WO2019056975A1 - 无线通信方法和无线通信设备 - Google Patents

无线通信方法和无线通信设备 Download PDF

Info

Publication number
WO2019056975A1
WO2019056975A1 PCT/CN2018/105429 CN2018105429W WO2019056975A1 WO 2019056975 A1 WO2019056975 A1 WO 2019056975A1 CN 2018105429 W CN2018105429 W CN 2018105429W WO 2019056975 A1 WO2019056975 A1 WO 2019056975A1
Authority
WO
WIPO (PCT)
Prior art keywords
systems
interference
reference point
total amount
managing
Prior art date
Application number
PCT/CN2018/105429
Other languages
English (en)
French (fr)
Inventor
孙晨
郭欣
Original Assignee
索尼公司
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 孙晨 filed Critical 索尼公司
Priority to CN201880039066.8A priority Critical patent/CN110741663B/zh
Priority to US16/628,032 priority patent/US11240823B2/en
Publication of WO2019056975A1 publication Critical patent/WO2019056975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]

Definitions

  • the present invention relates to a wireless communication method and a wireless communication device, and in particular, to a method and apparatus for allocating communication resources to a secondary system.
  • a dynamic spectrum utilization technique that is, to dynamically utilize spectrum resources that have been allocated to certain services but are not fully utilized by the services. For example, dynamically utilizing the spectrum of certain channels on the digital television broadcast spectrum that do not play a program or the spectrum of adjacent channels, mobile communication is performed without interfering with the transmission of television signals.
  • a digital television broadcasting system may be referred to as a primary system
  • a television set may be regarded as a primary user
  • a mobile communication system that dynamically utilizes unused spectrum resources is referred to as a secondary system
  • the mobile communication terminal may be regarded as Secondary user.
  • the primary system usually refers to a system with spectrum usage rights, such as the above-mentioned television broadcasting system.
  • the secondary system usually refers to the absence of spectrum usage rights, but can be suitably used when the primary system does not use the allocated spectrum resources.
  • the system of resources can also have spectrum usage rights, but have different priority levels in spectrum usage. For example, when an operator deploys a new base station to provide new services, the existing base stations and the services they provide have priority in spectrum usage.
  • the primary system consists of the primary user base station and the primary user.
  • the secondary system is composed of a secondary user base station and a secondary user. Specifically, communication between the secondary user base station and one or more secondary users, or communication between multiple secondary users may constitute a secondary system.
  • the communication mode in which the primary and secondary systems coexist requires that the communication of the secondary system does not adversely affect the communication of the primary system, or that the interference to the primary system caused by the utilization of the resource by the secondary system is controlled within the range allowed by the primary system. Inside. When there are multiple secondary systems, the aggregate interference required for multiple secondary systems cannot exceed the allowable range of the primary system.
  • the present invention proposes an apparatus for managing a plurality of systems that interfere with a reference point, comprising one or more processors, the processor being configured to: acquire the plurality of allowed by the other device a total amount of interference generated by the system at the reference point; determining communication resources for each of the plurality of systems based on the total amount of interference acquired, such that the plurality of systems are utilizing the communication resources
  • the interference generated at the reference point during communication differs from each other, and the sum of the interferences generated by the plurality of systems does not exceed the total amount of interference; and the communication resources determined for each system are notified to the corresponding system.
  • the present invention provides a first device for managing a plurality of systems that interfere with a reference point, comprising one or more processors, the processor being configured to be based on being associated with the plurality of systems Information determining a set of systems managed by the second device in the plurality of systems; determining a total amount of interference allowed to be generated by the set of systems at the reference point based on an upper interference limit allowed at the reference point And notifying the second device of the determined total amount of interference to enable the second device to determine a communication resource for each of the set of systems based on the total amount of interference.
  • the present invention provides a method for managing a plurality of systems that interfere with a reference point, performed by a second device, the method comprising: obtaining, by the first device, allowing the plurality of systems to be a total amount of interference generated at the reference point; determining a communication resource for each of the plurality of systems based on the total amount of interference acquired, such that the plurality of systems are communicating with the communication resource
  • the interference generated at the reference point is different from each other, and the sum of the interferences generated by the plurality of systems does not exceed the total amount of interference; and the communication resources determined for each system are notified to the corresponding system.
  • the present invention provides a method performed by a first device for managing a plurality of systems that interfere with a reference point, the method comprising: based on information related to the plurality of systems, Determining, by the plurality of systems, a set of systems managed by the second device; determining, based on an upper interference limit allowed at the reference point, a total amount of interference allowed to be generated by the set of systems at the reference point; and determining The total amount of interference is communicated to the second device to enable the second device to determine communication resources for each of the set of systems based on the total amount of interference.
  • the invention provides a computer readable medium comprising executable instructions that, when executed by an information processing machine, cause the information processing machine to perform the method described above.
  • Fig. 1 schematically shows a communication scenario to which the present invention is applied.
  • FIG. 2 is a signaling interaction diagram of allocating communication resources in accordance with a first embodiment of the present invention.
  • Figure 3 is a process flow diagram for allocating available spectrum resources.
  • Fig. 4 schematically shows a distribution area of two sets of secondary systems determined by a first level spectrum management device.
  • Fig. 5 schematically shows a distribution area of two sets of secondary systems determined by another first level spectrum management device.
  • Fig. 6 schematically shows the distribution area of each group of subsystems in the management area of the two first-stage spectrum management apparatuses.
  • Figure 7 is a process flow diagram for determining available communication resources.
  • Figure 8 is a signaling interaction diagram of allocating communication resources in accordance with a second embodiment of the present invention.
  • Figure 9 shows an exemplary configuration block diagram of computer hardware implementing the inventive arrangements.
  • FIG. 1 is a schematic diagram showing a communication scenario to which the technical solution of the present invention is applied, in which one or more first-level spectrum management devices may exist, and each first-level spectrum management device manages a certain geographical area. Multiple secondary systems.
  • Fig. 1 shows only two first-level spectrum management devices A1 and A2, which represent geographical regions respectively managed by the first-stage spectrum management devices A1 and A2. It should be noted that the communication scenario to which the present invention is applicable may include more or less first-level spectrum management devices than those shown in FIG. 1.
  • FIG. 1 shows that they are respectively subjected to the second level.
  • the coverage area of the primary system and the reference point R at the edge of the coverage area are also schematically shown in FIG.
  • the location where the primary system coverage area is closest to the secondary system coverage area can be set as the reference point R.
  • the reference point R can represent the position where the primary system is most interfered by the secondary system. Therefore, controlling the interference caused by the secondary system to the primary system within the range allowed by the primary system is generally considered to account for interference caused by the secondary system at the reference point R.
  • the first level spectrum management devices A1 and A2 are used to separately allocate available communication resources for the secondary systems within their management area.
  • the first level spectrum management devices A1 and A2 may be, for example, spectrum allocation devices provided by a geographic location database operator authorized in accordance with national regulations.
  • the second level spectrum management devices B1 and B2 further determine the communication resources to be used for the secondary system within the range of available communication resources allocated for each secondary system.
  • the second-level spectrum management devices B1 and B2 may be, for example, spectrum allocation devices provided by a network operator or a network provider, or provided by a network management organization of a certain area (such as an office area, a residential area, a university campus, etc.). Spectrum allocation device.
  • the second level spectrum management devices B1 and B2 do not define which primary spectrum management device the secondary system to which they are managed to access, but only further determine that the secondary system will be used within the range of available communication resources allocated to the secondary system. Communication resources.
  • the available communication allocated by such sub-systems in the first-stage spectrum management apparatus may be sub-systems that are not managed by any second-level spectrum management apparatus within the management area of the first-stage spectrum management apparatus A1 and A2, and the available communication allocated by such sub-systems in the first-stage spectrum management apparatus
  • the resources in the resource are selected by themselves for communication.
  • two secondary systems with relatively close locations may select the same resources to communicate, thereby causing interference with each other.
  • a second level spectrum management device can be used to solve this problem. Since the second-level spectrum management apparatus determines the actually used communication resources for the secondary system within the range of available communication resources allocated for each secondary system, it is possible to effectively avoid the possibility that each secondary system interferes with each other due to the use of the same resources. .
  • the secondary system when communication is required, sends a request message for requesting allocation of resources to the first-level spectrum management apparatus A.
  • the secondary system that sends the request message may include The secondary system 210 managed by the secondary spectrum management device B and the secondary system 220 managed by the second-level spectrum management device B.
  • the request message sent by the secondary system may include the identification (ID) and location information of the secondary system.
  • the transmitted request message may further include information related to the second-level spectrum management device B, such as the identifier of the second-level spectrum management device B ( ID) and / or management mechanisms and so on.
  • the management mechanism of the second-level spectrum management apparatus B may include dynamic spectrum sensing, carrier sense multiple access (CSMA), long-term evolution-learning (LTE-LBT), and the like.
  • the first-level spectrum management device A may determine the communication resources available to the secondary system based on the information contained in the request message, as shown in step S220.
  • communication resources may include, for example, time resources, spectrum resources, maximum transmit power, and the like.
  • the first level spectrum management device A may, in step S220, for example according to the available spectrum resources, the requirements of the primary system (eg acceptable at the reference point R) The signal to interference plus noise ratio and the path loss of the secondary system 210 to the primary system determine the available communication resources for the secondary system 210. It should be noted that those skilled in the art will readily understand that the first level spectrum management apparatus A can also determine the available communication resources of the secondary system 210 based on other factors. Then, the first-stage spectrum management apparatus A notifies the determined available communication resources to the secondary system 210 in step S230, and the secondary system 210 selects a specific resource for communication among the received available communication resources in step S240.
  • the first-stage spectrum management apparatus A will be determined for the secondary system 220 in step S220, respectively, using two examples of the spectrum resource and the maximum transmission power as communication resources. Processing of available communication resources.
  • FIG. 3 illustrates a process flow for allocating available spectrum resources to secondary system 220.
  • the first-level spectrum management apparatus A may determine the identification and location information of each secondary system 220 according to the request message, and the secondary system 220 performs the secondary system 220 with the secondary system 220.
  • the first-stage spectrum management apparatus A can group the plurality of secondary systems 220 managed by the same second-level spectrum management apparatus B into one group, as shown in step S310. Then, for each group, the first level spectrum management apparatus A can determine the distribution area of the group system according to the location information of each subsystem in the group, as shown in step S320.
  • Figure 4 shows schematically the distribution areas R1 and R2 of the two sets of secondary systems determined by the first stage spectrum management means A, wherein the secondary system 221 in the area R1 is subjected to the second stage spectrum management means B1 (not shown) Management, the secondary system 222 in region R2 is managed by a second level of spectrum management device B2 (not shown).
  • FIG. 4 there is an overlapping area (shaded portion) between the distribution areas R1 and R2, and the secondary system 221 and the secondary system 222 are simultaneously present in the overlapping area.
  • only one secondary system 221 and one secondary system 222 are schematically shown in the overlapping area, but a plurality of secondary systems 221 and a plurality of secondary systems 222 may exist in the overlapping area.
  • the first-stage spectrum management apparatus A can determine the overlapping area based on, for example, the vertex positions of the distribution areas R1 and R2.
  • the distribution regions R1 and R2 are shown as rectangles in the figure, but the distribution regions may also be arbitrary polygons other than rectangles, and the common endpoints of two adjacent sides of the polygon are called vertices of the polygon.
  • the first level spectrum management device A can determine the distribution area of each group of sub-systems and the overlapping area between the plurality of distribution areas by various methods known to those skilled in the art, which is not limited by the present invention.
  • the first-stage spectrum management apparatus A may allocate the available spectrum resources only for the secondary system 221 in the non-overlapping area by considering only the available spectrum resources, as shown in step S340.
  • the processing method is the same for the secondary system 222 in the non-overlapping region of the region R2.
  • the first-level spectrum management apparatus A considers the management mechanism of the second-level spectrum management apparatuses B1 and B2 in addition to the spectrum resources available for allocation.
  • the secondary system 221, 222 allocates available spectrum resources, as shown in step S350.
  • the first-stage spectrum management device A may be all secondary systems 221, 222 in the overlap region. Allocate the same available spectrum resources. The mutual interference between the two subsystems is then avoided by the respective interference management mechanisms of the second level spectrum management devices B1 and B2.
  • the first level spectrum management device A may allocate different spectrum resources for the (set) subsystem 221 and (set) subsystem 222 in the overlap region, respectively.
  • step S340 and step S350 are not limited to that shown in FIG. 3, but may be performed in the reverse order or simultaneously. Further, if there is no non-overlapping area or there is no overlapping area, the processing of step S340 or step S350 may be omitted.
  • first-level spectrum management device A' there is another first-level spectrum management device (referred to as the first-level spectrum management device A') in addition to the first-stage spectrum management device A is discussed further below.
  • the first level spectrum management apparatus A' manages a geographical area different from the first level spectrum management apparatus A, which performs operations similar to those of the first stage spectrum management apparatus A after receiving the request message from the plurality of secondary systems 220.
  • Figure 5 schematically shows the distribution regions R3 and R4 of the two sets of secondary systems determined by the first level spectrum management device A', wherein the secondary system 221 in the region R3 is subjected to the second level spectrum management device B1 (not shown)
  • the management, the secondary system 222 in the area R4 is managed by the second level spectrum management device B2 (not shown).
  • the information exchanged may include, for example, managing an identification (ID) and/or management mechanism (such as dynamic spectrum sensing, CSMA, LTE-LBT) of the second-level spectrum management device of each secondary system, and determining each set of secondary systems.
  • ID an identification
  • management mechanism such as dynamic spectrum sensing, CSMA, LTE-LBT
  • Location information of the distribution area for example, location information of the region vertices.
  • each of the first-level spectrum management apparatus A and the first-level spectrum management apparatus A' can know the distribution of the multiple sets of secondary systems in the geographical area managed by the other party, thereby Determine the overlapping distribution areas of multiple sets of secondary systems in the areas managed by the two (more comprehensive areas).
  • FIG. 6 schematically shows a distribution area of each group of subsystems in the management area of both the first-stage spectrum management apparatuses A and A', wherein the secondary system 221 of the areas R1 and R3 is subjected to the second-level spectrum management.
  • Device B1 (not shown) is managed and secondary system 222 in regions R2 and R4 is managed by a second level of spectrum management device B2 (not shown).
  • the available spectrum resources are determined by the first level spectrum management device A or the first level spectrum management device A' according to the management mechanisms of the second level spectrum management devices B1 and B2. Similar to the above, if the second-level spectrum management devices B1 and B2 each have a management mechanism for coping with interference, all of the secondary systems in the overlapping region can be allocated the same available spectrum resources. If at least one of the second-stage spectrum management devices B1 and B2 does not have a management mechanism for coping with interference, a group managed by a group of secondary systems 221 and second-level spectrum management devices B2 managed by the second-level spectrum management device B1 Secondary system 222 allocates different available spectrum resources.
  • the first level spectrum management apparatus A After determining the available spectrum resources, referring again to FIG. 2, the first level spectrum management apparatus A notifies the management of the available system resources 220 for the available spectrum resources determined by the secondary system 220 (including the secondary system 221 and the secondary system 222) in step S250.
  • the second level spectrum management device B (including the second level spectrum management devices B1 and B2).
  • the corresponding second level spectrum management device B determines the spectrum resources for communication for the secondary system 220 within the range of received available spectrum resources.
  • the spectrum resource allocation of the second level spectrum management apparatus B is such that the communication quality of each of the secondary systems 220 managed by it is optimized while generating minimal interference.
  • the second level spectrum management device B then notifies the determined secondary spectrum system 220 of the determined spectrum resources in step S270.
  • the above describes the process of allocating communication resources by taking a spectrum resource as an example.
  • the process of allocating communication resources to the secondary system will be described below with the transmission power as an example of the communication resource.
  • FIG. 7 shows a process flow for determining the available communication resources for the secondary system 220 managed by the second level spectrum management device B.
  • the first stage spectrum management apparatus A determines the interference upper limit I limit allowed at the reference point R (as shown in Fig. 1) in the coverage area of the main system in step S710.
  • the upper limit of interference Ilimit represents the upper limit of the interference that the secondary system is allowed to cause to the primary system at the reference point R closest to the distribution area of the secondary system on the premise of guaranteeing the communication quality of the primary system.
  • the first-stage spectrum management apparatus A may determine the interference upper limit I limit based on pre-stored information about the primary system.
  • I I limit /N.
  • the first-stage spectrum management apparatus A can determine in step S730 that the maximum interference generated by the N1 secondary systems managed by the second-level spectrum management apparatus B1 is allowed to be I limit *N1/N, and the second-level spectrum management is allowed.
  • the maximum amount of interference generated by the N2 subsystems managed by the device B2 is I limit *N2/N.
  • the maximum transmit power of the subsystem can be determined based on the maximum amount of interference I allowed, the distance between the subsystem and the reference point R, and the path loss. That is to say, there is a correlation between the amount of interference and the transmission power. Therefore, the maximum allowable total interference determined by the first level spectrum management device A for a group of secondary systems (eg, the above N1 secondary systems or N2 secondary systems) can be considered as available communication corresponding to the set of secondary systems. Resources.
  • the first-stage spectrum management apparatus A After determining the available communication resources, referring back to FIG. 2, the first-stage spectrum management apparatus A notifies the second-level spectrum management apparatus of the maximum interference total amount I limit *N1/N corresponding to the N1 subsystems as available communication resources. B1, the maximum interference total I limit *N2/N corresponding to the N2 subsystems is notified to the second-level spectrum management apparatus B2 as available communication resources, as shown in step S250.
  • the second-stage spectrum management devices B1 and B2 determine the maximum allowable interference amount for each of the sub-systems managed by themselves based on the received maximum interference amount, as shown in step S260.
  • the second-level spectrum management apparatus B1 determines the maximum allowable interference generated for each of the N1 secondary systems managed by itself based on the received maximum interference amount I limit *N1/N.
  • the maximum interference generated by each secondary system may be different from each other as long as the sum of the maximum interferences generated by the N1 secondary systems is less than or equal to the maximum interference total I limit *N1/N.
  • one or more secondary systems in the N1 subsystems may be allowed to generate interference greater than I limit /N, while the interference generated by other subsystems needs to be less than I limit /N, so that the N1 subsystems are referenced.
  • the aggregate interference caused at the point R is not greater than the maximum interference amount I limit *N1/N determined by the first-stage spectrum management apparatus A1.
  • the second-stage spectrum management device B1 can flexibly set the maximum transmission power of each subsystem by assigning the maximum allowable interference amount in this manner. For example, the maximum transmit power of a secondary system in a set of secondary systems that requires high bandwidth to support high-speed data transmission can be set higher while limiting the maximum transmit power of other secondary systems, in which case the set of system pairs The aggregate interference generated by the reference point R can still be controlled within the range allowed by the host system.
  • the second-stage spectrum management device B1 notifies the determined maximum interference to the corresponding secondary system 220 in step S270, so that the secondary system 220 can according to the maximum allowable interference, the distance from the reference point R itself, and Path loss to determine the maximum transmit power.
  • the operation of determining the maximum transmit power based on the maximum interference allowed to be generated by each secondary system 220 may also be performed by the second level spectrum management device B1, and the second level spectrum management device B1 may determine the determined at step S270.
  • the maximum transmit power is reported to the corresponding secondary system 220.
  • FIG. 8 shows a signaling interaction diagram of allocating communication resources in accordance with a second embodiment of the present invention.
  • the secondary system (including the secondary system 810 not managed by the second-level spectrum management device B and the secondary system 820 managed by the second-level spectrum management device B) is directed to the first-level spectrum management device.
  • A sends a request message for requesting allocation of communication resources.
  • the request message may include location information of the secondary system in the present embodiment, and may further include information related to the second-level spectrum management device B of the management subsystem 820 (such as ID, management mechanism, etc.).
  • the first-level spectrum management apparatus A determines available communication resources for the secondary system based on the received request message at step S820. Similar to the first embodiment described in connection with FIG. 2, for a secondary system 810 that is not managed by the second level spectrum management device B, the first level spectrum management device A may, for example, be based on available spectrum resources, the primary system The required communication resources for the secondary system 810 are determined (eg, the acceptable signal to interference plus noise ratio at the reference point R) and the path loss of the secondary system 810 to the primary system, and the determined available communication is determined in step S830. The resource is notified to the secondary system 810, which can then select a particular resource from the available communication resources for communication at step S840.
  • the required communication resources for the secondary system 810 are determined (eg, the acceptable signal to interference plus noise ratio at the reference point R) and the path loss of the secondary system 810 to the primary system, and the determined available communication is determined in step S830.
  • the resource is notified to the secondary system 810, which can then select
  • the first level spectrum management device A can determine the available communication resources for the secondary system 820 in the manner described in the first embodiment in step S820. For example, for a set of secondary systems 820 managed by the same second level spectrum management device B, the first level spectrum management device A can determine the maximum amount of interference (I limit * N1/N) corresponding to the group of systems. And the total amount of interference is notified to the respective subsystems 820 in the group of subsystems as available communication resources in step S850. Further, the first stage spectrum management apparatus A may also notify the corresponding secondary system 820 of the maximum interference amount (I limit /N) determined for each secondary system 820 in step S850.
  • I limit * N1/N the maximum amount of interference
  • each secondary system 820 transmits the received available communication resources corresponding to a set of secondary systems and the available communication resources determined for it to the second level of spectrum management device B that it manages, in step S860.
  • the second-stage spectrum management apparatus B can determine, in step S870, the allowable generation for each secondary system in the group based on the received maximum interference amount corresponding to a group of secondary systems.
  • the maximum interference in which the maximum interference generated by each subsystem can be allowed to be different from each other, as long as the sum of the maximum interferences generated by each subsystem is not exceeded.
  • the difference from the first embodiment is that in the process, the second-stage spectrum management apparatus B also needs to consider the received maximum interference amount corresponding to each subsystem.
  • the second-stage spectrum management device B notifies the corresponding secondary system 820 of the communication resources determined for each secondary system 820 at step S880, so that the secondary system 820 can communicate using the communication resources.
  • the second level spectrum management device B may notify the corresponding secondary system 820 of the maximum allowable interference determined for each secondary system 820 as a communication resource in step S880, such that the secondary system 820 can be based on the maximum allowable
  • the maximum transmit power is determined by the interference, its distance from the reference point R, and the path loss.
  • the operation of determining the maximum transmit power according to the maximum allowable interference may also be performed by the second level spectrum management device B, and the second stage spectrum management device B may use the determined maximum transmit power as the communication at step S880.
  • the resource notification is sent to the corresponding secondary system 820.
  • the series of processes described in the above embodiments may be implemented by software, hardware, or a combination of software and hardware.
  • the program included in the software can be stored in advance in a storage medium set inside or outside each device. As an example, during execution, these programs are written to random access memory (RAM) and executed by a processor (eg, a CPU) to implement the various processes described herein.
  • RAM random access memory
  • processor eg, a CPU
  • FIG. 9 is a block diagram showing an example configuration of computer hardware that executes the scheme of the present invention in accordance with a program.
  • a central processing unit (CPU) 901, a read only memory (ROM) 902, and a random access memory (RAM) 903 are connected to each other by a bus 904.
  • Input/output interface 905 is further coupled to bus 904.
  • the input/output interface 905 is connected to an input unit 906 formed by a keyboard, a mouse, a microphone, or the like; an output unit 907 formed of a display, a speaker, or the like; a storage unit 908 formed of a hard disk, a nonvolatile memory, or the like;
  • a communication unit 909 formed of a network interface card (such as a local area network (LAN) card, a modem, etc.); and a drive 910 that drives the removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • LAN local area network
  • the CPU 901 loads the program stored in the storage unit 908 into the RAM 903 via the input/output interface 905 and the bus 904, and executes the program to execute the above processing.
  • a program to be executed by a computer may be recorded on a removable medium 911 as a package medium such as a magnetic disk (including a floppy disk), an optical disk (including a compact disk-read only memory (CD-ROM)), A digital versatile disc (DVD) or the like, a magneto-optical disc, or a semiconductor memory is formed.
  • a program to be executed by a computer can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 908 via the input/output interface 905.
  • the program can be received by the communication unit 909 via a wired or wireless transmission medium, and the program is installed in the storage unit 908.
  • the program may be pre-installed in the ROM 902 or the storage unit 908.
  • the program to be executed by the computer may be a program that performs processing in accordance with the order described in this specification, or may be a program that executes processing in parallel or performs processing when needed, such as when called.
  • the present invention can also be configured as follows.
  • An apparatus for managing a plurality of systems that interfere with a reference point comprising one or more processors, the processor being configured to: acquire, by another device, allow the plurality of systems to be at the reference point a total amount of interference generated; determining communication resources for each of the plurality of systems based on the total amount of interference acquired such that the plurality of systems are at the reference point when communicating using the communication resources The interference generated is different from each other, and the sum of the interferences generated by the plurality of systems does not exceed the total amount of interference; and the communication resources determined for each system are notified to the corresponding system.
  • the total amount of interference is determined by the another device based on an upper interference limit allowed at the reference point.
  • the communication resource comprises a maximum transmit power of the system.
  • the processor is further configured to: acquire available spectrum resources allocated by the another device for the plurality of systems; and determine for each of the plurality of systems based on the acquired available spectrum resources Spectrum resources for communication.
  • the system is a secondary system
  • the reference point is a location in the area of the primary system that is most interfered by the secondary system.
  • a first device for managing a plurality of systems that interfere with a reference point comprising one or more processors, the processor being configured to: based on information related to the plurality of systems, in the plurality of systems Determining a set of systems managed by the second device; determining, based on an upper interference limit allowed at the reference point, a total amount of interference allowed to be generated by the set of systems at the reference point; and determining the total amount of interference The quantity is notified to the second device to enable the second device to determine a communication resource for each of the set of systems based on the total amount of interference.
  • the information related to the plurality of systems includes identification and location information of each system, and an identity of a second device managing each system.
  • the second device includes a plurality of second devices, and the processor is further configured to: determine, according to the information related to the multiple systems, the plurality of seconds in the plurality of systems respectively a plurality of sets of systems managed by the device; determining a distribution area of each set of systems based on location information of each system in each set of systems; and determining the plurality of locations based on vertex positions of the plurality of distributed areas of the plurality of sets of systems The overlapping area between the distribution areas.
  • the first device manages the plurality of systems in a specific area
  • the processor is further configured to: interact with another first device that manages multiple systems in another area to obtain Defining a plurality of distribution areas of the plurality of sets of systems in the another area determined by another first device; and determining a plurality of distribution areas of the plurality of sets of systems within the specific area and within the other area Overlapping regions between multiple distribution regions of a multi-group system.
  • the information related to the multiple systems further includes: a management mechanism for managing a second device of each system, the processor further configured to: manage multiple groups of systems in the overlapping region based on The management mechanism of the second device respectively allocates available spectrum resources for the multiple groups of systems in the overlapping area; and notifies the allocated available spectrum resources to the plurality of second devices that manage the plurality of groups of systems respectively.
  • the processor is further configured to allocate the same available spectrum resources for the plurality of groups of systems in the overlapping region when the plurality of second devices have a management mechanism for coping with interference.
  • the processor is further configured to allocate different available spectrum resources for different sets of systems in the overlapping region when at least one of the plurality of second devices does not have a management mechanism to cope with interference.
  • the processor is further configured to: allocate available spectrum resources for systems not in the overlap region; and notify the allocated available spectrum resources to the second device that manages the systems that are not in the overlap region.
  • the processor is further configured to: allocate an available spectrum resource to a system of the plurality of systems that is not managed by the second device; and notify the system that is not managed by the second device of the allocated available spectrum resource.
  • the system is a secondary system
  • the reference point is a location in the area of the primary system that is most interfered by the secondary system.
  • a method performed by a second device for managing a plurality of systems that cause interference to a reference point comprising: obtaining interference determined by the first device that allows the plurality of systems to generate at the reference point a total amount; determining a communication resource for each of the plurality of systems based on the total amount of interference acquired, such that the plurality of systems are generated at the reference point when communicating using the communication resource
  • the interferences are different from each other, and the sum of the interferences generated by the plurality of systems does not exceed the total amount of interference; and the communication resources determined for each system are notified to the corresponding system.
  • the communication resource comprises a maximum transmit power of the system.
  • the method also includes obtaining an available spectrum resource allocated by the first device for the plurality of systems; and determining, for each of the plurality of systems, for communicating based on the acquired available spectrum resource Spectrum resources.
  • a method performed by a first device for managing a plurality of systems that interfere with a reference point comprising: determining, in the plurality of systems, a second based on information related to the plurality of systems a set of systems managed by the device; determining, based on an upper interference limit allowed at the reference point, determining a total amount of interference allowed to be generated by the set of systems at the reference point; and notifying the determined total amount of interference to the a second device to enable the second device to determine a communication resource for each of the set of systems based on the total amount of interference.
  • the information related to the plurality of systems includes identification and location information of each system, and an identity of a second device managing each system.
  • the second device includes a plurality of second devices, the method further comprising: determining, in the plurality of systems, respectively managed by the plurality of second devices, based on information related to the plurality of systems a plurality of sets of systems; determining a distribution area of each set of systems based on location information of each of the systems in each set; and determining the plurality of distributed areas based on vertex positions of the plurality of distributed areas of the plurality of sets of systems The overlapping area between.
  • the method further comprising: interacting with another first device managing a plurality of systems in another area to obtain by the another Determining, by the first device, a plurality of distribution regions of the plurality of systems in the another region; and determining a plurality of distribution regions of the plurality of systems within the specific region and the plurality of systems in the other region An overlapping area between multiple distribution areas.
  • the information related to the multiple systems further includes: a management mechanism for managing a second device of each system, the method further comprising: a plurality of seconds based on managing a plurality of systems in the overlapping area a management mechanism of the device, which allocates available spectrum resources for the plurality of groups of systems in the overlapping area; and notifies the allocated available spectrum resources to the plurality of second devices that manage the plurality of groups of systems.
  • the method further includes allocating the same available spectrum resources for the plurality of groups of systems in the overlapping area when the plurality of second devices have a management mechanism for coping with interference; and among the plurality of second devices When at least one management mechanism does not have interference, different sets of available spectrum resources are allocated for different groups of systems in the overlapping area.
  • a computer readable medium comprising executable instructions that, when executed by an information processing machine, cause the information processing machine to perform the aforementioned method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了无线通信方法和无线通信设备。一种管理对参考点产生干扰的多个系统的设备,包括一个或多个处理器,该处理器被配置为:获取由另一设备确定的允许该多个系统在参考点处产生的干扰总量;基于所获取的干扰总量,为该多个系统中的每一个系统确定通信资源,以使得该多个系统在利用该通信资源进行通信时在参考点处产生的干扰彼此不同,并且该多个系统产生的干扰之和不超过该干扰总量;将为每一个系统确定的通信资源通知给相应的系统。

Description

无线通信方法和无线通信设备 技术领域
本发明涉及无线通信方法和无线通信设备,具体地,涉及为次系统分配通信资源的方法和设备。
背景技术
随着无线通信技术的发展,用户对高品质、高速度的服务的需求越来越高,由此产生了对大量通信资源(例如时间、频率、最高发射功率等)的需求。为了充分利用通信资源,提出了动态频谱利用技术,即,动态地利用已经分配给某些服务但是没有被该服务充分利用的频谱资源。例如,动态地利用数字电视广播频谱上某些没有播放节目的频道的频谱或者相邻频道的频谱,在不干扰电视信号传输的情况下执行移动通信。在此示例中,数字电视广播系统可被称为主系统,电视机可被视为主用户,而动态地利用未使用频谱资源的移动通信系统被称为次系统,移动通信终端可被视为次用户。
也就是说,主系统通常是指有频谱使用权的系统,例如上述电视广播系统,次系统通常是指没有频谱使用权,但可以在主系统不使用对其分配的频谱资源时适当地使用该资源的系统。此外,主、次系统也可以都具有频谱使用权,但是在频谱使用方面具有不同的优先级别。例如,运营商在部署新的基站以提供新服务的时候,已有的基站以及其所提供的服务具有频谱使用优先权。主系统由主用户基站和主用户组成。次系统由次用户基站和次用户组成,具体来说,次用户基站与一个或多个次用户之间的通信,或者多个次用户之间的通信可以构成一个次系统。
这种主次系统共存的通信方式要求次系统的通信对主系统的通信不造成不良影响,或者说由于次系统利用该资源所造成的对主系统的干扰被控制在主系统所允许的范围之内。当存在多个次系统时,要求多个次系统的聚合干扰不能超出主系统的允许范围。
因此,需要设计在满足主系统对干扰的要求的情况下为次系统适当地分配通信资源的方法。
发明内容
为此,本发明提出了一种管理对参考点产生干扰的多个系统的设备,包括一个或多个处理器,所述处理器被配置为:获取由另一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及将为每一个系统确定的通信资源通知给相应的系统。
另一方面,本发明提出了一种管理对参考点产生干扰的多个系统的第一设备,包括一个或多个处理器,所述处理器被配置为:基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
另一方面,本发明提出了一种由第二设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:获取由第一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及将为每一个系统确定的通信资源通知给相应的系统。
另一方面,本发明提出了一种由第一设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
另一方面,本发明提出了一种包括可执行指令的计算机可读介质,所述指令在被信息处理机器执行时使得所述信息处理机器执行上述的方 法。
附图说明
可以通过参考下文中结合附图所给出的描述来更好地理解本发明,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1示意地示出了本发明所应用的通信场景。
图2是根据本发明的第一实施例的分配通信资源的信令交互图。
图3是分配可用频谱资源的处理流程图。
图4示意地示出了由一个第一级频谱管理装置确定的两组次系统的分布区域。
图5示意地示出了由另一个第一级频谱管理装置确定的两组次系统的分布区域。
图6示意地示出了在两个第一级频谱管理装置的管理区域中各组次系统的分布区域。
图7是确定可用通信资源的处理流程图。
图8是根据本发明的第二实施例的分配通信资源的信令交互图。
图9示出了实现本发明方案的计算机硬件的示例性配置框图。
具体实施方式
图1示意地示出了本发明的技术方案所应用的通信场景,在该通信场景中可以存在一个或多个第一级频谱管理装置,每个第一级频谱管理装置管理一定地理区域内的多个次系统。图1仅示意地示出了两个第一级频谱管理装置A1和A2,椭圆形虚线圈表示分别由第一级频谱管理装置A1和A2管理的地理区域。需要说明的是,本发明所适用的通信场景可以包括比图1所示的更多或更少的第一级频谱管理装置。
在第一级频谱管理装置A1和A2各自的管理区域内存在多个次系统,该多个次系统可进一步受到不同的第二级频谱管理装置管理,图1 中示出了分别受第二级频谱管理装置B1管理的次系统221和受第二级频谱管理装置B2管理的次系统222。需要说明的是,在第一级频谱管理装置A1的管理区域内也可以存在不受任何第二级频谱管理装置管理的次系统(图中未示出)。
此外,图1中还示意地示出了主系统的覆盖区域以及在该覆盖区域的边缘处的参考点R。可以将主系统覆盖区域距离次系统覆盖区域最近的位置设置为参考点R。参考点R可以代表主系统受到次系统干扰最强的位置。因此,将次系统对主系统造成的干扰控制在主系统所允许的范围之内通常是考虑次系统在参考点R处造成的干扰。
第一级频谱管理装置A1和A2用于为其管理区域内的次系统分别分配可用的通信资源。第一级频谱管理装置A1和A2例如可以是依据国家法规授权的地理位置数据库运营商所提供的频谱分配装置。
第二级频谱管理装置B1和B2在为每个次系统分配的可用通信资源的范围内进一步为该次系统确定要使用的通信资源。第二级频谱管理装置B1和B2例如可以是由网络运营商或者网络提供商提供的频谱分配装置,或者是由某一区域(如办公区域、住宅区域、大学校园等)的网络管理机构提供的频谱分配装置。
第二级频谱管理装置B1和B2不对其管理的次系统访问哪一个第一级频谱管理装置做出限定,而只是在对该次系统分配的可用通信资源的范围内进一步确定将由该次系统使用的通信资源。
如上所述,在第一级频谱管理装置A1和A2的管理区域内可以存在不受任何第二级频谱管理装置管理的次系统,这样的次系统在第一级频谱管理装置所分配的可用通信资源中自行选择用于通信的资源。然而,此时容易出现以下问题:位置较为接近的两个次系统可能会选择相同的资源进行通信,从而互相产生干扰。第二级频谱管理装置可用于解决该问题。由于第二级频谱管理装置在为每个次系统分配的可用通信资源的范围内为该次系统确定实际使用的通信资源,因此可以有效地避免各个次系统由于使用相同资源而互相干扰的可能性。
以下结合图2来描述根据本发明的第一实施例的分配通信资源的信令交互流程。
如图2所示,在步骤210,当需要进行通信时,次系统向第一级频谱管理装置A发送用于请求分配资源的请求消息,特别地,发送请求消 息的次系统可以包括不受第二级频谱管理装置B管理的次系统210以及受到第二级频谱管理装置B管理的次系统220。
次系统发送的请求消息可以包括该次系统的标识(ID)和位置信息。此外,对于受到第二级频谱管理装置B管理的次系统220而言,所发送的请求消息还可以包括与第二级频谱管理装置B有关的信息,例如第二级频谱管理装置B的标识(ID)和/或管理机制等等。例如,第二级频谱管理装置B的管理机制可以包括动态频谱感知,载波侦听多路访问(CSMA),长期演进-先听后说(LTE-LBT)等。
第一级频谱管理装置A在接收到来自次系统210,220的请求消息后,可基于该请求消息中包含的信息来确定该次系统可用的通信资源,如步骤S220所示。在本文中,通信资源可以包括例如时间资源、频谱资源,最大发射功率等等。
针对不受第二级频谱管理装置B管理的次系统210,第一级频谱管理装置A可以在步骤S220例如根据可供分配的频谱资源、主系统的要求(例如在参考点R处可接受的信号与干扰加噪声比)以及次系统210到主系统的路径损耗来确定用于该次系统210的可用通信资源。需要说明的是,本领域技术人员易于理解第一级频谱管理装置A还可基于其他因素来确定次系统210的可用通信资源。然后,第一级频谱管理装置A在步骤S230将所确定的可用通信资源通知给次系统210,次系统210在步骤S240在接收到的可用通信资源中选择用于进行通信的特定资源。
针对受到第二级频谱管理装置B管理的次系统220,以下将分别以频谱资源和最大发射功率作为通信资源的两个示例来描述第一级频谱管理装置A在步骤S220中为次系统220确定可用通信资源的处理。
图3示出了为次系统220分配可用频谱资源的处理流程。第一级频谱管理装置A在接收到来自多个次系统220的请求消息后,可以根据该请求消息确定每个次系统220的标识和位置信息,以及该次系统220与对该次系统220进行管理的第二级频谱管理装置B之间的对应关系。进而,第一级频谱管理装置A可以将属于同一个第二级频谱管理装置B管理的多个次系统220分为一组,如步骤S310所示。然后,针对每一个组,第一级频谱管理装置A可以根据该组中的各个次系统的位置信息来确定该组次系统的分布区域,如步骤S320所示。
图4示意地示出了由第一级频谱管理装置A确定的两组次系统的分 布区域R1和R2,其中,区域R1中的次系统221受到第二级频谱管理装置B1(未示出)管理,区域R2中的次系统222受到第二级频谱管理装置B2(未示出)管理。如图4所示,分布区域R1和R2之间存在重叠区域(阴影部分),重叠区域中同时存在有次系统221和次系统222。需要说明的是,图中仅在重叠区域中示意地示出了一个次系统221和一个次系统222,但重叠区域中可以存在一组多个次系统221和一组多个次系统222。
在图3的步骤S330中,第一级频谱管理装置A可以例如根据分布区域R1和R2的顶点位置,来确定该重叠区域。图中将分布区域R1和R2示出为矩形,但分布区域也可以是除矩形之外的任意多边形,多边形的两条相邻的边的公共端点称为多边形的顶点。第一级频谱管理装置A可以采用本领域技术人员已知的多种方法来确定每组次系统的分布区域以及多个分布区域之间的重叠区域,本发明对此不做限制。
然后,对于处于非重叠区域中的次系统而言,以处于区域R1的非重叠区域中的次系统221为例,由于这些次系统221受到同一个第二级频谱管理装置B1管理,因此它们的频谱分配可以由该第二级频谱管理装置B1协调处理,以避免它们由于使用相同频谱而相互产生干扰。在此情况下,第一级频谱管理装置A可以仅考虑可供分配的频谱资源来为该非重叠区域中的次系统221分配可用频谱资源,如步骤S340所示。对于处于区域R2的非重叠区域中的次系统222而言,处理方法相同。
对于处于重叠区域中的次系统221和次系统222而言,第一级频谱管理装置A除了考虑可供分配的频谱资源之外,还考虑第二级频谱管理装置B1和B2的管理机制来为次系统221,222分配可用频谱资源,如步骤S350所示。
具体来说,如果第二级频谱管理装置B1和B2均具有应对干扰的管理机制,例如均支持载波侦听避让,则第一级频谱管理装置A可以为重叠区域中的所有次系统221,222分配相同的可用频谱资源。然后通过第二级频谱管理装置B1和B2各自的干扰管理机制来避免两组次系统之间的相互干扰。
如果第二级频谱管理装置B1和B2中的至少一个不具有应对干扰的管理机制,即,无法应对来自另一第二级频谱管理装置所管理的次系统的干扰,则第一级频谱管理装置A可以为重叠区域中的(一组)次系统221和(一组)次系统222分别分配不同的频谱资源。
需要说明的是,步骤S340和步骤S350的执行顺序不限于图3中所示,而是可以以相反的顺序来执行或同时执行。此外,如果不存在非重叠区域或不存在重叠区域,则可以省略步骤S340或步骤S350的处理。
以下进一步讨论除了第一级频谱管理装置A之外,还存在另一个第一级频谱管理装置(称为第一级频谱管理装置A')的情况。
第一级频谱管理装置A'管理与第一级频谱管理装置A不同的地理区域,其在接收到来自多个次系统220的请求消息后执行与第一级频谱管理装置A类似的操作。例如,图5示意地示出了由第一级频谱管理装置A'确定的两组次系统的分布区域R3和R4,其中区域R3中的次系统221受到第二级频谱管理装置B1(未示出)管理,区域R4中的次系统222受到第二级频谱管理装置B2(未示出)管理。如图5所示,分布区域R3和R4之间不存在重叠区域。
然后,第一级频谱管理装置A和第一级频谱管理装置A'之间可以进行信息交互。所交互的信息可以例如包括:管理每个次系统的第二级频谱管理装置的标识(ID)和/或管理机制(如动态频谱感知,CSMA,LTE-LBT),所确定的每组次系统的分布区域的位置信息(例如区域顶点的位置信息)。
在进行信息交互后,第一级频谱管理装置A和第一级频谱管理装置A'中的每一个频谱管理装置可以获知在对方所管理的地理区域中的多组次系统的分布情况,从而可以确定在二者管理的区域(更全面的区域)中多组次系统的重叠分布区域。例如,图6示意地示出了在第一级频谱管理装置A和A'二者的管理区域中各组次系统的分布区域,其中区域R1和R3中的次系统221受到第二级频谱管理装置B1(未示出)管理,区域R2和R4中的次系统222受到第二级频谱管理装置B2(未示出)管理。在阴影部分所表示的重叠区域中,存在着受到第二级频谱管理装置B1管理的次系统221以及受到第二级频谱管理装置B2管理的次系统222。
针对重叠区域中的次系统221,222,由第一级频谱管理装置A或第一级频谱管理装置A'根据第二级频谱管理装置B1和B2的管理机制来确定可用频谱资源。与上文所述类似地,如果第二级频谱管理装置B1和B2均具有应对干扰的管理机制,则可以为重叠区域中的所有次系统分配相同的可用频谱资源。如果第二级频谱管理装置B1和B2中的至少一个不具有应对干扰的管理机制,则为第二级频谱管理装置B1管理的一组次 系统221和第二级频谱管理装置B2管理的一组次系统222分配不同的可用频谱资源。
在确定了可用频谱资源之后,再次参考图2,第一级频谱管理装置A在步骤S250将针对次系统220(包括次系统221和次系统222)确定的可用频谱资源通知给管理该次系统220的第二级频谱管理装置B(包括第二级频谱管理装置B1和B2)。随后在步骤S260,相应的第二级频谱管理装置B在所接收的可用频谱资源的范围内为该次系统220确定用于进行通信的频谱资源。第二级频谱管理装置B的频谱资源分配使得其所管理的各个次系统220的通信质量最佳而同时产生最小的干扰。然后第二级频谱管理装置B在步骤S270将所确定的频谱资源通知给相应的次系统220。
以上以频谱资源为例描述了分配通信资源的处理,以下将以发射功率作为通信资源的一个示例来描述为次系统分配通信资源的处理。在确定次系统的发射功率时,需要考虑次系统对主系统产生的干扰。
图7示出了为受到第二级频谱管理装置B管理的次系统220确定可用通信资源的处理流程。参照图7,首先,第一级频谱管理装置A在步骤S710确定在主系统覆盖区域中的参考点R处(如图1中所示)所允许的干扰上限I limit。干扰上限I limit表示在保证主系统的通信质量的前提下,在最接近于次系统分布区域的参考点R处允许次系统对主系统造成的干扰的上限。例如,第一级频谱管理装置A可以基于预先存储的有关主系统的信息来确定该干扰上限I limit
除了确定参考点R处的干扰上限I limit,第一级频谱管理装置A还确定自身所管理的地理区域内的次系统的数目N。假设该N个次系统中包括N1个由第二级频谱管理装置B1管理的次系统以及N2个由第二级频谱管理装置B2管理的次系统,即N=N1+N2。然后,第一级频谱管理装置A在步骤S720通过下式来计算允许每个次系统对参考点R产生的最大干扰量I:
I=I limit/N.
然后,第一级频谱管理装置A可以在步骤S730确定允许第二级频谱管理装置B1所管理的N1个次系统产生的最大干扰总量为I limit*N1/N,以及允许第二级频谱管理装置B2所管理N2个次系统产生的最大干扰总量为I limit*N2/N。
对于每个次系统而言,基于所允许产生的最大干扰量I、该次系统与参考点R之间的距离以及路径损耗,可以确定该次系统的最大发射功率。也就是说,干扰量与发射功率之间存在关联关系。因此,第一级频谱管理装置A为一组次系统(例如,上述N1个次系统或N2个次系统)确定的可允许的最大干扰总量可被认为是对应于该组次系统的可用通信资源。
在确定了可用通信资源之后,返回参考图2,第一级频谱管理装置A将对应于N1个次系统的最大干扰总量I limit*N1/N作为可用通信资源通知给第二级频谱管理装置B1,将对应于N2个次系统的最大干扰总量I limit*N2/N作为可用通信资源通知给第二级频谱管理装置B2,如步骤S250所示。
随后,第二级频谱管理装置B1和B2基于接收到的最大干扰总量为自身管理的一组次系统中的每个次系统确定可允许的最大干扰量,如步骤S260所示。以第二级频谱管理装置B1为例,其基于接收到的最大干扰总量I limit*N1/N来为自身管理的N1个次系统中的每一个确定可允许产生的最大干扰。其中,允许各个次系统产生的最大干扰可以相互不同,只要满足N1个次系统产生的最大干扰之和小于或等于最大干扰总量I limit*N1/N即可。例如,可以允许N1个次系统中的一个或多个次系统产生大于I limit/N的干扰,而同时其它次系统所产生的干扰则需要小于I limit/N,以使得N1个次系统在参考点R处引起的聚合干扰不大于由第一级频谱管理装置A1确定的最大干扰总量I limit*N1/N。
对于次系统而言,允许产生较大干扰意味着可以使用更大的发射功率,而允许产生的干扰较小则意味着需要限制发射功率。第二级频谱管理装置B1通过以此种方式分配可允许的最大干扰量,可以灵活地设置各个次系统的最大发射功率。例如,一组次系统中的需要高带宽以支持高速数据传输的次系统的最大发射功率可以被设置得更高,同时限制其他次系统的最大发射功率,在此情况下,该组次系统对参考点R产生的聚合干扰仍可以被控制在主系统所允许的范围之内。
然后,第二级频谱管理装置B1在步骤S270将所确定的可允许的最大干扰通知给相应的次系统220,使得该次系统220能够根据可允许的最大干扰、自身距参考点R的距离以及路径损耗来确定最大发射功率。替代地,根据允许每个次系统220产生的最大干扰来确定最大发射功率的操作也可以由第二级频谱管理装置B1来执行,并且第二级频谱管理装 置B1可以在步骤S270将所确定的最大发射功率通知给相应的次系统220。
图8示出了根据本发明的第二实施例的分配通信资源的信令交互图。如图8所示,在步骤810,次系统(包括不受第二级频谱管理装置B管理的次系统810以及受到第二级频谱管理装置B管理的次系统820)向第一级频谱管理装置A发送用于请求分配通信资源的请求消息。
与结合图2所描述的第一实施例类似地,在本实施例中请求消息可以包括次系统的位置信息,并且可以进一步包括与管理次系统820的第二级频谱管理装置B有关的信息(如ID,管理机制等)。
第一级频谱管理装置A在步骤S820基于接收到的请求消息,为次系统确定可用的通信资源。与结合图2所描述的第一实施例类似地,针对不受第二级频谱管理装置B管理的次系统810,第一级频谱管理装置A可以例如根据可供分配的频谱资源、主系统的要求(例如在参考点R处可接受的信号与干扰加噪声比)以及次系统810到主系统的路径损耗来确定用于次系统810的可用通信资源,并在步骤S830将所确定的可用通信资源通知给次系统810,然后次系统810可以在步骤S840从可用通信资源中选择特定资源以进行通信。
针对受到第二级频谱管理装置B管理的次系统820,第一级频谱管理装置A在步骤S820可以以第一实施例中描述的方式来为次系统820确定可用的通信资源。例如,针对由同一个第二级频谱管理装置B管理的一组次系统820,第一级频谱管理装置A可以确定对应于该组次系统的最大干扰总量(I limit*N1/N),并且在步骤S850将该最大干扰总量作为可用通信资源通知给该组次系统中的各个次系统820。此外,第一级频谱管理装置A在步骤S850还可以将针对每个次系统820确定的最大干扰量(I limit/N)通知给相应的次系统820。
随后,每个次系统820在步骤S860将所接收的对应于一组次系统的可用通信资源以及为其单独确定的可用通信资源发送至对其进行管理的第二级频谱管理装置B。
与第一实施例类似地,第二级频谱管理装置B在步骤S870可以根据接收到的对应于一组次系统的最大干扰总量,来为该组中的每个次系统确定可允许产生的最大干扰,其中,可以允许各个次系统产生的最大干扰相互不同,只要满足各个次系统产生的最大干扰之和不超过最大干 扰总量即可。与第一实施例的区别在于,在此过程中,第二级频谱管理装置B还需要考虑接收到的对应于每个次系统的最大干扰量。
然后,第二级频谱管理装置B在步骤S880将为每个次系统820所确定的通信资源通知给相应的次系统820,以使得该次系统820能够利用该通信资源进行通信。例如,第二级频谱管理装置B在步骤S880可以将为每个次系统820确定的可允许的最大干扰作为通信资源通知给相应的次系统820,使得该次系统820能够根据该可允许的最大干扰、自身距参考点R的距离以及路径损耗来确定最大发射功率。替代地,根据可允许的最大干扰来确定最大发射功率的操作也可以由第二级频谱管理装置B来执行,并且第二级频谱管理装置B可以在步骤S880将所确定的最大发射功率作为通信资源通知给相应的次系统820。
本文中所描述的各个设备或单元仅是逻辑意义上的,并不严格对应于物理设备或实体。例如,本文所描述的每个单元的功能可能由多个物理实体来实现,或者,本文所描述的多个单元的功能可能由单个物理实体来实现。此外需要说明的是,在一个实施例中描述的特征、部件、元素、步骤等并不局限于该实施例,而是也可应用于其它实施例,例如替代其它实施例中的特定特征、部件、元素、步骤等,或者与其相结合。
在上述实施例中描述的一系列处理可以由软件、硬件或者软件和硬件的组合来实现。包括在软件中的程序可以事先存储在每个设备的内部或外部所设置的存储介质中。作为一个示例,在执行期间,这些程序被写入随机存取存储器(RAM)并且由处理器(例如CPU)来执行,从而实现在本文中描述的各种处理。
图9是示出了根据程序执行本发明的方案的计算机硬件的示例配置框图。
在计算机900中,中央处理单元(CPU)901、只读存储器(ROM)902以及随机存取存储器(RAM)903通过总线904彼此连接。
输入/输出接口905进一步与总线904连接。输入/输出接口905连接有以下组件:以键盘、鼠标、麦克风等形成的输入单元906;以显示器、扬声器等形成的输出单元907;以硬盘、非易失性存储器等形成的存储单元908;以网络接口卡(诸如局域网(LAN)卡、调制解调器等)形成的通信单元909;以及驱动移动介质911的驱动器910,该移动介质911诸如是磁盘、光盘、磁光盘或半导体存储器。
在具有上述结构的计算机中,CPU 901将存储在存储单元908中的程序经由输入/输出接口905和总线904加载到RAM 903中,并且执行该程序,以便执行上述处理。
要由计算机(CPU 901)执行的程序可以被记录在作为封装介质的移动介质911上,该封装介质以例如磁盘(包括软盘)、光盘(包括压缩光盘-只读存储器(CD-ROM))、数字多功能光盘(DVD)等)、磁光盘、或半导体存储器来形成。此外,要由计算机(CPU 901)执行的程序也可以经由诸如局域网、因特网、或数字卫星广播的有线或无线传输介质来提供。
当移动介质911安装在驱动器910中时,可以将程序经由输入/输出接口905安装在存储单元908中。另外,可以经由有线或无线传输介质由通信单元909来接收程序,并且将程序安装在存储单元908中。可替选地,可以将程序预先安装在ROM 902或存储单元908中。
要由计算机执行的程序可以是根据本说明书中描述的顺序来执行处理的程序,或者可以是并行地执行处理或当需要时(诸如,当调用时)执行处理的程序。
以上已经结合附图详细描述了本发明的实施例以及技术效果,但是本发明的范围不限于此。本领域普通技术人员应该理解的是,取决于设计要求和其他因素,在不偏离本发明的原理和精神的情况下,可以对本文中所讨论的实施方式进行各种修改或变化。本发明的范围由所附权利要求或其等同方案来限定。
此外,本发明也可以被配置如下。
一种管理对参考点产生干扰的多个系统的设备,包括一个或多个处理器,所述处理器被配置为:获取由另一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及将为每一个系统确定的通信资源通知给相应的系统。
其中,所述干扰总量是由所述另一设备基于在所述参考点处允许的干扰上限而确定的。
其中,所述通信资源包括所述系统的最大发射功率。
所述处理器还被配置为:获取由所述另一设备为所述多个系统分配的可用频谱资源;以及基于所获取的可用频谱资源,为所述多个系统中的每一个系统确定用于进行通信的频谱资源。
其中,所述系统是次系统,所述参考点是主系统的区域中受到所述次系统的干扰最大的位置。
一种管理对参考点产生干扰的多个系统的第一设备,包括一个或多个处理器,所述处理器被配置为:基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
其中,与所述多个系统有关的信息包括每个系统的标识和位置信息,以及管理每个系统的第二设备的标识。
其中,所述第二设备包括多个第二设备,所述处理器还被配置为:基于与所述多个系统有关的信息,在所述多个系统中确定分别受到所述多个第二设备管理的多组系统;基于每一组系统中的各个系统的位置信息,确定每一组系统的分布区域;以及基于所述多组系统的多个分布区域的顶点位置,确定所述多个分布区域之间的重叠区域。
其中,所述第一设备管理特定区域内的所述多个系统,所述处理器还被配置为:与管理另一区域内的多个系统的另一第一设备进行交互,以获取由所述另一第一设备确定的、在所述另一区域内的多组系统的多个分布区域;以及确定所述特定区域内的多组系统的多个分布区域以及所述另一区域内的多组系统的多个分布区域之间的重叠区域。
其中,与所述多个系统有关的信息还包括:管理每个系统的第二设备的管理机制,所述处理器还被配置为:基于对所述重叠区域中的多组系统进行管理的多个第二设备的管理机制,分别为所述重叠区域中的多组系统分配可用频谱资源;以及将所分配的可用频谱资源分别通知给对所述多组系统进行管理的多个第二设备。
所述处理器还被配置为:在所述多个第二设备具有应对干扰的管理机制时,为所述重叠区域中的多组系统分配相同的可用频谱资源。
所述处理器还被配置为:在所述多个第二设备中的至少一个不具有应对干扰的管理机制时,为所述重叠区域中的不同组的系统分配不同的可用 频谱资源。
所述处理器还被配置为:为不处于重叠区域中的系统分配可用频谱资源;以及将所分配的可用频谱资源通知给对所述不处于重叠区域中的系统进行管理的第二设备。
所述处理器还被配置为:为所述多个系统中不受到第二设备管理的系统分配可用频谱资源;以及将所分配的可用频谱资源通知给所述不受到第二设备管理的系统。
其中,所述系统是次系统,所述参考点是主系统的区域中受到所述次系统的干扰最大的位置。
一种由第二设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:获取由第一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及将为每一个系统确定的通信资源通知给相应的系统。
其中,所述通信资源包括所述系统的最大发射功率。
所述方法还包括:获取由所述第一设备为所述多个系统分配的可用频谱资源;以及基于所获取的可用频谱资源,为所述多个系统中的每一个系统确定用于进行通信的频谱资源。
一种由第一设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
其中,与所述多个系统有关的信息包括每个系统的标识和位置信息,以及管理每个系统的第二设备的标识。
其中,所述第二设备包括多个第二设备,所述方法还包括:基于与所述多个系统有关的信息,在所述多个系统中确定分别受到所述多个第二设备管理的多组系统;基于每一组系统中的各个系统的位置信息,确定每一组系统的分布区域;以及基于所述多组系统的多个分布区域的顶点位置, 确定所述多个分布区域之间的重叠区域。
其中,所述第一设备管理特定区域内的所述多个系统,所述方法还包括:与管理另一区域内的多个系统的另一第一设备进行交互,以获取由所述另一第一设备确定的、在所述另一区域内的多组系统的多个分布区域;以及确定所述特定区域内的多组系统的多个分布区域以及所述另一区域内的多组系统的多个分布区域之间的重叠区域。
其中,与所述多个系统有关的信息还包括:管理每个系统的第二设备的管理机制,所述方法还包括:基于对所述重叠区域中的多组系统进行管理的多个第二设备的管理机制,为所述重叠区域中的多组系统分配可用频谱资源;以及将所分配的可用频谱资源分别通知给对所述多组系统进行管理的多个第二设备。
所述方法还包括:在所述多个第二设备具有应对干扰的管理机制时,为所述重叠区域中的多组系统分配相同的可用频谱资源;以及在所述多个第二设备中的至少一个不具有应对干扰的管理机制时,为所述重叠区域中的不同组的系统分配不同的可用频谱资源。
一种包括可执行指令的计算机可读介质,所述指令在被信息处理机器执行时使得所述信息处理机器执行前述的方法。

Claims (25)

  1. 一种管理对参考点产生干扰的多个系统的设备,包括一个或多个处理器,所述处理器被配置为:
    获取由另一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;
    基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及
    将为每一个系统确定的通信资源通知给相应的系统。
  2. 根据权利要求1所述的设备,其中,所述干扰总量是由所述另一设备基于在所述参考点处允许的干扰上限而确定的。
  3. 根据权利要求1所述的设备,其中,所述通信资源包括所述系统的最大发射功率。
  4. 根据权利要求1所述的设备,所述处理器还被配置为:
    获取由所述另一设备为所述多个系统分配的可用频谱资源;以及
    基于所获取的可用频谱资源,为所述多个系统中的每一个系统确定用于进行通信的频谱资源。
  5. 根据权利要求1所述的设备,其中,所述系统是次系统,所述参考点是主系统的区域中受到所述次系统的干扰最大的位置。
  6. 一种管理对参考点产生干扰的多个系统的第一设备,包括一个或多个处理器,所述处理器被配置为:
    基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;
    基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及
    将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
  7. 根据权利要求6所述的第一设备,其中,与所述多个系统有关的信息包括每个系统的标识和位置信息,以及管理每个系统的第二设备的标识。
  8. 根据权利要求7所述的第一设备,其中,所述第二设备包括多个第二设备,所述处理器还被配置为:
    基于与所述多个系统有关的信息,在所述多个系统中确定分别受到所述多个第二设备管理的多组系统;
    基于每一组系统中的各个系统的位置信息,确定每一组系统的分布区域;以及
    基于所述多组系统的多个分布区域的顶点位置,确定所述多个分布区域之间的重叠区域。
  9. 根据权利要求8所述的第一设备,其中,所述第一设备管理特定区域内的所述多个系统,
    所述处理器还被配置为:
    与管理另一区域内的多个系统的另一第一设备进行交互,以获取由所述另一第一设备确定的、在所述另一区域内的多组系统的多个分布区域;以及
    确定所述特定区域内的多组系统的多个分布区域以及所述另一区域内的多组系统的多个分布区域之间的重叠区域。
  10. 根据权利要求8或9所述的第一设备,其中,与所述多个系统有 关的信息还包括:管理每个系统的第二设备的管理机制,
    所述处理器还被配置为:
    基于对所述重叠区域中的多组系统进行管理的多个第二设备的管理机制,分别为所述重叠区域中的多组系统分配可用频谱资源;以及
    将所分配的可用频谱资源分别通知给对所述多组系统进行管理的多个第二设备。
  11. 根据权利要求10所述的第一设备,所述处理器还被配置为:
    在所述多个第二设备具有应对干扰的管理机制时,为所述重叠区域中的多组系统分配相同的可用频谱资源。
  12. 根据权利要求10所述的第一设备,所述处理器还被配置为:
    在所述多个第二设备中的至少一个不具有应对干扰的管理机制时,为所述重叠区域中的不同组的系统分配不同的可用频谱资源。
  13. 根据权利要求8或9所述的第一设备,所述处理器还被配置为:
    为不处于重叠区域中的系统分配可用频谱资源;以及
    将所分配的可用频谱资源通知给对所述不处于重叠区域中的系统进行管理的第二设备。
  14. 根据权利要求6所述的第一设备,所述处理器还被配置为:
    为所述多个系统中不受到第二设备管理的系统分配可用频谱资源;以及
    将所分配的可用频谱资源通知给所述不受到第二设备管理的系统。
  15. 根据权利要求6所述的第一设备,其中,所述系统是次系统,所述参考点是主系统的区域中受到所述次系统的干扰最大的位置。
  16. 一种由第二设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:
    获取由第一设备确定的允许所述多个系统在所述参考点处产生的干扰总量;
    基于所获取的干扰总量,为所述多个系统中的每一个系统确定通信资源,以使得所述多个系统在利用所述通信资源进行通信时在所述参考点处产生的干扰彼此不同,并且所述多个系统产生的干扰之和不超过所述干扰总量;以及
    将为每一个系统确定的通信资源通知给相应的系统。
  17. 根据权利要求16所述的方法,其中,所述通信资源包括所述系统的最大发射功率。
  18. 根据权利要求16所述的方法,所述方法还包括:
    获取由所述第一设备为所述多个系统分配的可用频谱资源;以及
    基于所获取的可用频谱资源,为所述多个系统中的每一个系统确定用于进行通信的频谱资源。
  19. 一种由第一设备执行的用于管理对参考点产生干扰的多个系统的方法,所述方法包括:
    基于与所述多个系统有关的信息,在所述多个系统中确定受到第二设备管理的一组系统;
    基于在所述参考点处允许的干扰上限,确定允许所述一组系统在所述参考点处产生的干扰总量;以及
    将所确定的干扰总量通知给所述第二设备,以使得所述第二设备能够基于所述干扰总量为所述一组系统中的每一个系统确定通信资源。
  20. 根据权利要求19所述的方法,其中,与所述多个系统有关的信息包括每个系统的标识和位置信息,以及管理每个系统的第二设备的标识。
  21. 根据权利要求20所述的方法,其中,所述第二设备包括多个第二设备,所述方法还包括:
    基于与所述多个系统有关的信息,在所述多个系统中确定分别受到所述多个第二设备管理的多组系统;
    基于每一组系统中的各个系统的位置信息,确定每一组系统的分布区域;以及
    基于所述多组系统的多个分布区域的顶点位置,确定所述多个分布区域之间的重叠区域。
  22. 根据权利要求21所述的方法,其中,所述第一设备管理特定区域内的所述多个系统,
    所述方法还包括:
    与管理另一区域内的多个系统的另一第一设备进行交互,以获取由所述另一第一设备确定的、在所述另一区域内的多组系统的多个分布区域;以及
    确定所述特定区域内的多组系统的多个分布区域以及所述另一区域内的多组系统的多个分布区域之间的重叠区域。
  23. 根据权利要求21或22所述的方法,其中,与所述多个系统有关的信息还包括:管理每个系统的第二设备的管理机制,
    所述方法还包括:
    基于对所述重叠区域中的多组系统进行管理的多个第二设备的管理机制,为所述重叠区域中的多组系统分配可用频谱资源;以及
    将所分配的可用频谱资源分别通知给对所述多组系统进行管理的多个第二设备。
  24. 根据权利要求23所述的方法,所述方法还包括:
    在所述多个第二设备具有应对干扰的管理机制时,为所述重叠区域中 的多组系统分配相同的可用频谱资源;以及
    在所述多个第二设备中的至少一个不具有应对干扰的管理机制时,为所述重叠区域中的不同组的系统分配不同的可用频谱资源。
  25. 一种包括可执行指令的计算机可读介质,所述指令在被信息处理机器执行时使得所述信息处理机器执行根据权利要求16-18以及19-24中任一项所述的方法。
PCT/CN2018/105429 2017-09-20 2018-09-13 无线通信方法和无线通信设备 WO2019056975A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039066.8A CN110741663B (zh) 2017-09-20 2018-09-13 无线通信方法和无线通信设备
US16/628,032 US11240823B2 (en) 2017-09-20 2018-09-13 Wireless communication method and wireless communication device for managing interference between multiple devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710852689.4A CN109526024A (zh) 2017-09-20 2017-09-20 无线通信方法和无线通信设备
CN201710852689.4 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019056975A1 true WO2019056975A1 (zh) 2019-03-28

Family

ID=65769509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105429 WO2019056975A1 (zh) 2017-09-20 2018-09-13 无线通信方法和无线通信设备

Country Status (4)

Country Link
US (1) US11240823B2 (zh)
CN (2) CN109526024A (zh)
TW (1) TWI754740B (zh)
WO (1) WO2019056975A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223652A (zh) * 2011-06-10 2011-10-19 北京邮电大学 基于认知数据库和频谱检测结合的无线接入系统及方法
WO2014124131A2 (en) * 2013-02-06 2014-08-14 Interdigital Patent Holdings, Inc. Enabling secondary user coexistence on dynamic shared spectrum with primary user
CN104427509A (zh) * 2013-09-06 2015-03-18 中兴通讯股份有限公司 一种确定发射功率的方法、装置及系统
CN106341820A (zh) * 2015-07-08 2017-01-18 中兴通讯股份有限公司 一种频谱共享的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043065B1 (ko) * 2008-09-09 2011-06-21 숭실대학교산학협력단 간섭 인지 환경 상의 다중 공존 통신 시스템 및 그 구동 방법
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
US9031032B2 (en) * 2009-10-05 2015-05-12 Futurewei Technologies, Inc. System and method for inter-cell interference coordination
TW201438419A (zh) * 2013-03-06 2014-10-01 Interdigital Patent Holdings 無線網路中干擾管理及干擾對齊
CN104105141B (zh) * 2013-04-02 2020-03-17 索尼公司 无线电资源管理设备、方法以及系统
CN104640117A (zh) * 2013-11-15 2015-05-20 中兴通讯股份有限公司 一种实现频谱资源分配的方法及装置
CN112019998B (zh) * 2014-06-20 2023-03-10 索尼公司 无线电资源管理系统和无线电资源管理方法
CN105704822B (zh) * 2014-11-28 2021-06-29 索尼公司 频谱资源管理装置和方法、无线通信设备和方法
CN106028455B (zh) * 2016-07-04 2019-08-20 宁波大学 基于df协议的双向中继认知无线电系统中的资源分配方法
EP4274163A3 (en) * 2019-02-27 2023-12-27 Samsung Electronics Co., Ltd. Methods and systems for mitigating denial of service (dos) attack in a wireless network
US11490291B2 (en) * 2019-03-28 2022-11-01 Ofinno, Llc Handover for closed access group
US11197232B2 (en) * 2019-04-01 2021-12-07 Ofinno, Llc Location reporting handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223652A (zh) * 2011-06-10 2011-10-19 北京邮电大学 基于认知数据库和频谱检测结合的无线接入系统及方法
WO2014124131A2 (en) * 2013-02-06 2014-08-14 Interdigital Patent Holdings, Inc. Enabling secondary user coexistence on dynamic shared spectrum with primary user
CN104427509A (zh) * 2013-09-06 2015-03-18 中兴通讯股份有限公司 一种确定发射功率的方法、装置及系统
CN106341820A (zh) * 2015-07-08 2017-01-18 中兴通讯股份有限公司 一种频谱共享的方法和装置

Also Published As

Publication number Publication date
TWI754740B (zh) 2022-02-11
TW201916708A (zh) 2019-04-16
CN110741663A (zh) 2020-01-31
CN109526024A (zh) 2019-03-26
CN110741663B (zh) 2023-09-12
US11240823B2 (en) 2022-02-01
US20200221465A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US8306547B2 (en) Apparatus and method for resource sharing between a plurality of communication networks
CN104185279B (zh) 无线通信系统中的装置和方法
US11751067B2 (en) Performance assurance and optimization for GAA and PAL devices in a CBRS network for private enterprise environment
RU2656363C2 (ru) Устройство и способ управления частотным спектром, база данных географических местоположений и устройство вторичной системы
JP6442763B2 (ja) 共同電力制御及びチャネル割り当てを用いた空白帯域におけるスペクトル共有
US9215619B2 (en) Method and system for application-aware load balancing
WO2021061434A1 (en) Managing resources in cbrs networks
KR101630563B1 (ko) 스펙트럼 관리 시스템 및 방법
US11706630B2 (en) Spectrum management device, system and method, and computer-readable storage medium
US20200374894A1 (en) Channel allocation
US11943631B2 (en) Spectrum device, wireless communication system, wireless communication method and storage medium
EP2849389B1 (en) Method and apparatus for allocating bandwidth resources
TW201931886A (zh) 用於無線通訊的電子設備和方法以及電腦可讀儲存介質
US11039450B2 (en) Electronic device and method for the electronic device
CN110741663B (zh) 无线通信方法和无线通信设备
US20210321418A1 (en) Wireless communication method and wireless communication device
WO2020182053A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US9332555B2 (en) System and method for direct mobile communication
CN106604327B (zh) 一种网络资源的分配方法以及基站
Bu-lin et al. Core-selecting auction based spectrum allocation scheme in cognitive femtocell networks
Shinde et al. Avoiding interferences in WLAN 802.11 b for partially overlapped channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859222

Country of ref document: EP

Kind code of ref document: A1