EP1740831B1 - Linear compressor - Google Patents
Linear compressor Download PDFInfo
- Publication number
- EP1740831B1 EP1740831B1 EP05729530A EP05729530A EP1740831B1 EP 1740831 B1 EP1740831 B1 EP 1740831B1 EP 05729530 A EP05729530 A EP 05729530A EP 05729530 A EP05729530 A EP 05729530A EP 1740831 B1 EP1740831 B1 EP 1740831B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- pressure chamber
- linear compressor
- cylinder
- communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000004891 communication Methods 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 239000000314 lubricant Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 239000011796 hollow space material Substances 0.000 claims description 2
- 238000005461 lubrication Methods 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 235000014676 Phragmites communis Nutrition 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
- F04B35/045—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/0005—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
- F04B39/0016—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
Definitions
- the present invention refers to a linear compressor, in particular intended for use in household-type or industrial-type refrigeration equipment.
- linear compressors generally present some problems in connection with the ability to actually obtain such favourable characteristics thereof, and these problems may make these compressors rather complex to design and construct.
- linear compressors do not have any mechanically, i.e. positively determined top and bottom dead centres, so that the need arises here for a special system to be provided to control the position of the piston inside the cylinder, in view of preventing the same pistons from detrimentally knocking against the cylinder head.
- Such control shall operate to a great accuracy extent in order to ensure that the top dead centre of the piston is situated at an extremely reduced distance from the cylinder head, generally in the order of 0.1 mm, so as to minimize the so-called clearance volume. Any greater distance, even by just a few tenths of a millimetre, would bering about a drastic drop in performance characteristics, so that the need arises here for quite expensive and sophisticated control provisions of an electronic type to be implemented to this purpose.
- linear compressors require that a return force proportionate to the displacement of the moving element be available in view of ensuring a correct displacement stroke of the piston, and the simplest method available to ensure this force lies in providing a mechanical spring duly connected to both the stationary base of the compressor and the moving element, such that the thereby obtained mechanical system is capable of working in the way of a forced resonant harmonic oscillator at line frequency; however, linear compressors equipped with a system of this kind generally experience a drastic deterioration in the overall performance characteristics thereof when departing from the resonance condition.
- the value of the refrigeration capacity i.e. cooling effect that can be obtained with linear compressors of the currently known kind cannot be varied to a significant extent, i.e. by a factor of approx. 2, without this implying a considerable performance loss; such variation in the refrigeration capacity may for instance be required in view of particular application-related needs, or even in view of saving energy by adapting the power output of the compressor to the actual refrigeration capacity needed by the refrigerator in a given period of operation thereof.
- FR 1069802 discloses a piston pump wherein the piston and its shaft work in absence of mechanical friction, due to the fact that there is no contact between the piston and the cylinder, wherein the piston is centred and guided by springs.
- US 6,015,270 discloses a two stage compressor or pump with integral electronically controlled multiphase linear motor incorporating a cup shaped moving piston as a stator.
- the linear motor body has an intake head with valve fitted at the end adjacent to the closed end of the cup shaped piston.
- a discharge head with a central discharge tube extending into the hollow center of the cup shaped moving piston is fitted to the opposite end of the motor body.
- the design is particularly suited for use as a compressor in air conditioning and refrigeration systems.
- a major purpose of the present invention within the above-indicated object thereof is to provide a linear compressor in which the possibility is given to obtain wide variations in the refrigeration power output thereof, without these variations determining a deterioration in the overall performance characteristics of the same compressor.
- Another major purpose of the present invention is to provide a linear compressor in which the positioning of the top dead centre of the piston relative to the cylinder head may allow for greater tolerances, without this impairing the general performance characteristics of the compressor, thereby allowing the systems used to control the position of the piston to be simplified and, hence, made far less expensive.
- a further major purpose of the present invention is to ensure the possibility for the refrigeration power output of the compressor to be modulated by varying the stroke of the piston, or the oscillation amplitude thereof relative to the midpoint, and the clearance or dead volume, while maintaining energy efficiency values unvaried at a high level.
- Another major purpose yet of the present invention is to provide a linear compressor that is significantly simplified in its construction, while at the same time ensuring an unvaried, or possibly even improved, efficiency, along with an improved flexibility in operation as compared to prior-art linear compressors.
- a last, although not less important purpose of the present invention is to provide a linear compressor which is low and competitive in costs and capable of being manufactured with the use of readily available machinery and techniques.
- the linear compressor as generally indicated at 1, comprises a stator body 2 that is substantially constituted by an outer yoke 3, around which there is wound a coil (not shown), and an inner yoke 4 facing the outer yoke 3 and spaced from the latter so as to define an air gap 5.
- the linear compressor further comprises a moving element 6 comprising a base plate 7, from which a pair of arms (not shown) extend in a manner known as such in the art, these arms being provided each with a magnet and being accommodated inside the air gap 5.
- the linear compressor also comprises a shaft 8, to the end portion of which there is firmly joined a piston 9, wherein the base plate 7 is firmly joined to a pan 10, which is in turn connected to a resonance spring 11.
- the shaft 8 is accommodated slidably within a cylindrical guide body 12 that terminates with a flange 13, which is advantageously obtained integrally with said guide body 12, and against there abuts the liner 14 of a cylinder 15, inside which there is arranged slidably said piston 9.
- the flange 13 is provided with at least a suction port 16, controlled by suction valve means 17 such as a reed valve, in communication with the suction conduit comprising a conduit 18 connected to a reservoir 19 in which there is collected the gas being taken in, which then flows into the conduit 18 to eventually undergo compression.
- the suction conduit is fitted between the flange 13 and the stator body 2, so that the inflow of the gas in the cylinder 15 takes place from the side at which the wall temperature is at its lowest. This contributes to reducing the extent to which the gas is heated up during the suction phase, thereby boosting compressor efficiency.
- the cylinder 15 is closed by a head 20; the stroke of the piston 9 inside the cylinder 15 is therefore limited, on a side, by the flange 13 and, on the opposite side, by the head 20.
- the latter is provided with at least an exhaust or delivery port 25 provided with exhaust or delivery valve means 30, e.g. a reed valve, for controlling said delivery port 25.
- the piston 9 defines a first chamber 21, or a low-pressure chamber as this shall be better explained further on, and a second chamber 22, or a high-pressure chamber as this shall again be better explained further on, in which both of these chambers are variable-volume ones depending on the position of the piston 9 in the cylinder 15; the two chambers 21 and 22 are set in communication with each other via at least a through-aperture 23 provided in the piston 9 and controlled by communication valve means 24, such as a reed valve.
- the piston 9 is capable to alternately compress the gas in either direction inside the cylinder 15, thereby generating two compression stages, in which the exhaust or delivery phase in the first low-pressure chamber 21 occurs at the same time as the suction phase in the second high-pressure chamber 22, through the communication aperture 23 and the communication valve means 24 provided in the piston 9.
- the compression cycle is split into two stages in phase opposition with respect to each other with a phase shift of 180°.
- the gas existing in the second high-pressure chamber 22 is first compressed from the pressure P 1 up to the point at which the exhaust or delivery pressure P 3 is reached (curve A-E), whose value is such as to cause the exhaust or delivery valve means 30 to open and, hence, the exhaust, i.e. delivery of the gas through the delivery port 25 in the head 20 (delivery phase, line E-F).
- the piston 9 is in a position corresponding to its top dead centre X 2 , at a minimum distance from the head 20 where the delivery port 25 is situated.
- the linear compressor according to the present invention performs a cycle corresponding to two compression stages in phase opposition with respect to each other, as indicated in Figure 3 by the area comprised between the points A, B, C, D as far as the low-pressure stage taking place in the first chamber 21 is concerned, and the area comprised between the points A, E, F, D as far as the high-pressure stage taking place in the second chamber 22 is concerned.
- FIGs 1 and 4 there is furthermore illustrated a lubrication and cooling system that may advantageously be used in a linear compressor according to the present invention: with the help of the pump 31, the lubricant is collected into the reservoir 32 and caused to flow through a first channel 33 and one or more first ports 34 provided circumferentially in the cylindrical guide body 12 so as to lubricate the shaft 8. From here, the lubricant then flows, through a second channel 35, a second port 36 provided in the flange 13, and a third channel 37 in the liner 14 of the cylinder 15, into a hollow space, i.e. jacket 38 provided in the liner 14 to cool down the wall of the cylinder 15, in view of keeping it at a lower temperature to the purpose of both favouring the thermal efficiency and boosting the overall energy efficiency of the compressor.
- a hollow space i.e. jacket 38 provided in the liner 14 to cool down the wall of the cylinder 15, in view of keeping it at a lower temperature to the purpose of both favouring the thermal efficiency and boosting the overall energy efficiency
- the linear compressor according to the present invention is actually capable of reaching all of the afore indicated aims and advantages: in fact, with the linear compressor according to the present invention the possibility is given for high refrigeration outputs to be obtained even in the presence of limits of oscillation of the piston 9 - corresponding to the top and bottom dead centres - that may be situated at a considerable distance from the respective cylinder head portions, i.e. the head 20 and the flange 13. No need therefore exists for minimum clearances, in the order of magnitude of 0.1 mm, to be in any case ensured, as this is on the contrary required in prior-art single-stage compressors, thereby allowing for the use of less sophisticated and accurate and, therefore, less expensive systems for controlling the position of the piston 9.
- the compression phase into two stages enables far higher volumetric efficiencies to be obtained as compared to single-stage compressors for a same amount of clearance volume.
- the refrigeration capacity output of the compressor can be modulated up to a factor of 2 by either varying the displacement stroke of the piston 9 relative to the midpoint between the top dead centre and the bottom dead centre or varying the clearance volume, while maintaining energy efficiency at an unaltered high level and excluding any appreciable deterioration in the overall performance of the compressor.
- a further advantage of the linear compressor according to the present invention derives from the fact that it is embodied in such manner as to ensure a maximum extent of simplicity in its construction and, at the same time, high performance capabilities without any need for any component part of the compressor, such as the piston, the cylinder head or the valves, to be duplicated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
Abstract
Description
- The present invention refers to a linear compressor, in particular intended for use in household-type or industrial-type refrigeration equipment.
- In the course of these last few years, owing to an increasingly felt need on the part of refrigeration equipment manufacturers to be able to rely upon the availability of compressors characterized by an ever increasing level of efficiency, there has been a gradual change in the type of compressors used, i.e. manufacturers have gradually moved over from the conventional reciprocating compressors driven by a rotary electric motor to reciprocating compressors of the linear kind, i.e. driven by a linear electric motor as generally consisting of a stator relative to which there is arranged slidably, with a linear reciprocating motion, generated by a magnetic field, a moving element on which there is mounted the piston of the compressor.
- Although clearly advantageous from a performance, efficiency and reliability point of view, linear compressors generally present some problems in connection with the ability to actually obtain such favourable characteristics thereof, and these problems may make these compressors rather complex to design and construct. In the first place, unlike conventional compressors, linear compressors do not have any mechanically, i.e. positively determined top and bottom dead centres, so that the need arises here for a special system to be provided to control the position of the piston inside the cylinder, in view of preventing the same pistons from detrimentally knocking against the cylinder head. Such control shall operate to a great accuracy extent in order to ensure that the top dead centre of the piston is situated at an extremely reduced distance from the cylinder head, generally in the order of 0.1 mm, so as to minimize the so-called clearance volume. Any greater distance, even by just a few tenths of a millimetre, would bering about a drastic drop in performance characteristics, so that the need arises here for quite expensive and sophisticated control provisions of an electronic type to be implemented to this purpose.
- Moreover, these linear compressors require that a return force proportionate to the displacement of the moving element be available in view of ensuring a correct displacement stroke of the piston, and the simplest method available to ensure this force lies in providing a mechanical spring duly connected to both the stationary base of the compressor and the moving element, such that the thereby obtained mechanical system is capable of working in the way of a forced resonant harmonic oscillator at line frequency; however, linear compressors equipped with a system of this kind generally experience a drastic deterioration in the overall performance characteristics thereof when departing from the resonance condition.
- It is to be further noticed that the value of the refrigeration capacity, i.e. cooling effect that can be obtained with linear compressors of the currently known kind cannot be varied to a significant extent, i.e. by a factor of approx. 2, without this implying a considerable performance loss; such variation in the refrigeration capacity may for instance be required in view of particular application-related needs, or even in view of saving energy by adapting the power output of the compressor to the actual refrigeration capacity needed by the refrigerator in a given period of operation thereof. In fact, as this has already been noted above, a variation in the piston stroke entrains a performance loss owing to the constraints deriving from the position of the dead centre relative to the cylinder head and the position of the middle oscillation point of the piston, even the latter being practically unmodifiable without a reduction in motor efficiency and, hence, compressor performance resulting therefrom. Neither a variation in the oscillation frequency of the piston is a feasible option, since it cannot be practiced without incurring a loss in compressor performance, owing to the constraint requiring that the resonance condition of the system be kept unaltered.
-
FR 1069802 -
US 6,015,270 discloses a two stage compressor or pump with integral electronically controlled multiphase linear motor incorporating a cup shaped moving piston as a stator. The linear motor body has an intake head with valve fitted at the end adjacent to the closed end of the cup shaped piston. A discharge head with a central discharge tube extending into the hollow center of the cup shaped moving piston is fitted to the opposite end of the motor body. As the piston reciprocates it draws the working fluid in through the intake valve, compresses and transfers it through an interstage valve in the closed end of the moving piston into a second variable volume chamber formed by the inside of the cup shaped piston and the discharge tube which acts as a fixed piston, and then further compresses and transfers it out through a valve in the discharge tube. The design is particularly suited for use as a compressor in air conditioning and refrigeration systems. - It therefore is a main object of the present invention to do away with all of the afore mentioned drawbacks of prior-art solutions by providing a linear compressor in which performance and efficiency characteristics are in no connection with, i.e. not tied to and anyway substantially unaffected by construction, design and operating requirements and variations thereof.
- A major purpose of the present invention within the above-indicated object thereof is to provide a linear compressor in which the possibility is given to obtain wide variations in the refrigeration power output thereof, without these variations determining a deterioration in the overall performance characteristics of the same compressor.
- Another major purpose of the present invention is to provide a linear compressor in which the positioning of the top dead centre of the piston relative to the cylinder head may allow for greater tolerances, without this impairing the general performance characteristics of the compressor, thereby allowing the systems used to control the position of the piston to be simplified and, hence, made far less expensive.
- A further major purpose of the present invention is to ensure the possibility for the refrigeration power output of the compressor to be modulated by varying the stroke of the piston, or the oscillation amplitude thereof relative to the midpoint, and the clearance or dead volume, while maintaining energy efficiency values unvaried at a high level.
- Another major purpose yet of the present invention is to provide a linear compressor that is significantly simplified in its construction, while at the same time ensuring an unvaried, or possibly even improved, efficiency, along with an improved flexibility in operation as compared to prior-art linear compressors.
- A last, although not less important purpose of the present invention is to provide a linear compressor which is low and competitive in costs and capable of being manufactured with the use of readily available machinery and techniques.
- According to the present invention, the above indicated aims and advantages, along with further ones that will become apparent from the description given below, are reached in a linear compressor incorporating the features and characteristics as recited in the appended claim 1.
- Further features and advantages of the linear compressor according to the present invention may be more readily understood from the description that is given below of a particular, although not sole embodiment, which is illustrated by way of non-limiting example with reference to the accompanying drawings, in which:
-
Figure 1 is a longitudinal sectional view of a linear compressor according to the present invention; -
Figure 2 is a detail view of the sectional view ofFigure 1 ; -
Figure 3 is a diagrammatical view of a schematical representation of the operating cycle of a linear compressor according to the present invention; -
Figure 4 is a view, along a section plane at 90° with respect toFigure 1 , of a linear compressor according to the present invention. - With reference to the above cited and listed Figures, the linear compressor, as generally indicated at 1, comprises a
stator body 2 that is substantially constituted by anouter yoke 3, around which there is wound a coil (not shown), and an inner yoke 4 facing theouter yoke 3 and spaced from the latter so as to define anair gap 5. - The linear compressor further comprises a moving
element 6 comprising a base plate 7, from which a pair of arms (not shown) extend in a manner known as such in the art, these arms being provided each with a magnet and being accommodated inside theair gap 5. The linear compressor also comprises ashaft 8, to the end portion of which there is firmly joined apiston 9, wherein the base plate 7 is firmly joined to apan 10, which is in turn connected to a resonance spring 11. - As largely known in the art, energizing the compressor with an alternating current supply gives rise to the generation of a magnetic flux that causes the moving
element 6 to perform a reciprocating translatory motion relative to thestator body 2; via theshaft 8, this motion is then transmitted to thepiston 9. - The
shaft 8 is accommodated slidably within acylindrical guide body 12 that terminates with aflange 13, which is advantageously obtained integrally with saidguide body 12, and against there abuts theliner 14 of acylinder 15, inside which there is arranged slidably saidpiston 9. Theflange 13 is provided with at least asuction port 16, controlled by suction valve means 17 such as a reed valve, in communication with the suction conduit comprising aconduit 18 connected to areservoir 19 in which there is collected the gas being taken in, which then flows into theconduit 18 to eventually undergo compression. In an advantageous manner, the suction conduit is fitted between theflange 13 and thestator body 2, so that the inflow of the gas in thecylinder 15 takes place from the side at which the wall temperature is at its lowest. This contributes to reducing the extent to which the gas is heated up during the suction phase, thereby boosting compressor efficiency. - The
cylinder 15 is closed by ahead 20; the stroke of thepiston 9 inside thecylinder 15 is therefore limited, on a side, by theflange 13 and, on the opposite side, by thehead 20. The latter is provided with at least an exhaust ordelivery port 25 provided with exhaust or delivery valve means 30, e.g. a reed valve, for controlling saiddelivery port 25. - Inside the
cylinder 15, thepiston 9 defines afirst chamber 21, or a low-pressure chamber as this shall be better explained further on, and asecond chamber 22, or a high-pressure chamber as this shall again be better explained further on, in which both of these chambers are variable-volume ones depending on the position of thepiston 9 in thecylinder 15; the twochambers aperture 23 provided in thepiston 9 and controlled by communication valve means 24, such as a reed valve. - Thanks to the thus obtained configuration, the
piston 9 is capable to alternately compress the gas in either direction inside thecylinder 15, thereby generating two compression stages, in which the exhaust or delivery phase in the first low-pressure chamber 21 occurs at the same time as the suction phase in the second high-pressure chamber 22, through thecommunication aperture 23 and the communication valve means 24 provided in thepiston 9. In other words, the compression cycle is split into two stages in phase opposition with respect to each other with a phase shift of 180°. - The way in which the above-described linear compressor works is as follows, with reference in particular to
Figure 2 and the diagram of the compression cycle illustrated inFigure 3 , in which in correspondence to the axis X there is represented the position of thepiston 9 in thecylinder 15 and in correspondence of the axis Y there is represented the value of the gas pressure: starting from the bottom dead centre X1, in which thepiston 9 is positioned adjacent to theflange 13, as thepiston 9 displaces away from theflange 13 during its stroke, the gas contained in the clearance volume of the first chamber 21 (curve A-B of the diagram inFigure 3 ) undergoes an expansion from the pressure P1 to the pressure P2 corresponding to the suction pressure (point B); this pressure P2 causes the suction valve means 17 to open and, as a result, the gas to be taken in from thereservoir 19 of the suction conduit into the first low-pressure orpre-compression chamber 21 through theconduit 18 and the suction port 16 (suction phase, line B-C); at the end of the suction phase, thepiston 9 is at its top dead centre X2, which is situated at a minimum distance from thehead 20, thereby defining the maximum volume for the first low-pressure chamber 21. - Concurrently with this suction phase A-B-C in the first low-
pressure chamber 21, and starting from the position of thepiston 9 corresponding to the bottom dead centre X1, the gas existing in the second high-pressure chamber 22 is first compressed from the pressure P1 up to the point at which the exhaust or delivery pressure P3 is reached (curve A-E), whose value is such as to cause the exhaust or delivery valve means 30 to open and, hence, the exhaust, i.e. delivery of the gas through thedelivery port 25 in the head 20 (delivery phase, line E-F). At the end of this exhaust or delivery phase (point F), thepiston 9 is in a position corresponding to its top dead centre X2, at a minimum distance from thehead 20 where thedelivery port 25 is situated. From this position, the displacement motion of thepiston 9 starts then to be reversed, thereby determining the expansion of the gas in the clearance volume in the second high-pressure chamber 22 (curve F-D) and, at the same time, the compression of the suction gas contained in the first low-pressure chamber 21 (curve C-D) up to the point at which the pressure P1 is reached establishing a balance between thefirst chamber 21 and the second chamber 22 (point D). This pressure value causes the communication valve means 24 provided on thepiston 9 to open, thereby enabling the pre-compressed gas to flow from thefirst chamber 21 into thesecond chamber 22 via the through-aperture 23 in the piston 9 (line D-A), until the latter eventually reaches the bottom dead centre X1 in its displacement stroke. In this manner, the linear compressor according to the present invention performs a cycle corresponding to two compression stages in phase opposition with respect to each other, as indicated inFigure 3 by the area comprised between the points A, B, C, D as far as the low-pressure stage taking place in thefirst chamber 21 is concerned, and the area comprised between the points A, E, F, D as far as the high-pressure stage taking place in thesecond chamber 22 is concerned. - In
Figures 1 and 4 there is furthermore illustrated a lubrication and cooling system that may advantageously be used in a linear compressor according to the present invention: with the help of thepump 31, the lubricant is collected into thereservoir 32 and caused to flow through afirst channel 33 and one or morefirst ports 34 provided circumferentially in thecylindrical guide body 12 so as to lubricate theshaft 8. From here, the lubricant then flows, through a second channel 35, a second port 36 provided in theflange 13, and a third channel 37 in theliner 14 of thecylinder 15, into a hollow space, i.e.jacket 38 provided in theliner 14 to cool down the wall of thecylinder 15, in view of keeping it at a lower temperature to the purpose of both favouring the thermal efficiency and boosting the overall energy efficiency of the compressor. - In order to lubricate the
piston 9 and reduce frictions during the displacement thereof, a certain amount of lubricant is dragged by the outer surface of the portion of theshaft 8 entering the first low-pressure chamber 21. - From the description given above it can therefore be readily appreciated that the linear compressor according to the present invention is actually capable of reaching all of the afore indicated aims and advantages: in fact, with the linear compressor according to the present invention the possibility is given for high refrigeration outputs to be obtained even in the presence of limits of oscillation of the piston 9 - corresponding to the top and bottom dead centres - that may be situated at a considerable distance from the respective cylinder head portions, i.e. the
head 20 and theflange 13. No need therefore exists for minimum clearances, in the order of magnitude of 0.1 mm, to be in any case ensured, as this is on the contrary required in prior-art single-stage compressors, thereby allowing for the use of less sophisticated and accurate and, therefore, less expensive systems for controlling the position of thepiston 9. - Moreover, fractioning in the above-described way the compression phase into two stages enables far higher volumetric efficiencies to be obtained as compared to single-stage compressors for a same amount of clearance volume. In addition, the refrigeration capacity output of the compressor can be modulated up to a factor of 2 by either varying the displacement stroke of the
piston 9 relative to the midpoint between the top dead centre and the bottom dead centre or varying the clearance volume, while maintaining energy efficiency at an unaltered high level and excluding any appreciable deterioration in the overall performance of the compressor. - In this way, the performance and efficiency characteristics of the compressor according to the present invention are in no connection with, i.e. not tied to and anyway substantially unaffected by construction, design and operating requirements and variations thereof.
- A further advantage of the linear compressor according to the present invention derives from the fact that it is embodied in such manner as to ensure a maximum extent of simplicity in its construction and, at the same time, high performance capabilities without any need for any component part of the compressor, such as the piston, the cylinder head or the valves, to be duplicated.
- It will of course be appreciated that the present invention may be subject to a number of modifications and variants, and may be used in conjunction with a number of different applications, without departing from the scope of the present invention.
- It should further be noticed that the materials used to implement the present invention, as well as the shapes and the size of the individual component parts, may each time be selected so as to most appropriately fit any particular need or comply with any application-related requirement, without this implying any departure from the scope of the present invention.
Claims (7)
- Linear compressor comprising a piston (9) arranged slidably inside a cylinder (15), said piston (9) defining in said cylinder (15) a first low-pressure chamber (21) and a second high-pressure chamber (22), said piston (9) being further provided with communication means (23) between said first and said second chamber (21, 22), which are controlled by valve means (24) to establish such communication therebetween, said communication means comprising at least a communication aperture (23) provided in said piston (9), characterized in that said first and second chambers (21, 22) have the same diameter, said piston (9) being part of a moving element (6) comprising a base plate (7) from which there extends a shaft (8) supporting said piston (9) at an end portion thereof, wherein said piston (9) compresses a fluid in either direction inside said cylinder (15), thereby generating two compression stages, in which the exhaust or delivery phase in said first low-pressure chamber (21) occurs concurrently to the suction phase in said second high-pressure chamber (22) through said communication aperture (23) and said communication valve means (24).
- Linear compressor according to claim 1, wherein said first and said second chamber (21, 22) have a volume that is variable depending on the position of said piston (9) in said cylinder (15).
- Linear compressor according to claim 1, wherein said shaft (8) is accommodated slidably inside a guide body (12) terminated by a flange (13) that is provided with at least a suction port (16) controlled by suction valve means (17).
- Linear compressor according to claim 3, wherein said flange (13) is provided integral with said guide body (12).
- Linear compressor according to claims 1 and 3, wherein the displacement stroke of said piston (9) moving away from said flange (13) generates, in the first low-pressure chamber (21), the expansion phase (AB) and suction phase (BC) as controlled by said suction valve means (17) and, in the second high-pressure chamber (22), the compression phase (AE) and exhaust phase (EF) as controlled by said exhaust valve means (30) said communication aperture (23) being closed by said communication valve means (24) during said suction phase in the first low-pressure chamber (21) and said compression phase in the second high-pressure chamber (22).
- Linear compressor according to any of the preceding claims or combination thereof, characterized in that it further comprises a lubrication and cooling system comprising a first channel (33) establishing a communication between a reservoir (32) and one or more first ports (34) provided circumferentially in the cylindrical guide body (12), and a circulating pump (31) adapted to deliver a lubricant between said shaft (8) and said guide body (12) from said reservoir (32) through said first channel (33) and said first ports (34).
- Linear compressor according to claim 6, wherein said lubricant further flows from said guide body (12), through a second channel (35), a second port (36) provided in said flange (13) and a third channel (37) provided in said cylinder (15), into a hollow space or jacket (38) obtained in a wall of said cylinder (15).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT000029A ITPN20040029A1 (en) | 2004-04-29 | 2004-04-29 | LINEAR COMPRESSOR |
PCT/EP2005/051357 WO2005106249A1 (en) | 2004-04-29 | 2005-03-23 | Linear compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1740831A1 EP1740831A1 (en) | 2007-01-10 |
EP1740831B1 true EP1740831B1 (en) | 2010-04-21 |
Family
ID=34963342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05729530A Not-in-force EP1740831B1 (en) | 2004-04-29 | 2005-03-23 | Linear compressor |
Country Status (10)
Country | Link |
---|---|
US (1) | US20080063549A1 (en) |
EP (1) | EP1740831B1 (en) |
JP (1) | JP2007534882A (en) |
CN (1) | CN100540894C (en) |
AT (1) | ATE465343T1 (en) |
BR (1) | BRPI0509952A (en) |
DE (1) | DE602005020763D1 (en) |
IT (1) | ITPN20040029A1 (en) |
MX (1) | MXPA06011843A (en) |
WO (1) | WO2005106249A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054634A2 (en) * | 2007-10-24 | 2009-04-30 | Lg Electronics, Inc. | Linear compressor |
DE102008007661A1 (en) * | 2008-02-06 | 2009-08-13 | BSH Bosch und Siemens Hausgeräte GmbH | compressor unit |
EP3425108B1 (en) | 2009-06-29 | 2020-12-16 | Electrolux Home Products Corporation N.V. | Appliance for drying laundry |
EP2660383B1 (en) | 2009-06-29 | 2016-08-24 | Electrolux Home Products Corporation N.V. | Appliance for drying laundry |
CN104110360B (en) * | 2013-04-22 | 2016-09-28 | 青岛海尔智能技术研发有限公司 | A kind of linear compressor and lubricating method thereof |
CN106029972B (en) * | 2014-03-21 | 2019-01-22 | 伊莱克斯家用电器股份公司 | Clothesdrier |
KR102612940B1 (en) | 2017-02-03 | 2023-12-13 | 엘지전자 주식회사 | Reciprocating compressor |
KR102424613B1 (en) | 2018-04-10 | 2022-07-25 | 엘지전자 주식회사 | Linear compressor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028144A1 (en) * | 1979-10-29 | 1981-05-06 | Gordon Davey | Support system for a reciprocating compressor piston |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1069802A (en) | 1952-01-10 | 1954-07-13 | Roulements A Billes Miniatures | Short stroke piston pump |
US2985359A (en) * | 1956-06-29 | 1961-05-23 | Robert H Hunter | Hand pump |
GB1551522A (en) * | 1977-04-05 | 1979-08-30 | Syndicat Des Coproprietaires D | Free-stroke compressor having a high compression ratio |
US4566291A (en) * | 1983-02-14 | 1986-01-28 | General Pneumatics Corporation | Closed cycle cryogenic cooling apparatus |
US4832578A (en) * | 1986-11-14 | 1989-05-23 | The B.F. Goodrich Company | Multi-stage compressor |
DE4304786A1 (en) * | 1993-02-17 | 1994-08-18 | Zeolith Tech | Manually operated vacuum pump |
GB9307775D0 (en) * | 1993-04-15 | 1993-06-02 | Framo Dev Ltd | Sealing system |
US6015270A (en) * | 1996-04-30 | 2000-01-18 | Air Conditioning Technologies | Linear compressor or pump with integral motor |
US6016270A (en) | 1998-03-06 | 2000-01-18 | Alliance Semiconductor Corporation | Flash memory architecture that utilizes a time-shared address bus scheme and separate memory cell access paths for simultaneous read/write operations |
-
2004
- 2004-04-29 IT IT000029A patent/ITPN20040029A1/en unknown
-
2005
- 2005-03-23 WO PCT/EP2005/051357 patent/WO2005106249A1/en active Application Filing
- 2005-03-23 JP JP2007510008A patent/JP2007534882A/en active Pending
- 2005-03-23 EP EP05729530A patent/EP1740831B1/en not_active Not-in-force
- 2005-03-23 AT AT05729530T patent/ATE465343T1/en not_active IP Right Cessation
- 2005-03-23 DE DE602005020763T patent/DE602005020763D1/en active Active
- 2005-03-23 MX MXPA06011843A patent/MXPA06011843A/en not_active Application Discontinuation
- 2005-03-23 US US11/587,767 patent/US20080063549A1/en not_active Abandoned
- 2005-03-23 CN CNB2005800135864A patent/CN100540894C/en not_active Expired - Fee Related
- 2005-03-23 BR BRPI0509952-8A patent/BRPI0509952A/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028144A1 (en) * | 1979-10-29 | 1981-05-06 | Gordon Davey | Support system for a reciprocating compressor piston |
Also Published As
Publication number | Publication date |
---|---|
BRPI0509952A (en) | 2007-09-25 |
MXPA06011843A (en) | 2007-03-21 |
WO2005106249A1 (en) | 2005-11-10 |
CN100540894C (en) | 2009-09-16 |
EP1740831A1 (en) | 2007-01-10 |
US20080063549A1 (en) | 2008-03-13 |
ATE465343T1 (en) | 2010-05-15 |
CN101014770A (en) | 2007-08-08 |
DE602005020763D1 (en) | 2010-06-02 |
JP2007534882A (en) | 2007-11-29 |
ITPN20040029A1 (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1740831B1 (en) | Linear compressor | |
US9605666B2 (en) | Linear compressor | |
EP2818715B1 (en) | Linear compressor | |
AU2000279741A1 (en) | Linear compressor | |
WO2018045710A1 (en) | Linear compressor | |
JP2008511792A (en) | Linear compressor | |
US20230243345A1 (en) | Linear compressor | |
KR100690164B1 (en) | Control method for a linear compressor | |
KR20190031827A (en) | Linear compressor | |
KR100648818B1 (en) | Linear compressor | |
KR100648787B1 (en) | Linear compressor | |
JP4625820B2 (en) | Spring for linear compressor | |
JP2008511789A (en) | Linear compressor | |
CN112628117B (en) | Linear compressor | |
KR20190031828A (en) | Linear compressor | |
AU2006202840B2 (en) | Linear Compressor | |
KR100608520B1 (en) | Linear compressor | |
KR100607920B1 (en) | Linear compressor | |
KR100857317B1 (en) | Reciprocating compressor | |
KR20070079515A (en) | Controlling apparatus for linear compressor | |
KR20060020012A (en) | Linear copmressor | |
NZ525385A (en) | Linear compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060925 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080731 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005020763 Country of ref document: DE Date of ref document: 20100602 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100421 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100801 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100821 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100722 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100823 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
26N | No opposition filed |
Effective date: 20110124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005020763 Country of ref document: DE Owner name: ACC COMPRESSORS S.P.A., IT Free format text: FORMER OWNER: ELETTROMECCANICA S.P.A., PORDENONE, IT Effective date: 20130110 Ref country code: DE Ref legal event code: R081 Ref document number: 602005020763 Country of ref document: DE Owner name: ITALIA WANBAO-ACC S.R.L., IT Free format text: FORMER OWNER: ELETTROMECCANICA S.P.A., PORDENONE, IT Effective date: 20130110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100721 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100421 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005020763 Country of ref document: DE Owner name: ITALIA WANBAO-ACC S.R.L., IT Free format text: FORMER OWNER: ACC COMPRESSORS S.P.A., PORDENONE, IT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220322 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005020763 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |