を放出すると、光の一部は生体を通って受光部30側に向かう。そして、生体を通った光の一部は、受光部30に入射する。受光部30では、受光結果に応じた電気信号が生成される。この電気信号に生体内部の情報(例えば脈波)が含まれる。受光部30からの電気信号は、マイクロコンピュータ14に与えられる。このようにして、ユーザの生体情報がマイクロコンピュータ14に与えられる。 At the time of measurement, the optical head 10 contacts the living body (for example, the forehead of the user) to the sensing window. In this contact state, when the light emitting unit 20 emits light to the outside, part of the light passes through the living body toward the light receiving unit 30 side. Then, part of the light passing through the living body enters the light receiving unit 30. The light receiving unit 30 generates an electrical signal according to the light reception result. This electrical signal includes information inside the living body (for example, a pulse wave). The electrical signal from the light receiving unit 30 is given to the microcomputer 14. Thus, biometric information of the user is provided to the microcomputer 14.
 赤外線センサ12は、センシング部(図示せず)から入射する赤外線に基づいて、温度を測定する非接触式の温度センサである。尚、赤外線を利用することで、高速かつ非接触で温度測定が可能となる。 The infrared sensor 12 is a non-contact temperature sensor that measures temperature based on infrared rays incident from a sensing unit (not shown). In addition, temperature measurement can be performed at high speed and in a non-contact manner by using infrared rays.
 AD変換器13は、赤外線センサ12からの電気信号(アナログ信号)をデジタル信号に変換して、マイクロコンピュータ14に与える。このようにして、ユーザの温度情報がマイクロコンピュータ14に与えられる。 The AD converter 13 converts the electrical signal (analog signal) from the infrared sensor 12 into a digital signal and supplies the digital signal to the microcomputer 14. Thus, temperature information of the user is given to the microcomputer 14.
 マイクロコンピュータ14は、光学ヘッド10及び赤外線センサ12を制御する。また、マイクロコンピュータ14は、光学ヘッド10から得られる生体情報に基づいて、ユーザの異常の有無を判定する。 The microcomputer 14 controls the optical head 10 and the infrared sensor 12. Further, the microcomputer 14 determines the presence or absence of abnormality of the user based on the biological information obtained from the optical head 10.
 本実施例では、マイクロコンピュータ14は、赤外線センサ12から得られるユーザの温度情報に基づいて、光学ヘッド10の動作を制御する。例えば、マイクロコンピュータ14は、所定値Th以上の温度の変化があったか否かを判定する。所定値Thは、任意であるが、ユーザに異常の可能性があるときに生じる温度変化の値に対応する。温度の差は、比較的短い時点間の温度の差であってよく、例えば1分~5分程度の間の温度変化であってよい。以下、マイクロコンピュータ14が所定値Th以上の温度の変化があったと判定するイベントを、「温度変化検出イベント」と称する。マイクロコンピュータ14は、温度変化検出イベントに基づいて、光学ヘッド10の動作を開始させる。 In the present embodiment, the microcomputer 14 controls the operation of the optical head 10 based on the temperature information of the user obtained from the infrared sensor 12. For example, the microcomputer 14 determines whether or not there is a change in temperature that is equal to or greater than a predetermined value Th. The predetermined value Th is arbitrary, but corresponds to the value of the temperature change that occurs when the user has a possibility of abnormality. The difference in temperature may be a difference in temperature between relatively short time points, for example, a change in temperature between about 1 minute and 5 minutes. Hereinafter, an event in which the microcomputer 14 determines that there is a change in temperature that is equal to or greater than a predetermined value Th is referred to as a “temperature change detection event”. The microcomputer 14 starts the operation of the optical head 10 based on the temperature change detection event.
 バッテリ16は、赤外線センサ12、AD変換器13、及びマイクロコンピュータ14に電力を供給する。尚、バッテリ16は、光学ヘッド10に直接電力を供給してもよいし、マイクロコンピュータ14等を介して電力を供給してもよい。このようにして、本実施例では、一例として、赤外線センサ12及び光学ヘッド10の電源として、共通の一のバッテリ16が用いられる。 The battery 16 supplies power to the infrared sensor 12, the AD converter 13, and the microcomputer 14. The battery 16 may supply power directly to the optical head 10 or may supply power via the microcomputer 14 or the like. Thus, in the present embodiment, as one example, one common battery 16 is used as a power source of the infrared sensor 12 and the optical head 10.
 メモリ18は、マイクロコンピュータ14での処理に用いられる各種データやプログラムを格納する。 The memory 18 stores various data and programs used for processing in the microcomputer 14.
 図2は、測定時の生体情報測定装置1の状態の一例を示す。 FIG. 2 shows an example of the state of the biological information measuring device 1 at the time of measurement.
 測定時、生体情報測定装置1は、図2に示すように、ユーザSの頭部(額)をセンシングするように、ユーザSに取り付け又は装着される。この際、光学式センサユニット2の光学ヘッド10は、ユーザSの額に接触し(例えば押し当てられ)、赤外線センサユニット3の赤外線センサ12は、非接触でユーザSの額に対向してよい。この場合、光学式センサユニット2は、ユーザSの額での脈波等を測定できる。また、この場合、赤外線センサユニット3は、ユーザSの額での温度を測定できる。ユーザSの額での温度は、ユーザSの体温に相関するので、ユーザSの体温を評価するために有効に利用できる。 At the time of measurement, the biological information measurement device 1 is attached or attached to the user S so as to sense the head (forehead) of the user S, as shown in FIG. At this time, the optical head 10 of the optical sensor unit 2 may be in contact with the forehead of the user S (for example, pressed), and the infrared sensor 12 of the infrared sensor unit 3 may face the forehead of the user S without contact. . In this case, the optical sensor unit 2 can measure a pulse wave or the like on the forehead of the user S. Further, in this case, the infrared sensor unit 3 can measure the temperature at the amount of the user S. Since the temperature at the forehead of the user S correlates to the temperature of the user S, it can be effectively used to evaluate the temperature of the user S.
 ユーザSへの生体情報測定装置1の好ましい装着方法については、図6を参照して後述する。尚、図2に示す例では、ユーザSは、作業者である。生体情報測定装置1は、後述のように省電力化が図られるので、作業者の異常監視を行うシステムに用いられるのが好適となる。かかるシステムでは、長時間の作業に対応できるように長時間測定が求められるためである。 A preferred mounting method of the biological information measuring device 1 to the user S will be described later with reference to FIG. In the example shown in FIG. 2, the user S is a worker. Since power saving can be achieved as described later, the biological information measuring device 1 is preferably used in a system that monitors an abnormality of a worker. In such a system, long-time measurement is required to be able to cope with long-time work.
 本実施例によれば、マイクロコンピュータ14は、温度変化検出イベントに基づいて、光学ヘッド10の動作を開始させるので、常に光学ヘッド10の動作を継続させる場合に比べて、生体情報測定装置1の省電力化を図ることができる。また、所定値Th以上の温度の変化があった場合に、光学ヘッド10が動作するので、ユーザの異常の有無を判断する必要性が高い状況下でのみ光学ヘッド10が動作する可能性が高くなる。これは、例えば熱中症などの異常は、体温の急激な変化を伴う場合が多いためである。従って、本実施例によれば、光学式センサユニット2による監視能力を実質的に阻害せずに、生体情報測定装置1の省電力化を図ることができる。 According to the present embodiment, the microcomputer 14 starts the operation of the optical head 10 based on the temperature change detection event, so that compared with the case where the operation of the optical head 10 is always continued, the microcomputer 14 Power saving can be achieved. In addition, since the optical head 10 operates when there is a change in temperature above the predetermined value Th, there is a high possibility that the optical head 10 operates only in a situation where it is highly necessary to determine the presence or absence of an abnormality of the user. Become. This is because, for example, an abnormality such as heat stroke often involves a rapid change in body temperature. Therefore, according to the present embodiment, power saving of the biological information measuring device 1 can be achieved without substantially inhibiting the monitoring capability of the optical sensor unit 2.
 次に、図3を参照して、生体情報測定装置1の動作例について説明する。 Next, an operation example of the biological information measuring device 1 will be described with reference to FIG.
 図3は、生体情報測定装置1により実行される処理の一例を示す概略フローチャートである。図3に示す処理は、生体情報測定装置1の電源オン状態において、動作クロック(後述)毎に繰り返し実行される。 FIG. 3 is a schematic flowchart showing an example of processing executed by the biological information measurement device 1. The process shown in FIG. 3 is repeatedly performed for each operation clock (described later) in the power-on state of the biological information measuring device 1.
 ステップS300では、マイクロコンピュータ14は、生体情報測定装置1の電源オン後の初回の処理であるか否かを判定する。判定結果が"YES"の場合は、ステップS302に進み、それ以外の場合は、ステップS304に進む。 In step S300, the microcomputer 14 determines whether it is the first process after the biological information measuring device 1 is turned on. If the determination result is "YES", the process proceeds to step S302. Otherwise, the process proceeds to step S304.
 ステップS302では、マイクロコンピュータ14は、動作クロックを第1クロックに設定する。 In step S302, the microcomputer 14 sets the operation clock to the first clock.
 ステップS304では、マイクロコンピュータ14は、監視中フラグFの状態に応じて、動作クロックを設定する。監視中フラグFは、光学式センサユニット2によるユーザの監視中であるか否かを表すフラグであり、"1"であるときは、"監視中"であることを表す。監視中フラグFの初期値(電源ON時の値)は"0"である。マイクロコンピュータ14は、監視中フラグFが"0"であるときは、動作クロックを第1クロックに設定又は維持し、監視中フラグFが"1"であるときは、動作クロックを第2クロックに設定又は維持する。第2クロックは、第1クロックよりも周期が短い。 In step S304, the microcomputer 14 sets an operation clock according to the state of the under-monitoring flag F. The under-monitoring flag F is a flag that indicates whether the user is being monitored by the optical sensor unit 2, and when it is “1”, it represents “under monitoring”. The initial value of the monitoring flag F (value at power on) is "0". When the monitoring flag F is "0", the microcomputer 14 sets or maintains the operation clock as the first clock, and when the monitoring flag F is "1", the operation clock is the second clock. Set or maintain. The second clock has a cycle shorter than that of the first clock.
 ステップS306では、マイクロコンピュータ14は、赤外線センサユニット3を動作させて、温度情報の今回値を取得する。マイクロコンピュータ14は、取得した温度情報をメモリ18に記憶する。尚、メモリ18には、FIFO(first-in, first-out)形式で所定数の温度情報が保持されてよい。 In step S306, the microcomputer 14 operates the infrared sensor unit 3 to acquire the current value of the temperature information. The microcomputer 14 stores the acquired temperature information in the memory 18. The memory 18 may hold a predetermined number of temperature information in a FIFO (first-in, first-out) format.
 ステップS308では、マイクロコンピュータ14は、監視中フラグFが"0"であるか否かを判定する。判定結果が"YES"の場合は、ステップS310に進み、それ以外の場合は、ステップS320に進む。 In step S308, the microcomputer 14 determines whether the monitoring flag F is "0". If the determination result is "YES", the process proceeds to step S310; otherwise, the process proceeds to step S320.
 ステップS310では、マイクロコンピュータ14は、メモリ18内の温度情報に基づいて、所定値Th以上の温度の変化があったか否かを判定する。例えば、マイクロコンピュータ14は、温度情報の前回値と今回値との差の絶対値が所定値Thである場合に、所定値Th以上の温度の変化があったと判定してもよい。或いは、マイクロコンピュータ14は、現在から所定時間前の所定期間にわたる温度情報の平均値と、温度情報の前回値との差の絶対値が所定値Thである場合に、所定値Th以上の温度の変化があったと判定してもよい。判定結果が"YES"の場合は、ステップS312に進む。他方、判定結果が"NO"の場合は、今回周期の処理はそのまま終了する。この場合、ステップS302又はステップS304で設定された動作クロック後に、ステップS300から次回周期の処理を行う(以下、同様に図3の「リターン」に至る個所は、同様である)。 In step S310, the microcomputer 14 determines, based on the temperature information in the memory 18, whether or not there is a change in temperature that is equal to or greater than a predetermined value Th. For example, when the absolute value of the difference between the previous value and the current value of the temperature information is a predetermined value Th, the microcomputer 14 may determine that there is a change in temperature that is equal to or higher than the predetermined value Th. Alternatively, when the absolute value of the difference between the average value of the temperature information and the previous value of the temperature information for a predetermined period of time before the present from the present is the predetermined value Th, the microcomputer 14 It may be determined that there has been a change. If the determination result is "YES", the process proceeds to step S312. On the other hand, when the determination result is "NO", the processing of the current cycle ends as it is. In this case, after the operation clock set in step S302 or step S304, the processing of the next cycle is performed from step S300 (the same applies to the part leading to "return" in FIG. 3).
 ステップS312では、マイクロコンピュータ14は、監視中フラグFを"1"に設定する。 In step S312, the microcomputer 14 sets the monitoring flag F to "1".
 ステップS314では、マイクロコンピュータ14は、光学ヘッド10にバッテリ16からの電源を供給可能な状態として、光学ヘッド10を起動させる。即ち、マイクロコンピュータ14は、光学ヘッド10を例えばスリープモードからアクティブモードに移行させる。 In step S314, the microcomputer 14 activates the optical head 10 in a state in which the optical head 10 can be supplied with power from the battery 16. That is, the microcomputer 14 shifts the optical head 10 from, for example, the sleep mode to the active mode.
 ステップS316では、マイクロコンピュータ14は、タイマTmを起動する。タイマTmは、所定時間でタイムアウトする。所定時間は、光学式センサユニット2による1回の計測時間に対応する。 At step S316, the microcomputer 14 starts the timer Tm. The timer Tm times out in a predetermined time. The predetermined time corresponds to one measurement time by the optical sensor unit 2.
 ステップS320では、マイクロコンピュータ14は、光学ヘッド10を動作させて、生体情報の今回値を取得する。マイクロコンピュータ14は、取得した生体情報をメモリ18に記憶する。尚、メモリ18には、FIFO形式で所定数の生体情報が保持されてよい。所定数は、光学式センサユニット2による1回の計測時間で得られる生体情報の数以上である。メモリ18内の生体情報は、監視中フラグFが"0"になるとクリアされてよい。 In step S320, the microcomputer 14 operates the optical head 10 to acquire the current value of the biological information. The microcomputer 14 stores the acquired biological information in the memory 18. The memory 18 may hold a predetermined number of biological information in a FIFO format. The predetermined number is equal to or more than the number of biological information obtained in one measurement time by the optical sensor unit 2. The biometric information in the memory 18 may be cleared when the monitoring flag F becomes "0".
 ステップS322では、マイクロコンピュータ14は、タイマTmがタイムアウトしたか否かを判定する。判定結果が"YES"の場合は、ステップS324に進み、それ以外の場合は、今回周期の処理はそのまま終了する。 In step S322, the microcomputer 14 determines whether the timer Tm has timed out. If the determination result is "YES", the process proceeds to step S324. Otherwise, the process of the current cycle ends as it is.
 ステップS324では、マイクロコンピュータ14は、メモリ18内の生体情報に基づいて、ユーザの異常の有無を判定する。例えば、マイクロコンピュータ14は、脈波が異常値である場合は、異常があると判定する。判定結果が"YES"の場合は、ステップS326に進み、それ以外の場合は、ステップS328に進む。 In step S324, the microcomputer 14 determines the presence or absence of an abnormality of the user based on the biological information in the memory 18. For example, when the pulse wave is an abnormal value, the microcomputer 14 determines that there is an abnormality. If the determination result is "YES", the process proceeds to step S326. Otherwise, the process proceeds to step S328.
 ステップS326では、マイクロコンピュータ14は、ユーザの異常を知らせるための警報を出力する。警報は、音声や表示等で出力されてよい。或いは、警報は、他の周辺端末やサーバ(ともに図示せず)に送信されてもよい。警報が出力される場合、図3の処理から抜けて、他の処理(異常時の処理)に移行してよい。 At step S326, the microcomputer 14 outputs an alarm for notifying the user of an abnormality. The alarm may be output as voice or display. Alternatively, the alert may be sent to another peripheral terminal or server (not shown). When an alarm is output, the process of FIG. 3 may be exited and the process may be shifted to another process (process at the time of abnormality).
 ステップS328では、マイクロコンピュータ14は、光学ヘッド10へのバッテリ16からの電源供給状態を解除し、光学ヘッド10を停止させる。即ち、マイクロコンピュータ14は、光学ヘッド10を例えばアクティブモードからスリープモードに移行させる。 In step S328, the microcomputer 14 releases the power supply state from the battery 16 to the optical head 10, and stops the optical head 10. That is, the microcomputer 14 shifts the optical head 10 from, for example, the active mode to the sleep mode.
 ステップS330では、マイクロコンピュータ14は、監視中フラグFを"0"に設定(リセット)する。ステップS330が終了すると、今回周期の処理はそのまま終了する。 In step S330, the microcomputer 14 sets (resets) the in-monitoring flag F to "0". When step S330 ends, the process of the current cycle ends.
 図3に示す処理によれば、温度変化検出イベントに基づいて、光学ヘッド10の動作が開始されるので、常に光学ヘッド10の動作を継続させる場合に比べて、生体情報測定装置1の省電力化を図ることができる。また、温度変化検出イベントが生じる前は、赤外線センサユニット3が第1クロックで動作するので、第2クロックで動作する場合に比べて、消費電力を低減できる。これにより、生体情報測定装置1の省電力化を更に図ることができる。但し、変形例では、第1クロック及び第2クロックの使い分けが無く、同じクロックが使用されてもよい。 According to the process shown in FIG. 3, since the operation of the optical head 10 is started based on the temperature change detection event, the power saving of the biological information measuring device 1 is compared to the case where the operation of the optical head 10 is always continued. Can be implemented. In addition, since the infrared sensor unit 3 operates at the first clock before the temperature change detection event occurs, power consumption can be reduced as compared with the case where the infrared sensor unit 3 operates at the second clock. Thereby, power saving of the biological information measuring device 1 can be further achieved. However, in the modification, there is no use of the first clock and the second clock, and the same clock may be used.
 尚、図3に示す処理では、監視中フラグFが"1"である間、赤外線センサユニット3が第2クロックで動作するが、赤外線センサユニット3については、第1クロックで動作を継続してもよいし、動作が停止されてもよい。監視中フラグFが"1"である間、赤外線センサユニット3が動作する場合は、温度変化検出イベント後の温度情報を考慮して、ユーザの異常の有無を判定することも可能である。 In the process shown in FIG. 3, while the monitoring flag F is "1", the infrared sensor unit 3 operates at the second clock, but the infrared sensor unit 3 continues the operation at the first clock. The operation may be stopped. If the infrared sensor unit 3 operates while the monitoring flag F is "1", it is also possible to determine the presence or absence of an abnormality of the user in consideration of the temperature information after the temperature change detection event.
 次に、図4以降を参照して、上述した実施例(以下、「実施例1」と称する)に代わる他の実施例(以下、「実施例2」と称する)について説明する。実施例2の説明に関して、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。 Next, with reference to FIG. 4 and subsequent figures, another embodiment (hereinafter, referred to as “second embodiment”) replacing the above-described embodiment (hereinafter, referred to as “first embodiment”) will be described. With regard to the description of the second embodiment, components that may be the same as those of the first embodiment described above may be given the same reference numerals and descriptions thereof may be omitted.
 図4は、実施例2による生体情報測定装置1Aのハードウェア構成の一例を示す図である。 FIG. 4 is a diagram illustrating an example of a hardware configuration of a biological information measurement device 1A according to a second embodiment.
 生体情報測定装置1Aは、上述した実施例1による生体情報測定装置1に対して、マイクロコンピュータ14A(図4では"MCU"と表記)(第2制御部の一例)に加えて、マイクロコンピュータ19(図4では"MCU"と表記)(第1制御部の一例)が追加される点が異なる。従って、実施例2による赤外線センサユニット3Aは、上述した実施例1による赤外線センサユニット3に対して、マイクロコンピュータ19を有する点が異なる。以下、区別のため、マイクロコンピュータ14Aを、「光学センサコンピュータ14A」と称し、マイクロコンピュータ19を、「赤外線センサコンピュータ19」と称する。 The biological information measuring apparatus 1A is a microcomputer 19 in addition to the microcomputer 14A (denoted as "MCU" in FIG. 4) (an example of the second control unit) of the biological information measuring apparatus 1 according to the first embodiment described above. The difference is that (in FIG. 4, it is written as "MCU") (an example of the first control unit) is added. Therefore, the infrared sensor unit 3A according to the second embodiment is different from the infrared sensor unit 3 according to the first embodiment described above in that the microcomputer 19 is provided. Hereinafter, for the sake of distinction, the microcomputer 14A is referred to as "optical sensor computer 14A", and the microcomputer 19 is referred to as "infrared sensor computer 19".
 AD変換器13は、赤外線センサ12からの電気信号(アナログ信号)をデジタル信号に変換して、赤外線センサコンピュータ19に与える。このようにして、ユーザの温度情報が赤外線センサコンピュータ19に与えられる。 The AD converter 13 converts the electrical signal (analog signal) from the infrared sensor 12 into a digital signal and supplies the digital signal to the infrared sensor computer 19. Thus, the temperature information of the user is given to the infrared sensor computer 19.
 赤外線センサコンピュータ19は、赤外線センサ12の動作を制御する。また、赤外線センサコンピュータ19は、所定値Th以上の温度の変化があったか否かを判定する。赤外線センサコンピュータ19は、温度変化検出イベントに基づいて、光学ヘッド10を起動させるためのトリガ信号を光学センサコンピュータ14Aに与える。 The infrared sensor computer 19 controls the operation of the infrared sensor 12. Further, the infrared sensor computer 19 determines whether or not there is a change in temperature that is equal to or greater than a predetermined value Th. The infrared sensor computer 19 provides a trigger signal for activating the optical head 10 to the optical sensor computer 14A based on a temperature change detection event.
 光学センサコンピュータ14Aは、光学ヘッド10を制御する。光学センサコンピュータ14Aは、トリガ信号の受信イベントに基づいて、光学ヘッド10の動作を開始させる。光学センサコンピュータ14Aは、光学ヘッド10の動作を開始させると、同様に、光学ヘッド10から得られる生体情報に基づいて、ユーザの異常の有無を判定する。 The optical sensor computer 14A controls the optical head 10. The optical sensor computer 14A starts the operation of the optical head 10 based on the reception event of the trigger signal. When the optical sensor computer 14A starts the operation of the optical head 10, the optical sensor computer 14A similarly determines the presence or absence of an abnormality of the user based on the biological information obtained from the optical head 10.
 図5は、実施例2による生体情報測定装置1Aの動作例の説明するためのタイミングチャートである。 FIG. 5 is a timing chart for explaining an operation example of the biological information measurement apparatus 1A according to the second embodiment.
 図5に示すように、赤外線センサコンピュータ19側で温度変化検出イベントが生じると(ステップS500)、トリガ信号が光学センサコンピュータ14Aに送信される(ステップS502)。光学センサコンピュータ14Aがトリガ信号を受信すると(ステップS510)、光学センサコンピュータ14Aは光学ヘッド10の動作を開始させる(ステップS512)。そして、光学センサコンピュータ14Aは、光学ヘッド10から得られる生体情報に基づいて、ユーザの異常の有無を判定する(ステップS514)。 As shown in FIG. 5, when a temperature change detection event occurs on the infrared sensor computer 19 (step S500), a trigger signal is transmitted to the optical sensor computer 14A (step S502). When the optical sensor computer 14A receives the trigger signal (step S510), the optical sensor computer 14A starts the operation of the optical head 10 (step S512). Then, the optical sensor computer 14A determines the presence / absence of abnormality of the user based on the biological information obtained from the optical head 10 (step S514).
 実施例2によっても、上述した実施例1と同様の効果が得られる。また、実施例2によれば、2つのマイクロコンピュータ(光学センサコンピュータ14A及び赤外線センサコンピュータ19)を用いることで、光学ヘッド10及び赤外線センサ12のそれぞれを別個に制御できる。これにより、光学ヘッド10が起動される前は光学センサコンピュータ14A自体を停止させることも可能となり、生体情報測定装置1Aの省電力化を図ることができる。 Also in the second embodiment, the same effect as the first embodiment described above can be obtained. Further, according to the second embodiment, each of the optical head 10 and the infrared sensor 12 can be separately controlled by using two microcomputers (the optical sensor computer 14A and the infrared sensor computer 19). Thus, the optical sensor computer 14A itself can be stopped before the optical head 10 is activated, and power saving of the biological information measuring device 1A can be achieved.
 次に、図6を参照して、生体情報測定装置1の装着方法(装着具)について説明する。ここでは、上述の実施例1による生体情報測定装置1について説明するが、上述の実施例2による生体情報測定装置1Aについても同様である。 Next, with reference to FIG. 6, the mounting method (mounting tool) of the biological information measuring device 1 will be described. Here, although the biological information measurement device 1 according to the above-described first embodiment will be described, the same applies to the biological information measurement device 1A according to the above-described second embodiment.
 図6は、装着具を備える生体情報測定装置1の説明図であり、上下方向に視た概略図である。図6において、X1方向を前方向、X2方向を後ろ方向、Z1方向を上方向とし、Y1,Y2を横方向とする。X2方向にユーザSの額が位置する。図6には、ユーザSの頭部の外形線(額の高さでの外形線)が点線800で模式的に示されている。 FIG. 6 is an explanatory view of the biological information measuring device 1 provided with a mounting tool, and is a schematic view seen in the vertical direction. In FIG. 6, the X1 direction is a front direction, the X2 direction is a rear direction, the Z1 direction is an upper direction, and Y1 and Y2 are horizontal directions. The amount of user S is located in the X2 direction. The outline of the head of the user S (the outline at the height of the forehead) is schematically shown by a dotted line 800 in FIG.
 生体情報測定装置1は、図6に示すような装着具600を備えてよい。装着具600は、本体部602を有する。装着具600は、本体部602がユーザSの額に来る態様でユーザSの頭部に装着可能である。本体部602は、ユーザSの額に対向する側に、光学式センサユニット2を保持するとともに、赤外線センサユニット3を保持する。光学式センサユニット2及び赤外線センサユニット3は、本体部602に螺子等の固定具で固定されてもよいし、本体部602に他の方法で固定されてもよい。装着状態では、光学式センサユニット2は、額に当接し、赤外線センサユニット3は、額に一定の距離だけ離れて対向する。本体部602には、装着バンド604が設けられる。装着バンド604は、頭部まわりに掛けられるバンドである。装着バンド604は、頭部のサイズの個人差に対応できるように、ゴムのような弾性体であってよく、また、長さの調整部(図示せず)を有してもよい。尚、装着具600は、ヘルメットのような、ユーザSの頭部に装着される器具と一体に構成されてもよい。 The biological information measuring device 1 may include a mounting tool 600 as shown in FIG. The mounting tool 600 has a main body portion 602. The mounting tool 600 can be mounted on the head of the user S in such a manner that the main body portion 602 comes to the forehead of the user S. The main body 602 holds the optical sensor unit 2 and the infrared sensor unit 3 on the side facing the forehead of the user S. The optical sensor unit 2 and the infrared sensor unit 3 may be fixed to the main body portion 602 with a fixing tool such as a screw, or may be fixed to the main body portion 602 by another method. In the mounted state, the optical sensor unit 2 abuts on the forehead, and the infrared sensor unit 3 faces the forehead at a predetermined distance. A mounting band 604 is provided on the main body portion 602. The mounting band 604 is a band hung around the head. The mounting band 604 may be a rubber-like elastic body so as to cope with individual differences in the size of the head, and may have a length adjustment unit (not shown). The mounting tool 600 may be configured integrally with a tool mounted on the head of the user S, such as a helmet.
 このような装着具600を備える生体情報測定装置1によれば、ユーザSの額と赤外線センサ12との距離(X2方向の距離)が測定中に略一定に保つことができる。これにより、測定中にユーザSが安定姿勢を保てない場合でも、安定的な測定が可能となる。 According to the biological information measuring device 1 including such a mounting tool 600, the distance between the forehead of the user S and the infrared sensor 12 (the distance in the X2 direction) can be kept substantially constant during the measurement. Thereby, even when the user S can not maintain a stable posture during measurement, stable measurement is possible.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 As mentioned above, although each Example was explained in full detail, it is not limited to a specific example, A various deformation | transformation and change are possible within the range described in the claim. In addition, it is also possible to combine all or a plurality of the components of the above-described embodiment.
 例えば、上述した実施例では、赤外線センサユニット3は、光学式センサユニット2と別体であるが、赤外線センサ12は、光学式センサユニット2に内蔵されてもよい。 For example, although the infrared sensor unit 3 is separate from the optical sensor unit 2 in the embodiment described above, the infrared sensor 12 may be incorporated in the optical sensor unit 2.
 また、上述した実施例では、赤外線センサ12が用いられるが、接触式の温度センサが用いられてもよい。この場合、接触式の温度センサは、測定時にユーザの額に接触するように配置される。 Moreover, although the infrared sensor 12 is used in the Example mentioned above, a contact-type temperature sensor may be used. In this case, the contact-type temperature sensor is arranged to contact the user's forehead at the time of measurement.
 本特許出願は2017年9月20日に出願した日本国特許出願第2017-180615号に基づきその優先権を主張するものであり、日本国特許出願第2017-180615号の全内容を本願に援用する。 This patent application claims the priority based on Japanese Patent Application No. 2017-180615 filed on Sep. 20, 2017, and the entire content of Japanese Patent Application No. 2017-180615 is incorporated herein by reference. Do.
1 生体情報測定装置
1A 生体情報測定装置
2 光学式センサユニット
3 赤外線センサユニット
3A 赤外線センサユニット
10 光学ヘッド
12 赤外線センサ
13 変換器
14A 光学センサコンピュータ
16 バッテリ
18 メモリ
19 赤外線センサコンピュータ
20 発光部
30 受光部
600 装着具
Reference Signs List 1 biological information measuring apparatus 1A biological information measuring apparatus 2 optical sensor unit 3 infrared sensor unit 3A infrared sensor unit 10 optical head 12 infrared sensor 13 converter 14A optical sensor computer 16 battery 18 memory 19 infrared sensor computer 20 light emitting unit 30 light receiving unit 600 mounting tools

Claims (8)

  1.  ユーザの所定生体情報を測定する生体センサと、
     前記ユーザの温度を測定する温度センサと、
     前記温度センサが測定した前記温度の変化に基づいて、前記生体センサの動作を制御する制御部とを備える、生体情報測定装置。
    A biometric sensor that measures user's predetermined biometric information;
    A temperature sensor that measures the temperature of the user;
    And a control unit configured to control an operation of the living body sensor based on a change in the temperature measured by the temperature sensor.
  2.  前記制御部は、所定値以上の前記温度の変化の検出イベントに基づいて、前記生体センサの動作を開始させる、請求項1に記載の生体情報測定装置。 The biological information measuring device according to claim 1, wherein the control unit starts the operation of the biological sensor based on a detection event of the change of the temperature which is equal to or more than a predetermined value.
  3.  前記制御部は、前記温度センサを制御する第1制御部と、前記生体センサを制御する第2制御部とを含み、
     前記第1制御部は、前記検出イベントに基づいて、前記生体センサの動作を開始させるための信号を前記第2制御部に与える、請求項2に記載の生体情報測定装置。
    The control unit includes a first control unit that controls the temperature sensor, and a second control unit that controls the biological sensor.
    The biological information measurement device according to claim 2, wherein the first control unit provides the second control unit with a signal for starting the operation of the biological sensor based on the detection event.
  4.  前記制御部は、前記検出イベント前は、第1クロックに基づいて前記温度センサを動作させ、前記検出イベント後に、前記第1クロックよりも周期が短い第2クロックに基づいて前記生体センサを動作させる、請求項2に記載の生体情報測定装置。 The control unit operates the temperature sensor based on a first clock before the detection event, and operates the living body sensor based on a second clock whose cycle is shorter than the first clock after the detection event. The biological information measuring device according to claim 2.
  5.  前記温度センサは、赤外線センサである、請求項1~4のうちのいずれか1項に記載の生体情報測定装置。 The biological information measuring device according to any one of claims 1 to 4, wherein the temperature sensor is an infrared sensor.
  6.  前記生体センサ及び前記温度センサが前記ユーザの額に接触又は対向する態様で前記ユーザの頭部に装着可能な形態である、請求項1~5のうちのいずれか1項に記載の生体情報測定装置。 The living body information measurement according to any one of claims 1 to 5, wherein the living body sensor and the temperature sensor can be mounted on the head of the user in a mode in which the living body sensor and the temperature sensor contact or face the forehead of the user apparatus.
  7.  前記生体センサは、前記ユーザの部位に光を当て、該光の受光結果に基づいて前記ユーザの生体情報を生成する、請求項1~6のうちのいずれか1項に記載の生体情報測定装置。 The living body information measuring device according to any one of claims 1 to 6, wherein the living body sensor applies light to a site of the user, and generates living body information of the user based on a result of light reception of the light. .
  8.  前記生体センサ及び前記温度センサは、共通の1つのバッテリからの電力に基づいて動作する、請求項1~7のうちのいずれか1項に記載の生体情報測定装置。 The biological information measuring device according to any one of claims 1 to 7, wherein the biological sensor and the temperature sensor operate based on power from one common battery.
PCT/JP2018/027395 2017-09-20 2018-07-20 Biological information measurement device WO2019058740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017180615A JP2021006071A (en) 2017-09-20 2017-09-20 Biological information measurement device
JP2017-180615 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019058740A1 true WO2019058740A1 (en) 2019-03-28

Family

ID=65809650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027395 WO2019058740A1 (en) 2017-09-20 2018-07-20 Biological information measurement device

Country Status (2)

Country Link
JP (1) JP2021006071A (en)
WO (1) WO2019058740A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093068A (en) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> Human body abnormality detecting communication terminal
JP2009000403A (en) * 2007-06-25 2009-01-08 Panasonic Corp Drinking detector
WO2010090020A1 (en) * 2009-02-04 2010-08-12 日本電気株式会社 Physiological information-detecting sensor and electronic equipment using same, as well as physiological information-detecting method
JP2012110520A (en) * 2010-11-25 2012-06-14 Nippon Koden Corp Sensor mounting time period-informing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093068A (en) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> Human body abnormality detecting communication terminal
JP2009000403A (en) * 2007-06-25 2009-01-08 Panasonic Corp Drinking detector
WO2010090020A1 (en) * 2009-02-04 2010-08-12 日本電気株式会社 Physiological information-detecting sensor and electronic equipment using same, as well as physiological information-detecting method
JP2012110520A (en) * 2010-11-25 2012-06-14 Nippon Koden Corp Sensor mounting time period-informing method and apparatus

Also Published As

Publication number Publication date
JP2021006071A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP6650974B2 (en) Electronic device and method for acquiring biological information
US20150374469A1 (en) Oral cavity measuring device, occlusion evaluation system and non-transitory computer readable medium
JP6121069B2 (en) Heart rate monitoring device
HUP0303943A2 (en) Method and system for monitoring the relative position of a toothbrush and the patient&#39; teeth, as well as a computer program product
JP2020503938A5 (en)
US11615642B2 (en) Gesture recognition system employing thermal sensor and image sensor
US9517019B2 (en) Physiology measurement device and system, and operating method of wireless single chip
SE0402145D0 (en) Pressure measurement system
US20030201978A1 (en) Mouse capable of detecting physiological signal and environmental luminance
EP1782229A4 (en) Health monitor system and a method for health monitoring
CN107703779B (en) Method and device for controlling opening and closing of function by identifying whether wearable equipment is worn or not
WO2012092524A3 (en) Systems and methods for monitoring and processing biometric data
US20120319835A1 (en) Device and Method for Electronic Body Monitoring, more particularly for Infants
TW200710819A (en) Data transfer control device and electronic instrument
RU2018102883A (en) SYSTEM AND METHOD FOR DETECTING HALITOSIS
JP2010033531A (en) System for power management and safety protection and method thereof
WO2019151701A1 (en) Electronic device for generating health information on basis of plurality of biosignals and operation method therefor
EP3110318B1 (en) Optical vital signs sensor
TWI457790B (en) Portable electronic apparatus and method used for portable electronic apparatus
WO2019058740A1 (en) Biological information measurement device
US20140036056A1 (en) Monitoring system and monitoring method thereof
EP3263022A1 (en) Abnormality processing system
CN108471957B (en) Patient monitor
JP4878540B2 (en) Optically fed measurement method and optically fed measuring device used therefor
JP2016140553A (en) Respiration determination apparatus, respiration determination method, respiration determination program, and determination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP