WO2019056386A1 - 天线装置及终端设备 - Google Patents

天线装置及终端设备 Download PDF

Info

Publication number
WO2019056386A1
WO2019056386A1 PCT/CN2017/103229 CN2017103229W WO2019056386A1 WO 2019056386 A1 WO2019056386 A1 WO 2019056386A1 CN 2017103229 W CN2017103229 W CN 2017103229W WO 2019056386 A1 WO2019056386 A1 WO 2019056386A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
antenna
radiation
antenna device
phase
Prior art date
Application number
PCT/CN2017/103229
Other languages
English (en)
French (fr)
Inventor
潘鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780006924.4A priority Critical patent/CN109845032A/zh
Priority to PCT/CN2017/103229 priority patent/WO2019056386A1/zh
Priority to EP17917217.6A priority patent/EP3627617A4/en
Priority to US16/360,739 priority patent/US10985458B2/en
Publication of WO2019056386A1 publication Critical patent/WO2019056386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • H01Q9/24Shunt feed arrangements to single active elements, e.g. for delta matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays
    • H01Q3/2694Time delay steered arrays using also variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/04Non-resonant antennas, e.g. travelling-wave antenna with parts bent, folded, shaped, screened or electrically loaded to obtain desired phase relation of radiation from selected sections of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching

Definitions

  • Embodiments of the present invention relate to the field of antenna technologies, and in particular, to an antenna device and a terminal device.
  • the size of the antenna is a target for whether the communication product can achieve a light, thin and short.
  • An antenna is a component used to radiate or receive electromagnetic waves.
  • the characteristics of the antenna can generally be obtained from parameters such as Radiation Pattern, Operating Frequency, Return Loss, and Antenna Gain.
  • FIG. 1 it is a schematic structural diagram of a phased array antenna in the prior art.
  • the phased array antenna adjusts the phase beam forming of each vibration element in different combinations in a plurality of radiation unit array processes. ) to adjust the shape of the space electromagnetic field pattern.
  • the scheme is multi-array multi-channel phase adjustable, and the method of controlling the phase is used to change the pointing of the maximum value of the antenna pattern, thereby achieving the purpose of beam scanning.
  • the size of the phased array antenna is large and costly, and the array antenna cannot be landed in the end consumer product.
  • MIMO Multiple-Input Multiple-Output
  • the embodiment of the invention provides an antenna device and a terminal device, thereby fabricating an antenna with simple structure, small volume, low cost and adjustable spatial electromagnetic field direction, which is convenient for application in the market.
  • an embodiment of the present invention provides an antenna apparatus, including an antenna body, where the antenna body includes a first radiation area, a second radiation area, and a phase adjustment area, and one end of the phase adjustment area is connected to the first radiation.
  • the other end of the phase adjustment zone is connected to the second radiation zone, the first radiation zone includes a first radiation segment and a feed point, and the second radiation zone includes a second radiation segment and a ground point.
  • the phase adjustment area is configured to adjust a phase of the signal fed by the feed point to change a direction of a spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiation segment and the second radiation segment.
  • the feed point of the antenna device refers to the portion of the signal source that is connected to the circuit board of the terminal device.
  • the ground point of the antenna device refers to the portion that is connected to the ground plane on the board.
  • the phase of the signal fed by the feeding point of the antenna device can be adjusted by using the phase adjustment region in the antenna device to adjust the electromagnetic signal radiated by the first radiation region and the second radiation region in the antenna device.
  • the direction of the formed space electromagnetic field that is, changing the distribution pattern of the space electromagnetic field, achieves the effect of spatial multi-color coverage, and finally improves the throughput of the communication system, where spatial multi-color coverage refers to the variety of directions of the space electromagnetic field, and If the communication device uses multiple antennas for data communication, spatial multi-color coverage can also reduce the Envelope Correlation Coefficient (ECC) between the multiple antennas.
  • ECC Envelope Correlation Coefficient
  • the antenna device in the present application has a simple structure and a small size. Low cost and easy to apply in the market.
  • the antenna device further includes an antenna modulation circuit, a first output end of the antenna modulation circuit is connected to the feed point, and a second output end of the antenna modulation circuit is connected to the ground point
  • the antenna modulation circuit is configured to adjust a phase, an amplitude, or a frequency of the signal fed by the feed point to change a space formed by the electromagnetic signal radiated by the first radiation segment and the second radiation segment The direction and / or intensity of the electromagnetic field.
  • the radio frequency port of the terminal device can transmit the signal to the antenna modulation circuit, and the antenna adjustment circuit adjusts the phase, amplitude or frequency of the signal, and then transmits the adjusted signal to the first antenna device.
  • the radiation area and the second radiation area realize adjusting the direction and/or intensity of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiation area and the second radiation area in the antenna device, that is, changing the distribution of the spatial electromagnetic field Form, achieve the effect of spatial multi-color coverage, and ultimately improve the throughput of the communication system.
  • the phase adjustment area includes a first segment, a second segment, and a third segment that are sequentially connected, and an end of the first segment that is away from the second segment is connected to the first radiation region. An end of the third segment remote from the second segment is coupled to the second radiation region.
  • the first segment and the third segment are linearly and oppositely disposed, that is, the phase adjustment region is type.
  • the width of the first segment is different from the width of the third segment to adjust the phase of the phase adjustment zone signal and reduce the radiation capability of the transmission line itself.
  • the first radiating section includes a first connecting section and N bending sections, one end of the first connecting section is connected to one end of the phase adjusting section, and the other end of the first connecting section is Connecting the N bending segments, the N bending segments are bent from an end of the first connecting segment away from the phase adjustment region, and N is a positive integer.
  • each of the N bending segments includes at least one connecting segment connected in sequence, and any two adjacent connecting segments of the at least one connecting segment have different directions to generate Space electromagnetic fields in different directions.
  • the second radiating section includes a second connecting section and M bending sections, one end of the second connecting section is connected to the other end of the phase adjusting section, and the second connecting section is another One end of the M bending section is connected, and the M bending sections are bent from an end of the second connecting section away from the phase adjustment zone, and M is a positive integer.
  • each of the M bending segments includes at least one connecting segment connected in sequence, and any two adjacent connecting segments of the at least one connecting segment have different directions to generate Space electromagnetic fields in different directions.
  • the directions of any two adjacent radiating segments of the N radiating segments are perpendicular to each other.
  • the directions of any two adjacent radiating segments of the M radiating segments are perpendicular to each other.
  • the antenna adjustment circuit includes any one of the following: a phase adjuster, a left and right rotation switch, a microstrip line, a non-standard impedance transmission line, a power amplifier, and a phase shifter.
  • the phase adjustment zone is a balun having a phase adjustment function.
  • the antenna body may be configured as a Wireless Fidelity (WIFI) antenna, or may be configured as a Bluetooth (BT) antenna.
  • WIFI Wireless Fidelity
  • BT Bluetooth
  • an embodiment of the present invention provides a terminal device, including the antenna device according to any one of the foregoing embodiments.
  • the antenna device is applied in the terminal device, which is advantageous for the development of miniaturization of the terminal.
  • the embodiment of the present invention adjusts the phase of the signal fed by the feeding point of the antenna device by using the phase adjustment region in the antenna device to adjust the first radiation region and the second radiation region in the antenna device.
  • Oscillating current intensity distribution Zones thus forming different inductive near-field distributions, that is, changing the distribution pattern of spatial electromagnetic fields, achieving the effect of spatial multi-color coverage, and ultimately improving the throughput of the communication system, where spatial multi-color coverage refers to the direction of the spatial electromagnetic field.
  • spatial multi-color coverage can also reduce the ECC coefficient between multiple antennas.
  • the antenna device in the present application adopts a single feed point structure, has a simple structure, a small volume, and a low cost, and is convenient for application in the market.
  • FIG. 1 is a schematic structural view of a phased array antenna in the prior art
  • FIG. 2 is a schematic structural diagram of an antenna main body according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another antenna body according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a phase adjustment area in the antenna body shown in FIG. 2;
  • FIG. 6 is a schematic structural view of a first radiant section in the antenna body shown in FIG. 2;
  • FIG. 7 is a schematic diagram of an electromagnetic field direction according to an embodiment of the present invention.
  • Figure 8 is a schematic structural view of a second radiant section in the antenna body shown in Figure 2;
  • FIG. 9 is a schematic diagram of another electromagnetic field direction according to an embodiment of the present invention.
  • the embodiment of the invention provides an antenna device, which is applied to a terminal device, and the terminal device can be a set top box, a router, a tablet computer, a mobile phone, and the like.
  • a terminal device usually includes a plurality of different functions, such as a Wi-Fi function, a Bluetooth (BT) function, etc., and a plurality of antennas can be disposed in the terminal device, and respectively transmit signals corresponding to different function modules, such as a Wi-Fi antenna and a BT antenna. Wait.
  • the layout of the antenna device provided in the terminal device according to the embodiment of the invention can change the direction of the space electromagnetic field and improve the throughput performance of the communication system.
  • FIG. 2 is a schematic structural diagram of an antenna main body according to an embodiment of the present invention.
  • the antenna device includes an antenna main body 20 including a first radiating area 21, a second radiating area 22, and a phase adjusting area 23, and the phase adjusting area 23 is connected between the first radiating area 21 and the second radiating area 22.
  • the first radiating region 21 includes a first radiating portion 211 and a feeding point 212.
  • the second radiating portion 22 includes a second radiating portion 221 and a grounding point 222.
  • the phase adjusting portion 23 is used to phase the signal fed to the feeding point 212. Adjustment is made to change the direction of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiating section 211 and the second radiating section 221.
  • the antenna body 20 in the embodiment of the present invention may be disposed on the circuit board by using a wire.
  • the white shaded portion is the antenna body 20 formed by the wire surrounding.
  • the portion of the first radiating region 21 other than the feeding point 212 may be regarded as the first radiating portion 211, and the portion of the second radiating portion 22 other than the grounding point 222 may be regarded as the first portion.
  • the shapes of the first radiation zone 21, the second radiation zone 22 and the phase adjustment zone 23 are not limited, and the first radiation zone 21, the second radiation zone 22 and the phase adjustment zone 23 may be linear or curved. Folded or other shapes.
  • FIG. 2 is merely an example, and does not limit the shapes of the first radiation zone 21, the second radiation zone 22, and the phase adjustment zone 23.
  • the shape of the first radiation region 21, the shape of the second radiation region 22, and the phase adjustment region 23 may also be as shown in FIG.
  • the feeding point 212 may be disposed at the intersection of the first radiation area 21 and the phase adjustment area 23, or may be located at the The other areas in a radiant area 21 are not specifically limited in the embodiment of the present invention.
  • the grounding point 222 may be disposed at the intersection of the second radiation area 22 and the phase adjustment area 23, or may be disposed in other areas of the second radiation area 22, which is not specifically limited in the embodiment of the present invention.
  • the first radiating region 21 is disposed opposite to the second radiating region 22, for example, the first radiating region 21 and the second radiating region 22 respectively extend in opposite directions for the purpose of allowing the radiating region to obtain a larger space in a limited space.
  • the electromagnetic field clearance area is designed to increase the radiation efficiency of the antenna body itself.
  • the phase adjustment area 23 may be a phase shifting balun having a phase adjustment function to change the excitation current in the first radiation section 211 and the second radiation section 221 by changing the signal phase affecting the current distribution of the first radiation section 211 and the second radiation section 221.
  • the density distribution above ultimately changes the direction of the spatial electromagnetic field.
  • the antenna device can be disposed on the circuit board of the terminal device, and the circuit board can be the main board of the terminal device.
  • the circuit board is provided with an antenna deployment area, which can be used for deploying the antenna main body 20 in the embodiment of the present invention.
  • the antenna device further includes an antenna modulation circuit 30.
  • the first output end of the antenna modulation circuit 30 is connected to the feeding point 212 of the antenna device, and the second output end of the antenna modulation circuit 30 is connected to the ground point 222 of the antenna device.
  • the antenna modulation circuit 30 is operative to adjust the phase, amplitude or frequency of the signal fed by the feed point 212 to change the direction of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiating section 211 and the second radiating section 221.
  • the first output end of the antenna adjusting circuit 30 is connected to the feeding point 212 of the antenna device by a core wire of the coaxial cable, which is equivalent to the positive feeding point of the signal, and the second output end of the antenna adjusting circuit 30 is coaxial.
  • the outer envelope of the cable is connected to the ground point 222 of the antenna device, which corresponds to the negative feed point of the signal.
  • the terminal device 10 includes but is not limited to a modem 40, a radio frequency module 50, an antenna modulation circuit 30, and an antenna main body 20. Distributed on the circuit board of the terminal device.
  • the modem 40 is used to synthesize the baseband signal to be transmitted or to decode the received baseband signal. Specifically, when transmitting, the radio frequency signal is compiled into a baseband code for transmission; when receiving, the received baseband code is interpreted as a radio frequency signal.
  • it is also responsible for the compilation of address information (mobile phone number, website address), text information (short message text, website text), and picture information.
  • the radio frequency module 50 is configured to enhance and feed back the modulated signal to the antenna.
  • Antenna modulation circuit 30 is used to adjust the phase, amplitude or frequency of the signal.
  • the antenna body 20 is used to convert signals into electromagnetic waves into the space for reception by the communication peer. It should be noted that, if the terminal device 10 includes multiple antenna bodies, multiple antenna modulation circuits 30 and multiple radio frequency modules are required, one radio frequency module is connected to one antenna modulation circuit, and one antenna modulation circuit is connected to one antenna main body. For the connection method, refer to the above description, and details are not described herein again.
  • the antenna modulation circuit 30 may first process the signal, for example, to adjust the phase, amplitude or frequency of the signal. After processing, the antenna modulation circuit 30 transmits the signal through the feed point 212. To the antenna body 20, the direction and/or intensity of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiating section 211 and the second radiating section 221 is finally changed. For example, the antenna modulation circuit 30 can adjust the phase of the signal to ultimately change the direction of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiating section 211 and the second radiating section 221. Alternatively, the antenna modulation circuit 30 can adjust the amplitude of the signal to ultimately change the intensity of the spatial electromagnetic field formed by the electromagnetic signals radiated by the first radiating section 211 and the second radiating section 221.
  • phase adjustment area 23 The specific structure of the phase adjustment area 23 is as follows:
  • the phase adjustment area 23 includes a first segment 231, a second segment 232, and a third segment 233 that are sequentially connected.
  • the end of the first segment 231 away from the second segment 232 is connected to the first radiation.
  • the region 21, the end of the third segment 233 remote from the second segment 232 is connected to the second radiating region 22.
  • the first segment 231 and the third segment 233 are both linear and oppositely disposed.
  • the phase adjustment region 23 is type.
  • the phase adjustment area 23 may not be limited to
  • the type may be, for example, a linear type, a "U" shape, or the like, as long as the feed point 212, the phase adjustment area 23, and the ground point 222 are formed to form one passage.
  • the width of the first segment 231 is different from the width of the third segment 233 to adjust the phase of the phase adjustment zone signal and reduce the radiation capability of the transmission line itself. The reason is that the link itself whose characteristic frequency point impedance characteristics are not matched has the weakest radiation ability to space.
  • the specific structure of the first radiating section 211 is as follows:
  • the first radiating section 211 includes a first connecting section and N bending sections, one end of the first connecting section is connected to one end of the phase adjusting section 23, and the other end of the first connecting section is connected to N bending sections.
  • the N bending segments are bent from one end of the first connecting segment away from the phase adjusting region 23, and N is a positive integer.
  • the first radiating section 211 includes a first connecting section 2111, a bending section 2112, and a bending section 2113 as an example for description. Wherein, as shown in FIG. 6, the length of the bending section 2112 is shorter than the bending section 2113. The longer the radiation arm is, the lower the frequency is.
  • the signal frequency radiated by the bending section 2112 is higher than the signal radiated by the bending section 2113. frequency.
  • the frequency of the signal radiated by the bending section 2112 is 5G
  • the frequency of the signal radiated by the bending section 2113 is 2.4G, from which it can be seen that the antenna body 20 can be a dual-frequency antenna.
  • each of the N bending segments includes at least one connecting segment connected in sequence, and any two adjacent connecting segments of the at least one connecting segment have different directions to generate space in different directions. Electromagnetic field.
  • the directions of any two adjacent connecting segments of the at least one connecting segment are perpendicular to each other, and therefore, the directions of the spatial electromagnetic fields formed by the electromagnetic signals radiated by any two adjacent connecting segments are different by 45 degrees.
  • the direction of any two adjacent connecting segments in the at least one connecting segment may be other angles, which is not specifically limited in the embodiment of the present invention.
  • the bending section 2112 includes only one connecting section, the connecting section is linear, and the bending section 2113 includes four connecting sections which are sequentially connected, which are a connecting section 1, a connecting section 2, a connecting section 3, and
  • the connecting section 4 the direction of the connecting section 1 is a horizontal direction
  • the direction of the connecting section 2 is a vertical direction
  • the direction of the connecting section 3 is a horizontal direction
  • the direction of the connecting section 4 is a vertical direction.
  • the direction of the space electromagnetic field formed by the current through the connecting section 1 is a counterclockwise direction on the vertical plane, and the space electromagnetic field formed by the current passing through the connecting section 2
  • the direction is counterclockwise on the plane of 45 degrees from the vertical plane
  • the direction of the space electromagnetic field formed by the current through the connecting section 3 is the counterclockwise direction on the vertical plane
  • the direction of the space electromagnetic field formed by the current passing through the connecting section 2 is vertical
  • the direction of the plane is counterclockwise on the 45 degree plane, that is, the direction of the spatial electromagnetic field formed by the current of the connecting section 1 and the connecting section 2 is 45 degrees
  • the direction of the spatial electromagnetic field formed by the current of the connecting section 2 and the connecting section 3 is 45 degrees.
  • the direction of the spatial electromagnetic field formed by the current of the connecting section 3 and the connecting section 4 is different by 45 degrees. Therefore, the direction of the spatial electromagnetic field formed by the current at the bending section 2113 includes a plurality of directions, which improves the throughput of the communication system.
  • the specific structure of the second radiating section 221 is as follows:
  • the second radiating section 221 includes a second connecting section and M bending sections, one end of the second connecting section is connected to the other end of the phase adjusting section 23, and the other end of the second connecting section is connected with M bending points.
  • the segment, the M bending segments are bent from the end of the second connecting segment away from the phase adjustment region 23, and M is a positive integer.
  • the second connecting section 2211 includes a second connecting section 2211, a bending section 2212, and a bending section 2213 as an example for description. Wherein, as shown in FIG. 8, the length of the bending section 2212 is shorter than the bending section 2113. The longer the radiation arm is, the lower the frequency is. Therefore, the bending section 2212 radiates.
  • the signal frequency is higher than the frequency of the signal radiated by the bend segment 2213.
  • the frequency of the signal radiated by the bending section 2212 is 5G
  • the frequency of the signal radiated by the bending section 2213 is 2.4G.
  • each of the M bending segments includes at least one connecting segment that is sequentially connected, and any two adjacent connecting segments of the at least one connecting segment have different directions to generate different directions of space. Electromagnetic field.
  • the directions of any two adjacent connecting segments of the at least one connecting segment are perpendicular to each other, and therefore, the directions of the spatial electromagnetic fields formed by the electromagnetic signals radiated by any two adjacent connecting segments are different by 45 degrees.
  • the direction of any two adjacent connecting segments in the at least one connecting segment may be other angles, which is not specifically limited in the embodiment of the present invention.
  • the bending section 2212 includes only one connecting section, the connecting section is linear, and the bending section 2213 includes four connecting sections which are sequentially connected, which are a connecting section 5, a connecting section 6, a connecting section 7, and
  • the direction of the connecting section 5 is a horizontal direction
  • the direction of the connecting section 6 is a vertical direction
  • the direction of the connecting section 7 is a horizontal direction
  • the direction of the connecting section 8 is a vertical direction.
  • the direction of the space electromagnetic field formed by the current passing through the connecting section 5 is a clockwise direction on a vertical plane
  • the space electromagnetic field formed by the current passing through the connecting section 6 The direction is clockwise on the plane of 45 degrees from the vertical plane
  • the direction of the space electromagnetic field formed by the current through the connecting section 7 is the clockwise direction on the vertical plane
  • the direction of the space electromagnetic field formed by the current passing through the connecting section 8 is vertical.
  • the direction of the plane is clockwise on the 45 degree plane, that is, the direction of the spatial electromagnetic field formed by the current of the connecting section 5 and the connecting section 6 is 45 degrees, and the direction of the spatial electromagnetic field formed by the current of the connecting section 6 and the connecting section 7 is 45 degrees.
  • the direction of the spatial electromagnetic field formed by the current of the connecting section 7 and the connecting section 8 is different by 45 degrees. Therefore, the direction of the spatial electromagnetic field formed by the current at the bending section 2213 includes a plurality of directions, which improves the throughput of the communication system.
  • the antenna adjustment circuit 30 includes any one of the following: a phase tuner, a left and right rotation switch, a microstrip line, a non-standard impedance transmission line, a power amplifier, a phase shifter, and the like, any circuit that can change the ECC coefficient.
  • the antenna device provided by the embodiment of the invention is applied to the terminal device, which is beneficial to the development requirement of miniaturization of the terminal.
  • the terminal device can also optimize the position of the antenna device in the product according to the ECC correlation envelope coefficient, thereby improving the antenna ECC performance.
  • ECC is the correlation of antennas and is generally divided into two types: envelope correlation and signal correlation.
  • Signal correlation refers to the correlation between complex signals received from different antennas
  • envelope correlation refers to the correlation between the amplitudes of these different signals received.
  • ECC is a normalized value, and "1" is completely correlated.
  • the concept at the physical level is that the electromagnetic field distribution of two antennas in space is completely equivalent. “0” is the ideal ECC value, ie the two antennas are completely uncorrelated.
  • the calculation method of ECC can be calculated by the following formula under the condition of double antenna.
  • the correlation envelope coefficient ⁇ e is the approximation ratio of the double antenna to the space field and the antenna 1 excitation antenna 2 to increase the 50 ⁇ load, and the antenna 2 excitation antenna 1 to increase the 50 ⁇ load alone to form the spatial field. Correct.
  • the RTL8192 chip is used as the power board, and a set of comparative data is made by using the conventional external high-gain whip antenna and the antenna device provided by the embodiment of the present invention.
  • the test uses a horizontal turntable, horizontally rotated 360° step: 30°, and the TX&RX uplink and downlink rates of the device are viewed during the rotation. It is found that the Demo board with high-gain external antenna is only used as an antenna device to replace the action. The throughput is 10% performance improvement at all angles. The anti-matrix fault loss problem in the original algorithm is completely removed from the antenna scheme.
  • the phase adjustment signal in the antenna device is used to adjust the phase of the signal fed by the feeding point of the antenna device to adjust the first radiation region and the second radiation in the antenna device.
  • the direction of the spatial electromagnetic field formed by the electromagnetic signal radiated by the region that is, the distribution pattern of the spatial electromagnetic field, achieves the effect of spatial multi-color coverage, and finally improves the throughput of the communication system.
  • the spatial multi-color coverage refers to the space electromagnetic field.
  • the direction is various, and if the communication device uses multiple antennas for data communication, spatial multi-color coverage can also reduce the ECC coefficient between multiple antennas.
  • the antenna device in the present application is simple in structure, small in size, low in cost, and convenient for application in the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种天线装置,包括第一辐射区、相位调整区和第二辐射区,所述第一辐射区与所述第二辐射区相对设置,所述第一辐射区连接所述相位调整区的一端,所述相位调整区的另一端连接所述第二辐射区,所述第一辐射区包括所述天线装置的馈电点,所述第二辐射区包括所述天线装置的接地点,所述相位调整区用于对所述馈电点馈入的信号的相位进行调整,以改变所述第一辐射区和所述第二辐射区辐射出的电磁信号形成的空间电磁场的方向。本发明实施例还提供一种终端设备。采用本发明实施例,可以制作出构造简单、体积小、成本低且空间电磁场方向可调的天线,便于在市场中应用。

Description

天线装置及终端设备 技术领域
本发明实施例涉及天线技术领域,尤其涉及一种天线装置及终端设备。
背景技术
随着通信科技的蓬勃发展,各式的通信产品与技术也如雨后春笋般的出现。加上集成电路的技术日益成熟,使得产品的体积也逐渐倾向于轻薄短小。对于在通信产品中用来传送与接收信号的天线,其体积的大小更是攸关通信产品能否达到轻薄短小的目标。
天线是用以辐射或接收电磁波的一种组件,一般可以从辐射场型(Radiation Pattern)、操作频率、返回损失(Return Loss)和天线增益(Antenna Gain)等参数来获知天线的特性。
如图1所示,是现有技术中的相控阵天线的结构示意图,相控阵天线是在多个辐射单元组阵过程中调整不同组合下每个振元的相位波束赋形(beam forming)来调整空间电磁场方向图形状的。该方案为多阵元多路相位可调,以控制相位的方法来改变天线方向图最大值的指向,从而达到波束扫描的目的。相控阵天线的本体尺寸大成本高,阵列天线无法在终端消费者产品中落地。
因此,为适应多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中高吞吐量的需求,在单馈电点设计构造中非常需要发展出一种天线装置,借以提供构造简单、体积小、成本低且空间电磁场方向可调的天线。
发明内容
本发明实施例提供了一种天线装置及终端设备,借以制作出构造简单、体积小、成本低且空间电磁场方向可调的天线,便于在市场中应用。
第一方面,本发明实施例提供一种天线装置,包括天线主体,所述天线主体包括第一辐射区、第二辐射区和相位调整区,所述相位调整区的一端连接所述第一辐射区,所述相位调整区的另一端连接所述第二辐射区,所述第一辐射区包括第一辐射段和馈电点,所述第二辐射区包括第二辐射段和接地点,所述相位调整区用于对所述馈电点馈入的信号的相位进行调整,以改变所述第一辐射段和所述第二辐射段辐射出的电磁信号形成的空间电磁场的方向。天线装置的馈电点指的是连接至终端设备的电路板上的信号源的部分。天线装置的接地点指的是连接至电路板上的接地层的部分。
通过实施本发明实施例,能够利用天线装置中的相位调整区调整天线装置的馈电点馈入的信号的相位,以调整天线装置中的第一辐射区和第二辐射区辐射出的电磁信号形成的空间电磁场的方向,也即改变空间电磁场的分布形态,达到空间多色覆盖的效果,最终提升通信系统的吞吐量,这里空间多色覆盖也即是指空间电磁场的方向多种多样,并且若通信设备采用多天线进行数据通信,空间多色覆盖也可以降低多路天线之间的包络相关系数(Envelope Correlation Coefficient,ECC)。此外,本申请中的天线装置构造简单、体积小、 成本低,便于在市场中应用。
一种实施方式中,所述天线装置还包括天线调制电路,所述天线调制电路的第一输出端连接至所述馈电点,所述天线调制电路的第二输出端连接至所述接地点,所述天线调制电路用于对所述馈电点馈入的信号的相位、幅度或频率进行调整,以改变所述第一辐射段和所述第二辐射段辐射出的电磁信号形成的空间电磁场的方向和/或强度。
通过实施本发明实施例,终端设备的射频端口可以将信号传送给天线调制电路,天线调整电路对该信号的相位、幅度或频率进行调整,再将调整后的信号传送给天线装置中的第一辐射区和所述第二辐射区,实现调整天线装置中的第一辐射区和所述第二辐射区辐射出的电磁信号形成的空间电磁场的方向和/或强度,也即改变空间电磁场的分布形态,达到空间多色覆盖的效果,最终提升通信系统的吞吐量。
一种实施方式中,所述相位调整区包括依次连接的第一段、第二段和第三段,所述第一段之远离所述第二段的一端连接至所述第一辐射区,所述第三段之远离所述第二段的一端连接至所述第二辐射区。
一种实施方式中,所述第一段与所述第三段均直线状且相对设置,即,所述相位调整区呈
Figure PCTCN2017103229-appb-000001
型。
一种实施方式中,所述第一段的宽度与所述第三段的宽度不同,以调整相位调整区信号的相位并减小传输线本身的辐射能力。
一种实施方式中,所述第一辐射段包括第一连接段和N个弯折段,所述第一连接段的一端连接所述相位调整区的一端,所述第一连接段的另一端连接所述N个弯折段,所述N个弯折段从所述第一连接段远离所述相位调整区的一端弯折,N为正整数。
一种实施方式中,所述N个弯折段中的每个弯折段包括依次连接的至少一个连接段,所述至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。
一种实施方式中,所述第二辐射段包括第二连接段和M个弯折段,所述第二连接段的一端连接所述相位调整区的另一端,所述第二连接段的另一端连接所述M个弯折段,所述M个弯折段从所述第二连接段远离所述相位调整区的一端弯折,M为正整数。
一种实施方式中,所述M个弯折段中的每个弯折段包括依次连接的至少一个连接段,所述至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。
一种实施方式中,所述N个辐射段中任意相邻的两个辐射段的方向相互垂直。
一种实施方式中,所述M个辐射段中任意相邻的两个辐射段的方向相互垂直。
一种实施方式中,所述天线调整电路包括如下任一种:相位可调器、左右旋切换器、微带线、非标准阻抗传输线、功率放大器、移相器。
一种实施方式中,所述相位调整区为具有相位调整功能的巴伦。
一种实施方式中,所述天线主体可以设置为无线保真(Wireless Fidelity,WIFI)天线,也可以设置为蓝牙(Bluetooth,BT)天线。
第二方面,本发明实施例提供一种终端设备,包括前述任意一种实施方式所述的天线装置。天线装置应用在终端设备中,有利于终端设置尺寸小型化的发展需求。
综上所述,本发明实施例通过利用天线装置中的相位调整区调整天线装置的馈电点馈入的信号的相位,以调整天线装置中的第一辐射区和所述第二辐射区的振荡电流强度分布 区,从而形成不同的感应近场分布,也即改变空间电磁场的分布形态,达到空间多色覆盖的效果,最终提升通信系统的吞吐量,这里空间多色覆盖也即是指空间电磁场的方向多种多样,并且若通信设备采用多天线进行数据通信,空间多色覆盖也可以降低多路天线之间的ECC系数。此外,本申请中的天线装置采用单馈电点结构,构造简单、体积小、成本低,便于在市场中应用。
附图说明
图1是现有技术中的相控阵天线的结构示意图;
图2是本发明实施例提供的一种天线主体的结构示意图;
图3是本发明实施例提供的另一种天线主体的结构示意图;
图4是本发明实施例提供的一种终端设备的结构示意图;
图5是图2所示天线主体中的相位调整区的结构示意图;
图6是图2所示天线主体中的第一辐射段的结构示意图;
图7是本发明实施例提供的一种电磁场方向的示意图;
图8是图2所示天线主体中的第二辐射段的结构示意图;
图9是本发明实施例提供的另一种电磁场方向的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本发明实施例提供一种天线装置,应用于终端设备中,终端设备可以为机顶盒、路由器、平板电脑、手机等。终端设备通常包括多种不同的功能,例如Wi-Fi功能、蓝牙(BT)功能等,终端设备内可以设置多个天线,分别对应不同的功能模块进行信号传输,例如Wi-Fi天线、BT天线等。本发明实施例提供的天线装置在终端设备内的布局,能够改变空间电磁场方向,提高通信系统的吞吐性能。
请参阅图2,是本发明实施例提供的一种天线主体的结构示意图。天线装置包括天线主体20,天线主体20包括第一辐射区21、第二辐射区22和相位调整区23,相位调整区23连接在第一辐射区21和第二辐射区22之间。第一辐射区21包括第一辐射段211和馈电点212,第二辐射区22包括第二辐射段221和接地点222,相位调整区23用于对馈电点212馈入的信号的相位进行调整,以改变第一辐射段211和第二辐射段221辐射出的电磁信号形成的空间电磁场的方向。其中,需要说明的是,本发明实施例中的天线主体20可以是采用导线在电路板上布放的,图2中,白色阴影部分即为导线包围构成的天线主体20。第一辐射区21中除馈电点212以外的其他导线包围部分均可以看作是第一辐射段211,第二辐射区22中除接地点222以外的其他导线包围部分均可以看作是第二辐射段221。
本发明实施例中,第一辐射区21、第二辐射区22和相位调整区23的形状不进行限定,第一辐射区21、第二辐射区22和相位调整区23可以是直线状或者弯折状或者其他形状。图2仅仅作为一种示例,并非对第一辐射区21、第二辐射区22和相位调整区23的形状进行限制。例如,第一辐射区21的形状、第二辐射区22和相位调整区23的形状还可以如图3所示。
其中,馈电点212可以设于第一辐射区21和相位调整区23的交接处,也可以设于第 一辐射区21中的其他区域,本发明实施例不作具体限定。同样的,接地点222可以设于第二辐射区22和相位调整区23的交接处,也可以设于第二辐射区22中的其他区域,本发明实施例不作具体限定。
第一辐射区21与第二辐射区22相对设置,例如,第一辐射区21与第二辐射区22分别向两个相背的方向延伸,目的在于让辐射区在有限的空间内获取更大的电磁场净空区,其目的在于提升天线体本身的辐射效率。
相位调整区23可以是移相巴伦,具备相位调整功能,通过改变信号相位影响第一辐射段211和第二辐射段221的电流分布改变激励电流在第一辐射段211和第二辐射段221上的密度分布,最终改变空间电磁场的方向。
天线装置可以布局在终端设备的电路板上,电路板可以为终端设备的主板,电路板设有天线布放区,可以用于布放本发明实施例中的天线主体20。
可选的,天线装置还包括天线调制电路30,天线调制电路30的第一输出端连接至天线装置的馈电点212,天线调制电路30的第二输出端连接至天线装置的接地点222,天线调制电路30用于对馈电点212馈入的信号的相位、幅度或频率进行调整,以改变第一辐射段211和第二辐射段221辐射出的电磁信号形成的空间电磁场的方向。具体的,天线调整电路30的第一输出端采用同轴电缆的芯线连接至天线装置的馈电点212,相当于信号的正极馈入点,天线调整电路30的第二输出端采用同轴电缆的外包络体连接至天线装置的接地点222,相当于信号的负极馈入点。
例如,参见图4,是本发明实施例提供的一种终端设备的结构示意图,终端设备10中包括但不限于调制解调器40、射频模组50、天线调制电路30和天线主体20,这些装置均可以分布在终端设备的电路板上。其中,调制解调器40用于合成即将发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是发射时,把射频信号编译成用来发射的基带码;接收时,把收到的基带码解译为射频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、图片信息的编译。射频模组50用于将调制解调后的信号增强并反馈给天线。天线调制电路30用于对信号的相位、幅度或频率进行调整。天线主体20用于将信号转换为电磁波辐射到空间中,以供通信对端接收。需要说明的是,若终端设备10包括多个天线主体,则需要多个天线调制电路30以及多个射频模组,一个射频模组与一个天线调制电路连接,一个天线调制电路与一个天线主体连接,连接方式可以参考上述描述,此处不再赘述。
在将信号传送到天线主体20之前,天线调制电路30可以先对信号进行处理,例如,调整该信号的相位、幅度或频率,处理之后,天线调制电路30再通过馈电点212将该信号传送给天线主体20,最终改变第一辐射段211和第二辐射段221辐射出的电磁信号形成的空间电磁场的方向和/或强度。例如,天线调制电路30可以调整信号的相位,最终改变第一辐射段211和第二辐射段221辐射出的电磁信号形成的空间电磁场的方向。或者,天线调制电路30可以调整信号的幅度,最终改变第一辐射段211和第二辐射段221辐射出的电磁信号形成的空间电磁场的强度。
相位调整区23的具体结构如下:
一种实施方式中,参见图5,相位调整区23包括依次连接的第一段231、第二段232 和第三段233,第一段231之远离第二段232的一端连接至第一辐射区21,第三段233之远离第二段232的一端连接至第二辐射区22。图5中,第一段231与第三段233均直线状且相对设置,在这种实施方式中,相位调整区23呈
Figure PCTCN2017103229-appb-000002
型。在其他实施方式中,相位调整区23可以不限于
Figure PCTCN2017103229-appb-000003
型,例如,可以是直线型、“U”型或者其他形状等等,只要满足馈电点212、相位调整区23和接地点222能够形成一个通路即可。
一种实施方式中,第一段231的宽度与第三段233的宽度不同,以调整相位调整区信号的相位并减小传输线本身的辐射能力。原因是特征频点阻抗特性不匹配的链路本身对空间的辐射能力最弱。
第一辐射段211的具体结构如下:
一种实施方式中,第一辐射段211包括第一连接段和N个弯折段,第一连接段的一端连接相位调整区23的一端,第一连接段的另一端连接N个弯折段,N个弯折段从第一连接段远离相位调整区23的一端弯折,N为正整数。本发明实施例中,以第一辐射段211包括第一连接段2111、弯折段2112和弯折段2113为例进行说明。其中,如图6所示,弯折段2112的长度短于弯折段2113,由于辐射臂越长,频率越低,因此,弯折段2112辐射的信号频率高于弯折段2113辐射的信号频率。例如,弯折段2112辐射的信号频率为5G,弯折段2113辐射的信号频率为2.4G,由此可看出,天线主体20可以是双频天线。
一种实施方式中,N个弯折段中的每个弯折段包括依次连接的至少一个连接段,至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。一种实施方式中,至少一个连接段中任意两个相邻的连接段的方向相互垂直,因此,任意两个相邻的连接段辐射出的电磁信号形成的空间电磁场的方向相差45度。此外,至少一个连接段中任意两个相邻的连接段的方向也可以是呈其他角度,本发明实施例不作具体限定。
如图6所示,弯折段2112只包括一个连接段,该连接段为直线状,弯折段2113包括依次连接的4个连接段,分别为连接段1、连接段2、连接段3和连接段4,连接段1的方向为水平方向,连接段2的方向为竖直方向,连接段3的方向为水平方向,连接段4的方向为竖直方向。参见图7,若电流由连接段1流向连接段4,则根据安培定则,电流经过连接段1形成的空间电磁场方向为竖直平面上的逆时针方向,电流经过连接段2形成的空间电磁场方向为与竖直平面夹角45度平面上的逆时针方向,电流经过连接段3形成的空间电磁场方向为竖直平面上的逆时针方向,电流经过连接段2形成的空间电磁场方向为竖直平面夹角45度平面上的逆时针方向,即,连接段1与连接段2的电流形成的空间电磁场方向相差45度,连接段2与连接段3的电流形成的空间电磁场方向相差45度,连接段3与连接段4的电流形成的空间电磁场方向相差45度,因此,电流在弯折段2113处形成的空间电磁场方向包括多个方向,提升了通信系统的吞吐量。
第二辐射段221的具体结构如下:
一种实施方式中,第二辐射段221包括第二连接段和M个弯折段,第二连接段的一端连接相位调整区23的另一端,第二连接段的另一端连接M个弯折段,M个弯折段从第二连接段远离相位调整区23的一端弯折,M为正整数。本发明实施例中,以第二连接段2211包括第二连接段2211、弯折段2212和弯折段2213为例进行说明。其中,如图8所示,弯折段2212长度短于弯折段2113,由于辐射臂越长,频率越低,因此,弯折段2212辐射的 信号频率高于弯折段2213辐射的信号频率。例如,弯折段2212辐射的信号频率为5G,弯折段2213辐射的信号频率为2.4G。
一种实施方式中,M个弯折段中的每个弯折段包括依次连接的至少一个连接段,至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。一种实施方式中,至少一个连接段中任意两个相邻的连接段的方向相互垂直,因此,任意两个相邻的连接段辐射出的电磁信号形成的空间电磁场的方向相差45度。此外,至少一个连接段中任意两个相邻的连接段的方向也可以是呈其他角度,本发明实施例不作具体限定。
如图8所示,弯折段2212只包括一个连接段,该连接段为直线状,弯折段2213包括依次连接的4个连接段,分别为连接段5、连接段6、连接段7和连接段8,连接段5的方向为水平方向,连接段6的方向为竖直方向,连接段7的方向为水平方向,连接段8的方向为竖直方向。参见图9,若电流由连接段5流向连接段8,则根据安培定则,电流经过连接段5形成的空间电磁场方向为竖直平面上的顺时针方向,电流经过连接段6形成的空间电磁场方向为与竖直平面夹角45度平面上的顺时针方向,电流经过连接段7形成的空间电磁场方向为竖直平面上的顺时针方向,电流经过连接段8形成的空间电磁场方向为竖直平面夹角45度平面上的顺时针方向,即,连接段5与连接段6的电流形成的空间电磁场方向相差45度,连接段6与连接段7的电流形成的空间电磁场方向相差45度,连接段7与连接段8的电流形成的空间电磁场方向相差45度,因此,电流在弯折段2213处形成的空间电磁场方向包括多个方向,提升了通信系统的吞吐量。
一种实施方式中,天线调整电路30包括如下任一种:相位可调器、左右旋切换器、微带线、非标准阻抗传输线、功率放大器、移相器等任何可以改变ECC系数的电路。
本发明实施例提供的天线装置应用在终端设备中,有利于终端设置尺寸小型化的发展需求。
其次,终端设备还可以根据ECC相关包络系数优化上述天线装置在产品中的位置布放,从而提升天线ECC性能。
本发明实施例中的天线装置可以应用到多天线终端设备上。ECC是天线的相关性,一般来说分为两种:包络相关性和以及信号相关性。信号相关性指从不同的天线接收到的复信号之间的相关性,包络相关性指接收到这些不同信号幅值之间的相关性。从数值上看ECC是一个归一化值,“1”即是完全相关,在物理层面的概念就是两个天线在空间的电磁场分布完全等效。“0”则是理想的ECC值,即两个天线完全不相关。
ECC的计算方法在双天线条件下可以用如下公式来计算。
Figure PCTCN2017103229-appb-000004
该公式的含义是:相关性包络系数ρe为双天线共同作用于空间场与天线1激励天线2增加50Ω负载,和天线2激励天线1增加50Ω负载单独形成的空间场进行的近似度比对。
在研究中我们发现,双天线方案的ECC可以近似的看成:
Figure PCTCN2017103229-appb-000005
根据相关原理优化天线布放后,引入RTL8192芯片做功率板,使用传统的外置高增益鞭状天线和本发明实施例提供的天线装置做了一组对比数据。测试采用水平转台,水平旋转360°step:30°,旋转过程中查看设备的TX&RX上下行速率。结果发现搭配高增益外置天线的Demo板上仅作天线装置替代动作后吞吐在各个角度都有10%的性能提升,原算法中存在的反矩阵断崖丢包问题从天线方案上完全解除。
综上所述,通过实施本发明实施例,利用天线装置中的相位调整区调整天线装置的馈电点馈入的信号的相位,以调整天线装置中的第一辐射区和所述第二辐射区辐射出的电磁信号形成的空间电磁场的方向,也即改变空间电磁场的分布形态,达到空间多色覆盖的效果,最终提升通信系统的吞吐量,这里空间多色覆盖也即是指空间电磁场的方向多种多样,并且若通信设备采用多天线进行数据通信,空间多色覆盖也可以降低多路天线之间的ECC系数。此外,本申请中的天线装置构造简单、体积小、成本低,便于在市场中应用。

Claims (10)

  1. 一种天线装置,其特征在于,包括天线主体,所述天线主体包括第一辐射区、第二辐射区和相位调整区,所述相位调整区连接在所述第一辐射区和所述第二辐射区之间,所述第一辐射区包括第一辐射段和馈电点,所述第二辐射区包括第二辐射段和接地点,所述相位调整区用于对所述馈电点馈入的信号的相位进行调整,以改变所述第一辐射段和所述第二辐射段辐射出的电磁信号形成的空间电磁场的方向。
  2. 根据权利要求1所述的天线装置,其特征在于,所述天线装置还包括天线调制电路,所述天线调制电路的第一输出端连接至所述馈电点,所述天线调制电路的第二输出端连接至所述接地点,所述天线调制电路用于对所述馈电点馈入的信号的相位、幅度或频率进行调整,以改变所述第一辐射段和所述第二辐射段辐射出的电磁信号形成的空间电磁场的方向和/或强度。
  3. 根据权利要求1或2所述的天线装置,其特征在于,所述相位调整区包括依次连接的第一段、第二段和第三段,所述第一段之远离所述第二段的一端连接至所述第一辐射区,所述第三段之远离所述第二段的一端连接至所述第二辐射区。
  4. 根据权利要求3所述的天线装置,其特征在于,所述第一段的宽度与所述第三段的宽度不同,以调整所述相位调整区的信号的相位并减小传输线本身的辐射能力。
  5. 根据权利要求1至3任一项所述的天线装置,其特征在于,所述第一辐射段包括第一连接段和N个弯折段,所述第一连接段的一端连接所述相位调整区的一端,所述第一连接段的另一端连接所述N个弯折段,所述N个弯折段从所述第一连接段远离所述相位调整区的一端弯折,N为正整数。
  6. 根据权利要求5所述的天线装置,其特征在于,所述N个弯折段中的每个弯折段包括依次连接的至少一个连接段,所述至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。
  7. 根据权利要求1至3任一项所述的天线装置,其特征在于,所述第二辐射段包括第二连接段和M个弯折段,所述第二连接段的一端连接所述相位调整区的另一端,所述第二连接段的另一端连接所述M个弯折段,所述M个弯折段从所述第二连接段远离所述相位调整区的一端弯折,M为正整数。
  8. 根据权利要求7所述的天线装置,其特征在于,所述M个弯折段中的每个弯折段包括依次连接的至少一个连接段,所述至少一个连接段中任意两个相邻的连接段的方向不同,以产生不同方向的空间电磁场。
  9. 根据权利要求2所述的天线装置,其特征在于,所述天线调整电路包括如下任一种:相位可调器、左右旋切换器、微带线、非标准阻抗传输线、功率放大器、移相器。
  10. 一种终端设备,其特征在于,包括如权利要求1-9任意一项所述的天线装置。
PCT/CN2017/103229 2017-09-25 2017-09-25 天线装置及终端设备 WO2019056386A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780006924.4A CN109845032A (zh) 2017-09-25 2017-09-25 天线装置及终端设备
PCT/CN2017/103229 WO2019056386A1 (zh) 2017-09-25 2017-09-25 天线装置及终端设备
EP17917217.6A EP3627617A4 (en) 2017-09-25 2017-09-25 ANTENNA DEVICE AND TERMINAL DEVICE
US16/360,739 US10985458B2 (en) 2017-09-25 2019-03-21 Antenna apparatus and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103229 WO2019056386A1 (zh) 2017-09-25 2017-09-25 天线装置及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/360,739 Continuation US10985458B2 (en) 2017-09-25 2019-03-21 Antenna apparatus and terminal device

Publications (1)

Publication Number Publication Date
WO2019056386A1 true WO2019056386A1 (zh) 2019-03-28

Family

ID=65810955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103229 WO2019056386A1 (zh) 2017-09-25 2017-09-25 天线装置及终端设备

Country Status (4)

Country Link
US (1) US10985458B2 (zh)
EP (1) EP3627617A4 (zh)
CN (1) CN109845032A (zh)
WO (1) WO2019056386A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421178B (zh) * 2022-04-01 2022-08-02 陕西海积信息科技有限公司 龙伯透镜天线和相控阵天线阵列
CN117013252A (zh) * 2022-04-29 2023-11-07 荣耀终端有限公司 一种终端天线和高隔离天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036759A1 (en) * 2001-10-22 2003-05-01 Qinetiq Limited Apparatus for steering an antenna system
CN1965442A (zh) * 2004-04-23 2007-05-16 圣韵无限通讯技术有限公司 微带天线
CN101165966A (zh) * 2006-10-18 2008-04-23 鸿富锦精密工业(深圳)有限公司 耦合式馈入天线
CN204029975U (zh) * 2014-07-04 2014-12-17 光宝电子(广州)有限公司 双馈入双极化的高方向性阵列天线系统
CN107275765A (zh) * 2017-05-18 2017-10-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种自相移宽带圆极化交叉偶极子天线

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075042A2 (en) * 1999-08-06 2001-02-07 Sony Corporation Antenna apparatus and portable radio set
RU2231874C2 (ru) 2002-03-27 2004-06-27 Общество с ограниченной ответственностью "Алгоритм" Антенное устройство с управляемой диаграммой направленности, приемопередающее устройство и сетевой портативный компьютер
US7215296B2 (en) 2002-03-27 2007-05-08 Airgain, Inc. Switched multi-beam antenna
US7362280B2 (en) 2004-08-18 2008-04-22 Ruckus Wireless, Inc. System and method for a minimized antenna apparatus with selectable elements
US7652632B2 (en) 2004-08-18 2010-01-26 Ruckus Wireless, Inc. Multiband omnidirectional planar antenna apparatus with selectable elements
US7965252B2 (en) 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
US7880683B2 (en) 2004-08-18 2011-02-01 Ruckus Wireless, Inc. Antennas with polarization diversity
US7696946B2 (en) 2004-08-18 2010-04-13 Ruckus Wireless, Inc. Reducing stray capacitance in antenna element switching
US7193562B2 (en) 2004-11-22 2007-03-20 Ruckus Wireless, Inc. Circuit board having a peripheral antenna apparatus with selectable antenna elements
US7358912B1 (en) 2005-06-24 2008-04-15 Ruckus Wireless, Inc. Coverage antenna apparatus with selectable horizontal and vertical polarization elements
US7646343B2 (en) 2005-06-24 2010-01-12 Ruckus Wireless, Inc. Multiple-input multiple-output wireless antennas
EP2051328A4 (en) * 2006-08-03 2012-05-09 Panasonic Corp ANTENNA DEVICE
CN101517828A (zh) * 2006-09-26 2009-08-26 Nxp股份有限公司 用于rfid应答器的天线和rfid应答器
US7898493B1 (en) * 2007-06-13 2011-03-01 The Ohio State University Implementation of ultra wide band (UWB) electrically small antennas by means of distributed non foster loading
WO2009141817A2 (en) * 2008-05-19 2009-11-26 Galtronics Corporation Ltd. Conformable antenna
US8217843B2 (en) 2009-03-13 2012-07-10 Ruckus Wireless, Inc. Adjustment of radiation patterns utilizing a position sensor
EP3104461A1 (en) 2015-06-09 2016-12-14 Thomson Licensing Dipole antenna with integrated balun
CN105680169A (zh) * 2016-01-29 2016-06-15 深圳市共进电子股份有限公司 双频偶极子天线
CN106602244A (zh) * 2016-12-09 2017-04-26 安徽四创电子股份有限公司 一种微带阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036759A1 (en) * 2001-10-22 2003-05-01 Qinetiq Limited Apparatus for steering an antenna system
CN1965442A (zh) * 2004-04-23 2007-05-16 圣韵无限通讯技术有限公司 微带天线
CN101165966A (zh) * 2006-10-18 2008-04-23 鸿富锦精密工业(深圳)有限公司 耦合式馈入天线
CN204029975U (zh) * 2014-07-04 2014-12-17 光宝电子(广州)有限公司 双馈入双极化的高方向性阵列天线系统
CN107275765A (zh) * 2017-05-18 2017-10-20 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种自相移宽带圆极化交叉偶极子天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627617A4 *

Also Published As

Publication number Publication date
EP3627617A1 (en) 2020-03-25
US20190221932A1 (en) 2019-07-18
US10985458B2 (en) 2021-04-20
EP3627617A4 (en) 2020-08-05
CN109845032A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
US7965242B2 (en) Dual-band antenna
US9923283B2 (en) Method and apparatus for forming beam in antenna array
US8988298B1 (en) Collocated omnidirectional dual-polarized antenna
TWI632736B (zh) 多天線通訊裝置
US20140266953A1 (en) Antenna having split directors and antenna array comprising same
US9799954B2 (en) Apparatus with multi-directional radiation capability using multiple antenna elements
JP3734666B2 (ja) アンテナ装置及びこれを用いたアレーアンテナ
JPWO2012053223A1 (ja) アンテナ装置
US9735473B2 (en) Compact radiation structure for diversity antennas
CN111600113A (zh) 无线通信系统的天线模块和包括该天线模块的电子设备
US20170237174A1 (en) Broad Band Diversity Antenna System
US10985458B2 (en) Antenna apparatus and terminal device
CN104904064B (zh) 用于波束形成的方法和装置
US10892562B1 (en) Multi-beam Yagi-based MIMO antenna system
KR101710803B1 (ko) 편파 다이버시티에 대한 격리도 확보를 위한 기지국 안테나 방사체
US11837793B2 (en) Wideband wide-beamwidth polarization diverse antenna
CN107591614B (zh) 一种高增益全向阵列天线
US8912969B2 (en) Directional antenna and radiating pattern adjustment method
US9397394B2 (en) Antenna arrays with modified Yagi antenna units
KR102158981B1 (ko) 안테나 패턴을 개선하기 위한 대칭 급전회로를 갖는 안테나
TWI523327B (zh) 用於一多輸入多輸出無線通訊系統之圓極化天線
US11631942B2 (en) Hybrid antenna with polarization flexibility
CN107123852A (zh) 一种5g手机天线结构
KR101901065B1 (ko) 중계기용 듀얼 밴드 안테나
Qin et al. Reconfigurable Yagi-Uda Antenna

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017917217

Country of ref document: EP

Effective date: 20190104

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE