WO2019056298A1 - Mécanismes d'attribution de ressources de rétroaction de csi - Google Patents

Mécanismes d'attribution de ressources de rétroaction de csi Download PDF

Info

Publication number
WO2019056298A1
WO2019056298A1 PCT/CN2017/102923 CN2017102923W WO2019056298A1 WO 2019056298 A1 WO2019056298 A1 WO 2019056298A1 CN 2017102923 W CN2017102923 W CN 2017102923W WO 2019056298 A1 WO2019056298 A1 WO 2019056298A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi report
csi
indicator
information included
information
Prior art date
Application number
PCT/CN2017/102923
Other languages
English (en)
Inventor
Chenxi HAO
Parisa CHERAGHI
Yu Zhang
Liangming WU
Wanshi Chen
Alexei Yurievitch Gorokhov
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/102923 priority Critical patent/WO2019056298A1/fr
Priority to PCT/CN2018/106864 priority patent/WO2019057138A1/fr
Publication of WO2019056298A1 publication Critical patent/WO2019056298A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Certain aspects of the present disclosure generally relate to encoding bits of information and, more particularly, to mechanisms for resource allocation of CSI feedback.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) .
  • multiple-access technologies include Long Term Evolution (LTE) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • LTE Long Term Evolution
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, otherwise known as user equipment (UEs) .
  • UEs user equipment
  • a set of one or more base stations may define an e NodeB (eNB) .
  • eNB e NodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more distributed units, in communication with a central unit may define an access node (e.g., a new radio base station (NR BS) , a new radio node-B (NR NB) , a network node, 5G NB, gNB, etc. ) .
  • NR BS new radio base station
  • NR NB new radio node-B
  • 5G NB 5G NB
  • gNB network node
  • a base station or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
  • downlink channels e.g., for transmissions from a base station or to a UE
  • uplink channels e.g., for transmissions from a UE to a base station or distributed unit
  • NR new radio
  • 3GPP Third Generation Partnership Project
  • NR is expected to introduce new encoding and decoding schemes that improve transmission and reception of data.
  • Polar codes are currently being considered as a candidate for error-correction in next-generation wireless systems such as NR.
  • Polar codes are a relatively recent breakthrough in coding theory, which have been proven to asymptotically (for code size N approaching infinity) achieve the Shannon capacity.
  • SCL successive cancellation list
  • Certain aspects of the present disclosure provide a method of wireless communication, according to certain aspects of the present disclosure.
  • the method generally includes transmitting, to a user equipment (UE) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, receiving, based on the first CSI report trigger, the first CSI report from the UE, determining a resource allocation for transmitting a second CSI report based on information included in the first CSI report, transmitting a second CSI report trigger to the UE, configuring the UE to transmit a second CSI report using the determined resource allocation, and receiving, based on the second CSI report trigger, the second CSI report from the UE.
  • CSI channel state information
  • the apparatus generally includes at least one processor configured to transmit, to a user equipment (UE) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, receive, based on the first CSI report trigger, the first CSI report from the UE, determine a resource allocation for transmitting a second CSI report based on information included in the first CSI report, transmit a second CSI report trigger to the UE, configuring the UE to transmit a second CSI report using the determined resource allocation, and receive, based on the second CSI report trigger, the second CSI report from the UE.
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for transmitting, to a user equipment (UE) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, means for receiving, based on the first CSI report trigger, the first CSI report from the UE, means for determining a resource allocation for transmitting a second CSI report based on information included in the first CSI report, means for transmitting a second CSI report trigger to the UE, configuring the UE to transmit a second CSI report using the determined resource allocation, and means for receiving, based on the second CSI report trigger, the second CSI report from the UE.
  • CSI channel state information
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, configure the at least one processor to transmit, to a user equipment (UE) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, receive, based on the first CSI report trigger, the first CSI report from the UE, determine a resource allocation for transmitting a second CSI report based on information included in the first CSI report, transmit a second CSI report trigger to the UE, configuring the UE to transmit a second CSI report using the determined resource allocation, and receive, based on the second CSI report trigger, the second CSI report from the UE.
  • CSI channel state information
  • Certain aspects of the present disclosure provide a method of wireless communication, according to certain aspects of the present disclosure.
  • the method generally includes receiving, from a base station (BS) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, transmitting, based on the first CSI report trigger, the first CSI report to the BS, receiving a second CSI report trigger from the BS, configuring the UE to transmit a second CSI report using a resource allocation included in the second CSI report trigger, wherein the resource allocation is based on information transmitted in the first CSI report, and transmitting, based on the second CSI report trigger, the second CSI report from the UE.
  • BS base station
  • CSI channel state information
  • the apparatus generally includes at least one processor configured to receive, from a base station (BS) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, transmit, based on the first CSI report trigger, the first CSI report to the BS, receive a second CSI report trigger from the BS, configuring the UE to transmit a second CSI report using a resource allocation included in the second CSI report trigger, wherein the resource allocation is based on information transmitted in the first CSI report, and transmit, based on the second CSI report trigger, the second CSI report from the UE.
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for receiving, from a base station (BS) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, means for transmitting, based on the first CSI report trigger, the first CSI report to the BS, means for receiving a second CSI report trigger from the BS, configuring the UE to transmit a second CSI report using a resource allocation included in the second CSI report trigger, wherein the resource allocation is based on information transmitted in the first CSI report, and means for transmitting, based on the second CSI report trigger, the second CSI report from the UE.
  • BS base station
  • CSI channel state information
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, configure the at least one processor to receive, from a base station (BS) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report, transmit, based on the first CSI report trigger, the first CSI report to the BS, receive a second CSI report trigger from the BS, configuring the UE to transmit a second CSI report using a resource allocation included in the second CSI report trigger, wherein the resource allocation is based on information transmitted in the first CSI report, and transmit, based on the second CSI report trigger, the second CSI report from the UE.
  • BS base station
  • CSI channel state information
  • Certain aspects of the present disclosure provide a method of wireless communication, according to certain aspects of the present disclosure.
  • the method generally includes determining a plurality of resource allocations for transmitting channel state information (CSI) feedback, transmitting a CSI report trigger, including an indication of the plurality of resource allocations, to a user equipment, and receiving a CSI report from the UE, wherein the CSI report is received using one or more of the resource allocations included in the CSI report trigger.
  • CSI channel state information
  • the apparatus generally includes at least one processor configured to determine a plurality of resource allocations for transmitting channel state information (CSI) feedback, transmit a CSI report trigger, including an indication of the plurality of resource allocations, to a user equipment, and receive a CSI report from the UE, wherein the CSI report is received using one or more of the resource allocations included in the CSI report trigger.
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for determining a plurality of resource allocations for transmitting channel state information (CSI) feedback, means for transmitting a CSI report trigger, including an indication of the plurality of resource allocations, to a user equipment, and means for receiving a CSI report from the UE, wherein the CSI report is received using one or more of the resource allocations included in the CSI report trigger.
  • CSI channel state information
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, configure the at least one processor to determine a plurality of resource allocations for transmitting channel state information (CSI) feedback, transmit a CSI report trigger, including an indication of the plurality of resource allocations, to a user equipment, and receive a CSI report from the UE, wherein the CSI report is received using one or more of the resource allocations included in the CSI report trigger.
  • CSI channel state information
  • Certain aspects of the present disclosure provide a method of wireless communication, according to certain aspects of the present disclosure.
  • the method receiving a channel state information (CSI) report trigger, including an indication of a plurality of resource allocations for transmitting CSI feedback to a base station, determining one or more resource allocations, from the plurality of resource allocations, to use for transmitting the CSI feedback based, at least in part, on the payload size of the CSI feedback, and transmitting a CSI report, including the CSI feedback, using at least the determined one or more resource allocations.
  • CSI channel state information
  • the apparatus generally includes at least one processor configured to receive a channel state information (CSI) report trigger, including an indication of a plurality of resource allocations for transmitting CSI feedback to a base station, determine one or more resource allocations, from the plurality of resource allocations, to use for transmitting the CSI feedback based, at least in part, on the payload size of the CSI feedback, and transmit a CSI report, including the CSI feedback, using at least the determined one or more resource allocations.
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for receiving a channel state information (CSI) report trigger, including an indication of a plurality of resource allocations for transmitting CSI feedback to a base station, means for determining one or more resource allocations, from the plurality of resource allocations, to use for transmitting the CSI feedback based, at least in part, on the payload size of the CSI feedback, and means for transmitting a CSI report, including the CSI feedback, using at least the determined one or more resource allocations.
  • CSI channel state information
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, configure the at least one processor to receive a channel state information (CSI) report trigger, including an indication of a plurality of resource allocations for transmitting CSI feedback to a base station, determine one or more resource allocations, from the plurality of resource allocations, to use for transmitting the CSI feedback based, at least in part, on the payload size of the CSI feedback, and transmit a CSI report, including the CSI feedback, using at least the determined one or more resource allocations.
  • CSI channel state information
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example BS and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates a block diagram of an example wireless device in accordance with certain aspects of the present disclosure.
  • FIG. 7 illustrates an example of a DL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates an example of an UL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 9A illustrates example operations for wireless communications, in accordance with certain aspects of the present disclosure.
  • FIG. 9B illustrates example operations for wireless communications, in accordance with certain aspects of the present disclosure.
  • FIG. 10 illustrates an example timeline using a multi-stage CSI report trigger, in accordance with certain aspects of the present disclosure.
  • FIG. 11A illustrates example operations for wireless communications, in accordance with certain aspects of the present disclosure.
  • FIG. 11B illustrates example operations for wireless communications, in accordance with certain aspects of the present disclosure.
  • FIG. 12 illustrate an example timeline using a CSI report trigger including a plurality of resource allocations for CSI reporting, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for encoding bits of information.
  • Such encoding can be used, for example, for compression or storage, or for transmission in networks, including wireless networks.
  • encoding may be adopted for new radio (NR) (new radio access technology or 5G technology) wireless communication systems.
  • NR new radio
  • 5G technology new radio access technology
  • aspects of the present disclosure are proposed in relation to a wireless communication system, the techniques presented herein are not limited to such wireless communication system.
  • the techniques presented herein may equally apply to compression or storage, or to other communication systems such as fiber communication systems, hard-wire copper communication systems, and the like. In other words, the techniques presented herein may be applied to any system using an encoder.
  • NR may support various wireless communication services, such as Enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 27 GHz or beyond) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) .
  • eMBB Enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • a CDMA network may implement a radio technology such as universal terrestrial radio access (UTRA) , cdma2000, etc.
  • UTRA includes wideband CDMA (WCDMA) , time division synchronous CDMA (TD-SCDMA) , and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as global system for mobile communications (GSM) .
  • GSM global system for mobile communications
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , ultra mobile broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, etc.
  • E-UTRA evolved UTRA
  • UMB ultra mobile broadband
  • IEEE 802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 etc.
  • UTRA and E-UTRA are part of universal mobile telecommunication system (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) in both frequency division duplex (FDD) and time division duplex (TDD) , are new releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • FDD frequency division duplex
  • TDD time division duplex
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies Additionally, the techniques presented herein may be used in various other non-wireless communication networks, such as fiber network, hard-wire “copper” networks, and the like, or in digital storage or compression. In other words, the techniques presented herein may be used in any system which includes an encoder.
  • FIG. 1 illustrates an example wireless network 100, such as a new radio (NR) or 5G network, in which aspects of the present disclosure may be performed, for example, for reducing the search space of maximum-likelihood (ML) decoding for polar codes.
  • the network 100 may be a fiber network, a hard-wire “copper” network, or the like.
  • the wireless network 100 may include a number of BSs 110 and other network entities.
  • a BS may be a station that communicates with UEs.
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and eNB, Node B, 5G NB, AP, NR BS, NR BS, BS, or TRP may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed, employing a multi-slice network architecture.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • the wireless network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • the wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communications device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices.
  • IoT Internet-of-Things
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR/5G.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD.
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1ms duration.
  • Each radio frame has a length of 10ms and may consist of two half frames, each half frame comprising five subframes each with a length of 1ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE.
  • Multi-layer transmissions with up to 2 streams per UE may be supported.
  • Aggregation of multiple cells may be supported with up to 8 serving cells.
  • NR may support a different air interface, other than an OFDM-based.
  • NR networks may include entities such CUs and/or DUs.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) .
  • the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • a RAN may include a CU and DUs.
  • a NR BS e.g., gNB, 5G Node B, Node B, transmission reception point (TRP) , access point (AP)
  • NR cells can be configured as access cell (ACells) or data only cells (DCells) .
  • the RAN e.g., a central unit or distributed unit
  • DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals—in some case cases DCells may transmit SS.
  • NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
  • FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • the ANC may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC.
  • the backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC.
  • the ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) .
  • TRPs 208 which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term.
  • TRP may be used interchangeably with “cell. ”
  • the TRPs 208 may be a DU.
  • the TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) .
  • ANC ANC
  • RaaS radio as a service
  • a TRP may include one or more antenna ports.
  • the TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the local architecture 200 may be used to illustrate fronthaul definition.
  • the architecture may be defined that support fronthauling solutions across different deployment types.
  • the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • the architecture may share features and/or components with LTE.
  • the next generation AN (NG-AN) 210 may support dual connectivity with NR.
  • the NG-AN may share a common fronthaul for LTE and NR.
  • the architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
  • a dynamic configuration of split logical functions may be present within the architecture 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) .
  • a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
  • CU central unit
  • distributed units e.g., one or more TRPs 208 .
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • the C-CU may be centrally deployed.
  • C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU may host core network functions locally.
  • the C-RU may have distributed deployment.
  • the C-RU may be closer to the network edge.
  • a DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure.
  • the BS may include a TRP.
  • One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure.
  • antennas 452, Tx/Rx 222, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 460, 420, 438, and/or controller/processor 440 of the BS 110 may be used to perform the operations described herein and illustrated with reference to FIGs. 9A-9B and 11A-11B.
  • the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y.
  • the base station 110 may also be a base station of some other type.
  • the base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc.
  • the data may be for the Physical Downlink Shared Channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the base station 110 may perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 6, and/or other processes for the techniques described herein.
  • the processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 7, and/or other processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a in a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and/or DUs
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device (e.g., access node (AN) , new radio base station (NR BS) , a new radio Node-B (NR NB) , a network node (NN) , or the like. ) .
  • the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in a femto cell deployment.
  • a UE may implement an entire protocol stack (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • an entire protocol stack e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530.
  • FIG. 6 illustrates various components that may be utilized in a wireless communications device 602 that may be employed within the wireless communication system from FIG. 1.
  • the wireless communications device 602 is an example of a device that may be configured to implement the various methods described herein, for example, for reducing the search space of ML decoding for polar codes.
  • the wireless communications device 602 may be an BS 110 from FIG. 1 or any of user equipments 120.
  • the wireless communications device 602 may include a processor 604 which controls operation of the wireless communications device 602.
  • the processor 604 may also be referred to as a central processing unit (CPU) .
  • a portion of the memory 606 may also include non-volatile random access memory (NVRAM) .
  • the processor 604 typically performs logical and arithmetic operations based on program instructions stored within the memory 606.
  • the instructions in the memory 606 may be executable to implement the methods described herein.
  • the wireless communications device 602 may also include a housing 608 that may include a transmitter 610 and a receiver 612 to allow transmission and reception of data between the wireless communications device 602 and a remote location.
  • the transmitter 610 and receiver 612 may be combined into a transceiver 614.
  • a single or a plurality of transmit antennas 616 may be attached to the housing 608 and electrically coupled to the transceiver 614.
  • the wireless communications device 602 may also include (not shown) multiple transmitters, multiple receivers, and multiple transceivers.
  • the wireless communications device 602 may also include a signal detector 618 that may be used in an effort to detect and quantify the level of signals received by the transceiver 614.
  • the signal detector 618 may detect such signals as total energy, energy per subcarrier per symbol, power spectral density and other signals.
  • the wireless communications device 602 may also include a digital signal processor (DSP) 620 for use in processing signals.
  • DSP digital signal processor
  • the wireless communications device 602 may also include an encoder 622 for use in encoding signals for transmission.
  • the encoder 622 may be configured to distribute/assign a first one or more bits into a location of an information stream, wherein the first one or more bits indicate at least one of a bit value of one or more second bits in the information stream or a size of the information stream.
  • the wireless communications device 602 may include a decoder 624 for use in decoding received signals encoded using techniques presented herein.
  • the decoder 624 may be configured to decode a first portion of a codeword, wherein the first portion of the codeword corresponds to a location in the information stream where a first one or more bits are assigned, wherein the first one or more bits indicate at least one of bit value of one or more second bits in the information stream or a size of the information stream, determine the bit value of the one or more second bits based, at least in part, on the first one or more bits, and decode a remaining portion of the codeword based on the determined bit value of the one or more second bits.
  • the various components of the wireless communications device 602 may be coupled together by a bus system 626, which may include a power bus, a control signal bus, and a status signal bus in addition to a data bus.
  • the processor 604 may be configured to access instructions stored in the memory 606 to perform connectionless access, in accordance with aspects of the present disclosure discussed below.
  • FIG. 7 is a diagram 700 showing an example of a DL-centric subframe, which may be used by one or more devices (e.g., BS 110 and/or UE 120) to communicate in the wireless network 100.
  • the DL-centric subframe may include a control portion 702.
  • the control portion 702 may exist in the initial or beginning portion of the DL-centric subframe.
  • the control portion 702 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe.
  • the control portion 702 may be a physical DL control channel (PDCCH) , as indicated in FIG. 7.
  • the DL-centric subframe may also include a DL data portion 704.
  • PDCH physical DL control channel
  • the DL data portion 704 may sometimes be referred to as the payload of the DL-centric subframe.
  • the DL data portion 704 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE) .
  • the DL data portion 704 may be a physical DL shared channel (PDSCH) .
  • PDSCH physical DL shared channel
  • the DL-centric subframe may also include a common UL portion 706.
  • the common UL portion 706 may sometimes be referred to as an UL burst, a common UL burst, and/or various other suitable terms.
  • the common UL portion 706 may include feedback information corresponding to various other portions of the DL-centric subframe.
  • the common UL portion 706 may include feedback information corresponding to the control portion 702.
  • Non-limiting examples of feedback information may include an ACK signal, a NACK signal, a HARQ indicator, and/or various other suitable types of information.
  • the common UL portion 706 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests (SRs) , and various other suitable types of information.
  • RACH random access channel
  • SRs scheduling requests
  • the end of the DL data portion 704 may be separated in time from the beginning of the common UL portion 706.
  • This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms.
  • This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE)) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) .
  • DL communication e.g., reception operation by the subordinate entity (e.g., UE)
  • UL communication e.g., transmission by the subordinate entity (e.g., UE)
  • FIG. 8 is a diagram 800 showing an example of an UL-centric subframe, which may be used by one or more devices (e.g., BS 110 and/or UE 120) to communicate in the wireless network 100.
  • the UL -centric subframe may include a control portion 802.
  • the control portion 802 may exist in the initial or beginning portion of the UL-centric subframe.
  • the control portion 802 in FIG. 8 may be similar to the control portion described above with reference to FIG. 7.
  • the UL-centric subframe may also include an UL data portion 804.
  • the UL data portion 804 may sometimes be referred to as the payload of the UL-centric subframe.
  • the UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) .
  • the control portion 802 may be a physical DL control channel (PDCCH) .
  • the end of the control portion 802 may be separated in time from the beginning of the UL data portion 804. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) .
  • the UL-centric subframe may also include a common UL portion 806.
  • the common UL portion 806 in FIG. 8 may be similar to the common UL portion 806 described above with reference to FIG. 8.
  • the common UL portion 806 may additional or alternative include information pertaining to channel quality indicator (CQI) , sounding reference signals (SRSs) , and various other suitable types of information.
  • CQI channel quality indicator
  • SRSs sounding reference signals
  • One of ordinary skill in the art will understand that the foregoing is merely one example of an UL-centric subframe and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • aperiodic channel state information (CSI) reports are triggered by a CSI report trigger transmitted from a base station to a user equipment.
  • the CSI report trigger indicates to the UE the timing and allocated resources to perform CSI reporting.
  • the CSI report trigger may be sent via and uplink (UL) grant containing a resource allocation (RA) information from which UE is aware of which resource is used to perform the CSI report.
  • PUSCH physical uplink shared channel
  • RA resource allocation
  • the CSI report may include a CSI-reference signal channel indicator (CRI) , a rank indicator (RI) , channel quality information (CQI) , and a pre-coding matrix indicator (PMI) .
  • the PMI can be further categorized into wideband PMI (WB PMI) or subband PMI (SB PMI) .
  • WB PMI wideband PMI
  • SB PMI subband PMI
  • the WB PMI includes rotation indication, beam indication, wideband amplitude indication and strongest beam indication
  • SB PMI includes subband amplitude indicator and subband phase indicator.
  • the payload size of CRI, RI and CQI are fixed, while the PMI (especially the subband PMI) payload size may vary depending on the reported RI.
  • the CSI reporting may be divided into two or three parts, where the a first portion of the CSI feedback contains CRI/RI/CQI whose payload is fixed, while the second and third portions of the CSI feedback contain PMI whose payload sizes depend on the first portion (and where the third portion may also depend on the second portion. ) .
  • CSF channel state feedback
  • aspects of the present disclosure propose techniques for determining a resource allocation for transmitting CSI feedback information whose payload size is dependent on other information in the CSI feedback. For example, in some cases, this may involve using a multi-stage CSI trigger where a first CSI report trigger requests CSI information (e.g., CRI, RI, CQI) with a fixed payload size and a second CSI report trigger requests CSI information without a fixed payload size (e.g., PMI) .
  • the second CSI report trigger may include a resource allocation, determined based on information received in response to the first CSI report trigger, to use for transmitting the PMI information.
  • aspects propose using a single CSI report trigger that includes a plurality of resource allocations that may be used for transmitting CSI information
  • techniques presented herein may reduce signaling overhead at the user equipment.
  • FIG. 9A illustrates example operations 900A for wireless communications, for example, for channel state information reporting, in accordance with certain aspects of the present disclosure.
  • operations 900A may, for example, be performed by any suitable wireless communications device, such as a base station (e.g., 110) and/or wireless communications device 602.
  • a base station e.g., 110
  • the wireless communications device may include one or more components as illustrated in FIGs. 4 and 6 which may be configured to perform the operations described herein.
  • the antenna 434, modulator/demodulator 432, transmit processor 420, controller/processor 440, and/or memory 442 of the base station 110, as illustrated in FIG. 4 may perform the operations described herein.
  • the processor 604, memory 606, transceiver 614, DSP 320, encoder 622, decoder 620, and/or antenna (s) 616 as illustrated in FIG. 6 may be configured to perform the operations described herein.
  • Operations 900A begin at 902A by transmitting, to a user equipment (UE) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report.
  • the wireless communications device receives, based on the first CSI report trigger, the first CSI report from the UE.
  • the wireless communications device determines a resource allocation for transmitting a second CSI report based on information included in the first CSI report.
  • the wireless communications device transmits a second CSI report trigger to the UE, configuring the UE to transmit a second CSI report using the determined resource allocation.
  • the wireless communications device receives, based on the second CSI report trigger, the second CSI report from the UE.
  • FIG. 9B illustrates example operations 900B for wireless communications, in accordance with certain aspects of the present disclosure.
  • operations 900B may, for example, be performed by any suitable wireless communications device, such as a user equipment (e.g., UE 120) and/or wireless communications device 602.
  • a user equipment e.g., UE 120
  • operations 900B may be considered complimentary to operations 900A.
  • the wireless communications device may include one or more components as illustrated in FIGs. 4 and 6 which may be configured to perform the operations described herein.
  • the antenna 452, demodulator/modulator 454, transmit processor 464, controller/processor 480, and/or memory 482 of the user equipment 120, as illustrated in FIG. 4, may perform the operations described herein.
  • the processor 604, memory 606, transceiver 614, DSP 320, encoder 622, decoder 620, and/or antenna (s) 616 as illustrated in FIG. 6 may be configured to perform the operations described herein.
  • Operations 900B begin at 902B by receiving, from a base station (BS) , a first channel state information (CSI) report trigger, configuring the UE to transmit a first CSI report.
  • the wireless communications device transmits, based on the first CSI report trigger, the first CSI report to the BS.
  • the wireless communications device receives a second CSI report trigger from the BS, configuring the UE to transmit a second CSI report using a resource allocation included in the second CSI report trigger, wherein the resource allocation is based on information transmitted in the first CSI report.
  • the wireless communications device transmits, based on the second CSI report trigger, the second CSI report from the UE.
  • aspects of the present disclosure propose techniques whereby a multi-stage CSI report trigger is used to request CSI feedback.
  • An illustration of this technique may be seen in FIG. 10.
  • the base station e.g., BS 110
  • the user equipment e.g., UE 120
  • the first CSI report trigger may request that the UE transmit a first portion of CSI feedback, including CRI, RI, and CQI (and, in some cases, WB PMI, if feasible) .
  • a payload size of the first portion of CSI feedback may be fixed (e.g., does not vary) .
  • the first CSI report trigger may include timing information and a resource allocation for transmitting a first CSI report that includes the first portion of CSI feedback. Additionally, in some cases, the first CSI report trigger may comprise an indication of a type of channel the UE is to transmit the first CSI report on. For example, in some cases, the first CSI report trigger may indicate that the UE is to transmit the first CSI report on a long or short physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the UE may perform the CSI measurements and transmit the first CSI report (including the first portion of CSI information (e.g., based on the CSI measurements) on the channel indicated in the first CSI report trigger, which may be received by the base station.
  • the base station may determine a resource allocation for transmitting a second CSI report that includes a second portion of the CSI feedback (e.g., PMI information) .
  • the base station may transmit a second CSI report trigger that includes the determined resource allocation.
  • the second CSI report trigger may include timing information and an indication of a channel to use to transmit the second CSI report.
  • the second CSI report trigger may include an indication configuring that the UE re-transmit the first portion of CSI feedback information.
  • the user equipment may transmit the second CSI report using the resource allocation indicated in the second CSI report trigger.
  • the second CSI report trigger may include an indication configuring the user equipment to retransmit the first portion of CSI feedback information. In response to this indication, the user equipment may retransmit the first portion of CSI feedback information.
  • the second CSI report trigger may include an indication configuring the UE to transmit a third CSI report comprising a same type of information (but new/updated information) as transmitted in the first CSI report but one that has no relationship with the second CSI report.
  • CSI reporting may be split up into different portions.
  • WB PMI and SB PMI may both be reported in a single CSI report.
  • WB PMI and SB PMI may be split up into two different CSI reports.
  • the user equipment may transmit the WB PMI in the second CSI report.
  • the base station may determine a second resource allocation to use for transmitting a third CSI report that includes a third portion of CSI feedback information (e.g., in some cases SB PMI) .
  • the base station may then transmit a third CSI report trigger including an indication of the second resource allocation.
  • the user equipment in response to receiving the third CSI report trigger, may transmit the third CSI report using resources indicated by the second resource allocation.
  • the third CSI report trigger may include an indication configuring the UE to retransmit the first portion of CSI feedback information and/or the second portion of CSI feedback information.
  • the user equipment in response to the indication to retransmit the first portion of CSI feedback information and/or the second portion of CSI feedback information, the user equipment retransmit the first portion of CSI feedback information and/or the second portion of CSI feedback information.
  • the third CSI report trigger may include an indication configuring the UE to transmit a fourth CSI report and/or a fifth CSI report comprising a same type of information (but newer/updated) as transmitted in the first CSI report and/or second CSI report, respectively, but one that have no relationship with the third CSI report.
  • aspects propose using a single CSI report trigger that includes a plurality of resource allocations that may be used for transmitting CSI information.
  • FIG. 11A illustrates example operations 900A for wireless communications, for example, for channel state information reporting, in accordance with certain aspects of the present disclosure.
  • operations 1100A may, for example, be performed by any suitable wireless communications device, such as a base station (e.g., 110) and/or wireless communications device 602.
  • a base station e.g., 110
  • Operations 1100A begin at 1102A by determining a plurality of resource allocations for transmitting channel state information (CSI) feedback.
  • the wireless communications device transmits a CSI report trigger, including an indication of the plurality of resource allocations, to a user equipment.
  • the wireless communications device receives a CSI report from the UE, wherein the CSI report is received using one or more of the resource allocations included in the CSI report trigger.
  • FIG. 11B illustrates example operations 1100B for wireless communications, in accordance with certain aspects of the present disclosure.
  • operations 1100B may, for example, be performed by any suitable wireless communications device, such as a user equipment (e.g., UE 120) and/or wireless communications device 602.
  • UE 120 user equipment
  • operations 900B may be considered complimentary to operations 1100A.
  • Operations 1100B begin at 1102B by receiving a channel state information (CSI) report trigger, including an indication of a plurality of resource allocations for transmitting CSI feedback to a base station.
  • CSI channel state information
  • the wireless communication device determines one or more resource allocations, from the plurality of resource allocations, to use for transmitting the CSI feedback based, at least in part, on the payload size of the CSI feedback.
  • the wireless communication device transmits a CSI report, including the CSI feedback, using at least the determined one or more resource allocations.
  • aspects of the present disclosure propose techniques for using a single CSI report trigger that includes a plurality of resource allocations for a user equipment to use for transmitting CSI feedback information.
  • An illustration of this technique may be seen in FIG. 12.
  • the base station may transmit a first CSI report trigger.
  • the first CSI report trigger may include multiple resource allocations (e.g., resource allocation 1, resource allocation 2, resource allocation 3, etc. ) for transmitting CSI feedback information.
  • the first CSI report trigger may request that the user equipment transmit a full CSI report (e.g., CRI, RI, CQI, and PMI) in a single CSI report.
  • the user equipment in response to receiving the first CSI report trigger, the user equipment may determine one or more resource allocations to use based on the plurality of resource allocations indicated in the first CSI report trigger.
  • the plurality of resource allocations may comprise a first resource allocation subset for transmitting a first set of CSI feedback parameters (e.g., CRI/RI/CQI) and a second resource allocation subset for transmitting a second set of CSI feedback parameters (e.g., PMI) .
  • the first resource allocation subset may comprise a single (e.g., one) resource allocation as a payload size of the first set of CSI feedback parameters does not change.
  • the UE may select an appropriate resource allocation from the second resource allocation subset based on a payload size of the second set of CSI feedback parameters (e.g., which is dependent on the first set of CSI feedback parameters) , the UE may select an appropriate resource allocation from the second resource allocation subset.
  • the UE may transmit the first set of CSI feedback parameters using the resource allocation for the first set of CSI feedback parameters. Additionally, at time t+1, the UE may transmit the second set of CSI feedback parameters using the selected resource allocation (e.g., determined based on the payload size of the second set of CSI feedback parameters) . According to aspects, the base station may determine which resources to receive the second set of CSI feedback parameters based on the first set of CSI feedback parameters.
  • the techniques described above may equally apply to to CSI reporting on both a long or short physical uplink control channel or a physical uplink shared channel. Further, the techniques described above may also equally apply to any of aperiodic, semi-persistent, or periodic CSI reporting.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • a device may have an interface to output a frame for transmission.
  • a processor may output a frame, via a bus interface, to an RF front end for transmission.
  • a device may have an interface to obtain a frame received from another device.
  • a processor may obtain (or receive) a frame, via a bus interface, from an RF front end for transmission.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • means for transmitting, means for receiving, means for determining, means for performing, and/or means for re-transmitting may comprise one or more processors or antennas at the BS 110 or UE 120, such as the transmit processor 420, controller/processor 440, receive processor 438, or antennas 434 at the BS 110 and/or the transmit processor 464, controller/processor 480, receive processor 458, or antennas 452 at the UE 120.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Selon certains aspects, la présente invention concerne globalement des procédés et un appareil pour coder des bits d'informations. Un procédé donné à titre d'exemple consiste d'une manière générale à recevoir, en provenance d'une station de base (BS), un premier déclencheur de rapport d'informations d'état de canal (CSI), à configurer l'UE pour transmettre un premier rapport de CSI, à transmettre, sur la base du premier déclencheur de rapport de CSI, le premier rapport de CSI à la BS, à recevoir un second déclencheur de rapport de CSI en provenance de la BS, à configurer l'UE pour transmettre un second rapport de CSI à l'aide d'une attribution de ressources incluse dans le second déclencheur de rapport de CSI, l'attribution de ressources étant basée sur des informations transmises dans le premier rapport de CSI, et à transmettre, sur la base du second déclencheur de rapport de CSI, le second rapport de CSI en provenance de l'UE.
PCT/CN2017/102923 2017-09-22 2017-09-22 Mécanismes d'attribution de ressources de rétroaction de csi WO2019056298A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/102923 WO2019056298A1 (fr) 2017-09-22 2017-09-22 Mécanismes d'attribution de ressources de rétroaction de csi
PCT/CN2018/106864 WO2019057138A1 (fr) 2017-09-22 2018-09-21 Mécanismes d'attribution de ressources de rétroaction de csi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102923 WO2019056298A1 (fr) 2017-09-22 2017-09-22 Mécanismes d'attribution de ressources de rétroaction de csi

Publications (1)

Publication Number Publication Date
WO2019056298A1 true WO2019056298A1 (fr) 2019-03-28

Family

ID=65810003

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/102923 WO2019056298A1 (fr) 2017-09-22 2017-09-22 Mécanismes d'attribution de ressources de rétroaction de csi
PCT/CN2018/106864 WO2019057138A1 (fr) 2017-09-22 2018-09-21 Mécanismes d'attribution de ressources de rétroaction de csi

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106864 WO2019057138A1 (fr) 2017-09-22 2018-09-21 Mécanismes d'attribution de ressources de rétroaction de csi

Country Status (1)

Country Link
WO (2) WO2019056298A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096698A2 (fr) * 2008-01-28 2009-08-06 Lg Electronics Inc. Procédé de transmission d'informations concernant l'état de canaux déclenchés par un équipement utilisateur
US20130322393A1 (en) * 2011-02-18 2013-12-05 Ntt Docomo, Inc. Radio base station apparatus, terminal and radio communication method
US20140204856A1 (en) * 2013-01-23 2014-07-24 Qualcomm Incorporated Efficient uplink resource indication for csi feedback
CN104105129A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 Lte系统中的非周期csi报告方法和用户设备
CN106559807A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输方法以及相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
CN104935389B (zh) * 2014-03-21 2020-05-19 中兴通讯股份有限公司 信道状态信息测量方法和装置
CN104980252B (zh) * 2014-04-11 2018-04-20 普天信息技术有限公司 一种适用于PDCCH DCI format0指示的非周期性CSI上报的触发方法
US10057027B2 (en) * 2015-05-07 2018-08-21 Electronics And Telecommunications Research Institute Method and apparatus for receiving reference signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096698A2 (fr) * 2008-01-28 2009-08-06 Lg Electronics Inc. Procédé de transmission d'informations concernant l'état de canaux déclenchés par un équipement utilisateur
US20130322393A1 (en) * 2011-02-18 2013-12-05 Ntt Docomo, Inc. Radio base station apparatus, terminal and radio communication method
US20140204856A1 (en) * 2013-01-23 2014-07-24 Qualcomm Incorporated Efficient uplink resource indication for csi feedback
CN104105129A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 Lte系统中的非周期csi报告方法和用户设备
CN106559807A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输方法以及相关设备

Also Published As

Publication number Publication date
WO2019057138A1 (fr) 2019-03-28

Similar Documents

Publication Publication Date Title
AU2019221543B2 (en) Uplink and downlink preemption indications
WO2020051922A1 (fr) Csi pour transmission conjointe non cohérente
WO2018082682A1 (fr) Procédés et appareil de réglage de paramètres relatifs à des csi de sous-bande
WO2019028834A1 (fr) Signalisation de rang de transmission et de précodeur dans une transmission non basée sur un livre de codes de liaison montante
US11258568B2 (en) Single packet encoded channel state information (CSI) design for new radio (NR) multiple input-multiple output (MIMO)
WO2019051634A1 (fr) Procédés et appareil utilisés pour indiquer un sous-ensemble de ports de csi-rs
US10938539B2 (en) UE-assisted physical resource block group (PRG) configuration and signaling
WO2018058600A1 (fr) Conception de rétroaction d'informations d'état de canal avancée
EP3665784B1 (fr) Précodage de signaux de référence pour transmission de liaison montante avec des informations d'interférence de liaison descendante
US11451279B2 (en) Subband channel state information (CSI) omission for type-II CSI
WO2019047965A1 (fr) Conception de restriction de sous-ensemble de livre de codes pour mimo
WO2019144270A1 (fr) Détermination de ressources de rapport d'informations d'état de canal (csi)
WO2019056292A1 (fr) Signaler la conception pour le retour d'informations csi non basé sur le pmi
WO2019000366A1 (fr) Sélection de types de code pour coder des bits d'information
WO2019105392A1 (fr) Exemple de mappage de couches d'informations de commande de liaison montante (uci)
WO2019051825A1 (fr) Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi
WO2019051633A1 (fr) Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi
WO2019057138A1 (fr) Mécanismes d'attribution de ressources de rétroaction de csi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925740

Country of ref document: EP

Kind code of ref document: A1