WO2019051633A1 - Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi - Google Patents

Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi Download PDF

Info

Publication number
WO2019051633A1
WO2019051633A1 PCT/CN2017/101355 CN2017101355W WO2019051633A1 WO 2019051633 A1 WO2019051633 A1 WO 2019051633A1 CN 2017101355 W CN2017101355 W CN 2017101355W WO 2019051633 A1 WO2019051633 A1 WO 2019051633A1
Authority
WO
WIPO (PCT)
Prior art keywords
rank
precoder
ports
bits
port
Prior art date
Application number
PCT/CN2017/101355
Other languages
English (en)
Inventor
Chenxi HAO
Yu Zhang
Chao Wei
Liangming WU
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/101355 priority Critical patent/WO2019051633A1/fr
Publication of WO2019051633A1 publication Critical patent/WO2019051633A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback

Definitions

  • aspects of the present disclosure relate generally to wireless communications systems, and more particularly, to techniques for signaling precoder (s) to a UE for non-precoding matrix indicator (PMI) based channel state information (CSI) feedback.
  • PMI non-precoding matrix indicator
  • CSI channel state information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) .
  • multiple-access technologies include Long Term Evolution (LTE) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • LTE Long Term Evolution
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, otherwise known as user equipment (UEs) .
  • UEs user equipment
  • a set of one or more base stations may define an e NodeB (eNB) .
  • eNB e NodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more distributed units, in communication with a central unit may define an access node (e.g., a new radio base station (NR BS) , a new radio node-B (NR NB) , a network node, 5G NB, gNB, etc. ) .
  • NR BS new radio base station
  • NR NB new radio node-B
  • 5G NB 5G NB
  • gNB network node
  • a base station or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
  • downlink channels e.g., for transmissions from a base station or to a UE
  • uplink channels e.g., for transmissions from a UE to a base station or distributed unit
  • NR new radio
  • 3GPP Third Generation Partnership Project
  • Certain aspects of the present disclosure generally relate to methods and apparatus for signaling precoder (s) to a UE for non-PMI based CSI feedback.
  • Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a base station (BS) .
  • the method generally includes determining, for each rank, one or more precoders available to a user equipment (UE) for reporting feedback to the BS.
  • the method also includes generating a precoder configuration having a differential structure.
  • the differential structure of the precoder configuration implicitly indicates one or more ports associated with one of the precoders for each rank.
  • the method further includes signaling the precoder configuration to the UE.
  • Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a user equipment (UE) .
  • the method generally includes receiving a precoder configuration having a differential structure from a base station (BS) .
  • the method also includes determining, for each rank, one or more ports associated with one of a plurality of precoders available for reporting feedback to the BS, based on the differential structure of the precoder configuration.
  • the method further includes reporting feedback to the BS based on the determined one or more ports associated with one of the precoders.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example BS and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a DL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 7 illustrates an example of an UL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates a example port-selection codebook for rank-1 and rank-2, in accordance with certain aspects of the present disclosure.
  • FIG. 9 illustrates an example bitmap for an explicit precoder configuration, in accordance with certain aspects of the present disclosure.
  • FIG. 10 is a flow diagram illustrating example operations that may be performed by a BS, for implicitly signaling precoder (s) for non-PMI based CSI feedback, in accordance with certain aspects of the present disclosure.
  • FIG. 11 is a flow diagram illustrating example operations that may be performed by a UE, for reporting non-PMI based CSI feedback, based on an implicit precoder configuration, in accordance with certain aspects of the present disclosure.
  • NR new radio access technology or 5G technology
  • NR may support various wireless communication services, such as Enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 60 GHz) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) .
  • eMBB Enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • aspects of the present disclosure provide techniques and apparatus for signaling precoder (s) to a UE for non-PMI based CSI feedback. Particularly, aspects provide techniques for explicitly signaling the precoder (s) for each rank to the UE and/or implicitly signaling the precoder (s) for each rank to the UE (e.g., for non-PMI based CSI feedback) .
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UMTS Universal Mobile Telecommunication System
  • NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • FIG. 1 illustrates an example wireless network 100 in which aspects of the present disclosure may be performed.
  • the wireless network may be a new radio (NR) or 5G network.
  • BS 110 may determine, for each rank, one or more precoders available to UE 120 for reporting feedback (e.g., channel state information (CSI) feedback) to the BS 110.
  • BS 110 may generate a precoder configuration that includes an indication of one of the precoders for each rank.
  • the precoder configuration may include an explicit indication of the precoder for each rank.
  • the precoder configuration may include an implicit indication of the precoder for each rank.
  • the precoder configuration may have a nested structure (or differential structure) that implicitly indicates one of the precoders for each rank.
  • BS 110 may signal the precoder configuration to UE 120.
  • the UE 120 may determine (based on the explicit or implicit indication in the configuration) the precoder to use for reporting feedback to the BS for a given rank. For example, UE 120 may receive one or more channel state information reference signals (CSI-RS) from the BS 110 on one or more ports (e.g., CSI-RS ports) . The UE 120 may perform channel estimation based on the CSI-RSs and select a rank (e.g., preferred rank) . UE 120 may determine (from the received configuration) a precoder associated with the selected rank, and calculate a channel quality indicator (CQI) based on the rank and precoder. UE 120 may report the CQI and/or rank indication to BS 110.
  • CSI-RS channel state information reference signals
  • CQI channel quality indicator
  • the wireless network 100 may include a number of BSs 110 and other network entities.
  • a BS may be a station that communicates with UEs.
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and gNB, Node B, 5G NB, AP, NR BS, NR BS, or TRP may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • the wireless network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • the wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • BSs of different types
  • a macro BS may have a high transmit power level (e.g., 20 Watts)
  • pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices.
  • IoT Internet-of-Things
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a finely dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD.
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE.
  • Multi-layer transmissions with up to 2 streams per UE may be supported.
  • Aggregation of multiple cells may be supported with up to 8 serving cells.
  • NR may support a different air interface, other than an OFDM-based.
  • NR networks may include entities such CUs and/or DUs.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) .
  • the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • a RAN may include a CU and DUs.
  • a NR BS e.g., gNB, 5G NB, NB, TRP, AP
  • NR cells can be configured as access cells (ACells) or data only cells (DCells) .
  • the RAN e.g., a central unit or distributed unit
  • DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals—in some case cases DCells may transmit SS.
  • NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
  • FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • the ANC may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC.
  • the backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC.
  • the ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) .
  • TRPs 208 which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term.
  • TRP may be used interchangeably with “cell. ”
  • the TRPs 208 may be a DU.
  • the TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) .
  • ANC ANC
  • RaaS radio as a service
  • a TRP may include one or more antenna ports.
  • the TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the local architecture 200 may be used to illustrate fronthaul definition.
  • the architecture may be defined that support fronthauling solutions across different deployment types.
  • the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • the architecture may share features and/or components with LTE.
  • the next generation AN (NG-AN) 210 may support dual connectivity with NR.
  • the NG-AN may share a common fronthaul for LTE and NR.
  • the architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
  • a dynamic configuration of split logical functions may be present within the architecture 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) .
  • a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
  • CU central unit
  • distributed units e.g., one or more TRPs 208 .
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • the C-CU may be centrally deployed.
  • C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU may host core network functions locally.
  • the C-RU may have distributed deployment.
  • the C-RU may be closer to the network edge.
  • a DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure.
  • One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure.
  • FIG. 4 shows a block diagram of a design of a BS 110 and a UE 120, which may be one of the BSs and one of the UEs in FIG. 1.
  • the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y.
  • the base station 110 may also be a base station of some other type.
  • the base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc.
  • the data may be for the Physical Downlink Shared Channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 11 and/or other processes for the techniques described herein.
  • the processor 440 and/or other processors and modules at the BS 110 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 10, and/or other processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a in a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non-collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and/or DUs
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device (e.g., access node (AN) , new radio base station (NR BS) , a new radio Node-B (NR NB) , a network node (NN) , or the like. ) .
  • the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in a femto cell deployment.
  • a UE may implement an entire protocol stack (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • an entire protocol stack e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530.
  • FIG. 6 is a diagram 600 showing an example of a DL-centric subframe.
  • the DL-centric subframe may include a control portion 602.
  • the control portion 602 may exist in the initial or beginning portion of the DL-centric subframe.
  • the control portion 602 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe.
  • the control portion 602 may be a physical DL control channel (PDCCH) , as indicated in FIG. 6.
  • the DL-centric subframe may also include a DL data portion 604.
  • the DL data portion 604 may sometimes be referred to as the payload of the DL-centric subframe.
  • the DL data portion 604 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE) .
  • the DL data portion 604 may be a physical DL shared channel (PDSCH) .
  • PDSCH physical DL shared channel
  • the DL-centric subframe may also include a common UL portion 606.
  • the common UL portion 606 may sometimes be referred to as an UL burst, a common UL burst, and/or various other suitable terms.
  • the common UL portion 606 may include feedback information corresponding to various other portions of the DL-centric subframe.
  • the common UL portion 606 may include feedback information corresponding to the control portion 602.
  • Non-limiting examples of feedback information may include an ACK signal, a NACK signal, a HARQ indicator, and/or various other suitable types of information.
  • the common UL portion 606 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests (SRs) , and various other suitable types of information.
  • RACH random access channel
  • SRs scheduling requests
  • the end of the DL data portion 604 may be separated in time from the beginning of the common UL portion 606.
  • This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms.
  • This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE)) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) .
  • DL communication e.g., reception operation by the subordinate entity (e.g., UE)
  • UL communication e.g., transmission by the subordinate entity (e.g., UE)
  • FIG. 7 is a diagram 700 showing an example of an UL-centric subframe.
  • the UL -centric subframe may include a control portion 702.
  • the control portion 702 may exist in the initial or beginning portion of the UL-centric subframe.
  • the control portion 702 in FIG. 7 may be similar to the control portion 602 described above with reference to FIG. 6.
  • the UL-centric subframe may also include an UL data portion 704.
  • the UL data portion 704 may sometimes be referred to as the payload of the UL-centric subframe.
  • the UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) .
  • the control portion 702 may be a physical DL control channel (PDCCH) .
  • PDCCH physical DL control channel
  • the end of the control portion 702 may be separated in time from the beginning of the UL data portion 704. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) .
  • the UL-centric subframe may also include a common UL portion 706.
  • the common UL portion 706 in FIG. 7 may be similar to the common UL portion 606 described above with reference to FIG. 6.
  • the common UL portion 706 may additional or alternative include information pertaining to channel quality indicator (CQI) , sounding reference signals (SRSs) , and various other suitable types of information.
  • CQI channel quality indicator
  • SRSs sounding reference signals
  • a frame may include both UL centric subframes and DL centric subframes.
  • the ratio of UL centric subframes to DL subframes in a frame may be dynamically adjusted based on the amount of UL data and the amount of DL data that are transmitted.
  • the ratio of UL centric subframes to DL subframes may be increased. Conversely, if there is more DL data, then the ratio of UL centric subframes to DL subframes may be decreased.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet-of-Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • channel state information may refers to known channel properties of a communication link.
  • the CSI may represent the combined effects of, for example, scattering, fading, and power decay with distance between a transmitter and receiver.
  • Channel estimation may be performed to determine these effects on the channel.
  • CSI may be used to adapt transmissions based on the current channel conditions, which is useful for achieving reliable communication, in particular, with high data rates in multi-antenna systems.
  • CSI is typically estimated at the receiver, quantized, and fed back to the transmitter.
  • Certain systems may support PMI based feedback and/or non-PMI based feedback.
  • PMI based feedback the UE may report a rank indicator (RI) , a precoding matrix indicator (PMI) , and associated channel quality indicator (CQI) .
  • the UE may receive from a BS one or more CSI-RSs of one or more (CSI-RS) ports.
  • the CSI-RSs received by the UE may include beamformed CSI-RSs and/or non-beamformed CSI-RSs.
  • the UE may perform channel estimation based on the CSI-RSs, and select a preferred RI and PMI from a set of precoders (e.g., a codebook) , based on the channel estimation.
  • the UE may calculate CQI based on the RI and PMI, and report the selected RI, PMI and CQI to the BS.
  • the UE may report RI and CQI without reporting PMI.
  • the UE may calculate CQI based on a pre-defined single precoder per rank.
  • the precoder may be indicated by the network (e.g., BS) , based on a port-selection codebook.
  • the port-selection codebook may include one or more candidate precoding matrices for each rank R, and each candidate precoding matrix may contain only one non-zero entry in each column.
  • FIG. 8 illustrates a reference example of a port-selection codebook for rank-1 and rank-2 for a four ports case.
  • the port-selection codebook includes four rows, each row corresponding to one of the four ports.
  • the port-selection codebook for rank-1 includes four (4 x 1) candidate precoding matrices, and each candidate matrix includes a single non-zero entry (e.g., in each column) .
  • the port-selection codebook includes six (4 x 2) candidate precoding matrices, and each candidate matrix includes a single non-zero entry in each column.
  • the network for each rank R can indicate which R ports are used to transmit the R layers.
  • the network can indicate which single port of the four ports is used to transmit a single layer of feedback;
  • rank-2 the network can indicate which two ports of the four ports is used to transmit the two layers of feedback; and so on.
  • the network may indicate the predefined single precoder per rank to the UE, one issue may relate to how to design the indication of the precoder per rank to the UE, e.g., to reduce overhead, UE processing complexity and possible performance losses.
  • aspects presented herein provide techniques for explicitly and/or implicitly signaling precoder (s) to a UE for non-PMI based CSI feedback.
  • the BS may provide an explicit precoder configuration for each rank.
  • the BS may determine, for each rank, one or more precoders available to a UE, and generate a precoder configuration that explicitly indicates one or more ports associated with one of the precoders for each rank.
  • the (explicit) precoder configuration may include a bitmap, where a size of the bitmap is based on a maximum rank and a maximum number of ports.
  • a first one or more bits of the bitmap may indicate a first set of ports associated with a first precoder for a first rank, and at least a second one or more bits of the bitmap may indicate a second set of ports associated with a second precoder for a second rank.
  • the bitmap may include R max *X bits, where R max is the maximum rank, and X is the number of ports.
  • the first X bits (e.g., the 1 st to the X th bit) may be used for the rank-1 port indication.
  • the indices of the R “1” sin the R th X bits may indicate the corresponding R ports are used as the precoder for rank R.
  • R max X
  • FIG. 9 illustrates an example bitmap 900 that may be used by the BS to signal an explicit precoder configuration for each rank, in accordance with certain aspects of the present disclosure.
  • the first 12 bits of bitmap 900 indicate that the 3 rd port is used as the precoder for rank-1; the second 12 bits of bitmap 900 indicate that the 3 rd and 4 th ports are used as the precoder for rank-2; the third 12 bits of bitmap 900 indicate that the 3 rd , 4 th and 6 th ports are used as the precoder for rank-3; the fourth 12 bits of bitmap 900 indicate that the 3 rd , 4 th , 7 th and 8 th ports are used as the precoder for rank-4; the fifth 12 bits of bitmap 900 indicate that the 3 rd , 4 th , 5 th , 6 th and 7 th ports are used as the precoder for rank-5; the sixth 12 bits of bitmap 900 indicate that the 3 rd , 4 th , 5 th , 6 th , 7 th and 8 th ports are used as the precoder for rank-6; the seventh 12 bits of bitmap 900 indicate that the 2 rd
  • the (explicit) precoder configuration may include, for each rank, one or more bits indicating one or more different sets of ports associated with the rank.
  • the BS may jointly encode the port-index per rank to indicate the possible port combinations for each rank.
  • the BS may use bits for the indication of possible port combinations for a given rank R.
  • the BS and/or UE may use a table or set of tables to obtain the bits based on the configured R ports from the X ports.
  • the BS may cascade the per-rank indications to form the (explicit) precoder configuration.
  • the (explicit) precoder configuration may include one or more bits indicating one or more different sets of ports associated with all ranks. That is, in some aspects, the BS may use bits to jointly encode all the possible port combinations for all ranks (e.g., as opposed to jointly encoding for each individual rank) .
  • the BS may implicitly signal the precoder (s) for each rank to the UE (e.g., for non-PMI based CSI feedback) .
  • FIG. 10 is a flow diagram illustrating example operations 1000 that may be performed, for example, by a BS (e.g., BS 110) , for implicitly signaling a precoder for each rank to a UE to report non-PMI based CSI feedback, in accordance with certain aspects of the present disclosure.
  • a BS e.g., BS 110
  • FIG. 10 is a flow diagram illustrating example operations 1000 that may be performed, for example, by a BS (e.g., BS 110) , for implicitly signaling a precoder for each rank to a UE to report non-PMI based CSI feedback, in accordance with certain aspects of the present disclosure.
  • Operations 1000 may begin, at 1002, where the BS determines, for each rank, one or more precoders available to a UE (e.g., UE 120) for reporting feedback to the BS.
  • the BS generates a precoder configuration having a differential (or nested) structure.
  • the differential structure of the precoder configuration implicitly indicates one or more ports associated with one of the precoders for each rank.
  • the BS signals the precoder configuration to the UE.
  • FIG. 11 is a flow diagram illustrating example operations 1100 that may be performed, for example, by a UE (e.g., UE 120) for reporting non-PMI based CSI feedback based on an implicit precoder configuration received from a BS (e.g., BS 110) .
  • a UE e.g., UE 120
  • BS e.g., BS 110
  • Operations 1100 may begin, at 1102, where the UE receives a precoder configuration having a differential structure from a BS (e.g., BS 110) .
  • the UE determines, for each rank, one or more ports associated with one of a plurality of precoders available for reporting feedback to the BS, based on the differential structure of the precoder configuration.
  • the UE reports feedback to the BS based on the determined one or more ports associated with one of the precoders.
  • the (implicit) precoder configuration may include a nested port configuration, such that the port selection for rank R is a subset of the port selection for rank R*, assuming R ⁇ R*.
  • the (implicit) precoder configuration may include a bitmap having a differential structure. For example, a first one or more bits of the bitmap may indicate a first set of ports associated with a first precoder for a first rank, and at least the first one or more bits of the bitmap and a second one or more bits of the bitmap may indicate at least a second set of ports associated with at least a second precoder for at least a second rank, where the second rank is greater than the first rank.
  • the bitmap may include X bits to indicate the ports associated with the precoder for rank-1.
  • the bitmap may then use X-1 bits to introduce the additional port for rank-2.
  • the X-1 bits together with the port indicated for rank-1 may form the 2 ports associated with the precoder for rank-2.
  • the BS may use X-R+1 bits to indicate the one or more additional ports associated with the precoder for rank-R.
  • the UE may obtain the port for rank-1 using the first X bits; obtain ports for rank-2 using the port for rank-1 and the additional port indicated by the (X+1) th bit to the (2X-1) th bit; and obtain the ports for rank-R using the port for rank- (R-1) and the additional port indicated by the bit to the bit.
  • the (implicit) precoder configuration may have a nested structure that implicitly indicates the possible port combinations for each rank to the UE.
  • a precoder configuration may include one or more bits, where a first set of the one or more bits indicates a first set of the ports associated with a first precoder for a first rank, and at least the first set of the one or more bits and a second set of the one or more bits indicate at least a second set of ports associated with at least a second precoder for at least a second rank.
  • the second rank may be greater than the first rank.
  • the precoder configuration may use bits to indicate the X possibilities for rank-1, to indicate the X-1 possibilities for rank-2, ..., and bits to indicate the X-R+1 possibilities for rank-R.
  • the UE may obtain the port for rank-1 using the first bits, obtain the ports for rank-2 using the port for rank-1 and the additional port indicated by the bit to the bit, and obtain the ports for rank-R using the port for rank- (R-1) and the additional port indicated by the bit to the bit.
  • the BS and/or network may indicate the R max ports with a certain ordering (e.g., the first R bits may be used for rank R) .
  • the (implicit) precoder configuration may have a nested structure that indicates an ordering of the ports associated with the precoder for a given rank.
  • the precoder configuration may include multiple bits indicating an ordering of the one or more ports.
  • a first port of the ordered one or more ports may indicate the first port is associated with a first precoder for a first rank, and the first port of the ordered one or more ports and at least a second port of the ordered one or more ports may indicate the first port and at least the second port are associated with at least a second precoder for at least a second rank.
  • the precoder configuration may indicate that the first port is used for rank-1, the 1 st and 2 nd ports are used for rank-2, the 1 st to 3 rd ports are used for rank-3, ..., and the 1 st to R th ports are used for rank-R.
  • the mapping from the ordering of the one or more ports to the multiple bits of the precoder configuration may be based on a table or set of tables. The number of the ordered ports may be equal to the maximum rank.
  • R max there may be a total of bits may be used to indicate a total of possibilities of port combinations for all ranks.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certains aspects de la présente invention concernent des techniques et un appareil destinés à signaler au moins un précodeur pour un retour d'informations de CSI non basé sur PMI.
PCT/CN2017/101355 2017-09-12 2017-09-12 Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi WO2019051633A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101355 WO2019051633A1 (fr) 2017-09-12 2017-09-12 Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101355 WO2019051633A1 (fr) 2017-09-12 2017-09-12 Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi

Publications (1)

Publication Number Publication Date
WO2019051633A1 true WO2019051633A1 (fr) 2019-03-21

Family

ID=65723483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101355 WO2019051633A1 (fr) 2017-09-12 2017-09-12 Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi

Country Status (1)

Country Link
WO (1) WO2019051633A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685533A4 (fr) * 2017-09-22 2021-05-05 QUALCOMM Incorporated Signaler la conception pour le retour d'informations csi non basé sur le pmi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100226455A1 (en) * 2009-03-03 2010-09-09 Ron Porat Closed Loop Mimo Harmonized Feedback
US20110216846A1 (en) * 2010-03-08 2011-09-08 Lg Electronics Inc. Method and user equipment for transmitting precoding matrix information, and method and base station for configuring precoding matrix
US20140192916A1 (en) * 2013-01-10 2014-07-10 Broadcom Corporation Communication System Using a Multi-Antenna Transmit Precoder Codebook
US20160323022A1 (en) * 2015-04-29 2016-11-03 Samsung Electronics Co., Ltd Codebook design and structure for advanced wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100226455A1 (en) * 2009-03-03 2010-09-09 Ron Porat Closed Loop Mimo Harmonized Feedback
US20110216846A1 (en) * 2010-03-08 2011-09-08 Lg Electronics Inc. Method and user equipment for transmitting precoding matrix information, and method and base station for configuring precoding matrix
US20140192916A1 (en) * 2013-01-10 2014-07-10 Broadcom Corporation Communication System Using a Multi-Antenna Transmit Precoder Codebook
US20160323022A1 (en) * 2015-04-29 2016-11-03 Samsung Electronics Co., Ltd Codebook design and structure for advanced wireless communication systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685533A4 (fr) * 2017-09-22 2021-05-05 QUALCOMM Incorporated Signaler la conception pour le retour d'informations csi non basé sur le pmi

Similar Documents

Publication Publication Date Title
US11218340B2 (en) Transmission rank and precoder signaling in uplink non-codebook based transmission
WO2020056708A1 (fr) Configuration de rapport de csi pour une transmission multi-trp
US11871259B2 (en) Sounding reference signal (SRS) guided downlink channel state information-reference signal (CSI-RS) scan
WO2018201447A1 (fr) Procédures de compte rendu de csi différentiel
WO2020051922A1 (fr) Csi pour transmission conjointe non cohérente
WO2020051896A1 (fr) Configuration de rapport de csi avec une liste de livres de codes
WO2018170821A1 (fr) Compte rendu de csi différentiel pour csi à résolution plus élevée
WO2020030078A1 (fr) Retour d'informations d'état de canal pour transmissions conjointes non cohérentes
WO2018058600A1 (fr) Conception de rétroaction d'informations d'état de canal avancée
US11381289B2 (en) Codebook subset restriction design for MIMO
WO2019051634A1 (fr) Procédés et appareil utilisés pour indiquer un sous-ensemble de ports de csi-rs
WO2019153224A1 (fr) Commutation dynamique entre des transmissions de liaison montante non basées sur un livre de codes et basées sur un livre de codes
US12107647B2 (en) Signaling design for non-PMI based CSI feedback
WO2018126473A1 (fr) Étalonnage par radio pour transmission mimo en liaison montante basée sur la réciprocité
WO2018082640A1 (fr) Configuration et signalisation de groupe de blocs de ressources physiques assisté par un équipement utilisateur (prg)
WO2020118549A1 (fr) Rapport de coefficients pour renvoi d'informations d'état de canal (csi) compressées
WO2020150936A1 (fr) Quantification de matrice de précodeur destinée à une rétroaction de csi compressée
WO2020151704A1 (fr) Réduction de surdébit d'informations en retour
WO2019173970A1 (fr) Indication de filtre de réception pour émissions en liaison descendante
WO2019051825A1 (fr) Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi
WO2019051633A1 (fr) Conception de signalisation destinée à un retour d'informations de csi non basé sur pmi
WO2020113547A1 (fr) Restriction de sous-ensemble de livre de codes permettant une compression dans le domaine fréquentiel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925152

Country of ref document: EP

Kind code of ref document: A1