WO2019054512A1 - Hydraulic pump - Google Patents

Hydraulic pump Download PDF

Info

Publication number
WO2019054512A1
WO2019054512A1 PCT/JP2018/034307 JP2018034307W WO2019054512A1 WO 2019054512 A1 WO2019054512 A1 WO 2019054512A1 JP 2018034307 W JP2018034307 W JP 2018034307W WO 2019054512 A1 WO2019054512 A1 WO 2019054512A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
actuator
piston
oil
movable body
Prior art date
Application number
PCT/JP2018/034307
Other languages
French (fr)
Japanese (ja)
Inventor
藤井規臣
西谷拓也
中井雅也
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2019054512A1 publication Critical patent/WO2019054512A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a hydraulic pump including an actuator, a pump unit that is driven by the actuator to generate hydraulic pressure, and a control unit that controls the driving of the pump unit by the actuator.
  • Patent Document 1 discloses a linear motor that efficiently reciprocates the movable body by utilizing a resonance phenomenon.
  • FIG. 8 of Patent Document 1 describes a linear compressor that sequentially compresses the refrigerant gas drawn into the compression chamber (38) by reciprocating movement of the piston (36) and discharging it to an external refrigeration cycle.
  • the linear motor (37) which drives this linear compressor is comprised so that the mover (21) connected with the piston (36) may be resonated using a coil spring (30a, 30b).
  • a hydraulic pump is a hydraulic pump including an actuator, a pump unit driven by the actuator to generate hydraulic pressure, and a control unit controlling drive of the pump unit by the actuator,
  • the pump portion is disposed in a cylinder having a suction port and a discharge port, and a pressure chamber formed inside the cylinder so as to communicate with the suction port and the discharge port, and reciprocates along the axial direction of the cylinder
  • a moving piston, and the actuator is a cylindrical coil body arranged coaxially with the cylinder in the axial direction, and is connected to the piston and viewed in the radial direction of the cylinder.
  • a movable body disposed so as to overlap with the cylindrical coil body, and movable reciprocally in the axial direction with respect to the cylindrical coil body;
  • the movable body is driven toward at least one side in the axial direction by magnetic flux generated from the cylindrical coil body, and provided with a resonance biasing member that biases the piston or the movable body in the axial direction.
  • the control unit controls the actuator such that the movable body reciprocates along the axial direction at a set drive frequency, and the control unit controls the piston, the movable body, and the urging for resonance.
  • the resonance frequency of the vibration system including the member is corrected according to the influence of oil, and a correction resonance frequency is determined, and the actuator is controlled so that the movable body reciprocates along the axial direction at the correction resonance frequency. .
  • the piston can be reciprocated along the axial direction by utilizing the resonance phenomenon of the piston by the resonance biasing member. That is, the thrust generated by the actuator can be compensated by the resonance phenomenon. Thereby, it is possible to reduce the energy consumption of the actuator for generating the thrust required of the piston. That is, the efficiency of the actuator can be improved by utilizing the resonance phenomenon of the piston.
  • the inventors of the present invention as a result of research, when the pump unit is driven by the actuator, since the fluid medium is oil, the piston and the biasing member for resonance are compared with the case where the fluid medium is gas. It has been found that the resonance frequency of the vibration system including and is easily changed by the influence of oil.
  • Such a change in resonance frequency is caused by the fact that when the oil compressed and expanded inside the pressure chamber is regarded as a spring, the spring constant of the oil changes in accordance with the operating state of the pump section. .
  • the control unit controls the actuator such that the movable body reciprocates along the axial direction at the set drive frequency, the piston, the movable body, and the one for resonance
  • the resonant frequency of the vibration system including the biasing member is corrected according to the influence of oil, and a corrected resonant frequency is determined, and the actuator is controlled so that the movable body reciprocates along the axial direction at the corrected resonant frequency.
  • Sectional view of hydraulic pump with piston in center of range of motion Cross section of hydraulic pump with piston at one end of range of motion
  • Characteristic chart showing the relationship between angular frequency ratio and amplitude ratio
  • Schematic diagram of the case Diagram showing oil temperature dependence of resonant angular frequency
  • a schematic diagram of a map that defines the relationship between oil temperature and drive angular frequency A schematic diagram of a map that defines the relationship between discharge pressure and drive angular frequency Diagram showing an example of a drive circuit Diagram showing a drive circuit according to a comparative example
  • each of the first biasing member 71 and the second biasing member 72 corresponds to a “resonance biasing member”.
  • the hydraulic pump 1 includes an actuator 2 and a pump unit 3 driven by the actuator 2 to generate an oil pressure. Further, as shown in FIG. 5, the hydraulic pump 1 includes a control unit 90 that controls the drive of the pump unit 3 by the actuator 2.
  • the pump unit 3 is a piston pump that pumps oil by reciprocating the piston 40 along the axial direction DL (axial direction of the cylinder 30), and the actuator 2 is connected to the piston 40 A thrust for moving the movable body 20 along the axial direction DL is generated. That is, the actuator 2 is a linear actuator.
  • the actuator 2 is an electromagnetic actuator that generates a thrust of the movable body 20 by an electromagnetic force.
  • the pump unit 3 includes a cylinder 30 having an inlet 31 and an outlet 32 and a piston 40 that reciprocates along the axial direction DL.
  • a pressure chamber 33 is formed in the cylinder 30 so as to communicate with the suction port 31 and the discharge port 32, and the piston 40 is disposed in the pressure chamber 33.
  • the oil 83 (see FIG. 5) sucked into the pressure chamber 33 from the suction port 31 is discharged from the discharge port 32 to the outside of the pressure chamber 33.
  • a suction oil passage 85 is connected to the suction port 31 and a discharge oil passage 86 is connected to the discharge port 32 (see also FIG. 1).
  • the suction port 31 is disposed so as to suction the oil 83 stored in the oil storage portion 82.
  • the cylinder 30 includes a cylindrical portion 34 formed in a cylindrical shape (here, cylindrical shape) extending in the axial direction DL, and the pressure chamber 33 has an inner periphery of the cylindrical portion 34. It is formed surrounded by a surface (inner wall).
  • the suction port 31 is formed at the opening of one side of the cylindrical portion 34 in the axial direction DL (the first side DL1 in the axial direction described later), and the discharge port 32 is a peripheral wall portion of the cylindrical portion 34 Is formed to penetrate in the radial direction DR (the radial direction of the cylinder 30). That is, the discharge port 32 is provided to communicate the inner peripheral surface and the outer peripheral surface of the cylinder 30 (specifically, the cylindrical portion 34).
  • the side on which the cylinder 30 is disposed with respect to the actuator 2 in the axial direction DL (specifically, the tubular coil body 10 described later) is referred to as an axial first side DL1, and the axial direction first in the axial direction DL
  • the side opposite to the side DL1 is referred to as an axial second side DL2.
  • the piston 40 includes a pressure chamber 33 (pump chamber), a first pressure chamber 33a (first pump chamber) on the first axial side DL1, and a second pressure chamber 33b (second pump chamber) on the second axial side DL2.
  • the first pressure chamber 33 a is formed in communication with the suction port 31
  • the second pressure chamber 33 b is formed in communication with the discharge port 32. That is, the discharge port 32 communicates with the second pressure chamber 33 b.
  • a portion which divides the first pressure chamber 33a and the second pressure chamber 33b in the piston 40 is referred to as a main body portion 41.
  • the space between the outer peripheral surface of the main body 41 and the inner peripheral surface of the cylinder 30 (specifically, the cylindrical portion 34) is A second seal member S2 (annular seal member) that seals is provided on the outer peripheral surface of the main body portion 41.
  • the first pressure chamber 33a and the second pressure chamber 33b are partitioned in an oil-tight manner in a state where a second check valve V2 described later is closed.
  • a first through hole 61a penetrating in the direction DL is formed, and the piston 40 has a first portion 51 arranged to penetrate the first through hole 61a.
  • the first portion 51 and the main body portion 41 are both formed to have a cylindrical (here, cylindrical) outer peripheral surface extending in the axial direction DL, and the outer peripheral surface of the first portion 51 is the outer peripheral surface of the main body 41 It has a smaller diameter than that. Therefore, as shown in FIGS.
  • the volume of the second pressure chamber 33b increases as the piston 40 moves to the first axial side DL1, and decreases as the piston 40 moves to the second axial side DL2.
  • the volume of the first pressure chamber 33a decreases as the piston 40 moves to the first axial side DL1, and increases as the piston 40 moves to the second axial side DL2.
  • the piston 40 includes the main body 41 and the first portion 51.
  • the main-body part 41 divides the pressure chamber 33 into the 1st pressure chamber 33a and the 2nd pressure chamber 33b adjacent to axial direction 2nd side DL2 with respect to the 1st pressure chamber 33a.
  • the first portion 51 defines the second pressure chamber 33 b and an intermediate chamber 60 described later.
  • a first check valve V1 is provided to restrict the flow of the oil 83 (that is, the flow of the oil 83 toward the upstream side).
  • the first check valve V1 is provided at the suction port 31.
  • the first check valve V1 includes a spherical valve body and a biasing member that biases the valve body in the valve closing direction.
  • the first check valve V1 has a predetermined hydraulic pressure (the above-described urging) than the hydraulic pressure on the upstream side (here, the hydraulic pressure of the suction oil passage 85) is lower than the hydraulic pressure on the downstream side (here, the hydraulic pressure of the first pressure chamber 33a). It is configured to open when the oil pressure corresponding to the biasing force of the member is higher than the above) and to close the valve otherwise.
  • the flow path of the oil 83 between the first pressure chamber 33a and the second pressure chamber 33b is allowed.
  • a second check valve V2 for restricting the flow of the oil 83 directed to the opposite side that is, the flow of the oil 83 directed to the upstream side.
  • the flow path of the oil 83 between the first pressure chamber 33a and the second pressure chamber 33b is formed by a hole that penetrates the piston 40 (specifically, the main body 41) in the axial direction DL.
  • the second check valve V2 is provided integrally with the piston 40 (specifically, the main body 41).
  • the second check valve V2 is built in the piston 40.
  • the second check valve V2 includes a spherical valve body and a biasing member that biases the valve body in the valve closing direction.
  • the second check valve V2 has a predetermined hydraulic pressure (above: the hydraulic pressure of the first pressure chamber 33a here) than the hydraulic pressure of the downstream side (here, the hydraulic pressure of the second pressure chamber 33b). It is configured to open when the oil pressure is higher than the hydraulic pressure corresponding to the biasing force of the biasing member, and to close the valve otherwise.
  • 1st non-return valve V1 and the 2nd non-return valve V2 are made into a valve which has a spherical valve body here, as a 1st non-return valve V1 or the 2nd non-return valve V2, a poppet valve etc.
  • Other construction valves may be used.
  • the pump unit 3 is configured as described above, when the piston 40 moves to the second axial side DL2 in the axial direction as shown in FIG. 3, the volume of the first pressure chamber 33a increases, so that the hydraulic pressure of the first pressure chamber 33a is increased. As the volume of the second pressure chamber 33b decreases, the hydraulic pressure of the second pressure chamber 33b rises. Along with this, the first check valve V1 is opened and the second check valve V2 is closed, and the oil 83 of the suction oil passage 85 flows into the first pressure chamber 33a from the suction port 31, and The oil 83 in the pressure chamber 33b is discharged from the discharge port 32 to the discharge oil passage 86 (see also FIG. 5). Further, as shown in FIG.
  • the actuator 2 is a cylindrical coil body 10 coaxially arranged with the cylinder 30 in the axial direction DL, and a movable body capable of reciprocating in the axial direction DL with respect to the cylindrical coil body 10 It has 20 and.
  • the cylindrical coil body 10 is disposed on the second axial side DL2 with respect to the cylinder 30.
  • the movable body 20 is coupled to the piston 40.
  • the movable body 20 is coupled to the piston 40 from the second axial direction DL2 so as to move in the axial direction DL integrally with the piston 40.
  • the movable body 20 is disposed so as to overlap the cylindrical coil body 10 in a radial direction along the radial direction DR.
  • the movable body 20 is disposed radially inward of the cylindrical coil body 10 (inside of the radial direction DR). That is, the movable body 20 is configured to reciprocate along the axial direction DL in a space surrounded by the cylindrical coil body 10 from the radial outer side DR2 (the outer side of the radial direction DR).
  • the cylindrical coil body 10 includes a core 12 formed in a cylindrical shape (here, a cylindrical shape) extending in the axial direction DL, and a coil 11 wound around the core 12.
  • the coil 11 is cylindrically wound around the axis of the core 12, and the cylindrical coil body 10 generates a magnetic flux for driving the movable body 20 in the axial direction DL in a state where the coil 11 is energized.
  • the cylindrical coil body 10 is provided with the coil 11 which generate
  • the cylindrical coil body 10 includes a plurality of coils 11 arranged in the axial direction DL.
  • the cylindrical coil body 10 includes two coils 11 (a first coil 11a and a second coil 11b) arranged in the axial direction DL.
  • the two coils 11 adjacent to each other in the axial direction DL flow in current in opposite directions to generate magnetic flux in opposite directions.
  • the two coils 11 adjacent to each other in the axial direction DL are arranged at an interval in the axial direction DL.
  • three magnetic poles of the first magnetic pole 12a, the second magnetic pole 12b, and the third magnetic pole 12c are formed at the end of the radially inner side DR1 of the core 12 sequentially from the axial first side DL1.
  • the first magnetic pole 12 a is formed on a portion of the core 12 which is disposed on the first axial side DL 1 with respect to the first coil 11 a and which extends to the radially inner side DR 1.
  • the second magnetic pole 12 b is formed of the core 12
  • the third magnetic pole 12 c is formed in a portion extending from the portion disposed between the first coil 11 a and the second coil 11 b in the axial direction DL to the radially inner side DR 1, and the third magnetic pole 12 c is a second coil 11 b in the core 12.
  • it is formed in the part extended to radial direction inner side DR1 from the part arrange
  • the magnetic pole 12b is magnetized so as to have an opposite polarity to the first magnetic pole 12a and the third magnetic pole 12c. Therefore, by switching the direction of the current flowing through the first coil 11a and the second coil 11b, the first magnetic pole 12a and the third magnetic pole 12c act as the N pole and the second magnetic pole 12b acts as the S pole. It is switched to the state where the first magnetic pole 12a and the third magnetic pole 12c act as the S pole and the second magnetic pole 12b acts as the N pole.
  • the movable body 20 is driven toward at least one side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10.
  • the movable body 20 is driven toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10.
  • the movable body 20 is driven toward both sides in the axial direction DL by switching the energization direction of the coil 11 of the cylindrical coil body 10. That is, the movable body 20 is driven toward both sides in the axial direction DL by repeating switching of the direction of the current supplied to the cylindrical coil body 10. Since the movable body 20 is connected to the piston 40, the piston 40 reciprocates along the axial direction DL by driving the movable body 20 toward both sides in the axial direction DL.
  • the movable body 20 is provided with a permanent magnet M.
  • the permanent magnet M is provided on the movable body 20 in such a manner that the thrust of the movable body 20 can be obtained by the interaction between the magnetic flux generated from the permanent magnet M and the magnetic flux generated from the cylindrical coil body 10.
  • the movable body 20 includes the shaft member 21 extending in the axial direction DL, and the permanent magnet M formed in a cylindrical shape (here, a cylindrical shape) coaxial with the shaft member 21 is the shaft member 21. It is fixed to the outer peripheral surface of.
  • permanent magnet M is magnetized by radial direction DR.
  • the movable body 20 includes a plurality of permanent magnets M arranged in the axial direction DL.
  • the movable body 20 includes two permanent magnets M (a first permanent magnet M1 and a second permanent magnet M2) arranged side by side in the axial direction DL. That is, the movable body 20 includes the same number of permanent magnets M as the number of the coils 11 provided in the cylindrical coil body 10.
  • Two permanent magnets M adjacent to each other in the axial direction DL are magnetized in opposite directions to each other in the radial direction DR. Further, two permanent magnets M adjacent to each other in the axial direction DL are arranged at an interval in the axial direction DL.
  • the first permanent magnet M1 is disposed to face the first coil 11a in the radial direction DR
  • the two permanent magnets M2 are disposed to face the second coil 11b in the radial direction DR.
  • the first permanent magnet M1 has a portion of the axial first side DL1 facing the first magnetic pole 12a in the radial direction DR and the axial second side DL2 Is disposed so as to face the second magnetic pole 12b in the radial direction DR.
  • the second permanent magnet M2 has a portion on the axial first side DL1 facing the second magnetic pole 12b in the radial direction DR and a portion on the axial second side DL2 Are arranged to face the third magnetic pole 12 c in the radial direction DR.
  • the actuator 2 is configured as described above, when currents flowing in opposite directions flow through the first coil 11a and the second coil 11b, the movable body 20 moves in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. It is driven toward one side. Further, when the direction of the current flowing through the first coil 11a is reversed and the direction of the current flowing through the second coil 11b is reversed, the movable body 20 is moved to the other side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Drive towards. Therefore, by switching the direction of energization of the coil 11 (here, the first coil 11a and the second coil 11b), the movable body 20 and the piston 40 coupled thereto can be reciprocated along the axial direction DL. it can.
  • the discharge flow rate (discharge amount per unit time) of the oil 83 by the hydraulic pump 1 is the stroke amount of the piston 40 (movement amount of the piston 40 along the axial direction DL) and the stroke number of the piston 40 per unit time It depends on and. Specifically, as the stroke amount of the piston 40 increases, the volume change amount of the pressure chamber 33 accompanying the reciprocation of the piston 40 increases, and the discharge amount of the oil 83 accompanying one reciprocation of the piston 40 increases. Become. Further, as the number of strokes of the piston 40 per unit time increases, the number of times the oil 83 is discharged per unit time increases.
  • the actuator 2 for driving the pump unit 3 drives the movable body 20 toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Is configured. Therefore, compared with the case where the movable body 20 is driven only to one side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10, the stroke amount of the movable body 20 capable of appropriately generating thrust.
  • the actuator 2 is easy to configure so that Therefore, the stroke amount of the piston 40, which is determined according to the stroke amount of the movable body 20, can easily be increased to such an extent that a desired discharge flow rate can be obtained.
  • the movable body 20 driven by the magnetic flux generated from the cylindrical coil body 10 includes the permanent magnet M. Therefore, the number of turns of the coil 11 required to obtain a desired thrust can be reduced as compared with the case where the movable body 20 is not provided with the permanent magnet M. Therefore, the inductance of the coil 11 can be reduced to improve the current response of the actuator 2, and as a result, a desired discharge flow rate can be obtained for the drive frequency of the actuator 2 that determines the number of strokes of the piston 40 per unit time. It is easy to raise to some extent.
  • the hydraulic pump 1 is disposed such that the actuator 2 is used in the air environment. Therefore, since the movable body 20 can be reciprocated along the axial direction DL in a space not filled with the oil 83, viscosity and the like of the oil 83 when the movable body 20 reciprocates along the axial direction DL It is possible to keep the resulting sliding resistance small and secure a large stroke amount of the movable body 20.
  • the amount of heat generation of the actuator 2 is large and it is necessary to cool the actuator 2 with the oil 83, it is necessary to use the actuator 2 under the environment in oil, but in the hydraulic pump 1, as described above It is possible to reduce the number of turns of the coil 11 required to obtain a desired thrust. As a result, the amount of heat generation of the actuator 2 can be easily reduced to such an extent that the actuator 2 can be used in the air environment.
  • the pump unit 3 is configured to generate the hydraulic pressure required by the drive device 81 housed in the case 80 as shown in FIG.
  • the driving device 81 is disposed in a housing space 80 a formed inside the case 80.
  • the drive device 81 is, for example, a drive device for a vehicle mounted on a vehicle, such as a stepped or continuously variable automatic transmission, a manual transmission, or a drive transmission device for a hybrid vehicle or an electric vehicle.
  • the driving device 81 is configured to transmit the driving force (torque) between the driving force source of the wheel and the wheel.
  • the drive device 81 includes, for example, a rotating electrical machine as a driving force source of wheels.
  • a hydraulic pressure required for lubrication or cooling of each part of the drive unit 81 is provided as the hydraulic pressure required by the drive unit 81, or the drive unit 81 is provided with a device (such as an engagement device) operated by the hydraulic pressure.
  • the hydraulic pressure required for actuation or preparation for actuation can be illustrated.
  • the oil discharged from the hydraulic pump 1 is supplied to a portion of the drive device 81 requiring oil pressure via the discharge oil passage 86.
  • the oil discharged from the hydraulic pump 1 may be supplied to a portion of the drive device 81 that requires the hydraulic pressure after the hydraulic pressure is controlled by a hydraulic control device (not shown).
  • the pump unit 3 (specifically, the suction port 31, see FIG. 1) is configured to suck the oil 83 stored in the oil storage unit 82 inside the case 80. It is located inside.
  • the oil reservoir 82 is formed at the bottom of the case 80, and the suction port 31 is arranged to suction the oil 83 stored in the oil reservoir 82 via the suction oil passage 85.
  • the actuator 2 is disposed outside the case 80, which makes it possible to use the actuator 2 in the air environment.
  • the actuator 2 is disposed outside the case 80 means that at least a part of the actuator 2 (at least a portion of the second side DL2 in the axial direction) is disposed outside the case 80, A part (a part of the axial direction first side DL1) may be disposed inside the case 80. That is, at least a part of the actuator 2 is disposed outside the case 80.
  • positioned by the direction which the axial direction DL follows a horizontal surface is illustrated.
  • the case where the actuator 2 is used in the air environment by disposing the actuator 2 outside the case 80 has been exemplified, but in the inside of the case 80, the oil surface 84 of the oil reservoir 82 is used.
  • the actuator 2 may be configured to be used in an air environment or an environment close to the air environment by disposing the actuator 2 above (above the vertical direction Z).
  • the vertical direction Z means the vertical direction when the hydraulic pump 1 is in use, and here means the vertical direction when the case 80 is mounted on a vehicle.
  • At least a part of the pump unit 3 (for example, the suction port 31) may be disposed below the oil surface 84 of the oil reservoir 82 (downward in the vertical direction Z).
  • the oil level 84 of the oil reservoir 82 is, for example, the highest oil level within the range of change of the oil level 84 of the oil reservoir 82, or the hydraulic pump 1 is in operation and the oil level of the hydraulic pump 1 is The oil surface 84 of the oil reservoir 82 in a stable state can be obtained.
  • the actuator 2 is disposed outside the case 80, and both the actuator 2 and the pump unit 3 are disposed above the oil surface 84 of the oil reservoir 82.
  • the oil of the pressure chamber 33 further infiltrates into the facing portion 2 a where the cylindrical coil body 10 and the movable body 20 oppose in the radial direction DR, and the sliding of the movable body 20
  • an oil blocking structure 5 is provided between the opposing portion 2a and the pressure chamber 33 in the axial direction DL to block the entry of oil 83 from the pressure chamber 33.
  • the oil shutoff structure 5 includes an intermediate chamber 60 partitioned between the pressure chamber 33 and the pressure chamber 33 in an oil-tight manner using the first seal member S1 between the pressure chamber 33 and the actuator 2 in the axial direction DL. Have. That is, the intermediate chamber 60 is partitioned from the pressure chamber 33. The intermediate chamber 60 is provided between the pressure chamber 33 and the facing portion 2 a of the actuator 2 in the axial direction DL.
  • the first wall 61 which is a wall of the first axial side DL1 of the intermediate chamber 60 is formed by the cylinder 30 (specifically, the cylindrical portion 34), and the first wall 61 of the cylinder 30
  • a first through hole 61 a through which the first portion 51 of the piston 40 passes is formed in a portion forming the portion 61.
  • the outer peripheral surface of the first portion 51 and the inner peripheral surface of the first through hole 61a are formed to divide the pressure chamber 33 (specifically, the second pressure chamber 33b) and the intermediate chamber 60 in an oil tight manner.
  • a first seal member S1 annular seal member for sealing the gap is provided on the outer peripheral surface of the first portion 51.
  • the second wall 62 which is a wall of the axial second side DL 2 of the intermediate chamber 60 is formed by the cylindrical coil body 10 (specifically, the core 12), and the second wall 62 in the cylindrical coil body 10 In the portion forming the wall 62, a second through hole 62a through which the second portion 52 of the movable body 20 penetrates is formed.
  • the second portion 52 of the movable body 20 is connected to the first portion 51 of the piston 40 at the intermediate chamber 60. That is, the connecting portion 53 between the first portion 51 and the second portion 52 is disposed in the intermediate chamber 60.
  • Each of the first portion 51 and the second portion 52 is formed to have a cylindrical (here, cylindrical) outer peripheral surface extending in the axial direction DL.
  • a first closing member B1 (here, a portion between the inner circumferential surface of the second through hole 62a and the outer circumferential surface of the second portion 52).
  • Bush is arranged between the second through hole 62a and the second portion 52.
  • "occluding” means closing at least a portion of the gap.
  • the third wall 63 which is a wall of the radially outer side DR2 of the intermediate chamber 60 is formed by the cylindrical coil body 10 (specifically, the core 12).
  • the discharge port 7 penetrating the part in the radial direction DR is formed. That is, the intermediate chamber 60 is opened to the external space 6 which is the space outside the actuator 2 through the discharge port 7.
  • the discharge port 7 is arrange
  • the third wall 63 may be formed of a member (for example, a cylinder 30) different from the cylindrical coil body 10, and the discharge port 7 may be provided in a portion of the member where the third wall 63 is formed.
  • the intermediate chamber 60 is provided between the pressure chamber 33 (specifically, the second pressure chamber 33 b) and the actuator 2 (the facing portion 2 a) in the axial direction DL, and 60 is oil-tightly partitioned from the pressure chamber 33 using the first seal member S1.
  • the first seal member S1 can regulate the oil 83 from leaking from the pressure chamber 33 to the axial second side DL2, and even if such an oil 83 leaks, It is possible to cause the oil 83 to flow into the intermediate chamber 60 instead of the inside of the actuator 2 (the facing portion 2a).
  • the intermediate chamber 60 is opened to the external space 6, even if the oil 83 flows into the intermediate chamber 60, the oil 83 is not contained in the inside of the actuator 2 (facing portion It is possible to discharge to the external space 6 without flowing into 2a), that is, to block the entry of the oil 83 into the inside (the facing portion 2a) of the actuator 2.
  • the outer peripheral surface of the first portion 51 and the outer peripheral surface of the second portion 52 are formed to have the same diameter.
  • the variation of the pressure in the intermediate chamber 60 can be reduced, and the pressure difference between the intermediate chamber 60 and the inside of the actuator 2 (opposite portion 2a) can be kept small.
  • 83 is configured to be hard to infiltrate into the inside of the actuator 2 (opposite portion 2a).
  • the diameters of the outer peripheral surface of the first portion 51 and the outer peripheral surface of the second portion 52 may be different, even in this case, the outer peripheral surface of the first portion 51 and the second portion 52 It is preferable to minimize the difference in diameter with the outer peripheral surface as much as possible and to minimize the volume change of the intermediate chamber 60 as much as possible.
  • the structure of the oil blocking structure 5 shown here is an example, and it is possible to change the structure of the oil blocking structure 5 suitably.
  • the hydraulic pump 1 may not be provided with the oil shutoff structure 5.
  • the first closing member B1 is disposed between the second through hole 62a and the second portion 52.
  • the actuator 2 is configured such that the third portion 23, which is a portion of the second side DL2 in the axial direction than the second portion 52 of the movable body 20, is inserted into the second side DL2 in the axial direction than the second through hole 62a.
  • a third through hole 13 is provided, and the second through hole 13 is closed between the inner peripheral surface of the third through hole 13 and the outer peripheral surface of the third portion 23 between the third through hole 13 and the third portion 23.
  • a closing member B2 (here, a bush) is disposed.
  • the third portion 23 is a portion on the second side DL2 in the axial direction of the permanent magnet M (here, the first permanent magnet M1 and the second permanent magnet M2) in the movable body 20.
  • the third portion 23 constitutes an end portion of the movable body 20 on the second axial side DL2.
  • the third portion 23 is smaller in diameter than the third portion 23 of the movable body 20 than the portion on the first axial side DL1 (here, the portion provided with the permanent magnet M).
  • the 3rd penetration hole 13 is formed in the end of axial direction 2nd side DL2 in cylindrical coil object 10 (specifically, core 12).
  • the third through hole 13 is a wall of the axial direction second side DL2 of the accommodation chamber of the movable body 20 formed inside the actuator 2 in the cylindrical coil body 10 (specifically, the core 12). It is formed in the part to form.
  • the hydraulic pump 1 has a first biasing member 71 for biasing the piston 40 toward the first axial side DL1, and a second biasing member for biasing the piston 40 toward the second axial side DL2.
  • a biasing member 72 is provided.
  • the first biasing member 71 is provided to bias the piston 40 toward the first axial side DL1 regardless of the position of the piston 40 in the axial direction DL
  • the second biasing member 72 is a piston
  • the piston 40 is provided so as to bias the piston 40 toward the second axial side DL2 regardless of the position of the axial direction DL.
  • the hydraulic pump 1 reciprocates the piston 40 along the axial direction DL by using the resonance phenomenon of the piston 40 by the first biasing member 71 and the second biasing member 72.
  • the first biasing member 71 and the second biasing member 72 are biasing members that bias the piston 40 in the axial direction DL, and function as resonance biasing members for causing the piston 40 to resonate.
  • this hydraulic pump 1 by compensating the thrust generated by the actuator 2 by the resonance phenomenon of the piston 40, it is possible to reduce the energy consumption of the actuator 2 for generating the thrust required of the piston 40. It has become.
  • the first biasing member 71 is disposed on the second side DL2 in the axial direction with respect to the first part 51 of the piston 40, and the first portion 51 in the axial direction first side DL1. It is arranged to be biased.
  • the first biasing member 71 is disposed in the intermediate chamber 60.
  • the first biasing member 71 is provided to exert a biasing force on the piston 40 (specifically, the first portion 51) and the core 12.
  • the first biasing member 71 is formed such that the diameter of the first axial side DL1 is smaller than the diameter of the second axial side DL2.
  • the piston 40 (specifically, the first portion 51) and the core 12 (the first portion 51).
  • the first biasing member 71 so as to apply a biasing force to the second portion 52 and the outer portion of the radial direction DR.
  • a coil spring can be used as the first biasing member 71.
  • the first biasing member 71 is disposed in a state in which the expansion and contraction direction follows the axial direction DL and is compressed more than the natural length.
  • the second biasing member 72 is located on the first axial side DL1 with respect to the main body portion 41 of the piston 40 (here, the piston 40 and the first check valve V1 in the axial direction DL ), The body portion 41 is arranged to be biased toward the second axial side DL2.
  • the second biasing member 72 is disposed in the first pressure chamber 33a.
  • the second biasing member 72 is opposite to the piston 40 (specifically, the main body 41) inside the pressure chamber 33 and the side of the actuator 2 in the axial direction DL of the cylinder 30 (ie, An urging force is applied to the end of the first axial side DL1).
  • a coil spring can be used as the second biasing member 72.
  • the second biasing member 72 is disposed in a state in which the expansion and contraction direction follows the axial direction DL and is compressed more than the natural length.
  • the first biasing member 71 and the second biasing member 72 are disposed separately on at least a part of the piston 40 on both sides in the axial direction DL. Specifically, the first biasing member 71 and the second biasing member 72 are divided into both sides in the axial direction DL with respect to the main body portion 41, the first portion 51, and the portion therebetween in the piston 40. Are arranged. And in this embodiment, the 1st biasing member 71 and the 2nd biasing member 72 are arrange
  • both the first biasing member 71 and the second biasing member 72 are disposed so as not to inhibit the flow of the oil 83 discharged from the discharge port 32, whereby the flow path resistance at the discharge port 32 is obtained. Is kept low.
  • the first biasing member 71 is disposed in the intermediate chamber 60
  • the second biasing member 72 is disposed in the first pressure chamber 33a
  • the discharge port 32 is provided in communication with the second pressure chamber 33b.
  • the first urging member 71 and the second urging member 72 do not overlap with the discharge port 32 in the radial direction.
  • the actuator 2 is configured to reciprocate the movable body 20 along the axial direction DL at a set drive frequency. That is, the control unit 90 is configured to control the actuator 2 such that the movable body 20 reciprocates along the axial direction DL at the set drive frequency.
  • the control unit 90 is configured to control the actuator 2 via a drive circuit (specifically, a single-phase inverter circuit) which is not shown.
  • the control unit 90 controls the drive circuit such that an AC voltage having a set drive frequency is applied to the actuator 2 (specifically, the coil 11).
  • the drive frequency of the actuator 2 is set according to the diameter of the piston 40 and the stroke amount of the piston 40 so as to obtain the required discharge flow rate of the oil 83.
  • the drive frequency of the actuator 2 is set so as to obtain a target discharge flow rate corresponding to the required flow rate of the automatic transmission which is determined according to the traveling state of the vehicle (for example, at the time of shifting, steady traveling etc.).
  • the vibration system including the piston 40, the first biasing member 71, and the second biasing member 72 becomes in a resonant state as the movable body 20 reciprocates, so that the first biasing member 71 and the second biasing member
  • the combined spring constant with the biasing member 72 is set based on the drive frequency.
  • the vibration system including the piston 40, the first biasing member 71, and the second biasing member 72 has an axis at the movable body 20 at a driving frequency at which the resonant state occurs as the movable body 20 reciprocates. Reciprocate along the direction DL.
  • the pump unit 3 (specifically, the movable body 20) is driven at a drive frequency that can ensure the target discharge flow rate of the pump unit 3 (the target discharge flow rate of the hydraulic pump 1).
  • the vibration system also includes the movable body 20.
  • the drive frequency of the actuator 2 is set to be variable, the drive frequency for setting the combined spring constant can be, for example, the drive frequency with the highest frequency of use.
  • the equation of motion of the piston 40 in the hydraulic pump 1 can be expressed by the equation of motion of damped forced vibration as described below.
  • the mass of the entire movable portion 4 that reciprocates along the axial direction DL at the drive frequency, including the piston 40 and the movable body 20 A value obtained by multiplying the target mass (W) by the square of the angular frequency ( ⁇ ) corresponding to the drive frequency as the combined spring constant (K) of the first biasing member 71 and the second biasing member 72 as a mass Is set as the standard.
  • "setting a certain value as a reference” is a concept including both setting to the value and setting the value to the adjusted value.
  • the synthetic spring constant of the 1st energizing member 71 and the 2nd energizing member 72 makes the reference value the value which multiplied the object mass to the square of the angular frequency (driving angular frequency) according to driving frequency. It is set to a reference value or set to a value obtained by adjusting the reference value. In the latter case, for example, from the angular frequency ⁇ 0 represented by the following equation (8) of the actual resonant angular frequency of the vibration system including the piston 40, the first biasing member 71, and the second biasing member 72.
  • the combined spring constant of the first biasing member 71 and the second biasing member 72 can be set to a value obtained by adjusting the above-mentioned reference value, in consideration of the deviation of the above.
  • the equation of motion of the piston 40 will be described.
  • the entire mass of the movable part 4 is W
  • the thrust is F m
  • the hydraulic pressure is P
  • the pressure receiving area of the piston 40 is S
  • the first bias Assuming that the synthetic spring constant of the member 71 and the second biasing member 72 is K and the displacement of the piston 40 is x, the equation of motion of the piston 40 can be expressed by the following equation (1) using a code function sgn.
  • circuit equation of the electric circuit regarding energization to the coil 11 is represented by the following equation (2) with voltage V, electric resistance of the circuit R, current I, inductance of the circuit L and back electromotive force constant k e Be done.
  • Equation (6) is an equation of motion of damped forced vibration, and this equation of motion has a steady-state vibration solution as shown by the following Equation (7) and Equation (8).
  • FIG. 4 is a characteristic diagram showing the relationship between the angular frequency ratio ( ⁇ / ⁇ 0 ) and the amplitude ratio (X a / X s ).
  • the combined spring constant of the first biasing member 71 and the second biasing member 72 is set to the square of the driving angular frequency, and the target mass (the entire movable portion 4 is Is set based on the value obtained by multiplying the mass of
  • the sum of the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 is the combined spring constant K of the first biasing member 71 and the second biasing member 72.
  • the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 can be set to the same value (that is, a half value of the combined spring constant K).
  • the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 may be made different from each other so that the total of these spring constants is the above-described synthetic spring constant K. .
  • the hydraulic pump 1 is provided with two resonance biasing members (71, 72) for biasing the piston 40 to opposite sides in the axial direction DL as a resonance biasing member for generating a resonance phenomenon. ) Is provided. Therefore, compared with the case where only one resonance biasing member is provided, it is easy to secure a large spring constant of the entire vibration system.
  • the control unit 90 is configured to control the actuator 2 such that the movable body 20 reciprocates along the axial direction DL at the set drive frequency.
  • two resonance biasing members of a first biasing member 71 and a second biasing member 72 are provided as a resonance biasing member for biasing the piston 40 in the axial direction DL,
  • the combined spring constant of the first biasing member 71 and the second biasing member 72 is obtained by multiplying the square of the driving angular frequency (the angular frequency corresponding to the driving frequency) by the target mass (the mass of the entire movable portion 4) It is set based on the value.
  • the resonant angular frequency ⁇ 0 of the vibration system including the piston 40, the first biasing member 71 and the second biasing member 72 has a value represented by the above equation (8) (the combined spring constant K is a movable portion 4)
  • the resonance phenomenon of the piston 40 is effectively used to effectively reduce the energy consumption of the actuator 2 In other words, the efficiency of the actuator 2 can be effectively enhanced.
  • the efficiency of the actuator 2 increases as the deviation between the driving angular frequency ⁇ and the resonant angular frequency ⁇ 0 increases. descend. Even if such a driving angular frequency omega is not identical to the resonance angular frequency omega 0, if there is no large shift of the driving angular frequency omega and the resonance angular frequency omega 0, the resonance phenomenon of the piston 40 but not optimal The efficiency of the actuator 2 can be improved by utilizing it. However, in order to use the resonance phenomenon of the piston 40 as effectively as possible, it is desirable that the drive angular frequency ⁇ be set to a value close to the resonant angular frequency ⁇ 0 .
  • the present inventors use the spring constant of the oil 83 in the pressure chamber 33 as a spring when the resonance angular frequency ⁇ 0 deviates from the value represented by the equation (8). I focused on it.
  • the oil 83 inside the pressure chamber 33 is compressed and expanded along with the reciprocation of the piston 40 along the axial direction DL, so the oil 83 can be regarded as a spring.
  • the present inventors have changed the spring constant of the oil 83 in the pressure chamber 33 according to the operating state of the pump unit 3 to thereby affect the efficiency of the actuator 2.
  • the control unit 90 sets the drive frequency to the resonance frequency of the vibration system including the piston 40 and the resonance biasing member (here, the first biasing member 71 and the second biasing member 72).
  • the drive frequency is configured to be different according to the operating state of the pump unit 3 so as to approach (that is, the drive angular frequency ⁇ approaches the resonant angular frequency ⁇ 0 ).
  • the control unit 90 sets the resonance frequency of the vibration system including the piston 40, the movable body 20, and the resonance biasing member (here, the first biasing member 71 and the second biasing member 72) to oil.
  • the actuator 2 is configured to determine the corrected resonance frequency corrected according to the influence (in the present embodiment, the oil temperature T or the discharge pressure P), and reciprocate the movable body 20 along the axial direction DL at the corrected resonance frequency.
  • the control unit 90 sets the correction resonance frequency to the drive frequency.
  • the oil temperature T and the discharge pressure P of the oil 83 from the discharge port 32 are considered as the operating state of the pump unit 3 that can change the resonance frequency of the vibration system.
  • FIG. 6 corresponds to one in which the horizontal axis of the characteristic diagram of FIG. 4 is replaced with the angular frequency ratio ( ⁇ / ⁇ 0 ) to make the angular frequency ( ⁇ ), and the amplitude ratio (X a at different four oil temperatures T) The simulation result of / X s ) is shown.
  • the oil temperature T decreases in the order of “T1”, “T2”, “T3”, and “T4”. As apparent from FIG.
  • the control unit 90 is configured to lower the drive frequency as the oil temperature T decreases. That is, the control unit 90 is configured to lower the correction resonance frequency as the oil temperature T decreases.
  • the control unit 90 acquires the oil temperature T from an oil temperature sensor (shown), and determines a drive frequency according to the oil temperature T with reference to, for example, a map. That is, the control unit 90 determines a corrected resonance frequency corresponding to the oil temperature T with reference to, for example, a map.
  • the relationship between the oil temperature T and the driving angular frequency ⁇ is such that the driving angular frequency ⁇ decreases as the oil temperature T decreases. It is prescribed.
  • the discharge pressure P of the oil 83 from the discharge port 32 is increased when the target discharge pressure becomes high according to the traveling state of the vehicle (for example, The pressure is low, the discharge pressure at idle stop is high during traveling, etc.), and as the discharge pressure P increases, the resonant angular frequency ⁇ 0 tends to decrease.
  • the control unit 90 is configured to lower the drive frequency as the discharge pressure P becomes higher. That is, the control unit 90 is configured to lower the correction resonance frequency as the discharge pressure P becomes higher.
  • the control unit 90 obtains the discharge pressure P from a discharge pressure sensor (shown), and determines a drive frequency corresponding to the discharge pressure P with reference to, for example, a map. That is, the control unit 90 determines a corrected resonant frequency corresponding to the discharge pressure P with reference to, for example, a map.
  • a discharge pressure sensor shown
  • the control unit 90 determines a corrected resonant frequency corresponding to the discharge pressure P with reference to, for example, a map.
  • the relationship between the discharge pressure P and the drive angular frequency ⁇ is such that the drive angular frequency ⁇ decreases as the discharge pressure P increases. It is prescribed.
  • the first control in which the control unit 90 lowers the drive frequency as the oil temperature T decreases that is, control in which the correction resonance frequency decreases as the oil temperature T decreases
  • the control unit 90 is configured to perform both of the second control (that is, the correction resonance frequency is lowered as the discharge pressure P becomes higher) that lowers the drive frequency accordingly.
  • the oil temperature T and the discharge pressure P are taken into consideration as the operating state (impact of oil) of the pump unit 3 capable of changing the resonance frequency of the vibration system.
  • the drive frequency may be determined in consideration of the operating state (oil influence).
  • control unit 90 decreases the drive frequency as the viscosity of oil 83 increases, alone or as described above It may be configured to be executed together with at least one of the first control and the second control.
  • the stroke amount of the piston 40 which is determined according to the stroke amount of the movable body 20, can be easily increased to such an extent that a desired discharge flow rate can be obtained.
  • the driving frequency of the actuator 2 for determining the number of strokes can be easily increased to such an extent that a desired discharge flow rate can be obtained.
  • a hydraulic pump hereinafter referred to as “electric oil pump” that uses an AC rotating electrical machine driven by AC power (for example, three-phase AC power) of multiple phases as a driving power source of the pump unit.
  • the hydraulic pump 1 also has an advantage of being able to realize the same discharge flow rate as the electric oil pump at lower cost.
  • the actuator 2 used in the hydraulic pump 1 can reduce the number of coils and the number of permanent magnet poles compared to the AC rotating electric machine used in the electric oil pump, the cost can be reduced. .
  • the hydraulic pump 1 can be driven by the drive circuit of single phase. It is possible to reduce the Describing the specific example, the drive circuit 91 of the actuator 2 used in the hydraulic pump 1 is configured using, for example, an inverter circuit as illustrated in FIG.
  • drive circuit 91 of rotary electric machine MG used in the electric oil pump is configured using an inverter circuit as illustrated in FIG.
  • the rotary electric machine MG is a rotary electric machine driven by three-phase alternating current, and the rotary electric machine MG includes phase coils 93 corresponding to each of the three phases.
  • the number of switching elements 92 provided in the drive circuit 91 can be reduced, and hence the drive circuit 91 can be simplified.
  • the configuration in which the first biasing member 71 is disposed in the intermediate chamber 60 has been described as an example.
  • the first biasing member 71 may be configured to be disposed at a position different from that of the intermediate chamber 60.
  • the first biasing member 71 may be disposed in the second pressure chamber 33 b to bias the main body 41 of the piston 40 toward the first axial side DL1.
  • one of the first biasing member 71 and the second biasing member 72 (specifically, the first biasing member 71) overlaps the discharge port 32 in the radial direction. To be arranged.
  • the first biasing member 71 and the second biasing member 72 have been described as an example of the configuration in which they are disposed so as not to overlap the discharge port 32 in the radial direction.
  • at least one of the biasing member 71 and the second biasing member 72 may be disposed so as to overlap the discharge port 32 in the radial direction.
  • the second biasing member 72 may be disposed in the intermediate chamber 60.
  • the second biasing member 72 is disposed in the intermediate chamber 60 in a state of being extended more than the natural length, and pivots the first portion 51 of the piston 40. It can be made to urge to direction 2nd side DL2.
  • the intermediate chamber 60 for blocking the entry of the oil 83 into the opposing portion 2a. Can be used effectively.
  • both the first biasing member 71 and the second biasing member 72 may be disposed at positions different from the intermediate chamber 60.
  • the configuration in which the actuator 2 is used in or near an air environment has been described as an example.
  • the configuration in which the actuator 2 is used in an oil environment that is, at least a part of the actuator 2 is disposed below the oil surface 84 of the oil reservoir 82 It can also be configured. In such a case, the hydraulic pump 1 may not be provided with the oil shutoff structure 5.
  • the configuration has been described as an example in which the movable body 20 includes the permanent magnet M magnetized in the radial direction DR.
  • the movable body 20 includes the permanent magnet M magnetized in the axial direction DL, or the permanent magnet M magnetized in the radial direction DR.
  • a permanent magnet M which is magnetized in the axial direction DL.
  • the configuration in which the movable body 20 is disposed at the radially inner side DR1 with respect to the cylindrical coil body 10 has been described as an example. However, without being limited to such a configuration, the movable body 20 may be disposed at the radially outer side DR2 with respect to the cylindrical coil body 10.
  • the resonance biasing member for biasing the piston 40 in the axial direction DL to resonate the piston 40 in the hydraulic pump 1 the first biasing member 71 and the second biasing are used.
  • the configuration in which the member 72 is provided has been described as an example. However, without being limited to such a configuration, the hydraulic pump 1 may be configured to be provided with only one resonance biasing member.
  • the piston 40 when the piston 40 moves to the first axial side DL1 in the axial direction, the piston 40 is urged to the second axial side DL2 in the axial direction, and when the piston 40 moves to the second axial side DL2 in the axial direction
  • the spring constant of the resonance biasing member may be set to the same value as the combined spring constant in the above embodiment.
  • the resonance biasing member is provided to bias the piston 40 in the axial direction DL, but the resonance biasing member moves the movable body 20 in the axial direction DL. It may be provided to bias.
  • the configuration in which the movable body 20 includes the permanent magnet M has been described as an example.
  • the movable body 20 can be configured not to include the permanent magnet M without being limited to such a configuration.
  • a state in which only the first coil 11a of the first coil 11a and the second coil 11b is energized, and a state in which only the second coil 11b of the first coil 11a and the second coil 11b is energized By switching, the movable body 20 can be configured to be driven toward both sides in the axial direction DL.
  • the configuration in which the movable body 20 is driven toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10 has been described as an example.
  • the movable body 20 is not limited to such a configuration, but only by the magnetic flux generated from the cylindrical coil body 10 toward one side (for example, the first side DL1 in the axial direction) of the axial direction DL. It can also be configured to be driven. In this case, for example, the movable body 20 does not have the permanent magnet M. Thus, even in the case where the movable body 20 is driven only to one side in the axial direction DL, the thrust to either one side in the axial direction DL generated by the actuator 2 and the urging for resonance
  • the piston 40 can be reciprocated along the axial direction DL by the biasing force of the axial direction DL by the members (in the above embodiment, the first biasing member 71 and the second biasing member 72).
  • An actuator (2) a pump unit (3) driven by the actuator (2) to generate a hydraulic pressure, and a control unit (90) controlling the drive of the pump unit (3) by the actuator (2);
  • a hydraulic pump (1) comprising a cylinder (30) having a suction port (31) and a discharge port (32), the pump section (3), the suction port (31) and the discharge port
  • a piston (40) disposed in a pressure chamber (33) formed inside the cylinder (30) in communication with the cylinder (32), and reciprocated along the axial direction (DL) of the cylinder (30)
  • the actuator (2) is connected to the cylindrical coil body (10) coaxially arranged with the cylinder (30) in the axial direction (DL), and to the piston (40).
  • the tubular coil body (10) is disposed so as to overlap with the tubular coil body (10) in a radial direction view (30) along the radial direction (DR), and in the axial direction (DL) with respect to the tubular coil body (10) And a movable body (20) capable of reciprocating movement, wherein the movable body (20) is driven toward at least one side in the axial direction (DL) by magnetic flux generated from the cylindrical coil body (10).
  • a resonance biasing member (71, 72) for biasing the piston (40) or the movable body (20) in the axial direction (DL), and the control unit (90) is set
  • the actuator (2) is controlled such that the movable body (20) reciprocates along the axial direction (DL) at a drive frequency, and the control unit (90) controls the piston (40), the movable Body (20), the resonance biasing member (71, 72)
  • the resonance frequency of the vibration system is corrected according to the influence of oil, and the correction resonance frequency is determined, and the movable body (20) reciprocates along the axial direction (DL) at the correction resonance frequency. Control the actuator (2).
  • the piston (40) can be reciprocated along the axial direction (DL) by utilizing the resonance phenomenon of the piston (40) by the resonance biasing member (71, 72). That is, the thrust generated by the actuator (2) can be compensated by the resonance phenomenon. Thereby, it is possible to reduce the energy consumption of the actuator (2) for generating the thrust required of the piston (40). That is, the efficiency of the actuator (2) can be improved by utilizing the resonance phenomenon of the piston (40).
  • the piston is a piston compared to the case where the fluid medium is a gas because the fluid medium is oil.
  • the resonance frequency of the vibration system including (40) and the resonance biasing member (71, 72) is easily changed by the influence of the oil (83).
  • the oil (83) compressed and expanded inside the pressure chamber (33) is regarded as a spring
  • such a change in resonance frequency causes the spring constant of the oil (83) to be the pump portion (3).
  • the resonance frequency of the vibration system including the piston (40), the movable body (20), and the resonance biasing member (71, 72) is corrected according to the influence of oil, and the correction resonance frequency is determined and corrected.
  • the actuator (2) is controlled such that the movable body (20) reciprocates along the axial direction (DL) at the resonance frequency.
  • control unit (90) lowers the corrected resonance frequency as the oil temperature decreases.
  • control unit (90) lowers the drive frequency as the discharge pressure of the oil (83) from the discharge port (32) increases.
  • the corrected resonance frequency is adjusted according to the change of the discharge pressure. It is possible to determine the
  • the hydraulic pump which concerns on this indication should just be able to show at least one among each effect mentioned above.
  • hydraulic pump 2 actuator 3: pump unit 10: cylindrical coil body 20: movable body 30: cylinder 31: suction port 32: discharge port 33: pressure chamber 40: piston 71: first biasing member (for resonance Control member) 72: Second biasing member (resonance biasing member) 90: control part DL: axial direction DR: radial direction

Abstract

A pump unit (3) comprises a cylinder (30) and a piston (40) that reciprocally moves along an axial direction (DL). An actuator (2) comprises a cylindrical coil body (10) and a movable body (20) that is capable of reciprocally moving in the axial direction (DL) relative to the cylindrical coil body (10). Impelling members (71, 72) for resonance are provided that impel the piston (40) or the movable body (20) in the axial direction (DL). A control unit controls the actuator (2) such that the movable body (20) reciprocally moves along the axial direction (DL) at a set drive frequency. The control unit: determines a corrected resonance frequency obtained by correcting, according to oil impact, a resonance frequency of a vibrating system including the piston (40), the movable body (20), and the impelling members (71, 72) for resonance; and controls the actuator (2) such that the movable body (20) reciprocally moves along the axial direction (DL) at the corrected resonance frequency.

Description

油圧ポンプHydraulic pump
 本発明は、アクチュエータと、アクチュエータにより駆動されて油圧を発生させるポンプ部と、アクチュエータによるポンプ部の駆動を制御する制御部と、を備えた油圧ポンプに関する。 The present invention relates to a hydraulic pump including an actuator, a pump unit that is driven by the actuator to generate hydraulic pressure, and a control unit that controls the driving of the pump unit by the actuator.
 可動体を軸方向に沿って駆動するアクチュエータとして、特開2004-140902号公報(特許文献1)には、共振現象を利用して可動体を効率よく往復移動させるリニアモータが開示されている。以下、背景技術の説明において括弧内に示す符号は特許文献1のものである。特許文献1の図8には、ピストン(36)の往復移動により圧縮室(38)内に吸入された冷媒ガスを順次圧縮して外部の冷凍サイクルへ吐出するリニアコンプレッサが記載されている。そして、このリニアコンプレッサを駆動するリニアモータ(37)は、ピストン(36)に連結された可動子(21)を、コイルバネ(30a,30b)を用いて共振させるように構成されている。具体的には、特許文献1の段落0106には、リニアモータ(37)に通電する電源の周波数を、可動子(21)及び固定子(22)の質量とコイルバネ(30a,30b)のばね定数とから求められる共振周波数に一致させることで、可動子(21)を効率よく往復移動させることが記載されている。 As an actuator for driving a movable body along the axial direction, Japanese Patent Laid-Open No. 2004-140902 (Patent Document 1) discloses a linear motor that efficiently reciprocates the movable body by utilizing a resonance phenomenon. Hereinafter, reference numerals in parentheses in the description of the background art are those of Patent Document 1. FIG. 8 of Patent Document 1 describes a linear compressor that sequentially compresses the refrigerant gas drawn into the compression chamber (38) by reciprocating movement of the piston (36) and discharging it to an external refrigeration cycle. And the linear motor (37) which drives this linear compressor is comprised so that the mover (21) connected with the piston (36) may be resonated using a coil spring (30a, 30b). Specifically, in paragraph 0106 of Patent Document 1, the frequency of the power source for energizing the linear motor (37), the mass of the mover (21) and the stator (22), and the spring constant of the coil spring (30a, 30b) It is described that the mover (21) is efficiently reciprocated by matching the resonance frequency obtained from the above.
 ところで、特許文献1に記載の技術のように、アクチュエータの駆動周波数を振動系の共振周波数に一致させることで、アクチュエータの高効率化(言い換えれば、消費エネルギの低減)を図る場合、動作状態に応じて共振周波数が変化してアクチュエータの駆動周波数とのずれが大きくなると、アクチュエータの効率が低下する。しかしながら、特許文献1では、振動系の共振周波数が動作状態に応じて変化することは想定されていない。なお、本発明者らの研究によれば、アクチュエータにより油圧ポンプのポンプ部を駆動する場合に、振動系の共振周波数が油の影響により変化しやすいことが判明している。 By the way, as in the technique described in Patent Document 1, when the efficiency of the actuator is increased (in other words, the reduction of energy consumption is achieved) by matching the drive frequency of the actuator with the resonant frequency of the vibration system, Accordingly, if the resonance frequency changes and the deviation from the drive frequency of the actuator increases, the efficiency of the actuator decreases. However, in Patent Document 1, it is not assumed that the resonance frequency of the vibration system changes according to the operating state. According to the study of the present inventors, it has been found that when the pump unit of the hydraulic pump is driven by the actuator, the resonance frequency of the vibration system is likely to change due to the influence of oil.
特開2004-140902号公報JP 2004-140902 A
 そこで、振動系の共振周波数が変化した場合であっても、アクチュエータの効率を高く維持することが可能な油圧ポンプの実現が求められる。 Therefore, there is a need for a hydraulic pump that can maintain high efficiency of the actuator even when the resonance frequency of the vibration system changes.
 本開示に係る油圧ポンプは、アクチュエータと、前記アクチュエータにより駆動されて油圧を発生させるポンプ部と、前記アクチュエータによる前記ポンプ部の駆動を制御する制御部と、を備えた油圧ポンプであって、前記ポンプ部は、吸入口と吐出口とを有するシリンダと、前記吸入口及び前記吐出口と連通するように前記シリンダの内部に形成された圧力室に配置され、前記シリンダの軸方向に沿って往復移動するピストンと、を備え、前記アクチュエータは、前記シリンダと同軸に前記軸方向に並んで配置された筒状コイル体と、前記ピストンに連結されると共に前記シリンダの径方向に沿った径方向視で前記筒状コイル体と重複するように配置され、前記筒状コイル体に対して前記軸方向に往復移動可能な可動体と、を備え、前記可動体は、前記筒状コイル体から発生する磁束によって、前記軸方向の少なくとも一方側に向けて駆動され、前記ピストン又は前記可動体を前記軸方向に付勢する共振用付勢部材が設けられ、前記制御部は、設定された駆動周波数で前記可動体が前記軸方向に沿って往復移動するように、前記アクチュエータを制御し、前記制御部は、前記ピストン、前記可動体、前記共振用付勢部材を含む振動系の共振周波数を、油影響に応じて補正した補正共振周波数を決定し、前記補正共振周波数で前記可動体が前記軸方向に沿って往復移動するように、前記アクチュエータを制御する。 A hydraulic pump according to the present disclosure is a hydraulic pump including an actuator, a pump unit driven by the actuator to generate hydraulic pressure, and a control unit controlling drive of the pump unit by the actuator, The pump portion is disposed in a cylinder having a suction port and a discharge port, and a pressure chamber formed inside the cylinder so as to communicate with the suction port and the discharge port, and reciprocates along the axial direction of the cylinder A moving piston, and the actuator is a cylindrical coil body arranged coaxially with the cylinder in the axial direction, and is connected to the piston and viewed in the radial direction of the cylinder. A movable body disposed so as to overlap with the cylindrical coil body, and movable reciprocally in the axial direction with respect to the cylindrical coil body; The movable body is driven toward at least one side in the axial direction by magnetic flux generated from the cylindrical coil body, and provided with a resonance biasing member that biases the piston or the movable body in the axial direction. The control unit controls the actuator such that the movable body reciprocates along the axial direction at a set drive frequency, and the control unit controls the piston, the movable body, and the urging for resonance. The resonance frequency of the vibration system including the member is corrected according to the influence of oil, and a correction resonance frequency is determined, and the actuator is controlled so that the movable body reciprocates along the axial direction at the correction resonance frequency. .
 この構成によれば、共振用付勢部材によるピストンの共振現象を利用して、ピストンを軸方向に沿って往復移動させることができる。すなわち、アクチュエータが発生する推力を、共振現象によって補填することができる。これにより、ピストンに要求される推力を発生させるためのアクチュエータの消費エネルギの低減を図ることができる。すなわち、ピストンの共振現象を利用して、アクチュエータの効率の向上を図ることができる。
 ところで、本発明者らは、研究の結果、アクチュエータによりポンプ部を駆動する場合には、流体媒体が油であるために、流体媒体が気体である場合に比べて、ピストンと共振用付勢部材とを含む振動系の共振周波数が、油の影響により変化しやすいという知見を得た。なお、このような共振周波数の変化は、圧力室の内部で圧縮及び膨張される油をばねとみなした場合に、当該油のばね定数がポンプ部の動作状態に応じて変化することに起因する。このような知見に基づき、上記の構成では、制御部が、設定された駆動周波数で可動体が軸方向に沿って往復移動するように、アクチュエータを制御する際に、ピストン、可動体、共振用付勢部材を含む振動系の共振周波数を、油影響に応じて補正した補正共振周波数を決定し、補正共振周波数で可動体が軸方向に沿って往復移動するように、アクチュエータを制御する。これにより、振動系の共振周波数が油の影響により変化した場合に、変化後の共振周波数である補正共振周波数でアクチュエータを駆動することが可能となる。
 従って、上記の構成によれば、振動系の共振周波数が変化した場合であっても、アクチュエータの効率を高く維持することが可能となる。
According to this configuration, the piston can be reciprocated along the axial direction by utilizing the resonance phenomenon of the piston by the resonance biasing member. That is, the thrust generated by the actuator can be compensated by the resonance phenomenon. Thereby, it is possible to reduce the energy consumption of the actuator for generating the thrust required of the piston. That is, the efficiency of the actuator can be improved by utilizing the resonance phenomenon of the piston.
By the way, the inventors of the present invention, as a result of research, when the pump unit is driven by the actuator, since the fluid medium is oil, the piston and the biasing member for resonance are compared with the case where the fluid medium is gas. It has been found that the resonance frequency of the vibration system including and is easily changed by the influence of oil. Such a change in resonance frequency is caused by the fact that when the oil compressed and expanded inside the pressure chamber is regarded as a spring, the spring constant of the oil changes in accordance with the operating state of the pump section. . Based on such knowledge, in the above configuration, when the control unit controls the actuator such that the movable body reciprocates along the axial direction at the set drive frequency, the piston, the movable body, and the one for resonance The resonant frequency of the vibration system including the biasing member is corrected according to the influence of oil, and a corrected resonant frequency is determined, and the actuator is controlled so that the movable body reciprocates along the axial direction at the corrected resonant frequency. Thereby, when the resonance frequency of the vibration system changes due to the influence of oil, it becomes possible to drive the actuator at the corrected resonance frequency which is the resonance frequency after the change.
Therefore, according to the above configuration, even when the resonance frequency of the vibration system changes, the efficiency of the actuator can be maintained high.
 油圧ポンプの更なる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。 Further features and advantages of the hydraulic pump will become clear from the following description of the embodiments described with reference to the drawings.
ピストンが可動域の中央に位置する状態での油圧ポンプの断面図Sectional view of hydraulic pump with piston in center of range of motion ピストンが可動域の一端に位置する状態での油圧ポンプの断面図Cross section of hydraulic pump with piston at one end of range of motion ピストンが可動域の他端に位置する状態での油圧ポンプの断面図Sectional view of hydraulic pump with piston at other end of range of motion 角周波数比と振幅比との関係を示す特性図Characteristic chart showing the relationship between angular frequency ratio and amplitude ratio ケースの概略構成図Schematic diagram of the case 共振角周波数の油温依存性を示す図Diagram showing oil temperature dependence of resonant angular frequency 油温と駆動角周波数との関係を規定したマップの模式図A schematic diagram of a map that defines the relationship between oil temperature and drive angular frequency 吐出圧と駆動角周波数との関係を規定したマップの模式図A schematic diagram of a map that defines the relationship between discharge pressure and drive angular frequency 駆動回路の一例を示す図Diagram showing an example of a drive circuit 比較例に係る駆動回路を示す図Diagram showing a drive circuit according to a comparative example
 油圧ポンプの実施形態について、図面を参照して説明する。本実施形態では、第1付勢部材71及び第2付勢部材72のそれぞれが「共振用付勢部材」に相当する。 Embodiments of a hydraulic pump will be described with reference to the drawings. In the present embodiment, each of the first biasing member 71 and the second biasing member 72 corresponds to a “resonance biasing member”.
 図1に示すように、油圧ポンプ1は、アクチュエータ2と、アクチュエータ2により駆動されて油圧を発生させるポンプ部3とを備えている。また、図5に示すように、油圧ポンプ1は、アクチュエータ2によるポンプ部3の駆動を制御する制御部90を備えている。以下に述べるように、ポンプ部3は、ピストン40を軸方向DL(シリンダ30の軸方向)に沿って往復移動させることで油を圧送するピストンポンプであり、アクチュエータ2は、ピストン40に連結された可動体20を軸方向DLに沿って移動させるための推力を発生する。すなわち、アクチュエータ2はリニアアクチュエータである。また、アクチュエータ2は、電磁力によって可動体20の推力を発生させる電磁アクチュエータである。 As shown in FIG. 1, the hydraulic pump 1 includes an actuator 2 and a pump unit 3 driven by the actuator 2 to generate an oil pressure. Further, as shown in FIG. 5, the hydraulic pump 1 includes a control unit 90 that controls the drive of the pump unit 3 by the actuator 2. As described below, the pump unit 3 is a piston pump that pumps oil by reciprocating the piston 40 along the axial direction DL (axial direction of the cylinder 30), and the actuator 2 is connected to the piston 40 A thrust for moving the movable body 20 along the axial direction DL is generated. That is, the actuator 2 is a linear actuator. The actuator 2 is an electromagnetic actuator that generates a thrust of the movable body 20 by an electromagnetic force.
 図1に示すように、ポンプ部3は、吸入口31と吐出口32とを有するシリンダ30と、軸方向DLに沿って往復移動するピストン40とを備えている。シリンダ30の内部には、吸入口31及び吐出口32と連通するように圧力室33が形成されており、ピストン40は圧力室33に配置されている。そして、ピストン40が軸方向DLに沿って往復移動することで、吸入口31から圧力室33に吸入された油83(図5参照)が、吐出口32から圧力室33の外部に吐出される。本実施形態では、図5に示すように、吸入口31には吸入油路85が接続され、吐出口32には吐出油路86が接続されている(図1も参照)。詳細は後述するが、吸入口31は、油貯留部82に貯留された油83を吸引するように配置されている。 As shown in FIG. 1, the pump unit 3 includes a cylinder 30 having an inlet 31 and an outlet 32 and a piston 40 that reciprocates along the axial direction DL. A pressure chamber 33 is formed in the cylinder 30 so as to communicate with the suction port 31 and the discharge port 32, and the piston 40 is disposed in the pressure chamber 33. Then, as the piston 40 reciprocates along the axial direction DL, the oil 83 (see FIG. 5) sucked into the pressure chamber 33 from the suction port 31 is discharged from the discharge port 32 to the outside of the pressure chamber 33. . In the present embodiment, as shown in FIG. 5, a suction oil passage 85 is connected to the suction port 31 and a discharge oil passage 86 is connected to the discharge port 32 (see also FIG. 1). Although the details will be described later, the suction port 31 is disposed so as to suction the oil 83 stored in the oil storage portion 82.
 図1に示すように、シリンダ30は、軸方向DLに延びる筒状(ここでは、円筒状)に形成された筒状部34を備えており、圧力室33は、筒状部34の内周面(内壁)によって囲まれて形成されている。本実施形態では、吸入口31は、筒状部34における軸方向DLの一方側(後述する軸方向第1側DL1)の開口部に形成され、吐出口32は、筒状部34の周壁部を径方向DR(シリンダ30の径方向)に貫通するように形成されている。すなわち、吐出口32は、シリンダ30(具体的には、筒状部34)の内周面と外周面とを連通するように設けられている。以下では、軸方向DLにおけるアクチュエータ2(具体的には、後述する筒状コイル体10)に対してシリンダ30が配置される側を軸方向第1側DL1とし、軸方向DLにおける軸方向第1側DL1とは反対側を軸方向第2側DL2とする。 As shown in FIG. 1, the cylinder 30 includes a cylindrical portion 34 formed in a cylindrical shape (here, cylindrical shape) extending in the axial direction DL, and the pressure chamber 33 has an inner periphery of the cylindrical portion 34. It is formed surrounded by a surface (inner wall). In the present embodiment, the suction port 31 is formed at the opening of one side of the cylindrical portion 34 in the axial direction DL (the first side DL1 in the axial direction described later), and the discharge port 32 is a peripheral wall portion of the cylindrical portion 34 Is formed to penetrate in the radial direction DR (the radial direction of the cylinder 30). That is, the discharge port 32 is provided to communicate the inner peripheral surface and the outer peripheral surface of the cylinder 30 (specifically, the cylindrical portion 34). Hereinafter, the side on which the cylinder 30 is disposed with respect to the actuator 2 in the axial direction DL (specifically, the tubular coil body 10 described later) is referred to as an axial first side DL1, and the axial direction first in the axial direction DL The side opposite to the side DL1 is referred to as an axial second side DL2.
 ピストン40は、圧力室33(ポンプ室)を、軸方向第1側DL1の第1圧力室33a(第1ポンプ室)と、軸方向第2側DL2の第2圧力室33b(第2ポンプ室)との2つの室に、軸方向DLに区画するように配置されている。第1圧力室33aは、吸入口31に連通するように形成され、第2圧力室33bは、吐出口32に連通するように形成されている。すなわち、吐出口32は、第2圧力室33bに連通している。以下では、ピストン40における第1圧力室33aと第2圧力室33bとを区画する部分を、本体部41という。第1圧力室33aと第2圧力室33bとを油密状に区画するために、本体部41の外周面とシリンダ30(具体的には、筒状部34)の内周面との間をシールする第2シール部材S2(環状のシール部材)が、本体部41の外周面に設けられている。ここでは、後述する第2逆止弁V2が閉じた状態で、第1圧力室33aと第2圧力室33bとが油密状に区画される。 The piston 40 includes a pressure chamber 33 (pump chamber), a first pressure chamber 33a (first pump chamber) on the first axial side DL1, and a second pressure chamber 33b (second pump chamber) on the second axial side DL2. In the two chambers, and are arranged in the axial direction DL. The first pressure chamber 33 a is formed in communication with the suction port 31, and the second pressure chamber 33 b is formed in communication with the discharge port 32. That is, the discharge port 32 communicates with the second pressure chamber 33 b. Hereinafter, a portion which divides the first pressure chamber 33a and the second pressure chamber 33b in the piston 40 is referred to as a main body portion 41. In order to partition the first pressure chamber 33a and the second pressure chamber 33b in an oil-tight manner, the space between the outer peripheral surface of the main body 41 and the inner peripheral surface of the cylinder 30 (specifically, the cylindrical portion 34) is A second seal member S2 (annular seal member) that seals is provided on the outer peripheral surface of the main body portion 41. Here, the first pressure chamber 33a and the second pressure chamber 33b are partitioned in an oil-tight manner in a state where a second check valve V2 described later is closed.
 シリンダ30における圧力室33(具体的には、第2圧力室33b)の軸方向第2側DL2の壁を形成する部分(後述する第1壁61を形成する部分)には、当該部分を軸方向DLに貫通する第1貫通孔61aが形成されており、ピストン40は、第1貫通孔61aを貫通するように配置される第1部分51を備えている。第1部分51及び本体部41はいずれも軸方向DLに延びる筒状(ここでは、円筒状)の外周面を有するように形成され、第1部分51の外周面は、本体部41の外周面よりも小径に形成されている。よって、図1~図3に示されるように、第2圧力室33bの容積は、ピストン40が軸方向第1側DL1に移動すると大きくなり、ピストン40が軸方向第2側DL2に移動すると小さくなる。一方、第1圧力室33aの容積は、ピストン40が軸方向第1側DL1に移動すると小さくなり、ピストン40が軸方向第2側DL2に移動すると大きくなる。このように、ピストン40は、本体部41と第1部分51とを備えている。そして、上述したように、本体部41は、第1圧力室33aと、第1圧力室33aに対して軸方向第2側DL2に隣接する第2圧力室33bとに、圧力室33を区画し、第1部分51は、第2圧力室33bと後述する中間室60とを区画している。 The portion of the pressure chamber 33 (specifically, the second pressure chamber 33b) of the cylinder 30 which forms the wall of the second side DL2 in the axial direction (the portion which forms the first wall 61 described later) A first through hole 61a penetrating in the direction DL is formed, and the piston 40 has a first portion 51 arranged to penetrate the first through hole 61a. The first portion 51 and the main body portion 41 are both formed to have a cylindrical (here, cylindrical) outer peripheral surface extending in the axial direction DL, and the outer peripheral surface of the first portion 51 is the outer peripheral surface of the main body 41 It has a smaller diameter than that. Therefore, as shown in FIGS. 1 to 3, the volume of the second pressure chamber 33b increases as the piston 40 moves to the first axial side DL1, and decreases as the piston 40 moves to the second axial side DL2. Become. On the other hand, the volume of the first pressure chamber 33a decreases as the piston 40 moves to the first axial side DL1, and increases as the piston 40 moves to the second axial side DL2. Thus, the piston 40 includes the main body 41 and the first portion 51. And as above-mentioned, the main-body part 41 divides the pressure chamber 33 into the 1st pressure chamber 33a and the 2nd pressure chamber 33b adjacent to axial direction 2nd side DL2 with respect to the 1st pressure chamber 33a. The first portion 51 defines the second pressure chamber 33 b and an intermediate chamber 60 described later.
 吸入口31或いは吸入口31へ向かう油83の流通経路には、第1圧力室33aに向かう油83の流通(すなわち、下流側に向かう油83の流通)を許容し、それとは反対側に向かう油83の流通(すなわち、上流側に向かう油83の流通)を規制する第1逆止弁V1が設けられている。図1に示すように、本実施形態では、第1逆止弁V1は、吸入口31に設けられている。ここでは、第1逆止弁V1は、球状の弁体と、当該弁体を閉弁方向に付勢する付勢部材とを備えている。そして、第1逆止弁V1は、上流側の油圧(ここでは、吸入油路85の油圧)が下流側の油圧(ここでは、第1圧力室33aの油圧)よりも所定油圧(上記付勢部材の付勢力に応じた油圧)以上高い場合に開弁し、それ以外の場合に閉弁するように構成されている。 In the flow path of the oil 83 directed to the suction port 31 or 31, the flow of the oil 83 directed to the first pressure chamber 33 a (that is, the flow of the oil 83 directed to the downstream side) is permitted. A first check valve V1 is provided to restrict the flow of the oil 83 (that is, the flow of the oil 83 toward the upstream side). As shown in FIG. 1, in the present embodiment, the first check valve V1 is provided at the suction port 31. Here, the first check valve V1 includes a spherical valve body and a biasing member that biases the valve body in the valve closing direction. The first check valve V1 has a predetermined hydraulic pressure (the above-described urging) than the hydraulic pressure on the upstream side (here, the hydraulic pressure of the suction oil passage 85) is lower than the hydraulic pressure on the downstream side (here, the hydraulic pressure of the first pressure chamber 33a). It is configured to open when the oil pressure corresponding to the biasing force of the member is higher than the above) and to close the valve otherwise.
 また、第1圧力室33aと第2圧力室33bとの間の油83の流通経路には、第2圧力室33bに向かう油83の流通(すなわち、下流側に向かう油83の流通)を許容し、それとは反対側に向かう油83の流通(すなわち、上流側に向かう油83の流通)を規制する第2逆止弁V2が設けられている。本実施形態では、第1圧力室33aと第2圧力室33bとの間の油83の流通経路は、ピストン40(具体的には、本体部41)を軸方向DLに貫通する孔部により形成されており、第2逆止弁V2は、ピストン40(具体的には、本体部41)と一体的に設けられている。すなわち、第2逆止弁V2は、ピストン40に内蔵されている。ここでは、第2逆止弁V2は、球状の弁体と、当該弁体を閉弁方向に付勢する付勢部材とを備えている。そして、第2逆止弁V2は、上流側の油圧(ここでは、第1圧力室33aの油圧)が下流側の油圧(ここでは、第2圧力室33bの油圧)よりも所定油圧(上記付勢部材の付勢力に応じた油圧)以上高い場合に開弁し、それ以外の場合に閉弁するように構成されている。なお、ここでは、第1逆止弁V1及び第2逆止弁V2を、球状の弁体を有する弁としているが、第1逆止弁V1や第2逆止弁V2として、ポペット弁等の他の構造の弁を用いても良い。 Further, in the flow path of the oil 83 between the first pressure chamber 33a and the second pressure chamber 33b, the flow of the oil 83 toward the second pressure chamber 33b (that is, the flow of the oil 83 toward the downstream side) is allowed. And a second check valve V2 for restricting the flow of the oil 83 directed to the opposite side (that is, the flow of the oil 83 directed to the upstream side). In the present embodiment, the flow path of the oil 83 between the first pressure chamber 33a and the second pressure chamber 33b is formed by a hole that penetrates the piston 40 (specifically, the main body 41) in the axial direction DL. The second check valve V2 is provided integrally with the piston 40 (specifically, the main body 41). That is, the second check valve V2 is built in the piston 40. Here, the second check valve V2 includes a spherical valve body and a biasing member that biases the valve body in the valve closing direction. The second check valve V2 has a predetermined hydraulic pressure (above: the hydraulic pressure of the first pressure chamber 33a here) than the hydraulic pressure of the downstream side (here, the hydraulic pressure of the second pressure chamber 33b). It is configured to open when the oil pressure is higher than the hydraulic pressure corresponding to the biasing force of the biasing member, and to close the valve otherwise. In addition, although the 1st non-return valve V1 and the 2nd non-return valve V2 are made into a valve which has a spherical valve body here, as a 1st non-return valve V1 or the 2nd non-return valve V2, a poppet valve etc. Other construction valves may be used.
 ポンプ部3はこのように構成されるため、図3に示すようにピストン40が軸方向第2側DL2に移動すると、第1圧力室33aの容積が大きくなることで第1圧力室33aの油圧が低下すると共に、第2圧力室33bの容積が小さくなることで第2圧力室33bの油圧が上昇する。これに伴い、第1逆止弁V1が開弁すると共に第2逆止弁V2が閉弁し、吸入油路85の油83が吸入口31から第1圧力室33aに流入すると共に、第2圧力室33bの油83が吐出口32から吐出油路86に吐出される(図5も参照)。また、図2に示すようにピストン40が軸方向第1側DL1に移動すると、第1圧力室33aの容積が小さくなることで第1圧力室33aの油圧が上昇すると共に、第2圧力室33bの容積が大きくなることで第2圧力室33bの油圧が低下する。これに伴い、第1逆止弁V1が閉弁すると共に第2逆止弁V2が開弁し、第1圧力室33aの油83が第2逆止弁V2を介して第2圧力室33bに流入する。 Since the pump unit 3 is configured as described above, when the piston 40 moves to the second axial side DL2 in the axial direction as shown in FIG. 3, the volume of the first pressure chamber 33a increases, so that the hydraulic pressure of the first pressure chamber 33a is increased. As the volume of the second pressure chamber 33b decreases, the hydraulic pressure of the second pressure chamber 33b rises. Along with this, the first check valve V1 is opened and the second check valve V2 is closed, and the oil 83 of the suction oil passage 85 flows into the first pressure chamber 33a from the suction port 31, and The oil 83 in the pressure chamber 33b is discharged from the discharge port 32 to the discharge oil passage 86 (see also FIG. 5). Further, as shown in FIG. 2, when the piston 40 moves to the first axial side DL1 in the axial direction, the volume of the first pressure chamber 33a decreases, so that the hydraulic pressure of the first pressure chamber 33a rises and the second pressure chamber 33b The hydraulic pressure of the second pressure chamber 33b is reduced by the increase of the volume of the second pressure chamber 33b. Along with this, the first check valve V1 is closed and the second check valve V2 is opened, and the oil 83 of the first pressure chamber 33a is transferred to the second pressure chamber 33b via the second check valve V2. To flow.
 このように、ピストン40が軸方向DLに沿って往復移動することで、吸入口31から圧力室33に吸入された油83が、吐出口32から圧力室33の外部に吐出される。次に、ピストン40を軸方向DLに沿って移動させるための推力を発生するアクチュエータ2の構成について説明する。 As described above, as the piston 40 reciprocates along the axial direction DL, the oil 83 sucked into the pressure chamber 33 from the suction port 31 is discharged from the discharge port 32 to the outside of the pressure chamber 33. Next, the configuration of the actuator 2 that generates a thrust for moving the piston 40 along the axial direction DL will be described.
 図1に示すように、アクチュエータ2は、シリンダ30と同軸に軸方向DLに並んで配置された筒状コイル体10と、筒状コイル体10に対して軸方向DLに往復移動可能な可動体20とを備えている。筒状コイル体10は、シリンダ30に対して軸方向第2側DL2に配置されている。可動体20は、ピストン40に連結されている。具体的には、可動体20は、ピストン40と一体的に軸方向DLに移動するように、ピストン40に対して軸方向第2側DL2から連結されている。また、可動体20は、径方向DRに沿った径方向視で筒状コイル体10と重複するように配置されている。本実施形態では、可動体20は、筒状コイル体10に対して径方向内側DR1(径方向DRの内側)に配置されている。すなわち、可動体20は、筒状コイル体10によって径方向外側DR2(径方向DRの外側)から囲まれる空間内を、軸方向DLに沿って往復移動するように構成されている。 As shown in FIG. 1, the actuator 2 is a cylindrical coil body 10 coaxially arranged with the cylinder 30 in the axial direction DL, and a movable body capable of reciprocating in the axial direction DL with respect to the cylindrical coil body 10 It has 20 and. The cylindrical coil body 10 is disposed on the second axial side DL2 with respect to the cylinder 30. The movable body 20 is coupled to the piston 40. Specifically, the movable body 20 is coupled to the piston 40 from the second axial direction DL2 so as to move in the axial direction DL integrally with the piston 40. Further, the movable body 20 is disposed so as to overlap the cylindrical coil body 10 in a radial direction along the radial direction DR. In the present embodiment, the movable body 20 is disposed radially inward of the cylindrical coil body 10 (inside of the radial direction DR). That is, the movable body 20 is configured to reciprocate along the axial direction DL in a space surrounded by the cylindrical coil body 10 from the radial outer side DR2 (the outer side of the radial direction DR).
 筒状コイル体10は、軸方向DLに延びる筒状(ここでは、円筒状)に形成されたコア12と、コア12に巻装されたコイル11とを備えている。コイル11は、コア12の軸心周りに円筒状に巻回されており、筒状コイル体10は、コイル11に通電された状態で、可動体20を軸方向DLに駆動する磁束を発生するように構成されている。すなわち、筒状コイル体10は、通電することで磁束を発生するコイル11と、コイル11を覆うコア12と、を備えている。本実施形態では、筒状コイル体10は、軸方向DLに並べて配置された複数のコイル11を備えている。具体的には、筒状コイル体10は、軸方向DLに並べて配置された2つのコイル11(第1コイル11a及び第2コイル11b)を備えている。軸方向DLに隣り合う2つのコイル11は、互いに逆向きの電流が流れて互いに逆向きの磁束を発生させる。また、軸方向DLに隣り合う2つのコイル11は、軸方向DLに間隔を空けて配置されている。 The cylindrical coil body 10 includes a core 12 formed in a cylindrical shape (here, a cylindrical shape) extending in the axial direction DL, and a coil 11 wound around the core 12. The coil 11 is cylindrically wound around the axis of the core 12, and the cylindrical coil body 10 generates a magnetic flux for driving the movable body 20 in the axial direction DL in a state where the coil 11 is energized. Is configured as. That is, the cylindrical coil body 10 is provided with the coil 11 which generate | occur | produces magnetic flux, and the core 12 which covers the coil 11 by supplying with electricity. In the present embodiment, the cylindrical coil body 10 includes a plurality of coils 11 arranged in the axial direction DL. Specifically, the cylindrical coil body 10 includes two coils 11 (a first coil 11a and a second coil 11b) arranged in the axial direction DL. The two coils 11 adjacent to each other in the axial direction DL flow in current in opposite directions to generate magnetic flux in opposite directions. The two coils 11 adjacent to each other in the axial direction DL are arranged at an interval in the axial direction DL.
 本実施形態では、コア12における径方向内側DR1の端部に、軸方向第1側DL1から順に、第1磁極12a、第2磁極12b、及び第3磁極12cの、3つの磁極が形成されている。第1磁極12aは、コア12における第1コイル11aに対して軸方向第1側DL1に配置された部分から、径方向内側DR1に延出した部分に形成され、第2磁極12bは、コア12における第1コイル11aと第2コイル11bとの軸方向DLの間に配置された部分から、径方向内側DR1に延出した部分に形成され、第3磁極12cは、コア12における第2コイル11bに対して軸方向第2側DL2に配置された部分から、径方向内側DR1に延出した部分に形成されている。そして、上記のように第1コイル11aと第2コイル11bとに互いに逆向きの電流が流れることで、第1磁極12a及び第3磁極12cは、互いに同じ極性を有するように磁化され、第2磁極12bは、第1磁極12a及び第3磁極12cとは逆の極性を有するように磁化される。よって、第1コイル11a及び第2コイル11bに流れる電流の向きを切り替えることで、第1磁極12a及び第3磁極12cがN極として作用すると共に第2磁極12bがS極として作用する状態と、第1磁極12a及び第3磁極12cがS極として作用すると共に第2磁極12bがN極として作用する状態とが切り替えられる。 In this embodiment, three magnetic poles of the first magnetic pole 12a, the second magnetic pole 12b, and the third magnetic pole 12c are formed at the end of the radially inner side DR1 of the core 12 sequentially from the axial first side DL1. There is. The first magnetic pole 12 a is formed on a portion of the core 12 which is disposed on the first axial side DL 1 with respect to the first coil 11 a and which extends to the radially inner side DR 1. The second magnetic pole 12 b is formed of the core 12 The third magnetic pole 12 c is formed in a portion extending from the portion disposed between the first coil 11 a and the second coil 11 b in the axial direction DL to the radially inner side DR 1, and the third magnetic pole 12 c is a second coil 11 b in the core 12. On the other hand, it is formed in the part extended to radial direction inner side DR1 from the part arrange | positioned at axial direction 2nd side DL2. Then, as described above, when current flows in opposite directions to each other through the first coil 11a and the second coil 11b, the first magnetic pole 12a and the third magnetic pole 12c are magnetized so as to have the same polarity. The magnetic pole 12b is magnetized so as to have an opposite polarity to the first magnetic pole 12a and the third magnetic pole 12c. Therefore, by switching the direction of the current flowing through the first coil 11a and the second coil 11b, the first magnetic pole 12a and the third magnetic pole 12c act as the N pole and the second magnetic pole 12b acts as the S pole. It is switched to the state where the first magnetic pole 12a and the third magnetic pole 12c act as the S pole and the second magnetic pole 12b acts as the N pole.
 可動体20は、筒状コイル体10から発生する磁束によって、軸方向DLの少なくとも一方側に向けて駆動される。ここでは、可動体20は、筒状コイル体10から発生する磁束によって軸方向DLの両側に向けて駆動される。具体的には、可動体20は、筒状コイル体10のコイル11への通電方向を切り替えることで、軸方向DLの両側に向けて駆動される。すなわち、筒状コイル体10に通電する電流の向きの切り替えが繰り返されることで、可動体20が軸方向DLの両側に向けて駆動される。可動体20はピストン40に連結されているため、可動体20が軸方向DLの両側に向けて駆動されることで、ピストン40が軸方向DLに沿って往復移動する。 The movable body 20 is driven toward at least one side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Here, the movable body 20 is driven toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Specifically, the movable body 20 is driven toward both sides in the axial direction DL by switching the energization direction of the coil 11 of the cylindrical coil body 10. That is, the movable body 20 is driven toward both sides in the axial direction DL by repeating switching of the direction of the current supplied to the cylindrical coil body 10. Since the movable body 20 is connected to the piston 40, the piston 40 reciprocates along the axial direction DL by driving the movable body 20 toward both sides in the axial direction DL.
 筒状コイル体10から発生する磁束によって可動体20を軸方向DLの両側に向けて駆動することを可能とするために、可動体20は、永久磁石Mを備えている。永久磁石Mは、永久磁石Mから発生する磁束と筒状コイル体10から発生する磁束との相互作用によって可動体20の推力が得られる形態で、可動体20に設けられている。本実施形態では、可動体20は、軸方向DLに延びる軸部材21を備えており、軸部材21と同軸の筒状(ここでは、円筒状)に形成された永久磁石Mが、軸部材21の外周面に固定されている。そして、本実施形態では、永久磁石Mは、径方向DRに着磁されている。 In order to enable the movable body 20 to be driven toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10, the movable body 20 is provided with a permanent magnet M. The permanent magnet M is provided on the movable body 20 in such a manner that the thrust of the movable body 20 can be obtained by the interaction between the magnetic flux generated from the permanent magnet M and the magnetic flux generated from the cylindrical coil body 10. In the present embodiment, the movable body 20 includes the shaft member 21 extending in the axial direction DL, and the permanent magnet M formed in a cylindrical shape (here, a cylindrical shape) coaxial with the shaft member 21 is the shaft member 21. It is fixed to the outer peripheral surface of. And in this embodiment, permanent magnet M is magnetized by radial direction DR.
 本実施形態では、可動体20は、軸方向DLに並べて配置された複数の永久磁石Mを備えている。具体的には、可動体20は、軸方向DLに並べて配置された2つの永久磁石M(第1永久磁石M1及び第2永久磁石M2)を備えている。すなわち、可動体20は、筒状コイル体10が備えるコイル11と同数の永久磁石Mを備えている。軸方向DLに隣り合う2つの永久磁石Mは、径方向DRの互いに逆向きに着磁されている。また、軸方向DLに隣り合う2つの永久磁石Mは、軸方向DLに間隔を空けて配置されている。ここでは、図1~図3に示すように、可動体20の軸方向DLの位置によらず、第1永久磁石M1は、第1コイル11aと径方向DRに対向するように配置され、第2永久磁石M2は、第2コイル11bと径方向DRに対向するように配置されている。また、可動体20の軸方向DLの位置によらず、第1永久磁石M1は、軸方向第1側DL1の部分が第1磁極12aと径方向DRに対向すると共に、軸方向第2側DL2の部分が第2磁極12bと径方向DRに対向するように配置されている。可動体20の軸方向DLの位置によらず、第2永久磁石M2は、軸方向第1側DL1の部分が第2磁極12bと径方向DRに対向すると共に、軸方向第2側DL2の部分が第3磁極12cと径方向DRに対向するように配置されている。 In the present embodiment, the movable body 20 includes a plurality of permanent magnets M arranged in the axial direction DL. Specifically, the movable body 20 includes two permanent magnets M (a first permanent magnet M1 and a second permanent magnet M2) arranged side by side in the axial direction DL. That is, the movable body 20 includes the same number of permanent magnets M as the number of the coils 11 provided in the cylindrical coil body 10. Two permanent magnets M adjacent to each other in the axial direction DL are magnetized in opposite directions to each other in the radial direction DR. Further, two permanent magnets M adjacent to each other in the axial direction DL are arranged at an interval in the axial direction DL. Here, as shown in FIGS. 1 to 3, regardless of the position of the movable body 20 in the axial direction DL, the first permanent magnet M1 is disposed to face the first coil 11a in the radial direction DR, The two permanent magnets M2 are disposed to face the second coil 11b in the radial direction DR. In addition, regardless of the position of the movable body 20 in the axial direction DL, the first permanent magnet M1 has a portion of the axial first side DL1 facing the first magnetic pole 12a in the radial direction DR and the axial second side DL2 Is disposed so as to face the second magnetic pole 12b in the radial direction DR. Regardless of the position of the movable body 20 in the axial direction DL, the second permanent magnet M2 has a portion on the axial first side DL1 facing the second magnetic pole 12b in the radial direction DR and a portion on the axial second side DL2 Are arranged to face the third magnetic pole 12 c in the radial direction DR.
 アクチュエータ2はこのように構成されるため、第1コイル11aと第2コイル11bとに互いに逆向きの電流が流れると、筒状コイル体10から発生する磁束によって、可動体20が軸方向DLの一方側に向けて駆動される。また、第1コイル11aに流れる電流の向きを反転させると共に第2コイル11bに流れる電流の向きを反転させると、筒状コイル体10から発生する磁束によって、可動体20が軸方向DLの他方側に向けて駆動される。よって、コイル11(ここでは、第1コイル11a及び第2コイル11b)への通電方向を切り替えることで、可動体20及びそれに連結されたピストン40を、軸方向DLに沿って往復移動させることができる。 Since the actuator 2 is configured as described above, when currents flowing in opposite directions flow through the first coil 11a and the second coil 11b, the movable body 20 moves in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. It is driven toward one side. Further, when the direction of the current flowing through the first coil 11a is reversed and the direction of the current flowing through the second coil 11b is reversed, the movable body 20 is moved to the other side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Drive towards. Therefore, by switching the direction of energization of the coil 11 (here, the first coil 11a and the second coil 11b), the movable body 20 and the piston 40 coupled thereto can be reciprocated along the axial direction DL. it can.
 ところで、油圧ポンプ1による油83の吐出流量(単位時間当たりの吐出量)は、ピストン40のストローク量(軸方向DLに沿ったピストン40の移動量)と、単位時間当たりのピストン40のストローク数と、に応じて定まる。具体的には、ピストン40のストローク量が大きくなるに従って、ピストン40の往復移動に伴う圧力室33の体積変化量が大きくなり、ピストン40の1回の往復移動に伴う油83の吐出量が多くなる。また、単位時間当たりのピストン40のストローク数が多くなるに従って、単位時間当たりの油83の吐出回数が多くなる。 By the way, the discharge flow rate (discharge amount per unit time) of the oil 83 by the hydraulic pump 1 is the stroke amount of the piston 40 (movement amount of the piston 40 along the axial direction DL) and the stroke number of the piston 40 per unit time It depends on and. Specifically, as the stroke amount of the piston 40 increases, the volume change amount of the pressure chamber 33 accompanying the reciprocation of the piston 40 increases, and the discharge amount of the oil 83 accompanying one reciprocation of the piston 40 increases. Become. Further, as the number of strokes of the piston 40 per unit time increases, the number of times the oil 83 is discharged per unit time increases.
 この点に関して、上述したように、この油圧ポンプ1では、ポンプ部3を駆動するアクチュエータ2が、筒状コイル体10から発生する磁束によって可動体20を軸方向DLの両側に向けて駆動するように構成されている。よって、筒状コイル体10から発生する磁束によって可動体20が軸方向DLの一方側に向けてのみ駆動される場合に比べて、推力を適切に発生させることが可能な可動体20のストローク量が大きくなるようにアクチュエータ2を構成しやすくなっている。従って、可動体20のストローク量に応じて定まるピストン40のストローク量を、所望の吐出流量が得られる程度に大きくしやすい。 Regarding this point, as described above, in the hydraulic pump 1, the actuator 2 for driving the pump unit 3 drives the movable body 20 toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10. Is configured. Therefore, compared with the case where the movable body 20 is driven only to one side in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10, the stroke amount of the movable body 20 capable of appropriately generating thrust. The actuator 2 is easy to configure so that Therefore, the stroke amount of the piston 40, which is determined according to the stroke amount of the movable body 20, can easily be increased to such an extent that a desired discharge flow rate can be obtained.
 また、この油圧ポンプ1では、筒状コイル体10から発生する磁束によって駆動される可動体20が、永久磁石Mを備える。よって、所望の推力を得るために必要となるコイル11の巻数を、可動体20が永久磁石Mを備えない場合に比べて少なく抑えることができる。従って、コイル11のインダクタンスを小さく抑えてアクチュエータ2の電流応答性を高めることができ、この結果、単位時間当たりのピストン40のストローク数を定めるアクチュエータ2の駆動周波数を、所望の吐出流量が得られる程度に高くしやすくなっている。 Further, in the hydraulic pump 1, the movable body 20 driven by the magnetic flux generated from the cylindrical coil body 10 includes the permanent magnet M. Therefore, the number of turns of the coil 11 required to obtain a desired thrust can be reduced as compared with the case where the movable body 20 is not provided with the permanent magnet M. Therefore, the inductance of the coil 11 can be reduced to improve the current response of the actuator 2, and as a result, a desired discharge flow rate can be obtained for the drive frequency of the actuator 2 that determines the number of strokes of the piston 40 per unit time. It is easy to raise to some extent.
 また、本実施形態では、アクチュエータ2が気中環境下で使用されるように、油圧ポンプ1を配置している。よって、油83で満たされていない空間において可動体20を軸方向DLに沿って往復移動させることができるため、可動体20が軸方向DLに沿って往復移動する際の油83の粘性等に起因する摺動抵抗を小さく抑えて、可動体20のストローク量を大きく確保することが可能となっている。なお、アクチュエータ2の発熱量が多く油83でアクチュエータ2を冷却する必要がある場合には、アクチュエータ2を油中環境下で使用する必要があるが、この油圧ポンプ1では、上述したように、所望の推力を得るために必要となるコイル11の巻数を、少なく抑えることが可能である。これにより、アクチュエータ2を気中環境下で使用できる程度に、アクチュエータ2の発熱量を少なく抑えやすくなっている。 Further, in the present embodiment, the hydraulic pump 1 is disposed such that the actuator 2 is used in the air environment. Therefore, since the movable body 20 can be reciprocated along the axial direction DL in a space not filled with the oil 83, viscosity and the like of the oil 83 when the movable body 20 reciprocates along the axial direction DL It is possible to keep the resulting sliding resistance small and secure a large stroke amount of the movable body 20. When the amount of heat generation of the actuator 2 is large and it is necessary to cool the actuator 2 with the oil 83, it is necessary to use the actuator 2 under the environment in oil, but in the hydraulic pump 1, as described above It is possible to reduce the number of turns of the coil 11 required to obtain a desired thrust. As a result, the amount of heat generation of the actuator 2 can be easily reduced to such an extent that the actuator 2 can be used in the air environment.
 本実施形態では、一例として、ポンプ部3は、図5に示すようにケース80に収容された駆動装置81が必要とする油圧を発生するように構成されている。駆動装置81は、ケース80の内部に形成された収容空間80aに配置されている。駆動装置81は、例えば、有段又は無段の自動変速機や手動変速機或いはハイブリッド車両や電動車両用の駆動伝達装置等、車両に搭載される車両用の駆動装置とされる。この場合、駆動装置81は、車輪の駆動力源と車輪との間で駆動力(トルク)を伝達するように構成される。また、駆動装置81は、例えば、車輪の駆動力源としての回転電機を備える。駆動装置81が必要とする油圧として、駆動装置81の各部の潤滑或いは冷却のために必要な油圧や、駆動装置81が油圧で動作する装置(係合装置等)を備える場合の、当該装置の作動或いは作動の準備のために必要な油圧を例示することができる。油圧ポンプ1から吐出された油は、吐出油路86を介して、駆動装置81における油圧を必要とする部位に供給される。油圧ポンプ1から吐出された油が、油圧制御装置(図示せず)によって油圧が制御された後、駆動装置81における油圧を必要とする部位に供給されてもよい。 In the present embodiment, as an example, the pump unit 3 is configured to generate the hydraulic pressure required by the drive device 81 housed in the case 80 as shown in FIG. The driving device 81 is disposed in a housing space 80 a formed inside the case 80. The drive device 81 is, for example, a drive device for a vehicle mounted on a vehicle, such as a stepped or continuously variable automatic transmission, a manual transmission, or a drive transmission device for a hybrid vehicle or an electric vehicle. In this case, the driving device 81 is configured to transmit the driving force (torque) between the driving force source of the wheel and the wheel. Moreover, the drive device 81 includes, for example, a rotating electrical machine as a driving force source of wheels. In the case where a hydraulic pressure required for lubrication or cooling of each part of the drive unit 81 is provided as the hydraulic pressure required by the drive unit 81, or the drive unit 81 is provided with a device (such as an engagement device) operated by the hydraulic pressure. The hydraulic pressure required for actuation or preparation for actuation can be illustrated. The oil discharged from the hydraulic pump 1 is supplied to a portion of the drive device 81 requiring oil pressure via the discharge oil passage 86. The oil discharged from the hydraulic pump 1 may be supplied to a portion of the drive device 81 that requires the hydraulic pressure after the hydraulic pressure is controlled by a hydraulic control device (not shown).
 図5に示すように、ポンプ部3(具体的には、吸入口31、図1参照)は、ケース80の内部の油貯留部82に貯留された油83を吸引するように、ケース80の内部に配置されている。ここでは、油貯留部82は、ケース80の底部に形成されており、吸入口31は、吸入油路85を介して油貯留部82に貯留された油83を吸引するように配置されている。一方、アクチュエータ2は、ケース80の外部に配置されており、これにより、アクチュエータ2を気中環境下で使用することが可能となっている。なお、アクチュエータ2がケース80の外部に配置されるとは、アクチュエータ2の少なくとも一部(少なくとも軸方向第2側DL2の部分)がケース80の外部に配置されることを意味し、アクチュエータ2の一部(軸方向第1側DL1の一部)がケース80の内部に配置されてもよい。すなわち、アクチュエータ2の少なくとも一部が、ケース80の外部に配置されている。なお、図5では、軸方向DLが水平面に沿う向きで油圧ポンプ1が配置される場合を例示している。 As shown in FIG. 5, the pump unit 3 (specifically, the suction port 31, see FIG. 1) is configured to suck the oil 83 stored in the oil storage unit 82 inside the case 80. It is located inside. Here, the oil reservoir 82 is formed at the bottom of the case 80, and the suction port 31 is arranged to suction the oil 83 stored in the oil reservoir 82 via the suction oil passage 85. . On the other hand, the actuator 2 is disposed outside the case 80, which makes it possible to use the actuator 2 in the air environment. In addition, that the actuator 2 is disposed outside the case 80 means that at least a part of the actuator 2 (at least a portion of the second side DL2 in the axial direction) is disposed outside the case 80, A part (a part of the axial direction first side DL1) may be disposed inside the case 80. That is, at least a part of the actuator 2 is disposed outside the case 80. In addition, in FIG. 5, the case where the hydraulic pump 1 is arrange | positioned by the direction which the axial direction DL follows a horizontal surface is illustrated.
 ここでは、アクチュエータ2をケース80の外部に配置することで、アクチュエータ2を気中環境下で使用する場合を例示したが、アクチュエータ2を、ケース80の内部において、油貯留部82の油面84よりも上方(鉛直方向Zの上方)に配置することで、アクチュエータ2を、気中環境或いはそれに近い環境下で使用する構成としてもよい。なお、鉛直方向Zは、油圧ポンプ1の使用状態での鉛直方向を意味し、ここでは、ケース80が車両に搭載された状態での鉛直方向を意味する。ポンプ部3の少なくとも一部(例えば、吸入口31)は、油貯留部82の油面84よりも下方(鉛直方向Zの下方)に配置されてもよい。油貯留部82の油面84は、例えば、油貯留部82の油面84の変化範囲内の最も高い油面とし、或いは、油圧ポンプ1が動作中であって且つ油圧ポンプ1の油面が安定した状態での油貯留部82の油面84とすることができる。なお、図5に示す例では、アクチュエータ2がケース80の外部に配置されていると共に、アクチュエータ2及びポンプ部3の双方が、油貯留部82の油面84よりも上方に配置されている。 Here, the case where the actuator 2 is used in the air environment by disposing the actuator 2 outside the case 80 has been exemplified, but in the inside of the case 80, the oil surface 84 of the oil reservoir 82 is used. The actuator 2 may be configured to be used in an air environment or an environment close to the air environment by disposing the actuator 2 above (above the vertical direction Z). The vertical direction Z means the vertical direction when the hydraulic pump 1 is in use, and here means the vertical direction when the case 80 is mounted on a vehicle. At least a part of the pump unit 3 (for example, the suction port 31) may be disposed below the oil surface 84 of the oil reservoir 82 (downward in the vertical direction Z). The oil level 84 of the oil reservoir 82 is, for example, the highest oil level within the range of change of the oil level 84 of the oil reservoir 82, or the hydraulic pump 1 is in operation and the oil level of the hydraulic pump 1 is The oil surface 84 of the oil reservoir 82 in a stable state can be obtained. In the example shown in FIG. 5, the actuator 2 is disposed outside the case 80, and both the actuator 2 and the pump unit 3 are disposed above the oil surface 84 of the oil reservoir 82.
 図1に示すように、本実施形態では、更に、筒状コイル体10と可動体20とが径方向DRに対向する対向部2aに圧力室33の油が浸入して可動体20の摺動抵抗が増大することを抑制するために、対向部2aと圧力室33との軸方向DLの間に、圧力室33からの油83の浸入を遮断する油遮断構造5を設けている。本実施形態では、この油遮断構造5は、軸方向DLにおける圧力室33とアクチュエータ2との間に、第1シール部材S1を用いて圧力室33と油密状に区画された中間室60を備えている。すなわち、中間室60は、圧力室33と区画されている。中間室60は、軸方向DLにおける、圧力室33と、アクチュエータ2における対向部2aとの間に設けられている。 As shown in FIG. 1, in the present embodiment, the oil of the pressure chamber 33 further infiltrates into the facing portion 2 a where the cylindrical coil body 10 and the movable body 20 oppose in the radial direction DR, and the sliding of the movable body 20 In order to suppress an increase in resistance, an oil blocking structure 5 is provided between the opposing portion 2a and the pressure chamber 33 in the axial direction DL to block the entry of oil 83 from the pressure chamber 33. In the present embodiment, the oil shutoff structure 5 includes an intermediate chamber 60 partitioned between the pressure chamber 33 and the pressure chamber 33 in an oil-tight manner using the first seal member S1 between the pressure chamber 33 and the actuator 2 in the axial direction DL. Have. That is, the intermediate chamber 60 is partitioned from the pressure chamber 33. The intermediate chamber 60 is provided between the pressure chamber 33 and the facing portion 2 a of the actuator 2 in the axial direction DL.
 具体的には、中間室60の軸方向第1側DL1の壁である第1壁61は、シリンダ30(具体的には、筒状部34)によって形成されており、シリンダ30における第1壁61を形成する部分に、ピストン40の第1部分51が貫通する第1貫通孔61aが形成されている。そして、圧力室33(具体的には、第2圧力室33b)と中間室60とを油密状に区画するために、第1部分51の外周面と第1貫通孔61aの内周面との間をシールする第1シール部材S1(環状のシール部材)が、第1部分51の外周面に設けられている。 Specifically, the first wall 61 which is a wall of the first axial side DL1 of the intermediate chamber 60 is formed by the cylinder 30 (specifically, the cylindrical portion 34), and the first wall 61 of the cylinder 30 A first through hole 61 a through which the first portion 51 of the piston 40 passes is formed in a portion forming the portion 61. The outer peripheral surface of the first portion 51 and the inner peripheral surface of the first through hole 61a are formed to divide the pressure chamber 33 (specifically, the second pressure chamber 33b) and the intermediate chamber 60 in an oil tight manner. A first seal member S1 (annular seal member) for sealing the gap is provided on the outer peripheral surface of the first portion 51.
 一方、中間室60の軸方向第2側DL2の壁である第2壁62は、筒状コイル体10(具体的には、コア12)によって形成されており、筒状コイル体10における第2壁62を形成する部分に、可動体20の第2部分52が貫通する第2貫通孔62aが形成されている。可動体20の第2部分52は、ピストン40の第1部分51と中間室60において連結されている。すなわち、第1部分51と第2部分52との連結部53は、中間室60に配置されている。なお、第1部分51及び第2部分52は、いずれも軸方向DLに延びる筒状(ここでは、円筒状)の外周面を有するように形成されている。なお、第2貫通孔62aと第2部分52との間には、第2貫通孔62aの内周面と第2部分52の外周面との間を閉塞する第1閉塞部材B1(ここでは、ブッシュ)が配置されている。本明細書において、「閉塞」とは、隙間の少なくとも一部を塞ぐことを意味する。 On the other hand, the second wall 62 which is a wall of the axial second side DL 2 of the intermediate chamber 60 is formed by the cylindrical coil body 10 (specifically, the core 12), and the second wall 62 in the cylindrical coil body 10 In the portion forming the wall 62, a second through hole 62a through which the second portion 52 of the movable body 20 penetrates is formed. The second portion 52 of the movable body 20 is connected to the first portion 51 of the piston 40 at the intermediate chamber 60. That is, the connecting portion 53 between the first portion 51 and the second portion 52 is disposed in the intermediate chamber 60. Each of the first portion 51 and the second portion 52 is formed to have a cylindrical (here, cylindrical) outer peripheral surface extending in the axial direction DL. Note that, between the second through hole 62a and the second portion 52, a first closing member B1 (here, a portion between the inner circumferential surface of the second through hole 62a and the outer circumferential surface of the second portion 52). Bush) is arranged. As used herein, "occluding" means closing at least a portion of the gap.
 本実施形態では、中間室60の径方向外側DR2の壁である第3壁63は、筒状コイル体10(具体的には、コア12)によって形成されており、筒状コイル体10における第3壁63を形成する部分に、当該部分を径方向DRに貫通する排出口7が形成されている。すなわち、中間室60は、排出口7を介して、アクチュエータ2の外側の空間である外部空間6に開放されている。図5において図示は省略しているが、図5に示す例では、排出口7は、ケース80の内部に配置されている。よって、図5に示す例では、ケース80の内部に形成された収容空間80aが、外部空間6となる。なお、第3壁63が、筒状コイル体10とは異なる部材(例えば、シリンダ30)によって形成され、当該部材における第3壁63を形成する部分に排出口7が設けられてもよい。 In the present embodiment, the third wall 63 which is a wall of the radially outer side DR2 of the intermediate chamber 60 is formed by the cylindrical coil body 10 (specifically, the core 12). In the part forming the three walls 63, the discharge port 7 penetrating the part in the radial direction DR is formed. That is, the intermediate chamber 60 is opened to the external space 6 which is the space outside the actuator 2 through the discharge port 7. Although illustration is abbreviate | omitted in FIG. 5, the discharge port 7 is arrange | positioned inside the case 80 in the example shown in FIG. Therefore, in the example shown in FIG. 5, the accommodation space 80 a formed inside the case 80 is the external space 6. The third wall 63 may be formed of a member (for example, a cylinder 30) different from the cylindrical coil body 10, and the discharge port 7 may be provided in a portion of the member where the third wall 63 is formed.
 このように、本実施形態では、軸方向DLにおける圧力室33(具体的には、第2圧力室33b)とアクチュエータ2(対向部2a)との間に中間室60が設けられると共に、中間室60は、第1シール部材S1を用いて圧力室33と油密状に区画されている。これにより、圧力室33から軸方向第2側DL2に油83が漏れることを第1シール部材S1によって規制することができると共に、仮にこのような油83の漏れが発生した場合であっても、当該油83をアクチュエータ2の内部(対向部2a)ではなく中間室60に流入させることが可能となっている。その上で、本実施形態では、中間室60が外部空間6に開放されているため、仮に中間室60に油83が流入した場合であっても、当該油83をアクチュエータ2の内部(対向部2a)に流入させずに外部空間6に排出すること、すなわち、アクチュエータ2の内部(対向部2a)への油83の浸入を遮断することが可能となっている。 As described above, in the present embodiment, the intermediate chamber 60 is provided between the pressure chamber 33 (specifically, the second pressure chamber 33 b) and the actuator 2 (the facing portion 2 a) in the axial direction DL, and 60 is oil-tightly partitioned from the pressure chamber 33 using the first seal member S1. Thereby, the first seal member S1 can regulate the oil 83 from leaking from the pressure chamber 33 to the axial second side DL2, and even if such an oil 83 leaks, It is possible to cause the oil 83 to flow into the intermediate chamber 60 instead of the inside of the actuator 2 (the facing portion 2a). Furthermore, in the present embodiment, since the intermediate chamber 60 is opened to the external space 6, even if the oil 83 flows into the intermediate chamber 60, the oil 83 is not contained in the inside of the actuator 2 (facing portion It is possible to discharge to the external space 6 without flowing into 2a), that is, to block the entry of the oil 83 into the inside (the facing portion 2a) of the actuator 2.
 本実施形態では、更に、可動体20及びピストン40が軸方向DLに沿って往復移動している状態(すなわち、油圧ポンプ1の作動時)での中間室60の体積変化を小さく抑えるために、第1部分51の外周面と第2部分52の外周面とを同径に形成している。これにより、中間室60の気圧の変動を少なくして中間室60とアクチュエータ2の内部(対向部2a)との気圧差を小さく抑えることができ、この点からも、中間室60に存在する油83がアクチュエータ2の内部(対向部2a)に浸入し難い構成となっている。なお、第1部分51の外周面と第2部分52の外周面との径が異なる構成とすることもできるが、この場合であっても、第1部分51の外周面と第2部分52の外周面との径の差をできるだけ小さく抑えて、中間室60の体積変化をできるだけ小さく抑えると好適である。なお、ここで示した油遮断構造5の構成は一例であり、油遮断構造5の構成は適宜変更することが可能である。また、圧力室33から軸方向第2側DL2への油83の漏れが問題とならない場合等には、油圧ポンプ1に油遮断構造5が設けられない構成とすることもできる。 In the present embodiment, in order to further reduce the volume change of the intermediate chamber 60 in a state in which the movable body 20 and the piston 40 reciprocate along the axial direction DL (that is, at the time of operation of the hydraulic pump 1), The outer peripheral surface of the first portion 51 and the outer peripheral surface of the second portion 52 are formed to have the same diameter. As a result, the variation of the pressure in the intermediate chamber 60 can be reduced, and the pressure difference between the intermediate chamber 60 and the inside of the actuator 2 (opposite portion 2a) can be kept small. 83 is configured to be hard to infiltrate into the inside of the actuator 2 (opposite portion 2a). Although the diameters of the outer peripheral surface of the first portion 51 and the outer peripheral surface of the second portion 52 may be different, even in this case, the outer peripheral surface of the first portion 51 and the second portion 52 It is preferable to minimize the difference in diameter with the outer peripheral surface as much as possible and to minimize the volume change of the intermediate chamber 60 as much as possible. In addition, the structure of the oil blocking structure 5 shown here is an example, and it is possible to change the structure of the oil blocking structure 5 suitably. In addition, when the leakage of the oil 83 from the pressure chamber 33 to the axial second side DL2 does not cause a problem, the hydraulic pump 1 may not be provided with the oil shutoff structure 5.
 上述したように、第2貫通孔62aと第2部分52との間には、第1閉塞部材B1が配置されている。また、アクチュエータ2は、第2貫通孔62aよりも軸方向第2側DL2に、可動体20における第2部分52よりも軸方向第2側DL2の部分である第3部分23が挿入される第3貫通孔13を有しており、第3貫通孔13と第3部分23との間に、第3貫通孔13の内周面と第3部分23の外周面との間を閉塞する第2閉塞部材B2(ここでは、ブッシュ)が配置されている。これらの第1閉塞部材B1や第2閉塞部材B2は、シールとして作用するため、アクチュエータ2の内部への油83の浸入を、軸方向DLの両側において効果的に抑制することが可能となっている。なお、本実施形態では、第3部分23は、可動体20における永久磁石M(ここでは、第1永久磁石M1及び第2永久磁石M2)よりも軸方向第2側DL2の部分である。ここでは、第3部分23は、可動体20における軸方向第2側DL2の端部を構成している。また、第3部分23は、可動体20における第3部分23よりも軸方向第1側DL1の部分(ここでは、永久磁石Mが設けられた部分)よりも、小径に形成されている。そして、第3貫通孔13は、筒状コイル体10(具体的には、コア12)における軸方向第2側DL2の端部に形成されている。ここでは、第3貫通孔13は、筒状コイル体10(具体的には、コア12)における、アクチュエータ2の内部に形成される可動体20の収容室の軸方向第2側DL2の壁を形成する部分に、形成されている。 As described above, the first closing member B1 is disposed between the second through hole 62a and the second portion 52. Further, the actuator 2 is configured such that the third portion 23, which is a portion of the second side DL2 in the axial direction than the second portion 52 of the movable body 20, is inserted into the second side DL2 in the axial direction than the second through hole 62a. A third through hole 13 is provided, and the second through hole 13 is closed between the inner peripheral surface of the third through hole 13 and the outer peripheral surface of the third portion 23 between the third through hole 13 and the third portion 23. A closing member B2 (here, a bush) is disposed. Since the first closing member B1 and the second closing member B2 function as a seal, the entry of the oil 83 into the inside of the actuator 2 can be effectively suppressed on both sides in the axial direction DL. There is. In the present embodiment, the third portion 23 is a portion on the second side DL2 in the axial direction of the permanent magnet M (here, the first permanent magnet M1 and the second permanent magnet M2) in the movable body 20. Here, the third portion 23 constitutes an end portion of the movable body 20 on the second axial side DL2. The third portion 23 is smaller in diameter than the third portion 23 of the movable body 20 than the portion on the first axial side DL1 (here, the portion provided with the permanent magnet M). And the 3rd penetration hole 13 is formed in the end of axial direction 2nd side DL2 in cylindrical coil object 10 (specifically, core 12). Here, the third through hole 13 is a wall of the axial direction second side DL2 of the accommodation chamber of the movable body 20 formed inside the actuator 2 in the cylindrical coil body 10 (specifically, the core 12). It is formed in the part to form.
 次に、本実施形態に係る油圧ポンプ1における、アクチュエータ2の消費エネルギの低減を図るための構成について説明する。 Next, a configuration for reducing energy consumption of the actuator 2 in the hydraulic pump 1 according to the present embodiment will be described.
 図1に示すように、油圧ポンプ1には、ピストン40を軸方向第1側DL1へ付勢する第1付勢部材71と、ピストン40を軸方向第2側DL2へ付勢する第2付勢部材72とが設けられている。ここでは、第1付勢部材71は、ピストン40の軸方向DLの位置によらず、ピストン40を軸方向第1側DL1へ付勢するように設けられ、第2付勢部材72は、ピストン40の軸方向DLの位置によらず、ピストン40を軸方向第2側DL2へ付勢するように設けられている。そして、以下に述べるように、この油圧ポンプ1は、第1付勢部材71と第2付勢部材72とによるピストン40の共振現象を利用して、ピストン40を軸方向DLに沿って往復移動させるように構成されている。すなわち、第1付勢部材71及び第2付勢部材72は、ピストン40を軸方向DLに付勢する付勢部材であり、ピストン40を共振させるための共振用付勢部材として機能する。この油圧ポンプ1では、アクチュエータ2が発生する推力を、ピストン40の共振現象によって補填することで、ピストン40に要求される推力を発生させるためのアクチュエータ2の消費エネルギの低減を図ることが可能となっている。 As shown in FIG. 1, the hydraulic pump 1 has a first biasing member 71 for biasing the piston 40 toward the first axial side DL1, and a second biasing member for biasing the piston 40 toward the second axial side DL2. A biasing member 72 is provided. Here, the first biasing member 71 is provided to bias the piston 40 toward the first axial side DL1 regardless of the position of the piston 40 in the axial direction DL, and the second biasing member 72 is a piston The piston 40 is provided so as to bias the piston 40 toward the second axial side DL2 regardless of the position of the axial direction DL. Then, as described below, the hydraulic pump 1 reciprocates the piston 40 along the axial direction DL by using the resonance phenomenon of the piston 40 by the first biasing member 71 and the second biasing member 72. It is configured to let you That is, the first biasing member 71 and the second biasing member 72 are biasing members that bias the piston 40 in the axial direction DL, and function as resonance biasing members for causing the piston 40 to resonate. In this hydraulic pump 1, by compensating the thrust generated by the actuator 2 by the resonance phenomenon of the piston 40, it is possible to reduce the energy consumption of the actuator 2 for generating the thrust required of the piston 40. It has become.
 図1に示すように、本実施形態では、第1付勢部材71は、ピストン40の第1部分51に対して軸方向第2側DL2に、当該第1部分51を軸方向第1側DL1へ付勢するように配置されている。ここでは、第1付勢部材71は、中間室60に配置されている。具体的には、第1付勢部材71は、ピストン40(具体的には、第1部分51)とコア12とに付勢力を作用させるように設けられている。なお、第1付勢部材71は、軸方向第1側DL1の径が、軸方向第2側DL2の径よりも小さく形成されている。これにより、第1部分51の外周面と第2部分52の外周面とが同径に形成されている場合であっても、ピストン40(具体的には、第1部分51)とコア12(具体的には、第2部分52に対して径方向DRの外側の部分)とに付勢力を作用させるように、第1付勢部材71を設けることが可能となっている。第1付勢部材71としてコイルばねを用いることができ、この場合、第1付勢部材71は、伸縮方向が軸方向DLに沿う向きで、自然長よりも圧縮された状態で配置される。 As shown in FIG. 1, in the present embodiment, the first biasing member 71 is disposed on the second side DL2 in the axial direction with respect to the first part 51 of the piston 40, and the first portion 51 in the axial direction first side DL1. It is arranged to be biased. Here, the first biasing member 71 is disposed in the intermediate chamber 60. Specifically, the first biasing member 71 is provided to exert a biasing force on the piston 40 (specifically, the first portion 51) and the core 12. The first biasing member 71 is formed such that the diameter of the first axial side DL1 is smaller than the diameter of the second axial side DL2. Thereby, even when the outer peripheral surface of the first portion 51 and the outer peripheral surface of the second portion 52 are formed to have the same diameter, the piston 40 (specifically, the first portion 51) and the core 12 (the first portion 51). Specifically, it is possible to provide the first biasing member 71 so as to apply a biasing force to the second portion 52 and the outer portion of the radial direction DR. A coil spring can be used as the first biasing member 71. In this case, the first biasing member 71 is disposed in a state in which the expansion and contraction direction follows the axial direction DL and is compressed more than the natural length.
 また、本実施形態では、第2付勢部材72は、ピストン40の本体部41に対して軸方向第1側DL1に(ここでは、軸方向DLにおけるピストン40と第1逆止弁V1との間に)、当該本体部41を軸方向第2側DL2へ付勢するように配置されている。ここでは、第2付勢部材72は、第1圧力室33aに配置されている。具体的には、第2付勢部材72は、圧力室33の内部のピストン40(具体的には、本体部41)と、シリンダ30の軸方向DLにおけるアクチュエータ2側とは反対側(すなわち、軸方向第1側DL1)の端部とに、付勢力を作用させるように設けられている。第2付勢部材72としてコイルばねを用いることができ、この場合、第2付勢部材72は、伸縮方向が軸方向DLに沿う向きで、自然長よりも圧縮された状態で配置される。 Further, in the present embodiment, the second biasing member 72 is located on the first axial side DL1 with respect to the main body portion 41 of the piston 40 (here, the piston 40 and the first check valve V1 in the axial direction DL ), The body portion 41 is arranged to be biased toward the second axial side DL2. Here, the second biasing member 72 is disposed in the first pressure chamber 33a. Specifically, the second biasing member 72 is opposite to the piston 40 (specifically, the main body 41) inside the pressure chamber 33 and the side of the actuator 2 in the axial direction DL of the cylinder 30 (ie, An urging force is applied to the end of the first axial side DL1). A coil spring can be used as the second biasing member 72. In this case, the second biasing member 72 is disposed in a state in which the expansion and contraction direction follows the axial direction DL and is compressed more than the natural length.
 このように、本実施形態では、第1付勢部材71と第2付勢部材72とが、ピストン40の少なくとも一部に対して軸方向DLの両側に分かれて配置されている。具体的には、第1付勢部材71と第2付勢部材72とは、ピストン40における本体部41、第1部分51、及びこれらの間の部分に対して、軸方向DLの両側に分かれて配置されている。そして、本実施形態では、第1付勢部材71と第2付勢部材72とが、径方向視で吐出口32と重複しないように配置されている。すなわち、第1付勢部材71及び第2付勢部材72の双方は、吐出口32から吐出される油83の流れを阻害しないように配置されており、これにより、吐出口32における流路抵抗が低く抑えられている。ここでは、第1付勢部材71を中間室60に配置し、第2付勢部材72を第1圧力室33aに配置し、吐出口32を第2圧力室33bに連通するように設けることで、第1付勢部材71と第2付勢部材72とが、径方向視で吐出口32と重複しない構成を実現している。 As described above, in the present embodiment, the first biasing member 71 and the second biasing member 72 are disposed separately on at least a part of the piston 40 on both sides in the axial direction DL. Specifically, the first biasing member 71 and the second biasing member 72 are divided into both sides in the axial direction DL with respect to the main body portion 41, the first portion 51, and the portion therebetween in the piston 40. Are arranged. And in this embodiment, the 1st biasing member 71 and the 2nd biasing member 72 are arrange | positioned so that it may not overlap with the discharge port 32 in the radial direction view. That is, both the first biasing member 71 and the second biasing member 72 are disposed so as not to inhibit the flow of the oil 83 discharged from the discharge port 32, whereby the flow path resistance at the discharge port 32 is obtained. Is kept low. Here, the first biasing member 71 is disposed in the intermediate chamber 60, the second biasing member 72 is disposed in the first pressure chamber 33a, and the discharge port 32 is provided in communication with the second pressure chamber 33b. The first urging member 71 and the second urging member 72 do not overlap with the discharge port 32 in the radial direction.
 本実施形態では、アクチュエータ2は、設定された駆動周波数で可動体20を軸方向DLに沿って往復移動させるように構成されている。すなわち、制御部90は、設定された駆動周波数で可動体20が軸方向DLに沿って往復移動するように、アクチュエータ2を制御するように構成されている。制御部90は、図示は省略する駆動回路(具体的には、単相のインバータ回路)を介してアクチュエータ2を制御するように構成されている。例えば、制御部90は、設定された駆動周波数を有する交流電圧がアクチュエータ2(具体的には、コイル11)に印加されるように、駆動回路を制御する。 In the present embodiment, the actuator 2 is configured to reciprocate the movable body 20 along the axial direction DL at a set drive frequency. That is, the control unit 90 is configured to control the actuator 2 such that the movable body 20 reciprocates along the axial direction DL at the set drive frequency. The control unit 90 is configured to control the actuator 2 via a drive circuit (specifically, a single-phase inverter circuit) which is not shown. For example, the control unit 90 controls the drive circuit such that an AC voltage having a set drive frequency is applied to the actuator 2 (specifically, the coil 11).
 アクチュエータ2の駆動周波数は、要求される油83の吐出流量が得られるように、ピストン40の径やピストン40のストローク量に応じて設定される。例えば、アクチュエータ2の駆動周波数は、車両の走行状態(例えば、変速時、定常走行等)に応じて定まる自動変速機の必要流量の分だけの目標吐出流量が得られるように設定される。そして、ピストン40と第1付勢部材71と第2付勢部材72とを含む振動系が、可動体20の往復移動に伴い共振状態となるように、第1付勢部材71と第2付勢部材72との合成ばね定数が駆動周波数に基づき設定されている。すなわち、アクチュエータ2は、ピストン40と第1付勢部材71と第2付勢部材72とを含む振動系が、可動体20の往復移動に伴い共振状態となる駆動周波数で、可動体20を軸方向DLに沿って往復移動させる。そして、ポンプ部3(具体的には、可動体20)は、ポンプ部3の目標吐出流量(油圧ポンプ1の目標吐出流量)を確保できる駆動周波数で駆動される。なお、この振動系には、可動体20も含まれる。アクチュエータ2の駆動周波数が可変に設定される場合には、合成ばね定数を設定するための駆動周波数は、例えば、最も使用頻度の高い駆動周波数とすることができる。 The drive frequency of the actuator 2 is set according to the diameter of the piston 40 and the stroke amount of the piston 40 so as to obtain the required discharge flow rate of the oil 83. For example, the drive frequency of the actuator 2 is set so as to obtain a target discharge flow rate corresponding to the required flow rate of the automatic transmission which is determined according to the traveling state of the vehicle (for example, at the time of shifting, steady traveling etc.). The vibration system including the piston 40, the first biasing member 71, and the second biasing member 72 becomes in a resonant state as the movable body 20 reciprocates, so that the first biasing member 71 and the second biasing member The combined spring constant with the biasing member 72 is set based on the drive frequency. That is, in the actuator 2, the vibration system including the piston 40, the first biasing member 71, and the second biasing member 72 has an axis at the movable body 20 at a driving frequency at which the resonant state occurs as the movable body 20 reciprocates. Reciprocate along the direction DL. The pump unit 3 (specifically, the movable body 20) is driven at a drive frequency that can ensure the target discharge flow rate of the pump unit 3 (the target discharge flow rate of the hydraulic pump 1). The vibration system also includes the movable body 20. When the drive frequency of the actuator 2 is set to be variable, the drive frequency for setting the combined spring constant can be, for example, the drive frequency with the highest frequency of use.
 この油圧ポンプ1におけるピストン40の運動方程式は、以下に説明するように、減衰強制振動の運動方程式で表すことができる。そして、下記の式(9)に示されるように、本実施形態では、ピストン40と可動体20とを含む、駆動周波数で軸方向DLに沿って往復移動する可動部分4全体の質量を、対象質量として、第1付勢部材71と第2付勢部材72との合成ばね定数(K)を、駆動周波数に応じた角周波数(ω)の2乗に、対象質量(W)を乗じた値を基準として設定している。ここで、「ある値を基準として設定する」とは、当該値に設定することと、当該値を調整した値に設定することとの双方を含む概念である。よって、駆動周波数に応じた角周波数(駆動角周波数)の2乗に対象質量を乗じた値を基準値として、第1付勢部材71と第2付勢部材72との合成ばね定数は、当該基準値に設定され、又は、当該基準値を調整した値に設定される。後者の場合、例えば、ピストン40と第1付勢部材71と第2付勢部材72とを含む振動系の実際の共振角周波数の、下記の式(8)で表される角周波数ωからのずれを考慮して、第1付勢部材71と第2付勢部材72との合成ばね定数を、上記基準値を調整した値に設定することができる。 The equation of motion of the piston 40 in the hydraulic pump 1 can be expressed by the equation of motion of damped forced vibration as described below. And, as shown in the following equation (9), in the present embodiment, the mass of the entire movable portion 4 that reciprocates along the axial direction DL at the drive frequency, including the piston 40 and the movable body 20 A value obtained by multiplying the target mass (W) by the square of the angular frequency (ω) corresponding to the drive frequency as the combined spring constant (K) of the first biasing member 71 and the second biasing member 72 as a mass Is set as the standard. Here, "setting a certain value as a reference" is a concept including both setting to the value and setting the value to the adjusted value. Therefore, the synthetic spring constant of the 1st energizing member 71 and the 2nd energizing member 72 makes the reference value the value which multiplied the object mass to the square of the angular frequency (driving angular frequency) according to driving frequency. It is set to a reference value or set to a value obtained by adjusting the reference value. In the latter case, for example, from the angular frequency ω 0 represented by the following equation (8) of the actual resonant angular frequency of the vibration system including the piston 40, the first biasing member 71, and the second biasing member 72. The combined spring constant of the first biasing member 71 and the second biasing member 72 can be set to a value obtained by adjusting the above-mentioned reference value, in consideration of the deviation of the above.
 以下、ピストン40の運動方程式について説明する。ここで、可動部分4全体の質量をW、推力をF、油83による粘性抵抗及び可動部分4の摺動抵抗をcμ、油圧をP、ピストン40の受圧面積をS、第1付勢部材71及び第2付勢部材72の合成ばね定数をK、ピストン40の変位をxとすると、ピストン40の運動方程式は、符号関数sgnを用いて下記式(1)により表すことができる。 Hereinafter, the equation of motion of the piston 40 will be described. Here, the entire mass of the movable part 4 is W, the thrust is F m , the viscous drag by the oil 83 and the sliding resistance of the movable part 4 c μ , the hydraulic pressure is P, the pressure receiving area of the piston 40 is S, the first bias Assuming that the synthetic spring constant of the member 71 and the second biasing member 72 is K and the displacement of the piston 40 is x, the equation of motion of the piston 40 can be expressed by the following equation (1) using a code function sgn.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 コイル11への通電に関する電気回路の回路方程式は、電圧をV、回路の電気抵抗をR、電流をI、回路のインダクタンスをL、逆起電圧定数をkとして、下記式(2)で表される。 The circuit equation of the electric circuit regarding energization to the coil 11 is represented by the following equation (2) with voltage V, electric resistance of the circuit R, current I, inductance of the circuit L and back electromotive force constant k e Be done.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 推力Fと電流Iとの関係は、kを推力定数として、下記式(3)で表される。 The relationship between the thrust F m and the current I is expressed by the following equation (3), where k F is a thrust constant.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(4)に示すように、推力定数kと逆起電圧定数kとは等しく、電圧振幅をV、アクチュエータ2の駆動角周波数(ここでは、電圧角周波数)をωとして、下記式(5)に示すように電圧指令を仮定することができる。なお、ここでは、逆起電圧と油圧の影響は無視している。 As shown in the equation (4), the thrust constant k F and the back electromotive force constant k e are equal, the voltage amplitude is V a , and the driving angular frequency of the actuator 2 (here, the voltage angular frequency) is ω, the following expression A voltage command can be assumed as shown in (5). Here, the influence of back electromotive force and oil pressure is ignored.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 以上より、式(1)の運動方程式をまとめると下記式(6)となる。なお、構造上、回路のインダクタンスLは小さいため、ここではインダクタンスLは無視して考える。 As mentioned above, it will become following formula (6) if the equation of motion of Formula (1) is put together. In addition, since the inductance L of the circuit is small due to its structure, the inductance L is neglected and considered here.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(6)は、減衰強制振動の運動方程式であり、この運動方程式は下記式(7)及び式(8)で示すような定常振動解を持つ。 Equation (6) is an equation of motion of damped forced vibration, and this equation of motion has a steady-state vibration solution as shown by the following Equation (7) and Equation (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図4に、角周波数比(ω/ω)と振幅比(X/X)との関係を示す特性図を示す。ここで、Xは、静的変位量であり、式(6)の右辺の振幅(k/R)を合成ばね定数Kで除した値である。図4、式(7)、及び式(8)より、“ω=ω”の時に振幅比が最大となることがわかる。この条件を満たせば、低い推力でも可動部分4を軸方向DLに沿って往復移動させることが可能である。このように共振を利用することによって、油圧ポンプ1の効率の向上、低消費電力化、アクチュエータ2の小型化などが実現できる。 FIG. 4 is a characteristic diagram showing the relationship between the angular frequency ratio (ω / ω 0 ) and the amplitude ratio (X a / X s ). Here, X s is a static displacement amount, which is a value obtained by dividing the amplitude (k F V a / R) on the right side of Formula (6) by the synthetic spring constant K. From FIG. 4, the equation (7), and the equation (8), it can be seen that the amplitude ratio is maximum when “ω = ω 0 ”. If this condition is satisfied, the movable portion 4 can be reciprocated along the axial direction DL even with a low thrust. By utilizing the resonance as described above, the efficiency of the hydraulic pump 1 can be improved, the power consumption can be reduced, and the actuator 2 can be miniaturized.
 “ω=ω”の時に振幅比が最大となるが、式(8)に示すように、角周波数ωは、合成ばね定数Kを可動部分4全体の質量Wで除して平方根を取った値である。言い換えれば、“ω=ω”となるように、合成ばね定数Kが、下記式(9)に示すように、駆動角周波数ωの2乗に可動部分4全体の質量Wを乗じた値に設定されていると好適である。この点に基づき、本実施形態では、上述したように、第1付勢部材71と第2付勢部材72との合成ばね定数を、駆動角周波数の2乗に、対象質量(可動部分4全体の質量)を乗じた値を基準として設定している The amplitude ratio is maximized when “ω = ω 0 ”, but as shown in equation (8), the angular frequency ω 0 is obtained by dividing the composite spring constant K by the mass W of the entire movable part 4 and taking the square root Value. In other words, the combined spring constant K is a value obtained by multiplying the square of the driving angular frequency ω by the mass W of the entire movable portion 4 so that “ω = ω 0 ” as shown in the following equation (9) It is preferable that it is set. Based on this point, in the present embodiment, as described above, the combined spring constant of the first biasing member 71 and the second biasing member 72 is set to the square of the driving angular frequency, and the target mass (the entire movable portion 4 is Is set based on the value obtained by multiplying the mass of
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここでは、第1付勢部材71のばね定数と第2付勢部材72のばね定数との和が、第1付勢部材71と第2付勢部材72との合成ばね定数Kとなる。例えば、第1付勢部材71のばね定数と第2付勢部材72のばね定数とを同じ値(すなわち、合成ばね定数Kの半値)に設定することができる。なお、第1付勢部材71のばね定数と第2付勢部材72のばね定数とを互いに異ならせて、これらのばね定数の合計が上述した合成ばね定数Kとなるように設定してもよい。 Here, the sum of the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 is the combined spring constant K of the first biasing member 71 and the second biasing member 72. For example, the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 can be set to the same value (that is, a half value of the combined spring constant K). Alternatively, the spring constant of the first biasing member 71 and the spring constant of the second biasing member 72 may be made different from each other so that the total of these spring constants is the above-described synthetic spring constant K. .
 単位時間当たりの油83の吐出回数を多くするためにアクチュエータ2の駆動周波数を高くする場合、共振現象を有効に利用するためには、アクチュエータ2の駆動周波数に合わせて共振周波数を高くする必要、すなわち、振動系全体のばね定数を大きくする必要がある。この点に関し、この油圧ポンプ1には、共振現象を発生させるための共振用付勢部材として、ピストン40を軸方向DLの互いに反対側に付勢する2つの共振用付勢部材(71,72)が設けられる。そのため、共振用付勢部材が1つのみ設けられる場合に比べて、振動系全体のばね定数を大きく確保しやすくなっている。 When the drive frequency of the actuator 2 is increased to increase the number of times the oil 83 is discharged per unit time, the resonant frequency needs to be increased in accordance with the drive frequency of the actuator 2 in order to effectively use the resonance phenomenon. That is, it is necessary to increase the spring constant of the entire vibration system. In this regard, the hydraulic pump 1 is provided with two resonance biasing members (71, 72) for biasing the piston 40 to opposite sides in the axial direction DL as a resonance biasing member for generating a resonance phenomenon. ) Is provided. Therefore, compared with the case where only one resonance biasing member is provided, it is easy to secure a large spring constant of the entire vibration system.
 以上のように、この油圧ポンプ1では、制御部90が、設定された駆動周波数で可動体20が軸方向DLに沿って往復移動するように、アクチュエータ2を制御するように構成されている。そして、本実施形態では、ピストン40を軸方向DLに付勢する共振用付勢部材として、第1付勢部材71と第2付勢部材72との2つの共振用付勢部材が設けられ、第1付勢部材71と第2付勢部材72との合成ばね定数が、駆動角周波数(駆動周波数に応じた角周波数)の2乗に、対象質量(可動部分4全体の質量)を乗じた値を基準として設定される。そのため、ピストン40と第1付勢部材71と第2付勢部材72とを含む振動系の共振角周波数ωが、上記の式(8)で表される値(合成ばね定数Kを可動部分4全体の質量Wで除して平方根を取った値)と一致或いは実質的に一致する場合には、ピストン40の共振現象を有効に利用して、アクチュエータ2の消費エネルギを効果的に低減すること、言い換えれば、アクチュエータ2の効率を効果的に高めることができる。 As described above, in the hydraulic pump 1, the control unit 90 is configured to control the actuator 2 such that the movable body 20 reciprocates along the axial direction DL at the set drive frequency. Further, in the present embodiment, two resonance biasing members of a first biasing member 71 and a second biasing member 72 are provided as a resonance biasing member for biasing the piston 40 in the axial direction DL, The combined spring constant of the first biasing member 71 and the second biasing member 72 is obtained by multiplying the square of the driving angular frequency (the angular frequency corresponding to the driving frequency) by the target mass (the mass of the entire movable portion 4) It is set based on the value. Therefore, the resonant angular frequency ω 0 of the vibration system including the piston 40, the first biasing member 71 and the second biasing member 72 has a value represented by the above equation (8) (the combined spring constant K is a movable portion 4) In the case where the values are the same or substantially the same as the square root value divided by the total mass W, the resonance phenomenon of the piston 40 is effectively used to effectively reduce the energy consumption of the actuator 2 In other words, the efficiency of the actuator 2 can be effectively enhanced.
 一方、振動系の共振角周波数ωが上記の式(8)で表される値からずれる場合には、駆動角周波数ωと共振角周波数ωとのずれが大きくなるに従ってアクチュエータ2の効率が低下する。このように駆動角周波数ωが共振角周波数ωに一致しない場合であっても、駆動角周波数ωと共振角周波数ωとのずれが大きくなければ、最適ではないもののピストン40の共振現象を利用して、アクチュエータ2の効率の向上を図ることができる。但し、ピストン40の共振現象をできるだけ有効に利用するためには、駆動角周波数ωが共振角周波数ωに近い値に設定されることが望ましい。 On the other hand, when the resonant angular frequency ω 0 of the vibration system deviates from the value represented by the above equation (8), the efficiency of the actuator 2 increases as the deviation between the driving angular frequency ω and the resonant angular frequency ω 0 increases. descend. Even if such a driving angular frequency omega is not identical to the resonance angular frequency omega 0, if there is no large shift of the driving angular frequency omega and the resonance angular frequency omega 0, the resonance phenomenon of the piston 40 but not optimal The efficiency of the actuator 2 can be improved by utilizing it. However, in order to use the resonance phenomenon of the piston 40 as effectively as possible, it is desirable that the drive angular frequency ω be set to a value close to the resonant angular frequency ω 0 .
 本発明者らは、共振角周波数ωが上記の式(8)で表される値からずれる要因として、圧力室33の内部の油83をばねとみなした場合の当該油83のばね定数に着目した。圧力室33の内部の油83は、ピストン40の軸方向DLに沿った往復移動に伴い圧縮及び膨張されるため、当該油83をばねとみなすことができる。そして、本発明者らは、研究の結果、圧力室33の内部の油83のばね定数がポンプ部3の動作状態に応じて変化することで、アクチュエータ2の効率に影響を与える程度に振動系の共振周波数が変化するという知見を得た。このような知見に基づき、制御部90は、ピストン40と共振用付勢部材(ここでは、第1付勢部材71及び第2付勢部材72)とを含む振動系の共振周波数に駆動周波数が近づくように(すなわち、共振角周波数ωに駆動角周波数ωが近づくように)、駆動周波数をポンプ部3の動作状態に応じて異ならせるように構成されている。具体的には、制御部90は、ピストン40、可動体20、共振用付勢部材(ここでは、第1付勢部材71及び第2付勢部材72)を含む振動系の共振周波数を、油影響(本実施形態では、油温T又は吐出圧P)に応じて補正した補正共振周波数を決定し、当該補正共振周波数で可動体20が軸方向DLに沿って往復移動するように、アクチュエータ2を制御するように構成されている。すなわち、制御部90は、補正共振周波数を駆動周波数に設定する。これにより、振動系の共振周波数がポンプ部3の動作状態に応じて変化した場合に、駆動周波数を変化後の共振周波数に合わせて、アクチュエータ2の効率を高く維持することが可能となっている。すなわち、振動系の共振周波数が油83の影響により変化した場合に、変化後の共振周波数である補正共振周波数でアクチュエータ2を駆動することが可能となっている。 The present inventors use the spring constant of the oil 83 in the pressure chamber 33 as a spring when the resonance angular frequency ω 0 deviates from the value represented by the equation (8). I focused on it. The oil 83 inside the pressure chamber 33 is compressed and expanded along with the reciprocation of the piston 40 along the axial direction DL, so the oil 83 can be regarded as a spring. Then, as a result of research, the present inventors have changed the spring constant of the oil 83 in the pressure chamber 33 according to the operating state of the pump unit 3 to thereby affect the efficiency of the actuator 2. We have found that the resonant frequency of Based on such knowledge, the control unit 90 sets the drive frequency to the resonance frequency of the vibration system including the piston 40 and the resonance biasing member (here, the first biasing member 71 and the second biasing member 72). The drive frequency is configured to be different according to the operating state of the pump unit 3 so as to approach (that is, the drive angular frequency ω approaches the resonant angular frequency ω 0 ). Specifically, the control unit 90 sets the resonance frequency of the vibration system including the piston 40, the movable body 20, and the resonance biasing member (here, the first biasing member 71 and the second biasing member 72) to oil. The actuator 2 is configured to determine the corrected resonance frequency corrected according to the influence (in the present embodiment, the oil temperature T or the discharge pressure P), and reciprocate the movable body 20 along the axial direction DL at the corrected resonance frequency. Is configured to control. That is, the control unit 90 sets the correction resonance frequency to the drive frequency. Thus, when the resonance frequency of the vibration system changes in accordance with the operating state of the pump unit 3, the efficiency of the actuator 2 can be maintained high in accordance with the resonance frequency after the change of the drive frequency. . That is, when the resonance frequency of the vibration system changes due to the influence of oil 83, it is possible to drive the actuator 2 at the corrected resonance frequency which is the resonance frequency after the change.
 本実施形態では、振動系の共振周波数を変化させ得るポンプ部3の動作状態として、油温Tと、吐出口32からの油83の吐出圧Pとを考慮している。図6は、図4の特性図の横軸を角周波数比(ω/ω)に代えて角周波数(ω)としたものに相当し、異なる4つの油温Tでの振幅比(X/X)のシミュレーション結果を示している。ここでは、“T1”、“T2”、“T3”、及び“T4”の順に、油温Tが低くなっている。図6から明らかなように、油温Tが低くなるに従って共振角周波数ωが低くなる傾向があることがわかる。空気等の気体に比べて油は粘性の温度依存性が大きいために、共振角周波数ωがこのように油温Tに応じて比較的大きく変化することが推察される。このような傾向に鑑みて、制御部90は、油温Tが低くなるに従って駆動周波数を低くするように構成されている。すなわち、制御部90は、油温Tが低くなるに従って補正共振周波数を低くするように構成されている。これにより、振動系の共振周波数がポンプ部3の動作状態である油温Tに応じて変化した場合に、駆動周波数を変化後の共振周波数に合わせることが可能となっている。なお、制御部90は、油温センサ(図示)から油温Tを取得して、当該油温Tに応じた駆動周波数を、例えばマップを参照して決定する。すなわち、制御部90は、当該油温Tに応じた補正共振周波数を、例えばマップを参照して決定する。図7に模式的に示すように、制御部90が参照するマップには、例えば、油温Tが低くなるに従って駆動角周波数ωが低くなるような油温Tと駆動角周波数ωとの関係が規定されている。 In the present embodiment, the oil temperature T and the discharge pressure P of the oil 83 from the discharge port 32 are considered as the operating state of the pump unit 3 that can change the resonance frequency of the vibration system. FIG. 6 corresponds to one in which the horizontal axis of the characteristic diagram of FIG. 4 is replaced with the angular frequency ratio (ω / ω 0 ) to make the angular frequency (ω), and the amplitude ratio (X a at different four oil temperatures T) The simulation result of / X s ) is shown. Here, the oil temperature T decreases in the order of “T1”, “T2”, “T3”, and “T4”. As apparent from FIG. 6, it can be seen that the resonant angular frequency ω 0 tends to decrease as the oil temperature T decreases. Since oil has a large temperature dependence of viscosity compared to a gas such as air, it can be inferred that the resonance angular frequency ω 0 changes in this manner relatively relatively to the oil temperature T. In view of such a tendency, the control unit 90 is configured to lower the drive frequency as the oil temperature T decreases. That is, the control unit 90 is configured to lower the correction resonance frequency as the oil temperature T decreases. As a result, when the resonance frequency of the vibration system changes according to the oil temperature T that is the operating state of the pump unit 3, it is possible to match the drive frequency to the resonance frequency after the change. The control unit 90 acquires the oil temperature T from an oil temperature sensor (shown), and determines a drive frequency according to the oil temperature T with reference to, for example, a map. That is, the control unit 90 determines a corrected resonance frequency corresponding to the oil temperature T with reference to, for example, a map. As schematically shown in FIG. 7, in the map to which the control unit 90 refers, for example, the relationship between the oil temperature T and the driving angular frequency ω is such that the driving angular frequency ω decreases as the oil temperature T decreases. It is prescribed.
 一方、特性図の図示は省略するが、吐出口32からの油83の吐出圧Pについては、車両の走行状態に応じて、目標吐出圧が高くなる場合(例えば、停車時アイドルストップ時の吐出圧が低く、走行中アイドルストップ時の吐出圧が高い等)があり、吐出圧Pが高くなるに従って共振角周波数ωが低くなる傾向がある。このような傾向に鑑みて、制御部90は、吐出圧Pが高くなるに従って駆動周波数を低くするように構成されている。すなわち、制御部90は、吐出圧Pが高くなるに従って補正共振周波数を低くするように構成されている。これにより、振動系の共振周波数がポンプ部3の動作状態である吐出圧Pに応じて変化した場合に、駆動周波数を変化後の共振周波数に合わせることが可能となっている。なお、制御部90は、吐出圧センサ(図示)から吐出圧Pを取得して、当該吐出圧Pに応じた駆動周波数を、例えばマップを参照して決定する。すなわち、制御部90は、当該吐出圧Pに応じた補正共振周波数を、例えばマップを参照して決定する。図8に模式的に示すように、制御部90が参照するマップには、例えば、吐出圧Pが高くなるに従って駆動角周波数ωが低くなるような吐出圧Pと駆動角周波数ωとの関係が規定されている。 On the other hand, although the illustration of the characteristic diagram is omitted, the discharge pressure P of the oil 83 from the discharge port 32 is increased when the target discharge pressure becomes high according to the traveling state of the vehicle (for example, The pressure is low, the discharge pressure at idle stop is high during traveling, etc.), and as the discharge pressure P increases, the resonant angular frequency ω 0 tends to decrease. In view of such a tendency, the control unit 90 is configured to lower the drive frequency as the discharge pressure P becomes higher. That is, the control unit 90 is configured to lower the correction resonance frequency as the discharge pressure P becomes higher. Thus, when the resonance frequency of the vibration system changes according to the discharge pressure P which is the operating state of the pump unit 3, it is possible to match the drive frequency to the resonance frequency after the change. The control unit 90 obtains the discharge pressure P from a discharge pressure sensor (shown), and determines a drive frequency corresponding to the discharge pressure P with reference to, for example, a map. That is, the control unit 90 determines a corrected resonant frequency corresponding to the discharge pressure P with reference to, for example, a map. As schematically shown in FIG. 8, in the map to which the control unit 90 refers, for example, the relationship between the discharge pressure P and the drive angular frequency ω is such that the drive angular frequency ω decreases as the discharge pressure P increases. It is prescribed.
 本実施形態では、制御部90が、油温Tが低くなるに従って駆動周波数を低くする第1制御(すなわち、油温Tが低くなるに従って補正共振周波数を低くする制御)と、吐出圧Pが高くなるに従って駆動周波数を低くする第2制御(すなわち、吐出圧Pが高くなるに従って補正共振周波数を低くする)との双方を行うように構成されているが、制御部90が、これらの第1制御及び第2制御のいずれか一方のみを行う構成とすることもできる。また、本実施形態では、振動系の共振周波数を変化させ得るポンプ部3の動作状態(油影響)として、油温Tと吐出圧Pとを考慮しているが、これら以外のポンプ部3の動作状態(油影響)を考慮して駆動周波数を決定する構成とすることもできる。例えば、制御部90が、油83の粘度が高くなるに従って駆動周波数を低くする第3制御(すなわち、油83の粘度が高くなるに従って補正共振周波数を低くする制御)を、単独で、或いは上記の第1制御及び第2制御の少なくとも一方と共に実行する構成とすることができる。 In the present embodiment, the first control in which the control unit 90 lowers the drive frequency as the oil temperature T decreases (that is, control in which the correction resonance frequency decreases as the oil temperature T decreases), and the discharge pressure P is higher. Therefore, the control unit 90 is configured to perform both of the second control (that is, the correction resonance frequency is lowered as the discharge pressure P becomes higher) that lowers the drive frequency accordingly. Alternatively, only one of the second control and the second control may be performed. Further, in the present embodiment, the oil temperature T and the discharge pressure P are taken into consideration as the operating state (impact of oil) of the pump unit 3 capable of changing the resonance frequency of the vibration system. The drive frequency may be determined in consideration of the operating state (oil influence). For example, third control (that is, control to lower the correction resonance frequency as the viscosity of oil 83 increases), the control unit 90 decreases the drive frequency as the viscosity of oil 83 increases, alone or as described above It may be configured to be executed together with at least one of the first control and the second control.
 上述したように、この油圧ポンプ1では、可動体20のストローク量に応じて定まるピストン40のストローク量を、所望の吐出流量が得られる程度に大きくしやすく、また、単位時間当たりのピストン40のストローク数を定めるアクチュエータ2の駆動周波数を、所望の吐出流量が得られる程度に高くしやすくなっている。更には、ポンプ部の駆動力源として複数相の交流電力(例えば、3相の交流電力)で駆動される交流回転電機を用いる油圧ポンプ(以下、「電動オイルポンプ」という)があるが、この油圧ポンプ1は、電動オイルポンプと同様の吐出流量を、より低いコストで実現することが可能という利点もある。すなわち、この油圧ポンプ1で用いられるアクチュエータ2は、電動オイルポンプで用いられる交流回転電機に比べてコイルの数や永久磁石の極数を少なく抑えることができるため、コストの低減を図ることができる。また、電動オイルポンプは、交流回転電機に応じた相数の駆動回路で駆動する必要があるが、この油圧ポンプ1は、単相の駆動回路で駆動することができるため、この点からもコストの低減を図ることが可能となっている。具体例を挙げて説明すると、この油圧ポンプ1で用いられるアクチュエータ2の駆動回路91は、例えば、図9に例示するようなインバータ回路を用いて構成される。一方、電動オイルポンプで用いられる回転電機MGの駆動回路91は、図10に例示するようなインバータ回路を用いて構成される。ここでは、回転電機MGを3相交流で駆動される回転電機としており、回転電機MGは、3相のそれぞれに対応する相コイル93を備えている。図9を図10と比較すると明らかなように、この油圧ポンプ1では、駆動回路91に設けられるスイッチング素子92の数を少なく抑えることができるため、駆動回路91の簡略化を図ることができる。 As described above, in the hydraulic pump 1, the stroke amount of the piston 40, which is determined according to the stroke amount of the movable body 20, can be easily increased to such an extent that a desired discharge flow rate can be obtained. The driving frequency of the actuator 2 for determining the number of strokes can be easily increased to such an extent that a desired discharge flow rate can be obtained. Furthermore, there is a hydraulic pump (hereinafter referred to as “electric oil pump”) that uses an AC rotating electrical machine driven by AC power (for example, three-phase AC power) of multiple phases as a driving power source of the pump unit. The hydraulic pump 1 also has an advantage of being able to realize the same discharge flow rate as the electric oil pump at lower cost. That is, since the actuator 2 used in the hydraulic pump 1 can reduce the number of coils and the number of permanent magnet poles compared to the AC rotating electric machine used in the electric oil pump, the cost can be reduced. . In addition, although it is necessary to drive the electric oil pump by the drive circuit of the number of phases corresponding to the AC rotating electric machine, the hydraulic pump 1 can be driven by the drive circuit of single phase. It is possible to reduce the Describing the specific example, the drive circuit 91 of the actuator 2 used in the hydraulic pump 1 is configured using, for example, an inverter circuit as illustrated in FIG. On the other hand, drive circuit 91 of rotary electric machine MG used in the electric oil pump is configured using an inverter circuit as illustrated in FIG. Here, the rotary electric machine MG is a rotary electric machine driven by three-phase alternating current, and the rotary electric machine MG includes phase coils 93 corresponding to each of the three phases. As apparent from comparison of FIG. 9 with FIG. 10, in the hydraulic pump 1, the number of switching elements 92 provided in the drive circuit 91 can be reduced, and hence the drive circuit 91 can be simplified.
〔その他の実施形態〕
 次に、油圧ポンプのその他の実施形態について説明する。
Other Embodiments
Next, other embodiments of the hydraulic pump will be described.
(1)上記の実施形態では、第1付勢部材71が中間室60に配置される構成を例として説明した。しかし、そのような構成に限定されることなく、第1付勢部材71が、中間室60とは異なる位置に配置される構成とすることもできる。例えば、第1付勢部材71が、第2圧力室33bに配置されて、ピストン40の本体部41を軸方向第1側DL1へ付勢する構成とすることができる。この場合、上記の実施形態とは異なり、第1付勢部材71及び第2付勢部材72の一方(具体的には、第1付勢部材71)が、径方向視で吐出口32と重複するように配置される。すなわち、上記の実施形態では、第1付勢部材71と第2付勢部材72とが、径方向視で吐出口32と重複しないように配置される構成を例として説明したが、第1付勢部材71及び第2付勢部材72の少なくとも一方が、径方向視で吐出口32と重複するように配置される構成とすることもできる。 (1) In the above embodiment, the configuration in which the first biasing member 71 is disposed in the intermediate chamber 60 has been described as an example. However, without being limited to such a configuration, the first biasing member 71 may be configured to be disposed at a position different from that of the intermediate chamber 60. For example, the first biasing member 71 may be disposed in the second pressure chamber 33 b to bias the main body 41 of the piston 40 toward the first axial side DL1. In this case, unlike the above embodiment, one of the first biasing member 71 and the second biasing member 72 (specifically, the first biasing member 71) overlaps the discharge port 32 in the radial direction. To be arranged. That is, in the above embodiment, the first biasing member 71 and the second biasing member 72 have been described as an example of the configuration in which they are disposed so as not to overlap the discharge port 32 in the radial direction. Alternatively, at least one of the biasing member 71 and the second biasing member 72 may be disposed so as to overlap the discharge port 32 in the radial direction.
 なお、第1付勢部材71が中間室60とは異なる位置に配置される場合に、第2付勢部材72が中間室60に配置される構成とすることもできる。例えば、第2付勢部材72としてコイルばねを用いる場合に、第2付勢部材72が、自然長よりも伸長された状態で中間室60に配置されて、ピストン40の第1部分51を軸方向第2側DL2へ付勢する構成とすることができる。このように、第1付勢部材71及び第2付勢部材72の一方が中間室60に配置される構成とすることで、対向部2aへの油83の浸入を遮断するための中間室60を有効に利用することができる。なお、このような構成とは異なり、第1付勢部材71及び第2付勢部材72の双方が中間室60とは異なる位置に配置される構成とすることもできる。 When the first biasing member 71 is disposed at a position different from that of the intermediate chamber 60, the second biasing member 72 may be disposed in the intermediate chamber 60. For example, in the case of using a coil spring as the second biasing member 72, the second biasing member 72 is disposed in the intermediate chamber 60 in a state of being extended more than the natural length, and pivots the first portion 51 of the piston 40. It can be made to urge to direction 2nd side DL2. As described above, when one of the first biasing member 71 and the second biasing member 72 is disposed in the intermediate chamber 60, the intermediate chamber 60 for blocking the entry of the oil 83 into the opposing portion 2a. Can be used effectively. Note that, unlike such a configuration, both the first biasing member 71 and the second biasing member 72 may be disposed at positions different from the intermediate chamber 60.
(2)上記の実施形態では、アクチュエータ2が気中環境或いはそれに近い環境下で使用される構成を例として説明した。しかし、そのような構成に限定されることなく、アクチュエータ2が油中環境下で使用される構成、すなわち、アクチュエータ2の少なくとも一部が油貯留部82の油面84よりも下方に配置される構成とすることもできる。このような場合等に、油圧ポンプ1に油遮断構造5が設けられない構成としてもよい。 (2) In the above embodiment, the configuration in which the actuator 2 is used in or near an air environment has been described as an example. However, without being limited to such a configuration, the configuration in which the actuator 2 is used in an oil environment, that is, at least a part of the actuator 2 is disposed below the oil surface 84 of the oil reservoir 82 It can also be configured. In such a case, the hydraulic pump 1 may not be provided with the oil shutoff structure 5.
(3)上記の実施形態では、可動体20が、径方向DRに着磁された永久磁石Mを備える構成を例として説明した。しかし、そのような構成に限定されることなく、可動体20が、軸方向DLに着磁された永久磁石Mを備える構成や、可動体20が、径方向DRに着磁された永久磁石Mと軸方向DLに着磁された永久磁石Mとの双方を備える構成とすることもできる。 (3) In the above embodiment, the configuration has been described as an example in which the movable body 20 includes the permanent magnet M magnetized in the radial direction DR. However, without being limited to such a configuration, the movable body 20 includes the permanent magnet M magnetized in the axial direction DL, or the permanent magnet M magnetized in the radial direction DR. And a permanent magnet M which is magnetized in the axial direction DL.
(4)上記の実施形態では、可動体20が、筒状コイル体10に対して径方向内側DR1に配置される構成を例として説明した。しかし、そのような構成に限定されることなく、可動体20が、筒状コイル体10に対して径方向外側DR2に配置される構成とすることもできる。 (4) In the above embodiment, the configuration in which the movable body 20 is disposed at the radially inner side DR1 with respect to the cylindrical coil body 10 has been described as an example. However, without being limited to such a configuration, the movable body 20 may be disposed at the radially outer side DR2 with respect to the cylindrical coil body 10.
(5)上記の実施形態では、油圧ポンプ1に、ピストン40を軸方向DLに付勢してピストン40を共振させるための共振用付勢部材として、第1付勢部材71及び第2付勢部材72が設けられる構成を例として説明した。しかし、そのような構成に限定されることなく、油圧ポンプ1に共振用付勢部材が1つのみ設けられる構成とすることもできる。この場合、当該共振用付勢部材を、ピストン40が軸方向第1側DL1に移動するとピストン40を軸方向第2側DL2へ付勢し、ピストン40が軸方向第2側DL2に移動するとピストン40を軸方向第1側DL1へ付勢するように設けることで、上記実施形態と同様に、アクチュエータ2が発生する推力を、ピストン40の共振現象によって補填することが可能となる。この場合、当該共振用付勢部材のばね定数を、上記実施形態での合成ばね定数と同じ値に設定するとよい。また、上記の実施形態では、共振用付勢部材がピストン40を軸方向DLに付勢するように設けられる場合を例として説明したが、共振用付勢部材が可動体20を軸方向DLに付勢するように設けられてもよい。 (5) In the above embodiment, as the resonance biasing member for biasing the piston 40 in the axial direction DL to resonate the piston 40 in the hydraulic pump 1, the first biasing member 71 and the second biasing are used. The configuration in which the member 72 is provided has been described as an example. However, without being limited to such a configuration, the hydraulic pump 1 may be configured to be provided with only one resonance biasing member. In this case, when the piston 40 moves to the first axial side DL1 in the axial direction, the piston 40 is urged to the second axial side DL2 in the axial direction, and when the piston 40 moves to the second axial side DL2 in the axial direction The provision of urging the shaft 40 toward the first axial side DL1 makes it possible to compensate for the thrust generated by the actuator 2 by the resonance phenomenon of the piston 40, as in the above embodiment. In this case, the spring constant of the resonance biasing member may be set to the same value as the combined spring constant in the above embodiment. In the above embodiment, the resonance biasing member is provided to bias the piston 40 in the axial direction DL, but the resonance biasing member moves the movable body 20 in the axial direction DL. It may be provided to bias.
(6)上記の実施形態では、可動体20が永久磁石Mを備える構成を例として説明した。しかし、そのような構成に限定されることなく、可動体20が永久磁石Mを備えない構成とすることもできる。この場合、例えば、第1コイル11a及び第2コイル11bのうちの第1コイル11aのみに通電する状態と、第1コイル11a及び第2コイル11bのうちの第2コイル11bのみに通電する状態とを切り替えることで、可動体20が軸方向DLの両側に向けて駆動される構成とすることができる。また、上記の実施形態では、可動体20が、筒状コイル体10から発生する磁束によって軸方向DLの両側に向けて駆動される構成を例として説明した。しかし、そのような構成に限定されることなく、可動体20が、筒状コイル体10から発生する磁束によって軸方向DLのいずれか一方側(例えば、軸方向第1側DL1)に向けてのみ駆動される構成とすることもできる。この場合、例えば、可動体20が永久磁石Mを備えない構成とされる。このように可動体20が軸方向DLのいずれか一方側に向けてのみ駆動される場合であっても、アクチュエータ2が発生する軸方向DLのいずれか一方側への推力と、共振用付勢部材(上記の実施形態では、第1付勢部材71及び第2付勢部材72)による軸方向DLの付勢力とによって、ピストン40を軸方向DLに沿って往復移動させることができる。 (6) In the above embodiment, the configuration in which the movable body 20 includes the permanent magnet M has been described as an example. However, the movable body 20 can be configured not to include the permanent magnet M without being limited to such a configuration. In this case, for example, a state in which only the first coil 11a of the first coil 11a and the second coil 11b is energized, and a state in which only the second coil 11b of the first coil 11a and the second coil 11b is energized By switching, the movable body 20 can be configured to be driven toward both sides in the axial direction DL. Further, in the above embodiment, the configuration in which the movable body 20 is driven toward both sides in the axial direction DL by the magnetic flux generated from the cylindrical coil body 10 has been described as an example. However, the movable body 20 is not limited to such a configuration, but only by the magnetic flux generated from the cylindrical coil body 10 toward one side (for example, the first side DL1 in the axial direction) of the axial direction DL. It can also be configured to be driven. In this case, for example, the movable body 20 does not have the permanent magnet M. Thus, even in the case where the movable body 20 is driven only to one side in the axial direction DL, the thrust to either one side in the axial direction DL generated by the actuator 2 and the urging for resonance The piston 40 can be reciprocated along the axial direction DL by the biasing force of the axial direction DL by the members (in the above embodiment, the first biasing member 71 and the second biasing member 72).
(7)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (7) Note that the configurations disclosed in each of the above-described embodiments may be combined with the configurations disclosed in the other embodiments and applied as long as no contradiction occurs (the embodiments described as the other embodiments Combinations are also possible. As for the other configurations, the embodiments disclosed herein are merely illustrative in all respects. Therefore, various modifications can be made as appropriate without departing from the spirit of the present disclosure.
〔上記実施形態の概要〕
 以下、上記において説明した油圧ポンプの概要について説明する。
[Summary of the above embodiment]
Hereinafter, an outline of the hydraulic pump described above will be described.
 アクチュエータ(2)と、前記アクチュエータ(2)により駆動されて油圧を発生させるポンプ部(3)と、前記アクチュエータ(2)による前記ポンプ部(3)の駆動を制御する制御部(90)と、を備えた油圧ポンプ(1)であって、前記ポンプ部(3)は、吸入口(31)と吐出口(32)とを有するシリンダ(30)と、前記吸入口(31)及び前記吐出口(32)と連通するように前記シリンダ(30)の内部に形成された圧力室(33)に配置され、前記シリンダ(30)の軸方向(DL)に沿って往復移動するピストン(40)と、を備え、前記アクチュエータ(2)は、前記シリンダ(30)と同軸に前記軸方向(DL)に並んで配置された筒状コイル体(10)と、前記ピストン(40)に連結されると共に前記シリンダ(30)の径方向(DR)に沿った径方向視で前記筒状コイル体(10)と重複するように配置され、前記筒状コイル体(10)に対して前記軸方向(DL)に往復移動可能な可動体(20)と、を備え、前記可動体(20)は、前記筒状コイル体(10)から発生する磁束によって、前記軸方向(DL)の少なくとも一方側に向けて駆動され、前記ピストン(40)又は前記可動体(20)を前記軸方向(DL)に付勢する共振用付勢部材(71,72)が設けられ、前記制御部(90)は、設定された駆動周波数で前記可動体(20)が前記軸方向(DL)に沿って往復移動するように、前記アクチュエータ(2)を制御し、前記制御部(90)は、前記ピストン(40)、前記可動体(20)、前記共振用付勢部材(71,72)を含む振動系の共振周波数を、油影響に応じて補正した補正共振周波数を決定し、前記補正共振周波数で前記可動体(20)が前記軸方向(DL)に沿って往復移動するように、前記アクチュエータ(2)を制御する。 An actuator (2), a pump unit (3) driven by the actuator (2) to generate a hydraulic pressure, and a control unit (90) controlling the drive of the pump unit (3) by the actuator (2); A hydraulic pump (1) comprising a cylinder (30) having a suction port (31) and a discharge port (32), the pump section (3), the suction port (31) and the discharge port A piston (40) disposed in a pressure chamber (33) formed inside the cylinder (30) in communication with the cylinder (32), and reciprocated along the axial direction (DL) of the cylinder (30) And the actuator (2) is connected to the cylindrical coil body (10) coaxially arranged with the cylinder (30) in the axial direction (DL), and to the piston (40). Said The tubular coil body (10) is disposed so as to overlap with the tubular coil body (10) in a radial direction view (30) along the radial direction (DR), and in the axial direction (DL) with respect to the tubular coil body (10) And a movable body (20) capable of reciprocating movement, wherein the movable body (20) is driven toward at least one side in the axial direction (DL) by magnetic flux generated from the cylindrical coil body (10). And a resonance biasing member (71, 72) for biasing the piston (40) or the movable body (20) in the axial direction (DL), and the control unit (90) is set The actuator (2) is controlled such that the movable body (20) reciprocates along the axial direction (DL) at a drive frequency, and the control unit (90) controls the piston (40), the movable Body (20), the resonance biasing member (71, 72) The resonance frequency of the vibration system is corrected according to the influence of oil, and the correction resonance frequency is determined, and the movable body (20) reciprocates along the axial direction (DL) at the correction resonance frequency. Control the actuator (2).
 この構成によれば、共振用付勢部材(71,72)によるピストン(40)の共振現象を利用して、ピストン(40)を軸方向(DL)に沿って往復移動させることができる。すなわち、アクチュエータ(2)が発生する推力を、共振現象によって補填することができる。これにより、ピストン(40)に要求される推力を発生させるためのアクチュエータ(2)の消費エネルギの低減を図ることができる。すなわち、ピストン(40)の共振現象を利用して、アクチュエータ(2)の効率の向上を図ることができる。
 ところで、本発明者らは、研究の結果、アクチュエータ(2)によりポンプ部(3)を駆動する場合には、流体媒体が油であるために、流体媒体が気体である場合に比べて、ピストン(40)と共振用付勢部材(71,72)とを含む振動系の共振周波数が、油(83)の影響により変化しやすいという知見を得た。なお、このような共振周波数の変化は、圧力室(33)の内部で圧縮及び膨張される油(83)をばねとみなした場合に、当該油(83)のばね定数がポンプ部(3)の動作状態に応じて変化することに起因する。このような知見に基づき、上記の構成では、制御部(90)が、設定された駆動周波数で可動体(20)が軸方向(DL)に沿って往復移動するように、アクチュエータ(2)を制御する際に、ピストン(40)、可動体(20)、共振用付勢部材(71,72)を含む振動系の共振周波数を、油影響に応じて補正した補正共振周波数を決定し、補正共振周波数で可動体(20)が軸方向(DL)に沿って往復移動するように、アクチュエータ(2)を制御する。これにより、振動系の共振周波数が油(83)の影響により変化した場合に、変化後の共振周波数である補正共振周波数でアクチュエータ(2)を駆動することが可能となる。
 従って、上記の構成によれば、振動系の共振周波数が変化した場合であっても、アクチュエータ(2)の効率を高く維持することが可能となる。
According to this configuration, the piston (40) can be reciprocated along the axial direction (DL) by utilizing the resonance phenomenon of the piston (40) by the resonance biasing member (71, 72). That is, the thrust generated by the actuator (2) can be compensated by the resonance phenomenon. Thereby, it is possible to reduce the energy consumption of the actuator (2) for generating the thrust required of the piston (40). That is, the efficiency of the actuator (2) can be improved by utilizing the resonance phenomenon of the piston (40).
By the way, as a result of research, when the pump unit (3) is driven by the actuator (2) as a result of research, the piston is a piston compared to the case where the fluid medium is a gas because the fluid medium is oil. It has been found that the resonance frequency of the vibration system including (40) and the resonance biasing member (71, 72) is easily changed by the influence of the oil (83). In addition, when the oil (83) compressed and expanded inside the pressure chamber (33) is regarded as a spring, such a change in resonance frequency causes the spring constant of the oil (83) to be the pump portion (3). Change according to the operating state of the Based on such knowledge, in the above configuration, the control unit (90) reciprocates the actuator (2) so that the movable body (20) reciprocates along the axial direction (DL) at the set drive frequency. When controlling, the resonance frequency of the vibration system including the piston (40), the movable body (20), and the resonance biasing member (71, 72) is corrected according to the influence of oil, and the correction resonance frequency is determined and corrected. The actuator (2) is controlled such that the movable body (20) reciprocates along the axial direction (DL) at the resonance frequency. Thereby, when the resonance frequency of the vibration system changes due to the influence of oil (83), it becomes possible to drive the actuator (2) at the corrected resonance frequency which is the resonance frequency after the change.
Therefore, according to the above configuration, even when the resonance frequency of the vibration system changes, the efficiency of the actuator (2) can be maintained high.
 ここで、前記制御部(90)は、油温が低くなるに従って前記補正共振周波数を低くすると好適である。 Here, it is preferable that the control unit (90) lowers the corrected resonance frequency as the oil temperature decreases.
 この構成によれば、油温が低くなるに従って振動系の共振周波数が低くなる傾向があることに鑑みて、油温の変化に合わせて補正共振周波数を適切に決定することが可能となる。 According to this configuration, in view of the tendency of the resonance frequency of the vibration system to decrease as the oil temperature decreases, it is possible to appropriately determine the correction resonance frequency in accordance with the change of the oil temperature.
 また、前記制御部(90)は、前記吐出口(32)からの油(83)の吐出圧が高くなるに従って前記駆動周波数を低くすると好適である。 Preferably, the control unit (90) lowers the drive frequency as the discharge pressure of the oil (83) from the discharge port (32) increases.
 この構成によれば、吐出口(32)からの油(83)の吐出圧が高くなるに従って振動系の共振周波数が低くなる傾向があることに鑑みて、吐出圧の変化に合わせて補正共振周波数を適切に決定することが可能となる。 According to this configuration, in view of the tendency of the resonance frequency of the vibration system to decrease as the discharge pressure of oil (83) from the discharge port (32) increases, the corrected resonance frequency is adjusted according to the change of the discharge pressure. It is possible to determine the
 本開示に係る油圧ポンプは、上述した各効果のうち、少なくとも1つを奏することができれば良い。 The hydraulic pump which concerns on this indication should just be able to show at least one among each effect mentioned above.
1:油圧ポンプ
2:アクチュエータ
3:ポンプ部
10:筒状コイル体
20:可動体
30:シリンダ
31:吸入口
32:吐出口
33:圧力室
40:ピストン
71:第1付勢部材(共振用付勢部材)
72:第2付勢部材(共振用付勢部材)
90:制御部
DL:軸方向
DR:径方向
1: hydraulic pump 2: actuator 3: pump unit 10: cylindrical coil body 20: movable body 30: cylinder 31: suction port 32: discharge port 33: pressure chamber 40: piston 71: first biasing member (for resonance Control member)
72: Second biasing member (resonance biasing member)
90: control part DL: axial direction DR: radial direction

Claims (3)

  1.  アクチュエータと、前記アクチュエータにより駆動されて油圧を発生させるポンプ部と、前記アクチュエータによる前記ポンプ部の駆動を制御する制御部と、を備えた油圧ポンプであって、
     前記ポンプ部は、吸入口と吐出口とを有するシリンダと、前記吸入口及び前記吐出口と連通するように前記シリンダの内部に形成された圧力室に配置され、前記シリンダの軸方向に沿って往復移動するピストンと、を備え、
     前記アクチュエータは、前記シリンダと同軸に前記軸方向に並んで配置された筒状コイル体と、前記ピストンに連結されると共に前記シリンダの径方向に沿った径方向視で前記筒状コイル体と重複するように配置され、前記筒状コイル体に対して前記軸方向に往復移動可能な可動体と、を備え、
     前記可動体は、前記筒状コイル体から発生する磁束によって、前記軸方向の少なくとも一方側に向けて駆動され、
     前記ピストン又は前記可動体を前記軸方向に付勢する共振用付勢部材が設けられ、
     前記制御部は、設定された駆動周波数で前記可動体が前記軸方向に沿って往復移動するように、前記アクチュエータを制御し、
     前記制御部は、前記ピストン、前記可動体、前記共振用付勢部材を含む振動系の共振周波数を、油影響に応じて補正した補正共振周波数を決定し、前記補正共振周波数で前記可動体が前記軸方向に沿って往復移動するように、前記アクチュエータを制御する、油圧ポンプ。
    A hydraulic pump comprising: an actuator; a pump unit driven by the actuator to generate hydraulic pressure; and a control unit controlling drive of the pump unit by the actuator.
    The pump unit is disposed in a cylinder having a suction port and a discharge port, a pressure chamber formed inside the cylinder so as to communicate with the suction port and the discharge port, and along the axial direction of the cylinder A reciprocating piston;
    The actuator is a cylindrical coil body coaxially arranged with the cylinder in the axial direction, and the actuator is connected to the piston and overlaps with the cylindrical coil body in a radial direction along the radial direction of the cylinder And a movable body reciprocably movable in the axial direction with respect to the cylindrical coil body,
    The movable body is driven toward at least one side in the axial direction by magnetic flux generated from the cylindrical coil body.
    A resonant biasing member is provided for biasing the piston or the movable body in the axial direction;
    The control unit controls the actuator such that the movable body reciprocates along the axial direction at a set drive frequency,
    The control unit determines a corrected resonance frequency obtained by correcting the resonance frequency of the vibration system including the piston, the movable body, and the resonance biasing member according to the influence of oil, and the movable body is determined by the correction resonance frequency. A hydraulic pump, which controls the actuator to reciprocate along the axial direction.
  2.  前記制御部は、油温が低くなるに従って前記補正共振周波数を低くする、請求項1に記載の油圧ポンプ。 The hydraulic pump according to claim 1, wherein the control unit lowers the corrected resonance frequency as the oil temperature decreases.
  3.  前記制御部は、前記吐出口からの油の吐出圧が高くなるに従って前記補正共振周波数を低くする、請求項1又は2に記載の油圧ポンプ。 The hydraulic pump according to claim 1, wherein the control unit lowers the corrected resonance frequency as the discharge pressure of oil from the discharge port increases.
PCT/JP2018/034307 2017-09-15 2018-09-14 Hydraulic pump WO2019054512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177939 2017-09-15
JP2017177939 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054512A1 true WO2019054512A1 (en) 2019-03-21

Family

ID=65723685

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/034307 WO2019054512A1 (en) 2017-09-15 2018-09-14 Hydraulic pump
PCT/JP2018/034306 WO2019054511A1 (en) 2017-09-15 2018-09-14 Hydraulic pump
PCT/JP2018/034305 WO2019054510A1 (en) 2017-09-15 2018-09-14 Hydraulic pump

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/034306 WO2019054511A1 (en) 2017-09-15 2018-09-14 Hydraulic pump
PCT/JP2018/034305 WO2019054510A1 (en) 2017-09-15 2018-09-14 Hydraulic pump

Country Status (1)

Country Link
WO (3) WO2019054512A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354864A (en) * 2001-05-18 2002-12-06 Matsushita Electric Ind Co Ltd Linear compressor drive
JP2014088856A (en) * 2012-10-31 2014-05-15 Aisin Aw Co Ltd Electromagnetic pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273738B2 (en) * 2002-10-16 2009-06-03 パナソニック株式会社 Linear compressor
JP5255497B2 (en) * 2009-03-26 2013-08-07 日信工業株式会社 Solenoid pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354864A (en) * 2001-05-18 2002-12-06 Matsushita Electric Ind Co Ltd Linear compressor drive
JP2014088856A (en) * 2012-10-31 2014-05-15 Aisin Aw Co Ltd Electromagnetic pump

Also Published As

Publication number Publication date
WO2019054511A1 (en) 2019-03-21
WO2019054510A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
US8624448B2 (en) Electrodynamic linear oscillating motor
US3937600A (en) Controlled stroke electrodynamic linear compressor
EP2818715B1 (en) Linear compressor
KR100963742B1 (en) Reciprocating compressor
CN102105690B (en) Linear compressor
US8752375B2 (en) Free-piston stirling machine in an opposed piston gamma configuration having improved stability, efficiency and control
KR101955977B1 (en) Apparatus and method for controlling compressor, and refrigerator having the same
CN102105689B (en) Linear compressor
JP2014117149A (en) Linear drive device and piston pump device
US10876524B2 (en) Linear compressor
EP1740831B1 (en) Linear compressor
Poltschak A high efficient linear motor for compressor applications
CN102953956A (en) Compressor driven by brushless coreless linear motor
CN104454440A (en) Double-cylinder capacity-variable linear compressor
CN102966512B (en) A kind of annular compressor
KR101772083B1 (en) Apparatus for controlling compressor and refrigerator having the same
KR101299548B1 (en) Apparatus for controlling compressor and method of the same
WO2019054512A1 (en) Hydraulic pump
EP2718567B1 (en) A free piston type torsion drive compressor
CN112600379A (en) Integrated hydraulic pump directly driven by slotless moving magnet type linear oscillation motor
KR20180093412A (en) transvers flux type recyprocating motor and recyprocating compressor having the same
CN106662088B (en) Reciprocating type refrigeration compressor and method for installing reciprocating type refrigeration compressor
US11434887B2 (en) Linear compressor with suction guide and suction muffler
KR20120004293A (en) Apparatus for controlling linear compressor, method thereof, and refrigerator with the same
US20240128831A1 (en) Hybrid compressed gas-electric piston engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP