WO2019057211A1 - 信号劣化故障的处理方法、系统、装置和存储介质 - Google Patents

信号劣化故障的处理方法、系统、装置和存储介质 Download PDF

Info

Publication number
WO2019057211A1
WO2019057211A1 PCT/CN2018/107383 CN2018107383W WO2019057211A1 WO 2019057211 A1 WO2019057211 A1 WO 2019057211A1 CN 2018107383 W CN2018107383 W CN 2018107383W WO 2019057211 A1 WO2019057211 A1 WO 2019057211A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
port
physical port
signal degradation
state
Prior art date
Application number
PCT/CN2018/107383
Other languages
English (en)
French (fr)
Inventor
刘宇辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18858771.1A priority Critical patent/EP3687114A4/en
Publication of WO2019057211A1 publication Critical patent/WO2019057211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method, system, apparatus, and computer readable storage medium for processing a signal degradation fault.
  • L2VPN Layer 2 Virtual Private Network
  • L3VPN Layer 3 Virtual Private Network
  • the outer label switching path Label Swith Path
  • the LSP is based on the Resource ReSerVation Protocol-Traffic Engineering (RSVP-TE) tunnel or the Label Distribution Protocol (LDP) tunnel or the static manual tunnel.
  • RSVP-TE Resource ReSerVation Protocol-Traffic Engineering
  • LDP Label Distribution Protocol
  • the inner layer is mainly static. Pseudowire (PW) or dynamic PW created by dynamic LDP.
  • PW Pseudowire
  • MP-BGP BGP-4 Multiprotocol Extensions for BGP-4
  • the main protection technologies used in the VPN tunnel are IP Protocol Fast Reroute (IP FRR), VPN FRR, PW FRR, Hot Standby (TE) HSB, and Label Distribution Protocol (LDP). ) FRR, static tunnel protection group switching technology.
  • IP FRR IP Protocol Fast Reroute
  • VPN FRR VPN FRR
  • PW FRR Hot Standby
  • LDP Label
  • BFD Bi-directional Forwarding Detection
  • TP-OAM Multi-Protocol Label Switching Transport Profile-Operation Administration&Maintenance
  • BFD or TP-OAM The working mechanism of BFD or TP-OAM is periodic fixed-point delivery. No consecutive three detection packets are judged as faults. It can detect well for link interruption, but it can't do anything for non-continuous packet loss. Common line signal degradation is a form of failure that is discontinuous and random error packet loss. If the two consecutive detection packets are not received, and the third one is received, BFD or TP-OAM does not consider the link to be faulty. However, in fact, the upper level business has been affected at this time. In addition, in this case, BFD or TP-OAM is prone to oscillating, causing the service path to switch back and switch frequently in a very short time, and the service cannot work normally.
  • SD Signal Degradation
  • An embodiment of the present disclosure provides a method for processing a signal degradation fault, which includes the following steps: acquiring an error condition of a physical port, determining whether the physical port satisfies a preset signal degradation determination condition according to the error condition, and if yes, generating a representation
  • the port indication information of the physical port signal is degraded; if the network to which the physical port belongs is tunneled, the port indication information is sent to the end node of the tunnel where the physical port is located; if the end node of a tunnel receives the port indication information, the tunnel is determined.
  • the state of the signal is degraded; the state of the primary tunnel and the standby tunnel in each group of tunnels is obtained.
  • a tunnel group When a tunnel group satisfies the signal degradation state or signal interruption state of the primary tunnel and the standby tunnel is in a signal degradation state; if the network is a Layer 2 VPN The network triggers the pseudo-wire fast re-routing, and switches the services on the pseudo-line of the tunnel group to the corresponding backup pseudo-line transmission; if the network is a three-layer VPN network, triggers the VPN fast re-routing, and each of the tunnel groups The service on the VPN tunnel is switched to the corresponding backup VPN tunnel; and if the physical port belongs to the network Road network technology, it is determined that the three-port physical port, triggering a label distribution protocol FRR, through traffic on the label switched path is switched to three-port transmission on the corresponding backup LSP.
  • FRR label distribution protocol
  • the embodiment of the present disclosure further provides a processing system for a signal failure degradation fault, comprising: a port detection module, configured to acquire a bit error condition of a physical port, and determine, according to the error condition, whether the physical port satisfies a preset signal degradation determination condition; If yes, the port indication information is generated to indicate that the physical port signal is degraded; the tunnel transmission module is configured to send the port indication information to the end node of the tunnel where the physical port is located if the network to which the physical port belongs is tunneled by the tunnel technology; a state setting module, configured to: if the end node of a tunnel receives the port indication information, determine that the tunnel is a signal degradation state; the tunnel protection module is configured to acquire the state of the primary tunnel and the standby tunnel in each group of tunnel groups; VPN protection a processing module, configured to: when a tunnel group satisfies the primary tunnel as a signal degradation state or a signal interruption state and the standby tunnel is a signal degradation state; if the network is a Layer
  • the path protection module is set to be the non-tunnel technology group if the physical port belongs to the network.
  • the network determines the Layer 3 interface on the physical port, triggers the label distribution protocol fast reroute, and switches the service on the label switching path of the Layer 3 interface to the backup label switching path for transmission.
  • the present disclosure also provides a processing apparatus for signal degradation failure, comprising a processor and a memory, the memory storing program code, causing degradation of a signal described in an embodiment of the present disclosure when the processor executes the program code The troubleshooting method.
  • the present disclosure also provides a computer readable storage medium having stored thereon one or more programs, when the one or more programs are executed by a processor, such that processing of a signal degradation failure described in the embodiments of the present disclosure is performed method.
  • FIG. 1 is a flowchart of a method of processing a signal degradation fault according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a Link Layer Discovery Protocol (LLDP) Private Type/Length/Value (TLV) encapsulation according to an embodiment of the present disclosure
  • LLDP Link Layer Discovery Protocol
  • TLV Private Type/Length/Value
  • FIG. 3 is a flowchart of a method for processing a signal degradation fault in a static mobile tunnel networking in an L2vpn scenario according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for processing a signal degradation fault in a static manual tunnel network in an L3VPN scenario according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the transmission of the SD state under the static tunnel networking in the method of FIG. 3 and FIG. 4 of the present disclosure
  • FIG. 6 is a flowchart of a method for processing a signal degradation fault in a dynamic tunneling network in an L2vpn scenario according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a method for processing a signal degradation fault in a dynamic tunnel network in an L3VPN scenario according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of the transmission of the SD state under the dynamic tunnel networking in the method of FIG. 6 and FIG. 7 of the present disclosure
  • FIG. 9 is a flowchart of a method for processing a signal degradation fault in an IP public network, an L2VPN, and an L3VPN scenario using a non-tunneling technology network such as LDP or LSP according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a processing system for signal degradation failures in accordance with an embodiment of the present disclosure.
  • the virtual private network sends a packet to the other end to detect whether the network between the two ends is unblocked. If the packet is lost three times in a row, the network error is judged.
  • This judgment rule is not sensitive to network degradation. It is not easy to identify the network degradation, which is likely to cause problems in signal transmission quality degradation and user experience deterioration.
  • the method in the embodiments of the present disclosure can quickly and accurately detect the signal degradation of the physical port for various networks, and protect the tunnel, pseudowire, path, and the like of the transmission signal.
  • the processing method of the signal degradation failure in the embodiment of the present disclosure includes the following steps: S101-S105a.
  • step S101 the error condition of the physical port is acquired, and it is determined whether the physical port satisfies the preset signal degradation determination condition according to the error condition. If yes, the process goes to step S102.
  • the network to which the physical port belongs may be an IP network, a virtual private network VPN, or the like.
  • the networking mode of the IP network and the virtual private network is not limited.
  • the VPN network may be an L2VPN or an L3VPN.
  • the error condition in the embodiment of the present disclosure reflects the quality of the physical path on the physical port, and the error condition can be measured by using the error rate and the packet error rate as indicators.
  • a Cyclic Redundancy Check (CRC) detection method may be used on the physical port, and the current error is calculated by the ratio of the number of CRC error packets received in a unit time and the total number of packets. rate.
  • CRC Cyclic Redundancy Check
  • the error rate of each packet is detected on the physical port, and if the error rate is not 0, the error packet is determined, and the packet error rate is calculated by the number of error packets received per unit time and the total number of packets.
  • the method further includes the following steps: acquiring the service traffic on the physical path, and if the service traffic is smaller than the preset traffic threshold, sending the background flow packet in the preset fixed format on the physical path, where the background flow packet is the largest. The amount of transmission does not exceed the preset ratio of the physical port bandwidth.
  • the preset ratio may take a percentage of 30%, 40%, and the like.
  • the system sends a preset fixed format (for example, the destination MAC address) in the physical line sending direction.
  • the background stream packet of the Ethernet packet of 0 is used to increase the cardinality of the packet statistics sample of the physical port.
  • the maximum amount of background traffic sent does not exceed 30% of the port bandwidth.
  • the time rate of the physical port is periodically queried, and the transmission bandwidth is dynamically adjusted.
  • the actual traffic (user traffic, non-background traffic) is greater than 30% of the port bandwidth and then stops sending background traffic packets.
  • the background stream message has no other meaning for the line receiving end except for calculating the error/packet rate. Therefore, in the line receiving direction, the system recognizes the background stream message and selects the abnormal process to discard the background stream message.
  • the system periodically checks the interface packet statistics and the background stream statistics to correct the user service traffic value and mask the SD background stream packets.
  • a method for determining whether the physical port satisfies a preset signal degradation determination condition according to the error condition includes, but is not limited to, at least one of the following two manners.
  • Manner 1 The error rate of the physical port is N consecutive times before the current time. If the N error rate exceeds the preset error rate threshold corresponding to the line signal degradation, the physical port is determined to meet the preset signal degradation. The condition is judged; otherwise, it is judged that the physical port does not satisfy the signal degradation determination condition.
  • the calculation of the bit error rate can be performed every 1 s, and the bit error rate in the current one second is calculated every second.
  • Manner 2 Obtain the error rate of the physical port at the current time, N (N is greater than or equal to the preset number), and if the packet error rate is greater than or equal to the time in at least some time period.
  • the preset error packet rate threshold corresponding to the period determines that the physical port satisfies the preset signal degradation determination condition; otherwise, it determines that the physical port does not satisfy the signal degradation determination condition.
  • the number of error packets of the physical port is read every 1 second (the error packet can be determined according to the error condition of the data packet) and the total number of packets, and the record is stored, and the physical circuit is accumulated once every second.
  • the current time is traced back to the packet error rate in the 1s, 10s, 100s, and 1000s time periods, and the threshold is compared; when the packet error rate calculated in any one time period exceeds the corresponding preset packet error rate threshold, the physical port is determined.
  • the preset signal degradation determination condition is satisfied.
  • the calculation formula of the error rate threshold set by the user is n*10 ⁇ -m
  • n is the threshold of the preset error rate corresponding to each time period is n*10 ⁇ -2, n*10 ⁇ -3, respectively.
  • step S102 port indication information indicating that the physical port signal is degraded is generated. If the network to which the physical port belongs is tunneled, go to step S103a, otherwise go to step S103b.
  • the port indication information for the physical port includes, but is not limited to, an RX-SD (Signal Reception Direction) status and an alert.
  • step S101 at least one of the following two manners may also be used to determine whether to cancel the indication of the signal degradation of the physical port by the port indication information.
  • Manner 1 Continue to obtain the error status of the physical port. If the physical port is M times (M is at least the preset multiple of N), the error rate does not reach the preset error rate threshold. Indicates an indication of the signal degradation of the physical port.
  • the M used herein is generally at least 100 times more than N for the number N of observations in the failure generation mechanism.
  • the indication of canceling the signal degradation of the physical port by the port indication information includes canceling the port RX-SD status and alarm of the physical port.
  • Manner 2 Continue to obtain the error rate of the physical port at the current time and track the S (S is greater than or equal to the preset number) in different time periods. If the packet error rate in each time period is lower than the time period respectively. Corresponding preset packet error rate threshold, the indication that the port indication information is degraded to the physical port signal is cancelled.
  • the current time that has been accumulated on the line is calculated every second, and the error rate in the time period of 1s, 10s, 100s, and 1000s is traced back, and the threshold value is compared, and the error rate of "all time periods" must be simultaneously The port RX-SD status and alarm are canceled below the corresponding threshold.
  • the threshold set by the user is n*10 ⁇ -m
  • the thresholds of the preset error rate corresponding to the time periods listed above are n*10 ⁇ -(m-3), n*10 ⁇ -(m-2), respectively. n*10 ⁇ -(m-1), n*10 ⁇ -m.
  • the sender system in order for the signal transmitting end system to obtain the physical port RX-SD status and alarm information, the sender system can be notified after the physical port generates the RX-SD status and the alarm.
  • the method further includes the following steps: sending the port indication information of the physical port of the local system to the peer system in the line sending direction by using the preset protocol message.
  • the preset protocol packet may be an underlying protocol packet, such as an LLDP protocol packet.
  • the QoS of the underlying protocol is good, and its use is advantageous for enhancing the versatility and adaptability of the method of the embodiment of the present disclosure.
  • the preset protocol packet in the embodiment of the present disclosure is not limited to the underlying protocol packet, and may also be a non-underlying protocol packet.
  • the LLDP Link Layer Discovery Protocol
  • the LLDP protocol advertisement packet contains the private TLV (type packet type, length size, and value actual content) carrying the RX-
  • the SD fault generates a status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • the package includes: a TLV type (TLV Type), a TLV information string length (TLV information string length), an Organizationally Unique Unique Identifier (OUI), a Subtype (SubType), and an SD Status (SD status).
  • TLV Type TLV type
  • TLV information string length TLV information string length
  • OPI Organizationally Unique Unique Identifier
  • SubType Subtype
  • SD status SD status
  • the SD status and the alarm may be transmitted by using other protocol packets, which is not limited by the embodiment of the present disclosure.
  • the method informs the message that the peer system receives the RX-SD fault recovery status bit again through the LLDP protocol, and determines that the TX-SD alarm disappears.
  • the system of the sending end and the receiving end can trigger the subsequent process to protect the tunnel.
  • step S103a if the network to which the physical port belongs is tunneled, the port indication information of the physical port is sent to the end node of the tunnel where the physical port is located.
  • the port indication information of the physical port may be transmitted to the end node of the tunnel where the physical port is located by using a protocol packet transmitted on the network.
  • the specific steps for sending port indication information to the end node of the tunnel where the physical port resides are different.
  • the step of transmitting the port indication information to the end node of the tunnel where the physical port is located includes the following steps: notifying the port indication information of the physical port to the transport layer multi-protocol label switching T-MPLS (Transport- The Multi-Protocol Label Switching entity, the T-MPLS Section entity maps to the inner layer of the network, maps to the tunnel (which is a static tunnel), notifies the tunnel indication of the physical port to the tunnel, and then notifies the operation management and maintenance.
  • MPLS-TP OAM Multi-Protocol Label Switching-Transport Profile Operation Administration and Maintenance
  • MPLS-TP OAM Multi-Protocol Label Switching-Transport Profile Operation Administration and Maintenance
  • the MPLS-TP OAM entity If the MPLS-TP OAM entity is in the middle node of the tunnel, it passes through the tunnel.
  • the other node (such as the intermediate node) sends a preset custom message to the end node of the tunnel, where the preset custom message carries the node ID of the node and the signal degradation status indication information.
  • the predefined message may also carry error/packet rate information.
  • the static tunnel is also provided with a pseudowire.
  • the tunnel can be mapped from the tunnel to the pseudowire, and the port indication information of the physical port is notified to the pseudowire.
  • the TP-OAM entity is in the The intermediate node of the pseudowire sends a preset custom message to the end node of the pseudowire through the intermediate node of the pseudowire.
  • the preset custom packet carries the node ID of the node and the signal degradation status indication information.
  • the predefined message may also carry error/packet rate information.
  • the preset custom message may be a customized FEI message or a formatted message.
  • MSPW Multi-Segment Pseudo-Wire
  • the node the local node where the physical port is located, can send a FEI (Forward Error Indication) packet to the downstream node.
  • FEI Forward Error Indication
  • the information carried in the packet includes the NODE ID of the node (the device of the node in the NODE ID) MAC address), SD status indication (for the LSP FEI packet, the port TMS indication; for the PW FEI packet, the tunnel SD indication), the bit error rate information, and the transmission of the FEI packet to the downstream node, so that the static tunnel
  • the end node of the end node or pseudowire knows that it is in the SD state.
  • the error/packet rate sent by each node may be accumulated on the end node of the static tunnel, and all the NODE IDs, if one correspondingly generates the SD state, are no longer
  • the error/packet rate accumulation needs to be performed that is, the static tunnel or the static PW can be determined to be in the SD state. If there is no SD status indication in all the NODE IDs, if the average value of the accumulated error/packet rate is greater than the SD threshold configured on the Maintenance Entity Group (MEG), an SD alarm is generated;
  • the tunnel or static PW is in the SD state, and the static switch or static PW is associated with the corresponding protection switching decision and processing.
  • the TP-OAM cancels the FEI message transmission.
  • the FEI packet is a custom private packet in the format of a TP-OAM packet.
  • the OpCode field is defined as 0x60.
  • the port indicating information is sent to the end node of the tunnel where the physical port is located, including: setting the Layer 3 port on the port to a signal degradation state, and setting the state of the label switching path through the Layer 3 port.
  • a message with a preset format indicating information indicating that the label switched path signal is degraded is sent to the head node of the tunnel where the physical port is located (which is a TE traffic engineering tunnel).
  • a Layer 3 port can also be referred to as a Layer 3 interface or a Layer 3 port.
  • the RSVP protocol can sense the SD state of the Layer 3 interface, and send the LSP path information and the corresponding SD state information of the Layer 3 interface to the TE tunnel header through a notification message. node. After the TE tunnel head node obtains the SD state of the LSP, it performs corresponding protection switching decision and processing.
  • the LSP information and the SD state may also be sent by using other messages or protocol messages, which is not limited by the embodiment of the present disclosure.
  • step S104a if the end node of a tunnel receives the port indication information, it determines that the tunnel is in a signal degradation state.
  • This step is to set the state of the tunnel to which the physical port belongs to the signal degradation state according to the RX-SD state of the physical port. This step can be achieved by monitoring the end nodes of the tunnel.
  • step S105a the state of the primary tunnel and the standby tunnel in each group of tunnel groups is obtained, when a tunnel group satisfies the primary tunnel as a signal degradation state or a signal interruption state and the standby tunnel is a signal degradation state; if the network is a Layer 2 VPN network , triggering the pseudo-wire fast re-routing, switching the services on the pseudo-line of the tunnel group to the corresponding backup pseudo-line transmission; if the network is a three-layer VPN network, triggering the VPN fast re-routing, the VPN of the tunnel group The traffic on the channel is switched to the corresponding backup VPN tunnel for transmission.
  • a static tunnel protection group is configured, including the primary tunnel and the standby tunnel.
  • a TE tunnel is configured with a primary path and an alternate path.
  • the primary path and the alternate path can be regarded as a primary tunnel and a standby tunnel respectively.
  • the TE tunnel can also be regarded as a tunnel group.
  • the static tunnel/static tunnel protection group can be associated with the corresponding processing. That is, if the status of the active/standby tunnel is obtained in S105, it is determined that one of the working tunnels (the tunnel that currently carries the user service flow) has the status of SD state or signal failure (Signal Fail, SF) state, and other tunnels.
  • the non-SD state and the non-SF state are used to switch the traffic of the working tunnel to other tunnels. If the tunnels in the tunnel protection group are in poor condition, for example, the primary and backup tunnels are in the SF state and the SD state respectively. Or the primary and backup tunnels are in the SD state.
  • the upper layer protection is required.
  • the network of the static tunnel is a Layer 2 VPN network
  • the PTZ fast re-routing is triggered, and the services on the pseudo-line of the tunnel group are switched to the corresponding backup pseudo-line.
  • the network of the static tunnel is three, The layer VPN network triggers the VPN fast reroute, and the services on the VPN tunnels of the tunnel group are switched to the corresponding backup VPN tunnel for transmission.
  • the physical port In the case of a dynamic tunnel (RSVP-TE) network, the physical port generates an SD state and then associates the RSVP-TE tunnel to perform corresponding processing. After the physical port generates the SD state, after the above steps S103a and S104a, the head of the TE traffic engineering tunnel The node will get the status of the SD. If the main path of the TE tunnel and the hot standby path are SD, or the primary path is SF, the SD is generated on the hot standby path. This means that the TE tunnel cannot transmit services. In this case, the upper layer is required for the normal operation of the service flow. protection of.
  • the pseudo-line fast re-routing is triggered, and the services on the pseudo-line of the tunnel group are switched to the corresponding backup pseudo-line transmission; if the network of the dynamic tunnel network is three
  • the layer VPN network triggers the VPN fast reroute, and the services on the VPN tunnels of the tunnel group are switched to the corresponding backup VPN tunnel for transmission.
  • the method further includes the following steps: setting the next hop of all the outbound interfaces to the tunnel group as the signal degradation state.
  • step S103b if the network is configured by the non-tunnel technology network, the Layer 3 interface on the physical port is determined, and the label distribution protocol is quickly rerouted, and the service on the label switching path of the Layer 3 interface is switched to the corresponding backup label exchange. Transfer on the path.
  • the step of determining whether the physical port satisfies the preset signal degradation determination condition according to the error condition includes the following steps: acquiring the Ethernet bundle port The error status of each member port determines whether the member port meets the preset signal degradation judgment condition according to the error condition. If it is satisfied, the member port is blocked. Alternatively, if the Ethernet link is available on the port, the aggregate link can be used.
  • the member interfaces are removed from the link aggregation group. If the number of the aggregation links that can be used on the Ethernet interface is equal to the minimum number of member links, the member interfaces are retained in the link aggregation group.
  • the Ethernet bundle port is set to the signal degradation state; and if the signal interruption state of other member ports of the Ethernet bundle port is detected, the number of aggregate links that can be used in the Ethernet bundle port is equal to the minimum member link number, and the pre-compensation is satisfied.
  • the member port of the signal degradation judgment condition is moved into the member port of the link aggregation group to replace the signal interruption state, and Too bundle port to the signal deterioration state.
  • the method further includes the following steps: determining the layer 3 port on the physical port, setting the layer 3 port as a signal degradation state, and outputting the interface The cost of the route for the Layer 3 interface is increased to the preset cost value.
  • the foregoing steps may be implemented by the physical port generating an SD state and then performing corresponding processing by using an Interior Gateway Protocol (IGP) protocol.
  • IGP Interior Gateway Protocol
  • the physical port generates an SD state and an alarm, and the Layer 3 interface on the physical port is in the SD state.
  • the IGP protocol senses the SD state of the Layer 3 interface, and increases the routing cost of the Layer 3 interface to the outbound interface. Preset cost value.
  • the increased value of the overhead can be configured by the user.
  • the routing cost value can be directly adjusted to the maximum value (in the Open Shortest Path First (ospf) protocol, It is 65535, which is 16777214 in the Intermediate System to Intermediate System (ISIS) protocol.
  • ospf Open Shortest Path First
  • ISIS Intermediate System to Intermediate System
  • the SD state and the alarm of a physical port are canceled, the SD state of the Layer 3 interface on the physical port is also cancelled (can be detected and cancelled by the IGP protocol), and the route is The cost value is restored to the previous configuration value or default value.
  • the method for processing a signal degradation fault obtains the error condition of the physical port, and determines whether the physical port satisfies the preset signal degradation determination condition according to the error condition to sense the deterioration state of the line signal, and the judgment result is Yes, port indication information indicating degradation of the physical port signal is generated; fast perception of signal degradation of the path is achieved.
  • the present disclosure provides protection processing for services on a tunnel and a label switched path when an SD state occurs in a tunnel networking technology and a non-tunnel networking technology.
  • a method for signal degradation fault sensing and processing is provided for various scenarios and various networking scenarios, which makes up for the lack of signal degradation sensing methods and the lack of signal degradation fault handling in some cases.
  • the method for determining the SD state of the port by using the error rate or the error rate, and the introduction of the background stream message increase the accuracy of the error rate and the error rate calculation, and enhance the SD state of the judgment path. Accuracy improves the accuracy of tunnel or label switched path switching.
  • FIG. 5 is a schematic diagram of SD state transfer under static tunnel networking according to an embodiment of the present disclosure.
  • LER Label Edge Router
  • LSR Label Switching Router
  • the unidirectional tunnel in FIG. 5 is a tunnel LER1-LSR2-LSR3-LER4, and the main example in FIG.
  • the transmission mode of the tunnel is similar to the SD transmission mode of the multi-segment pseudowire.
  • FIG. 3 illustrates a flow of a method for processing a signal degradation fault in an L2vpn static manual tunnel scenario according to an embodiment of the present disclosure, where the path includes: Step 301-Step 307.
  • step S301 the CRC detection method is used on the physical port of the router in FIG. 5, and the current error rate is calculated by the ratio of the number of CRC error packets received in a unit time to the total number of packets.
  • step S302 the error rate calculated by the method of the previous step is obtained N times before the current time from the current time.
  • step S303 it is determined whether the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation. If yes, the process goes to step S304, otherwise returns to step S301.
  • step S304 if the physical port of the LSR3 in FIG. 5 generates the RX-SD status and the alarm, the local end sends an LLDP protocol advertisement packet to the peer system.
  • the LLDP protocol advertisement packet contains a private TLV (type of the type packet). , length size, value actual content) carries the RX-SD fault generation status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • data may be received and sent by the physical port on the path, and data may be received and sent by the SG port.
  • the SD state of each member port of the SG port may be determined by using a similar scheme in S301-S304, and the member port is displayed. For the SD state, the SG port is managed accordingly.
  • the specific method of management refer to the related description of the above embodiment, and details are not described herein.
  • the LSR3 sends an LLDP protocol advertisement message to the neighboring upstream node LSR2 to inform the SD system of the physical status of the physical port.
  • step S304 the LLDP protocol advertisement packet may also be sent to the peer system by the error rate of the physical port.
  • step S304 both the local system and the peer system can continue to trigger the following process: step S305-step S307.
  • step S305 when it is detected that the physical port generates the SD state and the alarm, the RX-SD status, the alarm, and the bit error rate of the physical port (the physical port of the LSR3 in FIG. 5 in the embodiment of the present disclosure) are notified to the T- The MPLS Section entity, the T-MPLS Section entity maps to the inner layer of the network, maps to the tunnel, maps to the pseudowire, and notifies the tunnel and pseudowires of the SD port status, alarm, and bit error rate of the physical port, and then notifies the MPLS- The TP OAM entity checks the location of the MPLS-TP OAM entity in the network.
  • LSR3 is the intermediate node of the tunnel LER1-LSR2-LSR3-LER4
  • a static FEI message is sent to the end node of the static tunnel or the pseudowire through the static node or the intermediate node on the pseudowire.
  • LSR3 sends a customized TP-OAM FEI packet to the downstream node LER4 (because LSR3 is the SD state in the receiving direction, LER4 is the downstream node of LSR3), and LSR2 is sent to the downstream node LER1.
  • the defined TP-OAM FEI message (because the SD state in the outgoing direction is generated on LSR2, LER1 is considered to be the downstream node of LSR2).
  • the information carried in the FEI packet includes, but is not limited to, the NODE ID of the node (the MAC address of the device machine in the NODE ID) and the SD status indication (for the LSP FEI packet, the port TMS indication; for the PW FEI)
  • the packet, which is the tunnel SD indication) and the bit error rate information, is transmitted through the FEI message at other nodes, so that the end node of the static tunnel or the end node of the pseudowire knows that the SD state occurs.
  • the OpCode field in the customized FEI packet is defined as 0x60.
  • the error/packet rate sent by each node may be accumulated on the end node of the static tunnel, and all the NODE IDs, if one correspondingly generates the SD state, are no longer
  • the error/packet rate accumulation needs to be performed that is, the static tunnel or the static PW can be determined to be in the SD state. If there is no SD status indication in all the NODE IDs, if the average value of the accumulated error/packet rate is greater than the SD threshold configured on the Maintenance Entity Group (MEG), an SD alarm is generated;
  • the tunnel or static PW is in the SD state, and the static switch or static PW is associated with the corresponding protection switching decision and processing.
  • step S306 after the end node of the tunnel obtains the SD state and the alarm, the static tunnel is switched by the tunnel protection group mechanism specified by the standard (the tunnel protection group switching in FIG. 5). If the working tunnel is in the SD state and the SF state, the current tunnel is switched to the other tunnels in the static tunnel protection group that do not generate the SD state or the SF state. If the SD status of the active and standby tunnels of the static tunnel occurs, or the SF state of the primary tunnel occurs, the SD state of the standby tunnel occurs. The tunnel protection group sets all the outbound interfaces to the static tunnel protection group. .
  • step S307 the pseudowire fast route (FW FRR) is triggered, and the services on the pseudowires of the tunnel group are switched to the corresponding backup pseudowire transmission.
  • FW FRR pseudowire fast route
  • FIG. 5 is a schematic diagram of SD state transfer under static tunnel networking according to an embodiment of the present disclosure.
  • FIG. 5 there is a label edge router LER and a label switching router LSR.
  • the unidirectional tunnel in FIG. 5 is the tunnel LER1-LSR2-LSR3-LER4.
  • the transmission mode of the tunnel is mainly demonstrated in FIG. 5, and the SD transmission mode of the multi-segment pseudowire is similar.
  • FIG. 4 shows a flow of a method for processing a signal degradation fault in an L3VPN static manual tunnel scenario according to an embodiment of the present disclosure, where the process includes: steps S401-S407.
  • step S401 the CRC detection method is used on the physical port of the router in FIG. 5, and the current error rate is calculated by the ratio of the number of CRC error packets received in a unit time and the total number of packets;
  • step S402 the error rate calculated by the method of S401 is obtained continuously N times before the current time.
  • step S403 it is determined whether the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation. If yes, the process goes to step S404, otherwise returns to step S401.
  • the local end sends the LLDP protocol advertisement packet to the peer system.
  • the LLDP protocol advertisement packet contains the private TLV (type of the type packet). , length size, value actual content) carries the RX-SD fault generation status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • the LSR3 sends an LLDP protocol advertisement message to the neighboring upstream node LSR2 to inform the SD system of the physical status of the physical port.
  • data may be received and sent by the physical port on the path, and data may be received and sent by the SG port.
  • the SD state of the member ports of the SG port may be determined by using a similar scheme in S401-S404, and the member port is displayed. For the SD state, the SG port is managed accordingly.
  • the specific method of management refer to the related description of the above embodiment, and details are not described herein.
  • the LLDP protocol advertisement packet may also be sent to the peer system by the error rate of the physical port.
  • step S404 both the local system and the peer system can continue to trigger the following process: S405-S407.
  • step S405 when it is detected that the physical port generates the SD state and the alarm, the RX-SD status, the alarm, and the bit error rate of the physical port (the physical port of the LSR3 in FIG. 5 in the embodiment of the present disclosure) are notified by other nodes.
  • the T-MPLS Section entity, the T-MPLS Section entity maps to the inner layer of the network, maps to the tunnel, notifies the tunnel of the SD port status, alarm, and bit error rate of the physical port, and then notifies the MPLS-TP OAM entity to check MPLS- The location of the TP OAM entity in the network. If the MPLS-TP OAM entity is in the middle node of the static tunnel, the other intermediate nodes of the static tunnel send the customized FEI packet to the end node of the static tunnel.
  • the LSR3 sends a customized TP-OAM FEI message to the downstream node LER1.
  • the LSR2 sends a customized TP-OAM FEI message to the downstream node LER1.
  • the information carried in the FEI packet includes the NODE ID of the local node (the MAC address of the device in the NODE ID) and the SD status indication (for the LSP FEI packet, the port TMS indication; for the PW FEI)
  • the message, which is the tunnel SD indication) and the bit error rate information, is transmitted through the FEI message to other nodes, so that the end node of the static tunnel knows that the SD state occurs.
  • the OpCode field in the customized FEI packet is defined as 0x60.
  • the error/packet rate sent by each node may be accumulated on the end node of the static tunnel, and all the NODE IDs, if one correspondingly generates the SD state, are no longer
  • the error/packet rate accumulation needs to be performed that is, the static tunnel can be determined to be in the SD state. If there is no SD status indication in all the NODE IDs, if the average value of the accumulated error/packet rate is greater than the SD threshold configured on the MEG, an SD alarm is generated; the static tunnel is determined to be in the SD state, and the static tunnel is associated. Do the appropriate protection switching decisions and processing.
  • step S406 after obtaining the SD state and the alarm, the end node of the tunnel switches the static tunnel through the tunnel protection group mechanism specified by the standard (the tunnel protection group switching in FIG. 5). If the working tunnel is in the SD state and the SF state, the current tunnel is switched to the other tunnels in the static tunnel protection group that do not generate the SD state or the SF state. If the SD status of the active and standby tunnels of the static tunnel occurs, or the SF state of the primary tunnel occurs, the SD state of the standby tunnel occurs. The tunnel protection group sets all the outbound interfaces to the static tunnel protection group. .
  • step S407 the VPN fast re-routing (VPN FRR) is triggered, and the services on the VPN tunnels of the static tunnel protection group are currently switched to the corresponding backup VPN tunnel for transmission.
  • VPN FRR VPN fast re-routing
  • FIG. 8 is a schematic diagram of SD state transfer under dynamic tunnel networking, in accordance with an embodiment of the present disclosure.
  • FIG. 8 there is a label edge router LER and a label switching router LSR.
  • the unidirectional tunnel in FIG. 8 is the tunnel LER1-LSR2-LSR3-LER4.
  • the transmission mode of the tunnel is mainly demonstrated in FIG. 8, and the SD transmission mode of the multi-segment pseudowire is similar.
  • FIG. 6 is a flowchart of a method for processing a signal degradation fault in an L2vpn dynamic tunnel networking scenario according to an embodiment of the present disclosure, where the process includes: Step S601 to Step S607.
  • step S601 the CRC detection method is used on the physical port of each router in FIG. 8, and the current error rate is calculated by the ratio of the number of CRC error packets received in a unit time to the total number of packets.
  • step S602 the error rate calculated by the method of the previous step is successively obtained N times before the current time.
  • step S603 it is determined whether the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation. If yes, the process goes to step S604, otherwise returns to step S601.
  • the local end sends the LLDP protocol advertisement packet to the peer system.
  • the LLDP protocol advertisement packet contains the private TLV (type of the type packet). , length size, value actual content) carries the RX-SD fault generation status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • the LSR3 sends an LLDP protocol advertisement message to the neighboring upstream node LSR2 to inform the SD system of the physical status of the physical port.
  • the LLDP protocol advertisement packet may also be sent to the peer system by the error rate of the physical port.
  • data may be received and sent by the physical port on the path, and data may be received and sent by the SG port.
  • the SD state of the member ports of the SG port may be determined by using a similar method in S601-S604, and the member port is displayed.
  • the SD state the SG port is managed accordingly.
  • the specific method of management refer to the related description of the above embodiment, and details are not described herein.
  • step S605 when it is detected that the physical port generates an SD state and an alarm, the three-layer interface on the physical port is set to the SD state.
  • step S606 when the RSVP protocol senses that the Layer 3 interface is in the SD state, the LSP path information of the Layer 3 interface and the SD state information corresponding to the LSP are sent to the TE tunnel head node by using a notify message.
  • LSR2 can obtain the physical port TX-SD state
  • LSR3 obtains the physical port RX-SD state
  • LSR3 sends an RSVP Notify message to the TE tunnel end node LER4
  • LSR2 sends the TE tunnel notch message to the TE tunnel head node LER1.
  • RSVP Notify message carries the LSP information of the Layer 3 interface passing through the physical port and the SD status of the physical port.
  • step S607 after the end nodes LER1 and LER4 of the TE tunnel obtain the SD state and the alarm, the TE tunnel group in FIG. 8 is switched by the standard tunnel protection group mechanism.
  • FIG. 8 is a schematic diagram of SD state transfer under dynamic tunnel networking according to an embodiment of the present disclosure.
  • FIG. 8 there is a label edge router LER and a label switching router LSR.
  • the unidirectional tunnel in FIG. 8 is the tunnel LER1-LSR2-LSR3-LER4.
  • the transmission mode of the tunnel is mainly demonstrated in FIG. 8, and the SD transmission mode of the multi-segment pseudowire is similar.
  • FIG. 7 illustrates a flow of a method for processing a signal degradation fault in an L3vpn dynamic tunnel networking scenario, where the process includes: steps S701-S707, according to an embodiment of the present disclosure.
  • step S701 the CRC detection method is used on the physical port of each router in FIG. 8, and the current error rate is calculated by the ratio of the number of CRC error packets received in a unit time to the total number of packets.
  • step S702 the error rate calculated by the method of the previous step is successively obtained N times before the current time.
  • step S703 it is determined whether the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation. If yes, the process goes to step S704, otherwise returns to step S701.
  • step S704 it is assumed that the physical port of the LSR3 in FIG. 8 generates the RX-SD status and the alarm, and the local end sends the LLDP protocol advertisement packet to the peer system.
  • the LLDP protocol advertisement packet includes a private TLV (type of the type packet). , length size, value actual content) carries the RX-SD fault generation status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • the LSR3 sends an LLDP protocol advertisement message to the neighboring upstream node LSR2 to inform the SD system of the physical status of the physical port.
  • the LLDP protocol advertisement packet may also be sent to the peer system by the error rate of the physical port.
  • data may be received and sent by the physical port on the path, and data may be received and sent by the SG port.
  • the SD state of each member port of the SG port may be determined by using a similar method in S701-S704, and the member port is displayed.
  • the SD state the SG port is managed accordingly.
  • the specific method of management refer to the related description of the above embodiment, and details are not described herein.
  • step S705 when it is detected that the physical port generates the SD state and the alarm, the three-layer interface on the physical port is set to the SD state.
  • step S706 when the RSVP protocol senses that the Layer 3 interface is in the SD state, the LSP path information of the Layer 3 interface and the SD state information corresponding to the LSP are sent to the TE tunnel head node by using a notify message.
  • the LSR2 can obtain the physical port TX-SD state
  • the LSR3 obtains the physical port RX-SD state
  • the LSR3 sends the RSVP Notify message to the TE tunnel end node LER4, and the LSR2 is sent to the TE tunnel head node LER1.
  • RSVP Notify message carries the LSP information of the Layer 3 interface passing through the physical port and the SD status of the physical port.
  • step S707 after the end nodes LER1 and LER4 of the TE tunnel obtain the SD state and the alarm, the TE tunnel group is switched by the standard tunnel protection group mechanism.
  • the TE-HSB switch in FIG. 8 if the TE tunnel group (including the main In the path and the alternate path, the working tunnel (such as the primary path) has an SD state and an alarm. If other tunnels (such as the alternate path) do not have an SD state or an SF state, the current service of the working tunnel is switched to the TE tunnel group. If the SD state of the primary or secondary path of the TE tunnel occurs, or the SF state occurs on the primary path, the SD status of the standby path occurs. The TE tunnel group sets all outgoing interfaces to the TE tunnel group. The next hop of the route is in the SD state. The VPN FRR is triggered, and the services on the VPN tunnels of the TE tunnel group are switched to the corresponding backup VPN tunnel for transmission.
  • the following describes the processing method of the signal degradation fault in the IP public network, the L2VPN, and the L3VPN scenario by using a non-tunnel technology network such as LDP or LSP.
  • the processing method of the signal degradation fault includes: steps S901 to 905.
  • step S901 the CRC detection method is used on the physical port of the system, and the current error rate is calculated by the ratio of the number of CRC error packets received in a unit time and the total number of packets.
  • step S902 the error rate calculated by the method of the previous step is successively obtained N times before the current time.
  • step S903 it is determined whether the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation. If yes, the process goes to step S904, otherwise returns to step S901.
  • LACP Link Aggregation Control Protocol
  • the forwarding interface directly sets the physical port of the member to the blocked state of the member.
  • the protocol exchange of the member interface is interrupted and the member interface is removed from the LAG.
  • the number of aggregated links is greater than the minimum number of member links.
  • the physical port of the member that generates the SD state is removed from the LAG to ensure that there is no SD on the path used by the service.
  • the member physical port of the SD state is reserved in the SG port to continue to use, and the SD state is set on the SG interface, so that the upper layer service senses that the path has an SD state.
  • the physical port of the member in the SD state will be moved to the member physical port of the SG port instead of the SF state. Set the SD state.
  • step S904 when it is detected that the physical port generates the RX-SD status and the alarm, the local system sends the LLDP protocol advertisement packet to the peer system, where the LLDP protocol advertisement packet includes a private TLV (type of the type packet, length size) , value actual content) carries the RX-SD fault generation status bit.
  • the peer system receives the LLDP protocol advertisement packet and generates the TX-SD (send direction SD) status and alarm.
  • step S904 the LLDP protocol advertisement packet may also be sent to the peer system by the error rate of the physical port.
  • step S904 both the local system and the peer system can continue to trigger the following process.
  • step S905 the Layer 3 interface on the physical port is in the SD state, and the IGP protocol senses the SD state of the Layer 3 interface.
  • the cost of the route of the Layer 3 interface is increased.
  • the value of the added value is the user configuration or the cost value.
  • the value is adjusted to the maximum cost (the ospf protocol is 65535 and the isis protocol is 16777214).
  • the label distribution protocol fast reroute is triggered, and the service on the label switching path of the Layer 3 interface is switched to the corresponding backup label switching path for transmission.
  • the embodiments of the present disclosure disclose how to judge the path signal degradation and how to process the signal degradation of the path when the tunnel networking mode and the non-tunnel networking mode are adopted in the IP public network, the L2VPN, and the L3VPN scenario, and make up for In some cases, there is a lack of signal degradation sensing methods and a lack of signal degradation fault handling. It has a good complementary effect on the insufficiency of BFD or TP-OAM processing. The deployment requirements for line signal degradation sensitive services are met in one embodiment.
  • an embodiment of the present disclosure shows a schematic diagram of a processing system for signal degradation failure, the system includes: a port detection module 11, a tunnel transmission module 12, a tunnel state setting module 13, a tunnel protection module 14, and a VPN protection processing module. 15 and path protection module 16.
  • the port detection module 11 is configured to obtain an error condition of the physical port, determine whether the physical port satisfies the preset signal degradation determination condition according to the error condition, and if yes, generate port indication information indicating that the physical port signal is degraded.
  • the tunneling module 12 is configured to send the port indication information to the end node of the tunnel where the physical port is located if the network to which the physical port belongs is tunneled.
  • the tunnel state setting module 13 sets the Wie to determine that the tunnel is in a signal degradation state if the end node of a tunnel receives the port indication information.
  • the tunnel protection module 14 is configured to acquire the states of the primary tunnel and the standby tunnel in each group of tunnel groups.
  • the VPN protection processing module 15 is configured to trigger a pseudo-wire fast re-routing if the tunnel group satisfies the primary tunnel as a signal degradation state or a signal interruption state and the standby tunnel is a signal degradation state, if the network is a Layer 2 VPN network, The services on the pseudowires of the tunnel group are switched to the corresponding backup pseudowires. If the network is a Layer 3 VPN network, the VPN fast reroute is triggered, and the services on the VPN tunnels of the tunnel group are switched to the corresponding backups. Transmission on the VPN channel;
  • the path protection module 16 is configured to determine the Layer 3 interface on the physical port if the network to which the physical port belongs is configured by the non-tunnel technology network, trigger the label re-routing protocol, and re-route the service on the label switching path of the Layer 3 interface. Switch to the backup on the label switched path for transmission.
  • the error condition in the embodiment of the present disclosure reflects the quality of the physical path on the physical port, and the error condition can be measured by using the error rate and the packet error rate as indicators.
  • the port detection module 11 is configured to: obtain a bit error rate of the physical port that is consecutive N times before the current time, and if the N times error rate exceeds the preset error rate threshold corresponding to the line signal degradation, Then, it is determined that the physical port satisfies the preset signal degradation determination condition; otherwise, it is determined that the physical port does not satisfy the signal degradation determination condition; or is set to obtain the physical port current time forward by N (N is greater than or equal to the preset number) If the packet error rate in the time period is greater than or equal to the preset packet error rate threshold corresponding to the time period, the physical port is determined to satisfy the preset signal degradation determination condition; otherwise, Then, it is judged that the physical port does not satisfy the signal degradation determination condition.
  • the processing system described above further includes a port SD status cancel module.
  • the port detection module 11 is further configured to continue to acquire the error status of the physical port after generating the port indication information for indicating the deterioration of the physical port signal, and determine that the physical port is consecutive M times (M is at least a preset multiple of N (eg, Whether the error rate of 100 times or more) does not reach the preset error rate threshold.
  • the port SD state canceling module is configured to cancel the indication of the signal degradation of the physical port by the port indication information when the result of the determination by the port detecting module 11 is YES. Specifically, the physical port is set to a non-SD state, and the SD state cancellation information is sent to the peer system.
  • the port detecting module 11 is further configured to: after generating the port indication information indicating the deterioration of the physical port signal, continue to obtain the current time of the physical port, and trace the S (S is greater than or equal to the preset number) for different time periods.
  • the packet error rate determines whether the packet error rate in each time period is lower than the preset packet error rate threshold corresponding to each time period.
  • the port SD state canceling module is configured to cancel the indication of the signal degradation of the physical port by the port indication information when the result of the determination by the port detecting module 11 is YES. Specifically, the physical port is set to a non-SD state, and the SD state cancellation information is sent to the peer system.
  • the tunnel protection module 14 further sets a Wie to trigger a pseudowire fast reroute in the VPN protection processing module 15 when a tunnel group satisfies the primary tunnel as a signal degradation state or a signal interruption state and the standby tunnel is in a signal degradation state. Before the VPN fast reroute is triggered, the next hop of all the outbound interfaces that are the tunnel group is set to the signal degradation state.
  • the port detection module 11 of the embodiment of the present disclosure is further configured to obtain an error condition of the physical port, and determine, according to the error condition, whether the physical port meets the preset signal degradation determination condition, and acquire each of the Ethernet bundled ports.
  • the error status of the member interface determines whether the member interfaces meet the preset signal degradation judgment condition according to the error condition. If yes, the member interface is blocked. Otherwise, the number of aggregate links that can be used on the Ethernet bundle port is used. If the number of the member interfaces is greater than the minimum number of member links, the member interface is removed from the link aggregation group.
  • the member interface remains in the link aggregation group and continues to be used.
  • the bundled port is set to the signal degradation state. If the other member ports of the Ethernet bundled port are also found to have a signal interruption state, the number of aggregated links that can be used in the Ethernet bundled port is equal to the minimum number of member links.
  • the member port of the condition is moved into the member port of the link aggregation group to replace the interrupted state of the signal. Signal deterioration state.
  • the tunneling module 12 is configured to notify the T-MPLS Section entity of the port indication information of the physical port if the network is configured by the static tunnel technology, and the T-MPLS Section entity maps to the inner layer of the network, maps to the tunnel, and connects the physical port.
  • the port indication information is notified to the tunnel, and then notified to the operation management maintenance detection (MPLS-TP OAM) entity to check the location of the MPLS-TP OAM entity in the network. If the MPLS-TP OAM entity is in the intermediate node of the static tunnel, The other node of the static tunnel sends a preset custom packet to the static tunnel.
  • the preset custom packet carries the node ID and the signal degradation status indication information of the local node.
  • the static tunnel is also provided with a pseudowire.
  • the tunnel transmission module 12 is also used to map the tunnel to the pseudowire, and notify the port indication information of the physical port to the pseudowire.
  • the OAM entity is in the middle node of the pseudowire, and the other node of the pseudowire sends a preset custom packet to the end node of the pseudowire; the preset custom packet carries the node ID of the node and the signal degradation state indication information.
  • the tunneling module 12 is configured to set the Layer 3 port on the port to a signal degradation state if the network is dynamically tunneled, and set the state of the label switching path through the Layer 3 port to a signal degradation state, which will include indicating label switching.
  • the preset format message of the path signal degradation information is sent to the head node of the tunnel where the physical port is located.
  • the tunnel transmission module 11 of the embodiment of the present disclosure is further configured to: after generating the port indication information indicating the degradation of the physical port signal, pass the port indication information of the physical port of the local system to the preset protocol packet. The peer system sent to the line sending direction.
  • the processing system of the embodiment of the present disclosure further includes a routing overhead setting module, where the routing overhead setting module is configured to: if the network to which the physical port belongs is tunneled, the tunnel is determined after the tunnel is determined to be in a signal degradation state.
  • the corresponding logical tunnel interface is set to the SD state, and the cost of the logical interface is increased to a preset cost.
  • the network to which the physical port belongs is formed by the non-tunnel technology network, the signal indicating the deterioration of the physical port is generated. After the port indicates the information, the Layer 3 interface on the physical port is set to the signal degradation state, and the cost of the route with the outbound interface as the Layer 3 interface is increased to the preset cost.
  • the port detecting module 11 is further configured to detect whether the routing path of the physical port has a signal failure state before determining that the tunnel to which the tunnel or the pseudowire belongs is in a signal degradation state, and if the detection result is no, detecting the physical port. Whether the routing path has a signal degradation status.
  • the tunnel protection module 14 is further configured to process according to the flow corresponding to the SF state when the detection result is that the routing path has a signal failure state; otherwise, when the detection result is that the routing path has a signal degradation state, the processing is performed according to the flow corresponding to the SD state. .
  • the processing system in the embodiment of the present disclosure further includes: a background flow message sending module, in order to avoid the impact of the traffic on the physical path on the bit error rate or the packet error rate.
  • the background flow packet sending module is configured to obtain the service traffic on the physical path before the port detection module 11 obtains the error condition of the physical port, and send the preset fixed format on the physical path if the service traffic is smaller than the preset traffic threshold.
  • the background stream packet where the maximum amount of background stream packets sent does not exceed the preset ratio of the physical port bandwidth.
  • the background stream packet can be stopped.
  • the above-mentioned processing system of the embodiment of the present disclosure through the cooperation of the above modules, realizes that the path signal degradation and the path occurrence signal are determined in the tunneling mode and the non-tunnel networking mode in the IP public network, the L2VPN, and the L3VPN.
  • the purpose of the degradation processing is to compensate for the lack of signal degradation sensing methods and the lack of signal degradation failure processing in some cases.
  • the deployment requirements for line signal degradation sensitive services are met in one embodiment.
  • the present disclosure also provides a processing apparatus for signal degradation failure, comprising a processor and a memory, the memory storing program code, causing degradation of a signal described in an embodiment of the present disclosure when the processor executes the program code The troubleshooting method.
  • the present disclosure also provides a computer readable storage medium having stored thereon one or more programs, when the one or more programs are executed by a processor, such that processing of a signal degradation failure described in the embodiments of the present disclosure is performed method.
  • modules or steps of the above embodiments of the present disclosure may be implemented by a general computing device, which may be concentrated on a single computing device or distributed among multiple computing devices. On the network; they can be implemented by program code executable by the computing device, such that they can be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and in some cases, The steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

在本公开提供的信号故障劣化的处理方法、系统、装置和计算机可读存储系统中,在从物理端口获取的误码情况满足预设的信号劣化判断条件时,产生表示物理端口信号劣化的端口指示信息;实现了对路径信号劣化的快速感知。当网络由隧道技术组网,将端口指示信息发送到对应隧道端节点;获取各组隧道组中主、备隧道的状态;当主、备隧道均不可用时,在二层VPN网中,触发伪线快速重路由,在三层VPN网中,触发VPN快速重路由。当网络由非隧道技术组网,将经过物理端口上的三层口的标签交换路径上的业务切换到对应的备份标签交换路径上传输。

Description

信号劣化故障的处理方法、系统、装置和存储介质 技术领域
本公开涉及通信技术领域,具体涉及一种信号劣化故障的处理方法、系统、装置和计算机可读存储介质。
背景技术
目前国内外主流运营商的组网技术以二层虚拟专用网(Layer 2Virtual Private Network,L2VPN)、三层虚拟专用网(Layer 3Virtual Private Network,L3VPN)为主,外层标签交换路径(Label Swith Path,LSP)采用资源预留协议-流量工程(Resource ReSerVation Protocol-Traffic Engineering,RSVP-TE)隧道或者标签分发协议(Label Distribution Protocol,LDP)隧道或者静态手工隧道,对于L2VPN来说内层主要为静态伪线(Pseudowire,PW)或动态LDP方式创建的动态PW,对于L3VPN来说内层主要为BGP-4的多协议扩展(Multiprotocol Extensions for BGP-4,MP-BGP)方式或者其它各种方式建立的VPN通道,其中用到的主要保护技术有IP快速重路由(Internet Protocol Fast Reroute,IP FRR)、VPN FRR、PW FRR、热备份(Hotstandby,TE)HSB、标签分发协议(Label Distribution Protocol,LDP)FRR、静态隧道保护组切换技术。
目前大多数网络部署的故障检测方式主要是双向转发检测协议(Bi-directional Forwarding Detection,BFD)技术。BFD可以快速检测到转发路径上的接口和链路故障、节点的转发引擎故障等,并把故障通知上层协议,使上层协议能够快速收敛。对于静态pw或者静态手工隧道场景,也可以采用多协议标签交换传输应用-操作、管理和维护(Multi-Protocol Label Switching Transport Profile-Operation Administration&Maintenance,TP-OAM)方式检测。
BFD或者TP-OAM的工作机制为周期性定点的发包,连续3个检测报文均未收到判断为故障,对于链路中断可以很好的检测,但对于非连续性的丢包则无能为力。常见的线路信号劣化正是一种不连续, 随机误码丢包的故障形式。若连续两个检测报文均未收到,第3个收到了,BFD或者TP-OAM是不会认为链路存在故障的。但是,其实此时上层业务已经受到影响。此外,此种情况下BFD或者TP-OAM很容易产生震荡,引起业务路径在极短时间内频繁切换回切,业务也不能正常工作。
所以,在一些情况下缺乏对信号劣化(Signal Degradation,SD)进行感知和处理的方法,以补充BFD或者TP-OAM处理方式的不足,并满足对线路信号劣化敏感业务的部署需要。
发明内容
本公开实施例提供一种信号劣化故障的处理方法,包括以下步骤:获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设信号劣化判断条件,若满足,则产生用于表示物理端口信号劣化的端口指示信息;若物理端口所属网络由隧道技术组网,则将端口指示信息发送给物理端口所在隧道的端节点;若某隧道的端节点收到端口指示信息,则确定隧道为信号劣化状态;获取各组隧道组中主隧道和备用隧道的状态,当某隧道组满足主用隧道为信号劣化状态或信号中断状态且备用隧道为信号劣化状态时;若网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若网络为三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输;以及若物理端口所属网络由非隧道技术组网,则确定物理端口上的三层口,触发标签分发协议快速重路由,将经过三层口的标签交换路径上的业务切换到对应的备份标签交换路径上传输。
本公开实施例还提供一种信号故障劣化故障的处理系统,包括:端口检测模块,其设置为获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设信号劣化判断条件;若满足,则产生用于表示物理端口信号劣化的端口指示信息;隧道传输模块,其设置为若物理端口所属网络由隧道技术组网,则将端口指示信息发送给物理端口所在隧道的端节点;隧道状态设置模块,其设置为若某隧道的端节点 收到端口指示信息,则确定隧道为信号劣化状态;隧道保护模块,其设置为获取各组隧道组中主隧道和备用隧道的状态;VPN保护处理模块,其设置为当某隧道组满足主用隧道为信号劣化状态或信号中断状态且备用隧道为信号劣化状态时;若网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若网络为三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输;以及路径保护模块,其设置为若物理端口所属网络由非隧道技术组网,则确定物理端口上的三层口,触发标签分发协议快速重路由,将经过三层口的标签交换路径上的业务切换到备份的标签交换路径上传输。
本公开还提供一种信号劣化故障的处理装置,包括处理器和存储器,所述存储器存储有程序代码,当所述处理器执行所述程序代码时,使得本公开实施例中所述的信号劣化故障的处理方法。
本公开还提供一种计算机可读存储介质,其上存储有一个或者多个程序,所述一个或者多个程序被处理器执行时,使得执行本公开实施例中所述的信号劣化故障的处理方法。
附图说明
图1为根据本公开实施例的一种信号劣化故障的处理方法的流程图;
图2为根据本公开实施例的一种链路层发现协议(Link Layer Discovery Protocol,LLDP)私有类型/长度/值)((Type/Length/Value,TLV)的封装的示意图;
图3为根据本公开实施例的一种L2vpn场景使用静态手工隧道组网下,信号劣化故障的处理方法的流程图;
图4为根据本公开实施例的一种L3VPN场景使用静态手工隧道组网下,信号劣化故障的处理方法的流程图;
图5为在本公开图3和图4的方法中,在静态隧道组网下SD状态的传递示意图;
图6为根据本公开实施例的一种L2vpn场景使用动态隧道组网 下,信号劣化故障的处理方法的流程图;
图7为根据本公开实施例的一种L3VPN场景使用动态隧道组网下,信号劣化故障的处理方法的流程图;
图8为在本公开图6和图7的方法中,在动态隧道组网下SD状态的传递示意图;
图9为根据本公开实施例的一种IP公网、L2VPN、L3VPN场景使用LDP、LSP等非隧道技术组网下,对信号劣化故障的处理方法的流程图;以及
图10为根据本公开实施例的一种信号劣化故障的处理系统的示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在一些情况下,对于虚拟专用网络通过一端向另一端发送数据包的方式来检测两端之间的网络是否畅通,连续三次丢包则判断网络出错,这种判断规则对于网络劣化的敏感度不够,不容易将网络劣化情况识别出来,容易造成信号传输质量降低、用户体验变差的问题。本公开实施例中的方法对于各种网络都可以快速准确地检测出物理端口的信号劣化情况,并对传输信号的隧道、伪线、路径等进行保护。
如图1所示,本公开实施例中的信号劣化故障的处理方法包括以下的步骤:S101-S105a。
在步骤S101,获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设的信号劣化判断条件,若满足,则转到步骤S102。
本公开实施例中,物理端口所属网络可以是IP网、虚拟专用网络VPN等等。IP网、虚拟专用网的组网方式不限,其中,VPN网络可以是L2VPN,也可以是L3VPN等等,本公开实施例对此没有限定。
本公开实施例中的误码情况反映了物理端口上物理路径的质量 好坏,误码情况可以用误码率,误包率等作为指标进行衡量。
在本公开实施例中,在物理端口上可采用循环冗余检验(Cyclic Redundancy Check,CRC)检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率。或者,在物理端口上检测每一个包的误码率,误码率不为0,则判定为误码包,以单位时间内收到的误包数量和总数据包数计算误包率。
通常情况下,线路上存在足够大的用户业务流量来作为误码率或误包率计算的基础。但是特殊情况下,用户业务流量有可能非常小。比如,当用户流量通过保护切换机制切换到备用线路上时,原有线路是没有用户业务流量的,仅存在少数协议报文流量。根据统计特性,误码/包率的计算在统计样本越大的情况下越贴近实际值,当线路流量过小的时候,误码/包率计算会出现失真,不能反映真实的线路状况,不足以支撑对线路随机误码丢包故障的判定。为了能够持续获得物理线路上的有效误码率,本公开实施例在系统中引入背景流机制。
在一个实施例中。在步骤S101前,还包括以下步骤:获取物理路径上的业务流量,若业务流量小于预设流量阈值,在物理路径上发送预设固定格式的背景流报文,其中,背景流报文的最大发送量不超过物理端口带宽的预设比例。
在一个实施例中,预设比例可以取30%、40%等等百分比。具体的,在步骤S101之前,当某个物理路径上的业务流量小于预设流量阈值时,在物理端口开启SD功能后,在物理线路发送方向,系统发送预设固定格式(例如目的MAC地址全0的以太报文)的背景流报文,用来增加物理端口的数据包统计样本的基数。背景流最大发送量不超过端口带宽的30%。为了避免物理路径恢复正常业务流量时,背景流流量造成资源占用的问题,本公开实施例中,在发送背景流报文后还包括以下步骤:定时查询物理端口流量速率,动态调整发送带宽,当实际流量(用户业务流量,非背景流报文)大于端口带宽的30%后停止发送背景流报文。
可以理解的是,背景流报文对于线路接收端除了计算误码/包率,没有其他意义,所以在线路接收方向,系统识别背景流报文,选择异 常流程丢弃背景流报文。线路发送方向系统和线路接收方向系统在显示接口流量统计数据时,通过定时查询接口数据包统计数据和背景流统计数据,修正用户业务流量值,屏蔽掉SD背景流报文。
在一个实施例中,对于获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设的信号劣化判断条件的方法,包括但不限于以下的两种方式中的至少一种实现。
方式一:获取物理端口距离当前时刻前连续N次的误码率,若N次误码率均超过线路信号劣化对应的预设误码率门限值,则判断物理端口满足预设的信号劣化判断条件;否则,则判断物理端口不满足信号劣化判断条件。
在一个实施例中,误码率的计算可以每隔1S进行,每一秒都计算当前一秒内的误码率。
方式二:获取物理端口当前时刻往前追溯N(N大于等于预设数量值)个不同的时间周期内的误包率,若满足至少某个时间周期内的误包率大于或等于与该时间周期对应的预设误包率门限,则判断物理端口满足预设的信号劣化判断条件;否则,则判断物理端口不满足信号劣化判断条件。
例如,每1秒读取物理端口的误码包数(误码包可以根据对数据包的误码情况进行判定)和总包数,并进行记录存储,每秒计算一次物理线路上已经累计到的当前时刻往前追溯1s、10s、100s、1000s时间周期内的误包率,并比较门限值;当任意一个时间周期计算的误包率超过对应预设误包率门限,则判断物理端口满足预设的信号劣化判断条件。假设用户设置的误包率门限的计算公式为n*10^-m,,n为则上述各时间周期对应预设误包率门限分别是n*10^-2,n*10^-3,n*10^-4,n*10^-5,预设误包率门限的精度必须小于或等于m。比如,如果m=4,那么n*10^-5的预设误包率门限的精度不应被使用。
在步骤S102,产生用于表示物理端口信号劣化的端口指示信息。若物理端口所属网络由隧道技术组网,转到步骤S103a,否则转到步骤S103b。
在一个实施例中,物理端口的端口指示信息包括但不限于RX-SD (信号接收方向)状态和告警。
可以理解的是,物理线路的质量随着时间、物理环境等的变化,会出现质量上升的现象,为了能够对物理路径的质量进行把握,及时将物理路径质量转好的信息发送给系统,以便该物理路径的使用。本公开实施例中,在步骤S101之后,还可以采用以下的两种方式中的至少一种来判断是否取消端口指示信息对物理端口的信号劣化的指示。
方式一:继续获取物理端口的误码情况,若物理端口连续M次(M至少为N的预设倍数以上的值)的误码率均没有达到预设误码率门限值,则取消端口指示信息对物理端口的信号劣化的指示。
此处采用的M一般相对故障产生机制中观察次数N来说至少为N的100倍以上的量级。取消端口指示信息对物理端口的信号劣化的指示包括取消物理端口的端口RX-SD状态和告警。
方式二:继续获取物理端口当前时刻往前追溯S(S大于等于预设数量值)个不同的时间周期内的误包率,若每个时间周期内的误包率分别低于与各个时间周期对应的预设误包率门限,则取消端口指示信息对物理端口的信号劣化的指示。
具体的,每秒计算一次线路上已经累计到的当前时刻往前追溯1s、10s、100s、1000s时间周期内的误包率,并比较门限值,“所有时间周期”的误包率必须同时低于对应门限,才取消端口RX-SD状态和告警。假设用户设置的门限为n*10^-m,上述列举的各时间周期对应预设误包率门限分别是n*10^-(m-3),n*10^-(m-2),n*10^-(m-1),n*10^-m。预设误包率门限精度必须小于或等于m。比如,如果m=4,那么n*10^-5的预设误包率门限不应被使用。
在一个实施例中,为了让信号发送端系统也能得到物理端口RX-SD状态和告警的信息,可以在物理端口产生RX-SD状态和告警后,通知发送方系统。具体的,在产生用于表示物理端口信号劣化的端口指示信息后,还包括以下步骤:将本端系统的物理端口的端口指示信息通过预设协议报文发送给线路发送方向的对端系统。该预设协议报文可以为底层协议报文,如LLDP协议报文,这些底层协议的通用性 较好,其使用有利于增强本公开实施例方法的通用性和适应性。但是可以理解的是,本公开实施例的预设协议报文并不仅限于底层协议报文,还可以是非底层的协议报文。
具体的,对于线路发送方向的直连对等体系统来说,通过LLDP(Link Layer Discovery Protocol,链路层发现协议)协议来感知本端系统产生的单向SD故障(在S102中确定的)。当本端系统产生RX-SD状态和告警后,发送LLDP协议通告报文到对端系统,该LLDP协议通告报文中含私有TLV(type包的类型、length大小、value实际内容)携带RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文,生成TX-SD(发方向SD)状态和告警。
LLDP私有TLV的封装的示例见图2,其中,SD Status=0,表示没有SD告警,SD Status=2标识产生SD告警。所述封装包括:TLV类型(TLV Type)、TLV信息字符串长度(TLV information string length)、组织唯一标识附(Organizatiohally unique identifier,OUI)、子类型(SubType)以及SD状态(SD status)。图2中所示的值是示例性的。
当然,本公开实施例中还可以采用其他的协议报文传输该SD状态和告警,本公开实施例对此没有限定,
在一个实施例中,当本端系统通过上述的方式判断本端某物理端口上SD状态和告警取消后,可通过向对端系统发送LLDP协议通告报文(此时,SD Status=0)的方式告知该消息,对端系统通过LLDP协议再次收到RX-SD故障恢复状态位,则判定为TX-SD告警消失。
在通知到对端系统该物理端口的SD状态和告警后,发送端和接收端的系统都可以触发后续的流程进行隧道的保护。
在步骤S103a,若物理端口所属网络由隧道技术组网,则将物理端口的端口指示信息发送给物理端口所在隧道的端节点。
在一个实施例中,物理端口的端口指示信息可以通过在网络上传输的协议报文等方式传输给物理端口所在隧道的端节点。
对于静态隧道组网和动态隧道组网两种方式而言,将端口指示信息发送给物理端口所在隧道的端节点的具体步骤有所不同。
在静态隧道技术组网的情况下,将端口指示信息发送给物理端口所在隧道的端节点的步骤包括以下步骤:将物理端口的端口指示信息通知到传输层多协议标签交换T-MPLS(Transport-Multi-Protocol Label Switching)段层(Section)实体,T-MPLS Section实体向网络内层映射,映射到隧道(为静态隧道),将物理端口的端口指示信息通知到隧道,继而通知到操作管理维护检测(MPLS-TP OAM,Multi-Protocol Label Switching-Transport Profile Operation Administrationand Maintenance)实体,检查MPLS-TP OAM实体在网络中所处的位置,若MPLS-TP OAM实体在隧道的中间节点,则通过隧道的其他节点(如中间节点)向隧道的端节点发送预设自定义报文,其中,预设自定义报文携带本节点的节点ID和信号劣化状态指示信息。在一个示例中,该预定义报文还可以携带误码/包率信息。
在L2VPN中,静态隧道上还设有伪线,在需要伪线感知SD时,可以从上述的隧道映射到伪线中,将物理端口的端口指示信息通知到伪线,若TP-OAM实体在伪线的中间节点,则通过伪线的中间节点向伪线的端节点发送预设自定义报文,其中,预设自定义报文携带本节点的节点ID和信号劣化状态指示信息,在一个示例中,该预定义报文还可以携带误码/包率信息。
在一个实施例中,预设自定义报文可以是自定义的FEI报文或者是其他格式报文,当TP-OAM实体处于隧道或者MSPW(Multi-Segment Pseudo-Wire,多段伪线)的中间节点,则物理端口所在的本节点可以向下游节点发送FEI(Forward Error Indication,前向误差指示)报文,该报文携带的信息包括本节点的NODE ID(NODE ID中填本节点的设备机MAC地址)、SD状态指示(对于LSP FEI报文,为端口TMS指示;对于PW FEI报文,为隧道SD指示)、误码率信息,通过FEI报文在下游节点的传输,使得静态隧道的端节点或伪线的端节点知晓自身为SD状态。
在一个实施例中,为了判断更加准确,在静态隧道的端节点上可以对各个节点发送的误码/包率进行累计,所有的NODE ID中,只 要有一个对应产生了SD状态,则不再需要进行误码/包率累加,即可以判定该静态隧道或静态PW为SD状态。而当所有的NODE ID中都没有SD状态指示时,若累加误码/包率的平均值大于维护实体组(Maintenance Entity Group,MEG)上配置的SD门限时,则产生SD告警;判定该静态隧道或静态PW为SD状态,并关联静态隧道或静态PW做相应的保护切换决策和处理。
当误码率为0时,TP-OAM做取消FEI报文发送。FEI报文为自定义私有报文,格式为TP-OAM报文格式,OpCode字段定义为0x60。
在动态隧道技术组网的情况下,将端口指示信息发送给物理端口所在隧道的端节点包括:将端口上的三层口置为信号劣化状态,将经过三层口的标签交换路径的状态设为信号劣化状态,将含有表示标签交换路径信号劣化的信息的预设格式的消息发送给该物理端口所在隧道(为TE流量工程隧道)的头节点。在本文中,三层口也可以称为是三层接口或三层端口。
具体的,在动态隧道技术组网的情况下,RSVP协议可感知三层接口SD状态,通过通知(notify)消息将经过该三层接口的LSP路径信息以及对应的SD状态信息发送到TE隧道头节点。TE隧道头节点获得LSP的SD状态后,做相应的保护切换决策和处理。当然,可以理解的是,在本公开实施例的一个示例中,还可以采用其他消息或协议报文的方式发送LSP信息和SD状态,本公开实施例对此没有限制。
在步骤S104a,若某隧道的端节点收到端口指示信息,则判定该隧道为信号劣化状态。
该步骤的目的是根据物理端口的RX-SD状态将物理端口所属隧道的状态设置为信号劣化状态。该步骤可以通过对隧道的端节点进行监测实现。
在步骤S105a,获取各组隧道组中主隧道和备用隧道的状态,当某隧道组满足主用隧道为信号劣化状态或信号中断状态且备用隧道为信号劣化状态时;若网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若网络为 三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输。
在静态隧道组网情况下,一般设置有静态隧道保护组,包括主隧道和备用隧道。而在动态组网中,TE隧道设置有主路径和备用路径,该主路径和备用路径可以分别看做是主隧道和备用隧道,TE隧道也可视作为一个隧道组。
在静态隧道组网下,当主、备用隧道中出现SD状态时,可联动静态隧道/静态隧道保护组做出对应处理。即若S105中获取主备隧道状态后,确定某组隧道组中,有一条工作隧道(为当前承载了用户业务流的隧道)状态为SD状态或信号失效(Signal Fail,SF)状态,其他隧道为非SD状态以及非SF状态,则将该工作隧道的业务流切换到其他隧道上;若是隧道保护组中所有的隧道的情况都比较差,如主、备隧道分别为SF状态和SD状态;或者主、备隧道都为SD状态,则此时,为了业务流的正常传输,需要更上层的保护。若静态隧道组网的网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若静态隧道组网的网络为三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输。
在动态隧道(RSVP-TE)组网情况下,物理端口产生SD状态后联动RSVP-TE隧道做出对应处理,物理端口产生SD状态后,经过上述的步骤S103a和S104a,TE流量工程隧道的头节点会获得SD的状态。如果TE隧道的主路径、Hot standby(热备份)路径都发生SD,或者主路径SF,Hot standby路径发生SD,意味着TE隧道无法正常传输业务,此时为了业务流的正常工作,需要更上层的保护。若动态隧道组网的网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若动态隧道组网的网络为三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输。
本公开实施例中,无论是静态组网还是动态组网场景下,为了使得系统对隧道组的状态有直观的了解,当某隧道组满足主用隧道为 信号劣化状态或信号中断状态且备用隧道为信号劣化状态时,在触发伪线快速重路由或触发VPN快速重路由的步骤前,还包括以下步骤:将所有出接口为隧道组的路由的下一跳置为信号劣化状态。
在步骤S103b,若网络由非隧道技术组网,则确定物理端口上的三层口,触发标签分发协议快速重路由,将经过三层口的标签交换路径上的业务切换到对应的备份标签交换路径上传输。
在实际中,路径上可能由物理端口接收和发送数据,也可能由以太捆绑端口(SmartGroup,SG,其也叫Trunk口、LAG口、链路聚合组(Link Aggregation Group))接收和发送数据。为了便于对SG口的管理,本公开实施例中,在获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设信号劣化判断条件的步骤还包括以下步骤:获取以太捆绑端口的各成员口的误码情况,根据误码情况判断各成员口是否满足预设信号劣化判断条件,若满足,则将成员口置为阻塞状态;或者,若以太捆绑端口上可使用的聚合链路数大于最小成员链路数,将成员口移出链路聚合组;若以太捆绑端口上可使用的聚合链路数等于最小成员链路数,将成员口保留在链路聚合组中继续使用,将以太捆绑端口置为信号劣化状态;并且其中,若还检测到以太捆绑端口的其他成员端口出现信号中断状态,在以太捆绑端口可使用的聚合链路数等于最小成员链路数时,将满足预设信号劣化判断条件的成员口移入链路聚合组中替代信号中断状态的成员端口,将以太捆绑端口置为信号劣化状态。
在一个实施例中,在物理端口出现SD状态和告警时,为了使得上层知晓对应路由的信号传输质量好坏,以便选择更好的路由路径传输业务。本公开实施例中,在步骤S102产生用于表示物理端口信号劣化的端口指示信息后,还包括以下步骤:确定物理端口上的三层口,将三层口置为信号劣化状态,将出接口为三层口的路由的开销增大到预设的开销值。
上述的步骤可以由物理端口产生SD状态后联动内部网关协议(Interior Gateway Protocol,IGP)协议做出对应处理来实现。具体的,物理端口产生SD状态和告警,将此物理端口上三层接口置SD 状态,IGP协议感知三层口SD状态,将出接口为该三层口的路由开销(cost)值增大到预设开销值。在一个示例中,开销的增大值可以由用户自行配置,在另一个示例中,可直接将路由开销值调整到最大值(在开放最短路径优先(Open Shortest Path First,ospf)协议中,其为65535,在中间系统到中间系统(Intermediate system to intermediate system,isis)协议中,其为16777214)。
在本公开实施例中,当某个物理端口的SD状态和告警取消后,该物理端口上的三层口的SD状态也随之被取消(可由IGP协议感知和进行取消处理)时,路由的cost值恢复为之前的配置值或默认值。
可以理解的是,在一个实施例中,为了对线路产生SF状态时,有更好的管理,在判定隧道或伪线所属隧道为信号劣化状态前,若是检测到物理端口所在路由路径上有SF状态,则按照SF状态对应的流程进行处理,当没有SF状态时,再检查该路由路径上是否存在SD状态,是,则进行与SD状态对应的流程。
采用本公开实施例的信号劣化故障的处理方法,通过获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设的信号劣化判断条件来感知线路信号的劣化状态,在判断结果为是时,产生用于表示物理端口信号劣化的端口指示信息;实现了对路径的信号劣化的快速感知。本公开提供了在隧道组网技术和非隧道组网技术下,出现SD状态时,对隧道和标签交换路径上业务的保护处理。为各种场景和各种组网场景下提供了信号劣化故障感知和处理的方法,弥补了在一些情况下缺乏信号劣化感知方法以及对信号劣化故障处理缺失的不足。并且本公开实施例中通过误码率或误包率判断端口SD状态的方法,以及引入背景流报文增加了对误码率和误包率计算的准确性,增强了判断路径出现SD状态的准确性,提升了隧道或标签交换路径切换的准确度。
下面结合图3-9,对多种常见场景下,对信号故障劣化故障的处理方法进行详细的示例说明。
结合图3和图5对L2vpn场景使用静态手工隧道组网下,对信号劣化故障进行感知和处理的方法进行示例说明。图5是根据本公开 实施例在静态隧道组网下SD状态传递示意图。在图5中,存在标签边缘路由器(Label Edge Router,LER)和标签交换路由器(Label Switching Router,LSR);图5中的单向隧道为隧道LER1-LSR2-LSR3-LER4,图5中主要示范了隧道的传递方式,多段伪线的SD传递方式类似。
参见图3,图3示出了根据本公开实施例在L2vpn静态手工隧道场景下信号劣化故障的处理方法的流程,所述路程包括:步骤301-步骤307。
在步骤S301,在图5中的路由器的物理端口上采用CRC检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率。
在步骤S302,获取该物理端口距离当前时刻前连续N次通过前一步骤的方法计算得到的误码率。
在步骤S303,判断该N次误码率是否均超过线路信号劣化对应的预设误码率门限值,若超过,则转到步骤S304,否则返回步骤S301。
在步骤S304,假设图5中的LSR3的物理端口产生RX-SD状态和告警,则本端发送LLDP协议通告报文到对端系统,该LLDP协议通告报文中含私有TLV(type包的类型、length大小、value实际内容)携带RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文,生成TX-SD(发方向SD)状态和告警。
在实际中,路径上可能由物理端口接收和发送数据,也可能由SG口接收和发送数据。为了便于对SG口的管理,本公开实施例中,在判断物理端口是否产生SD时,还可以采用S301-S304中类似的方案对SG口的各成员口进行SD状态的判断,在成员口出现SD状态时,对SG口进行相应的管理,管理的具体方法参见以上实施例的相关叙述,在此不再赘述。
如图5中,LSR3向邻近的上游节点LSR2发送LLDP协议通告报文告知对端系统物理端口的SD状态。
在步骤S304中,LLDP协议通告报文还可以携带该物理端口的误码率情况被发送给对端系统。
在步骤S304之后,无论是本端系统还是对端系统都可以继续触发以下的流程:步骤S305-步骤S307。
在步骤S305,当检测到物理端口产生SD状态和报警时,将物理端口(本公开实施例中是图5中LSR3的物理端口)的RX-SD状态、报警和误码率情况通知到T-MPLS Section实体,T-MPLS Section实体向网络内层映射,映射到隧道,映射到伪线,以及将物理端口的SD状态、报警和误码率情况通知到隧道和伪线,继而通知到MPLS-TP OAM实体,检查MPLS-TP OAM实体在网络中所处的位置,若MPLS-TP OAM实体在静态隧道或多段伪线的中间节点(LSR3为隧道LER1-LSR2-LSR3-LER4的中间节点),则通过静态隧道或伪线上的中间节点向静态隧道或伪线的端节点发送自定义的FEI报文。
如图5中,LSR3向下游节点LER4发送自定义的TP-OAM FEI报文(因为LSR3上产生的是收方向的SD状态,所以LER4是LSR3的下游节点),LSR2是向下游节点LER1发送自定义的TP-OAM FEI报文(因为LSR2上产生的是发方向的SD状态,所以认为LER1是LSR2的下游节点)。
该自定义FEI报文携带的信息包括但不限于本节点的NODE ID(NODE ID中填本节点的设备机MAC地址)、SD状态指示(对于LSP FEI报文,为端口TMS指示;对于PW FEI报文,为隧道SD指示)、误码率信息,通过FEI报文在其他节点的传输,使得静态隧道的端节点或伪线的端节点知晓出现SD状态。其中,自定义的FEI报文中OpCode字段定义为0x60。
在一个实施例中,为了判断更加准确,在静态隧道的端节点上可以对各个节点发送的误码/包率进行累计,所有的NODE ID中,只要有一个对应产生了SD状态,则不再需要进行误码/包率累加,即可以判定该静态隧道或静态PW为SD状态。而当所有的NODE ID中都没有SD状态指示时,若累加误码/包率的平均值大于维护实体组(Maintenance Entity Group,MEG)上配置的SD门限时,则产生SD告警;判定该静态隧道或静态PW为SD状态,并关联静态隧道或静态PW做相应的保护切换决策和处理。
在步骤S306,隧道的端节点获得SD状态和告警后,通过标准规定的隧道保护组机制来对静态隧道进行切换(图5中的隧道保护组切换)。若静态隧道保护组中,工作的隧道发生SD状态和告警,其他的隧道没有SD状态或SF状态,则将工作隧道当前的业务切换到静态隧道保护组的其他没有产生SD状态或SF状态的隧道上去;若静态隧道的主、备隧道都发生SD状态,或者主隧道发生SF状态,备隧道发生SD状态,隧道保护组会将所有出接口为该静态隧道保护组的路由下一跳置SD状态。
在步骤S307,触发伪线快速路由(FW FRR),将隧道组的各伪线上的业务切换到对应的备份伪线上传输。
结合图4和图5对L3vpn场景使用静态手工隧道组网下,对信号劣化故障进行感知和处理的方法进行示例说明。图5是根据本公开实施例的静态隧道组网下SD状态传递示意图。在图5中,存在标签边缘路由器LER和标签交换路由器LSR。图5中的单向隧道为隧道LER1-LSR2-LSR3-LER4,图5中主要示范了隧道的传递方式,多段伪线的SD传递方式类似。
参见图4,图4示出了根据本公开实施例在L3VPN静态手工隧道场景下信号劣化故障的处理方法的流程,所述流程包括:步骤S401-S407。
在步骤S401,在图5中的路由器的物理端口上采用CRC检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率;
在步骤S402,获取该物理端口距离当前时刻前连续N次通过S401的方法计算得到的误码率;
在步骤S403,判断该N次误码率是否均超过线路信号劣化对应的预设误码率门限值,若超过,则转到步骤S404,否则返回步骤S401。
在步骤S404,假设图5中的LSR3的物理端口产生RX-SD状态和告警,则本端发送LLDP协议通告报文到对端系统,该LLDP协议通告报文中含私有TLV(type包的类型、length大小、value实际内容)携带RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文, 生成TX-SD(发方向SD)状态和告警。
如图5中,LSR3向邻近的上游节点LSR2发送LLDP协议通告报文告知对端系统物理端口的SD状态。
在实际中,路径上可能由物理端口接收和发送数据,也可能由SG口接收和发送数据。为了便于对SG口的管理,本公开实施例中,在判断物理端口是否产生SD时,还可以采用S401-S404中类似的方案对SG口的各成员口进行SD状态的判断,在成员口出现SD状态时,对SG口进行相应的管理,管理的具体方法参见以上实施例的相关叙述,在此不再赘述。
在步骤S404中,LLDP协议通告报文还可以携带该物理端口的误码率情况被发送给对端系统。
在步骤S404之后,无论是本端系统还是对端系统都可以继续触发以下的流程:S405-S407。
在步骤S405,当检测到物理端口产生SD状态和报警,将物理端口(本公开实施例中是图5中LSR3的物理端口)的RX-SD状态、报警和误码率情况通过其他节点通知到T-MPLS Section实体,T-MPLS Section实体向网络内层映射,映射到隧道,将物理端口的SD状态、报警和误码率情况通知到隧道,继而通知到MPLS-TP OAM实体,检查MPLS-TP OAM实体在网络中所处的位置,若MPLS-TP OAM实体在静态隧道的中间节点,则通过静态隧道的其他中间节点向静态隧道的端节点发送自定义的FEI报文。
如图5中,LSR3向下游节点LER4发送自定义的TP-OAM FEI报文,LSR2是向下游节点LER1发送自定义的TP-OAM FEI报文。
该自定义FEI报文携带的信息包括限不限于本节点的NODE ID(NODE ID中填本节点的设备机MAC地址)、SD状态指示(对于LSP FEI报文,为端口TMS指示;对于PW FEI报文,为隧道SD指示)、误码率信息,通过FEI报文在其他节点的传输,使得静态隧道的端节点知晓出现SD状态。其中,自定义的FEI报文中OpCode字段定义为0x60。
在一个实施例中,为了判断更加准确,在静态隧道的端节点上 可以对各个节点发送的误码/包率进行累计,所有的NODE ID中,只要有一个对应产生了SD状态,则不再需要进行误码/包率累加,即可以判定该静态隧道为SD状态。而当所有的NODE ID中都没有SD状态指示时,若累加误码/包率的平均值大于MEG上配置的SD门限时,则产生SD告警;判定该静态隧道为SD状态,并关联静态隧道做相应的保护切换决策和处理。
在步骤S406,隧道的端节点获得SD状态和告警后,通过标准规定的隧道保护组机制来对静态隧道进行切换(图5中的隧道保护组切换)。若静态隧道保护组中,工作的隧道发生SD状态和告警,其他的隧道没有SD状态或SF状态,则将工作隧道当前的业务切换到静态隧道保护组的其他没有产生SD状态或SF状态的隧道上去;若静态隧道的主、备隧道都发生SD状态,或者主隧道发生SF状态,备隧道发生SD状态,隧道保护组会将所有出接口为该静态隧道保护组的路由下一跳置SD状态。
在步骤S407,触发VPN快速重路由(VPN FRR),将当前将静态隧道保护组的各VPN通道上的业务切换到对应的备份VPN通道上传输。
下面结合图6和图8对L2vpn场景使用动态隧道组网下,对信号劣化故障进行感知和处理的方法进行示例说明。图8是根据本公开实施例的在动态隧道组网下SD状态传递示意图。图8中,存在标签边缘路由器LER和标签交换路由器LSR。图8中的单向隧道为隧道LER1-LSR2-LSR3-LER4,图8中主要示范了隧道的传递方式,多段伪线的SD传递方式类似。
参见图6,图6示出了根据本公开实施例在L2vpn动态隧道组网场景下信号劣化故障的处理方法的流程,所述流程包括:步骤S601-步骤S607。
在步骤S601,在图8中的各个路由器的物理端口上采用CRC检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率。
在步骤S602,获取各物理端口距离当前时刻前连续N次通过前一步骤的方法计算得到的误码率。
在步骤S603,判断该N次误码率是否均超过线路信号劣化对应的预设误码率门限值,若超过,则转到步骤S604,否则返回步骤S601。
在步骤S604,假设图8中的LSR3的物理端口产生RX-SD状态和告警,则本端发送LLDP协议通告报文到对端系统,该LLDP协议通告报文中含私有TLV(type包的类型、length大小、value实际内容)携带RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文,生成TX-SD(发方向SD)状态和告警。
如图8中,LSR3向邻近的上游节点LSR2发送LLDP协议通告报文告知对端系统物理端口的SD状态。在S604中,LLDP协议通告报文还可以携带该物理端口的误码率情况被发送给对端系统。
在实际中,路径上可能由物理端口接收和发送数据,也可能由SG口接收和发送数据。为了便于对SG口的管理,本公开实施例中,在判断物理端口是否产生SD时,还可以采用S601-S604中类似的方法对SG口的各成员口进行SD状态的判断,在成员口出现SD状态时,对SG口进行相应的管理,管理的具体方法参见以上实施例的相关叙述,在此不再赘述。
在步骤S605,当检测到物理端口产生SD状态和报警,将此物理端口上三层接口置SD状态。
在步骤S606,当RSVP协议感知到该三层接口为SD状态,通过notify消息将经过该三层接口的LSP路径信息以及LSP对应的SD状态信息发送到TE隧道头节点。
如图8中,在经过S604之后,LSR2可以获得物理端口TX-SD状态,LSR3获得物理端口RX-SD状态,LSR3向TE隧道端节点LER4发送RSVP Notify消息,LSR2是向TE隧道头节点LER1发送RSVP Notify消息。RSVP Notify消息携带经过物理端口的三层接口的LSP信息和物理端口SD状态。
在步骤S607,TE隧道的端节点LER1和LER4获得SD状态和告警后,通过标准规定的隧道保护组机制来对TE隧道组进行切换图8中的TE-HSB切换。
在L2VPN场景下,选用以下的两种方式之一来进行TE-HSB切换。
方式一:若TE隧道组(包括主路径和备用路径)中,工作的隧道(如主路径)发生SD状态和告警,其他的隧道(如备用路径)没有SD状态或SF状态,则将工作隧道当前的业务切换到TE隧道组的其他没有产生SD状态或SF状态的隧道上去;若TE隧道的主、备路径都发生SD状态,或者主路径发生SF状态,备用路径发生SD状态,TE隧道组将所有出接口为该TE隧道组的路由下一跳置SD状态;触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输。
方式二:若TE隧道组(包括主路径和备用路径)中,所有经过SD状态物理端口的LSP均为SD状态(或者某些是SF状态),则将出接口为该三层口的路由cost开销增大到预设开销值;触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输。
下面结合图7和图8对L3vpn场景使用动态隧道组网下,对信号劣化故障进行感知和处理的方法进行示例说明。图8是根据本公开实施例的动态隧道组网下SD状态传递示意图。在图8中,存在标签边缘路由器LER和标签交换路由器LSR。图8中的单向隧道为隧道LER1-LSR2-LSR3-LER4,图8中主要示范了隧道的传递方式,多段伪线的SD传递方式类似。
参见图7,图7示出了根据本公开实施例的在L3vpn动态隧道组网场景下信号劣化故障的处理方法的流程,所述流程包括:步骤S701-S707。
在步骤S701,在图8中的各个路由器的物理端口上采用CRC检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率。
在步骤S702,获取各物理端口距离当前时刻前连续N次通过前一步骤的方法计算得到的误码率。
在步骤S703,判断该N次误码率是否均超过线路信号劣化对应的预设误码率门限值,若超过,则转到步骤S704,否则返回步骤S701。
在步骤S704,假设图8中的LSR3的物理端口产生RX-SD状态和告警,则本端发送LLDP协议通告报文到对端系统,该LLDP协议通告 报文中含私有TLV(type包的类型、length大小、value实际内容)携带RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文,生成TX-SD(发方向SD)状态和告警。
如图8中,LSR3向邻近的上游节点LSR2发送LLDP协议通告报文告知对端系统物理端口的SD状态。在S704中,LLDP协议通告报文还可以携带该物理端口的误码率情况被发送给对端系统。
在实际中,路径上可能由物理端口接收和发送数据,也可能由SG口接收和发送数据。为了便于对SG口的管理,本公开实施例中,在判断物理端口是否产生SD时,还可以采用S701-S704中类似的方法对SG口的各成员口进行SD状态的判断,在成员口出现SD状态时,对SG口进行相应的管理,管理的具体方法参见以上实施例的相关叙述,在此不再赘述。
在步骤S705,当检测到物理端口产生SD状态和报警,将此物理端口上三层接口置SD状态。
在步骤S706,当RSVP协议感知到该三层接口为SD状态,通过notify消息将经过该三层接口的LSP路径信息以及LSP对应的SD状态信息发送到TE隧道头节点。
如图8中,在经过S704之后,LSR2可以获得物理端口TX-SD状态,LSR3获得物理端口RX-SD状态,LSR3向TE隧道端节点LER4发送RSVP Notify消息,LSR2是向TE隧道头节点LER1发送RSVP Notify消息。其中,RSVP Notify消息携带经过物理端口的三层接口的LSP信息和物理端口SD状态。
在步骤S707,TE隧道的端节点LER1和LER4获得SD状态和告警后,通过标准规定的隧道保护组机制来对TE隧道组进行切换图8中的TE-HSB切换:若TE隧道组(包括主路径和备用路径)中,工作的隧道(如主路径)发生SD状态和告警,其他的隧道(如备用路径)没有SD状态或SF状态,则将工作隧道当前的业务切换到TE隧道组的其他没有产生SD状态或SF状态的隧道上去;若TE隧道的主、备路径都发生SD状态,或者主路径发生SF状态,备用路径发生SD状态,TE隧道组将所有出接口为该TE隧道组的路由下一跳置SD状态; 触发VPN FRR,将TE隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输。
下面结合图9,对IP公网、L2VPN、L3VPN场景,使用LDP、LSP等非隧道技术组网,对信号劣化故障的处理方法进行示例说明。
参见图9,该信号劣化故障的处理方法包括:步骤S901-步骤905。
在步骤S901,在系统的物理端口上采用CRC检测方法检测,以单位时间内收到的CRC错误报文数量和总报文数量比值计算当前误码率。
在步骤S902,获取各物理端口距离当前时刻前连续N次通过前一步骤的方法计算得到的误码率。
在步骤S903,判断该N次误码率是否均超过线路信号劣化对应的预设误码率门限值,若超过,则转到步骤S904,否则返回步骤S901。
在实际中,很多路径都存在多链路捆绑的情况,SG口上也可能会产生SD状态,所以链路局和控制协议(Link Aggregation Control Protocol,LACP)需对SG捆绑链路进行管理。采用上述S901-S903的步骤判断SG口的成员口是否存在SD状态。
当检测到有成员口为SD状态时,转发面直接将该成员物理端口置为Block阻塞状态,引发LACP在该成员口上的协议交互报文中断,成员口被移出LAG转发;或者,若可使用的聚合链路数大于最小成员链路数,将产生SD状态的成员物理端口移出LAG转发,以保证业务使用的路径上无SD。
若可使用的聚合链路数等于最小成员链路数时,将SD状态的成员物理端口保留在SG口中继续使用,在该SG口上置SD状态,以便上层业务感知该路径有SD状态。
若SG口的某成员口上产生SF状态,且可使用的聚合链路数等于最小成员链路数,将该SD状态的成员物理端口将移入SG口中替代SF状态的成员物理端口,同时在SG口上置SD状态。
在步骤S904,当检测到物理端口产生RX-SD状态和告警,则本端系统发送LLDP协议通告报文到对端系统,该LLDP协议通告报文中含私有TLV(type包的类型、length大小、value实际内容)携带 RX-SD故障产生状态位。对端系统收到该LLDP协议通告报文,生成TX-SD(发方向SD)状态和告警。
在步骤S904,LLDP协议通告报文还可以携带该物理端口的误码率情况被发送给对端系统。
在步骤S904之后,无论是本端系统还是对端系统都可以继续触发以下的流程。
在步骤S905,此物理端口上的三层口置SD状态,IGP协议感知三层口SD状态,将出接口为该三层口的路由cost值增大,增大值为用户配置,或者cost值直接调整到最大开销值(ospf协议为65535,isis协议为16777214);触发标签分发协议快速重路由,将经过三层口的标签交换路径上的业务切换到对应的备份标签交换路径上传输。
本公开实施例公开了IP公网、L2VPN、L3VPN场景下,采用隧道组网方式以及非隧道组网方式时,如何判断路径信号劣化,以及如何对路径出现信号劣化进行处理的方案,弥补了在一些情况下缺乏信号劣化感知方法以及对信号劣化故障处理缺失的不足。对BFD或者TP-OAM处理方式的不足起到了很好的补充效果。在一个实施例中满足了对线路信号劣化敏感业务的部署需要。
参见图10,本公开实施例示出了一种信号劣化故障的处理系统的示意图,该系统包括:端口检测模块11、隧道传输模块12、隧道状态设置模块13、隧道保护模块14、VPN保护处理模块15和路径保护模块16。
所述端口检测模块11设置为获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设信号劣化判断条件;若满足,则产生用于表示物理端口信号劣化的端口指示信息。
所述隧道传输模块12设置为若物理端口所属网络由隧道技术组网,则将端口指示信息发送给物理端口所在隧道的端节点。
所述隧道状态设置模块13设置Wie若某隧道的端节点收到端口指示信息,则确定隧道为信号劣化状态。
所述隧道保护模块14设置为获取各组隧道组中主隧道和备用隧 道的状态。
所述VPN保护处理模块15设置为当某隧道组满足主用隧道为信号劣化状态或信号中断状态且备用隧道为信号劣化状态时,若网络为二层VPN网络,则触发伪线快速重路由,将隧道组的各伪线上的业务切换到对应的备份伪线上传输;若网络为三层VPN网络,则触发VPN快速重路由,将隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输;
所述路径保护模块16设置为若物理端口所属网络由非隧道技术组网,则确定物理端口上的三层口,触发标签分发协议快速重路由,将经过三层口的标签交换路径上的业务切换到备份的标签交换路径上传输。
本公开实施例中的误码情况反映了物理端口上物理路径的质量好坏,误码情况可用误码率、误包率等作为指标进行衡量。
在一个实施例中,端口检测模块11设置为:获取物理端口距离当前时刻前连续N次的误码率,若N次误码率均超过线路信号劣化对应的预设误码率门限值,则判断物理端口满足预设的信号劣化判断条件;否则,则判断物理端口不满足信号劣化判断条件;或者设置为获取物理端口当前时刻往前追溯N(N大于等于预设数量值)个不同的时间周期内的误包率,若至少某个时间周期内的误包率大于或等于与该时间周期对应的预设误包率门限,则判断物理端口满足预设的信号劣化判断条件;否则,则判断物理端口不满足信号劣化判断条件。
在一个实施例中,上述的处理系统还包括端口SD状态取消模块。所述端口检测模块11还设置为在产生用于表示物理端口信号劣化的端口指示信息后,继续获取物理端口的误码情况,判断物理端口连续M次(M至少为N的预设倍数(如100倍)以上的值)的误码率是否均没有达到预设误码率门限值。所述端口SD状态取消模块设置为在端口检测模块11的判断结果为是时,取消端口指示信息对物理端口的信号劣化的指示。具体的,将该物理端口置为非SD状态,向对端系统发送SD状态取消信息。
或者,端口检测模块11还设置为在产生用于表示物理端口信号 劣化的端口指示信息后,继续获取物理端口当前时刻往前追溯S(S大于等于预设数量值)个不同的时间周期内的误包率,判断每个时间周期内的误包率是否分别低于与各个时间周期对应的预设误包率门限。端口SD状态取消模块,用于在端口检测模块11的判断结果为是时,取消端口指示信息对物理端口的信号劣化的指示。具体的,将该物理端口置为非SD状态,向对端系统发送SD状态取消信息。
在一个实施例中,隧道保护模块14还设置Wie当某隧道组满足主用隧道为信号劣化状态或信号中断状态且备用隧道为信号劣化状态时,在VPN保护处理模块15触发伪线快速重路由或触发VPN快速重路由前,将所有出接口为隧道组的路由的下一跳置为信号劣化状态。
在一个实施例中,本公开实施例的端口检测模块11还设置为在获取物理端口的误码情况,根据误码情况判断物理端口是否满足预设信号劣化判断条件时,获取以太捆绑端口的各成员口的误码情况,根据误码情况判断各成员口是否满足预设信号劣化判断条件,若满足,则将成员口置为阻塞状态;或者,若以太捆绑端口上可使用的聚合链路数大于最小成员链路数,将成员口移出链路聚合组;若以太捆绑端口上可使用的聚合链路数等于最小成员链路数,将成员口保留在链路聚合组中继续使用,将以太捆绑端口置为信号劣化状态;若还检测到以太捆绑端口的其他成员端口出现信号中断状态,在以太捆绑端口可使用的聚合链路数等于最小成员链路数时,将满足预设信号劣化判断条件的成员口移入链路聚合组中替代信号中断状态的成员端口,将以太捆绑端口置为信号劣化状态。
所述隧道传输模块12设置为若网络由静态隧道技术组网,将物理端口的端口指示信息通知到T-MPLS Section实体,T-MPLS Section实体向网络内层映射,映射到隧道,将物理端口的端口指示信息通知到隧道,继而通知到操作管理维护检测(MPLS-TP OAM)实体,检查MPLS-TP OAM实体在网络中所处的位置,若MPLS-TP OAM实体在静态隧道的中间节点,则通过静态隧道的其他节点向静态隧道发送预设自定义报文;预设自定义报文携带本节点的节点ID和信号劣化状态指示信息。
在L2VPN中,静态隧道上还设有伪线,在需要伪线感知SD时,隧道传输模块12还用于从隧道映射到伪线,将物理端口的端口指示信息通知到伪线,若TP-OAM实体在伪线的中间节点,则通过伪线的其他节点向伪线的端节点发送预设自定义报文;预设自定义报文携带本节点的节点ID和信号劣化状态指示信息。
隧道传输模块12设置为若网络由动态隧道技术组网,将端口上的三层口置为信号劣化状态,将经过三层口的标签交换路径的状态设为信号劣化状态,将含有表示标签交换路径信号劣化的信息的预设格式消息发送给物理端口所在隧道的头节点。
在一个实施例中,本公开实施例的隧道传输模块11还设置为在产生用于表示物理端口信号劣化的端口指示信息后,将本端系统的物理端口的端口指示信息通过预设协议报文发送给线路发送方向的对端系统。
在一个实施例中,本公开实施例的处理系统还包括路由开销设置模块,所述路由开销设置模块设置为若物理端口所属网络由隧道技术组网,在确定隧道为信号劣化状态后,将隧道对应的逻辑隧道口置为SD状态,将出接口为逻辑隧道口的开销增大到预设的开销值;若物理端口所属网络由非隧道技术组网,在产生用于表示物理端口信号劣化的端口指示信息后,将物理端口上的三层口置为信号劣化状态,将出接口为三层口的路由的开销增大到预设的开销值。
在本公开实施例中,端口检测模块11还设置为在判定隧道或伪线所属隧道为信号劣化状态前,检测物理端口所在路由路径是否有信号失效状态,若检测结果为否,则检测物理端口所在路由路径是否有信号劣化状态。隧道保护模块14还设置为在检测结果为路由路径存在信号失效状态时,按照SF状态对应的流程进行处理;否则,在检测结果为路由路径存在信号劣化状态时,按照SD状态对应的流程进行处理。
为了避免物理路径上业务流量较小对误码率或误包率产生的影响,本公开实施例中处理系统还包括:背景流报文发送模块。
所述背景流报文发送模块设置为在端口检测模块11获取物理端 口的误码情况前,获取物理路径上的业务流量,若业务流量小于预设流量阈值,在物理路径上发送预设固定格式的背景流报文,其中,背景流报文的最大发送量不超过物理端口带宽的预设比例。
当然可以理解的是,若传输背景流的路径上的正常业务报文的数量增多(如超过端口带宽的30%),则可以停止发送背景流报文。
采用本公开实施例的上述处理系统,通过上述模块的合作,实现了在IP公网、L2VPN、L3VPN等场景使用隧道组网方式以及非隧道组网方式下,判断路径信号劣化以及对路径出现信号劣化进行处理的目的,弥补了在一些情况下缺乏信号劣化感知方法以及对信号劣化故障处理缺失的不足。在一个实施例中满足了对线路信号劣化敏感业务的部署需要。
本公开还提供一种信号劣化故障的处理装置,包括处理器和存储器,所述存储器存储有程序代码,当所述处理器执行所述程序代码时,使得本公开实施例中所述的信号劣化故障的处理方法。
本公开还提供一种计算机可读存储介质,其上存储有一个或者多个程序,所述一个或者多个程序被处理器执行时,使得执行本公开实施例中所述的信号劣化故障的处理方法。
显然,本领域的技术人员应该明白,上述本公开实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上;它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,所述推演或替换都应当视为属于本 公开的保护范围。

Claims (12)

  1. 一种信号劣化故障的处理方法,包括以下步骤:
    获取物理端口的误码情况,根据所述误码情况判断所述物理端口是否满足预设信号劣化判断条件,若满足,则产生用于表示所述物理端口信号劣化的端口指示信息;
    若所述物理端口所属网络由隧道技术组网,则将所述端口指示信息发送给所述物理端口所在隧道的端节点;
    若某隧道的端节点收到所述端口指示信息,则确定所述隧道为信号劣化状态;
    获取各组隧道组中主隧道和备用隧道的状态,在某隧道组满足所述主用隧道为信号劣化状态或信号中断状态且所述备用隧道为信号劣化状态的情况下,若所述网络为二层虚拟专用网VPN网络,则触发伪线快速重路由,将所述隧道组的各伪线上的业务切换到对应的备份伪线上传输,若所述网络为三层VPN网络,则触发VPN快速重路由,将所述隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输;以及
    若所述物理端口所属网络由非隧道技术组网,则确定所述物理端口上的三层口,触发标签分发协议快速重路由,将经过所述三层口的标签交换路径上的业务切换到对应的备份标签交换路径上传输。
  2. 如权利要求1所述的信号劣化故障的处理方法,其中,所述获取物理端口的误码情况,根据所述误码情况判断所述物理端口是否满足预设的信号劣化判断条件的步骤包括以下步骤:
    获取物理端口距离当前时刻前连续N次的误码率,若所述N次误码率均超过线路信号劣化对应的预设误码率门限值,则判断所述物理端口满足预设的信号劣化判断条件,否则,判断所述物理端口不满足预设的信号劣化判断条件,
    或者,获取物理端口当前时刻往前追溯N(N大于等于预设数量值)个不同的时间周期内的误包率,若至少某个时间周期内的误包率 大于或等于与该时间周期对应的预设误包率门限,则判断所述物理端口满足预设的信号劣化判断条件;否则,判断所述物理端口不满足预设的信号劣化判断条件;并且其中,
    在所述产生用于表示所述物理端口信号劣化的端口指示信息的步骤后,还包括以下步骤:
    继续获取所述物理端口的误码情况,若所述物理端口连续M次(M至少为N的预设倍数以上的值)的误码率均低于所述预设误码率门限值,则取消所述端口指示信息对所述物理端口的信号劣化的指示,
    或者,继续获取所述物理端口当前时刻往前追溯S(S大于等于预设数量值)个不同的时间周期内的误包率,若每个时间周期内的误包率分别低于与各个时间周期对应的预设误包率门限,则取消所述端口指示信息对所述物理端口的信号劣化的指示。
  3. 如权利要求1所述的信号劣化故障的处理方法,其中,当某隧道组满足所述主用隧道为信号劣化状态或信号中断状态且所述备用隧道为信号劣化状态时,在所述触发伪线快速重路由或触发VPN快速重路由的步骤前,还包括以下步骤:
    将所有出接口为所述隧道组的路由的下一跳置为信号劣化状态。
  4. 如权利要求1所述的信号劣化故障的处理方法,其中,所述获取物理端口的误码情况,根据所述误码情况判断所述物理端口是否满足预设信号劣化判断条件的步骤还包括以下步骤:
    获取以太捆绑端口的各成员口的误码情况,根据所述误码情况判断各所述成员口是否满足预设信号劣化判断条件,若满足,则将所述成员口置为阻塞状态;
    或者,若所述以太捆绑端口上可使用的聚合链路数大于最小成员链路数,将所述成员口移出链路聚合组,若所述以太捆绑端口上可使用的聚合链路数等于最小成员链路数,将所述成员口保留在链路聚合组中继续使用,并将所述以太捆绑端口置为信号劣化状态;
    并且其中,若还检测到所述以太捆绑端口的其他成员端口出现 信号中断状态,在所述以太捆绑端口可使用的聚合链路数等于最小成员链路数时,将满足所述预设信号劣化判断条件的成员口移入链路聚合组中替代所述信号中断状态的成员端口,将所述以太捆绑端口置为信号劣化状态。
  5. 如权利要求1所述的信号劣化故障的处理方法,其中,若所述网络由静态隧道技术组网,则所述将所述端口指示信息发送给所述物理端口所在隧道的端节点的步骤包括以下步骤:
    将所述端口指示信息发送给多协议标签交换段层T-MPLSSection实体,所述T-MPLS Section实体向所述网络内层映射,映射到隧道,将所述物理端口的端口指示信息发送给所述隧道,继而通知到操作管理维护检测(MPLS-TP OAM)实体,检查所述操作管理维护检测实体在所述网络中所处的位置,若所述操作管理维护检测实体在所述隧道的中间节点,则通过所述隧道的其他节点向所述隧道的端节点发送预设自定义报文,其中,所述预设自定义报文携带本节点的节点ID和信号劣化状态指示信息;以及
    若所述网络由动态隧道技术组网,则所述将所述物理端口的端口指示信息发送给所述物理端口所在隧道的端节点的步骤包括以下步骤:
    将所述端口上的三层口置为信号劣化状态,将经过所述三层口的标签交换路径的状态设为信号劣化状态,将含有表示所述标签交换路径信号劣化的信息的预设格式消息发送给所述物理端口所在隧道的头节点。
  6. 如权利要求1-5中任一项所述的信号劣化故障的处理方法,其中,所述产生用于表示所述物理端口信号劣化的端口指示信息的步骤后,还包括以下步骤:将本端系统的所述物理端口的端口指示信息通过预设协议报文发送给线路发送方向的对端系统。
  7. 如权利要求1-5中任一项所述的信号劣化故障的处理方法, 其中,若所述物理端口所属网络由隧道技术组网,在确定所述隧道为信号劣化状态的步骤后,还包括以下步骤:将所述隧道对应的逻辑隧道口置为信号劣化状态,将出接口为所述逻辑隧道口的开销增大到预设的开销值;以及
    若所述物理端口所属网络由非隧道技术组网,在所述产生用于表示所述物理端口信号劣化的端口指示信息后,还包括以下步骤:将所述物理端口上的三层口置为信号劣化状态,将出接口为所述三层口的路由的开销增大到预设的开销值。
  8. 如权利要求1-5中任一项所述的信号劣化故障的处理方法,其中,在所述确定所述隧道为信号劣化状态的步骤前,还包括以下步骤:
    检测所述物理端口所在路由路径是否产生信号中断状态,若产生了信号中断状态,则按照信号中断状态对应的流程进行处理,若没有产生信号中断状态,则检查所述路由路径上是否产生信号劣化状态,其中,若产生了信号劣化状态,则进行相应的流程。
  9. 如权利要求1-5中任一项所述的信号劣化故障的处理方法,其中,在所述获取物理端口的误码情况的步骤前,还包括以下步骤:
    获取所述物理端口所在物理路径上的业务流量,若所述业务流量小于预设流量阈值,在所述物理路径上发送预设固定格式的背景流报文,其中,所述背景流报文的最大发送量不超过物理端口带宽的预设比例。
  10. 一种信号故障劣化故障的处理系统,包括:
    端口检测模块,其设置为获取物理端口的误码情况,根据所述误码情况判断所述物理端口是否满足预设信号劣化判断条件;若满足,则产生用于表示所述物理端口信号劣化的端口指示信息;
    隧道传输模块,其设置为若所述物理端口所属网络由隧道技术组网,则将所述端口指示信息发送给所述物理端口所在隧道的端节点;
    隧道状态设置模块,其设置为若某隧道的端节点收到所述端口指示信息,则确定所述隧道为信号劣化状态;
    隧道保护模块,其设置为获取各组隧道组中主隧道和备用隧道的状态;
    VPN保护处理模块,其设置为当某隧道组满足所述主用隧道为信号劣化状态或信号中断状态且所述备用隧道为信号劣化状态时;若所述网络为二层VPN网络,则触发伪线快速重路由,将所述隧道组的各伪线上的业务切换到对应的备份伪线上传输;若所述网络为三层VPN网络,则触发VPN快速重路由,将所述隧道组的各VPN通道上的业务切换到对应的备份VPN通道上传输;以及
    路径保护模块,其设置为若所述物理端口所属网络由非隧道技术组网,则确定所述物理端口上的三层口,触发标签分发协议快速重路由,将经过所述三层口的标签交换路径上的业务切换到备份的标签交换路径上传输。
  11. 一种信号劣化故障的处理装置,包括处理器和存储器,所述存储器存储有程序代码,当所述处理器执行所述程序代码时,使得执行权利要求1-9中任一项所述的信号劣化故障的处理方法。
  12. 一种计算机可读存储介质,其上存储有一个或者多个程序,所述一个或者多个程序被处理器执行时,使得执行如权利要求1-9中任一项所述的信号劣化故障的处理方法。
PCT/CN2018/107383 2017-09-22 2018-09-25 信号劣化故障的处理方法、系统、装置和存储介质 WO2019057211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18858771.1A EP3687114A4 (en) 2017-09-22 2018-09-25 HANDLING PROCEDURE, SYSTEM, DEVICE AND STORAGE MEDIUM FOR SIGNAL DEGRADATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710869128.5 2017-09-22
CN201710869128.5A CN109547279B (zh) 2017-09-22 2017-09-22 一种信号劣化故障的处理方法和系统

Publications (1)

Publication Number Publication Date
WO2019057211A1 true WO2019057211A1 (zh) 2019-03-28

Family

ID=65809556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107383 WO2019057211A1 (zh) 2017-09-22 2018-09-25 信号劣化故障的处理方法、系统、装置和存储介质

Country Status (3)

Country Link
EP (1) EP3687114A4 (zh)
CN (1) CN109547279B (zh)
WO (1) WO2019057211A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224407A1 (zh) * 2019-05-05 2020-11-12 中兴通讯股份有限公司 误码率检测的处理方法及系统、第一节点、第二节点以及存储介质
CN112039771A (zh) * 2019-06-03 2020-12-04 华为技术有限公司 一种基于链路误码的处理方法和装置
CN115766484A (zh) * 2022-09-26 2023-03-07 京东科技信息技术有限公司 业务降级方法、装置、设备、计算机可读介质和程序产品

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468311B (zh) * 2019-09-09 2023-01-03 中国移动通信有限公司研究院 一种保护倒换的方法、节点设备和存储介质
CN112583650B (zh) * 2019-09-27 2022-06-10 烽火通信科技股份有限公司 一种spn中sr-be隧道链路检测方法及系统
CN112637054B (zh) * 2019-10-08 2022-12-13 中国移动通信集团浙江有限公司 Ip承载网的组网优化方法、装置、计算设备和存储介质
CN112825501B (zh) * 2019-11-20 2024-08-16 中兴通讯股份有限公司 信号劣化处理方法、装置及系统
US11121954B2 (en) * 2020-01-15 2021-09-14 Cisco Technology, Inc. Telemetry collection and analysis for SD-WAN tunnels
CN111478803B (zh) * 2020-03-31 2022-08-30 新华三技术有限公司 一种路径故障检测方法及装置
CN111865785B (zh) * 2020-06-28 2022-04-29 烽火通信科技股份有限公司 Sr-tp隧道信号传递方法、装置、服务器及存储介质
CN114002543B (zh) * 2021-09-27 2024-01-05 中盈优创资讯科技有限公司 一种stn中继质差电路自治方法及装置
CN114039859B (zh) * 2021-11-03 2023-05-30 中盈优创资讯科技有限公司 一种stn网络设备链改环方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800662A (zh) * 2010-01-22 2010-08-11 中兴通讯股份有限公司 一种基于vpls的双归保护倒换方法及系统
CN102035718A (zh) * 2009-09-27 2011-04-27 中国移动通信集团公司 一种分组传送网保护倒换的方法、装置和系统
US7983171B2 (en) * 2008-09-30 2011-07-19 International Business Machines Corporation Method to manage path failure thresholds
CN105306330A (zh) * 2014-06-24 2016-02-03 中兴通讯股份有限公司 组网保护方法、装置及组网中的汇聚主用网元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938734A (zh) * 2012-11-26 2013-02-20 杭州华三通信技术有限公司 Mpls网络中隧道的选择方法及pe设备
CN104852809B (zh) * 2014-02-14 2019-04-23 中兴通讯股份有限公司 信号劣化故障的处理方法及系统
CN105471736B (zh) * 2014-09-02 2020-09-11 中兴通讯股份有限公司 一种隧道信号劣化通知及切换方法、装置
US10015066B2 (en) * 2016-02-04 2018-07-03 Ciena Corporation Propagation of frame loss information by receiver to sender in an ethernet network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983171B2 (en) * 2008-09-30 2011-07-19 International Business Machines Corporation Method to manage path failure thresholds
CN102035718A (zh) * 2009-09-27 2011-04-27 中国移动通信集团公司 一种分组传送网保护倒换的方法、装置和系统
CN101800662A (zh) * 2010-01-22 2010-08-11 中兴通讯股份有限公司 一种基于vpls的双归保护倒换方法及系统
CN105306330A (zh) * 2014-06-24 2016-02-03 中兴通讯股份有限公司 组网保护方法、装置及组网中的汇聚主用网元

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3687114A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224407A1 (zh) * 2019-05-05 2020-11-12 中兴通讯股份有限公司 误码率检测的处理方法及系统、第一节点、第二节点以及存储介质
CN112039771A (zh) * 2019-06-03 2020-12-04 华为技术有限公司 一种基于链路误码的处理方法和装置
EP3955531A4 (en) * 2019-06-03 2022-06-01 Huawei Technologies Co., Ltd. PROCESSING METHOD AND DEVICE BASED ON A CONNECTION ERROR CODE
US11863303B2 (en) 2019-06-03 2024-01-02 Huawei Technologies Co., Ltd. Link bit error-based processing method and apparatus
CN115766484A (zh) * 2022-09-26 2023-03-07 京东科技信息技术有限公司 业务降级方法、装置、设备、计算机可读介质和程序产品

Also Published As

Publication number Publication date
EP3687114A1 (en) 2020-07-29
CN109547279A (zh) 2019-03-29
CN109547279B (zh) 2023-04-07
EP3687114A4 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2019057211A1 (zh) 信号劣化故障的处理方法、系统、装置和存储介质
US10721158B2 (en) Technique for determining whether to reestablish fast rerouted primary tunnels based on backup tunnel path quality feedback
Shand et al. IP fast reroute framework
US8948001B2 (en) Service plane triggered fast reroute protection
US9077561B2 (en) OAM label switched path for fast reroute of protected label switched paths
US11477116B2 (en) Loop detection in ethernet packets
US20070286069A1 (en) Method For Implementing Working/Standby Transmission Path
CN101159669A (zh) 一种业务流量切换方法及装置
WO2012037820A1 (zh) 多协议标签交换系统、节点设备及双向隧道的建立方法
CN101155076B (zh) 一种检测二层虚拟专用网伪线故障的方法
US10110475B2 (en) Restoration method for an MPLS ring network
CN102215127A (zh) 一种信号劣化处理方法、装置及节点设备
WO2011076029A1 (zh) 一种实现快速重路由的方法及装置
US8611211B2 (en) Fast reroute protection of logical paths in communication networks
US9215136B2 (en) Aggregated delivery of tunnel fault messages on common ethernet segments
CN101964743A (zh) 多协议标签交换路径aps保护管理方法、设备及系统
US11451478B1 (en) Distributed tactical traffic engineering (TE) using loop free alternative (LFA), remote-LFA (R-LFA) and/or topology independent-LFA (TI-LFA) secondary paths
CN109787797A (zh) 链路的故障检测方法、装置以及系统
CN102571534B (zh) 一种基于环网保护的业务传输方法及用于业务传输的节点
CN102546199A (zh) 一种聚合链路的保护方法及包交换节点
US20230379246A1 (en) Method and Apparatus for Performing Protection Switching in Segment Routing SR Network
Shand et al. RFC 5714: IP fast reroute framework
Liu et al. Internet Engineering Task Force H. Chen Internet-Draft Huawei Technologies Intended status: Standards Track N. So Expires: January 17, 2013 Tata Communications
US20160315854A1 (en) System and method of signaling protection path bindings
Papadimitriou Generalized MPLS (GMPLS) recovery mechanisms at IETF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858771

Country of ref document: EP

Effective date: 20200422