WO2019056783A1 - 一种换流器控制方法 - Google Patents

一种换流器控制方法 Download PDF

Info

Publication number
WO2019056783A1
WO2019056783A1 PCT/CN2018/087664 CN2018087664W WO2019056783A1 WO 2019056783 A1 WO2019056783 A1 WO 2019056783A1 CN 2018087664 W CN2018087664 W CN 2018087664W WO 2019056783 A1 WO2019056783 A1 WO 2019056783A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
converter
grid
phase
Prior art date
Application number
PCT/CN2018/087664
Other languages
English (en)
French (fr)
Inventor
卢宇
汪楠楠
董云龙
田杰
李海英
姜崇学
王佳成
丁久东
胡兆庆
鲁江
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to EP18858956.8A priority Critical patent/EP3667858A4/en
Publication of WO2019056783A1 publication Critical patent/WO2019056783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only

Definitions

  • the invention belongs to the technical field of power electronics, and in particular relates to a converter control method.
  • Flexible DC transmission uses a voltage source converter to control active power and reactive power independently and quickly, thereby improving system stability, suppressing system frequency and voltage fluctuations, and improving the steady-state performance of the grid-connected AC system.
  • the AC side of the converter of the flexible DC transmission system is connected to the AC system through the converter transformer.
  • the active and reactive power of the converter transformer network side is set to the set value.
  • the converter transformer network side casing CT When the converter transformer network side casing CT is used, the AC system A large zero-sequence current in the ground fault will saturate the CT of the mesh side casing, causing the control to run out of control in severe cases, resulting in failure of the fault crossing.
  • One solution is to change the grid side casing CT to light CT, but it will add more cost.
  • the present invention proposes an economical control method to avoid the problem of runaway caused by CT saturation of the casing side of the converter transformer.
  • the object of the present invention is to provide a converter control method, which adopts a commutation variable network side voltage and a valve side current to realize a closed loop current control of the converter, thereby avoiding the problem of runaway caused by the CT saturation of the converter side wall of the converter. .
  • An inverter control method is applied to a voltage source type converter, wherein an AC side of the voltage source type converter is connected to an AC system through a converter transformer, and a closed loop of the converter is realized by collecting a grid side voltage and a valve side current.
  • Current control including the following steps:
  • the closed-loop current control of the converter is realized by using the three-phase voltage on the grid side and the equivalent three-phase current on the grid side.
  • the linear transformation in the step 2) is determined by the wiring mode of the converter transformer, and the following transformation manner is specifically adopted:
  • i saeq , i sbeq , i sceq are equivalent net-phase three-phase current instantaneous values
  • i vca , i vcb , i vcc are valve-side three-phase current instantaneous values
  • C DY is a linear transformation adopted by the linear transformation matrix.
  • the above-mentioned converter control method realizes the closed loop current control of the converter by using the grid side voltage and the grid side current during normal operation, and when the grid side current CT saturation is detected, switching to the grid side voltage and the valve side current is realized. Inverter closed loop current control.
  • the criterion for detecting the saturation of the grid side current CT is: the grid side current and the valve side three-phase current are linearly converted to obtain an equivalent network side three-phase current error greater than the current
  • the error is fixed, Iset, and the zero-sequence voltage of the grid-side voltage is greater than the zero-sequence voltage setting U0set.
  • the inverter control method provided by the invention adopts the commutation variable network side voltage and the valve side current to realize the closed loop current control of the converter, thereby avoiding the problem of runaway caused by the CT saturation of the converter side wall of the converter. .
  • the inverter control method provided by the present invention has high economical efficiency without adding new measuring equipment.
  • Figure 1 Schematic diagram of the configuration of the measuring point of the flexible DC system
  • Figure 2 Schematic diagram of the commutation YD11 wiring method
  • Figure 3 Flow chart of a converter control method
  • Figure 4 Control block diagram of an inverter control method.
  • Figure 5 Control block diagram of another converter control method.
  • FIG. 1 is a schematic diagram of a point configuration of a flexible DC system.
  • the AC side of the voltage source converter C1 is connected to the bus B1 of the AC system through the converter transformer T1, and the electromagnetic side voltage transformer Us and the electromagnetic current transformer Is are arranged on the grid side of the converter transformer T1, and the converter transformer T1 is
  • the valve side is equipped with an electronic voltage transformer Uvc and an electronic current transformer Ivc.
  • the active and reactive power of the converter transformer network side are set values, so the measurement of the voltage transformer Us and the current transformer Is is mainly used.
  • the dynamic range of the control current transformer Is is generally only 2 times, and it is easy to be saturated when the fault occurs, and the dynamic range of the electronic current transformer Ivc is generally 15 times, and it is not easy to be saturated.
  • FIG. 2 is a schematic diagram of a wiring mode of the commutating YD11, and the linear transformation matrix used for linear transformation is determined according to the wiring mode of the commutation. According to the electromagnetic induction principle of the transformer and Kirchhoff's law, the following relationship can be obtained:
  • FIG. 3 is a flow chart of a converter control method according to the present invention.
  • the closed loop current control of the converter is realized by collecting the grid side voltage and the valve side current, and the following steps are included:
  • Step 101 collecting the three-phase voltage of the network side of the converter transformer and the three-phase current of the valve side, that is, collecting the measured values of the voltage transformer Us and the current transformer Ivc in FIG. 1;
  • Step 102 linearly transform the three-phase current of the valve side to obtain an equivalent three-phase current of the net side, that is, select a suitable transformation matrix according to the wiring mode of the commutation, and calculate the equivalent three-phase three-phase current from the valve side three-phase current.
  • the current such as the commutation wiring method is YD11, using the transformation matrix C DY-11 ;
  • Step 103 adopting the three-phase voltage on the grid side and the equivalent three-phase current on the grid side to realize the closed loop current control of the converter. After obtaining the equivalent three-phase current of the grid side, the original inner loop control strategy can be implemented. Inverter control.
  • FIG. 4 is a block diagram of a control method of an inverter control method proposed by the present invention.
  • the commutating variable valve side currents i vca , i vcb , i vcc are collected , and the equivalent network side three-phase currents i saeq , i sbeq , i sceq are obtained through the control link 1 using the linear transformation matrix C DY .
  • the equivalent net side three-phase current is parked to obtain the dq axis components i sd and i sq , and the control link 3 performs the park transformation on the commutation network side voltages u sa , u sb and u sc .
  • the dq axis components u sd , u sq are obtained and used as inputs to the control link 5.
  • the control link 5 is the inner loop current control, adopts the vector control mode, and receives the active current i sdref and the reactive current i sqref command of the outer loop controller of the control link 4, according to the current and voltage response of the control link 2 and the control link 3 output.
  • the inverter control signals u cd , u cq are generated, and finally the three-phase voltage reference signals u refa , u refb , u refc of the converter are obtained through the inverse parking transformation of the control commutation 6 , and finally through the grid side voltage and The valve side current enables current control of the inverter.
  • FIG. 5 is a block diagram of another control method of the inverter control method proposed by the present invention.
  • the equivalent network side three-phase current is subjected to a park transformation through the control link 7' to obtain dq axis components i sd1 and i sq1 .
  • the equivalent network side three-phase currents i saeq , i sbeq , i sceq are obtained by the control link 1 ′ using the linear transformation matrix C DY .
  • the equivalent mesh side three-phase current is transformed by the control link 2' to obtain dq axis components i sd2 and i sq2 .
  • the commutation variable network side voltages u sa , u sb , and u sc are subjected to the park transformation by the control link 3' to obtain the dq axis components u sd and u sq , and are used as inputs of the control link 5'.
  • the sequence voltage is set to U0 set , and the grid side CT is saturated, otherwise the grid side CT is not saturated.
  • the current error setting value I set can take K times of the rated current, wherein the value range of K is 0 to 1, preferably 0.1; the zero sequence voltage setting U0 set can take M times of the rated voltage, where M is taken The value ranges from 0 to 1, preferably 0.3.
  • the control link 8' selects i sd1 and i sq1 as the input of the control link 5' when the network side CT is not saturated, and selects i sd2 and i sq2 as the input of the control link 5' when the network side CT is not saturated.
  • the control link 5' is the inner loop current control, adopts the vector control mode, and receives the active current i sdref and the reactive current i sqref command of the outer loop controller of the control link 4', according to the control link 8' and the control link 3' output.
  • the current and voltage response generate the inverter control signals u cd , u cq , and finally the three-phase voltage reference signals u refa , u refb , u refc of the converter are obtained through the inverse parking transformation of the control commutation 6′.
  • the current control of the inverter is realized by the grid side voltage and the grid side current
  • the current control of the converter is realized by the grid side voltage and the valve side current when the grid side current CT is saturated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种换流器控制方法,应用于电压源型换流器,所述电压源型换流器交流侧通过换流变压器连接交流系统,通过采集网侧电压和阀侧电流实现换流器的闭环电流控制。采用本发明提供的控制方法,避免了换流变网侧套管 CT 饱和引起失控的问题,不需增加新的测量设备,具有较高的经济性。

Description

一种换流器控制方法 技术领域
本发明属于电力电子技术领域,具体涉及一种换流器控制方法。
背景技术
柔性直流输电采用电压源型换流器,可以独立、快速控制控制有功功率和无功功率,从而提高系统的稳定性,抑制系统频率和电压的波动,提高并网交流系统的稳态性能。随着化石能源的日益枯竭和改善环境压力的日益增加,中国乃至世界均面临着能源结构的战略性调整,大规模开发和利用新能源势在必行。
柔性直流输电系统的换流器交流侧通过换流变压器连接交流系统,一般控制换流变压器网侧的有功和无功功率为设定值,采用换流变压器网侧套管CT时,由于交流系统接地故障时出现较大的零序电流将使网侧套管CT饱和,严重时引起控制失控,从而造成故障穿越失败。一种解决方法是将网侧套管CT更改成光CT,但将增加较多的成本。为了解决该问题,本发明提出了一种经济的控制方法,避免换流变压器网侧套管CT饱和引起失控的问题。
发明内容
本发明的目的在于,提供一种换流器控制方法,采用换流变网侧电压和阀侧电流实现换流器的闭环电流控制,避免了换流变网侧套管CT饱和引起失控的问题。
为了达成上述目的,本发明采用的技术方案是:
一种换流器控制方法,应用于电压源型换流器,所述电压源型换流器交流侧通过换流变压器连接交流系统,通过采集网侧电压和阀侧电流实现换流器的闭环电流控制,包括如下步骤:
1)采集换流变压器的网侧三相电压和阀侧三相电流;
2)将阀侧三相电流经线性变换后得到等效的网侧三相电流;
3)采用网侧三相电压和等效的网侧三相电流,实现换流器的闭环电流控制。
上述的一种换流器控制方法,所述步骤2)中所述线性变换由所述换流变压器的接线方式确定,具体采用如下变换方式:
Figure PCTCN2018087664-appb-000001
其中,i saeq、i sbeq、i sceq为等效的网侧三相电流瞬时值,i vca、i vcb、i vcc为阀侧三相电流瞬时值,C DY为所述线性变换采用的线性变换矩阵。
上述的一种换流器控制方法,正常运行时采用网侧电压和网侧电流实现换流器闭环电流控制,在检测出网侧电流CT饱和时,切换为采用网侧电压和阀侧电流实现换流器闭环电流控制。
上述的一种换流器控制方法,所述检测出网侧电流CT饱和的判据为:网侧电流与阀侧三相电流经线性变换后得到等效的网侧三相电流的误差大于电流误差定值Iset,且网侧电压的零序电压大于零序电压定值U0set。
采用上述方案后,本发明的有益效果为:
(1)本发明提供的一种换流器控制方法,采用换流变网侧电压和阀侧电流实现换流器的闭环电流控制,避免了换流变网侧套管CT饱和引起失控的问题。
(2)本发明提供的一种换流器控制方法,不需增加新的测量设备,具有较高的经济性。
附图说明
图1:柔性直流系统测点配置示意图;
图2:换流变YD11接线方式示意图;
图3:一种换流器控制方法流程图;
图4:一种换流器控制方法控制框图。
图5:另一种换流器控制方法控制框图。
具体实施方式
以下将结合附图及具体实施例,对本发明的技术方案进行详细说明。
附图1为柔性直流系统测点配置示意图。电压源型换流器C1交流侧通过换流变压器T1连接交流系统的母线B1,换流变压器T1的网侧配置电磁式的电压互感器Us和电磁式的电流互感器Is,换流变压器T1的阀侧配置电子式电压互感器Uvc和电子式电流互感器Ivc,一般控制换流变压器网侧的有功和无功功率为设定值,因此主要采用电压互感器Us和电流互感器Is的测量量,但控制用电流互感器Is的动态范围一般仅为2倍,故障时容易饱和,而电子式电流互感器Ivc动态范围一般可达15倍,不容易发生饱和。
附图2为换流变YD11接线方式示意图,结合该图说明根据换流变的接线方式确定线性变换采用的线性变换矩阵。根据变压器的电磁感应原理和基尔霍夫定律,可得到如下关系:
Figure PCTCN2018087664-appb-000002
定义变比系数k为
Figure PCTCN2018087664-appb-000003
则可得到如下的线性变换关系:
Figure PCTCN2018087664-appb-000004
因此换流变YD11接线方式时的线性变换矩阵C DY-11为:
Figure PCTCN2018087664-appb-000005
同理,换流变YD1接线方式时的线性变换矩阵C DY-1为:
Figure PCTCN2018087664-appb-000006
同理,还可得到换流变其他接线方式时的线性变换矩阵。
附图3为本发明提出的一种换流器控制方法流程图,通过采集网侧电压和阀侧电流实现换流器的闭环电流控制,包括如下步骤:
步骤101:采集换流变压器的网侧三相电压和阀侧三相电流,即采集附图1中的电压互感器Us和电流互感器Ivc的测量值;
步骤102:将阀侧三相电流经线性变换后得到等效的网侧三相电流,即根据换流变的接线方式选择合适的变换矩阵由阀侧三相电流计算等效的网侧三相电流,如换流变的接线方式为YD11是,采用变换矩阵C DY-11
步骤103:采用网侧三相电压和等效的网侧三相电流,实现换流器的闭环电流控制,在得到等效的网侧三相电流后,即可按照原来的内环控制策略实现换流器的控制。
附图4为本发明提出的一种换流器控制方法控制框图。首先采集换流变阀侧电流i vca、i vcb、i vcc后经控制环节1采用线性变换矩阵C DY得到等效的网侧三相电流i saeq、i sbeq、i sceq。随后经控制环节2对等效的网侧三相电流进行park变换得到dq轴分量i sd、i sq,以及经控制环节3对换流变网侧电压u sa、u sb、u sc进行park变换得到dq轴分量u sd、u sq,并作为控制环节5的输入。控制环节5为内环电流控制,采用矢量控制方式,其接收控制环节4外环控制器的有功电流i sdref和无功电流i sqref指令,根据控制环节2和控制环节3输出的电流和电压响应产生换流器的控制信号u cd、u cq,最后经过控制换流6的反park变换环节得到换流器的三相电压参考值信号u refa、u refb、u refc,最终通过网侧电压和阀侧电流实现换流器的电流控制。
附图5为本发明提出的另一种换流器控制方法控制框图。采集网侧电流i sa、i sb、i scj后经控制环节7’对等效的网侧三相电流进行park变换得到dq轴分量i sd1、i sq1。采集换流变阀侧电流i vca、i vcb、i vcc后经控制环节1’采用线性变换矩阵C DY得到等效的网侧三相电流i saeq、i sbeq、i sceq。随后经控制环节2’对等效的网侧三相电流进行park变换得到dq轴分量i sd2、i sq2。采集换流变网侧电压u sa、u sb、u sc经控制环节3’进行park变换得到dq轴分量u sd、u sq,并作为控制环节5’的输入。判断网侧CT的是否饱和:网侧电流与阀侧三相电流经线性变换后得到等效的网侧三相电流的误差大于电流误差定值I set,且网侧电压的零序电压大于零序电压定值U0 set,网侧CT饱和,否则网侧CT未饱和。其中电流误差定值I set可取 额定电流的K倍,其中K的取值范围为0至1,较优地可取为0.1;零序电压定值U0 set可取额定电压的M倍,其中M的取值范围为0至1,较优地可取为0.3。控制环节8’在网侧CT未饱和时选择i sd1、i sq1作为控制环节5’的输入,在网侧CT未饱和时选择i sd2、i sq2作为控制环节5’的输入。控制环节5’为内环电流控制,采用矢量控制方式,其接收控制环节4’外环控制器的有功电流i sdref和无功电流i sqref指令,根据控制环节8’和控制环节3’输出的电流和电压响应产生换流器的控制信号u cd、u cq,最后经过控制换流6’的反park变换环节得到换流器的三相电压参考值信号u refa、u refb、u refc,最终正常时通过网侧电压和网侧电流实现换流器的电流控制,当网侧电流CT饱和时通过网侧电压和阀侧电流实现换流器的电流控制。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (4)

  1. 一种换流器控制方法,应用于电压源型换流器,所述电压源型换流器交流侧通过换流变压器连接交流系统,其特征在于,通过采集网侧电压和阀侧电流实现换流器的闭环电流控制,包括如下步骤:
    1)采集换流变压器的网侧三相电压和阀侧三相电流;
    2)将阀侧三相电流经线性变换后得到等效的网侧三相电流;
    3)采用网侧三相电压和等效的网侧三相电流,实现换流器的闭环电流控制。
  2. 如权利要求1所述的一种换流器控制方法,所述步骤2)中所述线性变换由所述换流变压器的接线方式确定,具体采用如下变换方式:
    Figure PCTCN2018087664-appb-100001
    其中,i saeq、i sbeq、i sceq为等效的网侧三相电流瞬时值,i vca、i vcb、i vcc为阀侧三相电流瞬时值,C DY为所述线性变换采用的线性变换矩阵。
  3. 如权利要求1所述的一种换流器控制方法,其特征在于,正常运行时采用网侧电压和网侧电流实现换流器闭环电流控制,在检测出网侧电流CT饱和时,切换为采用网侧电压和阀侧电流实现换流器闭环电流控制。
  4. 如权利要求3所述的一种换流器控制方法,其特征在于,所述检测出网侧电流CT饱和的判据为:网侧电流与阀侧三相电流经线性变换后得到等效的网侧三相电流的误差大于电流误差定值I set,且网侧电压的零序电压大于零序电压定值U0 set
PCT/CN2018/087664 2017-09-19 2018-05-21 一种换流器控制方法 WO2019056783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18858956.8A EP3667858A4 (en) 2017-09-19 2018-05-21 INVERTER CONTROL PROCEDURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710847066.8A CN107612014B (zh) 2017-09-19 2017-09-19 一种换流器控制方法
CN201710847066.8 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019056783A1 true WO2019056783A1 (zh) 2019-03-28

Family

ID=61060990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087664 WO2019056783A1 (zh) 2017-09-19 2018-05-21 一种换流器控制方法

Country Status (3)

Country Link
EP (1) EP3667858A4 (zh)
CN (1) CN107612014B (zh)
WO (1) WO2019056783A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612014B (zh) * 2017-09-19 2020-09-08 南京南瑞继保电气有限公司 一种换流器控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739025A (zh) * 2011-04-11 2012-10-17 深圳市英可瑞科技开发有限公司 一种开关电源保护控制电路
CN102967842A (zh) * 2012-10-24 2013-03-13 重庆大学 一种电子式电流互感器的渐变性故障在线诊断方法
US20150236759A1 (en) * 2014-02-19 2015-08-20 Texas Instruments Incorporated Loop powered transmitter with a single tap data isolation transformer and unipolar voltage converters
CN107612014A (zh) * 2017-09-19 2018-01-19 南京南瑞继保电气有限公司 一种换流器控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298408B1 (ko) * 1998-11-18 2001-08-07 구자홍 음극선관의코너포커스및휘도보정장치
JP2004229389A (ja) * 2003-01-22 2004-08-12 Hitachi Ltd 電力変換器及びその制御方法
CN1560644A (zh) * 2004-02-16 2005-01-05 华北电力大学(北京) 基于四点算法和比相原理的变压器内外部故障识别技术
CN101295877B (zh) * 2008-06-05 2011-11-16 上海交通大学 海上风电柔性直流输电变流器控制系统
KR101019683B1 (ko) * 2008-12-05 2011-03-07 한국전력공사 변조 제어를 갖는 전압형 초고압 직류송전 시스템
CN103730898A (zh) * 2013-12-03 2014-04-16 南方电网科学研究院有限责任公司 一种用于模块化多电平换流器的附加功能控制方法
CN103904676B (zh) * 2014-03-27 2016-01-20 浙江大学 一种vsc-hvdc的下垂控制方法
CN104009495B (zh) * 2014-05-14 2016-05-04 上海交通大学 一种风电场经柔直并网的次同步振荡电流检测及抑制方法
CN105118606B (zh) * 2015-09-11 2017-05-31 浙江大学 用于在线消除电磁式电流互感器剩磁的退磁电路及方法
JP6560592B2 (ja) * 2015-11-02 2019-08-14 株式会社日立製作所 電力変換装置の制御装置および制御方法、並びに電力変換システム
CN105720598B (zh) * 2016-03-09 2020-08-04 全球能源互联网研究院 一种电压源型换流器定直流电压控制器参数的计算方法
CN106602895B (zh) * 2017-02-24 2019-03-19 南方电网科学研究院有限责任公司 高压直流输电换流器换相参数的检测方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739025A (zh) * 2011-04-11 2012-10-17 深圳市英可瑞科技开发有限公司 一种开关电源保护控制电路
CN102967842A (zh) * 2012-10-24 2013-03-13 重庆大学 一种电子式电流互感器的渐变性故障在线诊断方法
US20150236759A1 (en) * 2014-02-19 2015-08-20 Texas Instruments Incorporated Loop powered transmitter with a single tap data isolation transformer and unipolar voltage converters
CN107612014A (zh) * 2017-09-19 2018-01-19 南京南瑞继保电气有限公司 一种换流器控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667858A4 *

Also Published As

Publication number Publication date
CN107612014B (zh) 2020-09-08
CN107612014A (zh) 2018-01-19
EP3667858A1 (en) 2020-06-17
EP3667858A4 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
Zhao et al. Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer
Zhao et al. Full-process operation, control, and experiments of modular high-frequency-link DC transformer based on dual active bridge for flexible MVDC distribution: a practical tutorial
Asiminoaei et al. Shunt active-power-filter topology based on parallel interleaved inverters
CN103683319B (zh) 电网电压不平衡时基于滞环调制的并网逆变器控制方法
Zheng et al. Enhancing transient voltage quality in a distribution power system with SMES-based DVR and SFCL
CN105048821B (zh) 提高全桥隔离dc‑dc变换器输出电压动态响应的负载电流前馈控制方法
Bu et al. A comparative review of high-frequency transient DC bias current mitigation strategies in dual-active-bridge DC–DC converters under phase-shift modulations
Zheng et al. Stability and voltage balance control of a modular converter with multiwinding high-frequency transformer
Li et al. Distributed generation grid-connected converter testing device based on cascaded H-bridge topology
CN105470963A (zh) 一种有源电力滤波器及其控制方法
Jia et al. An improved droop control method for reducing current sensors in DC microgrid
Teng et al. Common high-frequency bus-based cascaded multilevel solid-state transformer with ripple and unbalance power decoupling channel
Guo et al. Decoupled control of active and reactive power for a grid-connected doubly-fed induction generator
Haritha et al. Xilinx system generator-based rapid prototyping of solid-state transformer for on-grid renewable energy integration
Mukherjee et al. DC grid interface for the integrated generator–rectifier architecture in wind energy systems
WO2019056783A1 (zh) 一种换流器控制方法
She et al. A cost effective power sharing strategy for a cascaded multilevel converter based solid state transformer
Lyu et al. Circulating current control strategy for parallel full‐scale wind power converters
Venkat et al. A novel dq-vector based control for the three phase active rectifier in a power electronic transformer
Ge et al. Current balancer‐based grid‐connected parallel inverters for high power wind‐power system
CN204858577U (zh) 基于双h桥模块化多电平换流器的无功补偿装置
Ahmed et al. Optimal analysis and design of power electronic distribution transformer
de Almeida et al. A bidirectional single-stage three-phase rectifier with high-frequency isolation and power factor correction
CN205583713U (zh) 一种新型分布式发电系统的逆变电源
De et al. Achieving the desired transformer leakage inductance necessary in DC-DC converters for energy storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858956

Country of ref document: EP

Effective date: 20200312