WO2019056870A1 - 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法 - Google Patents

一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法 Download PDF

Info

Publication number
WO2019056870A1
WO2019056870A1 PCT/CN2018/098456 CN2018098456W WO2019056870A1 WO 2019056870 A1 WO2019056870 A1 WO 2019056870A1 CN 2018098456 W CN2018098456 W CN 2018098456W WO 2019056870 A1 WO2019056870 A1 WO 2019056870A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flue gas
boiler
oxygen
nitrogen
Prior art date
Application number
PCT/CN2018/098456
Other languages
English (en)
French (fr)
Inventor
张超
李兆敏
刘建林
赵东亚
鹿腾
武守亚
郭龙江
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to EP18857642.5A priority Critical patent/EP3564478B1/en
Priority to US16/331,929 priority patent/US11208872B2/en
Publication of WO2019056870A1 publication Critical patent/WO2019056870A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2406Steam assisted gravity drainage [SAGD]
    • E21B43/2408SAGD in combination with other methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the invention relates to a CCUS system for extracting heavy oil reservoirs based on optimal flue gas CO 2 enrichment rate and a working method thereof, and belongs to the technical field of heavy oil thermal recovery and carbon dioxide capture, utilization and storage.
  • CCUS Carbon Capture, Utilization and Storage
  • the capture technology of CCUS projects abroad has a diversified trend of pre-combustion, post-combustion and oxygen enrichment.
  • the storage type is mainly driven by oil displacement, supplemented by salt water storage. The basic theoretical research, technology research and development and engineering demonstrations were carried out around CCUS in China. Overall, CCUS formed a technical route of carbon capture and oil displacement after combustion to reduce the energy consumption of capture and increase the economic benefits of CO 2 as the development direction of the technology path.
  • the first step to achieve CCUS is how to solve the 100% capture of CO 2 .
  • the Chinese patent: ZL201510201327.X mentions the current CO 2 capture.
  • the purification process mainly takes the absorption tower and the desorption tower as the main body, and the energy consumption in the absorption and desorption process is high.
  • the patent literature improves the energy utilization rate of the flue gas carbon dioxide capture and recovery system through seven heat exchanges, and reduces the external commonality during desorption.
  • the demand for engineering heat reduces the energy consumption of CO 2 capture and purification, but the CO 2 capture process still exhibits high energy consumption and high cost, which restricts the development of CCUS.
  • the content of CO 2 in the boiler flue gas is about 15%, and the content of N 2 is about 80%, so the flue gas has a dual mechanism of N 2 and CO 2 flooding.
  • the flue gas CO 2 enriched flue gas rate is the proportion of CO 2 to achieve efficient oil displacement thereof, and further guidance flue gas CO 2 enrichment degree, to minimize the cost of CO 2 capture, the ultimate realization of synergy to reduce the energy consumption of CO 2 capture CO 2 flooding and improve the effectiveness of CCUS is needed to solve the core problem.
  • the present invention provides a CCUS system for producing heavy oil reservoirs based on an optimum flue gas CO 2 enrichment rate.
  • the present invention also provides a method of operation of the above CCUS system.
  • the invention further promotes the large-scale application of the CCUS technology in the field of heavy oil thermal mining, the CO 2 capture is enriched, the CO 2 capture energy consumption is reduced and the CO 2 flooding efficiency is improved, and the CCUS whole process is realized. Reduce costs and increase efficiency.
  • a CCUS system for extracting heavy oil reservoirs based on optimal flue gas CO 2 enrichment rate characterized in that the system comprises flue gas CO 2 enrichment unit, flue gas injection unit, heavy oil thermal recovery well unit and mining Outlet recovery unit;
  • the flue gas CO 2 enrichment unit comprises: an air separation enrichment unit and a boiler injection gas premix tank;
  • the air separation and enrichment unit includes:
  • Air separation primary unit for the initial separation of air into oxygen and nitrogen;
  • An air separation secondary device for further enriching a portion of the initially separated oxygen
  • the boiler inject gas premix tank is used to mix the initially separated nitrogen, the initially separated partial oxygen, and/or the further enriched oxygen.
  • the air separation primary device comprises an air membrane separation primary device, a nitrogen-rich air delivery conduit, a first oxygen-enriched air delivery conduit; and the nitrogen-enriched air delivery conduit and the nitrogen-enriched gas addition
  • the pressure monitoring tank is connected; the first oxygen-enriched air delivery line is connected to the oxygen-enriched gas pressure monitoring tank through the second oxygen-enriched air delivery line.
  • the air separation secondary device includes an air membrane separation secondary device, and the first oxygen-enriched air delivery conduit passes through a third oxygen-enriched air delivery conduit, an air membrane separation secondary device, and oxygen-enriched gas.
  • the body pressure monitoring tank is connected.
  • the flue gas injection unit comprises: a boiler connected to a boiler injecting gas premixing tank through a boiler injecting gas regulator, the flue gas exhausting outlet of the boiler passing through the boiler flue gas conveying pipeline and the flue gas
  • the monitoring tanks are connected.
  • a flue gas dust remover disposed on the boiler flue gas delivery line.
  • a flue gas dehumidifier disposed on the boiler flue gas delivery line.
  • a flue gas desulfurization and denitration device disposed on the boiler flue gas delivery line.
  • the heavy oil thermal well group unit includes a thermal recovery well group, and the flue gas monitoring tank is connected to the thermal recovery well group through a thermal recovery wellhead injection device, and the boiler passes steam
  • the conveying pipeline is connected to the hot wellhead injection device.
  • the produced gas recovery unit includes a gas-liquid separation device connected to the heat recovery well group, and the gas-liquid separation device is further connected to the produced gas pressure monitoring tank through the production gas delivery pipeline.
  • the produced gas pressurized monitoring tank is connected to the boiler injecting gas premixing tank.
  • a produced gas purification device is provided on the produced gas delivery line.
  • the working method of the above CCUS system includes the following steps:
  • the air membrane separation primary device separates nitrogen and oxygen in the air for one stage, and the separated nitrogen-rich gas is transported to the nitrogen-enriched gas pressurized monitoring tank through the nitrogen-rich air delivery pipeline, and the separated oxygen-enriched gas passes through the first rich
  • the oxygen air delivery line and the second oxygen-enriched air delivery line are sent to the oxygen-enriched gas pressure monitoring tank;
  • the first gas component monitoring module is provided in the nitrogen-enriched gas pressure monitoring tank for monitoring the nitrogen ratio,
  • the oxygen-enriched gas pressure monitoring tank is provided with a second gas component monitoring module for monitoring the oxygen ratio; adjusting the first gas mass flow meter and the second gas mass flow meter according to the required oxygen concentration to control the nitrogen and oxygen respectively.
  • the boiler injection gas regulator constant boiler injection gas pressure is used to ensure the pressure required for combustion in the boiler furnace, and the nitrogen gas and oxygen premixed gas are sent to the boiler furnace through the boiler injection gas delivery pipeline;
  • the flue gas generated by the combustion of the boiler enters the flue gas deduster, the flue gas dehumidifier, the flue gas desulfurization and denitration device through the boiler flue gas conveying pipeline, and the purified flue gas enters the flue gas monitoring tank through the flue gas compressor, and the flue gas component
  • the monitoring module monitors the CO 2 enrichment rate of the flue gas in the flue gas monitoring tank in real time:
  • the first electromagnetic valve is opened, and the thermal recovery wellhead injection device is injected into the thermal recovery well group for auxiliary oil recovery;
  • the first electromagnetic valve is closed, the second electromagnetic valve is opened, and the flue gas is injected back into the boiler injecting gas premixing tank. Participating in the secondary combustion of the boiler through the flue gas, adjusting the CO 2 concentration of the flue gas, and re-entering the flue gas monitoring tank for re-determination; wherein the optimal value of the CO 2 enrichment rate of the flue gas is according to the existing research method Determined;
  • the steam generated by the boiler is transported to the thermal recovery wellhead injection device through the steam transfer pipeline to be injected into the thermal recovery well group for heavy oil thermal recovery.
  • the fluid is collected by the gas-liquid separation device for gas-liquid separation. Separation, the obtained production liquid enters the oilfield manifold to separate the oil and water, and the obtained produced gas enters the production gas purification device through the production gas purification pipeline to realize the dehumidification purification of the produced gas, and the purified production gas enters the production gas pressurized monitoring tank.
  • the gas component of the produced gas is monitored by a gas gas component monitoring module.
  • the air membrane separation secondary device is introduced while the air membrane separation primary device is put into use.
  • the second solenoid valve and the third solenoid valve are opened to conduct the third oxygen-enriched air delivery line to achieve further enrichment of oxygen.
  • the CCUS system formed by the invention can realize the direct injection of the boiler flue gas purification based on the real-time adjustment of the flue gas CO 2 enrichment rate, and the CO 2 capture is the flue gas CO. 2 Enrichment greatly reduces the energy consumption of CO 2 capture in the CCUS process.
  • the invention adopts a two-stage air membrane separation system to determine the optimal oxygen concentration of the boiler injecting gas according to the optimal flue gas CO 2 enrichment rate, thereby realizing the real-time oxygen enriched oxygen concentration required for air membrane separation. It can be adjusted to avoid the 100% oxygen enrichment required for air membrane separation and oxygen preparation in the conventional oxy-combustion process, thereby reducing the energy consumption of the oxygen separation system.
  • the invention is based on the component monitoring and real-time calculation of the nitrogen-enriched air, boiler flue gas and thermal recovery well group of the two-stage air membrane separation system, and dynamically determines the gas volume required for the reinjection of the boilers of the three gas sources, thereby realizing Real-time precise control of CO 2 enrichment rate of boiler flue gas.
  • the invention is based on the monitoring of the gas component of the hot well group, which can realize the analysis of the retention of the injected gas in the early stage, and when the proportion of CO 2 in the produced gas is high, the composition of the injected gas and the flow rate can be adjusted through the combustion of the boiler.
  • the refueling boiler of the part of the produced gas is realized, and the heavy oil reservoir is reinjected to reduce carbon dioxide emissions and realize underground storage.
  • FIG. 1 is a schematic view showing the overall structure of a CCUS system according to the present invention.
  • Figure 1 1 - air membrane separation primary device; 2 - air membrane separation secondary device; 3 - first solenoid valve; 4 - second solenoid valve; 5 - third solenoid valve; 6 - oxygen-enriched gas increase Pressure monitoring tank; 7—nitrogen-enriched pressurized monitoring tank; 8—first gas boosting module; 9—second gas boosting module; 10—second gas component monitoring module; 11—first gas component monitoring Module; 12 - third gas component monitoring module; 13 - first gas mass flow meter; 14 - second gas mass flow meter; 15 - boiler injecting gas premixing tank; 16 - first emptying valve; Two exhaust valves; 18-safety valve; 19-boiler injection gas regulator; 20-boiler; 21-flue gas dust collector; 22-flue gas dehumidifier; 23-flue gas desulfurization and denitrification device; 25; flue gas monitoring tank; 26 - flue gas component monitoring module; 27 - safety valve; 28 - first solenoid valve; 29 - second
  • a CCUS system for producing heavy oil reservoirs based on optimal flue gas CO 2 enrichment rate comprising a flue gas CO 2 enrichment unit, a flue gas injection unit, a heavy oil thermal recovery well unit and a produced gas recovery unit;
  • the flue gas CO 2 enrichment unit comprises: an air separation enrichment unit and a boiler injection gas premix tank 15;
  • the air separation and enrichment unit includes:
  • Air separation primary unit for the initial separation of air into oxygen and nitrogen;
  • An air separation secondary device for further enriching a portion of the initially separated oxygen
  • the boiler inject gas premix tank 15 is used to mix the initially separated nitrogen, the initially separated partial oxygen, and/or the further enriched oxygen.
  • the oxygen-enriched air delivery line c is connected to the oxygen-enriched gas pressure monitoring tank 6.
  • the air separation secondary device comprises an air membrane separation secondary device 2, and the first oxygen-enriched air delivery conduit a is increased by a third oxygen-enriched air delivery conduit d, an air membrane separation secondary device 2, and an oxygen-enriched gas
  • the pressure monitoring tank 6 is connected.
  • the boiler connected to the gas premixing tank 15 and the flue gas discharge port of the boiler are connected to the flue gas monitoring tank 25 through the boiler flue gas conveying line I.
  • a flue gas deduster 21, a flue gas dehumidifier 22, a flue gas desulfurization and denitration device 23, and a flue gas compressor 24 are disposed on the boiler flue gas delivery line I.
  • the flue gas monitoring tank 25 is connected to the thermal recovery well group 31 through a thermal recovery wellhead injection device 30, and the boiler 20 is connected to the thermal recovery wellhead injection device 30 through a steam delivery line h.
  • the gas-liquid separation device 32 is further connected to the produced gas pressure monitoring tank 34 through the produced gas delivery line J, the produced gas pressurized monitoring tank 34 and the boiler injecting gas premixing tank 15 Connected.
  • a produced gas purification device 33 is provided in the produced gas delivery line J.
  • the working method of the above CCUS system includes the following steps:
  • the boiler injection gas regulator 19 is used to inject the gas pressure into the constant boiler 20 to ensure the pressure required for combustion in the furnace of the boiler 20, and then the nitrogen gas and oxygen premixed gas are sent to the boiler 20 to be burned through the boiler injection gas delivery pipeline g;
  • the flue gas generated by the combustion of the boiler enters the flue gas deduster 21, the flue gas dehumidifier 22, the flue gas desulfurization and denitration device 23 through the boiler flue gas delivery pipeline I, and the purified flue gas enters the flue gas monitoring tank through the flue gas compressor 24. 25.
  • the smoke component monitoring module 26 monitors the flue gas CO 2 enrichment rate in the flue gas monitoring tank 25 in real time:
  • the first electromagnetic valve 28 is opened, and the thermal recovery wellhead injection device 30 is injected into the thermal recovery well group 31 for auxiliary oil recovery;
  • the first electromagnetic valve 28 is closed, the second electromagnetic valve 29 is opened, and the flue gas is injected back to the boiler injecting gas premix tank.
  • the secondary combustion of the boiler 20 is carried out by the flue gas, the concentration of the flue gas CO 2 is adjusted, and the flue gas monitoring tank 25 is again entered for re-determination; wherein the optimal value of the flue gas CO 2 enrichment rate refers to According to the existing research method, in the embodiment of the present invention, the optimum value of the flue gas CO2 enrichment rate can be determined according to the following research method:
  • Tao Lei et al Mechanism of super heavy oil exploitation by carbon dioxide assisted steam stimulation——Taking Zheng 411 West District of Wangzhuang Oilfield as an example[J].Petroleum Geology and Recovery Efficiency, 2009(1).
  • the injection of carbon dioxide in heavy oil thermal recovery process can reduce the viscosity of crude oil and replenish the formation energy, thereby improving the crude oil flow capacity and enhancing oil recovery.
  • the flue gas has both nitrogen and carbon dioxide gases to improve the oil recovery mechanism, but the proportion of carbon dioxide in the flue gas, that is, the CO 2 enrichment rate of flue gas and the efficiency of heavy oil exploitation exist.
  • y is the economic recovery factor of heavy oil reservoirs, function Economic benefit of increasing crude oil after injection of nitrogen per unit volume, function The economic benefit of increasing crude oil after injection of carbon dioxide per unit volume, the function f flue gas is the economic benefit of increasing crude oil after unit volume of flue gas injection; based on the dissolution and viscosity reduction experiment of indoor nitrogen, carbon dioxide, flue gas and target heavy oil reservoir crude oil, And the numerical simulation technology, using formula (1) to optimize the relationship between the economic recovery of heavy oil reservoirs and pure nitrogen, pure carbon dioxide gas and flue gas with different nitrogen and carbon dioxide concentration ratio, ie, the CO 2 enrichment rate with flue gas Relationship curve
  • Z is the economic combustion efficiency of the boiler, function
  • the energy consumed by the air membrane separation to prepare different concentrations of oxygen, the function f boiler is the boiler efficiency corresponding to the different concentrations of oxygen; based on the formula (2), the relationship between the economic combustion efficiency of the boiler and the different oxygen concentration is optimized.
  • the different oxygen concentrations correspond to the ratio of different nitrogen and carbon dioxide in the flue gas generated by boiler combustion, that is, the enrichment rate of flue gas CO2. Therefore, the economic combustion efficiency of the boiler and the flue gas generated by boiler combustion are calculated by formula (2). a relationship between the CO 2 enrichment rates;
  • the relationship between the economic recovery rate of heavy oil reservoirs and the CO 2 enrichment rate of flue gas and the relationship between the economical combustion efficiency of boilers and the CO 2 enrichment rate of flue gas generated by boiler combustion, based on heavy oil reservoirs The economic recovery factor and the economical combustion efficiency of the boiler are optimal, and the lowest energy consumption of the whole process is optimized to obtain the optimal CO 2 enrichment rate of the boiler and the economic recovery rate of the heavy oil reservoir.
  • the enrichment rate is a flue gas CO 2 enrichment rate that needs to be optimized in a CCUS system for producing heavy oil reservoirs based on optimal flue gas CO 2 enrichment rate.
  • the method for controlling the CO 2 enrichment rate of the flue gas in real time is as follows:
  • the amount of flue gas injection is generally large, and when the flue gas CO2 enrichment rate is adjusted, the CO 2 enrichment rate of the flue gas can be adjusted to the same by two to three cycles of the boiler.
  • the range is required because the optimal enrichment rate of flue gas CO2 is generally 5% up and down by a certain value, so adjustment is easier to achieve, and the process can be implemented faster (relative to the overall injection time).
  • the flue gas injection process needs to adjust the flue gas CO2 enrichment rate, the time required for the adjustment process can be short-term stop injection of the oil well to achieve time matching.
  • the heavy oil reservoir mining is mainly steam injection, so in the process of steam injection, the CO2 enrichment rate of the flue gas is adjusted in real time, so there is enough time to adjust the enrichment rate of flue gas CO2.
  • the steam generated by the boiler 20 is sent to the thermal recovery wellhead injection device 30 through the steam delivery pipeline h to be injected into the thermal recovery well group 31 for heavy oil thermal recovery, and the thermal recovery well group 31 recovers the fluid through the gas and liquid during the thermal recovery process.
  • the separation device 32 performs gas-liquid separation, and the obtained production liquid enters the oilfield manifold to separate oil and water, and the obtained production gas enters the production gas purification device 33 through the production gas purification pipeline 33 to realize dehumidification purification of the produced gas, and the purified produced gas.
  • the produced gas pressurized monitoring tank 34 is entered, and the produced gas component is monitored by the produced gas component monitoring module 35.
  • the distribution of remaining oil in the formation heavy oil reservoir can be estimated, and then the numerical simulation of the stage can be guided, and the real-time oil saturation of the reservoir can be adjusted for subsequent calculation to realize the CO 2 enrichment of flue gas during the flue gas injection stage.
  • the real-time optimization of the optimal value of the rate determines the optimal value of the CO 2 enrichment rate of the next stage of the flue gas; according to the gas component of the produced gas monitored by the produced gas component monitoring module 35, it can be determined that the injecting flue gas in the previous stage is The fluctuation of the formation heavy oil reservoir, and then guide the real-time optimization of the optimal value of flue gas CO 2 enrichment rate in the subsequent flue gas injection stage to determine the optimal value of the next stage CO 2 enrichment rate, and
  • the opening of the gas pressurizing module 36 and the venting valve 37 can be controlled in real time, and the produced gas containing the high concentration of carbon dioxide gas can be injected back into the boiler injecting gas premixing tank 15 to participate in the injection of oxygen into the boiler.
  • the concentration is adjusted to achieve lower emissions of carbon dioxide gas throughout the process, allowing carbon dioxide to sequester as much as possible in the formation of heavy oil reservoirs.
  • the working method of the CCUS system as described in Embodiment 6 is that, in step 1), when the required oxygen concentration of the boiler 20 is 60%-100%, the air membrane separation primary device 1 is put into use. At the same time, the air membrane separation secondary device 2 is introduced. The second solenoid valve 4 and the third solenoid valve 5 are opened to conduct the third oxygen-enriched air delivery line d to achieve further enrichment of oxygen.
  • the second gas component monitoring module 10 monitors the oxygen and nitrogen ratio in the oxygen-enriched gas pressure monitoring tank 6 in real time, opens the first gas mass flow meter 13 according to a certain flow rate, and injects gas into the boiler based on the second gas pressure increasing module 9.
  • the premixing tank 15 delivers a specific proportion of nitrogen-enriched gas to further correct the ratio of oxygen and nitrogen in the boiler injecting gas premixing tank 15 to be controlled within a range of 45% to 60%;
  • the boiler After injecting gas pressure through the boiler injection gas regulator 19 constant boiler to ensure the pressure required for combustion in the furnace of the boiler 20, the boiler is injected into the boiler feed line g to the boiler 20 for combustion, and the steam generated by the boiler 20 passes through the wellhead.
  • the injection device 30 is injected into the thermal recovery well group 31 according to the steam stimulation injection process parameter, and the flue gas generated by the boiler 20 enters the flue gas deduster 21, the flue gas dehumidifier 22, and the flue gas desulfurization and denitration device through the boiler flue gas delivery pipeline I.
  • the purification process is performed, and then pressurized into the flue gas monitoring tank 25 via the flue gas compressor 24, at which time the flue gas component monitoring module 26 starts working to monitor the flue gas CO2 enrichment rate in the flue gas monitoring tank 25 in real time, if necessary
  • the optimal CO 2 enrichment rate of the flue gas is between 40% and 55%
  • the first electromagnetic valve 28 is opened, and the thermal recovery well group 31 is injected through the wellhead injection device 30 according to the injection process parameters, if the flue gas CO is not satisfied. 2
  • the optimal enrichment rate is between 40% and 55%
  • the second electromagnetic valve 29 is opened, the flue gas is injected back to the boiler injecting gas premixing tank 15, and the real feedback is based on the third gas component monitoring module 12.
  • Boiler 20 injects oxygen and nitrogen Ratio of real-time correction, the synchronization adjusting a first gas mass flow meter 13, a second gas mass flow meter 14, to ensure that the boiler flue gas generated by combustion of recirculated flue gases can reach rates of CO 2 enriched optimal range;
  • the gas-liquid separation device 32 is used to separate the produced liquid of the thermal recovery well group 31, and the separated produced gas is transported through the produced gas.
  • the pipeline J is sent to the produced gas purification device 33 for dehumidification purification of the produced gas, and then enters the production gas pressure monitoring tank 34, and the gas component monitoring module 35 starts to work, monitors the produced gas components, and collects the gas through the gas pressure module 36.
  • the exhaust gas is pressurized, and can be reinjected to the boiler injecting gas premixing tank 15 to recover the produced gas, and the circulation is further assisted combustion.
  • the air membrane separation secondary device 2 it is necessary to open the air membrane separation secondary device 2, and control the membrane module thereof to prepare the second-stage oxygen-enriched air so that the oxygen concentration thereof is controlled to be 80% to 85%, and then the two-stage air membrane separation device is prepared.
  • the oxygen-enriched air is mixed and sent to the oxygen-enriched gas pressure monitoring tank 6 by controlling the injection ratio thereof, and the second gas component monitoring module 10 is turned on, and the oxygen concentration in the oxygen-enriched gas pressure monitoring tank 6 is monitored in real time and fed back to The air membrane separates the secondary device 2 to further adjust the oxygen concentration in the second oxygen-enriched air;
  • the steam generated by the boiler 20 is injected into the thermal recovery well group 31 through the wellhead injection device 30 according to the steam stimulation injection process parameters, and the flue gas generated by the boiler 20 enters the flue gas dust remover 21 and the flue gas dehumidifier 22 via the boiler flue gas delivery pipeline I.
  • the flue gas desulfurization and denitration device 23 performs purification treatment, and then is pressurized into the flue gas monitoring tank 25 via the flue gas compressor 24, at which time the flue gas component monitoring module 26 starts working to monitor the flue gas CO2 rich in the flue gas monitoring tank 25 in real time.
  • the collection rate if the optimal value of the required CO 2 enrichment rate of the flue gas is between 70% and 80%, the first electromagnetic valve 28 is opened, and the thermal recovery well is injected through the wellhead injection device 30 according to the injection process parameters.
  • Group 31 if the optimal value of the flue gas CO 2 enrichment rate is not between 70% and 80%, the second electromagnetic valve 29 is opened, and the flue gas is injected back to the boiler injecting gas premixing tank 15, and based on the
  • the three gas component monitoring module 12 feeds back the ratio of oxygen and nitrogen of the boiler in real time, performs real-time correction, and synchronously adjusts the first gas mass flow meter 13 and the second gas mass flow meter 14 to ensure the boiler generated after the recirculation combustion.
  • the flue gas can reach the optimal range of flue gas CO 2 enrichment rate;
  • the gas-liquid separation device 32 is used to separate the produced liquid of the thermal recovery well group 31, and the separated produced gas is transported through the produced gas.
  • the pipeline J is sent to the produced gas purification device 33 for dehumidification purification of the produced gas, and then enters the production gas pressure monitoring tank 34, and the produced gas component monitoring module 35 starts to work, monitors the produced gas component, and passes through the gas pressurization module 36.
  • the produced gas is supercharged, and can be reinjected into the boiler injecting gas premixing tank 15 to recover the produced gas, and the circulation is further assisted combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

公开了一种基于最优烟气CO2富集率开采稠油油藏的CCUS系统,包括烟气CO2富集单元、烟气注入单元、稠油热采井组单元和采出气回收单元;烟气CO2富集单元包括:空气分离富集单元和锅炉注入气预混罐;空气分离富集单元包括:空气分离一级装置:用于将空气初步分离为氧气和氮气;空气分离二级装置:用于对初步分离的部分氧气进一步富集;锅炉注入气预混罐用于混合初步分离的氮气、初步分离的部分氧气和/或进一步富集的氧气。该CCUS系统与传统CCUS系统及流程相比,基于烟气CO2富集率的实时可调,实现了锅炉烟气净化后直接注入,变CO2捕集为烟气CO2富集,大大降低了CCUS流程中CO2捕集环节的能耗。

Description

一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统及其工作方法 技术领域
本发明涉及一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统及其工作方法,属于稠油热采和二氧化碳捕集、利用与埋存的技术领域。
背景技术
2016年4月,国家发改委、国家能源局联合下发了《能源技术革命创新行动计划(2016-2030年)》,明确了我国能源技术革命的总体目标,其中提到了“煤炭清洁高效利用技术创新”与“二氧化碳捕集、利用与封存技术创新”两项重点任务,旨在大幅减少能源生产过程污染排放,提供更加低碳的能源技术支撑,构建绿色、低碳的能源技术体系。
我国的能源结构组成中,煤炭占到60%以上。燃煤电厂作为煤炭的使用大户,其产生的烟气是CO 2的主要排放源,大量的CO 2排放有碍于我国履行碳减排承诺。CCUS(Carbon Capture,Utilization and Storage)即碳捕获、利用与封存技术,在国内外能源领域已逐渐发展成重要的新兴产业,总体处于研发和示范阶段。国外CCUS项目的捕集技术呈现燃烧前、燃烧后和富氧等多样化的趋势,封存类型主要以驱油利用为主,咸水层封存为辅。国内围绕CCUS开展了基础理论研究、技术研发和工程示范。总体来看,CCUS形成了燃烧后碳捕集+驱油为主的技术路线,以减少捕集能耗、增加CO 2经济效益为技术路径的发展方向。
中国专利ZL201510227342.1提到,占我国石油总资源约20%以上的稠油油藏,其开发主要依靠包括蒸汽吞吐、蒸汽驱、热水驱、蒸汽辅助重力泄油(SAGD)等热力采油技术,而热力开发过程中所产生的大量锅炉烟气势必会成为CCUS技术应用的主要领域。
目前国内外围绕CCUS相关研究多以高纯CO 2为主,即实现CCUS的第一步必为如何解决CO 2的100%捕集,如中国专利:ZL201510201327.X中提到目前CO 2捕集纯化工艺主要以吸收塔和解吸塔为主体,吸收、解吸过程中能耗较高,该专利文献通过七个热交换以提高烟气二氧化碳捕集回收系统的能量利用率,降低解吸时对外部公用工程热量的需求,进而降低CO 2捕集纯化能耗,但是CO 2捕集过程依然呈现高能耗、高成本的特点,制约了CCUS的发展。
锅炉烟气中CO 2的含量约为15%,N 2的含量约为80%,因此烟气具有N 2和CO 2驱油的双重机理。如何确定最优的CO 2和N 2比例,即烟气CO 2富集率,所述烟气CO 2富集率是指烟气中CO 2所占的比例以实现其高效驱油,进而指导烟气CO 2富集程度,尽可能降低CO 2捕集成本,最终 协同实现CO 2捕集能耗的降低与CO 2驱油功效的提高是目前CCUS亟需解决的核心问题。
发明内容
针对现有技术的不足,本发明提供一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统。
本发明还提供上述CCUS系统的工作方法。
本发明进一步推动CCUS技术在稠油热采领域大规模的应用,变CO 2捕集为富集,协同实现CO 2捕集能耗的降低与CO 2驱油功效的提高,进而实现CCUS全流程的降本增效。
本发明的技术方案如下:
一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,该系统包括烟气CO 2富集单元、烟气注入单元、稠油热采井组单元和采出气回收单元;
所述烟气CO 2富集单元包括:空气分离富集单元和锅炉注入气预混罐;
所述空气分离富集单元包括:
空气分离一级装置:用于将空气初步分离为氧气和氮气;
空气分离二级装置:用于对所述初步分离的部分氧气进一步富集;
所述锅炉注入气预混罐用于混合所述初步分离的氮气、初步分离的部分氧气和/或进一步富集的氧气。
根据本发明优选的,所述空气分离一级装置包括空气膜分离一级装置、富氮空气输送管路、第一富氧空气输送管路;所述富氮空气输送管路与富氮气体增压监测罐相连;所述第一富氧空气输送管路通过第二富氧空气输送管路与富氧气体增压监测罐相连。
根据本发明优选的,所述空气分离二级装置包括空气膜分离二级装置,所述第一富氧空气输送管路通过第三富氧空气输送管路、空气膜分离二级装置与富氧气体增压监测罐相连。
根据本发明优选的,所述烟气注入单元包括:通过锅炉注入气稳压器与锅炉注入气预混罐相连的锅炉、所述锅炉的烟气排出口通过锅炉烟气输送管路与烟气监测罐相连。
根据本发明优选的,在所述锅炉烟气输送管路上设置有烟气除尘器、烟气除湿器、烟气脱硫脱硝装置和烟气压缩机。
根据本发明优选的,所述稠油热采井组单元包括热采井井组,所述烟气监测罐通过热采井井口注入装置与所述热采井井组相连,所述锅炉通过蒸汽输送管路与热采井井口注入装置 连接。
根据本发明优选的,所述采出气回收单元包括与所述热采井井组相连的气液分离装置,所述气液分离装置还通过采出气输送管路与采出气增压监测罐相连,所述采出气增压监测罐与所述锅炉注入气预混罐相连。
根据本发明优选的,在所述采出气输送管路上设置有采出气净化装置。
上述CCUS系统的工作方法,包括步骤如下:
1)空气分离氮气、氧气按所需比例预混:
当锅炉所需氧气浓度在21%到60%之间时,则只将空气膜分离一级装置投入使用,关闭第二电磁阀和第三电磁阀以切断第三富氧空气输送管路;利用空气膜分离一级装置将空气中氮气和氧气进行一级分离,分离后的富氮气体通过富氮空气输送管路输送至富氮气体增压监测罐,分离后的富氧气体通过第一富氧空气输送管路和第二富氧空气输送管路输送至富氧气体增压监测罐;在所述富氮气体增压监测罐设置有第一气体组分监测模块用于监测氮气比例,在所述富氧气体增压监测罐设置有第二气体组分监测模块用于监测氧气比例;按照所需的氧气浓度调整第一气体质量流量计和第二气体质量流量计分别控制氮气和氧气进入锅炉注入气预混罐的流量,并通过第三气体组分监测模块进一步核对锅炉注入气的氧气浓度是否为所需浓度;
2)氮气、氧气预混后调压、注入锅炉燃烧
利用锅炉注入气稳压器恒定锅炉注入气压力,保证锅炉炉膛内燃烧所需压力后,通过锅炉注入气输送管路输送氮气、氧气预混气至锅炉炉膛燃烧;
3)烟气的监测、浓度调整及注采
锅炉燃烧产生的烟气经锅炉烟气输送管路进入烟气除尘器、烟气除湿器、烟气脱硫脱硝装置,净化后的烟气经烟气压缩机进入烟气监测罐,烟气组分监测模块实时监测烟气监测罐中烟气CO 2富集率:
如所述烟气CO 2富集率满足烟气CO 2富集率最优值,则开启第一电磁阀,经由热采井井口注入装置注入热采井井组中进行辅助采油;
如所述烟气CO 2富集率未满足烟气CO 2富集率最优值,则关闭第一电磁阀,开启第二电磁阀,将烟气回注至锅炉注入气预混罐中,通过烟气参与锅炉二次燃烧,进行烟气CO 2浓度调整,再次进入烟气监测罐中以进行再次判定;其中,所述烟气CO 2富集率最优值是指按照现有研究方法所确定的;
4)监测热采井井组采出流体
锅炉产生的蒸汽经蒸汽输送管路输送至热采井井口注入装置注入热采井井组中进行稠油热采,热采井井组热采过程中采出流体经气液分离装置进行气液分离,得到的采出液进入油田管汇进行油水分离,得到的采出气经采出气输送管路进入采出气净化装置实现采出气的除湿净化,净化后的采出气进入采出气增压监测罐,通过采出气气体组分监测模块监测采出气气体组分。
根据本发明优选的,在步骤1)中,当锅炉所需氧气浓度为60%-100%时,则将空气膜分离一级装置投入使用的同时,引入空气膜分离二级装置。开启第二电磁阀和第三电磁阀以导通第三富氧空气输送管路,实现对氧气的进一步富集。
本发明的优势在于:
1.本发明所形成的CCUS系统与传统CCUS系统、流程相比,基于烟气CO 2富集率的实时可调,实现了锅炉烟气净化后直接注入,变CO 2捕集为烟气CO 2富集,大大降低了CCUS流程中CO 2捕集环节的能耗。
2.本发明采用两级空气膜分离系统,根据所需最优烟气CO 2富集率,确定锅炉注入气的最佳含氧浓度,进而实现空气膜分离所需富氧空气氧浓度的实时可调,避免了常规富氧燃烧过程中空气膜分离制备氧气时所需要的100%富氧,进而降低了空分制氧环节能耗。
3.本发明基于两级空气膜分离系统的富氮空气、锅炉烟气、热采井组采出气的组分监测及实时计算,动态确定三种气源所需要回注锅炉的气量,进而实现锅炉烟气CO 2富集率的实时精确控制。
4.本发明基于热采井组采出气组分监测,能够实现前期注入烟气封存滞留情况分析,并且当采出气中CO 2比例较高时,可以通过锅炉燃烧注入气组分及流量调节,实现该部分采出气的回注锅炉,进而回注稠油油藏,降低二氧化碳排放,实现地下封存。
5.利用本发明得到的热采井组产出液的油水比例、产出气的气体组分监测,进而实现对上一阶段确定的烟气CO 2最优富集率进行再次优化,按照现有的研究方法推算出下一阶段烟气CO 2最优富集率,实现与稠油油藏开发现状、锅炉燃烧效率的动态匹配。
附图说明
图1为本发明CCUS系统的整体结构示意图;
在图1中:1—空气膜分离一级装置;2—空气膜分离二级装置;3-第一电磁阀;4-第二 电磁阀;5-第三电磁阀;6—富氧气体增压监测罐;7—富氮气体增压监测罐;8—第一气体增压模块;9—第二气体增压模块;10—第二气体组分监测模块;11—第一气体组分监测模块;12—第三气体组分监测模块;13—第一气体质量流量计;14—第二气体质量流量计;15—锅炉注入气预混罐;16—第一排空阀;17—第二排空阀;18—安全阀;19—锅炉注入气稳压器;20—锅炉;21—烟气除尘器;22—烟气除湿器;23—烟气脱硫脱硝装置;24—烟气压缩机;25—烟气监测罐;26—烟气组分监测模块;27—安全阀;28—第一电磁阀;29—第二电磁阀;30—热采井井口注入装置;31—热采井井组;32—气液分离装置;33—采出气净化装置;34—采出气增压监测罐;35—采出气气体组分监测模块;36-气体增压模块;37-排空阀。
a—第一富氧空气输送管路;c—第二富氧空气输送管路;d—第三富氧空气输送管路;b—富氮空气输送管路;e—二级富氧空气输送管路;f—二级富氮空气输送管路;g—锅炉注入气输送管路;h—蒸汽输送管路;I—锅炉烟气输送管路;J—采出气输送管路。
具体实施方式
下面结合实施例和说明书附图对本发明做详细的说明,但不限于此。
如图1所示。
实施例1、
一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,该系统包括烟气CO 2富集单元、烟气注入单元、稠油热采井组单元和采出气回收单元;
所述烟气CO 2富集单元包括:空气分离富集单元和锅炉注入气预混罐15;
所述空气分离富集单元包括:
空气分离一级装置:用于将空气初步分离为氧气和氮气;
空气分离二级装置:用于对所述初步分离的部分氧气进一步富集;
所述锅炉注入气预混罐15用于混合所述初步分离的氮气、初步分离的部分氧气和/或进一步富集的氧气。
实施例2、
如实施例1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其区别在于,所述空气分离一级装置包括空气膜分离一级装置1、富氮空气输送管路b、第一富氧空气输送管路a;所述富氮空气输送管路b与富氮气体增压监测罐7相连;所述第一富氧空气输送管路a通过第二富氧空气输送管路c与富氧气体增压监测罐6相连。
所述空气分离二级装置包括空气膜分离二级装置2,所述第一富氧空气输送管路a通过第三富氧空气输送管路d、空气膜分离二级装置2与富氧气体增压监测罐6相连。
实施例3、
如实施例1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其区别在于,所述烟气注入单元包括:通过锅炉注入气稳压器19与锅炉注入气预混罐15相连的锅炉、所述锅炉的烟气排出口通过锅炉烟气输送管路I与烟气监测罐25相连。
在所述锅炉烟气输送管路I上设置有烟气除尘器21、烟气除湿器22、烟气脱硫脱硝装置23和烟气压缩机24。
实施例4、
如实施例1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其区别在于,所述稠油热采井组单元包括热采井井组31,所述烟气监测罐25通过热采井井口注入装置30与所述热采井井组31相连,所述锅炉20通过蒸汽输送管路h与热采井井口注入装置30连接。
实施例5、
如实施例1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其区别在于,所述采出气回收单元包括与所述热采井井组31相连的气液分离装置32,所述气液分离装置32还通过采出气输送管路J与采出气增压监测罐34相连,所述采出气增压监测罐34与所述锅炉注入气预混罐15相连。
在所述采出气输送管路J上设置有采出气净化装置33。
实施例6、
上述CCUS系统的工作方法,包括步骤如下:
1)空气分离氮气、氧气按所需比例预混:
当锅炉20所需氧气浓度在21%到60%之间时,则只将空气膜分离一级装置1投入使用,关闭第二电磁阀4和第三电磁阀5以切断第三富氧空气输送管路d;利用空气膜分离一级装置1将空气中氮气和氧气进行一级分离,分离后的富氮气体通过富氮空气输送管路b输送至富氮气体增压监测罐7,分离后的富氧气体通过第一富氧空气输送管路a和第二富氧空气输送管路c输送至富氧气体增压监测罐6;在所述富氮气体增压监测罐7设置有第一气体组分监测模块11用于监测氮气比例,在所述富氧气体增压监测罐6设置有第二气体组分监测模块10用于监测氧气比例;按照所需的氧气浓度调整第一气体质量流量计13和第二气体质量流 量计14分别控制氮气和氧气进入锅炉注入气预混罐15的流量,并通过第三气体组分监测模块12进一步核对锅炉注入气的氧气浓度是否为所需浓度;
2)氮气、氧气预混后调压、注入锅炉燃烧
利用锅炉注入气稳压器19恒定锅炉20注入气压力,保证锅炉20炉膛内燃烧所需压力后,通过锅炉注入气输送管路g输送氮气、氧气预混气至锅炉20炉膛燃烧;
3)烟气的监测、浓度调整及注采
锅炉燃烧产生的烟气经锅炉烟气输送管路I进入烟气除尘器21、烟气除湿器22、烟气脱硫脱硝装置23,净化后的烟气经烟气压缩机24进入烟气监测罐25,烟气组分监测模块26实时监测烟气监测罐25中烟气CO 2富集率:
如所述烟气CO 2富集率满足烟气CO 2富集率最优值,则开启第一电磁阀28,经由热采井井口注入装置30注入热采井井组31中进行辅助采油;
如所述烟气CO 2富集率未满足烟气CO 2富集率最优值,则关闭第一电磁阀28,开启第二电磁阀29,将烟气回注至锅炉注入气预混罐15中,通过烟气参与锅炉20二次燃烧,进行烟气CO 2浓度调整,再次进入烟气监测罐25中以进行再次判定;其中,所述烟气CO 2富集率最优值是指按照现有研究方法所确定的;在本发明的实施例中,所述烟气CO2富集率最优值可按照以下研究方法进行确定:
王学忠等,水平井、氮气及降黏剂辅助蒸汽吞吐技术——以准噶尔盆地春风油田浅薄层超稠油为例[J].石油勘探与开发,2013,40(1):2-0。一文中提到稠油热采过程中氮气的注入能够补充地层能量,且氮气在地层中其密度较小,上浮过程中能够起到保温作用,进而提高蒸汽热效率、提高原油采收率。
陶磊等,二氧化碳辅助蒸汽吞吐开采超稠油机理——以王庄油田郑411西区为例[J].油气地质与采收率,2009(1)。一文中提到稠油热采过程中二氧化碳的注入能够降低原油粘度、补充地层能量,进而提高原油流动能力,提高原油采收率。
张超等,烟道气在风城稠油油藏中的溶解特性研究[J].西安石油大学学报:自然科学版,2013,28(6):90-94。一文中提到模拟烟气中二氧化碳比例为20%,氮气比例为80%,注入超稠油后能够降低原油粘度比例最大可达54.14%。
鉴于以上已有研究可发现,烟气兼具氮气、二氧化碳两种气体提高原油采收率的机理,但是烟气中二氧化碳的比例,也就是烟气CO 2富集率与提高稠油开采效率存在一定的关系,为便于描述此处定义公式:
Figure PCTCN2018098456-appb-000001
其中,y为稠油油藏经济采收率,函数
Figure PCTCN2018098456-appb-000002
为单位体积氮气注入后增产原油所得经济效益,函数
Figure PCTCN2018098456-appb-000003
为单位体积二氧化碳注入后增产原油所得经济效益,函数f 烟气为单位体积烟气注入后增产原油所得经济效益;基于室内氮气、二氧化碳、烟气与目标稠油油藏原油的溶解降粘实验,以及数值模拟技术,利用公式(1)优化得到稠油油藏经济采收率与纯氮气、纯二氧化碳气体以及含有不同氮气和二氧化碳浓度比例烟气的关系曲线,即与烟气CO 2富集率的关系曲线;
任国平等,富氧燃烧技术在150t/h循环流化床锅炉中的应用探析[J].煤炭加工与综合利用,2013(5):61-64。一文中提到富氧燃烧技术能够提高锅炉效率,节能环保。然而提高锅炉效率、降低锅炉能耗,与空气膜分离制备氧气所需的能量消耗需要进行优化,为了便于描述此处定义公式:
Figure PCTCN2018098456-appb-000004
其中,Z为锅炉经济燃烧效率,函数
Figure PCTCN2018098456-appb-000005
为空气膜分离制备不同浓度氧气所消耗的能量,函数f 锅炉为锅炉充入不同浓度氧气所对应的锅炉效率;基于该公式(2)优化得到锅炉经济燃烧效率与不同氧气浓度之间关系,然而不同氧气浓度又对应着锅炉燃烧所产生的烟气中不同的氮气和二氧化碳的比例,即烟气CO2富集率,因而通过公式(2)计算得到锅炉经济燃烧效率与锅炉燃烧所产生的烟气中CO 2富集率之间的关系曲线;
通过稠油油藏经济采收率与烟气CO 2富集率的关系曲线与锅炉经济燃烧效率与锅炉燃烧所产生的烟气中CO 2富集率之间的关系曲线,基于稠油油藏经济采收率与锅炉经济燃烧效率双目标最优,且全流程能耗最低进行优化得到能够满足锅炉经济燃烧效率与稠油油藏经济采收率同时最优的烟气CO 2富集率,该富集率即为一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统中所需要优化出的烟气CO 2富集率。
需注意的是,根据稠油油藏热采所采用的不同开发方式,如蒸汽吞吐、蒸汽驱等,以及各开发方式不同的开发阶段,如蒸汽吞吐第一轮次、第二轮次等,所需要优化得到的烟气CO 2富集率是各不相同的,因此本发明中基于公式(1)进行稠油油藏经济采收率与烟气CO2富集率优化时,所用到的室内氮气、二氧化碳、烟气与目标稠油油藏原油的溶解降粘实验、以及数值模拟技术是根据稠油油藏热采不同开发阶段所取得的稠油油藏地层原油油样,结合各阶段监测井监测得到的油藏实时地质参数开展优化得到的,以实现基于上述优化方法实时优化出各阶段所需注入的烟气CO 2富集率最优值,以指导本发明所提到的CCUS系统的整体运行。
本发明实施例中,实时控制烟气CO 2富集率的方法如下:
在油田现场进行烟气注入时,一般烟气注入的量较大,而进行烟气CO2富集率调节时,一般经过锅炉的两到三次循环即可将烟气CO 2富集率调节至所需范围,因为烟气CO2最优富集率一般为某一数值上下浮动5%,因此调节起来还是比较容易实现,并且该过程能够较快实现(相对于整体注入时间来说)。另外,在烟气注入过程中需要进行烟气CO2富集率调节时,调节过程所需要的时间可以对油井进行短时间停注,以实现二者时间匹配。并且,稠油油藏开采还是以注蒸汽为主,因此在注蒸汽的过程中,烟气CO2富集率是实时调整的,因而有足够时间调整烟气CO2的富集率。
4)监测热采井井组采出流体
锅炉20产生的蒸汽经蒸汽输送管路h输送至热采井井口注入装置30注入热采井井组31中进行稠油热采,热采井井组31热采过程中采出流体经气液分离装置32进行气液分离,得到的采出液进入油田管汇进行油水分离,得到的采出气经采出气输送管路J进入采出气净化装置33实现采出气的除湿净化,净化后的采出气进入采出气增压监测罐34,通过采出气气体组分监测模块35监测采出气气体组分。
根据采出液中油水比例可以推算地层稠油油藏剩余油分布情况,进而指导该阶段的数值模拟,调整油藏实时含油饱和度进行后续计算,以实现烟气注入阶段烟气CO 2富集率最优值的实时优化,确定下一阶段烟气CO 2富集率的最优值;根据采出气气体组分监测模块35监测得到的采出气气体组分,可以确定前期所注入烟气在地层稠油油藏的波及情况,进而指导后续烟气注入阶段烟气CO 2富集率最优值的实时优化,以确定下一阶段烟气CO 2富集率的最优值,并且当采出气中二氧化碳比例升高时,可以实时控制气体增压模块36和排空阀37的开启,将含有高浓度二氧化碳气体的采出气进行回注至锅炉注入气预混罐15,参与锅炉注入气氧气浓度的调节,以实现全流程二氧化碳气体的较低排放,使得二氧化碳尽可能多地在地层稠油油藏中封存增油。
实施例7、
如实施例6所述的CCUS系统的工作方法,其区别在于,在步骤1)中,当锅炉20所需氧气浓度为60%-100%时,则将空气膜分离一级装置1投入使用的同时,引入空气膜分离二级装置2。开启第二电磁阀4和第三电磁阀5以导通第三富氧空气输送管路d,实现对氧气的进一步富集。
应用例1、
如实施例6、7所述的CCUS系统的工作方法应用于胜利油田某稠油蒸汽吞吐井组开采初 期时:
(1)地层剩余油饱和度较高,由于是蒸汽吞吐前期,烟气注入以补充地层能量为主,且此时希望所注入地层的烟气能够在重力超覆作用下产生上浮,在油层上部形成烟气盖层以实现油层保温,在此思想的指导下,结合室内不同烟气CO 2富集率的烟气与地层原油的溶解降粘增能实验、烟气辅助蒸汽吞吐的数值模拟优化,并考虑锅炉燃烧效率,优化得到该阶段烟气CO 2富集率最优值在40%~55%之间;
(2)鉴于所需烟气CO 2富集率最优值为40%~55%,因此只需利用空气膜分离一级装置1制备富氧空气,通过控制空气膜分离一级装置1制备富氧浓度在45%~60%的富氧空气,输送至富氧气体增压监测罐6,并通过第二气体组分监测模块10实时监测富氧气体增压监测罐6中氧气和氮气比例,实时反馈调整空气膜分离一级装置1以稳定氧气浓度恒定在45%~60%;
(3)设置第二气体质量流量计14,以一定流量,基于第一气体增压模块8将富氧气体增压监测罐6中的富氧气体输送至锅炉注入气预混罐15,并参考第二气体组分监测模块10实时监测得到的富氧气体增压监测罐6中氧气和氮气比例,按照一定流量开启第一气体质量流量计13,基于第二气体增压模块9向锅炉注入气预混罐15输送特定比例的富氮气体以进一步修正锅炉注入气预混罐15中氧气和氮气比例,使其控制在45%~60%范围之内;
(4)通过锅炉注入气稳压器19恒定锅炉注入气压力以保证锅炉20炉膛内燃烧所需压力后,通过锅炉注入气输送管路g至锅炉20炉膛进行燃烧,锅炉20产生的蒸汽通过井口注入装置30按照蒸汽吞吐注入工艺参数注入热采井井组31,锅炉20产生的烟气经由锅炉烟气输送管路I进入烟气除尘器21、烟气除湿器22、烟气脱硫脱硝装置23进行净化处理,然后经由烟气压缩机24增压进入烟气监测罐25,此时烟气组分监测模块26开始工作实时监测烟气监测罐25中烟气CO2富集率,如若满足所需烟气CO 2富集率最优值在40%~55%之间,则开启第一电磁阀28,通过井口注入装置30按照注入工艺参数注入热采井井组31,如若不满足烟气CO 2富集率最优值在40%~55%之间,则开启第二电磁阀29,将烟气回注至锅炉注入气预混罐15,并基于第三气体组分监测模块12实时反馈的锅炉20注入气氧气和氮气比例,进行实时修正,同步调整第一气体质量流量计13、第二气体质量流量计14,以保证再次循环燃烧后所产生的锅炉烟气能够达到烟气CO 2富集率最优的范围;
(5)热采井井组31闷井一定时间后,进行生产时,基于气液分离装置32将热采井井组31产出液进行气液分离,将分离得到的采出气通过采出气输送管路J输送至采出气净化装置33进行采出气除湿净化,然后进入采出气增压监测罐34,气体组分监测模块35开始工作,监测采出气组分,并通过气体增压模块36对采出气进行增压,可回注至锅炉注入气预混罐15进行采出气再利用,进行再次循环辅助燃烧。
应用例2、
如实施例6、7所述的CCUS系统的工作方法应用于胜利油田某稠油蒸汽吞吐井组进入蒸汽吞吐中期时:
(1)此时地层剩余油饱和度进一步降低,前期注入的烟气在重力超覆作用下已经上浮形成盖层,并且前期注入的蒸汽降粘幅度以维持在一定水平,此时希望注入烟气中CO 2比例提高,以实现CO 2在原油中的溶解降粘,并进一步增加地层能量,因此结合室内不同烟气CO 2富集率的烟气与地层原油的溶解降粘增能实验、烟气辅助蒸汽吞吐的数值模拟优化,并考虑锅炉燃烧效率,优化得到该阶段烟气CO 2富集率最优值在70%~80%之间;
(2)此时需要开启空气膜分离二级装置2,并控制其膜组件,制备二级富氧空气,使得其氧气浓度控制在80%~85%,然后将两级空气膜分离装置所制备的富氧空气通过控制其注入比例,混合输送至富氧气体增压监测罐6,并开启第二气体组分监测模块10,实时监测富氧气体增压监测罐6中氧气浓度,并反馈至空气膜分离二级装置2,以进一步调整二级富氧空气中氧气浓度;
(3)结合第三气体组分监测模块12实时测得的锅炉注入气预混罐15中的氧气浓度,控制第一气体质量流量计13、第二气体质量流量计14,进一步调整锅炉注入气预混罐15中的氧气浓度,通过锅炉注入气稳压器19恒定锅炉注入气压力以保证锅炉20炉膛内燃烧所需压力后,通过锅炉注入气输送管路g输送至锅炉20炉膛进行燃烧,锅炉20产生的蒸汽通过井口注入装置30按照蒸汽吞吐注入工艺参数注入热采井井组31,锅炉20产生的烟气经由锅炉烟气输送管路I进入烟气除尘器21、烟气除湿器22、烟气脱硫脱硝装置23进行净化处理,然后经由烟气压缩机24增压进入烟气监测罐25,此时烟气组分监测模块26开始工作实时监测烟气监测罐25中烟气CO2富集率,如若满足所需烟气CO 2富集率最优值在70%~80%之间,则开启第一电磁阀28,通过井口注入装置30按照注入工艺参数注入热采井井组31,如若不满足烟气CO 2富集率最优值在70%~80%之间,则开启第二电磁阀29,将烟气回注至锅炉注入气预混罐15,并基于第三气体组分监测模块12实时反馈的锅炉注入气氧气和氮气比例,进行实时修正,同步调整第一气体质量流量计13、第二气体质量流量计14,以保证再次循环燃烧后所产生的锅炉烟气能够达到烟气CO 2富集率最优的范围;
(4)热采井井组31闷井一定时间后,进行生产时,基于气液分离装置32将热采井井组31产出液进行气液分离,将分离得到的采出气通过采出气输送管路J输送至采出气净化装置33进行采出气除湿净化,然后进入采出气增压监测罐34,采出气气体组分监测模块35开始工作,监测采出气组分,并通过气体增压模块36对采出气进行增压,可回注至锅炉注入气预混罐15进行采出气再利用,进行再次循环辅助燃烧。

Claims (10)

  1. 一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,该系统包括烟气CO 2富集单元、烟气注入单元、稠油热采井组单元和采出气回收单元;
    所述烟气CO 2富集单元包括:空气分离富集单元和锅炉注入气预混罐;
    所述空气分离富集单元包括:
    空气分离一级装置:用于将空气初步分离为氧气和氮气;
    空气分离二级装置:用于对所述初步分离的部分氧气进一步富集;
    所述锅炉注入气预混罐用于混合所述初步分离的氮气、初步分离的部分氧气和/或进一步富集的氧气。
  2. 根据权利要求1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,所述空气分离一级装置包括空气膜分离一级装置、富氮空气输送管路、第一富氧空气输送管路;所述富氮空气输送管路与富氮气体增压监测罐相连;所述第一富氧空气输送管路通过第二富氧空气输送管路与富氧气体增压监测罐相连。
  3. 根据权利要求1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,所述空气分离二级装置包括空气膜分离二级装置,所述第一富氧空气输送管路通过第三富氧空气输送管路、空气膜分离二级装置与富氧气体增压监测罐相连。
  4. 根据权利要求1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,所述烟气注入单元包括:通过锅炉注入气稳压器与锅炉注入气预混罐相连的锅炉、所述锅炉的烟气排出口通过锅炉烟气输送管路与烟气监测罐相连。
  5. 根据权利要求4所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,在所述锅炉烟气输送管路上设置有烟气除尘器、烟气除湿器、烟气脱硫脱硝装置和烟气压缩机。
  6. 根据权利要求1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,所述稠油热采井组单元包括热采井井组,所述烟气监测罐通过热采井井口注入装置与所述热采井井组相连,所述锅炉通过蒸汽输送管路与热采井井口注入装置连接。
  7. 根据权利要求1所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,所述采出气回收单元包括与所述热采井井组相连的气液分离装置,所述气液分离装 置还通过采出气输送管路与采出气增压监测罐相连,所述采出气增压监测罐与所述锅炉注入气预混罐相连。
  8. 根据权利要求7所述的一种基于最优烟气CO 2富集率开采稠油油藏的CCUS系统,其特征在于,在所述采出气输送管路上设置有采出气净化装置。
  9. 如权利要求1-8任意一项所述CCUS系统的工作方法,其特征在于,该工作方法包括步骤如下:
    1)空气分离氮气、氧气按所需比例预混:
    当锅炉所需氧气浓度在21%到60%之间时,则只将空气膜分离一级装置投入使用;利用空气膜分离一级装置将空气中氮气和氧气进行一级分离,分离后的富氮气体通过富氮空气输送管路输送至富氮气体增压监测罐,分离后的富氧气体通过第一富氧空气输送管路和第二富氧空气输送管路输送至富氧气体增压监测罐;在所述富氮气体增压监测罐设置有第一气体组分监测模块用于监测氮气比例,在所述富氧气体增压监测罐设置有第二气体组分监测模块用于监测氧气比例;按照所需的氧气浓度调整第一气体质量流量计和第二气体质量流量计分别控制氮气和氧气进入锅炉注入气预混罐的流量,并通过第三气体组分监测模块进一步核对锅炉注入气的氧气浓度是否为所需浓度;
    2)氮气、氧气预混后调压、注入锅炉燃烧
    利用锅炉注入气稳压器恒定锅炉注入气压力,保证锅炉炉膛内燃烧所需压力后,通过锅炉注入气输送管路输送氮气、氧气预混气至锅炉炉膛燃烧;
    3)烟气的监测、浓度调整及注采
    锅炉燃烧产生的烟气经锅炉烟气输送管路进入烟气除尘器、烟气除湿器、烟气脱硫脱硝装置,净化后的烟气经烟气压缩机进入烟气监测罐,烟气组分监测模块实时监测烟气监测罐中烟气CO 2富集率:
    如所述烟气CO 2富集率满足烟气CO 2富集率最优值,则开启第一电磁阀,经由热采井井口注入装置注入热采井井组中进行辅助采油;
    如所述烟气CO 2富集率未满足烟气CO 2富集率最优值,则关闭第一电磁阀,开启第二电磁阀,将烟气回注至锅炉注入气预混罐中,通过烟气参与锅炉二次燃烧,进行烟气CO 2浓度调整,再次进入烟气监测罐中以进行再次判定;
    4)监测热采井井组采出流体
    锅炉产生的蒸汽经蒸汽输送管路输送至热采井井口注入装置注入热采井井组中进行稠油热采,热采井井组热采过程中采出流体经气液分离装置进行气液分离,得到的采出液进入油田管汇进行油水分离,得到的采出气经采出气输送管路进入采出气净化装置实现采出气的除湿净化,净化后的采出气进入采出气增压监测罐,通过采出气气体组分监测模块监测采出气气体组分。
  10. 如权利要求9所述CCUS系统的工作方法,其特征在于,在步骤1)中,当锅炉所需氧气浓度为60%-100%时,则将空气膜分离一级装置投入使用的同时,引入空气膜分离二级装置。
PCT/CN2018/098456 2017-09-25 2018-08-03 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法 WO2019056870A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18857642.5A EP3564478B1 (en) 2017-09-25 2018-08-03 CCUS SYSTEM FOR EXPLOITING THICKENED OIL RESERVOIRS
BASED ON OPTIMAL FLUE GAS C02 ENRICHMENT RATIO AND
WORKING METHOD THEREOF
US16/331,929 US11208872B2 (en) 2017-09-25 2018-08-03 CCUS (carbon capture utilization and storage) system for exploiting thickened oil reservoirs based on optimal flue gas CO2 enrichment ratio and working method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710877108.2A CN107575190B (zh) 2017-09-25 2017-09-25 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法
CN201710877108.2 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019056870A1 true WO2019056870A1 (zh) 2019-03-28

Family

ID=61039875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098456 WO2019056870A1 (zh) 2017-09-25 2018-08-03 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法

Country Status (4)

Country Link
US (1) US11208872B2 (zh)
EP (1) EP3564478B1 (zh)
CN (1) CN107575190B (zh)
WO (1) WO2019056870A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382452A (zh) * 2020-10-21 2022-04-22 中国石油天然气股份有限公司 模拟稠油注氮气辅助蒸汽吞吐的实验装置
CN114961693A (zh) * 2022-04-18 2022-08-30 常州大学 一种确定稠油蒸汽-co2吞吐组合的实验方法和装置
US20230193743A1 (en) * 2021-12-16 2023-06-22 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning
CN117205725A (zh) * 2023-11-09 2023-12-12 中国石油大学(华东) 一种撬装式烟道气co2富集度可调节注入装备及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575190B (zh) * 2017-09-25 2018-08-24 中国石油大学(华东) 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法
CN108416113A (zh) * 2018-02-08 2018-08-17 中国石油大学(华东) 基于二氧化碳富集率的ccus全流程协同优化方法
CN109596663A (zh) * 2018-11-23 2019-04-09 太原理工大学 一种co2富集高压环境下的煤炭急速加热气化燃烧的方法
CN110411961A (zh) * 2019-07-19 2019-11-05 辽宁科技学院 一种测定水中痕量氰化物的装置与方法
CN114542028B (zh) * 2020-11-25 2024-08-13 中国石油化工股份有限公司 一种模拟注入高压气体抽提原油的系统、方法及盘管
CN112664171B (zh) * 2020-12-23 2023-04-14 河南恒聚新能源设备有限公司 风光热氢储一体化用于陆上油田稠油蒸汽热力开采系统
CN112761599B (zh) * 2021-02-08 2022-03-11 西南石油大学 一种基于co2捕集的自生co2提高原油采收率的方法
CN114016990A (zh) * 2021-11-04 2022-02-08 西安交通大学 一种富油煤地下电加热直接提油及余热利用系统
CN115263259B (zh) * 2022-09-20 2023-08-08 陕西延长石油(集团)有限责任公司 一种油田注水注气开发用地面管路优化系统及其优化方法
CN116411997B (zh) * 2023-03-06 2023-11-07 大连理工大学 一种co2封存利用源汇匹配全流程评价装置
CN116933407B (zh) * 2023-06-01 2024-04-02 中国石油天然气股份有限公司 一种确定ccus机抽与自喷生产转换界限的方法
CN117211743B (zh) * 2023-11-03 2024-01-16 中国石油大学(华东) Co2驱油埋存过程采出气自循环捕集回注撬装装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855169A (zh) * 2007-07-11 2010-10-06 乔治洛德方法研究和开发液化空气有限公司 用于分离气态混合物的方法和设备
US20120181028A1 (en) * 2011-01-14 2012-07-19 Halliburton Energy Services, Inc. Method and system for servicing a wellbore
CN103233709A (zh) * 2013-05-13 2013-08-07 中国石油大学(华东) 一种基于co2辅助sagd开采超稠油油藏的ccus系统及方法
CN103403291A (zh) * 2010-12-23 2013-11-20 清洁能源系统股份有限公司 零排放蒸汽发生方法
US20140020913A1 (en) * 2012-07-23 2014-01-23 John Tinsman Patton Recovery of oil sands bitumen
CN106437653A (zh) * 2016-09-27 2017-02-22 大连理工大学 一种注生石灰和二氧化碳法的水合物开采及二氧化碳封存联合方法
CN107575190A (zh) * 2017-09-25 2018-01-12 中国石油大学(华东) 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568185B1 (en) * 2001-12-03 2003-05-27 L'air Liquide Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Combination air separation and steam-generation processes and plants therefore
US7341102B2 (en) * 2005-04-28 2008-03-11 Diamond Qc Technologies Inc. Flue gas injection for heavy oil recovery
FR2911629A1 (fr) * 2007-01-19 2008-07-25 Air Liquide Procede d'extraction de produits petroliferes au moyen de fluides d'aide a l'extraction
CN201031676Y (zh) * 2007-03-30 2008-03-05 辽河石油勘探局 锅炉烟道气加压吸收二氧化碳气态注井采油装置
DE102008009129A1 (de) * 2008-02-14 2009-08-20 Hitachi Power Europe Gmbh Kohlekraftwerk und Verfahren zum Betrieb des Kohlekraftwerkes
US8210259B2 (en) * 2008-04-29 2012-07-03 American Air Liquide, Inc. Zero emission liquid fuel production by oxygen injection
CN102431974B (zh) * 2011-09-23 2013-05-08 山东大学 油田注汽锅炉富氧燃烧的多联产工艺及设备
AU2012329266A1 (en) * 2011-10-26 2014-05-15 Exxonmobil Upstream Research Company Low emission heating of a hydrocarbon formation
CN103775042A (zh) * 2013-06-18 2014-05-07 中国石油天然气股份有限公司 一种基于富氧锅炉生产高温高压蒸汽-烟气的系统及方法
NO20150079A1 (en) * 2015-01-17 2015-03-12 Int Energy Consortium As System for injecting flue gas to a subterranean formation
CN105114045B (zh) * 2015-08-05 2018-04-27 中国石油大学(华东) 一种基于气举法采油的ccus系统及应用
CN107021876B (zh) * 2017-05-24 2023-10-10 长江大学 应用于石油石化行业的ccus系统及工艺方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855169A (zh) * 2007-07-11 2010-10-06 乔治洛德方法研究和开发液化空气有限公司 用于分离气态混合物的方法和设备
CN103403291A (zh) * 2010-12-23 2013-11-20 清洁能源系统股份有限公司 零排放蒸汽发生方法
US20120181028A1 (en) * 2011-01-14 2012-07-19 Halliburton Energy Services, Inc. Method and system for servicing a wellbore
US20140020913A1 (en) * 2012-07-23 2014-01-23 John Tinsman Patton Recovery of oil sands bitumen
CN103233709A (zh) * 2013-05-13 2013-08-07 中国石油大学(华东) 一种基于co2辅助sagd开采超稠油油藏的ccus系统及方法
CN106437653A (zh) * 2016-09-27 2017-02-22 大连理工大学 一种注生石灰和二氧化碳法的水合物开采及二氧化碳封存联合方法
CN107575190A (zh) * 2017-09-25 2018-01-12 中国石油大学(华东) 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Application Analysis of Oxygen-Enriched Combustion Technology in 150 t/h Circulating Fluidized Bedboiler (J)", COAL PROCESSING AND COMPREHENSIVE UTILIZATION, vol. 28, 2013, pages 61 - 64
OIL EXPLORATION AND DEVELOPMENT, vol. 40, no. 1, 2013, pages 2 - 0
OIL GAS GEOLOGY AND RECOVERY RATIO, vol. 1, 2009

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382452A (zh) * 2020-10-21 2022-04-22 中国石油天然气股份有限公司 模拟稠油注氮气辅助蒸汽吞吐的实验装置
CN114382452B (zh) * 2020-10-21 2024-03-26 中国石油天然气股份有限公司 模拟稠油注氮气辅助蒸汽吞吐的实验装置
US20230193743A1 (en) * 2021-12-16 2023-06-22 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning
US11905817B2 (en) * 2021-12-16 2024-02-20 Saudi Arabian Oil Company Method and system for managing carbon dioxide supplies using machine learning
CN114961693A (zh) * 2022-04-18 2022-08-30 常州大学 一种确定稠油蒸汽-co2吞吐组合的实验方法和装置
CN117205725A (zh) * 2023-11-09 2023-12-12 中国石油大学(华东) 一种撬装式烟道气co2富集度可调节注入装备及方法
CN117205725B (zh) * 2023-11-09 2024-02-06 中国石油大学(华东) 一种撬装式烟道气co2富集度可调节注入装备及方法

Also Published As

Publication number Publication date
US20210324716A1 (en) 2021-10-21
EP3564478A4 (en) 2020-03-25
US11208872B2 (en) 2021-12-28
CN107575190B (zh) 2018-08-24
EP3564478B1 (en) 2021-10-06
CN107575190A (zh) 2018-01-12
EP3564478A1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2019056870A1 (zh) 一种基于最优烟气co2富集率开采稠油油藏的ccus系统及其工作方法
CN103233709B (zh) 一种基于二氧化碳辅助sagd开采超稠油油藏的ccus系统及方法
CN101113666A (zh) 一种煤层气开采新技术
WO2018094789A1 (zh) 一种水合物法联合化学吸收法的co2气体分离装置及方法
CN105779049B (zh) 一种制造煤层气水合物的方法
CN207960662U (zh) 一种二氧化碳注入矿井采空区系统
CN103452538B (zh) 纯氧天然气复合热载体发生器系统
CN106837439A (zh) 太阳能有机朗肯循环辅助的真空变压变温耦合吸附碳捕集系统
CN107754568A (zh) 一种低能耗烟气捕集回收二氧化碳的装置及气体回收工艺
CN107701159B (zh) 富氧助燃稠油井注气系统及注气方法
CN109045980A (zh) 一种基于余热利用的脱硫废水零排放处理系统
CN103835747B (zh) 一种低浓瓦斯综合利用的系统及方法
CN107575856A (zh) 一种烟气再循环锅炉系统
CN105423333A (zh) 一种高温富氧式注汽锅炉
CN104763397A (zh) 一种基于蒸汽引射的油田注汽锅炉烟气资源化利用系统及其应用
Zhang et al. CCUS (carbon capture utilization and storage) system for exploiting thickened oil reservoirs based on optimal flue gas CO 2 enrichment ratio and working method thereof
WO2017087166A1 (en) Dual integrated psa for simultaneous power plant emission control and enhanced hydrocarbon recovery
CN103775042A (zh) 一种基于富氧锅炉生产高温高压蒸汽-烟气的系统及方法
CN216155600U (zh) 一种自响应无动力透气膜增氧给水加氧装置
CN112392543B (zh) 一种废弃矿井采空区存储-释放二氧化碳的资源化利用方法及其系统
CN111764956A (zh) 综采工作面磁化表面活性剂瓦斯煤尘协同防治装置及方法
CN105036084B (zh) 一种从空气中提取富氧和富氮气体的系统与方法
CN218687878U (zh) 一种辅助植物生长的二氧化碳富集装置
CN219482139U (zh) 一种适用于两相吸收剂的碳捕集系统
CN218452040U (zh) 一种利用地热辅助碳捕集提压装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018857642

Country of ref document: EP

Effective date: 20190726

NENP Non-entry into the national phase

Ref country code: DE