WO2019054503A1 - Molding composition, molded article, and method for producing molded article - Google Patents

Molding composition, molded article, and method for producing molded article Download PDF

Info

Publication number
WO2019054503A1
WO2019054503A1 PCT/JP2018/034252 JP2018034252W WO2019054503A1 WO 2019054503 A1 WO2019054503 A1 WO 2019054503A1 JP 2018034252 W JP2018034252 W JP 2018034252W WO 2019054503 A1 WO2019054503 A1 WO 2019054503A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
molding
composition
structural protein
amino acid
Prior art date
Application number
PCT/JP2018/034252
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 小鷹
潤一 菅原
純一 野場
Original Assignee
Spiber株式会社
テクノハマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社, テクノハマ株式会社 filed Critical Spiber株式会社
Priority to JP2019542322A priority Critical patent/JPWO2019054503A1/en
Publication of WO2019054503A1 publication Critical patent/WO2019054503A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Definitions

  • the present invention relates to a composition for molding, a molded body, and a method for producing a molded body.
  • Patent Document 1 discloses a method of compression-molding an aggregate of animal fibers to obtain an animal fiber molding having high mechanical properties such as stress-strain characteristics.
  • a molding method for obtaining a molded object having a complicated shape for example, a molding method such as injection molding is known.
  • a molding method such as injection molding is known.
  • fluidity is required for injection molding, it is difficult to apply the aggregate of animal fibers of Patent Document 1 to injection molding.
  • the present invention provides a molding composition containing a structural protein and a polyhydric alcohol having two or more hydroxy groups and having 12 or less carbon atoms.
  • the composition for molding is improved in fluidity (particularly at high temperature) by blending a specific polyhydric alcohol, and can be suitably applied to a molding method that requires fluidity, such as injection molding. For this reason, according to the composition for molding, the molding having a complicated shape can be easily obtained by a molding method such as injection molding, and a molding can be obtained with high productivity as compared with compression molding. be able to.
  • the polyhydric alcohol preferably contains at least one selected from the group consisting of lower alcohols, saccharides and sugar alcohols.
  • the structural protein preferably contains a fibroin-like protein.
  • the fibroin-like protein preferably includes a spider silk fibroin-like protein.
  • the molding composition is preferably a mixture of the structural protein, the polyhydric alcohol, and water.
  • the composition for mold molding may be a composition for injection molding.
  • the present invention also provides a molded article obtained by molding the composition for molding, which comprises a solid material containing the above-mentioned structural protein or a modified product thereof.
  • the present invention further comprises heating the composition for molding under pressure to obtain a fluid material, injecting the fluid material into the mold, and injecting the material into the mold. Cooling the flowable material to obtain a molded product made of a solid material containing the above-mentioned structural protein or its modified product, and providing a method for producing a molded product.
  • the polyhydric alcohol preferably has a boiling point higher than the heating temperature in the heating step.
  • a molding composition which contains a structural protein and is also applicable to a molding method that requires fluidity such as injection molding. Further, according to the present invention, there is provided a molded body molded from the composition for mold molding. Furthermore, according to the present invention, there is provided a method for producing a molded article using the molding composition.
  • composition for molding contains a structural protein and a polyhydric alcohol having 12 or less carbon atoms.
  • the molding composition according to the present embodiment can exhibit fluidity applicable to a molding method such as injection molding by heating and pressing. For this reason, according to the molding composition according to the present embodiment, a molding having a complicated shape can be easily obtained by a molding method such as injection molding, and the productivity is good as compared with compression molding. A molded body can be obtained.
  • the molding composition according to this embodiment is particularly suitably used for injection molding. That is, the composition for mold formation concerning this embodiment can also be called composition for injection molding.
  • the structural protein refers to a protein that forms a biological structure or a protein derived therefrom. That is, the structural protein may be a naturally occurring structural protein, and is a modified protein in which a portion (for example, 10% or less of the amino acid sequence) of the amino acid sequence is altered based on the amino acid sequence of the naturally occurring structural protein. It may be
  • structural proteins include fibroin (for example, spider silk, silkworm silk and the like), keratin, collagen, elastin and resilin, and proteins derived therefrom.
  • fibroin-like proteins examples include, for example, proteins containing a domain sequence represented by the formula 1: [(A) n motif-REP1] m .
  • (A) n motif indicates an amino acid sequence mainly comprising an alanine residue
  • n is 2 to 20, preferably 4 to 20, more preferably 8 to 20, and still more preferably 10 to It may be an integer of 20, still more preferably 4 to 16, still more preferably 8 to 16, particularly preferably 10 to 16.
  • the ratio of the number of alanine residues to the total number of amino acid residues in (A) n motif may be 40% or more, preferably 60% or more, and more preferably 70% or more.
  • REP1 shows an amino acid sequence composed of 10 to 200 amino acid residues.
  • m represents an integer of 10 to 300.
  • the plurality of (A) n motifs may be identical to each other or different from each other.
  • the plurality of REP1 may have the same or different amino acid sequences.
  • a fibroin-like protein for example, a protein comprising the amino acid sequence shown by SEQ ID NO: 1 can be mentioned.
  • collagen-like protein (collagen or a protein derived therefrom), for example, a protein containing a domain sequence represented by the formula 2: [REP2] p (wherein p represents an integer of 5 to 300 in the formula 2).
  • REP2 represents an amino acid sequence composed of Gly-X-Y, and X and Y represent any amino acid residues other than Gly. Good) can be mentioned.
  • a protein containing the amino acid sequence shown by SEQ ID NO: 2 can be mentioned.
  • amino acid sequence shown by SEQ ID NO: 2 is a partial portion of human collagen type 4 sequence obtained from the NCBI database (NCBI GenBank accession numbers: CAA56335.1, GI: 3702452)
  • the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 6 is added to the N-terminus of the corresponding amino acid sequence from the 301st residue to the 540th residue.
  • REP3 represents an amino acid sequence composed of Ser-JJ-Tyr-Gly-U-Pro
  • J represents an arbitrary amino acid residue, and in particular an amino acid residue selected from the group consisting of Asp
  • Ser and Thr U is preferably any amino acid residue, particularly preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr and Ser.
  • a plurality of REP3s may be identical amino acid sequences to each other. And different amino acid sequences may be mentioned.
  • the amino acid sequence shown by SEQ ID NO: 3 is the amino acid sequence of resilin (NCBI GenBank accession numbers NP 611 157, Gl: 24654243), wherein Thr at position 87 is substituted with Ser, and Asn at position 95
  • the amino acid sequence (tag sequence) shown by SEQ ID NO: 7 is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence obtained by substituting Asp.
  • elastin-like proteins examples include, for example, proteins having amino acid sequences such as NCBI Accession Nos. AAC98395 (human), I47076 (sheep) and NP786966 (bovine) from GenBank.
  • a protein comprising the amino acid sequence shown in SEQ ID NO: 4 can be mentioned.
  • the amino acid sequence represented by SEQ ID NO: 4 is the amino acid sequence represented by SEQ ID NO: 6 at the N-terminus of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank accession number AAC98395 (tag sequence And hinge arrangement) are added.
  • keratin-like protein examples include, for example, type I keratin of Capra hircus and the like.
  • keratin-like protein a protein comprising the amino acid sequence shown in SEQ ID NO: 5 (the amino acid sequence of GenBank Accession No. ACY30466 of NCBI) can be mentioned.
  • fibroin-like protein is preferable, and spider silk fibroin-like protein (a spider silk fibroin or a protein derived therefrom) is more preferable.
  • spider silk fibroin-like protein a spider silk fibroin or a protein derived therefrom
  • the structural protein can be expressed, for example, by a host transformed with an expression vector having a nucleic acid sequence encoding the structural protein and one or more regulatory sequences operably linked to the nucleic acid sequence.
  • a host transformed with an expression vector having a nucleic acid sequence encoding the structural protein and one or more regulatory sequences operably linked to the nucleic acid sequence can be produced by
  • the nucleic acid can be produced by a method of amplification and cloning by polymerase chain reaction (PCR) or the like, or a method of chemical synthesis, using a gene encoding a natural structural protein.
  • the method for chemically synthesizing nucleic acid is not particularly limited, and, for example, AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.), etc. based on the amino acid sequence information of structural proteins obtained from the NCBI web database etc.
  • a nucleic acid can be chemically synthesized by a method of linking oligonucleotides that are automatically synthesized in the above by PCR or the like.
  • nucleic acid encoding a protein consisting of an amino acid sequence having an amino acid sequence consisting of an initiation codon and a His10 tag added to the N terminus of the above amino acid sequence may be synthesized.
  • the regulatory sequence is a sequence that controls the expression of a recombinant protein in a host (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, etc.), and can be appropriately selected depending on the type of host.
  • a promoter an inducible promoter which functions in a host cell and is capable of inducing expression of a target protein may be used.
  • An inducible promoter is a promoter that can control transcription due to the presence of an inducer (expression inducer), the absence of a repressor molecule, or physical factors such as temperature, osmotic pressure or an increase or decrease in pH value.
  • the type of expression vector can be appropriately selected according to the type of host, such as a plasmid vector, a virus vector, a cosmid vector, a fosmid vector, an artificial chromosome vector and the like.
  • a vector capable of autonomous replication in a host cell or capable of integration into the host chromosome and containing a promoter at a position capable of transcribing a nucleic acid encoding a target protein is suitably used. .
  • any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be suitably used.
  • prokaryote examples include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas.
  • examples of vectors for introducing a nucleic acid encoding a target protein include pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110, pNCO2 (Japanese Patent Application Laid-Open No. 2002-238569) and the like can be mentioned.
  • Eukaryotic hosts can include, for example, yeast and filamentous fungi (molds and the like).
  • yeast the yeast which belongs to Saccharomyces genus, Pichia genus, Schizosaccharomyces genus etc. can be mentioned, for example.
  • filamentous fungi include filamentous fungi belonging to the genus Aspergillus, Penicillium, Trichoderma, and the like.
  • examples of vectors into which a nucleic acid encoding a target protein is introduced include YEP13 (ATCC 37115), YEp24 (ATCC 37051), and the like.
  • any method of introducing DNA into the host cell can be used.
  • a method using calcium ion [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]
  • electroporation method electroporation method
  • spheroplast method protoplast method
  • lithium acetate method competent method and the like.
  • a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretion production, fusion protein expression and the like can be performed according to the method described in Molecular Cloning 2nd Edition, etc. .
  • the target protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, causing the protein to be produced and accumulated in the culture medium, and collecting the protein from the culture medium.
  • the method of culturing the host in a culture medium can be carried out according to a method usually used for culturing the host.
  • the culture medium When the host is a prokaryote such as E. coli or a eukaryote such as yeast, the culture medium contains a carbon source which can be used by the host, a nitrogen source, inorganic salts and the like, and the medium can efficiently culture the host. If it is, either a natural culture medium or a synthetic culture medium may be used.
  • the carbon source may be any as long as the above-mentioned transformed microorganism can assimilate, for example, glucose, fructose, sucrose and molasses containing them, carbohydrates such as starch and starch hydrolysate, acetic acid and propionic acid etc. Organic acids and alcohols such as ethanol and propanol can be used.
  • Nitrogen sources include, for example, ammonium, ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
  • inorganic salts for example, potassium phosphate, potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
  • the culture of a prokaryote such as E. coli or a eukaryote such as yeast can be performed under aerobic conditions such as shake culture or submerged aeration culture, for example.
  • the culture temperature is, for example, 15 to 40 ° C.
  • the culture time is usually 16 hours to 7 days.
  • the pH of the culture medium during culture is preferably maintained at 3.0 to 9.0. Adjustment of the pH of the culture medium can be carried out using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia and the like.
  • antibiotics such as ampicillin and tetracycline may be added to the culture medium as needed.
  • an inducer may be added to the medium as needed.
  • indole acrylic An acid or the like may be added to the medium.
  • Protein isolation and purification can be carried out by a commonly used method. For example, when the protein is expressed in a dissolved state in cells, after completion of culture, host cells are recovered by centrifugation and suspended in an aqueous buffer, and then sonicator, French press, Manton Gaulin homogenizer Then, the host cells are disrupted by Dinomill et al. To obtain a cell-free extract.
  • Methods commonly used for isolation and purification of proteins from supernatants obtained by centrifuging cell-free extracts ie solvent extraction methods, salting out methods such as ammonium sulfate, desalting methods, precipitation with organic solvents Method, anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) -sepharose, DIAION HPA-75 (made by Mitsubishi Kasei Corp.), cation using resin such as S-Sepharose FF (made by Pharmacia) Exchange chromatography method, hydrophobic chromatography method using resin such as butyl sepharose, phenyl sepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing, etc. Using one of the methods of It is possible to obtain.
  • anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) -sepharose, DIAION HP
  • the host cell When the protein is expressed in the form of an insoluble form in cells, the host cell is similarly recovered and then disrupted and centrifuged to recover the insoluble form of the protein as a precipitate fraction.
  • the recovered insoluble form of protein can be solubilized with a protein denaturant.
  • a purified preparation of protein can be obtained by the same isolation and purification method as described above.
  • the protein When the protein is secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
  • polyhydric alcohols In the present embodiment, polyhydric alcohols have 2 or more hydroxy groups, and the number of carbon atoms of polyhydric alcohols is 12 or less.
  • the number of carbon atoms of the polyhydric alcohol is preferably 10 or less, more preferably 7 or less, and still more preferably 6 or less. Moreover, it is preferable that the carbon atom number of polyhydric alcohols is two or more.
  • the polyhydric alcohols preferably contain at least one selected from the group consisting of lower alcohols, sugars and sugar alcohols. By using such polyhydric alcohols, a composition excellent in injection moldability can be easily obtained.
  • Lower alcohols are alcohols having 5 or less carbon atoms.
  • the lower alcohol for example, ethylene glycol, glycerin, erythritol, xylitol and the like can be mentioned.
  • the saccharides include monosaccharides and disaccharides, and among these, monosaccharides are more preferably used.
  • monosaccharide glucose, fructose etc. can be mentioned, for example.
  • disaccharides include sucrose and the like.
  • sugar alcohols examples include glycerin, erythritol, xylitol and the like.
  • the structural protein by adding polyhydric alcohols to the structural protein, the structural protein can be applied to a molding method that requires fluidity such as injection molding.
  • the amount of polyhydric alcohol added is not particularly limited as long as the composition for molding can exhibit fluidity that can be applied to injection molding and the like.
  • the amount of polyhydric alcohol added is, for example, preferably 20 parts by mass or more, and more preferably 25 parts by mass or more with respect to 100 parts by mass of the structural protein.
  • the amount of polyhydric alcohol added is, for example, preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, with respect to 100 parts by mass of the structural protein.
  • the molding composition according to the present embodiment may further contain water. Fluidity tends to be further improved by adding water to structural proteins in combination with polyhydric alcohols.
  • the addition amount of water is not particularly limited, and for example, the amount is preferably 7 parts by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the structural protein.
  • the amount of water added is, for example, preferably 35 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less with respect to 100 parts by mass of the structural protein . If the amount of water added is too large, air bubbles may be mixed into the molded product, and the molded product may be easily shrunk, but if it is in the above range, sufficient fluidity improvement effect can be obtained while avoiding these problems. Can.
  • the method for producing the molding composition is not particularly limited, and the structural protein and the polyhydric alcohol may be mixed by a known method. That is, the composition for molding may be a mixture of a structural protein and a polyhydric alcohol.
  • the structural protein is highly dispersed in the composition.
  • the composition for molding is preferably a mixture of powder of structural protein and polyhydric alcohol, or a mixture of pulverized and structural protein and polyhydric alcohol, and structural protein It is more preferable that it is the mixture which grind
  • pulverization mixing shows that a structural protein is grind
  • water may be simultaneously mixed at the time of mixing of the structural protein and the polyhydric alcohol.
  • the molding composition according to the present embodiment is a composition that can exhibit fluidity applicable to injection molding and the like by heating and pressing.
  • the composition for molding is, for example, a composition that develops the above-mentioned fluidity by heating at 120 to 150 ° C. (more preferably 130 to 140 ° C.) and pressing at 20 to 45 MPa (more preferably 25 to 30 MPa). It is preferable that it is a thing. By performing molding in such a temperature range, it is possible to manufacture a molded body having more excellent mechanical properties.
  • the molded object which concerns on this embodiment is a molded object which mold-formed the above-mentioned composition for mold molding (preferably injection molding).
  • the formed body is composed of a solid material containing the above-mentioned structural protein or its modified body.
  • the denatured body refers to a structural protein in the composition for molding which has been denatured by heat and pressure during molding, and is, for example, a thermally denatured structural protein, a reaction product of a structural protein with a polyhydric alcohol, etc. You may
  • the shaped body may be composed of a solid material containing a structural protein and polyhydric alcohols.
  • the structural protein preferably does not exist as a powder but is integrated.
  • the mechanical strength is poor and appearance problems such as white turbidity also occur.
  • the structural protein becomes easy to flow at the time of molding, and the molding having an excellent appearance (for example, an appearance like a plaster) You can get the body.
  • the method of molding is not particularly limited, and may be, for example, the following method.
  • the molded body is heated in a mold by heating the above-mentioned molding composition under pressure to obtain a fluid material, injecting the fluid material into the mold, and injecting the material into the mold. Cooling the injected flowable material to obtain a compact comprising the above-mentioned solid material.
  • the heating temperature in the heating step is not particularly limited, and it may be a temperature at which the molding composition can exhibit sufficient fluidity (ie, a temperature at which a fluid material having sufficient fluidity can be obtained).
  • the heating temperature may be, for example, 120 ° C. or more, and preferably 130 ° C. or more.
  • the heating temperature may be, for example, 150 ° C. or less, and preferably 140 ° C. or less.
  • the pressurizing condition in the heating step is not particularly limited as long as vaporization of polyhydric alcohol by heating is sufficiently suppressed and the composition for molding can exhibit sufficient fluidity.
  • the pressurizing condition may be, for example, 20 MPa or more, and preferably 25 MPa or more.
  • the pressure condition may be, for example, 45 MPa or less, and more preferably 30 MPa or less.
  • the flowable material is injected into the mold.
  • the mold be heated in order to prevent the fluid material from solidifying before the inside of the mold is sufficiently filled.
  • the flowable material injected into the mold is cooled and solidified to obtain a molded body having a shape corresponding to the shape in the mold.
  • the cooling method is not particularly limited, and can be appropriately selected from known methods.
  • polyhydric alcohols contained in the composition for mold formation have a boiling point higher than the heating temperature in a heating process. Thereby, vaporization of polyhydric alcohols in the heating step and the pouring step is suppressed, and deterioration of the external shape of the molded product due to foaming and the like can be avoided.
  • amino acid sequence shown by SEQ ID NO: 1 has an amino acid sequence obtained by substituting, inserting and deleting amino acid residues for the purpose of improving the productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes
  • amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 6 is added to the N-terminus.
  • nucleic acid encoding PRT410 was synthesized.
  • the NdeI site at the 5 'end and the EcoRI site downstream of the stop codon were added to the nucleic acid.
  • the nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the same nucleic acid was digested with NdeI and EcoRI, cut out, and then recombined into a protein expression vector pET-22b (+) to obtain an expression vector.
  • Protein expression E. coli BLR (DE3) was transformed with pET22b (+) expression vector containing a nucleic acid encoding a protein having the amino acid sequence shown by SEQ ID NO: 1.
  • the transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours.
  • the culture solution was added to 100 mL of seed culture medium (Table 1) containing ampicillin so that the OD 600 was 0.005.
  • the culture solution temperature was maintained at 30 ° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
  • the seed culture solution was added to a jar fermenter to which 500 ml of production medium (Table 2) was added so that the OD 600 was 0.05.
  • the temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Also, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • the feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 ml / min.
  • the temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Further, the culture was carried out for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Thereafter, 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the target protein. Twenty hours after the addition of IPTG, the culture solution was centrifuged to recover the cells. SDS-PAGE was performed using cells prepared from the culture solution before IPTG addition and after IPTG addition, and expression of a target protein was confirmed by appearance of a band of the target protein size depending on IPTG addition.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the washed precipitate is suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, and 30 at 60 ° C. Stir with a stirrer for a minute to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Pure Chemical Industries, Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed by a lyophilizer, and the lyophilized powder was recovered. The freeze-dried powder was used as a powder of spider silk fibroin-like protein "PRT410" in Examples and Comparative Examples.
  • 8 M guanidine buffer 8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl
  • Example 1 70% by weight of the above protein powder, 20% by weight of ethylene glycol (made by Tokyo Chemical Industry Co., Ltd., carbon atom number: 2) and 10% by weight of water are charged into a household miller (IFM-800DG made by Iwatani Sangyo Co., Ltd.) and mixed, A composition for molding was obtained.
  • ethylene glycol made by Tokyo Chemical Industry Co., Ltd., carbon atom number: 2
  • IFM-800DG made by Iwatani Sangyo Co., Ltd.
  • the flowability and moldability of the obtained molding composition were evaluated by the following method. As a result of evaluation, the fluidity and the formability were both A.
  • the molding composition was charged into a pressure-resistant container having an extrusion port with a diameter of 5 mm, heated and pressurized while the extrusion port was closed, and held for 1 minute under conditions of a heating temperature of 140 ° C. and a pressure of 5.6 MPa. The composition was then extruded from the extrusion port at a maximum pressure of 40 MPa, and the composition extruded out of the container was cooled to room temperature.
  • the flowability was evaluated as A when the composition could be sufficiently extruded from the extrusion port, B when the composition remained in the pressure-resistant container although partially extruded, and C when the composition could not be extruded as C. .
  • A is obtained when a uniform solid material without white turbidity is obtained
  • B when white turbidity is observed in a part
  • white turbidity is observed in a state where the powder is pressed or solidified.
  • the formability was evaluated as C, in the case of
  • Example 2 A molding composition was obtained in the same manner as in Example 1, except that ethylene glycol was replaced with 20% by weight of glycerol (manufactured by Wako Pure Chemical Industries, Ltd., carbon atom number: 3). The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were A.
  • Example 3 A molding composition was obtained in the same manner as in Example 1, except that 20% by weight of glucose (manufactured by Wako Pure Chemical Industries, D-glucose, carbon number: 6) was used instead of ethylene glycol.
  • the obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were A.
  • Example 1 A mold-forming composition was obtained in the same manner as in Example 1, except that 20% by weight of polyvinyl alcohol (polyvinyl alcohol 1000, partial saponification type, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ethylene glycol.
  • the obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the fluidity was B, and the moldability was C.
  • Comparative example 2 Composition for mold molding in the same manner as in Example 1 except that polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, polyvinyl alcohol (polymerization degree: about 2000), complete saponification) 20% by weight was used instead of ethylene glycol. I got The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were C.
  • polyvinyl alcohol manufactured by Wako Pure Chemical Industries, polyvinyl alcohol (polymerization degree: about 2000), complete saponification
  • Example 3 A molding composition was obtained in the same manner as in Example 1, except that 20% by weight of cellulose nanofibers (Cerish KY100G manufactured by Daicel Finechem Co., Ltd.) was used instead of ethylene glycol.
  • the obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the flowability was C and the moldability was B.
  • Example 4 A composition for mold molding was prepared in the same manner as in Example 1 except that 20% by weight of trimellitic acid ester (ADEKA, Adekaizer C-9N, carbon atom number: 36) was used instead of ethylene glycol. Obtained. The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the fluidity was B, and the moldability was C.
  • trimellitic acid ester ADKA, Adekaizer C-9N, carbon atom number: 36
  • composition for molding according to the present invention can be applied to a molding method which contains a structural protein and which requires fluidity such as injection molding. For this reason, the molding composition according to the present invention can be suitably used as a substitute for petroleum-derived materials.

Abstract

A molding composition containing a structural protein and polyhydric alcohols having two or more hydroxy groups and 12 or fewer carbon atoms.

Description

モールド成形用組成物、成形体及び成形体の製造方法Composition for molding, molding, and method for producing molding
 本発明は、モールド成形用組成物、成形体及び成形体の製造方法に関する。 The present invention relates to a composition for molding, a molded body, and a method for producing a molded body.
 環境保全意識の高まりから、石油由来の材料の代替物質の検討が進められており、強度などの点で優れる構造タンパク質がその候補として挙げられている。例えば、特許文献1には、動物繊維の集合体を圧縮成形して、応力-ひずみ特性等の機械的特性が高い動物繊維成形物を得る方法が開示されている。 With the rising awareness of environmental conservation, alternatives to petroleum-derived materials are being studied, and structural proteins that are excellent in terms of strength and the like are listed as candidates. For example, Patent Document 1 discloses a method of compression-molding an aggregate of animal fibers to obtain an animal fiber molding having high mechanical properties such as stress-strain characteristics.
特開2017-110132号公報Unexamined-Japanese-Patent No. 2017-110132
 しかしながら、特許文献1に記載の圧縮成形では、複雑な形状の成形体を得ることが困難であり、生産性も低いという課題があった。 However, in the compression molding described in Patent Document 1, it is difficult to obtain a compact having a complicated shape, and there is a problem that productivity is low.
 複雑な形状の成形体を得るための成形方法として、例えば、射出成形等の成形方法が知られている。しかし、射出成形には流動性が要求されるため、特許文献1の動物繊維の集合体を射出成形に適用することは困難であった。 As a molding method for obtaining a molded object having a complicated shape, for example, a molding method such as injection molding is known. However, since fluidity is required for injection molding, it is difficult to apply the aggregate of animal fibers of Patent Document 1 to injection molding.
 そこで本発明は、構造タンパク質を含有し、且つ、射出成形等の流動性が要求される成形方法にも適用可能なモールド成形用組成物を提供することを目的とする。本発明はまた、当該モールド成形用組成物から成形された成形体を提供することを目的とする。本発明はさらに、当該モールド成形用組成物を用いた成形体の製造方法を提供することを目的とする。 Then, an object of the present invention is to provide a composition for molding which is applicable to a molding method which contains a structural protein and is required to have fluidity such as injection molding. Another object of the present invention is to provide a molded article molded from the molding composition. Another object of the present invention is to provide a method for producing a molded body using the molding composition.
 本発明は、構造タンパク質と、2以上のヒドロキシ基を有し、且つ、炭素原子数が12以下の多価アルコール類と、を含有する、モールド成形用組成物を提供する。 The present invention provides a molding composition containing a structural protein and a polyhydric alcohol having two or more hydroxy groups and having 12 or less carbon atoms.
 上記モールド成形用組成物は、特定の多価アルコール類の配合により(特に高温下での)流動性が向上しており、射出成形等の流動性を要求される成形方法に好適に適用できる。このため、上記モールド成形用組成物によれば、射出成形等の成形方法によって、複雑な形状の成形体を容易に得ることができ、また、圧縮成形と比較して生産性良く成形体を得ることができる。 The composition for molding is improved in fluidity (particularly at high temperature) by blending a specific polyhydric alcohol, and can be suitably applied to a molding method that requires fluidity, such as injection molding. For this reason, according to the composition for molding, the molding having a complicated shape can be easily obtained by a molding method such as injection molding, and a molding can be obtained with high productivity as compared with compression molding. be able to.
 上記モールド成形用組成物において、上記多価アルコール類は、低級アルコール、糖類及び糖アルコールからなる群より選択される少なくとも一種を含むことが好ましい。 In the composition for molding, the polyhydric alcohol preferably contains at least one selected from the group consisting of lower alcohols, saccharides and sugar alcohols.
 上記モールド成形用組成物において、上記構造タンパク質は、フィブロイン様タンパク質を含むことが好ましい。 In the composition for molding, the structural protein preferably contains a fibroin-like protein.
 上記モールド成形用組成物において、上記フィブロイン様タンパク質は、クモ糸フィブロイン様タンパク質を含むことが好ましい。 In the above composition for molding, the fibroin-like protein preferably includes a spider silk fibroin-like protein.
 上記モールド成形用組成物は、上記構造タンパク質と、上記多価アルコール類と、水とを混合した混合物であることが好ましい。 The molding composition is preferably a mixture of the structural protein, the polyhydric alcohol, and water.
 上記モールド成形用組成物は、射出成形用組成物であってよい。 The composition for mold molding may be a composition for injection molding.
 本発明はまた、上記モールド成形用組成物をモールド成形した成形体であって、上記構造タンパク質又はその変性体を含有する固体材料からなる、成形体を提供する。 The present invention also provides a molded article obtained by molding the composition for molding, which comprises a solid material containing the above-mentioned structural protein or a modified product thereof.
 本発明は更に、上記モールド成形用組成物を加圧下で加熱して、流動材料を得る加熱工程と、上記流動材料を金型内に注入する注入工程と、上記金型内に注入された上記流動材料を冷却して、上記構造タンパク質又はその変性体を含有する固体材料からなる成形体を得る冷却工程と、を含む、成形体の製造方法を提供する。 The present invention further comprises heating the composition for molding under pressure to obtain a fluid material, injecting the fluid material into the mold, and injecting the material into the mold. Cooling the flowable material to obtain a molded product made of a solid material containing the above-mentioned structural protein or its modified product, and providing a method for producing a molded product.
 上記成形体の製造方法において、上記多価アルコール類は、上記加熱工程における加熱温度より高い沸点を有することが好ましい。 In the method for producing a molded article, the polyhydric alcohol preferably has a boiling point higher than the heating temperature in the heating step.
 本発明によれば、構造タンパク質を含有し、且つ、射出成形等の流動性が要求される成形方法にも適用可能なモールド成形用組成物が提供される。また、本発明によれば、当該モールド成形用組成物から成形された成形体が提供される。さらに、本発明によれば、当該モールド成形用組成物を用いた成形体の製造方法が提供される。 According to the present invention, there is provided a molding composition which contains a structural protein and is also applicable to a molding method that requires fluidity such as injection molding. Further, according to the present invention, there is provided a molded body molded from the composition for mold molding. Furthermore, according to the present invention, there is provided a method for producing a molded article using the molding composition.
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.
(モールド成形用組成物)
 本実施形態に係るモールド成形用組成物は、構造タンパク質と、炭素原子数が12以下の多価アルコール類とを含有している。本実施形態に係るモールド成形用組成物は、加熱加圧によって、射出成形等の成形方法に適用可能な流動性を発現することができる。このため、本実施形態に係るモールド成形用組成物によれば、射出成形等の成形方法によって、複雑な形状の成形体を容易に得ることができ、また、圧縮成形と比較して生産性良く成形体を得ることができる。
(Composition for molding)
The composition for molding according to this embodiment contains a structural protein and a polyhydric alcohol having 12 or less carbon atoms. The molding composition according to the present embodiment can exhibit fluidity applicable to a molding method such as injection molding by heating and pressing. For this reason, according to the molding composition according to the present embodiment, a molding having a complicated shape can be easily obtained by a molding method such as injection molding, and the productivity is good as compared with compression molding. A molded body can be obtained.
 本実施形態に係るモールド成形用組成物は、射出成形に特に好適に用いられる。すなわち、本実施形態に係るモールド成形用組成物は、射出成形用組成物ということもできる。 The molding composition according to this embodiment is particularly suitably used for injection molding. That is, the composition for mold formation concerning this embodiment can also be called composition for injection molding.
[構造タンパク質]
 構造タンパク質とは、生体構造を形成するタンパク質又はそれに由来するタンパク質を示す。すなわち、構造タンパク質は、天然由来の構造タンパク質であってよく、天然由来の構造タンパク質のアミノ酸配列に依拠してそのアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した改変タンパク質であってもよい。
[Structural protein]
The structural protein refers to a protein that forms a biological structure or a protein derived therefrom. That is, the structural protein may be a naturally occurring structural protein, and is a modified protein in which a portion (for example, 10% or less of the amino acid sequence) of the amino acid sequence is altered based on the amino acid sequence of the naturally occurring structural protein. It may be
 構造タンパク質の具体例としては、フィブロイン(例えば、スパイダーシルク、カイコシルク等)、ケラチン、コラーゲン、エラスチン及びレシリン、並びにこれら由来のタンパク質等を挙げることができる。 Specific examples of structural proteins include fibroin (for example, spider silk, silkworm silk and the like), keratin, collagen, elastin and resilin, and proteins derived therefrom.
 フィブロイン様タンパク質(フィブロイン又はそれに由来するタンパク質)としては、例えば、式1:[(A)モチーフ-REP1]で表されるドメイン配列を含むタンパク質が挙げられる。ここで、式1中、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、nは2~20、好ましくは4~20、より好ましくは8~20、更に好ましくは10~20、更により好ましくは4~16、更によりまた好ましくは8~16、特に好ましくは10~16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、90%以上であることが更により好ましく、100%(アラニン残基のみで構成されることを意味する。)であってもよい。REP1は10~200アミノ酸残基から構成されるアミノ酸配列を示す。mは10~300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREP1は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。フィブロイン様タンパク質の具体例としては、例えば、配列番号1で示されるアミノ酸配列を含むタンパク質を挙げることができる。 Examples of fibroin-like proteins (fibroin or proteins derived therefrom) include, for example, proteins containing a domain sequence represented by the formula 1: [(A) n motif-REP1] m . Here, in Formula 1, (A) n motif indicates an amino acid sequence mainly comprising an alanine residue, n is 2 to 20, preferably 4 to 20, more preferably 8 to 20, and still more preferably 10 to It may be an integer of 20, still more preferably 4 to 16, still more preferably 8 to 16, particularly preferably 10 to 16. The ratio of the number of alanine residues to the total number of amino acid residues in (A) n motif may be 40% or more, preferably 60% or more, and more preferably 70% or more. % Or more is more preferable, 90% or more is still more preferable, and 100% (meaning it is composed of only alanine residues) may be used. REP1 shows an amino acid sequence composed of 10 to 200 amino acid residues. m represents an integer of 10 to 300. The plurality of (A) n motifs may be identical to each other or different from each other. The plurality of REP1 may have the same or different amino acid sequences. As a specific example of a fibroin-like protein, for example, a protein comprising the amino acid sequence shown by SEQ ID NO: 1 can be mentioned.
 コラーゲン様タンパク質(コラーゲン又はそれに由来するタンパク質)としては、例えば、式2:[REP2]で表されるドメイン配列を含むタンパク質(ここで、式2中、pは5~300の整数を示す。REP2は、Gly一X一Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP2は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。コラーゲン様タンパク質の具体例としては、配列番号2で示されるアミノ酸配列を含むタンパク質を挙げることができる。なお、配列番号2で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号6で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 As a collagen-like protein (collagen or a protein derived therefrom), for example, a protein containing a domain sequence represented by the formula 2: [REP2] p (wherein p represents an integer of 5 to 300 in the formula 2). REP2 represents an amino acid sequence composed of Gly-X-Y, and X and Y represent any amino acid residues other than Gly. Good) can be mentioned. As a specific example of the collagen like protein, a protein containing the amino acid sequence shown by SEQ ID NO: 2 can be mentioned. In addition, the amino acid sequence shown by SEQ ID NO: 2 is a partial portion of human collagen type 4 sequence obtained from the NCBI database (NCBI GenBank accession numbers: CAA56335.1, GI: 3702452) The amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 6 is added to the N-terminus of the corresponding amino acid sequence from the 301st residue to the 540th residue.
 レシリン様タンパク質(レシリン又はそれに由来するタンパク質)としては、例えば、式3:[REP3]で表されるドメイン配列を含むタンパク質(ここで、式3中、qは4~300の整数を示す。REP3はSer-J-J-Tyr-Gly-U-Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。レシリン様タンパク質の具体例としては、配列番号3で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号3で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号7で示されるアミノ酸配列(タグ配列)が付加されたものである。 As a resilin-like protein (resilin or a protein derived therefrom), for example, a protein containing a domain sequence represented by Formula 3: [REP3] q (wherein, in Formula 3, q represents an integer of 4 to 300). REP3 represents an amino acid sequence composed of Ser-JJ-Tyr-Gly-U-Pro, J represents an arbitrary amino acid residue, and in particular an amino acid residue selected from the group consisting of Asp, Ser and Thr U is preferably any amino acid residue, particularly preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr and Ser. A plurality of REP3s may be identical amino acid sequences to each other. And different amino acid sequences may be mentioned. As a specific example of resilin like protein, the protein containing the amino acid sequence shown by sequence number 3 can be mentioned. The amino acid sequence shown by SEQ ID NO: 3 is the amino acid sequence of resilin (NCBI GenBank accession numbers NP 611 157, Gl: 24654243), wherein Thr at position 87 is substituted with Ser, and Asn at position 95 The amino acid sequence (tag sequence) shown by SEQ ID NO: 7 is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence obtained by substituting Asp.
 エラスチン様タンパク質(エラスチン又はそれに由来するタンパク質)としては、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有するタンパク質を挙げることができる。エラスチン様タンパク質の具体例としては、配列番号4で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号4で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号6で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 Examples of elastin-like proteins (elastin or proteins derived therefrom) include, for example, proteins having amino acid sequences such as NCBI Accession Nos. AAC98395 (human), I47076 (sheep) and NP786966 (bovine) from GenBank. As a specific example of the elastin-like protein, a protein comprising the amino acid sequence shown in SEQ ID NO: 4 can be mentioned. The amino acid sequence represented by SEQ ID NO: 4 is the amino acid sequence represented by SEQ ID NO: 6 at the N-terminus of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank accession number AAC98395 (tag sequence And hinge arrangement) are added.
 ケラチン様タンパク質(ケラチン又はそれに由来するタンパク質)としては、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。ケラチン様タンパク質の具体例としては、配列番号5で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含むタンパク質を挙げることができる。 Examples of the keratin-like protein (keratin or a protein derived therefrom) include, for example, type I keratin of Capra hircus and the like. As a specific example of the keratin-like protein, a protein comprising the amino acid sequence shown in SEQ ID NO: 5 (the amino acid sequence of GenBank Accession No. ACY30466 of NCBI) can be mentioned.
 構造タンパク質としては、フィブロイン様タンパク質が好ましく、クモ糸フィブロイン様タンパク質(クモ糸フィブロイン又はそれに由来するタンパク質)がより好ましい。このような構造タンパク質を用いることで、機械的強度に一層優れる成形体が得られる。 As a structural protein, fibroin-like protein is preferable, and spider silk fibroin-like protein (a spider silk fibroin or a protein derived therefrom) is more preferable. By using such a structural protein, it is possible to obtain a molded body which is further excellent in mechanical strength.
 構造タンパク質は、例えば、構造タンパク質をコードする核酸配列と,当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。 The structural protein can be expressed, for example, by a host transformed with an expression vector having a nucleic acid sequence encoding the structural protein and one or more regulatory sequences operably linked to the nucleic acid sequence. Can be produced by
 目的とするタンパク質をコードする核酸の製造方法は特に制限されない。例えば、天然の構造タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した構造タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって、核酸を化学的に合成することができる。この際に、タンパク質の精製や確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質をコードする核酸を合成してもよい。 There are no particular restrictions on the method for producing the nucleic acid encoding the target protein. For example, the nucleic acid can be produced by a method of amplification and cloning by polymerase chain reaction (PCR) or the like, or a method of chemical synthesis, using a gene encoding a natural structural protein. The method for chemically synthesizing nucleic acid is not particularly limited, and, for example, AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.), etc. based on the amino acid sequence information of structural proteins obtained from the NCBI web database etc. A nucleic acid can be chemically synthesized by a method of linking oligonucleotides that are automatically synthesized in the above by PCR or the like. At this time, in order to facilitate purification and confirmation of the protein, a nucleic acid encoding a protein consisting of an amino acid sequence having an amino acid sequence consisting of an initiation codon and a His10 tag added to the N terminus of the above amino acid sequence may be synthesized. .
 調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするタンパク質を発現誘導可能な誘導性プロモーターを用いても良い。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。 The regulatory sequence is a sequence that controls the expression of a recombinant protein in a host (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, etc.), and can be appropriately selected depending on the type of host. As a promoter, an inducible promoter which functions in a host cell and is capable of inducing expression of a target protein may be used. An inducible promoter is a promoter that can control transcription due to the presence of an inducer (expression inducer), the absence of a repressor molecule, or physical factors such as temperature, osmotic pressure or an increase or decrease in pH value.
 発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、目的とするタンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。 The type of expression vector can be appropriately selected according to the type of host, such as a plasmid vector, a virus vector, a cosmid vector, a fosmid vector, an artificial chromosome vector and the like. As the expression vector, a vector capable of autonomous replication in a host cell or capable of integration into the host chromosome and containing a promoter at a position capable of transcribing a nucleic acid encoding a target protein is suitably used. .
 宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。 As a host, any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be suitably used.
 原核生物の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。 Preferred examples of the prokaryote include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas.
 原核生物を宿主とする場合、目的とするタンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。 When a prokaryote is used as a host, examples of vectors for introducing a nucleic acid encoding a target protein include pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110, pNCO2 (Japanese Patent Application Laid-Open No. 2002-238569) and the like can be mentioned.
 真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。 Eukaryotic hosts can include, for example, yeast and filamentous fungi (molds and the like). As a yeast, the yeast which belongs to Saccharomyces genus, Pichia genus, Schizosaccharomyces genus etc. can be mentioned, for example. Examples of filamentous fungi include filamentous fungi belonging to the genus Aspergillus, Penicillium, Trichoderma, and the like.
 真核生物を宿主とする場合、目的とするタンパク質をコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。 When a eukaryote is used as a host, examples of vectors into which a nucleic acid encoding a target protein is introduced include YEP13 (ATCC 37115), YEp24 (ATCC 37051), and the like.
 上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110 (1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。 As a method of introducing the expression vector into the host cell, any method of introducing DNA into the host cell can be used. For example, a method using calcium ion [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], electroporation method, spheroplast method, protoplast method, lithium acetate method, competent method and the like.
 発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。 As a method for expressing a nucleic acid by a host transformed with an expression vector, in addition to direct expression, secretion production, fusion protein expression and the like can be performed according to the method described in Molecular Cloning 2nd Edition, etc. .
 目的とするタンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。 The target protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, causing the protein to be produced and accumulated in the culture medium, and collecting the protein from the culture medium. The method of culturing the host in a culture medium can be carried out according to a method usually used for culturing the host.
 宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。 When the host is a prokaryote such as E. coli or a eukaryote such as yeast, the culture medium contains a carbon source which can be used by the host, a nitrogen source, inorganic salts and the like, and the medium can efficiently culture the host. If it is, either a natural culture medium or a synthetic culture medium may be used.
 炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。 The carbon source may be any as long as the above-mentioned transformed microorganism can assimilate, for example, glucose, fructose, sucrose and molasses containing them, carbohydrates such as starch and starch hydrolysate, acetic acid and propionic acid etc. Organic acids and alcohols such as ethanol and propanol can be used. Nitrogen sources include, for example, ammonium, ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof can be used. As inorganic salts, for example, potassium phosphate, potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
 大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。 The culture of a prokaryote such as E. coli or a eukaryote such as yeast can be performed under aerobic conditions such as shake culture or submerged aeration culture, for example. The culture temperature is, for example, 15 to 40 ° C. The culture time is usually 16 hours to 7 days. The pH of the culture medium during culture is preferably maintained at 3.0 to 9.0. Adjustment of the pH of the culture medium can be carried out using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia and the like.
 また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。 Also, during the culture, antibiotics such as ampicillin and tetracycline may be added to the culture medium as needed. When a microorganism transformed with an expression vector using an inducible promoter as a promoter is cultured, an inducer may be added to the medium as needed. For example, when culturing a microorganism transformed with an expression vector using a lac promoter, isopropyl-β-D-thiogalactopyranoside etc., and culturing a microorganism transformed with an expression vector using a trp promoter, indole acrylic An acid or the like may be added to the medium.
 タンパク質の単離、精製は通常用いられている方法で行うことができる。例えば、タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。 Protein isolation and purification can be carried out by a commonly used method. For example, when the protein is expressed in a dissolved state in cells, after completion of culture, host cells are recovered by centrifugation and suspended in an aqueous buffer, and then sonicator, French press, Manton Gaulin homogenizer Then, the host cells are disrupted by Dinomill et al. To obtain a cell-free extract. Methods commonly used for isolation and purification of proteins from supernatants obtained by centrifuging cell-free extracts, ie solvent extraction methods, salting out methods such as ammonium sulfate, desalting methods, precipitation with organic solvents Method, anion exchange chromatography method using resin such as diethylaminoethyl (DEAE) -sepharose, DIAION HPA-75 (made by Mitsubishi Kasei Corp.), cation using resin such as S-Sepharose FF (made by Pharmacia) Exchange chromatography method, hydrophobic chromatography method using resin such as butyl sepharose, phenyl sepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing, etc. Using one of the methods of It is possible to obtain.
 また、タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分としてタンパク質の不溶体を回収する。回収したタンパク質の不溶体は蛋白質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によりタンパク質の精製標品を得ることができる。 When the protein is expressed in the form of an insoluble form in cells, the host cell is similarly recovered and then disrupted and centrifuged to recover the insoluble form of the protein as a precipitate fraction. The recovered insoluble form of protein can be solubilized with a protein denaturant. After the operation, a purified preparation of protein can be obtained by the same isolation and purification method as described above.
 タンパク質が細胞外に分泌された場合には、培養上清からタンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。 When the protein is secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
[多価アルコール類]
 本実施形態において、多価アルコール類は2以上のヒドロキシ基を有し、多価アルコール類の炭素原子数は12以下である。
[Polyhydric alcohols]
In the present embodiment, polyhydric alcohols have 2 or more hydroxy groups, and the number of carbon atoms of polyhydric alcohols is 12 or less.
 多価アルコール類の炭素原子数は、好ましくは10以下であり、より好ましくは7以下であり、更に好ましくは6以下である。また、多価アルコール類の炭素原子数は2以上であることが好ましい。 The number of carbon atoms of the polyhydric alcohol is preferably 10 or less, more preferably 7 or less, and still more preferably 6 or less. Moreover, it is preferable that the carbon atom number of polyhydric alcohols is two or more.
 多価アルコール類は、低級アルコール、糖類及び糖アルコールからなる群より選択される少なくとも一種を含むことが好ましい。このような多価アルコール類を用いることで射出成形性により優れた組成物が得られやすくなる。 The polyhydric alcohols preferably contain at least one selected from the group consisting of lower alcohols, sugars and sugar alcohols. By using such polyhydric alcohols, a composition excellent in injection moldability can be easily obtained.
 低級アルコールは、炭素原子数5以下のアルコール類を示す。低級アルコールとしては、例えば、エチレングリコール、グリセリン、エリトリトール、キシリトール等を挙げることができる。 Lower alcohols are alcohols having 5 or less carbon atoms. As the lower alcohol, for example, ethylene glycol, glycerin, erythritol, xylitol and the like can be mentioned.
 糖類としては、単糖類及び二糖類が挙げられ、これらのうち単糖類がより好適に用いられる。単糖類としては、例えば、グルコース、フルクトース等を挙げることができる。二糖類としては、例えば、スクロース等を挙げることができる。 The saccharides include monosaccharides and disaccharides, and among these, monosaccharides are more preferably used. As a monosaccharide, glucose, fructose etc. can be mentioned, for example. Examples of disaccharides include sucrose and the like.
 糖アルコールとしては、例えば、グリセリン、エリトリトール、キシリトール等が挙げられる。 Examples of sugar alcohols include glycerin, erythritol, xylitol and the like.
 本実施形態では、構造タンパク質に多価アルコール類を添加することで、構造タンパク質を射出成形等の流動性が要求される成形方法に適用可能にしている。多価アルコール類の添加量は、モールド成形用組成物が射出成形等に適用可能な流動性を発現できる範囲であれば特に限定されない。多価アルコール類の添加量は、例えば、構造タンパク質100質量部に対して、20質量部以上であることが好ましく、25質量部以上であることがより好ましい。また、多価アルコール類の添加量は、例えば、構造タンパク質100質量部に対して、40質量部以下であることが好ましく、35質量部以下であることがより好ましい。 In this embodiment, by adding polyhydric alcohols to the structural protein, the structural protein can be applied to a molding method that requires fluidity such as injection molding. The amount of polyhydric alcohol added is not particularly limited as long as the composition for molding can exhibit fluidity that can be applied to injection molding and the like. The amount of polyhydric alcohol added is, for example, preferably 20 parts by mass or more, and more preferably 25 parts by mass or more with respect to 100 parts by mass of the structural protein. The amount of polyhydric alcohol added is, for example, preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, with respect to 100 parts by mass of the structural protein.
 本実施形態に係るモールド成形用組成物は、水を更に含有していてよい。構造タンパク質に多価アルコール類と併せて水を添加することで、流動性が一層向上する傾向がある。 The molding composition according to the present embodiment may further contain water. Fluidity tends to be further improved by adding water to structural proteins in combination with polyhydric alcohols.
 水の添加量は特に限定されず、例えば、構造タンパク質100質量部に対して、7質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、水の添加量は、例えば、構造タンパク質100質量部に対して、35質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることが更に好ましい。水の添加量が多すぎると成形体中に気泡が混じったり、成形体が収縮しやすくなる場合があるが、上記範囲であれば、これらの問題を避けつつ流動性向上効果を十分に得ることができる。 The addition amount of water is not particularly limited, and for example, the amount is preferably 7 parts by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the structural protein. The amount of water added is, for example, preferably 35 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less with respect to 100 parts by mass of the structural protein . If the amount of water added is too large, air bubbles may be mixed into the molded product, and the molded product may be easily shrunk, but if it is in the above range, sufficient fluidity improvement effect can be obtained while avoiding these problems. Can.
 本実施形態において、モールド成形用組成物の製造方法は特に限定されず、構造タンパク質と多価アルコール類とを公知の方法で混合すればよい。すなわち、モールド成形用組成物は、構造タンパク質と多価アルコール類とを混合した混合物であってよい。 In the present embodiment, the method for producing the molding composition is not particularly limited, and the structural protein and the polyhydric alcohol may be mixed by a known method. That is, the composition for molding may be a mixture of a structural protein and a polyhydric alcohol.
 本実施形態に係るモールド成形用組成物は、当該組成物中で構造タンパク質が高分散していることが好ましい。この観点から、モールド成形用組成物は、構造タンパク質の粉体と多価アルコール類とを混合した混合物、又は、構造タンパク質と多価アルコール類とを粉砕混合した混合物であることが好ましく、構造タンパク質の粉体と多価アルコール類とを粉砕混合した混合物であることがより好ましい。なお、ここで粉砕混合とは、混合中に構造タンパク質が粉砕され、微粉化又は小径化することを示す。 In the composition for molding according to the present embodiment, it is preferable that the structural protein is highly dispersed in the composition. From this viewpoint, the composition for molding is preferably a mixture of powder of structural protein and polyhydric alcohol, or a mixture of pulverized and structural protein and polyhydric alcohol, and structural protein It is more preferable that it is the mixture which grind | pulverized and mixed the powder and polyhydric alcohols. In addition, a grinding | pulverization mixing shows that a structural protein is grind | pulverized during mixing, and micronization or diameter reduction is carried out here.
 本実施形態では、構造タンパク質と多価アルコール類との混合時に、水を同時に混合してもよい。 In the present embodiment, water may be simultaneously mixed at the time of mixing of the structural protein and the polyhydric alcohol.
 本実施形態に係るモールド成形用組成物は、加熱加圧によって、射出成形等に適用可能な流動性を発現できる組成物である。モールド成形用組成物は、例えば、120~150℃(より好ましくは130~140℃)の加熱、及び、20~45MPa(より好ましくは25~30MPa)の加圧によって上述の流動性を発現する組成物であることが好ましい。このような温度範囲で成形を行うことで、より機械的特性に優れた成形体を製造することができる。 The molding composition according to the present embodiment is a composition that can exhibit fluidity applicable to injection molding and the like by heating and pressing. The composition for molding is, for example, a composition that develops the above-mentioned fluidity by heating at 120 to 150 ° C. (more preferably 130 to 140 ° C.) and pressing at 20 to 45 MPa (more preferably 25 to 30 MPa). It is preferable that it is a thing. By performing molding in such a temperature range, it is possible to manufacture a molded body having more excellent mechanical properties.
(成形体)
 本実施形態に係る成形体は、上述のモールド成形用組成物をモールド成形(好適には射出成形)した成形体である。成形体は、上記構造タンパク質又はその変性体を含有する固体材料で構成される。変性体は、成形時の加熱加圧によってモールド成形用組成物中の構造タンパク質が変性したものを示し、例えば、構造タンパク質の熱変性物、構造タンパク質と多価アルコール類との反応物等であってよい。
(Molded body)
The molded object which concerns on this embodiment is a molded object which mold-formed the above-mentioned composition for mold molding (preferably injection molding). The formed body is composed of a solid material containing the above-mentioned structural protein or its modified body. The denatured body refers to a structural protein in the composition for molding which has been denatured by heat and pressure during molding, and is, for example, a thermally denatured structural protein, a reaction product of a structural protein with a polyhydric alcohol, etc. You may
 好適な一態様において、成形体は、構造タンパク質及び多価アルコール類を含有する固体材料で構成されたものであってよい。 In a preferred embodiment, the shaped body may be composed of a solid material containing a structural protein and polyhydric alcohols.
 成形体を構成する固体材料において、構造タンパク質は、粉体として存在せず、一体化していることが好ましい。成形体が、構造タンパク質の粉体が押し固められた状態であると、機械的強度が劣り、白濁等の外観上の問題も生じる。本実施形態では、上述のモールド成形用組成物に多価アルコール類を添加したことで、成形時に構造タンパク質が流動しやすくなり、外観に優れた(例えば、べっこうのような外観の)成形体を得ることができる。 In the solid material constituting the molded body, the structural protein preferably does not exist as a powder but is integrated. When the compact is in a state in which the powder of the structural protein is compacted, the mechanical strength is poor and appearance problems such as white turbidity also occur. In this embodiment, by adding a polyhydric alcohol to the above-mentioned composition for molding, the structural protein becomes easy to flow at the time of molding, and the molding having an excellent appearance (for example, an appearance like a plaster) You can get the body.
 本実施形態において、モールド成形の方法は特に限定されず、例えば、以下の方法であってよい。 In the present embodiment, the method of molding is not particularly limited, and may be, for example, the following method.
 好適な一態様において、成形体は、上述のモールド成形用組成物を加圧下で加熱して、流動材料を得る加熱工程と、流動材料を金型内に注入する注入工程と、金型内に注入された流動材料を冷却して、上述の固体材料からなる成形体を得る冷却工程と、を含む製造方法によって製造してよい。 In a preferred embodiment, the molded body is heated in a mold by heating the above-mentioned molding composition under pressure to obtain a fluid material, injecting the fluid material into the mold, and injecting the material into the mold. Cooling the injected flowable material to obtain a compact comprising the above-mentioned solid material.
 加熱工程における加熱温度は、特に限定されず、モールド成形用組成物が十分な流動性を発現できる温度(すなわち、十分な流動性を有する流動材料が得られる温度)であればよい。加熱温度は、例えば120℃以上であってよく、130℃以上であることが好ましい。また、加熱温度は、例えば150℃以下であってよく、140℃以下であることが好ましい。 The heating temperature in the heating step is not particularly limited, and it may be a temperature at which the molding composition can exhibit sufficient fluidity (ie, a temperature at which a fluid material having sufficient fluidity can be obtained). The heating temperature may be, for example, 120 ° C. or more, and preferably 130 ° C. or more. The heating temperature may be, for example, 150 ° C. or less, and preferably 140 ° C. or less.
 加熱工程における加圧条件は、特に限定されず、加熱による多価アルコール類の気化が十分に抑制され、且つ、モールド成形用組成物が十分な流動性を発現できる条件であればよい。加圧条件は、例えば、20MPa以上であってよく、25MPa以上であることが好ましい。また、加圧条件は、例えば、45MPa以下であってよく、30MPa以下であることが更に好ましい。 The pressurizing condition in the heating step is not particularly limited as long as vaporization of polyhydric alcohol by heating is sufficiently suppressed and the composition for molding can exhibit sufficient fluidity. The pressurizing condition may be, for example, 20 MPa or more, and preferably 25 MPa or more. The pressure condition may be, for example, 45 MPa or less, and more preferably 30 MPa or less.
 注入工程では、金型内に流動材料が注入される。このとき、金型内の細部にまで流動材料が注入されるように、流動材料に圧力を付すことが好ましい。また、注入工程では、金型内が十分に充填される前に流動材料が固化することを防ぐため、金型が加熱されていることが好ましい。これらの圧力及び加熱の条件は、流動材料の流動性及び金型内の形状等に応じて適宜調整できる。 In the injection step, the flowable material is injected into the mold. At this time, it is preferable to apply pressure to the fluid material so that the fluid material is injected to the details in the mold. In addition, in the injection step, it is preferable that the mold be heated in order to prevent the fluid material from solidifying before the inside of the mold is sufficiently filled. These pressure and heating conditions can be appropriately adjusted in accordance with the flowability of the flowable material, the shape in the mold, and the like.
 冷却工程では、金型内に注入された流動材料が冷却されて固化し、金型内の形状に対応した形状の成形体が得られる。冷却方法は特に限定されず、公知の方法から適宜選択できる。 In the cooling step, the flowable material injected into the mold is cooled and solidified to obtain a molded body having a shape corresponding to the shape in the mold. The cooling method is not particularly limited, and can be appropriately selected from known methods.
 上記製造方法では、モールド成形用組成物に含まれる多価アルコール類が、加熱工程における加熱温度より高い沸点を有していることが好ましい。これにより、加熱工程及び注入工程における多価アルコール類の気化が抑制され、発泡等による成形体の外観形状の悪化を避けることができる。 In the above-mentioned manufacturing method, it is preferable that polyhydric alcohols contained in the composition for mold formation have a boiling point higher than the heating temperature in a heating process. Thereby, vaporization of polyhydric alcohols in the heating step and the pouring step is suppressed, and deterioration of the external shape of the molded product due to foaming and the like can be avoided.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although the suitable embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the examples.
<クモ糸フィブロイン様タンパク質の製造>
(1)発現株の作製
 ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号1で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT410」ともいう。)を設計した。なお、配列番号1で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号6で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。
<Production of spider silk fibroin-like protein>
(1) Preparation of expression strain Based on the base sequence and amino acid sequence of fibroin (GenBank accession number: P46804.1, GI: 1174415) derived from Nephila clavipes, it has the amino acid sequence shown in SEQ ID NO: 1 A modified fibroin (hereinafter also referred to as "PRT410") was designed. In addition, the amino acid sequence shown by SEQ ID NO: 1 has an amino acid sequence obtained by substituting, inserting and deleting amino acid residues for the purpose of improving the productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes Furthermore, the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 6 is added to the N-terminus.
 次に、PRT410をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。 Next, the nucleic acid encoding PRT410 was synthesized. The NdeI site at the 5 'end and the EcoRI site downstream of the stop codon were added to the nucleic acid. The nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the same nucleic acid was digested with NdeI and EcoRI, cut out, and then recombined into a protein expression vector pET-22b (+) to obtain an expression vector.
(2)タンパク質の発現
 配列番号1で示されるアミノ酸配列を有するタンパク質をコードする核酸を含むpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表1)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
(2) Protein expression E. coli BLR (DE3) was transformed with pET22b (+) expression vector containing a nucleic acid encoding a protein having the amino acid sequence shown by SEQ ID NO: 1. The transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours. The culture solution was added to 100 mL of seed culture medium (Table 1) containing ampicillin so that the OD 600 was 0.005. The culture solution temperature was maintained at 30 ° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 当該シード培養液を、500mlの生産培地(表2)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。 The seed culture solution was added to a jar fermenter to which 500 ml of production medium (Table 2) was added so that the OD 600 was 0.05. The temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Also, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1ml/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、目的のタンパク質を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とするタンパク質サイズのバンドの出現により、目的とするタンパク質の発現を確認した。 Immediately after the glucose in the production medium was completely consumed, the feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 ml / min. The temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Further, the culture was carried out for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Thereafter, 1 M isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the target protein. Twenty hours after the addition of IPTG, the culture solution was centrifuged to recover the cells. SDS-PAGE was performed using cells prepared from the culture solution before IPTG addition and after IPTG addition, and expression of a target protein was confirmed by appearance of a band of the target protein size depending on IPTG addition.
(3)タンパク質の精製
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mMTris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mMTris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mMNaCl、1mMTris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。この凍結乾燥粉末を、クモ糸フィブロイン様タンパク質「PRT410」の粉末として、実施例及び比較例に用いた。
(3) Purification of Protein Two hours after addition of IPTG, the cells collected were washed with 20 mM Tris-HCl buffer (pH 7.4). The washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi). The disrupted cells were centrifuged to obtain a precipitate. The resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) to high purity. The washed precipitate is suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, and 30 at 60 ° C. Stir with a stirrer for a minute to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Pure Chemical Industries, Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed by a lyophilizer, and the lyophilized powder was recovered. The freeze-dried powder was used as a powder of spider silk fibroin-like protein "PRT410" in Examples and Comparative Examples.
(実施例1)
 上記タンパク質粉末70重量%、エチレングリコール(東京化成工業社製、炭素原子数:2)20重量%及び水10重量%を家庭用ミルサー(岩谷産業社製IFM-800DG)に投入し混合して、モールド成形用組成物を得た。
Example 1
70% by weight of the above protein powder, 20% by weight of ethylene glycol (made by Tokyo Chemical Industry Co., Ltd., carbon atom number: 2) and 10% by weight of water are charged into a household miller (IFM-800DG made by Iwatani Sangyo Co., Ltd.) and mixed, A composition for molding was obtained.
 得られたモールド成形用組成物について、以下の方法で流動性及び成形性を評価した。評価の結果、流動性及び成形性はいずれもAであった。 The flowability and moldability of the obtained molding composition were evaluated by the following method. As a result of evaluation, the fluidity and the formability were both A.
<評価方法>
 モールド成形用組成物を、直径5mmの押出口を有する耐圧容器に投入し、押出口を塞いだ状態で加熱加圧して、加熱温度140℃及び圧力5.6MPaの条件で1分間保持した。次いで、組成物を押出口から最大圧力40MPaで押し出し、容器外に押し出された組成物を室温まで冷却した。
<Evaluation method>
The molding composition was charged into a pressure-resistant container having an extrusion port with a diameter of 5 mm, heated and pressurized while the extrusion port was closed, and held for 1 minute under conditions of a heating temperature of 140 ° C. and a pressure of 5.6 MPa. The composition was then extruded from the extrusion port at a maximum pressure of 40 MPa, and the composition extruded out of the container was cooled to room temperature.
 押出口から組成物を十分に押し出すことができた場合をA、一部が押し出されたものの耐圧容器に組成物が残存した場合をB、押し出しできなかった場合をCとして、流動性を評価した。また、冷却後の組成物を観察し、白濁のない均一な固体材料が得られた場合をA、一部に白濁が見られた場合をB、粉末を押し固めた状態又は全体に白濁が見られた場合をCとして、成形性を評価した。 The flowability was evaluated as A when the composition could be sufficiently extruded from the extrusion port, B when the composition remained in the pressure-resistant container although partially extruded, and C when the composition could not be extruded as C. . In addition, the composition after cooling is observed, A is obtained when a uniform solid material without white turbidity is obtained, B when white turbidity is observed in a part, and white turbidity is observed in a state where the powder is pressed or solidified. The formability was evaluated as C, in the case of
 なお、流動性の評価がAの組成物については、射出成形によって成形体を製造可能であることを確認した。また、流動性の評価がB又はCの組成物では、射出成形による成形体の製造が困難であった。 In addition, about the composition whose flowability evaluation is A, it confirmed that a molded object was producible by injection molding. Moreover, in the composition whose evaluation of fluidity | liquidity is B or C, manufacture of the molded object by injection molding was difficult.
(実施例2)
 エチレングリコールに替えてグリセリン(和光純薬工業社製、炭素原子数:3)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性及び成形性のいずれもAであった。
(Example 2)
A molding composition was obtained in the same manner as in Example 1, except that ethylene glycol was replaced with 20% by weight of glycerol (manufactured by Wako Pure Chemical Industries, Ltd., carbon atom number: 3). The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were A.
(実施例3)
 エチレングリコールに替えてグルコース(和光純薬工業社製、D-グルコース、炭素原子数:6)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性及び成形性のいずれもAであった。
(Example 3)
A molding composition was obtained in the same manner as in Example 1, except that 20% by weight of glucose (manufactured by Wako Pure Chemical Industries, D-glucose, carbon number: 6) was used instead of ethylene glycol. The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were A.
(比較例1)
 エチレングリコールに替えて、ポリビニルアルコール(和光純薬工業社製、ポリビニルアルコール1000、部分けん化型)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性はB、成形性はCであった。
(Comparative example 1)
A mold-forming composition was obtained in the same manner as in Example 1, except that 20% by weight of polyvinyl alcohol (polyvinyl alcohol 1000, partial saponification type, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ethylene glycol. The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the fluidity was B, and the moldability was C.
(比較例2)
 エチレングリコールに替えて、ポリビニルアルコール(和光純薬工業社製、ポリビニルアルコール(重合度約2000)、完全けん化)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性及び成形性はいずれもCであった。
(Comparative example 2)
Composition for mold molding in the same manner as in Example 1 except that polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, polyvinyl alcohol (polymerization degree: about 2000), complete saponification) 20% by weight was used instead of ethylene glycol. I got The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, both the flowability and the moldability were C.
(比較例3)
 エチレングリコールに替えて、セルロースナノファイバー(ダイセルファインケム社製、セリッシュ KY100G)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性はC、成形性はBであった。
(Comparative example 3)
A molding composition was obtained in the same manner as in Example 1, except that 20% by weight of cellulose nanofibers (Cerish KY100G manufactured by Daicel Finechem Co., Ltd.) was used instead of ethylene glycol. The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the flowability was C and the moldability was B.
(比較例4)
 エチレングリコールに替えて、トリメリット酸エステル(ADEKA社製、アデカサイザー C-9N、炭素原子数:36)20重量%を用いたこと以外は、実施例1と同様にしてモールド成形用組成物を得た。得られたモールド成形用組成物を、実施例1と同様の評価方法で評価したところ、流動性はB、成形性はCであった。
(Comparative example 4)
A composition for mold molding was prepared in the same manner as in Example 1 except that 20% by weight of trimellitic acid ester (ADEKA, Adekaizer C-9N, carbon atom number: 36) was used instead of ethylene glycol. Obtained. The obtained mold forming composition was evaluated by the same evaluation method as in Example 1. As a result, the fluidity was B, and the moldability was C.
 実施例及び比較例の結果を表3に示す。 The results of Examples and Comparative Examples are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明に係るモールド成形用組成物は、構造タンパク質を含有し、且つ、射出成形等の流動性が要求される成形方法にも適用できる。このため、本発明に係るモールド成形用組成物は、石油由来の材料の代替材料として、好適に利用することができる。 The composition for molding according to the present invention can be applied to a molding method which contains a structural protein and which requires fluidity such as injection molding. For this reason, the molding composition according to the present invention can be suitably used as a substitute for petroleum-derived materials.

Claims (9)

  1.  構造タンパク質と、
     2以上のヒドロキシ基を有し、且つ、炭素原子数が12以下の多価アルコール類と、
    を含有する、モールド成形用組成物。
    Structural protein,
    Polyhydric alcohols having 2 or more hydroxy groups and having 12 or less carbon atoms,
    The composition for moldings containing.
  2.  前記多価アルコール類が、低級アルコール、糖類及び糖アルコールからなる群より選択される少なくとも一種を含む、請求項1に記載のモールド成形用組成物。 The molding composition according to claim 1, wherein the polyhydric alcohol comprises at least one selected from the group consisting of lower alcohols, saccharides and sugar alcohols.
  3.  前記構造タンパク質がフィブロイン様タンパク質を含む、請求項1又は2に記載のモールド成形用組成物。 The molding composition according to claim 1, wherein the structural protein comprises a fibroin-like protein.
  4.  前記フィブロイン様タンパク質がクモ糸フィブロイン様タンパク質を含む、請求項3に記載のモールド成形用組成物。 The molding composition according to claim 3, wherein the fibroin-like protein comprises spider silk fibroin-like protein.
  5.  前記構造タンパク質と、前記多価アルコール類と、水とを混合した混合物である、請求項1~4のいずれか一項に記載のモールド成形用組成物。 The molding composition according to any one of claims 1 to 4, which is a mixture of the structural protein, the polyhydric alcohol, and water.
  6.  射出成形用である、請求項1~5のいずれか一項に記載のモールド成形用組成物。 The molding composition according to any one of claims 1 to 5, which is for injection molding.
  7.  請求項1~6のいずれか一項に記載のモールド成形用組成物をモールド成形した成形体であって、
     前記構造タンパク質又はその変性体を含有する固体材料からなる、成形体。
    It is a molded object which mold-molded the composition for mold formation as described in any one of Claims 1-6,
    A molded body comprising a solid material containing the structural protein or a modified product thereof.
  8.  請求項1~6のいずれか一項に記載のモールド成形用組成物を加圧下で加熱して、流動材料を得る加熱工程と、
     前記流動材料を金型内に注入する注入工程と、
     前記金型内に注入された前記流動材料を冷却して、前記構造タンパク質又はその変性体を含有する固体材料からなる成形体を得る冷却工程と、
    を含む、成形体の製造方法。
    A heating step of heating the molding composition according to any one of claims 1 to 6 under pressure to obtain a fluid material;
    Injecting the fluid material into a mold;
    Cooling the flowable material injected into the mold to obtain a compact made of a solid material containing the structural protein or its modified product;
    A method of producing a molded body, comprising
  9.  前記多価アルコール類が、前記加熱工程における加熱温度より高い沸点を有する、請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the polyhydric alcohol has a boiling point higher than the heating temperature in the heating step.
PCT/JP2018/034252 2017-09-15 2018-09-14 Molding composition, molded article, and method for producing molded article WO2019054503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019542322A JPWO2019054503A1 (en) 2017-09-15 2018-09-14 Mold molding composition, molded body and manufacturing method of molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-178105 2017-09-15
JP2017178105 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054503A1 true WO2019054503A1 (en) 2019-03-21

Family

ID=65723666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034252 WO2019054503A1 (en) 2017-09-15 2018-09-14 Molding composition, molded article, and method for producing molded article

Country Status (2)

Country Link
JP (1) JPWO2019054503A1 (en)
WO (1) WO2019054503A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121064A (en) * 1975-04-17 1976-10-22 Sumitomo Bakelite Co Ltd Protein and starch dual molding compositions
JPH0592057A (en) * 1991-10-02 1993-04-16 U S:Kk Tee for golf and production thereof
JPH07188422A (en) * 1993-12-27 1995-07-25 Shin Nippon Shokuhin Kk Thermoplastic, material obtained from protein, molded object thereof, and production of both
JP2001517253A (en) * 1995-11-29 2001-10-02 ミッドウエスト グレイン プロダクツ,アイエヌシー. Biodegradable solid product containing cereal protein as main component and molding method thereof
JP2002512929A (en) * 1998-05-05 2002-05-08 ナチュラル ポリマー インターナショナル コーポレイション Biodegradable thermoplastic composition based on protein and starch
JP2003286407A (en) * 2002-03-28 2003-10-10 Dainippon Ink & Chem Inc Soybean protein resin composition and soybean protein molding using the same
JP2004083734A (en) * 2002-08-27 2004-03-18 National Food Research Institute Biodegradable molded product having excellent water resistance and method for producing the same
JP2009529592A (en) * 2006-03-13 2009-08-20 ナトゥリン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Biodegradable protein-based thermosetting composition, production method and use thereof
WO2017047504A1 (en) * 2015-09-18 2017-03-23 Spiber株式会社 Molded article and method for producing molded article
WO2017047503A1 (en) * 2015-09-18 2017-03-23 Spiber株式会社 Molded article and method for producing molded article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121064A (en) * 1975-04-17 1976-10-22 Sumitomo Bakelite Co Ltd Protein and starch dual molding compositions
JPH0592057A (en) * 1991-10-02 1993-04-16 U S:Kk Tee for golf and production thereof
JPH07188422A (en) * 1993-12-27 1995-07-25 Shin Nippon Shokuhin Kk Thermoplastic, material obtained from protein, molded object thereof, and production of both
JP2001517253A (en) * 1995-11-29 2001-10-02 ミッドウエスト グレイン プロダクツ,アイエヌシー. Biodegradable solid product containing cereal protein as main component and molding method thereof
JP2002512929A (en) * 1998-05-05 2002-05-08 ナチュラル ポリマー インターナショナル コーポレイション Biodegradable thermoplastic composition based on protein and starch
JP2003286407A (en) * 2002-03-28 2003-10-10 Dainippon Ink & Chem Inc Soybean protein resin composition and soybean protein molding using the same
JP2004083734A (en) * 2002-08-27 2004-03-18 National Food Research Institute Biodegradable molded product having excellent water resistance and method for producing the same
JP2009529592A (en) * 2006-03-13 2009-08-20 ナトゥリン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Biodegradable protein-based thermosetting composition, production method and use thereof
WO2017047504A1 (en) * 2015-09-18 2017-03-23 Spiber株式会社 Molded article and method for producing molded article
WO2017047503A1 (en) * 2015-09-18 2017-03-23 Spiber株式会社 Molded article and method for producing molded article

Also Published As

Publication number Publication date
JPWO2019054503A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2018043698A1 (en) Molded body and method for producing molded body
WO2017131196A1 (en) Molded article, production method for same, and method for improving toughness of molded article
JP7088511B2 (en) Composite molding composition containing fibroin-like protein and method for producing the same
JP7133810B2 (en) modified fibroin
JP6830604B2 (en) Molded body and manufacturing method of molded body
WO2017094722A1 (en) Method for producing protein solution
WO2018221680A1 (en) Protein molded article and method for producing same, protein solution, and protein molded article plasticizer
US9102755B2 (en) Highly stabilized epidermal growth factor mutants
WO2019151435A1 (en) Carbon nanotube dispersant, carbon nanotube dispersion liquid, and method for dispersing carbon nanotubes
WO2019054503A1 (en) Molding composition, molded article, and method for producing molded article
JPWO2020067548A1 (en) Flame-retardant protein molded product and its manufacturing method
WO2020067518A1 (en) Injection molded body, composition for injection molding, and method for producing injection molded body
WO2018163758A1 (en) Mold-shaped object and production method for mold-shaped object
WO2017131195A1 (en) Molded article, production method for same, and method for improving degree of crystallization of molded article
JP2020055916A (en) Mold molded body, manufacturing method of mold molded body, and flexibility adjustment method of mold molded body
JP7219899B2 (en) Molded article manufacturing method and molded article
WO2019131924A1 (en) Molded body and molded-body manufacturing method
JP2020097524A (en) Method for producing purified protein
JP7356115B2 (en) Resin molded products and their manufacturing method
WO2021187502A1 (en) Synthetic polymer and method for producing same, molding material, and molded body
WO2018101358A1 (en) Protein composition, method for producing same and method for improving heat stability
WO2019146765A1 (en) Material for protein molded body, protein molded body, and method for producing protein molded body
JP2020055762A (en) Method for producing mold molded article
JP2020054487A (en) Acid release body
WO2023038154A1 (en) Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855808

Country of ref document: EP

Kind code of ref document: A1