WO2023038154A1 - Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive - Google Patents

Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive Download PDF

Info

Publication number
WO2023038154A1
WO2023038154A1 PCT/JP2022/034270 JP2022034270W WO2023038154A1 WO 2023038154 A1 WO2023038154 A1 WO 2023038154A1 JP 2022034270 W JP2022034270 W JP 2022034270W WO 2023038154 A1 WO2023038154 A1 WO 2023038154A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
fibroin
artificial
sequence
Prior art date
Application number
PCT/JP2022/034270
Other languages
French (fr)
Japanese (ja)
Inventor
徹 高橋
廉 伊藤
聡 石原
聡 小池田
Original Assignee
Spiber株式会社
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社, 天野エンザイム株式会社 filed Critical Spiber株式会社
Publication of WO2023038154A1 publication Critical patent/WO2023038154A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic

Definitions

  • the present invention relates to a large-diameter artificial polypeptide fiber, a method for producing the same, and an adhesive.
  • Patent Document 1 discloses a biodegradable artificial polypeptide fiber that can be industrially produced in desired thickness and length.
  • An artificial polypeptide fiber is produced by, for example, extruding a dope solution in which an artificial protein, which is a type of artificial polypeptide, is dissolved in a predetermined solvent to form a linear molded body, and then extruding the linear molded body in a coagulation bath or in the atmosphere. prepared by removing the solvent from
  • the linear molded product discharged from the spinning nozzle contains a large amount of solvent. It takes time. If the solvent remains in the artificial polypeptide fiber, problems such as the inability to properly form the fiber and the inability to obtain a certain strength occur, resulting in a decrease in the efficiency of fiber production.
  • Patent Document 2 When obtaining thick fibers, a method is often used to obtain seemingly thick bundled fibers by bundling thin raw material fibers and adhering them with a synthetic adhesive (for example, Patent Document 2).
  • a large-diameter pile for flocking is manufactured by covering and hardening a plurality of small-diameter piles with a binder.
  • Nitrile rubber, polyurethane rubber, vinyl chloride resin, acrylic acid ester resin, ethylene-vinyl acetate copolymer resin, phenol resin, or epoxy resin is used for the binder.
  • the presence of the binder that occupies most of the large-diameter pile can impair the flexibility and biodegradability of the entire fiber.
  • the present invention provides the following [1] to [17].
  • [1] A step of bundling a plurality of raw fibers containing an artificial polypeptide; a step of contacting the obtained bundle of raw material fibers with a composition containing a binder and an enzyme;
  • a method of making an engineered polypeptide fiber comprising: [2] The method for producing an artificial polypeptide fiber according to [1], wherein the enzyme contains an oxidase.
  • the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
  • [4] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains a structural protein.
  • [5] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains fibroin.
  • [6] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains spider silk fibroin.
  • [8] An artificial polypeptide fiber, in which a plurality of raw fibers containing an artificial polypeptide are bonded together via a binder.
  • An adhesive for bonding together fibers comprising an artificial polypeptide comprising: An adhesive comprising a binder and an enzyme that reacts with at least one of the artificial polypeptide and the binder.
  • the adhesive of [12], wherein the enzyme is an oxidase.
  • the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
  • the artificial polypeptide comprises a structural protein.
  • the artificial polypeptide contains fibroin.
  • the artificial polypeptide comprises spider silk fibroin.
  • an artificial polypeptide fiber having a new bundle-like structure and a method for producing the same by binding a binder and a raw material fiber through an enzymatic reaction.
  • the resulting artificial polypeptide fiber has a bundle-like structure, each of which is directly or indirectly bound by an enzymatic reaction to form a single fiber with a larger diameter.
  • the fibers produced by the method according to the present invention are bound with a binder after producing small-diameter fibers. It is possible to greatly reduce the resistance and increase the manufacturing efficiency.
  • FIG. 1 is a schematic diagram showing a cross section of an artificial polypeptide fiber according to one embodiment of the present invention
  • FIG. FIG. 2 is a schematic diagram showing an example of a domain sequence of artificial fibroin.
  • FIG. 4 is a diagram showing the distribution of z/w (%) values of naturally occurring fibroin.
  • FIG. 4 is a diagram showing the distribution of x/y (%) values of naturally occurring fibroin.
  • FIG. 2 is a schematic diagram showing an example of a domain sequence of artificial fibroin.
  • 1 is a schematic diagram showing an example of a fibroin domain sequence.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows roughly an example of the spinning apparatus for manufacturing a raw material fiber.
  • 1 is a photograph showing an example of a method for producing an artificial polypeptide according to an embodiment of the present invention.
  • a first embodiment of the present invention includes a step of bundling a plurality of raw fibers containing an artificial polypeptide, and a step of contacting the resulting bundle of raw fibers with a composition containing a binder and an enzyme.
  • a method for producing an artificial polypeptide fiber includes a step of bundling a plurality of raw fibers containing an artificial polypeptide, and a step of contacting the resulting bundle of raw fibers with a composition containing a binder and an enzyme.
  • an artificial polypeptide fiber by bundling a plurality of raw fibers containing an artificial polypeptide and bringing them into contact with a composition containing a binder and an enzyme, the enzyme binds to at least one of the artificial polypeptide and the binder.
  • the enzyme By reacting to chemically cross-link at least one of raw material fiber to raw material fiber, raw material fiber to binder, and binder to binder, an artificial polypeptide fiber can be produced.
  • the step of bundling a plurality of raw fibers may be a step of simply gathering the raw fibers into a bundle by hand. It may be a process.
  • the cylindrical container is not particularly limited, and any cylindrical container having a desired inner diameter can be used.
  • the inner diameter of the cylindrical container is preferably a size suitable for the thickness of the target artificial polypeptide fiber, for example, 1.2 to 2 times the size of the target artificial polypeptide fiber. , preferably 1.3 to 1.7 times as large.
  • the number of raw material fibers to be bundled can be appropriately adjusted in the range of, for example, 5 to 100, 10 to 90, 20 to 80, 30 to 70, or 40 to 60.
  • the number of raw material fibers to be bundled is reflected in the fiber diameter of the artificial polypeptide fiber (large-diameter artificial polypeptide fiber), and the larger the number of raw material fibers, the thicker the resulting artificial polypeptide fiber can be.
  • the raw material fiber is a fiber containing an artificial polypeptide, or may be a fiber consisting only of an artificial polypeptide.
  • An engineered polypeptide may include a backbone derived from an engineered protein.
  • Engineered proteins may include engineered structural proteins.
  • Artificial structural proteins may include artificial fibroin.
  • Artificial fibroin may include artificial modified spider silk fibroin.
  • artificial proteins include any proteins that can be produced on an industrial scale, such as proteins that can be used for industrial purposes.
  • the term "applicable for industrial use” means, for example, that it can be used for various general-purpose materials used indoors and outdoors, and various materials used for medical applications, clothing applications, and the like.
  • Specific examples of proteins that can be used industrially include structural proteins.
  • Specific examples of structural proteins include spider silk, silkworm silk, keratin, collagen, elastin, resilin, and proteins derived from these.
  • artificial fibroin is preferable, and artificial spider silk fibroin (artificial modified spider silk fibroin) is more preferable.
  • Artificial proteins include recombinant proteins and synthetic proteins.
  • the term "artificial protein” as used herein means an artificially produced protein.
  • An artificial protein may be a protein whose domain sequence differs from the amino acid sequence of a naturally occurring protein, or may be a protein whose amino acid sequence is identical to that of a naturally occurring protein.
  • the "artificial protein” may be one that uses the amino acid sequence of a naturally-occurring protein as it is, or one in which the amino acid sequence is modified based on the amino acid sequence of a naturally-occurring protein (for example, a cloned naturally-occurring protein).
  • the amino acid sequence may be modified by modifying the gene sequence of the derived protein), or artificially designed and synthesized without relying on naturally occurring proteins (e.g., those that encode the designed amino acid sequence a desired amino acid sequence obtained by chemically synthesizing a nucleic acid).
  • the artificial polypeptide may have 50 or more amino acid residues.
  • the number of amino acid residues is, for example, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more.
  • the number of amino acid residues is, for example, 5000 or less, 4500 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, 1500 or less, 1000 or less. Solubility in solvents tends to increase as the number of amino acid residues decreases.
  • the artificial polypeptide may have a hydrophilic polypeptide backbone or a hydrophobic polypeptide backbone.
  • the properties of the raw material fiber can be shifted to the hydrophobic side compared to when the artificial polypeptide has a hydrophilic polypeptide backbone. It becomes possible to control the hydrophobicity of the entire fiber over a wider range.
  • the hydrophobicity of the hydrophobic polypeptide backbone can be estimated using the average hydropathic index value described below as an index.
  • the average hydropathic index value of the hydrophobic polypeptide is, for example, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more. , 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater.
  • the upper limit is not particularly limited, it may be, for example, 1.00 or less, or 0.7 or less.
  • the hydrophobic polypeptide preferably has low solubility in an aqueous solution of lithium bromide (concentration: 9M) at 60°C.
  • This solubility can be evaluated using a compound (polypeptide) corresponding to the hydrophobic polypeptide backbone or a polypeptide obtained by decomposing a synthetic polymer and isolating only the hydrophobic polypeptide backbone.
  • the maximum concentration when the polypeptide is dissolved in an aqueous lithium bromide solution (concentration: 9 M) at 60° C. is, for example, less than 30% by mass, less than 25% by mass, less than 20% by mass, less than 15% by mass, It may be less than 10 wt%, less than 5 wt%, or less than 1 wt%.
  • the hydrophobic polypeptide backbone may be one that is completely insoluble in a lithium bromide aqueous solution (concentration: 9M) at 60°C.
  • the hydrophobic polypeptide skeleton preferably has a large contact angle with water.
  • the contact angle of water is measured by using a membrane composed of a polypeptide obtained by decomposing a compound (polypeptide) corresponding to the hydrophobic polypeptide skeleton or a synthetic polymer and isolating only the hydrophobic polypeptide skeleton on a substrate. can be formed and evaluated using the film.
  • a polypeptide that forms a film with a contact angle of 55° or more after 5 seconds of water being dropped onto the film is preferred as the hydrophobic polypeptide backbone.
  • the contact angle may be, for example, 60° or greater, 65° or greater, or 70° or greater.
  • the hydrophobic polypeptide backbone is preferably one with excellent hot water resistance. Hydrothermal resistance can be evaluated using a compound (polypeptide) corresponding to the hydrophobic polypeptide backbone or a polypeptide obtained by decomposing a synthetic polymer and isolating only the hydrophobic polypeptide backbone.
  • the polypeptide scaffold according to this embodiment may be, for example, a structural protein.
  • a structural protein means a protein involved in the structure of a living body, a protein constituting a structure produced by a living body, or a protein derived from them.
  • Structural proteins also refer to proteins that self-aggregate under certain conditions to form structures such as fibers, films, resins, gels, micelles, and nanoparticles.
  • a structural protein can be said to be a protein in which a characteristic amino acid sequence or a motif consisting of several amino acid residues is repeatedly present and which forms the skeleton of an organism or material.
  • Structural proteins in nature include, for example, fibroin, keratin, collagen, elastin and resilin.
  • the structural protein may be an artificial structural protein.
  • artificial structural protein means a structural protein that is artificially produced.
  • the artificial structural protein may be a structural protein produced by microorganisms through genetic recombination, and includes those with improved amino acid sequences from the viewpoint of moldability and productivity, and is not limited to the sequence of a naturally occurring structural protein.
  • amino acids with smaller side chains are more likely to form hydrogen bonds, making it easier to obtain a strong molded product.
  • alanine and glycine residues are amino acids with non-polar side chains, they are arranged so as to face inward during the folding process during polypeptide production, and tend to adopt an ⁇ -helical structure or a ⁇ -sheet structure. Therefore, it is desirable that the ratio of amino acids such as glycine residues, alanine residues and serine residues is high.
  • the alanine residue content may be, for example, 10 to 40%, 12 to 40%, 15 to 40%, 18 to 40%, 20 to 40%, or It may be 22-40%.
  • the glycine residue content may be, for example, 10 to 55%, 11 to 55%, 13 to 55%, 15 to 55%, 18 to 55%, 20 to 55%. It may be 55%, 22-55%, or 25-55%.
  • amino acid residue content is a value represented by the following formula.
  • Alanine residue content (number of alanine residues contained in polypeptide/number of total amino acid residues in polypeptide) x 100 (%)
  • the glycine residue content, serine residue content, threonine residue content, proline residue content and tyrosine residue content are defined in the above formulas, in which alanine residues are replaced with glycine residues, serine residues, It is synonymous with what is read as threonine residue, proline residue and tyrosine residue.
  • An artificial structural protein according to one embodiment may have a repeat sequence. That is, the polypeptide according to this embodiment may have a plurality of amino acid sequences (repetitive sequence units) with high sequence identity within the polypeptide.
  • the number of amino acid residues in the repeat sequence unit is preferably 6-200.
  • the sequence identity between repeat sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the hydrophobicity (hydropathic index) of the repeating sequence unit is, for example, -0.80 or more, -0.70 or more, -0.60 or more, -0.50 or more, -0.40 or more, - 0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more.
  • the upper limit of the hydrophobicity of the repeating sequence unit is not particularly limited, it may be, for example, 1.0 or less, or 0.7 or less.
  • An artificial structural protein may comprise an (A) n motif.
  • the (A) n motif means an amino acid sequence mainly composed of alanine residues.
  • the number of amino acid residues in the n motif may be 2-27 and may be an integer from 2-20, 2-16, or 2-12.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
  • Fibroin includes, for example, naturally occurring fibroin.
  • Naturally occurring fibroin includes, for example, fibroin produced by insects or arachnids.
  • fibroin produced by insects include, for example, Bombyx mori, Bombyx mandarina, Antheraea yamamai, Anteraea pernyi, Eriogyna pyretorum, and Pilos cylinthia silkworm. ), silk proteins produced by silkworms such as Samia cynthia, Caligura japonica, Antheraea mylitta, and Antheraea assama, and exhaled by Vespa simillima xantoptera larvae Hornet silk protein.
  • fibroin produced by insects include silkworm fibroin L chain (GenBank Accession No. M76430 (nucleotide sequence), AAA27840.1 (amino acid sequence)).
  • fibroin produced by spiders include, for example, spiders belonging to the genus Araneus such as Araneus spiders, Araneus spiders, Red spiders, Green spiders, and Beetle spiders; Spiders belonging to the genus Pronus, spiders belonging to the genus Pronus such as spiders belonging to the Spiders belonging to the genus Gasteracantha, spiders belonging to the genus Ordgarius such as the genus Ordgarius and the spiders belonging to the genus Ordgarius, spiders belonging to the genus Argiope such as the argiope spider, the argiope spider, and the argiope spider, and the like Spiders belonging to the genus Arachnura, spiders belonging to the genus Acusilas, such as spiders, spiders belonging to the genus Cytophora, such as spiders, spiders, and spiders Spider silk proteins produced by spiders belonging to the genus Cyclosa, such as spiders belonging to the
  • fibroin produced by spiders include fibroin-3 (adf-3) [derived from Araneus diadematus] (GenBank accession number AAC47010 (amino acid sequence), U47855 (nucleotide sequence)), fibroin- 4(adf-4) [derived from Araneus diadematus] (GenBank Accession No. AAC47011 (amino acid sequence), U47856 (nucleotide sequence)), dragline silk protein spidroin 1 [derived from Nephila clavipes] (GenBank Accession No.
  • AAC04504 (amino acid sequence), U37520 (nucleotide sequence)), major angu11ate spidroin 1 [derived from Latrodectus hesperus] (GenBank accession number ABR68856 (amino acid sequence), EF595246 (nucleotide sequence)), dragline silk protein spidroin 2 [derived from Nephila accession number 2Lan4Aclavata] (amino acid sequence), AF441245 (nucleotide sequence)), major ampullate spidroin 1 [from Euprosthenops australis] (GenBank accession number CAJ00428 (amino acid sequence), AJ973155 (nucleotide sequence)), and major ampullate spidroin 2 [Eanprosthenops] Accession number CAM32249.1 (amino acid sequence), AM490169 (nucleotide sequence)), minor amplified silk protein 1 [Nephil
  • fibroin whose sequence information is registered in NCBI GenBank.
  • sequence information registered in NCBI GenBank among the sequences that include INV as a division, spidroin, ampullate, fibroin, "silk and polypeptide", or "silk and protein" are described as keywords in DEFINITION It can be confirmed by extracting the specific product character string from the sequence, CDS, and the specific character string from SOURCE to TISSUE TYPE.
  • artificial fibroin means artificially produced fibroin (artificial fibroin).
  • Artificial fibroin may be fibroin that differs from the amino acid sequence of naturally-occurring fibroin, or fibroin that is identical to the amino acid sequence of naturally-occurring fibroin.
  • the artificial fibroin may be a fibrous protein having a structure similar to that of naturally occurring fibroin, or may be fibroin having a sequence similar to the repeating sequence of naturally occurring fibroin.
  • the “sequence similar to the repeat sequence possessed by fibroin” may be a sequence actually possessed by naturally occurring fibroin, or may be a sequence similar thereto.
  • “Artificial fibroin” refers to those obtained by modifying the amino acid sequence of naturally-occurring fibroin (e.g., modifying the gene sequence of cloned naturally-occurring fibroin), as long as it has the amino acid sequence specified in the present disclosure.
  • the amino acid sequence may be modified by the method), or the amino acid sequence may be artificially designed without relying on naturally occurring fibroin (for example, by chemically synthesizing a nucleic acid encoding the designed amino acid sequence). having a desired amino acid sequence).
  • An artificial fibroin with a modified amino acid sequence is also included in the artificial fibroin as long as the amino acid sequence differs from the amino acid sequence of the naturally-derived fibroin.
  • artificial fibroin examples include artificial silk fibroin (modified amino acid sequence of silk protein produced by silkworms), and artificial spider silk fibroin (modified amino acid sequence of spider silk protein produced by spiders). ) and the like.
  • spider silk fibroin is relatively easy to fibrillate and has high fiber-forming ability, so the artificial fibroin preferably contains artificial spider silk fibroin, more preferably Consists of artificial spider silk fibroin.
  • an artificial fibroin (first artificial fibroin) derived from a dragline silk protein produced in the major pituitary gland of spiders, a glycine residue content of artificial fibroin with reduced domain sequence (second artificial fibroin), (A) artificial fibroin with domain sequence with reduced n- motif content (third artificial fibroin), content of glycine residues, and (A) an artificial fibroin with a reduced n- motif content (fourth artificial fibroin), an artificial fibroin having a domain sequence containing a region with a locally large hydrophobicity index (fifth artificial fibroin), and glutamine Artificial fibroins with domain sequences with reduced content of residues (sixth artificial fibroin) are included.
  • a first artificial fibroin includes a protein comprising a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the number of amino acid residues in the (A) n motif is preferably an integer of 3 to 20, more preferably an integer of 4 to 20, still more preferably an integer of 8 to 20, and an integer of 10 to 20. is even more preferred, integers from 4 to 16 are even more preferred, integers from 8 to 16 are particularly preferred, and integers from 10 to 16 are most preferred.
  • the number of amino acid residues constituting REP in Formula 1 is preferably 10 to 200 residues, more preferably 10 to 150 residues, and 20 to 100 residues. and even more preferably 20 to 75 residues.
  • the total number of glycine residues, serine residues and alanine residues contained in the amino acid sequence represented by Formula 1: [(A) n motif-REP] m is amino acid residue It is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more of the total number.
  • the first artificial fibroin comprises an amino acid sequence unit represented by Formula 1: [(A) n motif-REP] m and has an amino acid sequence whose C-terminal sequence is shown in any one of SEQ ID NOS: 1 to 3, or
  • the polypeptide may be an amino acid sequence having 90% or more homology with the amino acid sequence shown in any one of SEQ ID NOs: 1-3.
  • amino acid sequence shown in SEQ ID NO: 1 is identical to the amino acid sequence consisting of the C-terminal 50 amino acids of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 2 has the sequence It is identical to the amino acid sequence shown in No. 1 with 20 residues removed from the C-terminus, and the amino acid sequence shown in SEQ ID No. 3 has 29 residues removed from the C-terminus of the amino acid sequence shown in SEQ ID No. 1. Identical to the amino acid sequence.
  • the amino acid sequence represented by SEQ ID NO: 4 (recombinant spider silk protein ADF3 KaiLargeNRSH1), or (1-ii) the amino acid sequence represented by SEQ ID NO: 4 and 90
  • Artificial fibroin comprising amino acid sequences having greater than % sequence identity
  • the sequence identity is 95% or greater.
  • the amino acid sequence shown by SEQ ID NO: 4 is the amino acid sequence (SEQ ID NO: 5) consisting of an initiation codon, a His10 tag, and an HRV3C protease (Human rhinovirus 3C protease) recognition site added to the N-terminus of ADF3.
  • the 13th repeat region was increased to approximately double and mutated so that translation stops at the 1154th amino acid residue.
  • the C-terminal amino acid sequence of the amino acid sequence shown by SEQ ID NO:4 is identical to the amino acid sequence shown by SEQ ID NO:3.
  • the (1-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO:4.
  • the second artificial fibroin has an amino acid sequence in which the domain sequence has a reduced content of glycine residues compared to the naturally-derived fibroin.
  • the second artificial fibroin can be said to have an amino acid sequence corresponding to at least one or more glycine residues in REP being replaced with another amino acid residue, as compared with the naturally occurring fibroin. .
  • the second artificial fibroin has a domain sequence of GGX and GPGXX (where G is a glycine residue, P is a proline residue, and X is an amino acid residue other than glycine) in REP compared to the naturally-derived fibroin.
  • G is a glycine residue
  • P is a proline residue
  • X is an amino acid residue other than glycine
  • it has an amino acid sequence corresponding to at least one or more glycine residues in the motif sequence being replaced with another amino acid residue
  • the percentage of the motif sequence in which the above-mentioned glycine residue is replaced with another amino acid residue may be 10% or more of the entire motif sequence.
  • the second artificial fibroin comprises a domain sequence represented by Formula 1: [(A) n motif-REP] m , and from the domain sequence to the (A) n motif located on the most C-terminal side to the domain sequence
  • w is the total number of amino acid residues in the sequence excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence
  • z/w is 30% or more, It may have an amino acid sequence that is 40% or more, 50% or more, or 50.9% or more.
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. 100% (meaning composed only of alanine residues) is even more preferred.
  • the second artificial fibroin preferably has an increased content of the amino acid sequence consisting of XGX by substituting one glycine residue in the GGX motif with another amino acid residue. 6.
  • the content of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, even more preferably 10% or less. % or less, even more preferably 4% or less, and particularly preferably 2% or less.
  • the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method for calculating the content ratio (z/w) of the amino acid sequence consisting of XGX below.
  • a method for calculating z/w will be described in more detail.
  • a fibroin artificial fibroin or naturally occurring fibroin
  • a domain sequence represented by Formula 1: [(A) n motif-REP] m the (A) n located on the most C-terminal side from the domain sequence
  • An amino acid sequence consisting of XGX is extracted from all REPs contained in the sequence excluding the sequence from the motif to the C-terminus of the domain sequence.
  • z/w is preferably 50.9% or more, more preferably 56.1% or more, even more preferably 58.7% or more, and 70% or more. and even more preferably 80% or more.
  • the upper limit of z/w is not particularly limited, it may be, for example, 95% or less.
  • the second artificial fibroin can be obtained, for example, by substituting at least part of the nucleotide sequence encoding the glycine residue from the cloned naturally-derived fibroin gene sequence so as to encode another amino acid residue. Obtainable. At this time, one glycine residue in the GGX motif and the GPGXX motif may be selected as the glycine residue to be modified, or may be substituted so that z/w is 50.9% or more. Alternatively, for example, it can be obtained by designing an amino acid sequence that satisfies the above aspect from the amino acid sequence of naturally occurring fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • one or more amino acid residues are further substituted or deleted. , insertions and/or additions may be made to the amino acid sequence.
  • the other amino acid residue mentioned above is not particularly limited as long as it is an amino acid residue other than glycine residue, but valine (V) residue, leucine (L) residue, isoleucine (I) residue, methionine ( Hydrophobic amino acid residues such as M) residues, proline (P) residues, phenylalanine (F) residues and tryptophan (W) residues, glutamine (Q) residues, asparagine (N) residues, serine (S ) residues, lysine (K) residues and glutamic acid (E) residues are preferred, and hydrophilic amino acid residues such as valine (V) residues, leucine (L) residues, isoleucine (I) residues, phenylalanine ( F) residues and glutamine (Q) residues are more preferred, and glutamine (Q) residues are even more preferred.
  • the second artificial fibroin examples include (2-i) SEQ ID NO: 6 (Met-PRT380), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met -PRT799), or (2-ii) SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. Mention may be made of artificial fibroin.
  • the artificial fibroin of (2-i) will be explained.
  • the amino acid sequence shown by SEQ ID NO: 6 is obtained by replacing all GGX in REP of the amino acid sequence shown by SEQ ID NO: 10 (Met-PRT313) corresponding to naturally occurring fibroin with GQX.
  • the amino acid sequence shown by SEQ ID NO: 7 is obtained by deleting every two (A) n motifs from the amino acid sequence shown by SEQ ID NO: 6 from the N-terminal side to the C-terminal side, and furthermore, in front of the C-terminal sequence. [(A) n motif-REP] is inserted into the .
  • the amino acid sequence shown in SEQ ID NO: 8 has two alanine residues inserted on the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 7, and a partial glutamine (Q) residue. It is obtained by substituting serine (S) residues and deleting some amino acids on the C-terminal side so that the molecular weight is almost the same as that of SEQ ID NO:7.
  • the amino acid sequence shown by SEQ ID NO: 9 is a region of 20 domain sequences present in the amino acid sequence shown by SEQ ID NO: 7 (however, several amino acid residues on the C-terminal side of the region are substituted). A predetermined hinge sequence and a His tag sequence are added to the C-terminus of a sequence in which is repeated four times.
  • the z/w value in the amino acid sequence represented by SEQ ID NO: 10 (corresponding to naturally occurring fibroin) is 46.8%.
  • the z/w values in the amino acid sequence represented by SEQ ID NO: 6, the amino acid sequence represented by SEQ ID NO: 7, the amino acid sequence represented by SEQ ID NO: 8, and the amino acid sequence represented by SEQ ID NO: 9 are each 58.7%, 70.1%, 66.1% and 70.0%.
  • the value of x/y in the jagged ratio (described later) of 1:1.8 to 11.3 of the amino acid sequences shown in SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 is 15.0%, 15.0%, 93.4%, 92.7% and 89.8% respectively.
  • the (2-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
  • the artificial fibroin (2-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
  • the artificial fibroin of (2-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • (2-ii) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and XGX contained in REP ( where X represents an amino acid residue other than glycine). is preferably 50.9% or more.
  • the second artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This makes it possible to isolate, immobilize, detect and visualize artificial fibroin.
  • tag sequences include affinity tags that utilize specific affinity (binding, affinity) with other molecules.
  • affinity tag is a histidine tag (His tag).
  • His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and because it has the property of specifically binding to metal ions such as nickel, artificial fibroin is isolated by metal chelating chromatography.
  • SEQ ID NO: 11 an amino acid sequence containing a His tag sequence and a hinge sequence.
  • tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can be used.
  • GST glutathione-S-transferase
  • MBP maltose binding protein
  • epitope tags that utilize antigen-antibody reactions. By adding an antigenic peptide (epitope) as a tag sequence, an antibody against the epitope can be bound.
  • epitope tags include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag, and the like. Artificial fibroin can be easily purified with high specificity by using an epitope tag.
  • a tag sequence that can be cleaved by a specific protease can also be used.
  • Artificial fibroin from which the tag sequence has been cut off can also be recovered by treating the protein adsorbed via the tag sequence with protease.
  • artificial fibroin containing a tag sequence (2-iii) the amino acid represented by SEQ ID NO: 12 (PRT380), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799) or (2-iv) an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. .
  • amino acid sequences shown in SEQ ID NO: 16 are SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively.
  • amino acid sequence shown in SEQ ID NO: 11 was added to the N-terminus of the amino acid sequence shown.
  • the (2-iii) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
  • the (2-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
  • the artificial fibroin of (2-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • (2-iv) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and is contained in REP ( where X represents an amino acid residue other than glycine). is preferably 50.9% or more.
  • the second artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host.
  • the sequence of the secretory signal can be appropriately set according to the type of host.
  • a third artificial fibroin has an amino acid sequence in which the domain sequence has a reduced content of (A) n motifs compared to the naturally-occurring fibroin.
  • the domain sequence of the third artificial fibroin can be said to have an amino acid sequence corresponding to deletion of at least one or a plurality of (A) n motifs compared to the naturally-occurring fibroin.
  • the third artificial fibroin may have an amino acid sequence corresponding to 10-40% deletion of the (A) n motif from the naturally-occurring fibroin.
  • the third artificial fibroin has a domain sequence at least one (A) n motif for every 1-3 (A) n motifs from the N-terminal side to the C-terminal side compared to the naturally occurring fibroin. may have an amino acid sequence corresponding to the deletion of
  • the third artificial fibroin has at least two consecutive (A) n motif deletions from the N-terminal side to the C-terminal side and one (A ) may have an amino acid sequence corresponding to deletion of n motifs repeated in this order.
  • the third artificial fibroin may have an amino acid sequence corresponding to deletion of at least every two (A) n motifs from the N-terminal side to the C-terminal side of the domain sequence. .
  • the third artificial fibroin comprises a domain sequence represented by the formula 1: [(A) n motif-REP] m , with two adjacent [(A) n motifs from the N-terminal side to the C-terminal side.
  • -REP] unit sequentially compares the number of amino acid residues of REP, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the ratio of the number of amino acid residues of the other REP is 1.8 to 11.
  • the total number of amino acid residues of the domain sequence is y Furthermore, it may have an amino acid sequence in which x/y is 20% or more, 30% or more, 40% or more, or 50% or more.
  • the number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. 100% (meaning composed only of alanine residues) is even more preferred.
  • FIG. 2 shows the domain sequence of the artificial fibroin with the N-terminal and C-terminal sequences removed.
  • the domain sequence is, from the N-terminal side (left side), (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has a sequence called n motif.
  • a set of [(A) n motif-REP] units having a ratio of 1.8 to 11.3 for the number of amino acid residues of the other is set to 1 for the one with the smaller number of amino acid residues. It is indicated by a solid line. This ratio is referred to herein as the serration ratio.
  • a set of [(A) n motif-REP] units in which the other amino acid residue number ratio is less than 1.8 or greater than 11.3 when the number of amino acid residues is less than 1 is indicated by a dashed line. Indicated.
  • each pattern the numbers of all amino acid residues of two adjacent [(A) n motif-REP] units indicated by solid lines are summed up (not only REP but also the number of amino acid residues of (A) n motifs). be.). Then, the added total values are compared, and the total value (maximum total value) of the pattern with the maximum total value is defined as x. In the example shown in FIG. 2, the total value of pattern 1 is the largest.
  • x/y (%) can be calculated by dividing x by the total number of amino acid residues y in the domain sequence.
  • x/y is preferably 50% or more, more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more. Preferably, 75% or more is even more preferable, and 80% or more is particularly preferable.
  • the upper limit of x/y is not particularly limited, and may be, for example, 100% or less.
  • x/y is preferably 89.6% or more, and when the serration ratio is 1:1.8 to 3.4, x /y is preferably 77.1% or more, and when the serration ratio is 1:1.9 to 8.4, x/y is preferably 75.9% or more, and the serration ratio is 1 : 1.9 to 4.1, x/y is preferably 64.2% or more.
  • x/y is 46.4% or more. is preferably 50% or more, more preferably 55% or more, even more preferably 60% or more, even more preferably 70% or more, and 80% or more It is particularly preferred to have The upper limit of x/y is not particularly limited as long as it is 100% or less.
  • fibroin whose amino acid sequence information is registered in NCBI GenBank was confirmed by the method exemplified, and 663 types of fibroin (among them, 415 types of arachnid-derived fibroin) were extracted. Of all the extracted fibroin, from the amino acid sequence of naturally occurring fibroin composed of the domain sequence represented by the formula 1: [(A) n motif-REP] m , x/y was calculated.
  • FIG. 4 shows the results when the serration ratio is 1:1.9 to 4.1.
  • the horizontal axis in FIG. 4 indicates x/y (%), and the vertical axis indicates frequency.
  • the x/y ratios for naturally occurring fibroin are all less than 64.2% (64.14% being the highest).
  • one or more sequences encoding (A) n motifs are deleted from the cloned natural fibroin gene sequence such that x/y is 64.2% or more.
  • an amino acid sequence corresponding to deletion of one or more (A) n motifs is designed such that x/y is 64.2% or more from the amino acid sequence of naturally occurring fibroin. It can also be obtained by chemically synthesizing a nucleic acid encoding the amino acid sequence described above.
  • one or more amino acid residues are substituted, deleted, inserted and/or added. Alterations in the amino acid sequence corresponding to what has been done may be made.
  • third artificial fibroin examples include (3-i) SEQ ID NO: 17 (Met-PRT399), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met -PRT799), or (3-ii) SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. Mention may be made of artificial fibroin.
  • the artificial fibroin of (3-i) will be explained.
  • the amino acid sequence represented by SEQ ID NO: 17 is every two (A) n
  • the motif was deleted and one [(A) n motif-REP] was inserted in front of the C-terminal sequence.
  • the amino acid sequence shown by SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 is as described for the second artificial fibroin.
  • the value of x/y at the jagged ratio of 1:1.8 to 11.3 of the amino acid sequence represented by SEQ ID NO: 10 is 15.0%.
  • the x/y values of the amino acid sequence shown by SEQ ID NO: 17 and the amino acid sequence shown by SEQ ID NO: 7 are both 93.4%.
  • the value of x/y in the amino acid sequence shown by SEQ ID NO: 8 is 92.7%.
  • the value of x/y in the amino acid sequence shown by SEQ ID NO: 9 is 89.8%.
  • the z/w values in the amino acid sequences represented by SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 are 46.8%, 56.2%, 70.1%, 66.0%, respectively. 1% and 70.0%.
  • the (3-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
  • the artificial fibroin (3-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
  • the artificial fibroin of (3-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the artificial fibroin of (3-ii) has a sequence identity of 90% or more with the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and from the N-terminal side to the C-terminal side , the numbers of amino acid residues of REP of two adjacent [(A) n motif-REP] units are sequentially compared, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the number of amino acid residues of the other Amino acid residues of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3 (Giza ratio is 1:1.8 to 11.3) It is preferable that x/y is 64.2% or more, where x is the maximum sum of the cardinal numbers and y is the total number of amino acid residues in the domain sequence.
  • the third artificial fibroin may contain the tag sequence described above at either or both of the N-terminus and C-terminus.
  • artificial fibroin containing a tag sequence (3-iii) the amino acid represented by SEQ ID NO: 18 (PRT399), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799) sequence, or (3-iv) an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. .
  • amino acid sequences represented by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 have SEQ ID NO: 11 at the N-terminus of the amino acid sequences represented by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively.
  • the amino acid sequence shown in (including His tag sequence and hinge sequence) is added.
  • the artificial fibroin of (3-iii) may consist of the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
  • the (3-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
  • the artificial fibroin of (3-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • (3-iv) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and , the numbers of amino acid residues of REP of two adjacent [(A) n motif-REP] units are sequentially compared, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the number of amino acid residues of the other Let x be the maximum value of the total sum of the amino acid residue numbers of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3. , x/y is preferably 64.2% or more, where y is the total number of amino acid residues in the domain sequence.
  • the third artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host.
  • the sequence of the secretory signal can be appropriately set according to the type of host.
  • the fourth artificial fibroin has an amino acid sequence whose domain sequence has a reduced content of (A) n motifs and a reduced content of glycine residues compared to naturally occurring fibroin. have.
  • the domain sequence of the fourth artificial fibroin has at least one or more (A) n motifs deleted, and at least one or more glycine residues in REP is deleted compared to the naturally-derived fibroin. It can be said to have an amino acid sequence corresponding to substitution with another amino acid residue. That is, the fourth artificial fibroin is an artificial fibroin having both the features of the second artificial fibroin and the third artificial fibroin. Specific aspects and the like are as described in the second artificial fibroin and the third artificial fibroin.
  • the fourth artificial fibroin (4-i) SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525), SEQ ID NO: 9 (Met-PRT799), SEQ ID NO: 13 (PRT410 ), the amino acid sequence shown in SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799), or (4-ii) SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15
  • An artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in .
  • Specific embodiments of the artificial fibroin comprising the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 are as described above.
  • the fifth artificial fibroin has a domain sequence in which one or more amino acid residues in REP are replaced with amino acid residues with a larger hydrophobicity index than in naturally occurring fibroin, and/or REP It may have an amino acid sequence that includes regions of high local hydrophobicity index corresponding to the insertion of one or more amino acid residues with high hydrophobicity index therein.
  • a region with a locally high hydrophobicity index is preferably composed of 2 to 4 consecutive amino acid residues.
  • the amino acid residue having a large hydrophobicity index is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A).
  • a residue is more preferred.
  • the fifth artificial fibroin has one or more amino acid residues in REP substituted with amino acid residues having a larger hydrophobicity index than the naturally occurring fibroin, and/or one or more
  • amino acid residues having a larger hydrophobicity index than the naturally occurring fibroin and/or one or more
  • one or more amino acid residues are substituted, deleted, inserted and / or added as compared to naturally occurring fibroin
  • one or more hydrophilic amino acid residues eg, amino acid residues with a negative hydrophobicity index
  • hydrophobic amino acid residues from the cloned natural fibroin gene sequence by substituting a group (for example, an amino acid residue with a positive hydrophobicity index) and/or by inserting one or more hydrophobic amino acid residues into REP.
  • substitution of one or more hydrophilic amino acid residues in REP with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and/or one or more hydrophobic amino acid residues in REP can also be obtained by designing an amino acid sequence corresponding to the insertion of and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • substitution of one or more hydrophilic amino acid residues in REP with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and/or one or more hydrophobic amino acids in REP may also be made.
  • the fifth artificial fibroin comprises a domain sequence represented by Formula 1: [(A) n motif-REP] m , and from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence
  • p be the total number of amino acid residues contained in a region where the average value of the hydrophobic index of four consecutive amino acid residues is 2.6 or more in all REPs contained in the sequences excluding the sequences from the domain sequence
  • p/q is 6, where q is the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence. It may have an amino acid sequence that is greater than or equal to .2%.
  • hydrophobicity index of amino acid residues a known index (Hydropathy index: Kyte J, & Doolittle R (1982) "A simple method for displaying the hydropathic character of a protein", J. Mol. Biol., 157, pp. 105-132).
  • HI hydropathic index
  • sequence A [(A) n motif-REP] m excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence (hereinafter referred to as “sequence A”) is used.
  • sequence A the sequence from the domain sequence represented by the formula 1: [(A) n motif-REP] m excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence.
  • the average value of the hydrophobicity index is obtained for all four consecutive amino acid residues (each amino acid residue is used to calculate the average value 1 to 4 times).
  • a region in which the average value of the hydrophobic index of 4 consecutive amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to multiple "4 consecutive amino acid residues with an average hydrophobicity index of 2.6 or more", it is included as one amino acid residue in the region. become.
  • the total number of amino acid residues contained in the region is p. Also, the total number of amino acid residues contained in sequence A is q.
  • p/q is preferably 6.2% or more, more preferably 7% or more, even more preferably 10% or more, and 20% or more. Even more preferably, it is still more preferably 30% or more.
  • the upper limit of p/q is not particularly limited, it may be, for example, 45% or less.
  • the fifth artificial fibroin is, for example, the amino acid sequence of the cloned naturally-occurring fibroin so as to satisfy the above p/q conditions, and one or more hydrophilic amino acid residues in REP (for example, a hydrophobicity index).
  • negative amino acid residue with a hydrophobic amino acid residue (e.g., an amino acid residue with a positive hydrophobicity index), and/or inserting one or more hydrophobic amino acid residues in REP can be obtained by locally modifying an amino acid sequence containing a region with a large hydrophobicity index.
  • one or more amino acid residues in REP have been replaced with amino acid residues having a higher hydrophobicity index compared to naturally-occurring fibroin, and/or one or more
  • further modification corresponding to the substitution, deletion, insertion and/or addition of one or more amino acid residues may be performed. .
  • Amino acid residues with a large hydrophobicity index are not particularly limited, but areoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). ) are preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
  • the fifth artificial fibroin (5-i) an amino acid sequence represented by SEQ ID NO: 19 (Met-PRT720), SEQ ID NO: 20 (Met-PRT665), or SEQ ID NO: 21 (Met-PRT666); or (5-ii) artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
  • the amino acid sequence shown by SEQ ID NO: 19 consists of 3 amino acid residues every other REP except for the terminal domain sequence on the C-terminal side with respect to the amino acid sequence shown by SEQ ID NO: 7 (Met-PRT410).
  • the amino acid sequence (VLI) was inserted at two sites, some glutamine (Q) residues were substituted with serine (S) residues, and some amino acids on the C-terminal side were deleted.
  • the amino acid sequence represented by SEQ ID NO: 20 is the amino acid sequence represented by SEQ ID NO: 8 (Met-PRT525) in which an amino acid sequence (VLI) consisting of three amino acid residues is inserted at every other REP. be.
  • the amino acid sequence shown by SEQ ID NO: 21 is obtained by inserting two amino acid sequences (VLI) each consisting of 3 amino acid residues every other REP into the amino acid sequence shown by SEQ ID NO: 8.
  • the (5-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
  • the artificial fibroin (5-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
  • the artificial fibroin of (5-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • the artificial fibroin of (5-ii) has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21, and is located on the most C-terminal side (A) n Amino acids contained in a region where the average hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs contained in the domain sequence excluding the sequence from the motif to the C-terminus of the domain sequence Let p be the total number of residues, and q be the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence. , p/q is preferably 6.2% or more.
  • the fifth artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus.
  • artificial fibroin containing a tag sequence examples include (5-iii) the amino acid sequence represented by SEQ ID NO: 22 (PRT720), SEQ ID NO: 23 (PRT665) or SEQ ID NO: 24 (PRT666), or (5-iv ) Artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24.
  • amino acid sequences shown in SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 are added to the N-terminals of the amino acid sequences shown in SEQ ID NO: 19, SEQ ID NO: 20 and SEQ ID NO: 21, respectively, where the amino acid sequence shown in SEQ ID NO: 11 (His tag sequence and hinge sequence) are added.
  • the artificial fibroin of (5-iii) may consist of the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24.
  • the (5-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24.
  • the artificial fibroin of (5-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m .
  • the sequence identity is preferably 95% or more.
  • artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24, and is located on the most C-terminal side (A) n Amino acids contained in a region where the average hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs contained in the domain sequence excluding the sequence from the motif to the C-terminus of the domain sequence
  • q be the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence.
  • p/q is preferably 6.2% or more.
  • the fifth artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host.
  • the sequence of the secretory signal can be appropriately set according to the type of host.
  • a sixth artificial fibroin has an amino acid sequence with a reduced content of glutamine residues compared to naturally occurring fibroin.
  • the sixth artificial fibroin preferably contains at least one motif selected from the GGX motif and the GPGXX motif in the REP amino acid sequence.
  • the GPGXX motif content is usually 1% or more, may be 5% or more, and preferably 10% or more.
  • the upper limit of the GPGXX motif content is not particularly limited, and may be 50% or less, or 30% or less.
  • GPGXX motif content is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), the number of GPGXX motifs contained in the region in all REPs contained in the sequence excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence The number obtained by multiplying the total by three (that is, the total number of G and P in the GPGXX motif) is defined as s, and the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is taken from the domain sequence.
  • the GPGXX motif content rate is calculated as s/t, where t is the total number of amino acid residues in all REPs excluding (A) n motifs.
  • the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence” is "the most C-terminal side (A)
  • the sequence from the n motif to the C-terminus of the domain sequence” may include sequences that are poorly correlated with sequences characteristic of fibroin, and m is small If the domain sequence is short (that is, if the domain sequence is short), it affects the calculation result of the GPGXX motif content rate, so this effect is to be eliminated.
  • a "GPGXX motif” is located at the C-terminus of REP, it is treated as a "GPGXX motif” even if "XX" is, for example, "AA”.
  • FIG. 2 is a schematic diagram showing the domain sequence of artificial fibroin.
  • the sixth artificial fibroin preferably has a glutamine residue content of 9% or less, more preferably 7% or less, even more preferably 4% or less, and particularly preferably 0%. .
  • glucose residue content is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), all contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminal of the domain sequence from the domain sequence (sequence corresponding to "region A" in FIG.
  • the total number of glutamine residues contained in the region is u
  • the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence
  • (A) n The glutamine residue content is calculated as u/t, where t is the total number of amino acid residues in all REPs excluding motifs.
  • the target is the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" because of the reasons described above. It is the same.
  • the sixth artificial fibroin has a domain sequence corresponding to deletion of one or more glutamine residues in REP or substitution with other amino acid residues as compared to the naturally-occurring fibroin. It may have an amino acid sequence.
  • “Another amino acid residue” may be an amino acid residue other than a glutamine residue, but preferably an amino acid residue with a higher hydrophobicity index than a glutamine residue. Hydrophobicity indexes of amino acid residues are shown in Table 1.
  • amino acid residues having a higher hydrophobicity index than glutamine residues include isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M ) amino acid residues selected from alanine (A), glycine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H); can.
  • amino acid residues selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) are more preferred.
  • the sixth artificial fibroin has a REP hydrophobicity (hydropathy index) of, for example, -0.80 or more, -0.70, -0.60 or more, -0.50 or more, or -0.40 or more. , -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0 .35 or greater, 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater.
  • hydrophobicity of REP There is no particular upper limit to the hydrophobicity of REP, and it may be 1.0 or less, or 0.7 or less.
  • REP hydrophobicity as used herein is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), all contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminal of the domain sequence from the domain sequence (sequence corresponding to "region A" in FIG.
  • the sum of the hydrophobicity indices of each amino acid residue in the region is v, and the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and further ( A) The hydrophobicity of REP is calculated as v/t, where t is the total number of amino acid residues in all REPs excluding n motifs.
  • the reason for targeting is the reason described above. It is the same.
  • a sixth artificial fibroin has a domain sequence lacking one or more glutamine residues in REP and/or one or more glutamine residues in REP compared to the naturally-occurring fibroin
  • the modification corresponding to the substitution of another amino acid residue there may be modifications of the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues.
  • the sixth artificial fibroin is produced, for example, by deleting one or more glutamine residues in REP from the cloned naturally occurring fibroin gene sequence, and/or by deleting one or more glutamine residues in REP.
  • deletion of one or more glutamine residues in REP from the amino acid sequence of naturally occurring fibroin, and/or substitution of one or more glutamine residues in REP with other amino acid residues It can also be obtained by designing an amino acid sequence corresponding to , and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
  • sixth artificial fibroin examples include (6-i) SEQ ID NO: 25 (Met-PRT888), SEQ ID NO: 26 (Met-PRT965), SEQ ID NO: 27 (Met-PRT889), SEQ ID NO: 28 (Met -PRT916), SEQ ID NO: 29 (Met-PRT918), SEQ ID NO: 30 (Met-PRT699), SEQ ID NO: 31 (Met-PRT698), SEQ ID NO: 32 (Met-PRT966), SEQ ID NO: 41 (Met-PRT917) or sequence artificial fibroin comprising the amino acid sequence represented by number 42 (Met-PRT1028), or (6-ii) SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42, and an artificial fibroin comprising an amino acid sequence having 90% or more sequence identity.
  • the artificial fibroin in (6-i) will be explained.
  • the amino acid sequence shown by SEQ ID NO:25 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO:7 (Met-PRT410) with VL.
  • the amino acid sequence shown by SEQ ID NO: 26 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with TS, and replacing the remaining Q with A.
  • the amino acid sequence shown by SEQ ID NO: 27 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with VL, and replacing the remaining Q with I.
  • the amino acid sequence shown by SEQ ID NO:28 is obtained by substituting VI for all QQs in the amino acid sequence shown by SEQ ID NO:7 and L for the remaining Qs.
  • the amino acid sequence shown by SEQ ID NO: 29 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with VF, and replacing the remaining Q with I.
  • the amino acid sequence shown by SEQ ID NO: 30 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 8 (Met-PRT525) with VL.
  • the amino acid sequence shown by SEQ ID NO: 31 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 8 with VL, and replacing the remaining Q with I.
  • the amino acid sequence represented by SEQ ID NO: 32 consists of 20 domain sequence regions present in the amino acid sequence represented by SEQ ID NO: 7 (Met-PRT410) that are repeated twice, and all QQ in the sequence are replaced with VF, And the remaining Q is replaced with I.
  • the amino acid sequence shown by SEQ ID NO: 41 (Met-PRT917) is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with LI and the remaining Qs with V.
  • the amino acid sequence shown by SEQ ID NO:42 (Met-PRT1028) is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO:7 with IF, and replacing the remaining Q with T.
  • SEQ ID NO: 25 SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 and SEQ ID NO: 42 are all glutamine residues
  • the group content is below 9% (Table 2).
  • the artificial fibroin of (6-i) is SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42 It may consist of the amino acid sequence shown.
  • the artificial fibroin of (6-ii) is SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42 Amino acid sequences having 90% or greater sequence identity with the indicated amino acid sequences are included.
  • the artificial fibroin of (6-ii) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif A protein containing a sequence.
  • the sequence identity is preferably 95% or more.
  • the artificial fibroin (6-ii) preferably has a glutamine residue content of 9% or less.
  • the artificial fibroin (6-ii) preferably has a GPGXX motif content of 10% or more.
  • the sixth artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This makes it possible to isolate, immobilize, detect and visualize artificial fibroin.
  • artificial fibroin containing a tag sequence examples include (6-iii) SEQ ID NO: 33 (PRT888), SEQ ID NO: 34 (PRT965), SEQ ID NO: 35 (PRT889), SEQ ID NO: 36 (PRT916), SEQ ID NO: 37 (PRT918), SEQ ID NO: 38 (PRT699), SEQ ID NO: 39 (PRT698), SEQ ID NO: 40 (PRT966), SEQ ID NO: 43 (PRT917) or SEQ ID NO: 44 (PRT1028) artificial fibroin comprising an amino acid sequence, or ( 6-iv) SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 and 90 Artificial fibroins comprising amino acid sequences with greater than % sequence identity can be mentioned.
  • amino acid sequences shown in SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 and SEQ ID NO: 44 are SEQ ID NO: 25 , SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 and SEQ ID NO: 42 at the N-terminus of SEQ ID NO: 11
  • the amino acid sequence (including the His-tag sequence and hinge sequence) is added.
  • SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 , SEQ ID NO: 40, SEQ ID NO: 43 and SEQ ID NO: 44 all have a glutamine residue content of 9% or less (Table 3).
  • the artificial fibroin of (6-iii) is SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 It may consist of the amino acid sequence shown.
  • (6-iv) artificial fibroin is SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 Amino acid sequences having 90% or greater sequence identity with the indicated amino acid sequences are included.
  • the artificial fibroin of (6-iv) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif A protein containing a sequence.
  • the sequence identity is preferably 95% or more.
  • the artificial fibroin (6-iv) preferably has a glutamine residue content of 9% or less.
  • the artificial fibroin (6-iv) preferably has a GPGXX motif content of 10% or more.
  • the sixth artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host.
  • the sequence of the secretory signal can be appropriately set according to the type of host.
  • the artificial fibroin has at least two or more of the characteristics of the first artificial fibroin, the second artificial fibroin, the third artificial fibroin, the fourth artificial fibroin, the fifth artificial fibroin, and the sixth artificial fibroin. It may be an artificial fibroin having the characteristics of
  • the artificial fibroin according to this embodiment also has a domain sequence represented by Formula 1: [(A)n motif-REP]m or Formula 2: [(A)n motif-REP]m-(A)n motif It may be a protein containing
  • the artificial fibroin may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence.
  • the N-terminal sequence and C-terminal sequence are typically, but not limited to, regions that do not have repeated amino acid motifs characteristic of fibroin and consist of about 100 amino acids.
  • domain sequence refers to a fibroin-specific crystalline region (typically corresponding to the (A) n motif of the amino acid sequence) and an amorphous region (typically corresponding to the REP of the amino acid sequence). ) and is represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif means an array.
  • the (A) n motif represents an amino acid sequence composed of 4 to 27 amino acid residues, and the number of alanine residues is 80% or more of the total number of amino acid residues in the (A) n motif.
  • REP indicates an amino acid sequence composed of 10-200 amino acid residues.
  • n represents an integer of 10-300. m is preferably an integer of 20-300, more preferably an integer of 30-300.
  • a plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
  • a plurality of REPs may have the same amino acid sequence or different amino acid sequences.
  • At least seven of the (A) n motifs present in the domain sequence are preferably composed only of alanine residues. Consisting only of alanine residues means that the (A) n motif has an amino acid sequence represented by (Ala) k (Ala represents an alanine residue). k is preferably an integer of 4-27, more preferably an integer of 4-20, and still more preferably an integer of 4-16.
  • REP is composed of 10 to 200 amino acid residues.
  • One or more of the amino acid residues constituting REP may be amino acid residues selected from the group consisting of glycine residues, serine residues, and alanine residues. That is, REP may contain amino acid residues selected from the group consisting of glycine residues, serine residues, and alanine residues.
  • One or more of the amino acid residues constituting REP may be hydrophobic amino acid residues. That is, REP preferably contains hydrophobic amino acid residues.
  • a hydrophobic amino acid residue means an amino acid residue with a positive hydrophobicity index.
  • hydrophobicity index of amino acid residues hydrophobicity index, hereinafter also referred to as "HI"
  • HI hydrophobicity index
  • Hydrophobic amino acid residues include, for example, isoleucine (HI: 4.5), valine (HI: 4.2), leucine (HI: 3.8), phenylalanine (HI: 2.8), methionine (HI: 1.9) and alanine (HI: 1.8).
  • the domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue into REP, as compared with naturally occurring fibroin.
  • the domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue at a position adjacent to a glycine residue, a serine residue, or an alanine residue in REP. More preferably, it has an amino acid sequence corresponding to a cysteine residue inserted at a position adjacent to the glycine residue.
  • a cysteine residue in REP may be located between a glycine residue, a serine residue, or an alanine residue and a glycine residue, a serine residue, or an alanine residue; residues.
  • the domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue at the position adjacent to the hydrophobic amino acid residue in REP.
  • hydrophobic amino acid residues are fixed between molecules by hydrophobic interaction.
  • a cysteine residue in REP may be positioned next to a hydrophobic amino acid residue, or may be positioned between a hydrophobic amino acid residue and an amino acid residue other than a hydrophobic amino acid residue.
  • a hydrophobic amino acid residue and a glycine residue, a serine residue, or an alanine residue and may be positioned between a hydrophobic amino acid residue and a glycine residue.
  • Hydrophobic amino acid residues may be one selected from the group consisting of isoleucine residues, valine residues, leucine residues, phenylalanine residues, methionine residues, and alanine residues.
  • the domain sequence has an amino acid sequence corresponding to the insertion of a cysteine residue into the REP located near the N-terminus and/or C-terminus of the domain sequence compared to naturally-occurring fibroin. good.
  • the molecular chain can be lengthened.
  • a REP located near the N-terminus of a domain sequence means a REP located 1st to 3rd from the N-terminus of the domain sequence.
  • a cysteine residue may be located in the REP positioned 1-2 from the N-terminus of the domain sequence.
  • a REP located near the C-terminus of a domain sequence means a REP located 1st to 3rd from the C-terminus of the domain sequence.
  • a cysteine residue may be located in the REP positioned 1-2 from the C-terminus of the domain sequence.
  • Cysteine residues are preferably located in the most N-terminal and/or most C-terminal REP of the domain sequence.
  • the domain sequence may have an amino acid sequence corresponding to the insertion of a cysteine residue at or near the center in REP compared to naturally occurring fibroin.
  • the vicinity of the center of the amino acid sequence in REP refers to the amino acid residue located in the center of REP (when there are two amino acid residues located in the center, the amino acid residue on the N-terminal side) to N 1st to 5th positions toward the terminal side, or 1st to 5th amino acid residues located in the center of REP (when there are two amino acid residues located in the center, amino acid residues on the C-terminal side) indicates the position of
  • the cysteine residue may be located in the center of REP, and is located at the 1st to 3rd or 1st to 2nd positions toward the N-terminal side or the C-terminal side from the amino acid residue located in the center of REP. You may have
  • the artificial fibroin preferably contains a GPGXX motif (G represents a glycine residue, P represents a proline residue, and X represents an amino acid residue other than a glycine residue) in the amino acid sequence of REP. Inclusion of this motif in REP can improve the elongation of the artificial fibroin.
  • the GPGXX motif content is usually 1% or more, may be 5% or more, and preferably 10% or more. In this case, the stress of the artificial fibroin fiber becomes even higher.
  • the upper limit of the GPGXX motif content is not particularly limited, and may be 50% or less, or 30% or less.
  • the "GPGXX motif content” is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif, the most C-terminal In all REPs contained in the sequence excluding the sequence from the located (A) n motif to the C-terminus of the domain sequence from the domain sequence, triple the total number of GPGXX motifs contained in that region (i.e., (corresponding to the total number of G and P in the GPGXX motif) is c, the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and the (A) n motif is further removed.
  • the GPGXX motif content is calculated as c/d, where d is the total number of amino acid residues in all REPs removed.
  • the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence” is "the most C-terminal side (A)
  • the sequence from the n motif to the C-terminus of the domain sequence” may include sequences that are poorly correlated with sequences characteristic of fibroin, and m is small If the domain sequence is short (that is, if the domain sequence is short), it affects the calculation result of the GPGXX motif content rate, so this effect is to be eliminated.
  • a "GPGXX motif” is located at the C-terminus of REP, it is treated as a "GPGXX motif” even if "XX" is, for example, "AA”.
  • FIG. 6 is a schematic diagram showing the domain sequence of fibroin.
  • Artificial fibroin has a REP hydrophobicity (hydropathy index: hydrophobicity index) of, for example, -0.80, -0.70, -0.06 or more, -0.50 or more, -0.40 or more. , -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0 0.35 or greater, 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater.
  • hydrophobicity of REP There is no particular upper limit to the hydrophobicity of REP, and it may be 1.0 or less, or 0.7 or less.
  • the "hydrophobicity of REP” is a value calculated by the following method.
  • Formula 1 [(A) n motif-REP] m or
  • Formula 2 [(A) n motif-REP] m -(A) n motif, the most C-terminal In all REPs contained in the sequence obtained by excluding the sequence from the located (A) n motif to the C-terminus of the domain sequence from the domain sequence (sequence corresponding to “region A” in FIG.
  • each amino acid in the region The sum of the hydrophobicity indices of the residues is e, the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and all REPs excluding the (A) n motif
  • the hydrophobicity of REP is calculated as e/f, where f is the total number of amino acid residues in .
  • the reason for targeting is the reason described above. It is the same.
  • the molecular weight of the artificial fibroin according to this embodiment is not particularly limited, it may be, for example, 10 kDa or more and 700 kDa or less.
  • the molecular weight of the artificial fibroin according to the present embodiment is, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa.
  • the artificial fibroin (i) may have only the amino acid sequence shown in SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, or SEQ ID NO: 51.
  • the artificial fibroin of (ii) may have only the amino acid sequence shown in SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, or SEQ ID NO:55.
  • the artificial fibroin described above may contain a tag sequence at either or both of the N-terminus and C-terminus. This enables isolation, immobilization, detection, visualization, etc. of artificial fibroin.
  • tag sequences include affinity tags that utilize specific affinity (binding, affinity) with other molecules.
  • affinity tag is a histidine tag (His tag).
  • His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and because it has the property of specifically binding to metal ions such as nickel, artificial fibroin is isolated by metal chelating chromatography.
  • a specific example of the tag sequence is the amino acid sequence represented by SEQ ID NO: 70 or SEQ ID NO: 71 (amino acid sequence containing a His tag).
  • tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can be used.
  • GST glutathione-S-transferase
  • MBP maltose binding protein
  • epitope tags that utilize antigen-antibody reactions. By adding an antigenic peptide (epitope) as a tag sequence, an antibody against the epitope can be bound.
  • epitope tags include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag, and the like. Artificial fibroin can be easily purified with high specificity by using an epitope tag.
  • a tag sequence that can be cleaved by a specific protease can also be used.
  • Artificial fibroin from which the tag sequence has been cut off can also be recovered by treating the protein adsorbed via the tag sequence with protease.
  • artificial fibroin containing a tag sequence examples include (iii) SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19) ), or an artificial fibroin comprising the amino acid sequence shown in SEQ ID NO: 65 (PRT20), or (iv) SEQ ID NO: 66 (PRT21), SEQ ID NO: 67 (PRT22), SEQ ID NO: 68 (PRT23), or SEQ ID NO: 69 ( Artificial fibroin containing the amino acid sequence shown in PRT24) can be mentioned.
  • amino acid sequences represented by SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19), and SEQ ID NO: 65 (PRT20) are , SEQ ID NO: 46 (PRT1), SEQ ID NO: 47 (PRT2), SEQ ID NO: 48 (PRT3), SEQ ID NO: 49 (PRT4), SEQ ID NO: 50 (PRT5), and SEQ ID NO: 51 (PRT6), respectively.
  • a tag sequence containing the amino acid sequence shown in SEQ ID NO: 70 is introduced at the N-terminus of .
  • amino acid sequences shown in SEQ ID NO: 66 are SEQ ID NO: 52 (PRT7) and SEQ ID NO: 53 ( PRT8), SEQ ID NO: 54 (PRT9), and SEQ ID NO: 55 (PRT10) with a tag sequence including the amino acid sequence of SEQ ID NO: 70 introduced at the N-terminus.
  • the artificial fibroin of (iii) may have only the amino acid sequence shown in SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, or SEQ ID NO: 65.
  • SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19), or SEQ ID NO: 65 (PRT20)
  • the GPGXX motif content of the artificial fibroin is 40.2%, 39.9%, 39.9%, 39.7%, 39.3%, and 38.6%, respectively, all of which are 10% or more. .
  • the artificial fibroin may have only the amino acid sequence shown in SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, or SEQ ID NO: 69.
  • the GPGXX motif content of the artificial fibroin containing the amino acid sequence shown in SEQ ID NO: 66 (PRT21), SEQ ID NO: 67 (PRT22), SEQ ID NO: 68 (PRT23), or SEQ ID NO: 69 (PRT24) is 39.9%, respectively. , 39.9%, 39.3%, and 38.6%, all of which are 10% or more.
  • the artificial fibroin described above may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
  • the sequence of the secretory signal can be appropriately set according to the type of host.
  • a nucleic acid encodes the artificial fibroin.
  • nucleic acids are amino acids represented by SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, or SEQ ID NO: 55
  • Nucleic acids are included.
  • a nucleic acid hybridizes under stringent conditions to a complementary strand of the artificial fibroin-encoding nucleic acid, and has formula 1: [(A) n motif-REP] m or formula 2: [( A) n -motif-REP] m -(A)
  • a nucleic acid encoding an artificial fibroin comprising a domain sequence represented by the n- motif.
  • the above domain sequence of the artificial fibroin encoded by the nucleic acid has an amino acid sequence corresponding to the insertion of a cysteine residue into REP, compared to naturally-occurring fibroin.
  • “Stringent conditions” refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. “Stringent conditions” may be any of low stringent conditions, medium stringent conditions and high stringent conditions. Low stringency conditions means that hybridization occurs only when there is at least 85% or more identity between the sequences. Conditions for hybridization include: Moderately stringent conditions means that hybridization occurs only when there is at least 90% identity between the sequences, for example, using 5xSSC containing 0.5% SDS at 50°C. Conditions for hybridization include: High stringency conditions means that hybridization occurs only when there is at least 95% or more identity between the sequences. Conditions for hybridization include:
  • An expression vector comprises the nucleic acid sequence described above and one or more regulatory sequences operably linked to the nucleic acid sequence.
  • a regulatory sequence is a sequence that controls expression of a recombinant protein in a host (eg, promoter, enhancer, ribosome binding sequence, transcription termination sequence, etc.), and can be appropriately selected according to the type of host.
  • the type of expression vector can be appropriately selected from plasmid vectors, virus vectors, cosmid vectors, fosmid vectors, artificial chromosome vectors, etc., depending on the type of host.
  • a host according to one embodiment is transformed with the above expression vector.
  • hosts both prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be suitably used.
  • those capable of autonomous replication in host cells or capable of integration into the chromosome of the host and containing a promoter at a position at which the nucleic acid according to one embodiment can be transcribed are preferably used.
  • the expression vector according to one embodiment is capable of autonomous replication in the prokaryote, and at the same time includes a promoter, a ribosome binding sequence, a nucleic acid according to one embodiment, and a transcription termination sequence. It is preferably a vector containing A gene controlling a promoter may be included.
  • prokaryotes examples include microorganisms belonging to the genera Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, and Pseudomonas.
  • microorganisms belonging to the genus Escherichia include Escherichia coli BL21 (Novagen), Escherichia coli BL21 (DE3) (Life Technologies), Escherichia coli BLR (DE3) (Merck Millipore), Escherichia coli DH1, Escherichia ⁇ Coli GI698, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli K5 (ATCC 23506), Escherichia coli KY3276, Escherichia coli MC1000, Escherichia coli MG1655 (ATCC 47076), Escherichia coli No.
  • Escherichia coli Rosetta (DE3) (Novagen), Escherichia coli TB1, Escherichia coli Tuner (Novagen), Escherichia coli Tuner (DE3) (Novagen), Escherichia coli W1485, Escherichia coli W3110 ( ATCC 27325), Escherichia coli XL1-Blue, and Escherichia coli XL2-Blue.
  • microorganisms belonging to the genus Brevibacillus include Brevibacillus agri, Brevibacillus borsterensis, Brevibacillus centropolus Brevibacillus formosus, Brevibacillus imvocatus, Brevibacillus latyrosporus, Brevibacillus limnophilus, Brevibacillus parabrevis , Brevibacillus reuszeri, Brevibacillus thermoluvar, Brevibacillus brevis 47 (FERM BP-1223), Brevibacillus brevis 47K (FERM BP-2308), Brevibacillus brevis 47-5 (FERM BP-1664), Brevibacillus brevis Bacillus brevis 47-5Q (JCM8975), Brevibacillus choshinensis HPD31 (FERM BP-1087), Brevibacillus choshinensis HPD31-S (FERM BP-6623), Brevibacillus a
  • microorganisms belonging to the genus Serratia include Serratia liquefaciens ATCC14460, Serratia entomophila, Serratia ficaria, Serratia fonticola, and Serratia grimesi. (Serratia grimesii), Serratia proteamaculans, Serratia odorifera, Serratia polymuthica, and Serratia rubidae.
  • microorganisms belonging to the genus Bacillus include Bacillus subtilis and Bacillus amyloliquefaciens.
  • microorganisms belonging to the genus Microbacterium include Microbacterium Ammoniaphyllum ATCC15354.
  • microorganisms belonging to the genus Brevibacterium include, for example, Brevibacterium divericatum (Corynebacterium glutamicum) ATCC14020, Brevibacterium flavum (Corynebacterium glutamicum ATCC14067) ATCC13826, ATCC14067, Brevibacterium inmariophyllum (Brevibacterium immariophilum)ATCC14068 ⁇ ( ⁇ ATCC13869)ATCC13665,ATCC13869 ⁇ ATCC13825 ⁇ (Brevibacterium saccharolyticum)ATCC14066 ⁇ thiogenitalis ATCC19240, Brevibacterium album ATCC15111, and Brevibacterium serinum ATCC15112.
  • Examples of microorganisms belonging to the genus Corynebacterium include Corynebacterium ammoniagenes ATCC6871 and ATCC6872, Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC14067, and Corynebacterium glutamicum ATCC14067. ⁇ (Corynebacterium acetoacidophilum)ATCC13870 ⁇ ATCC15806 ⁇ ATCC21511 ⁇ ATCC15991 ⁇ ATCC13020,ATCC13032,ATCC13060 ⁇ ATCC15990 ⁇ Corynebacterium melasecola ATCC17965, Corynebacterium thermoaminogenes AJ12340 (FERMBP-1539), Corynebacterium herculis ATCC13868, and the like.
  • microorganisms belonging to the genus Pseudomonas include Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas brassicacearum, Pseudomonas brassicacerum, Pseudomonas fulva, and Pseudomonas Pseudomonas. (Pseudomonas sp.) D-0110 and the like.
  • Any method for introducing DNA into the host cell can be used as the method for introducing the expression vector into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-248394), or the methods described in Gene, 17, 107 (1982) and Molecular & General Genetics, 168, 111 (1979).
  • JP-A-63-248394 protoplast method
  • Transformation of microorganisms belonging to the genus Brevibacillus for example, the method of Takahashi et al. (J. Bacteriol., 1983, 156: 1130-1134) and the method of Takagi et al. -3100), or the method of Okamoto et al. (Biosci. Biotechnol. Biochem., 1997, 61: 202-203).
  • vectors for introducing a nucleic acid according to one embodiment include pBTrp2, pBTac1, and pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (manufactured by Pharmacia), and pSE280. (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Patent Application Laid-Open No. 58-110600), pKYP200 [Agric. Biol. Chem.
  • suitable vectors include, for example, pUC18, pBluescriptII, pSupex, pET22b, and pCold.
  • vectors suitable for microorganisms belonging to the genus Brevibacillus include pUB110, which is known as a Bacillus subtilis vector, or pHY500 (JP-A-2-31682), pNY700 (JP-A-4-278091), pHY4831 (J Bacteriol., 1987, 1239-1245), pNU200 (Shigezo Udaka, Journal of Japan Agricultural Chemistry 1987, 61: 669-676), pNU100 (Appl. Microbiol. Biotechnol., 1989, 30: 75-80), pNU211 (J. Biochem., 1992, 112: 488-491), pNU211R2L5 (JP-A-7-170984), pNH301 (Appl.
  • the promoter is not limited as long as it functions in the host cell. Examples thereof include promoters derived from Escherichia coli, phage, etc., such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter, and T7 promoter. In addition, artificially designed and modified promoters such as a promoter in which two Ptrps are arranged in series (Ptrp ⁇ 2), tac promoter, lacT7 promoter, let I promoter, and the like can also be used.
  • a transcription termination sequence is not necessarily required for expression of the above nucleic acid, but it is preferred to place a transcription termination sequence directly under the structural gene.
  • Examples of eukaryotic hosts include yeast, filamentous fungi (molds, etc.), and insect cells.
  • yeast for example, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida , yeast belonging to the genus Yarrowia and Hansenula. ⁇ (Saccharomyces cerevisiae) ⁇ (Schizosaccharomyces pombe) ⁇ (Kluyveromyces lactis) ⁇ (Kluyveromyces marxianus) ⁇ (Trichosporon pullulans) ⁇ Schwanniomyces alluvius, Schwanniomyces occidentalis, Candida utilis, Pichia pastoris, Pichia angusta, Pichia morpha Pichia Pichiola (Pichia polymorpha), Pichia stipitis, Yarrowia lipolytica, and Hansenula polymorpha.
  • the expression vector When yeast is used as a host cell, the expression vector usually contains an origin of replication (if amplification in the host is required) and a selectable marker for propagation of the vector in E. coli, a promoter for recombinant protein expression in yeast, and a It is preferred to include a terminator as well as a selectable marker for yeast.
  • the expression vector when it is a non-integrating vector, it preferably further contains an autonomously replicating sequence (ARS). This can improve the stability of the expression vector in cells (Myers, AM, et al. (1986) Gene 45:299-310).
  • ARS autonomously replicating sequence
  • yeast examples include YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), YIp, pHS19, pHS15, pA0804, pHIL3Ol, pHIL-S1, pPIC9K, pPICZ ⁇ , pGAPZ ⁇ , and pPICZ B etc. can be mentioned.
  • the promoter is not limited as long as it can be expressed in yeast.
  • promoters include promoters of glycolytic genes such as hexose kinase, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal1 promoter, gal10 promoter, heat shock polypeptide promoter, MF ⁇ 1 promoter, and CUP1 promoter. , pGAP promoter, pGCW14 promoter, AOX1 promoter, and MOX promoter.
  • Any method for introducing DNA into yeast can be used as a method for introducing an expression vector into yeast.
  • methods for introducing expression vectors into yeast include electroporation (Methods Enzymol., 194, 182 (1990)), spheroplast method (Proc. Natl. Acad. Sci., USA, 81, 4889 ( 1984)), the lithium acetate method (J. Bacteriol., 153, 163 (1983)), and Proc. Natl. Acad. Sci. USA, 75, 1929 (1978), and the like.
  • filamentous fungi examples include Acremonium genus, Aspergillus genus, Ustilago genus, Trichoderma genus, Neurospora genus, Fusarium genus, Humicola genus, Penicillium genus, Myceliophtora genus, Botryts genus, Magnaporthe genus, Mucor genus, Metalhizium genus, Monascus genus, Rhizopus genus , and bacteria belonging to the genus Rhizomucoa.
  • filamentous fungi include Acremonium alabamense, Acremonium cellulolyticus, Aspergillus aculeatus, Aspergillus awamori, Aspergillus awamori Aspergillus oryzae) ⁇ (Aspergillus sake) ⁇ ( ⁇ )(Aspergillus sojae) ⁇ (Aspergillus tubigensis) ⁇ (Aspergillus niger) ⁇ (Aspergillus nidulans) ⁇ (Aspergillus parasiticus) ⁇ ( ⁇ )(Aspergillus ficuum) ⁇ (Aspergillus phoeicus) ⁇ ( ⁇ )(Aspergillus foetidus) ⁇ (Aspergillus flavus) ⁇ (Aspergillus fumigatus ) ⁇ ( ⁇ )(Aspergillus japonicus) ⁇ (Trichoderma viride) ⁇ (Trichoderma harzianum) ⁇ (Trichoderma reseei) ⁇ (Chry
  • the promoter may be a gene related to glycolysis, a gene related to constitutive expression, an enzyme gene related to hydrolysis, or the like.
  • Specific examples of promoters when the host is a filamentous fungus include amyB, glaA, agdA, glaB, TEF1, xynF1tannasegene, No. 8AN, gpdA, pgkA, enoA, melO, sodM, catA, and catB, and the like.
  • Methods for introducing expression vectors into filamentous fungi include, for example, the method of Cohen et al. (calcium chloride method) [Proc. Natl. Acad. Sci. USA, 69:2110 (1972)], protoplast method [Mol. Gen. Genet. , 168:111 (1979)], competent methods [J. Mol. Biol. , 56:209 (1971)], electroporation, and the like.
  • Insect cells include, for example, Lepidoptera insect cells. More specifically, insect cells include Spodoptera frugiperda-derived insect cells such as Sf9 and Sf21, and Trichoplusia ni-derived insect cells such as High 5. .
  • Baculovirus Expression Vectors such as Autographa californica nuclear polyhedrosis virus, which is a virus that infects insects of the family Mothidae. , A Laboratory Manual, WH Freeman and Company, New York (1992)).
  • Methods for co-introducing a recombinant gene transfer vector and baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (JP-A-2-227075) and the lipofection method (Proc. Natl. Acad.Sci.USA, 84, 7413 (1987)).
  • a recombinant vector according to one embodiment preferably further contains a selection marker gene for transformant selection.
  • a selection marker gene for transformant selection For example, in E. coli, resistance genes to various drugs such as tetracycline, ampicillin, and kanamycin can be used as selectable marker genes. Recessive selectable markers that can complement genetic mutations involved in auxotrophy can also be used. In yeast, genes resistant to geneticin can be used as selectable marker genes, and selectable markers such as LEU2, URA3, TRP1, and HIS3, genes that complement gene mutations involved in auxotrophy can also be used. In filamentous fungi, selectable marker genes include niaD (Biosci. Biotechnol.
  • a host transformed with an expression vector according to one embodiment can be selected by plaque hybridization, colony hybridization, or the like using a probe that selectively binds to the nucleic acid.
  • a probe that selectively binds to the nucleic acid.
  • a partial DNA fragment amplified by PCR based on the sequence information of the above nucleic acid and modified with a radioisotope or digoxigenin can be used.
  • Artificial fibroin can be produced by a method comprising the step of expressing the above nucleic acid in a host transformed with the above expression vector.
  • the expression method in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning, Second Edition.
  • artificial fibroin When expressed in yeast, animal cells, or insect cells, artificial fibroin can be obtained as a polypeptide to which a sugar or sugar chain has been added.
  • Artificial fibroin can be produced, for example, by culturing a host transformed with the expression vector in a culture medium, producing and accumulating the artificial fibroin according to the present embodiment in the culture medium, and collecting the artificial fibroin from the culture medium. can be done.
  • the method of culturing the host in the culture medium can be carried out according to a method commonly used for culturing the host.
  • the culture medium for the host contains a carbon source, a nitrogen source, an inorganic salt, etc. that can be assimilated by the host, Either a natural medium or a synthetic medium may be used as long as the medium can efficiently perform the above.
  • Carbon sources include carbohydrates such as glucose, fructose, sucrose, and molasses containing these, starch and starch hydrolysates, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol. can be done.
  • Nitrogen sources include, for example, ammonia, ammonium chloride, ammonium sulfate, ammonium salts of inorganic or organic acids such as ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolysates, soybean meal and soybean meal hydrolysates, various fermented cells and their digests can be used.
  • potassium dibasic phosphate dibasic potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate
  • inorganic salts for example, potassium dibasic phosphate, dibasic potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate can be used.
  • Prokaryotes such as E. coli or eukaryotes such as yeast can be cultured under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is, for example, 15-40°C.
  • Culture time is usually 16 hours to 7 days.
  • the pH of the culture medium during cultivation is preferably maintained between 3.0 and 9.0.
  • the pH of the culture medium can be adjusted using inorganic acids, organic acids, alkaline solutions, urea, calcium carbonate, ammonia, and the like.
  • antibiotics such as ampicillin and tetracycline may be added to the culture medium as necessary during the culture.
  • an inducer may be added to the medium as necessary.
  • isopropyl- ⁇ -D-thiogalactopyranoside or the like is used when culturing a microorganism transformed with an expression vector using a lac promoter, and indole acrylic when culturing a microorganism transformed with an expression vector using a trp promoter. Acids and the like may be added to the medium.
  • Culture media for insect cells include, for example, commonly used TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM medium (manufactured by Life Technologies), ExCell400, ExCell405 (both manufactured by JRH Biosciences), and Grace's Insect Medium (Nature, 195, 788 (1962)).
  • Insect cells can be cultured for 1 to 5 days under conditions such as a culture medium with a pH of 6 to 7 and a culture temperature of 25 to 30°C.
  • antibiotics such as gentamicin may be added to the culture medium as necessary during the culture.
  • the transformed plant cell can be cultured as it is, or it can be differentiated into plant organs and cultured.
  • the medium for culturing the plant cells include commonly used Murashige and Skoog (MS) medium, White medium, or these medium supplemented with plant hormones such as auxin and cytokinin. can be used.
  • Animal cells can be cultured for 3 to 60 days under conditions such as a culture medium with a pH of 5 to 9 and a culture temperature of 20 to 40°C. Moreover, antibiotics such as kanamycin and hygromycin may be added to the medium as necessary during the culture.
  • Methods of producing artificial fibroin using a host transformed with the expression vector include a method of producing the artificial fibroin in the host cell, a method of secreting the artificial fibroin outside the host cell, and a method of producing it on the extracellular membrane of the host cell. There are methods, etc. Each of these methods can be selected by varying the host cell used and the structure of the artificial fibroin produced.
  • artificial fibroin when artificial fibroin is produced in the host cell or on the host cell extracellular membrane, the method of Paulson et al. USA, 86, 8227 (1989), Genes Develop., 4, 1288 (1990)), or by applying the methods described in JP-A-5-336963, WO 94/23021, etc. , can be modified to actively secrete artificial fibroin out of host cells. That is, artificial fibroin can be actively secreted outside the host cell by expressing a polypeptide containing the active site of artificial fibroin with a signal peptide added thereto using a genetic recombination technique.
  • Artificial fibroin produced by a host transformed with the above expression vector can be isolated and purified by methods commonly used for protein isolation and purification. For example, when artificial fibroin is expressed in a dissolved state in cells, the host cells are recovered by centrifugation after the completion of culture, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, or a Manton. The host cells are disrupted with a Gaulin homogenizer, Dynomill, or the like to obtain a cell-free extract.
  • a method commonly used for protein isolation and purification that is, a solvent extraction method, a salting-out method using ammonium sulfate, etc., a desalting method, an organic solvent Precipitation method, diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei) and other resins, anion exchange chromatography, S-Sepharose FF (Pharmacia) and other resins, etc.
  • a solvent extraction method a salting-out method using ammonium sulfate, etc.
  • a desalting method an organic solvent Precipitation method
  • diethylaminoethyl (DEAE)-Sepharose diethylaminoethyl
  • DIAION HPA-75 manufactured by Mitsubishi Kasei
  • anion exchange chromatography S-Sepharose FF (Pharmacia) and other resins, etc.
  • Ion exchange chromatography hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, and electrophoresis such as isoelectric focusing
  • a purified sample can be obtained by using the methods such as the above alone or in combination.
  • the host cells are similarly collected, crushed, and centrifuged to collect the insoluble form of the artificial fibroin as a precipitate fraction.
  • the collected insoluble artificial fibroin can be solubilized with a protein denaturant. After this operation, a purified preparation of artificial fibroin can be obtained by the same isolation and purification method as described above.
  • the artificial fibroin or its derivative can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a technique such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
  • Binder Any type of binder can be used as long as it is a high-molecular polymer such as protein, peptide, polysaccharide, oligosaccharide, sugar polymer, fatty acid, fatty acid polymer, or polyphenol. These binders may or may not have the property of adhering to raw material fibers.
  • the "property of adhering” is the property of binding different types of substances when they are brought close to each other by interaction, and includes "wetting” and "aggregation”. The interaction is also called van der Waals force, surface tension, interfacial tension, electrostatic interaction, and the like.
  • the adhesive binder immobilizes the bundle of the raw material fibers by enzymatic reaction to crosslink the binder and the raw material fibers, or between the binders, forming large-diameter artificial polypeptide fibers.
  • the non-adhesive binder is prepared by bundling the raw material fibers in a cylindrical container or the like, and then by enzymatic reaction to cross-link the binder and the raw material fibers, or between the binders to fix the bundle of the raw material fibers, resulting in a large diameter. Form artificial polypeptide fibers.
  • Adhesive binders include polypeptides, peptides, proteins, polysaccharides, phenolic compounds, preferably fibroin (including natural and artificial), gelatin, collagen, casein glue, starch, kraft lignin, viscous polysaccharides. is mentioned.
  • non-adhesive binders examples include polypeptides, peptides, phenolic compounds, and polysaccharides.
  • the polypeptide or peptide is preferably a polypeptide or peptide containing either tyrosine, lysine or cysteine.
  • Phenolic compounds are preferably polyphenols, and polysaccharides are preferably polysaccharides to which phenols are bound (eg, sugar beet pectin, etc.).
  • the amount of the binder used may be 0.001 to 10000% by mass, based on the mass of the raw material fiber. It is preferably 100% by mass, or 3 to 30% by mass.
  • the enzyme used in the present embodiment may be any enzyme that can recognize at least one of the raw material fiber and the binder as a substrate for the enzyme, and may be an oxidoreductase or a protein cross-linking enzyme.
  • Cross-linking enzymes also include acyltransferases and oxidoreductases.
  • protein cross-linking enzymes examples include polyphenol oxidase (tyrosinase), peroxidase, multi-copper oxidase (laccase, bilirubin oxidase, ascorbic acid oxidase, ceruloplasmin), transglutaminase, lysyl oxidase, protein disulfide isomerase, protein disulfide reductase, sulfhydryl oxidase. , lipoxygenase.
  • polyphenol oxidase tyrosinase
  • peroxidase multi-copper oxidase
  • laccase laccase
  • bilirubin oxidase ascorbic acid oxidase
  • ceruloplasmin ceruloplasmin
  • transglutaminase lysyl oxidase
  • protein disulfide isomerase protein disulfide reductase
  • the protein cross-linking enzyme is preferably an oxidoreductase, and specific examples include polyphenol oxidase (tyrosinase), peroxidase, multicopper oxidase (laccase, bilirubin oxidase, ascorbic acid oxidase, ceruloplasmin), lysyl oxidase, and sulfhydryl oxidase. be done. More preferred are laccase, bilirubin oxidase, peroxidase and tyrosinase, and still more preferred are laccase, bilirubin oxidase and peroxidase.
  • More preferred enzymes are, for example, laccase, bilirubin oxidase, and combined use of peroxidase and glucose oxidase.
  • the oxidoreductase is not particularly limited as long as it can generate a reactive functional group (eg, aldehyde) by oxidizing or reducing the chemical structure of at least one of the binder and raw fiber.
  • a reactive functional group eg, aldehyde
  • Examples of oxidoreductases include the following.
  • Enzymes with low substrate specificity and containing metal ions in the active center for example, multi-copper oxidases such as laccase
  • an enzyme that oxidizes the ⁇ -amino group of a lysine residue in a protein to produce an aldehyde group eg, lysyl oxidase
  • Enzymes that oxidize sulfhydryl groups of cysteine residues in proteins e.g., sulfhydryl oxidase
  • Enzymes that require hydrogen peroxide as an oxygen donor in oxidation reactions for example, peroxidase, which may be used in combination with glucose oxidase to generate hydrogen peroxide
  • multi-copper oxidase is a group of enzymes that have a copper atom in the active center, extract (oxidize) electrons from various substrates such as polyphenols, methoxyphenols, diamines, bilirubin, and ascorbic acid, and reduce molecular oxygen.
  • substrates such as polyphenols, methoxyphenols, diamines, bilirubin, and ascorbic acid
  • Multicopper oxidases include, for example, laccase, bilirubin oxidase, ascorbate oxidase, ceruloplasmin and the like.
  • binder and enzyme are, for example, polypeptide and laccase, polyphenol and laccase, polypeptide and bilirubin oxidase, polypeptide and peroxidase, polypeptide and peroxidase and glucose oxidase, more preferably silk fibroin and laccase, silk fibroin and bilirubin oxidase, silk fibroin and peroxidase, silk fibroin and peroxidase and glucose oxidase, gelatin and laccase.
  • Non-Patent Document 1 Conventionally, cross-linking and adhesion of binders (especially proteins) have been performed using benzoquinone, glutaraldehyde, and formaldehyde as oxidizing agents (see, for example, Non-Patent Document 1).
  • benzoquinone and aldehydes are known to be oxidizing agents, they have an odor, are highly irritating to the skin and mucous membranes, and pose a physical burden on workers and the environment. Become.
  • aldehydes are used, a longer reaction time is required, and the resulting large-diameter artificial polypeptide fibers are colored.
  • enzymatic reaction can be used to increase the diameter, so there is no need to use the above-described oxidizing agent, and the burden on workers and the environmental load can be reduced.
  • the high substrate specificity of the enzyme may reduce side reactions and reduce contamination.
  • the method according to the present embodiment may further comprise a step of preparing raw material fibers (thin-diameter artificial polypeptide fibers).
  • the raw fibers obtained by this step can be bundled and crosslinked by an enzymatic reaction.
  • a thin artificial polypeptide fiber obtained through a spinning process from an artificial polypeptide may be used as a raw material fiber.
  • the enzyme reacts with at least one of the raw material fiber and the binder to generate a reactive functional group, which is crosslinked by chemically bonding with the surrounding raw material fiber or binder.
  • a schematic diagram of the resulting artificial polypeptide fiber is shown in FIG. As shown in FIG. 1, raw material fibers 1 are bonded together via a binder 2 to form a single thick fiber 10 as a whole.
  • Raw fibers can be produced by a known spinning method. That is, for example, when producing a raw material fiber containing protein as a main component, first, a protein (for example, modified fibroin) produced according to the above-described method is added to dimethyl sulfoxide (DMSO), N,N-dimethylformamide ( DMF), formic acid, or hexafluoroisopropanol (HFIP), if necessary, together with an inorganic salt as a dissolution accelerator, are added and dissolved to prepare a dope solution. Then, using this dope solution, spinning is performed by a known spinning method such as wet spinning, dry spinning, dry-wet spinning, or melt spinning to obtain the desired raw material fiber. Preferred spinning methods include wet spinning or dry-wet spinning.
  • DMSO dimethyl sulfoxide
  • DMF N,N-dimethylformamide
  • HFIP hexafluoroisopropanol
  • Preferred spinning methods include wet spinning or dry-wet spinning
  • FIG. 7 is an explanatory diagram schematically showing an example of a spinning device for producing raw fibers.
  • a spinning device 10 shown in FIG. 7 is an example of a spinning device for dry-wet spinning, and includes an extrusion device 1 , an undrawn yarn producing device 2 , a wet-heat drawing device 3 , and a drying device 4 .
  • the dope liquid 6 stored in the storage tank 7 is pushed out from the mouthpiece 9 by the gear pump 8 .
  • the dope solution may be filled into a cylinder and pushed out through a nozzle using a syringe pump.
  • the extruded dope liquid 6 is supplied through the air gap 19 into the coagulation liquid 11 of the coagulation liquid bath 20, the solvent is removed, the protein is coagulated, and a fibrous coagulum is formed.
  • the fibrous coagulum is fed into hot water 12 in a drawing bath (washing bath) tank 21 and drawn.
  • the draw ratio is determined by the speed ratio between the supply nip roller 13 and the take-up nip roller 14 . After that, the drawn fibrous coagulate is supplied to the drying device 4 and dried in the yarn path 22 to obtain the raw material fibers 36 as the wound yarn 5 . 18a-18g are thread guides.
  • the coagulating liquid 11 may be any solvent that can remove the solvent, and examples thereof include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol and 2-propanol, and acetone.
  • the coagulation liquid 11 may contain water as appropriate.
  • the temperature of the coagulation liquid 11 is preferably 0 to 30.degree.
  • the extrusion rate is preferably 0.2 to 6.0 ml/hour, preferably 1.4 to 4.0 ml/hour. Time is more preferred.
  • the distance over which the coagulated protein passes through the coagulation liquid 11 should be sufficient for efficient removal of the solvent, for example, 200 to 500 mm. is.
  • the undrawn yarn take-up speed may be, for example, 1 to 20 m/min, preferably 1 to 3 m/min.
  • the residence time in the coagulation liquid 11 may be, for example, 0.01 to 3 minutes, preferably 0.05 to 0.15 minutes. Further, stretching (pre-stretching) may be performed in the coagulating liquid 11 .
  • the coagulation liquid bath 20 may be provided in multiple stages, and stretching may be performed in each stage or in a specific stage as required.
  • the drawing performed when obtaining the raw material fiber may be, for example, the pre-drawing performed in the coagulating liquid tank 20 and the wet-heat drawing performed in the drawing bath 21, as well as the dry-heat drawing.
  • Wet heat stretching can be performed in hot water, in a solution of hot water added with an organic solvent or the like, or in steam heating.
  • the temperature may be, for example, 50 to 90°C, preferably 75 to 85°C.
  • the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times, preferably 2 to 8 times.
  • Dry heat drawing can be performed using an electric tubular furnace, a dry heat plate, or the like.
  • the temperature may be, for example, 140°C to 270°C, preferably 160°C to 230°C.
  • the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 0.5 to 8 times, preferably 1 to 4 times.
  • the wet heat drawing and the dry heat drawing may be performed independently, or they may be performed in multiple stages or in combination. That is, the first step drawing is performed by wet heat drawing, the second step drawing is performed by dry heat drawing, or the first step drawing is performed by wet heat drawing, the second step drawing is performed by wet heat drawing, and the third step drawing is performed by dry heat drawing.
  • wet heat stretching and dry heat stretching can be combined as appropriate.
  • the lower limit of the final draw ratio is preferably more than 1 times, 2 times or more, 3 times or more, 4 times or more, 5 times or more, 6 times with respect to the undrawn yarn (or pre-drawn yarn). 7 times or more, 8 times or more, 9 times or more, and the upper limit is preferably 40 times or less, 30 times or less, 20 times or less, 15 times or less, 14 times or less, 13 times or less. , 12 times or less, 11 times or less, and 10 times or less.
  • the raw material fiber that repeatedly stretches and contracts in the wet state and the dry state described above is manufactured by, for example, shrinking the fiber obtained by spinning (that is, the fiber before contacting with water after spinning) with water.
  • the shrinking step may include, for example, a step of irreversibly shrinking the fibers produced by the above spinning method (fibers after spinning but before contact with water) by contacting them with water (contacting step).
  • the shrinking step may comprise, after the contacting step, drying the fibers to further shrink them (drying step).
  • the fiber diameter (cross-sectional diameter) of the raw material fiber may be, for example, 5 to 100 ⁇ m, 10 to 90 ⁇ m, 20 to 80 ⁇ m, 30 to 70 ⁇ m, or 40 to 60 ⁇ m.
  • a second embodiment of the invention is an artificial polypeptide fiber obtainable by the method according to the first embodiment.
  • raw material fibers 1 are bonded together via a binder 2 to form one thick fiber 10 as a whole.
  • the fiber diameter (cross-sectional diameter) of the artificial polypeptide fiber (large-diameter artificial polypeptide fiber) according to the present embodiment is, for example, 0.5 to 5.0 mm, 1.0 to 4.5 mm, 1.5 to 4.0 mm. 0 mm, 2.0-3.5 mm, or 2.5-3.0 mm.
  • the number of raw fibers constituting the artificial polypeptide fiber usually matches the number of raw fibers to be bundled, for example, 5 to 100, 10 to 90, 20 to 80, 30 to 70, or 40 to 60. It can be adjusted within the scope of the book.
  • the artificial polypeptide contained in the artificial polypeptide fiber according to the present embodiment preferably contains a structural protein, more preferably fibroin, and even more preferably spider silk fibroin.
  • a third embodiment of the present invention is an adhesive for bonding fibers containing an artificial polypeptide together, the adhesive comprising a binder and an enzyme that reacts with at least one of the artificial polypeptide and the binder. is.
  • the definition of the raw material fiber described in the first embodiment can be referred to. Also, the description of the first embodiment can be referred to for the binder and the enzyme.
  • the adhesive according to the present embodiment may be a combination of a first composition containing a binder and a second composition containing an enzyme, or a composition containing both a binder and an enzyme. good.
  • the former form is preferred when the binder is a reaction substrate for an enzyme.
  • composition constituting the adhesive according to the present embodiment contains solvents, excipients, buffers, stabilizers, preservatives, preservatives, physiological saline, etc. in addition to binders and/or enzymes. good too.
  • Solvents include dimethylsulfoxide (DMSO), diethylene glycol monoether, ethanol, methanol, isopropanol.
  • DMSO dimethylsulfoxide
  • excipients starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • Phosphate, citrate, acetate and the like can be used as buffers.
  • Propylene glycol, ascorbic acid and the like can be used as stabilizers.
  • Preservatives that can be used include phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like. Ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol, etc. can be used as antiseptics.
  • a nucleic acid encoding a protein with the designed amino acid sequence was synthesized.
  • An NdeI site was added to the 5' end of the nucleic acid, and an EcoRI site was added downstream of the termination codon.
  • These two types of nucleic acids were each cloned into a cloning vector (pUC118). Thereafter, the same nucleic acid was treated with restriction enzymes NdeI and EcoRI, cut out, and then recombined into the protein expression vector pET-22b(+) to obtain an expression vector.
  • the seed culture solution was added to a jar fermenter to which 500 mL of production medium (Table 5) was added so that the OD 600 was 0.05, and the transformed E. coli was inoculated.
  • the temperature of the culture solution was kept at 37° C. and the pH was constantly controlled to 6.9 for culturing. Also, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
  • the feed solution (glucose 455 g/1 L, Yeast Extract 120 g/1 L) was added at a rate of 1 mL/min.
  • the temperature of the culture solution was kept at 37° C. and the pH was constantly controlled to 6.9 for culturing.
  • the dissolved oxygen concentration in the culture medium was maintained at 20% of the dissolved oxygen saturation concentration, and culture was carried out for 20 hours.
  • 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the desired modified fibroin.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the culture solution was centrifuged to collect the cells. SDS-PAGE was performed using the cells prepared from the culture solution before and after the addition of IPTG, and the expression of the desired modified fibroin was confirmed by the appearance of the desired modified fibroin size band depending on the addition of IPTG. bottom.
  • the precipitate after washing was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10mM sodium dihydrogen phosphate, 20mM NaCl, 1mM Tris-HCl, pH 7.0) to a concentration of 100mg/mL, and was incubated at 60°C for 30 minutes. Stir with a stirrer for 1 minute to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, water was removed with a freeze dryer, and a freeze-dried powder was recovered.
  • 8M guanidine buffer 8M guanidine hydrochloride, 10mM sodium dihydrogen phosphate, 20mM NaCl, 1mM Tris-HCl, pH 7.0
  • Nozzle hole diameter 0.3mm
  • Coagulation liquid 18% sodium sulfate aqueous solution
  • Temperature of coagulation liquid 50°C
  • [Preparation of binder solution] A 0.02 M sodium carbonate aqueous solution (400 mL) was added to silkworm cocoons (1 g), and the mixture was heated at 80 to 90° C. for 30 minutes or longer. The warmed liquid was filtered through a paper filter, washed with MilliQ water, and air-dried to obtain silk fibers. After adding 9.3 M lithium bromide aqueous solution (3 mL) to the obtained silk fibers (0.76 g), the mixture was heated at 60° C. for 5 hours or longer to completely dissolve the silk fibers. Insoluble materials were removed by centrifugation, and dialysis was repeated to exchange buffer 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride.
  • the buffer was replaced with a 50 mM Tris-hydrochloride buffer, pH 7.0, 150 mM sodium chloride buffer to obtain a silk fibroin solution.
  • the obtained silk fibroin solution was divided, and various enzymes were added as shown in Table 6 so as to have a predetermined concentration to obtain binder solutions E1 to E3.
  • solutions NE1 (no binder or enzyme), NE2 (no enzyme), NE3 (no binder) and NE4 (no binder) were prepared.
  • laccase manufactured by Amano Enzyme Co., Ltd.
  • bilirubin oxidase manufactured by Amano Enzyme Co., Ltd.
  • glucose oxidase manufactured by Amano Enzyme Co., Ltd.
  • peroxidase manufactured by Amano Enzyme Co., Ltd.
  • Photograph 1 is a photograph showing how raw fibers (PRT918) are bundled.
  • Photo 2 shows a state in which the bundled raw material fibers are placed in a pipette and one opening is closed with a seal.
  • Photograph 3 is a photograph showing a state in which the other opening is closed with a seal.
  • Photograph 4 is a photograph showing the obtained artificial polypeptide fiber having a large diameter. All of the thick artificial polypeptide fibers had a thickness of 1.6 mm.
  • a raw material fiber (PRT918) bundled with 20 to 25 fibers was used as Comparative Example 3.
  • Table 8 shows the results. In the physical property test, Examples 1 to 3 broke at once as the tensile strain was increased, but Comparative Examples 1 to 3 broke stepwise several times.
  • gelatin solution 0.5 mL was placed in a glass test tube, and laccase (manufactured by Amano Enzyme Co., Ltd.) was added as shown in Table 9 to obtain a binder solution E4.
  • binder solution The silk fibroin solutions obtained in the same manner as described above were divided, and various enzymes were added to give predetermined concentrations as shown in Table 10 to obtain binder solutions E5 to E8. For comparison, solutions NE6 (no enzyme) and NE7 (no enzyme) were prepared.
  • Table 12 shows the results. Examples 5-8 had a stress greater than that of Comparative Example 3 by 0.1 gf/den or more, and all fibers remained fused after the washing test.
  • a binder solution E9 was obtained by adding a 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride buffer to commercially available sugar beet-derived pectin as shown in Table 13 instead of silk fibroin.
  • Example 15 shows the results. In Example 9, all fibers remained fused after the wash test, but in Comparative Example 6, no adhesive effect was observed.
  • Binder solutions E9 to E11 were obtained by adding a buffer of 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride to chemical oxidants (glutaraldehyde, formaldehyde) as shown in Table 16 instead of the enzyme.

Abstract

The present invention provides a method for manufacturing an artificial polypeptide fiber, the method comprising: a step for bundling a plurality of raw material fibers containing an artificial polypeptide; and a step for bringing an obtained bundle of raw material fibers into contact with a composition containing a binder and an enzyme.

Description

太径人工ポリペプチド繊維及びその製造方法、並びに接着剤Large-diameter artificial polypeptide fiber, method for producing the same, and adhesive
 本発明は、太径人工ポリペプチド繊維及びその製造方法、並びに接着剤に関する。 The present invention relates to a large-diameter artificial polypeptide fiber, a method for producing the same, and an adhesive.
 天然繊維は古くから利用されているが、大量供給、太さや長さ等の繊維形態を制御することが困難であった。従来、石油由来の合成繊維を利用して、これらの問題を解決してきた。しかし、近年における環境保全意識の高まりから、環境負荷の大きい石油由来の素材からの脱却が求められており、繊維の技術分野においても同様な要請がある。 Although natural fibers have been used for a long time, it has been difficult to supply large quantities and control fiber forms such as thickness and length. Conventionally, petroleum-derived synthetic fibers have been used to solve these problems. However, due to the recent heightened awareness of environmental conservation, there is a need to break away from petroleum-derived materials, which have a large environmental load, and there is a similar demand in the technical field of textiles.
 そこで、環境負荷が小さく、大量生産が可能な素材が注目を浴びている。例えば、特許文献1には、生分解性を有し、所望の太さや長さで工業的に生産可能な人工ポリペプチド繊維が開示されている。 Therefore, materials that have a small environmental impact and can be mass-produced are attracting attention. For example, Patent Document 1 discloses a biodegradable artificial polypeptide fiber that can be industrially produced in desired thickness and length.
国際公開第2012/165476号WO2012/165476 特開昭63-82737号公報JP-A-63-82737
 人工ポリペプチド繊維は、例えば、人工ポリペプチドの一種である人工タンパク質等が所定の溶媒に溶解したドープ液を押し出して線状成形体を形成した後、凝固浴中や大気中で線状成形体から溶媒を除去することによって製造される。しかし、一般的な紡糸方法で比較的太い人工ポリペプチド繊維を作ろうとすると、紡糸ノズルから排出される線状成形体には多量の溶媒を含まれるため、この溶媒を除去するためには多くの時間を要する。もし人工ポリペプチド繊維内に溶媒が残存する場合には、適切に繊維を成形できない、一定の強度が得られない等の問題が生じ、結果として繊維の製造効率が低下する。 An artificial polypeptide fiber is produced by, for example, extruding a dope solution in which an artificial protein, which is a type of artificial polypeptide, is dissolved in a predetermined solvent to form a linear molded body, and then extruding the linear molded body in a coagulation bath or in the atmosphere. prepared by removing the solvent from However, when attempting to produce a relatively thick artificial polypeptide fiber by a general spinning method, the linear molded product discharged from the spinning nozzle contains a large amount of solvent. It takes time. If the solvent remains in the artificial polypeptide fiber, problems such as the inability to properly form the fiber and the inability to obtain a certain strength occur, resulting in a decrease in the efficiency of fiber production.
 太い繊維を得る場合には、しばしば、原料となる細い繊維を束ねて合成接着剤で接着することにより、見かけ上太い束状繊維を得る方法が利用される(例えば、特許文献2)。特許文献2では、複数本の細径パイルをバインダで覆い固めることによって、植毛用の太径パイルを製造している。バインダには、ニトリルゴム、ポリウレタンゴム、塩化ビニル樹脂、アクリル酸エステル樹脂、エチレン-酢酸ビニル共重合体樹脂、フェノール樹脂、またはエポキシ樹脂が使用されている。しかし、太径パイルの大半を占めるバインダの存在により、繊維全体のしなやかさ及び生分解性が損なわれ得る。 When obtaining thick fibers, a method is often used to obtain seemingly thick bundled fibers by bundling thin raw material fibers and adhering them with a synthetic adhesive (for example, Patent Document 2). In Patent Document 2, a large-diameter pile for flocking is manufactured by covering and hardening a plurality of small-diameter piles with a binder. Nitrile rubber, polyurethane rubber, vinyl chloride resin, acrylic acid ester resin, ethylene-vinyl acetate copolymer resin, phenol resin, or epoxy resin is used for the binder. However, the presence of the binder that occupies most of the large-diameter pile can impair the flexibility and biodegradability of the entire fiber.
 そこで、本発明は、新たな束状構造を有する人工ポリペプチド繊維とその製造方法を提供することを目的とする。また、本発明は、人工ポリペプチド繊維を有利に接着可能な接着剤を提供することも目的とする。 Therefore, an object of the present invention is to provide an artificial polypeptide fiber having a novel bundle structure and a method for producing the same. Another object of the present invention is to provide an adhesive that can advantageously bond artificial polypeptide fibers.
 本発明は、以下の[1]~[17]を提供する。
[1] 人工ポリペプチドを含む複数本の原料繊維を束ねる工程と、
 得られた原料繊維の束を、バインダ及び酵素を含有する組成物に接触させる工程と、
を含む、人工ポリペプチド繊維の製造方法。
[2] 酵素が酸化酵素を含む、[1]に記載の人工ポリペプチド繊維の製造方法。
[3] 酸化酵素が、ラッカーゼ、ビリルビンオキシダーゼ、グルコースオキシダーゼ、およびペルオキシダーゼからなる群から選択される少なくとも1つである、[2]に記載の人工ポリペプチド繊維の製造方法。
[4] 人工ポリペプチドが構造タンパクを含む、[1]~[3]のいずれかに記載の人工ポリペプチド繊維の製造方法。
[5] 人工ポリペプチドがフィブロインを含む、[1]~[3]のいずれかに記載の人工ポリペプチド繊維の製造方法。
[6] 人工ポリペプチドがクモ糸フィブロインを含む、[1]~[3]のいずれかに記載の人工ポリペプチド繊維の製造方法。
[7] [1]~[6]のいずれかに記載の方法で製造される人工ポリペプチド繊維。
[8] 人工ポリペプチドを含む複数本の原料繊維が、バインダを介して互いに接合されている、人工ポリペプチド繊維。
[9] 人工ポリペプチドが構造タンパクを含む、[8]に記載の人工ポリペプチド繊維。
[10] 人工ポリペプチドがフィブロインを含む、[8]に記載の人工ポリペプチド繊維。
[11] 人工ポリペプチドがクモ糸フィブロインを含む、[8]に記載の人工ポリペプチド繊維。
[12] 人工ポリペプチドを含む繊維を互いに接着するための接着剤であって、
 バインダと、前記人工ポリペプチド及び前記バインダの少なくとも一方と反応する酵素と、を含む接着剤。
[13] 酵素が酸化酵素である、[12]に記載の接着剤。
[14] 酸化酵素が、ラッカーゼ、ビリルビンオキシダーゼ、グルコースオキシダーゼ、およびペルオキシダーゼからなる群から選択される少なくとも1つである、[13]に記載の接着剤。
[15] 人工ポリペプチドが構造タンパクを含む、[12]~[14]のいずれかに記載の接着剤。
[16] 人工ポリペプチドがフィブロインを含む、[12]~[14]のいずれかに記載の接着剤。
[17] 人工ポリペプチドがクモ糸フィブロインを含む、[12]~[14]のいずれかに記載の接着剤。
The present invention provides the following [1] to [17].
[1] A step of bundling a plurality of raw fibers containing an artificial polypeptide;
a step of contacting the obtained bundle of raw material fibers with a composition containing a binder and an enzyme;
A method of making an engineered polypeptide fiber, comprising:
[2] The method for producing an artificial polypeptide fiber according to [1], wherein the enzyme contains an oxidase.
[3] The method for producing an artificial polypeptide fiber according to [2], wherein the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
[4] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains a structural protein.
[5] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains fibroin.
[6] The method for producing an artificial polypeptide fiber according to any one of [1] to [3], wherein the artificial polypeptide contains spider silk fibroin.
[7] An artificial polypeptide fiber produced by the method according to any one of [1] to [6].
[8] An artificial polypeptide fiber, in which a plurality of raw fibers containing an artificial polypeptide are bonded together via a binder.
[9] The artificial polypeptide fiber of [8], wherein the artificial polypeptide comprises a structural protein.
[10] The artificial polypeptide fiber of [8], wherein the artificial polypeptide contains fibroin.
[11] The artificial polypeptide fiber of [8], wherein the artificial polypeptide comprises spider silk fibroin.
[12] An adhesive for bonding together fibers comprising an artificial polypeptide, comprising:
An adhesive comprising a binder and an enzyme that reacts with at least one of the artificial polypeptide and the binder.
[13] The adhesive of [12], wherein the enzyme is an oxidase.
[14] The adhesive according to [13], wherein the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
[15] The adhesive according to any one of [12] to [14], wherein the artificial polypeptide comprises a structural protein.
[16] The adhesive according to any one of [12] to [14], wherein the artificial polypeptide contains fibroin.
[17] The adhesive according to any one of [12] to [14], wherein the artificial polypeptide comprises spider silk fibroin.
 本発明によれば、酵素反応により、バインダと原料繊維を結合させることで、新たな束状構造を有する人工ポリペプチド繊維とその製造方法を提供することができる。得られる人工ポリペプチド繊維は束状構造を有するが、その各々は直接的に又は間接的に酵素反応により結合され、より太径の一本の繊維を形成する。本発明に係る方法で製造された繊維は、一旦、細径の繊維を製造した後にバインダで結合させるため、一般的な紡糸方法によって太径の繊維を製造した場合と異なり、溶媒が残存する可能性を大幅に低減することができ、製造効率を高めることができる。 According to the present invention, it is possible to provide an artificial polypeptide fiber having a new bundle-like structure and a method for producing the same by binding a binder and a raw material fiber through an enzymatic reaction. The resulting artificial polypeptide fiber has a bundle-like structure, each of which is directly or indirectly bound by an enzymatic reaction to form a single fiber with a larger diameter. The fibers produced by the method according to the present invention are bound with a binder after producing small-diameter fibers. It is possible to greatly reduce the resistance and increase the manufacturing efficiency.
本発明の一実施形態に係る人工ポリペプチド繊維の断面を示す模式図である。1 is a schematic diagram showing a cross section of an artificial polypeptide fiber according to one embodiment of the present invention; FIG. 人工フィブロインのドメイン配列の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a domain sequence of artificial fibroin. 天然由来のフィブロインのz/w(%)の値の分布を示す図である。FIG. 4 is a diagram showing the distribution of z/w (%) values of naturally occurring fibroin. 天然由来のフィブロインのx/y(%)の値の分布を示す図である。FIG. 4 is a diagram showing the distribution of x/y (%) values of naturally occurring fibroin. 人工フィブロインのドメイン配列の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a domain sequence of artificial fibroin. フィブロインのドメイン配列の一例を示す模式図である。1 is a schematic diagram showing an example of a fibroin domain sequence. FIG. 原料繊維を製造するための紡糸装置の一例を概略的に示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows roughly an example of the spinning apparatus for manufacturing a raw material fiber. 本発明の一実施形態に係る人工ポリペプチドの製造方法の一例を示す写真である。1 is a photograph showing an example of a method for producing an artificial polypeptide according to an embodiment of the present invention;
 本発明について、以下に詳細に説明する。 The present invention will be described in detail below.
〔第一実施形態〕
 本発明の第一実施形態は、人工ポリペプチドを含む複数本の原料繊維を束ねる工程と、得られた原料繊維の束を、バインダ及び酵素を含有する組成物に接触させる工程と、を含む、人工ポリペプチド繊維の製造方法である。
[First Embodiment]
A first embodiment of the present invention includes a step of bundling a plurality of raw fibers containing an artificial polypeptide, and a step of contacting the resulting bundle of raw fibers with a composition containing a binder and an enzyme. A method for producing an artificial polypeptide fiber.
 本実施形態の方法によれば、人工ポリペプチドを含む複数本の原料繊維を束ねて、これをバインダ及び酵素を含有する組成物に接触させることにより、酵素が人工ポリペプチド及びバインダの少なくとも一方と反応し、原料繊維と原料繊維の間、原料繊維とバインダの間、バインダとバインダとの間のうちの少なくとも一つを化学的に架橋し、人工ポリペプチド繊維を製造することができる。 According to the method of the present embodiment, by bundling a plurality of raw fibers containing an artificial polypeptide and bringing them into contact with a composition containing a binder and an enzyme, the enzyme binds to at least one of the artificial polypeptide and the binder. By reacting to chemically cross-link at least one of raw material fiber to raw material fiber, raw material fiber to binder, and binder to binder, an artificial polypeptide fiber can be produced.
 複数本の原料繊維(細径の人工ポリペプチド繊維)を束ねる工程では、単に手で原料繊維を束状に寄せ集める工程であってもよく、筒状容器等に入れることによって原料繊維を寄せ集める工程であってもよい。筒状容器は、特に限定されず、所望の内径を有する筒状容器を利用することができる。筒状容器の内径は、目的とする人工ポリペプチド繊維の太さに適した大きさであることが好ましく、例えば、目的とする人工ポリペプチド繊維の太さの1.2~2倍の大きさであってよく、1.3~1.7倍の大きさが好ましい。このような大きさの筒状容器を利用することにより、原料繊維がより近接した状態を作り出すことができ、かつ酵素反応でより架橋させやすくなる効果が期待できる。 The step of bundling a plurality of raw fibers (artificial polypeptide fibers with a small diameter) may be a step of simply gathering the raw fibers into a bundle by hand. It may be a process. The cylindrical container is not particularly limited, and any cylindrical container having a desired inner diameter can be used. The inner diameter of the cylindrical container is preferably a size suitable for the thickness of the target artificial polypeptide fiber, for example, 1.2 to 2 times the size of the target artificial polypeptide fiber. , preferably 1.3 to 1.7 times as large. By using a cylindrical container having such a size, it is possible to create a state in which the raw material fibers are closer to each other, and the effect of facilitating cross-linking by an enzymatic reaction can be expected.
 束ねる原料繊維の本数は、例えば、5~100本、10~90本、20~80本、30~70本、または40~60本の範囲で適宜、調整できる。束ねる原料繊維の本数は、人工ポリペプチド繊維(太径の人工ポリペプチド繊維)の繊維径に反映され、原料繊維の本数が多いほど、得られる人工ポリペプチド繊維は太くなり得る。 The number of raw material fibers to be bundled can be appropriately adjusted in the range of, for example, 5 to 100, 10 to 90, 20 to 80, 30 to 70, or 40 to 60. The number of raw material fibers to be bundled is reflected in the fiber diameter of the artificial polypeptide fiber (large-diameter artificial polypeptide fiber), and the larger the number of raw material fibers, the thicker the resulting artificial polypeptide fiber can be.
〔原料繊維〕
 原料繊維は、人工ポリペプチドを含む繊維であり、人工ポリペプチドのみからなる繊維であってもよい。人工ポリペプチドは、人工タンパク質に由来する骨格を含んでもよい。人工タンパク質が人工構造タンパク質を含んでもよい。人工構造タンパク質が人工フィブロインを含んでもよい。人工フィブロインが人工改変クモ糸フィブロインを含んでもよい。
[Raw material fiber]
The raw material fiber is a fiber containing an artificial polypeptide, or may be a fiber consisting only of an artificial polypeptide. An engineered polypeptide may include a backbone derived from an engineered protein. Engineered proteins may include engineered structural proteins. Artificial structural proteins may include artificial fibroin. Artificial fibroin may include artificial modified spider silk fibroin.
<人工タンパク質>
 人工タンパク質としては、工業規模での製造が可能な任意のタンパク質を挙げることができ、例えば、工業用に利用できるタンパク質等を挙げることができる。工業用に利用可能とは、例えば、屋内や屋外で使用される様々な汎用材料等や、医療用途、或いは衣料用途等に用いられる様々な材料に利用し得ることをいう。工業用に利用できるタンパク質の具体例としては、構造タンパク質を挙げることができる。また、構造タンパク質の具体例としては、スパイダーシルク(クモ糸)、カイコシルク、ケラチン、コラ-ゲン、エラスチン及びレシリン、並びにこれら由来のタンパク質等を挙げることができる。使用するタンパク質としては、人工フィブロインが好ましく、人工クモ糸フィブロイン(人工改変クモ糸フィブロイン)がより好ましい。
<Artificial protein>
Examples of artificial proteins include any proteins that can be produced on an industrial scale, such as proteins that can be used for industrial purposes. The term "applicable for industrial use" means, for example, that it can be used for various general-purpose materials used indoors and outdoors, and various materials used for medical applications, clothing applications, and the like. Specific examples of proteins that can be used industrially include structural proteins. Specific examples of structural proteins include spider silk, silkworm silk, keratin, collagen, elastin, resilin, and proteins derived from these. As the protein to be used, artificial fibroin is preferable, and artificial spider silk fibroin (artificial modified spider silk fibroin) is more preferable.
 なお、人工タンパク質は、組換え(リコンビナント)タンパク質と合成タンパク質とを含む。つまり、本明細書において「人工タンパク質」とは、人為的に製造されたタンパク質を意味する。人工タンパク質は、そのドメイン配列が、天然由来のタンパク質のアミノ酸配列とは異なるタンパク質であってもよく、天然由来のタンパク質のアミノ酸配列と同一であるタンパク質であってもよい。また、「人工タンパク質」は、天然由来のタンパク質のアミノ酸配列をそのまま利用したものであってもよく、天然由来のタンパク質のアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のタンパク質の遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のタンパク質に依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。 Artificial proteins include recombinant proteins and synthetic proteins. In other words, the term "artificial protein" as used herein means an artificially produced protein. An artificial protein may be a protein whose domain sequence differs from the amino acid sequence of a naturally occurring protein, or may be a protein whose amino acid sequence is identical to that of a naturally occurring protein. In addition, the "artificial protein" may be one that uses the amino acid sequence of a naturally-occurring protein as it is, or one in which the amino acid sequence is modified based on the amino acid sequence of a naturally-occurring protein (for example, a cloned naturally-occurring protein). The amino acid sequence may be modified by modifying the gene sequence of the derived protein), or artificially designed and synthesized without relying on naturally occurring proteins (e.g., those that encode the designed amino acid sequence a desired amino acid sequence obtained by chemically synthesizing a nucleic acid).
 人工ポリペプチドは、アミノ酸残基数が50以上であればよい。当該アミノ酸残基数は、例えば、100以上、150以上、200以上、250以上、300以上、350以上、400以上、450以上又は500以上である。当該アミノ酸残基数は、例えば、5000以下、4500以下、4000以下、3500以下、3000以下、2500以下、2000以下、1500以下、1000以下である。アミノ酸残基数が少ない程、溶媒への溶解度が高まる傾向にある。 The artificial polypeptide may have 50 or more amino acid residues. The number of amino acid residues is, for example, 100 or more, 150 or more, 200 or more, 250 or more, 300 or more, 350 or more, 400 or more, 450 or more, or 500 or more. The number of amino acid residues is, for example, 5000 or less, 4500 or less, 4000 or less, 3500 or less, 3000 or less, 2500 or less, 2000 or less, 1500 or less, 1000 or less. Solubility in solvents tends to increase as the number of amino acid residues decreases.
 人工ポリペプチドは、親水性ポリペプチド骨格を有していてもよく、疎水性ポリペプチド骨格を有していてもよい。人工ポリペプチドが疎水性ポリペプチド骨格を有する場合には、人工ポリペプチドが親水性ポリペプチド骨格を有する場合に比して、原料繊維の性質を疎水性側にシフトすることができ、人工ポリペプチド繊維全体の疎水性をより幅広い範囲にわたって制御可能となる。 The artificial polypeptide may have a hydrophilic polypeptide backbone or a hydrophobic polypeptide backbone. When the artificial polypeptide has a hydrophobic polypeptide backbone, the properties of the raw material fiber can be shifted to the hydrophobic side compared to when the artificial polypeptide has a hydrophilic polypeptide backbone. It becomes possible to control the hydrophobicity of the entire fiber over a wider range.
 疎水性ポリペプチド骨格における疎水性は、後述する平均ハイドロパシー・インデックスの値を指標として推定することができる。疎水性ポリペプチドの平均ハイドロパシー・インデックスの値は、例えば、0.00以上、0.10以上、0.20以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。また、その上限値は特に制限されるものではないものの、例えば、1.00以下であってもよく、0.7以下であってもよい。 The hydrophobicity of the hydrophobic polypeptide backbone can be estimated using the average hydropathic index value described below as an index. The average hydropathic index value of the hydrophobic polypeptide is, for example, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more. , 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater. Although the upper limit is not particularly limited, it may be, for example, 1.00 or less, or 0.7 or less.
 疎水性ポリペプチドは、60℃における臭化リチウム水溶液(濃度:9M)に対する溶解性の低いものが好ましい。この溶解性は、上記疎水性ポリペプチド骨格に相当する化合物(ポリぺプチド)又は合成高分子を分解し疎水性ポリペプチド骨格のみ単離して得られたポリペプチドを用いて評価できる。60℃における臭化リチウム水溶液(濃度:9M)に対して上記ポリペプチドを溶解させた場合の最大濃度が、例えば、30質量%未満、25質量%未満、20質量%未満、15質量%未満、10質量%未満、5質量%未満、又は1質量%未満であってよい。なお、疎水性ポリペプチド骨格としては、60℃における臭化リチウム水溶液(濃度:9M)に対して全く溶解しないものであってもよい。 The hydrophobic polypeptide preferably has low solubility in an aqueous solution of lithium bromide (concentration: 9M) at 60°C. This solubility can be evaluated using a compound (polypeptide) corresponding to the hydrophobic polypeptide backbone or a polypeptide obtained by decomposing a synthetic polymer and isolating only the hydrophobic polypeptide backbone. The maximum concentration when the polypeptide is dissolved in an aqueous lithium bromide solution (concentration: 9 M) at 60° C. is, for example, less than 30% by mass, less than 25% by mass, less than 20% by mass, less than 15% by mass, It may be less than 10 wt%, less than 5 wt%, or less than 1 wt%. The hydrophobic polypeptide backbone may be one that is completely insoluble in a lithium bromide aqueous solution (concentration: 9M) at 60°C.
 疎水性ポリペプチド骨格は、水の接触角が大きなものであることが好ましい。水の接触角は、基材上に上記疎水性ポリペプチド骨格に相当する化合物(ポリぺプチド)又は合成高分子を分解し疎水性ポリペプチド骨格のみ単離して得られたポリペプチドからなる膜を形成し、当該膜を用いて評価できる。当該膜に水を滴下して、5秒間経過後の接触角が55°以上となるような膜を構成するポリペプチドが、上記疎水性ポリペプチド骨格として好ましい。上記接触角は、例えば、60°以上、65°以上、又は70°以上であってよい。 The hydrophobic polypeptide skeleton preferably has a large contact angle with water. The contact angle of water is measured by using a membrane composed of a polypeptide obtained by decomposing a compound (polypeptide) corresponding to the hydrophobic polypeptide skeleton or a synthetic polymer and isolating only the hydrophobic polypeptide skeleton on a substrate. can be formed and evaluated using the film. A polypeptide that forms a film with a contact angle of 55° or more after 5 seconds of water being dropped onto the film is preferred as the hydrophobic polypeptide backbone. The contact angle may be, for example, 60° or greater, 65° or greater, or 70° or greater.
 疎水性ポリペプチド骨格は、耐熱水性に優れたものであることが好ましい。対熱水性は、上記疎水性ポリペプチド骨格に相当する化合物(ポリぺプチド)又は合成高分子を分解し疎水性ポリペプチド骨格のみ単離して得られたポリペプチドを用いて評価できる。上記ポリペプチドと水とからなる分散液であって、上記ポリペプチドの含有量が5質量%である分散液を調製し、当該分散液を100℃で5時間加熱処理しても分解しないようなポリペプチドが、上記疎水性ポリペプチド骨格として好ましい。 The hydrophobic polypeptide backbone is preferably one with excellent hot water resistance. Hydrothermal resistance can be evaluated using a compound (polypeptide) corresponding to the hydrophobic polypeptide backbone or a polypeptide obtained by decomposing a synthetic polymer and isolating only the hydrophobic polypeptide backbone. A dispersion containing the above-mentioned polypeptide and water, wherein the content of the above-mentioned polypeptide is 5% by mass, is prepared, and the dispersion is not decomposed even if the dispersion is heat-treated at 100°C for 5 hours. Polypeptides are preferred as the hydrophobic polypeptide backbone.
 本実施形態に係るポリペプチド骨格は、例えば、構造タンパク質であってよい。構造タンパク質とは、生体の構造に関わるタンパク質、若しくは生体が作り出す構造体を構成するタンパク質、又はそれらに由来するタンパク質を意味する。構造タンパク質は、また、一定の条件下において自己凝集し、繊維、フィルム、樹脂、ゲル、ミセル、ナノパーティクル等の構造体を形成するタンパク質のことをいう。さらに、構造タンパク質は、特徴的なアミノ酸配列もしくはアミノ酸数残基からなるモチーフが繰り返し存在し、生物や材料の骨格を形成するタンパク質とも言える。構造タンパク質は、天然においては、例えば、フィブロイン、ケラチン、コラ-ゲン、エラスチン及びレシリンが挙げられる。 The polypeptide scaffold according to this embodiment may be, for example, a structural protein. A structural protein means a protein involved in the structure of a living body, a protein constituting a structure produced by a living body, or a protein derived from them. Structural proteins also refer to proteins that self-aggregate under certain conditions to form structures such as fibers, films, resins, gels, micelles, and nanoparticles. Furthermore, a structural protein can be said to be a protein in which a characteristic amino acid sequence or a motif consisting of several amino acid residues is repeatedly present and which forms the skeleton of an organism or material. Structural proteins in nature include, for example, fibroin, keratin, collagen, elastin and resilin.
 構造タンパク質は、人工構造タンパク質であってもよい。本明細書において「人工構造タンパク質」とは、人為的に製造された構造タンパク質を意味する。人工構造タンパク質は、遺伝子組換えにより微生物生産した構造タンパク質であってよく、成形性や生産性の観点からアミノ酸の配列を改良したものも含み、天然由来構造タンパク質の配列に限定されない。 The structural protein may be an artificial structural protein. As used herein, the term "artificial structural protein" means a structural protein that is artificially produced. The artificial structural protein may be a structural protein produced by microorganisms through genetic recombination, and includes those with improved amino acid sequences from the viewpoint of moldability and productivity, and is not limited to the sequence of a naturally occurring structural protein.
 人工構造タンパク質を人工的に成形する際、側鎖の小さいアミノ酸ほど水素結合しやすく、強度の高い成形体を得やすい。また、アラニン残基及びグリシン残基は、側鎖が非極性のアミノ酸であるため、ポリペプチド生成における折りたたみの過程で内側に向くように配置され、αヘリックス構造又はβシート構造を取りやすい。よって、グリシン残基、アラニン残基、セリン残基等のアミノ酸の割合が高いことが望ましい。強度により優れる成形体を得る観点から、アラニン残基含有量は、例えば、10~40%であればよく、12~40%、15~40%、18~40%、20~40%、又は、22~40%であってよい。強度により優れる成形体を得る観点から、グリシン残基含有量は、例えば、10~55%であればよく、11~55%、13~55%、15~55%、18~55%、20~55%、22~55%、又は25~55%であってよい。 When artificially forming a protein with an artificial structure, amino acids with smaller side chains are more likely to form hydrogen bonds, making it easier to obtain a strong molded product. In addition, since alanine and glycine residues are amino acids with non-polar side chains, they are arranged so as to face inward during the folding process during polypeptide production, and tend to adopt an α-helical structure or a β-sheet structure. Therefore, it is desirable that the ratio of amino acids such as glycine residues, alanine residues and serine residues is high. From the viewpoint of obtaining a molded article with better strength, the alanine residue content may be, for example, 10 to 40%, 12 to 40%, 15 to 40%, 18 to 40%, 20 to 40%, or It may be 22-40%. From the viewpoint of obtaining a molded article with better strength, the glycine residue content may be, for example, 10 to 55%, 11 to 55%, 13 to 55%, 15 to 55%, 18 to 55%, 20 to 55%. It may be 55%, 22-55%, or 25-55%.
 なお、本明細書において、「アラニン残基含有量」とは、下記式で表される値である。 As used herein, "alanine residue content" is a value represented by the following formula.
 アラニン残基含有量=(ポリペプチドに含まれるアラニン残基の数/ポリペプチドの全アミノ酸残基の数)×100(%)
 また、グリシン残基含有量、セリン残基含有量、スレオニン残基含有量、プロリン残基含有量及びチロシン残基含有量は、上記式において、アラニン残基をそれぞれグリシン残基、セリン残基、スレオニン残基、プロリン残基及びチロシン残基と読み替えたものと同義である。
Alanine residue content = (number of alanine residues contained in polypeptide/number of total amino acid residues in polypeptide) x 100 (%)
In addition, the glycine residue content, serine residue content, threonine residue content, proline residue content and tyrosine residue content are defined in the above formulas, in which alanine residues are replaced with glycine residues, serine residues, It is synonymous with what is read as threonine residue, proline residue and tyrosine residue.
 一実施形態に係る人工構造タンパク質は、反復配列を有するものであってよい。すなわち、本実施形態に係るポリペプチドは、ポリペプチド内に配列同一性が高いアミノ酸配列(反復配列単位)が複数存在するものであってよい。反復配列単位のアミノ酸残基数は6~200であることが好ましい。また、反復配列単位間の配列同一性は、例えば、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上であってよい。また、反復配列単位の疎水性度(ハイドロパシー・インデックス)は、例えば、-0.80以上、-0.70以上、-0.60以上、-0.50以上、-0.40以上、-0.30以上、-0.20以上、-0.10以上、0.00以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。なお、反復配列単位の疎水性度の上限値は特に制限されるものではないものの、例えば、1.0以下であってもよく、0.7以下であってもよい。 An artificial structural protein according to one embodiment may have a repeat sequence. That is, the polypeptide according to this embodiment may have a plurality of amino acid sequences (repetitive sequence units) with high sequence identity within the polypeptide. The number of amino acid residues in the repeat sequence unit is preferably 6-200. Also, the sequence identity between repeat sequence units may be, for example, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more. In addition, the hydrophobicity (hydropathic index) of the repeating sequence unit is, for example, -0.80 or more, -0.70 or more, -0.60 or more, -0.50 or more, -0.40 or more, - 0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 0.50 or more, 0.55 or more, 0.60 or more, 0.65 or more, or 0.70 or more. Although the upper limit of the hydrophobicity of the repeating sequence unit is not particularly limited, it may be, for example, 1.0 or less, or 0.7 or less.
 一実施形態に係る人工構造タンパク質は、(A)モチーフを含むものであってよい。本明細書において、(A)モチーフとは、アラニン残基を主とするアミノ酸配列を意味する。(A)モチーフのアミノ酸残基数は2~27であってよく、2~20、2~16、又は2~12の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であってよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。 An artificial structural protein according to one embodiment may comprise an (A) n motif. As used herein, the (A) n motif means an amino acid sequence mainly composed of alanine residues. (A) The number of amino acid residues in the n motif may be 2-27 and may be an integer from 2-20, 2-16, or 2-12. In addition, (A) the ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
 人工構造タンパク質としては、人工フィブロインが好ましい。フィブロインとしては、例えば、天然由来のフィブロインが挙げられる。天然由来のフィブロインとしては、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。 Artificial fibroin is preferable as the artificial structural protein. Fibroin includes, for example, naturally occurring fibroin. Naturally occurring fibroin includes, for example, fibroin produced by insects or arachnids.
 昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。 Examples of fibroin produced by insects include, for example, Bombyx mori, Bombyx mandarina, Antheraea yamamai, Anteraea pernyi, Eriogyna pyretorum, and Pilos cylinthia silkworm. ), silk proteins produced by silkworms such as Samia cynthia, Caligura japonica, Antheraea mylitta, and Antheraea assama, and exhaled by Vespa simillima xantoptera larvae Hornet silk protein.
 昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、AAA27840.1(アミノ酸配列))が挙げられる。 More specific examples of fibroin produced by insects include silkworm fibroin L chain (GenBank Accession No. M76430 (nucleotide sequence), AAA27840.1 (amino acid sequence)).
 クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、並びにMiSp(MiSp1及びMiSp2)等が挙げられる。 Examples of fibroin produced by spiders include, for example, spiders belonging to the genus Araneus such as Araneus spiders, Araneus spiders, Red spiders, Green spiders, and Beetle spiders; Spiders belonging to the genus Pronus, spiders belonging to the genus Pronus such as spiders belonging to the Spiders belonging to the genus Gasteracantha, spiders belonging to the genus Ordgarius such as the genus Ordgarius and the spiders belonging to the genus Ordgarius, spiders belonging to the genus Argiope such as the argiope spider, the argiope spider, and the argiope spider, and the like Spiders belonging to the genus Arachnura, spiders belonging to the genus Acusilas, such as spiders, spiders belonging to the genus Cytophora, such as spiders, spiders, and spiders Spider silk proteins produced by spiders belonging to the genus Cyclosa, such as spiders belonging to the genus Cyclosa, spiders belonging to ), spiders belonging to the genus Cyclosa, and spiders belonging to the genus Chorizopes, such as spiders and spiders, Spiders belonging to the genus Tetragnatha such as the genus Tetragnatha, spiders belonging to the genus Tetragnatha, spiders belonging to the genus Leucauge, such as the genus Leucauge, and the genus Nephila Spiders belonging to the genus Nephila, spiders belonging to the genus Menosira such as golden spiders, spiders belonging to the genus Dyschiriognatha such as the brown spider, widow spiders such as the black widow spider, the redback spider, the gray widow spider and the western widow spider Spiders belonging to the family Tetragnathidae, such as spiders belonging to the genus Latrodectus and spiders belonging to the genus Euprosthenops, produce Spider silk proteins are included. Spider silk proteins include, for example, dragline proteins such as MaSp (MaSp1 and MaSp2), ADF (ADF3 and ADF4), and MiSp (MiSp1 and MiSp2).
 クモ類が産生するフィブロインのより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major angu11ate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major anpullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、並びにminor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列))等が挙げられる。 More specific examples of fibroin produced by spiders include fibroin-3 (adf-3) [derived from Araneus diadematus] (GenBank accession number AAC47010 (amino acid sequence), U47855 (nucleotide sequence)), fibroin- 4(adf-4) [derived from Araneus diadematus] (GenBank Accession No. AAC47011 (amino acid sequence), U47856 (nucleotide sequence)), dragline silk protein spidroin 1 [derived from Nephila clavipes] (GenBank Accession No. AAC04504 (amino acid sequence), U37520 (nucleotide sequence)), major angu11ate spidroin 1 [derived from Latrodectus hesperus] (GenBank accession number ABR68856 (amino acid sequence), EF595246 (nucleotide sequence)), dragline silk protein spidroin 2 [derived from Nephila accession number 2Lan4Aclavata] (amino acid sequence), AF441245 (nucleotide sequence)), major ampullate spidroin 1 [from Euprosthenops australis] (GenBank accession number CAJ00428 (amino acid sequence), AJ973155 (nucleotide sequence)), and major ampullate spidroin 2 [Eanprosthenops] Accession number CAM32249.1 (amino acid sequence), AM490169 (nucleotide sequence)), minor amplified silk protein 1 [Nephila clavipes] (GenBank accession number AAC14589.1 (amino acid sequence)), minor amplified silk protein 2 [Nephila clavipes] (GenBank Accession No. AAC14591.1 (amino acid sequence)), and minor ampullate spidroin-like protein [Nephilengys cruentata] (GenBank Accession No. ABR37278.1 (amino acid sequence)).
 天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。 A more specific example of naturally-derived fibroin is fibroin whose sequence information is registered in NCBI GenBank. For example, among the sequence information registered in NCBI GenBank, among the sequences that include INV as a division, spidroin, ampullate, fibroin, "silk and polypeptide", or "silk and protein" are described as keywords in DEFINITION It can be confirmed by extracting the specific product character string from the sequence, CDS, and the specific character string from SOURCE to TISSUE TYPE.
 本明細書において「人工フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。人工フィブロインは、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。 As used herein, "artificial fibroin" means artificially produced fibroin (artificial fibroin). Artificial fibroin may be fibroin that differs from the amino acid sequence of naturally-occurring fibroin, or fibroin that is identical to the amino acid sequence of naturally-occurring fibroin.
 人工フィブロインは、天然由来フィブロインに準ずる構造を有する繊維状タンパク質であってよく、天然由来フィブロインが有する反復配列と同様の配列を有するフィブロインであってもよい。「フィブロインが有する反復配列と同様の配列」とは、実際に天然由来フィブロインが有する配列であってもよく、それと類似する配列であってもよい。 The artificial fibroin may be a fibrous protein having a structure similar to that of naturally occurring fibroin, or may be fibroin having a sequence similar to the repeating sequence of naturally occurring fibroin. The “sequence similar to the repeat sequence possessed by fibroin” may be a sequence actually possessed by naturally occurring fibroin, or may be a sequence similar thereto.
 「人工フィブロイン」は、本開示で特定されるアミノ酸配列を有するものであれば、天然由来のフィブロインに依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的にアミノ酸配列を設計したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。なお、人工フィブロインのアミノ酸配列を改変したものも、そのアミノ酸配列が天然由来のフィブロインのアミノ酸配列とは異なるものであれば、人工フィブロインに含まれる。人工フィブロインとしては、例えば、人工絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)、及び人工クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)などが挙げられる。本開示に係る合成高分子を成形材料として用いる場合、クモ糸フィブロインは比較的にフィブリル化が容易で繊維形成能が高いことから、人工フィブロインは、好ましくは人工クモ糸フィブロインを含み、より好ましくは人工クモ糸フィブロインからなる。 "Artificial fibroin" refers to those obtained by modifying the amino acid sequence of naturally-occurring fibroin (e.g., modifying the gene sequence of cloned naturally-occurring fibroin), as long as it has the amino acid sequence specified in the present disclosure. The amino acid sequence may be modified by the method), or the amino acid sequence may be artificially designed without relying on naturally occurring fibroin (for example, by chemically synthesizing a nucleic acid encoding the designed amino acid sequence). having a desired amino acid sequence). An artificial fibroin with a modified amino acid sequence is also included in the artificial fibroin as long as the amino acid sequence differs from the amino acid sequence of the naturally-derived fibroin. Examples of artificial fibroin include artificial silk fibroin (modified amino acid sequence of silk protein produced by silkworms), and artificial spider silk fibroin (modified amino acid sequence of spider silk protein produced by spiders). ) and the like. When the synthetic polymer according to the present disclosure is used as a molding material, spider silk fibroin is relatively easy to fibrillate and has high fiber-forming ability, so the artificial fibroin preferably contains artificial spider silk fibroin, more preferably Consists of artificial spider silk fibroin.
 本実施形態に係る人工フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する人工フィブロイン(第1の人工フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第2の人工フィブロイン)、(A)モチーフの含有量が低減されたドメイン配列を有する人工フィブロイン(第3の人工フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された人工フィブロイン(第4の人工フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する人工フィブロイン(第5の人工フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する人工フィブロイン(第6の人工フィブロイン)が挙げられる。 As a specific example of the artificial fibroin according to the present embodiment, an artificial fibroin (first artificial fibroin) derived from a dragline silk protein produced in the major pituitary gland of spiders, a glycine residue content of artificial fibroin with reduced domain sequence (second artificial fibroin), (A) artificial fibroin with domain sequence with reduced n- motif content (third artificial fibroin), content of glycine residues, and (A) an artificial fibroin with a reduced n- motif content (fourth artificial fibroin), an artificial fibroin having a domain sequence containing a region with a locally large hydrophobicity index (fifth artificial fibroin), and glutamine Artificial fibroins with domain sequences with reduced content of residues (sixth artificial fibroin) are included.
 第1の人工フィブロインとしては、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質が挙げられる。第1の人工フィブロインにおいて、(A)モチーフのアミノ酸残基数は、3~20の整数が好ましく、4~20の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。第1の人工フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。第1の人工フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。 A first artificial fibroin includes a protein comprising a domain sequence represented by Formula 1: [(A) n motif-REP] m . In the first artificial fibroin, the number of amino acid residues in the (A) n motif is preferably an integer of 3 to 20, more preferably an integer of 4 to 20, still more preferably an integer of 8 to 20, and an integer of 10 to 20. is even more preferred, integers from 4 to 16 are even more preferred, integers from 8 to 16 are particularly preferred, and integers from 10 to 16 are most preferred. In the first artificial fibroin, the number of amino acid residues constituting REP in Formula 1 is preferably 10 to 200 residues, more preferably 10 to 150 residues, and 20 to 100 residues. and even more preferably 20 to 75 residues. In the first artificial fibroin, the total number of glycine residues, serine residues and alanine residues contained in the amino acid sequence represented by Formula 1: [(A) n motif-REP] m is amino acid residue It is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more of the total number.
 第1の人工フィブロインは、式1:[(A)モチーフ-REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。 The first artificial fibroin comprises an amino acid sequence unit represented by Formula 1: [(A) n motif-REP] m and has an amino acid sequence whose C-terminal sequence is shown in any one of SEQ ID NOS: 1 to 3, or The polypeptide may be an amino acid sequence having 90% or more homology with the amino acid sequence shown in any one of SEQ ID NOs: 1-3.
 配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。 The amino acid sequence shown in SEQ ID NO: 1 is identical to the amino acid sequence consisting of the C-terminal 50 amino acids of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 2 has the sequence It is identical to the amino acid sequence shown in No. 1 with 20 residues removed from the C-terminus, and the amino acid sequence shown in SEQ ID No. 3 has 29 residues removed from the C-terminus of the amino acid sequence shown in SEQ ID No. 1. Identical to the amino acid sequence.
 第1の人工フィブロインのより具体的な例として、(1-i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1-ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。 As a more specific example of the first artificial fibroin, (1-i) the amino acid sequence represented by SEQ ID NO: 4 (recombinant spider silk protein ADF3 KaiLargeNRSH1), or (1-ii) the amino acid sequence represented by SEQ ID NO: 4 and 90 Artificial fibroin comprising amino acid sequences having greater than % sequence identity can be mentioned. Preferably, the sequence identity is 95% or greater.
 配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。 The amino acid sequence shown by SEQ ID NO: 4 is the amino acid sequence (SEQ ID NO: 5) consisting of an initiation codon, a His10 tag, and an HRV3C protease (Human rhinovirus 3C protease) recognition site added to the N-terminus of ADF3. The 13th repeat region was increased to approximately double and mutated so that translation stops at the 1154th amino acid residue. The C-terminal amino acid sequence of the amino acid sequence shown by SEQ ID NO:4 is identical to the amino acid sequence shown by SEQ ID NO:3.
 (1-i)の人工フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。 The (1-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO:4.
 第2の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の人工フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。 The second artificial fibroin has an amino acid sequence in which the domain sequence has a reduced content of glycine residues compared to the naturally-derived fibroin. The second artificial fibroin can be said to have an amino acid sequence corresponding to at least one or more glycine residues in REP being replaced with another amino acid residue, as compared with the naturally occurring fibroin. .
 第2の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。 The second artificial fibroin has a domain sequence of GGX and GPGXX (where G is a glycine residue, P is a proline residue, and X is an amino acid residue other than glycine) in REP compared to the naturally-derived fibroin. In at least one motif sequence selected from ), it has an amino acid sequence corresponding to at least one or more glycine residues in the motif sequence being replaced with another amino acid residue may
 第2の人工フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。 In the second artificial fibroin, the percentage of the motif sequence in which the above-mentioned glycine residue is replaced with another amino acid residue may be 10% or more of the entire motif sequence.
 第2の人工フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。 The second artificial fibroin comprises a domain sequence represented by Formula 1: [(A) n motif-REP] m , and from the domain sequence to the (A) n motif located on the most C-terminal side to the domain sequence Let z be the total number of amino acid residues in the amino acid sequence consisting of XGX (where X represents an amino acid residue other than glycine) contained in all REPs in the sequence excluding the sequence up to the C-terminus of the domain sequence When w is the total number of amino acid residues in the sequence excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence, z/w is 30% or more, It may have an amino acid sequence that is 40% or more, 50% or more, or 50.9% or more. (A) The number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. 100% (meaning composed only of alanine residues) is even more preferred.
 第2の人工フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の人工フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。 The second artificial fibroin preferably has an increased content of the amino acid sequence consisting of XGX by substituting one glycine residue in the GGX motif with another amino acid residue. 6. In the second artificial fibroin, the content of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, even more preferably 10% or less. % or less, even more preferably 4% or less, and particularly preferably 2% or less. The content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method for calculating the content ratio (z/w) of the amino acid sequence consisting of XGX below.
 z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むフィブロイン(人工フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図3に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。 A method for calculating z/w will be described in more detail. First, in a fibroin (artificial fibroin or naturally occurring fibroin) containing a domain sequence represented by Formula 1: [(A) n motif-REP] m , the (A) n located on the most C-terminal side from the domain sequence An amino acid sequence consisting of XGX is extracted from all REPs contained in the sequence excluding the sequence from the motif to the C-terminus of the domain sequence. The total number of amino acid residues constituting XGX is z. For example, when 50 amino acid sequences consisting of XGX are extracted (no duplication), z is 50×3=150. In addition, for example, when there is an X (central X) contained in two XGX, as in the case of an amino acid sequence consisting of XGXGX, the calculation is performed by subtracting the overlap (in the case of XGXGX, 5 amino acid residues be). w is the total number of amino acid residues contained in the domain sequence, excluding the sequence from the (A) n motif positioned most on the C-terminal side to the C-terminus of the domain sequence. For example, for the domain sequence shown in Figure 3, w is 4 + 50 + 4 + 100 + 4 + 10 + 4 + 20 + 4 + 30 = 230 (excluding the most C-terminal (A) n motif). Then z/w (%) can be calculated by dividing z by w.
 ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図3に示す。図3の横軸はz/w(%)を示し、縦軸は頻度を示す。図3から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。 Here, z/w in naturally occurring fibroin will be explained. First, as described above, fibroin whose amino acid sequence information is registered in NCBI GenBank was confirmed by the method exemplified, and 663 types of fibroin (among them, 415 types of arachnid-derived fibroin) were extracted. Naturally derived fibroin containing a domain sequence represented by the formula 1: [(A) n motif-REP] m and having an amino acid sequence consisting of GGX in fibroin content of 6% or less among all the extracted fibroin z/w was calculated from the amino acid sequence of fibroin in the above-described calculation method. The results are shown in FIG. The horizontal axis of FIG. 3 indicates z/w (%), and the vertical axis indicates frequency. As is clear from FIG. 3, the z/w for naturally occurring fibroin is all less than 50.9% (50.86% being the highest).
 第2の人工フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。 In the second artificial fibroin, z/w is preferably 50.9% or more, more preferably 56.1% or more, even more preferably 58.7% or more, and 70% or more. and even more preferably 80% or more. Although the upper limit of z/w is not particularly limited, it may be, for example, 95% or less.
 第2の人工フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。 The second artificial fibroin can be obtained, for example, by substituting at least part of the nucleotide sequence encoding the glycine residue from the cloned naturally-derived fibroin gene sequence so as to encode another amino acid residue. Obtainable. At this time, one glycine residue in the GGX motif and the GPGXX motif may be selected as the glycine residue to be modified, or may be substituted so that z/w is 50.9% or more. Alternatively, for example, it can be obtained by designing an amino acid sequence that satisfies the above aspect from the amino acid sequence of naturally occurring fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence. In any case, in addition to the alteration corresponding to replacing the glycine residue in REP with another amino acid residue from the amino acid sequence of naturally occurring fibroin, one or more amino acid residues are further substituted or deleted. , insertions and/or additions may be made to the amino acid sequence.
 上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、フェニルアラニン(F)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。 The other amino acid residue mentioned above is not particularly limited as long as it is an amino acid residue other than glycine residue, but valine (V) residue, leucine (L) residue, isoleucine (I) residue, methionine ( Hydrophobic amino acid residues such as M) residues, proline (P) residues, phenylalanine (F) residues and tryptophan (W) residues, glutamine (Q) residues, asparagine (N) residues, serine (S ) residues, lysine (K) residues and glutamic acid (E) residues are preferred, and hydrophilic amino acid residues such as valine (V) residues, leucine (L) residues, isoleucine (I) residues, phenylalanine ( F) residues and glutamine (Q) residues are more preferred, and glutamine (Q) residues are even more preferred.
 第2の人工フィブロインのより具体的な例として、(2-i)配列番号6(Met-PRT380)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(2-ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 More specific examples of the second artificial fibroin include (2-i) SEQ ID NO: 6 (Met-PRT380), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met -PRT799), or (2-ii) SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. Mention may be made of artificial fibroin.
 (2-i)の人工フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端に所定のヒンジ配列とHisタグ配列が付加されたものである。 The artificial fibroin of (2-i) will be explained. The amino acid sequence shown by SEQ ID NO: 6 is obtained by replacing all GGX in REP of the amino acid sequence shown by SEQ ID NO: 10 (Met-PRT313) corresponding to naturally occurring fibroin with GQX. The amino acid sequence shown by SEQ ID NO: 7 is obtained by deleting every two (A) n motifs from the amino acid sequence shown by SEQ ID NO: 6 from the N-terminal side to the C-terminal side, and furthermore, in front of the C-terminal sequence. [(A) n motif-REP] is inserted into the . The amino acid sequence shown in SEQ ID NO: 8 has two alanine residues inserted on the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 7, and a partial glutamine (Q) residue. It is obtained by substituting serine (S) residues and deleting some amino acids on the C-terminal side so that the molecular weight is almost the same as that of SEQ ID NO:7. The amino acid sequence shown by SEQ ID NO: 9 is a region of 20 domain sequences present in the amino acid sequence shown by SEQ ID NO: 7 (however, several amino acid residues on the C-terminal side of the region are substituted). A predetermined hinge sequence and a His tag sequence are added to the C-terminus of a sequence in which is repeated four times.
 配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。 The z/w value in the amino acid sequence represented by SEQ ID NO: 10 (corresponding to naturally occurring fibroin) is 46.8%. The z/w values in the amino acid sequence represented by SEQ ID NO: 6, the amino acid sequence represented by SEQ ID NO: 7, the amino acid sequence represented by SEQ ID NO: 8, and the amino acid sequence represented by SEQ ID NO: 9 are each 58.7%, 70.1%, 66.1% and 70.0%. In addition, the value of x/y in the jagged ratio (described later) of 1:1.8 to 11.3 of the amino acid sequences shown in SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 is 15.0%, 15.0%, 93.4%, 92.7% and 89.8% respectively.
 (2-i)の人工フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。 The (2-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
 (2-ii)の人工フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The artificial fibroin (2-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9. The artificial fibroin of (2-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (2-ii)の人工フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。 (2-ii) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and XGX contained in REP ( where X represents an amino acid residue other than glycine). is preferably 50.9% or more.
 第2の人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、人工フィブロインの単離、固定化、検出及び可視化等が可能となる。 The second artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This makes it possible to isolate, immobilize, detect and visualize artificial fibroin.
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による人工フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。 Examples of tag sequences include affinity tags that utilize specific affinity (binding, affinity) with other molecules. A specific example of the affinity tag is a histidine tag (His tag). A His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and because it has the property of specifically binding to metal ions such as nickel, artificial fibroin is isolated by metal chelating chromatography. can be used for A specific example of the tag sequence is the amino acid sequence represented by SEQ ID NO: 11 (an amino acid sequence containing a His tag sequence and a hinge sequence).
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。 In addition, tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can be used.
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に人工フィブロインを精製することができる。 Furthermore, it is also possible to use "epitope tags" that utilize antigen-antibody reactions. By adding an antigenic peptide (epitope) as a tag sequence, an antibody against the epitope can be bound. Examples of epitope tags include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag, and the like. Artificial fibroin can be easily purified with high specificity by using an epitope tag.
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した人工フィブロインを回収することもできる。 Furthermore, a tag sequence that can be cleaved by a specific protease can also be used. Artificial fibroin from which the tag sequence has been cut off can also be recovered by treating the protein adsorbed via the tag sequence with protease.
 タグ配列を含む人工フィブロインのより具体的な例として、(2-iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2-iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 As more specific examples of artificial fibroin containing a tag sequence, (2-iii) the amino acid represented by SEQ ID NO: 12 (PRT380), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799) or (2-iv) an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. .
 配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。 The amino acid sequences shown in SEQ ID NO: 16 (PRT313), SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 are SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively. The amino acid sequence shown in SEQ ID NO: 11 (including His tag sequence and hinge sequence) was added to the N-terminus of the amino acid sequence shown.
 (2-iii)の人工フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。 The (2-iii) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
 (2-iv)の人工フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The (2-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. The artificial fibroin of (2-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (2-iv)の人工フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。 (2-iv) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and is contained in REP ( where X represents an amino acid residue other than glycine). is preferably 50.9% or more.
 第2の人工フィブロインは、人工タンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。 The second artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host. The sequence of the secretory signal can be appropriately set according to the type of host.
 第3の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。第3の人工フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。 A third artificial fibroin has an amino acid sequence in which the domain sequence has a reduced content of (A) n motifs compared to the naturally-occurring fibroin. The domain sequence of the third artificial fibroin can be said to have an amino acid sequence corresponding to deletion of at least one or a plurality of (A) n motifs compared to the naturally-occurring fibroin.
 第3の人工フィブロインは、天然由来のフィブロインから(A)モチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。 The third artificial fibroin may have an amino acid sequence corresponding to 10-40% deletion of the (A) n motif from the naturally-occurring fibroin.
 第3の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。 The third artificial fibroin has a domain sequence at least one (A) n motif for every 1-3 (A) n motifs from the N-terminal side to the C-terminal side compared to the naturally occurring fibroin. may have an amino acid sequence corresponding to the deletion of
 第3の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。 The third artificial fibroin has at least two consecutive (A) n motif deletions from the N-terminal side to the C-terminal side and one (A ) may have an amino acid sequence corresponding to deletion of n motifs repeated in this order.
 第3の人工フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。 The third artificial fibroin may have an amino acid sequence corresponding to deletion of at least every two (A) n motifs from the N-terminal side to the C-terminal side of the domain sequence. .
 第3の人工フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。 The third artificial fibroin comprises a domain sequence represented by the formula 1: [(A) n motif-REP] m , with two adjacent [(A) n motifs from the N-terminal side to the C-terminal side. -REP] unit sequentially compares the number of amino acid residues of REP, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the ratio of the number of amino acid residues of the other REP is 1.8 to 11. When the maximum value of the total sum of the numbers of amino acid residues of two adjacent [(A) n motif-REP] units equal to 3 is x, and the total number of amino acid residues of the domain sequence is y Furthermore, it may have an amino acid sequence in which x/y is 20% or more, 30% or more, 40% or more, or 50% or more. (A) The number of alanine residues relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. 100% (meaning composed only of alanine residues) is even more preferred.
 x/yの算出方法を図2を参照しながら更に詳細に説明する。図2には、人工フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ-第1のREP(50アミノ酸残基)-(A)モチーフ-第2のREP(100アミノ酸残基)-(A)モチーフ-第3のREP(10アミノ酸残基)-(A)モチーフ-第4のREP(20アミノ酸残基)-(A)モチーフ-第5のREP(30アミノ酸残基)-(A)モチーフという配列を有する。 A method for calculating x/y will be described in more detail with reference to FIG. FIG. 2 shows the domain sequence of the artificial fibroin with the N-terminal and C-terminal sequences removed. The domain sequence is, from the N-terminal side (left side), (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has a sequence called n motif.
 隣合う2つの[(A)モチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ-REP]ユニットが存在してもよい。図2には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。 Two adjacent [(A) n- motif-REP] units are selected sequentially from the N-terminal side to the C-terminal side so that there is no overlap. At this time, unselected [(A) n motif-REP] units may be present. In FIG. 2, pattern 1 (comparison of the first REP and the second REP, and comparison of the third REP and the fourth REP), pattern 2 (comparison of the first REP and the second REP, and comparison of the fourth REP and the fifth REP), pattern 3 (comparison of the second REP and the third REP, and comparison of the fourth REP and the fifth REP), pattern 4 (comparison of the first REP and A second REP comparison) was shown. Note that there are other selection methods.
 次に各パターンについて、選択した隣合う2つの[(A)モチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。 Next, for each pattern, the number of amino acid residues of each REP in two adjacent [(A) n motif-REP] units selected is compared. Comparison is carried out by determining the ratio of the number of amino acid residues to the number of amino acid residues of the other. For example, when comparing the first REP (50 amino acid residues) and the second REP (100 amino acid residues), when the first REP with fewer amino acid residues is set to 1, the second REP is The ratio of amino acid residue numbers is 100/50=2. Similarly, when comparing the fourth REP (20 amino acid residues) and the fifth REP (30 amino acid residues), when the fourth REP with fewer amino acid residues is set to 1, the fifth REP is 30/20=1.5.
 図2中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)モチーフ-REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ-REP]ユニットの組は破線で示した。 In FIG. 2, a set of [(A) n motif-REP] units having a ratio of 1.8 to 11.3 for the number of amino acid residues of the other is set to 1 for the one with the smaller number of amino acid residues. It is indicated by a solid line. This ratio is referred to herein as the serration ratio. A set of [(A) n motif-REP] units in which the other amino acid residue number ratio is less than 1.8 or greater than 11.3 when the number of amino acid residues is less than 1 is indicated by a dashed line. Indicated.
 各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図2に示した例では、パターン1の合計値が最大である。 In each pattern, the numbers of all amino acid residues of two adjacent [(A) n motif-REP] units indicated by solid lines are summed up (not only REP but also the number of amino acid residues of (A) n motifs). be.). Then, the added total values are compared, and the total value (maximum total value) of the pattern with the maximum total value is defined as x. In the example shown in FIG. 2, the total value of pattern 1 is the largest.
 次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。 Next, x/y (%) can be calculated by dividing x by the total number of amino acid residues y in the domain sequence.
 第3の人工フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。 In the third artificial fibroin, x/y is preferably 50% or more, more preferably 60% or more, even more preferably 65% or more, and even more preferably 70% or more. Preferably, 75% or more is even more preferable, and 80% or more is particularly preferable. The upper limit of x/y is not particularly limited, and may be, for example, 100% or less. When the serration ratio is 1:1.9 to 11.3, x/y is preferably 89.6% or more, and when the serration ratio is 1:1.8 to 3.4, x /y is preferably 77.1% or more, and when the serration ratio is 1:1.9 to 8.4, x/y is preferably 75.9% or more, and the serration ratio is 1 : 1.9 to 4.1, x/y is preferably 64.2% or more.
 第3の人工フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される人工フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。 When the third artificial fibroin is an artificial fibroin in which at least 7 of (A) n motifs present in the domain sequence are composed only of alanine residues, x/y is 46.4% or more. is preferably 50% or more, more preferably 55% or more, even more preferably 60% or more, even more preferably 70% or more, and 80% or more It is particularly preferred to have The upper limit of x/y is not particularly limited as long as it is 100% or less.
 ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ-REP]で表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9~4.1の場合の結果を図4に示す。 Here, x/y in naturally occurring fibroin will be explained. First, as described above, fibroin whose amino acid sequence information is registered in NCBI GenBank was confirmed by the method exemplified, and 663 types of fibroin (among them, 415 types of arachnid-derived fibroin) were extracted. Of all the extracted fibroin, from the amino acid sequence of naturally occurring fibroin composed of the domain sequence represented by the formula 1: [(A) n motif-REP] m , x/y was calculated. FIG. 4 shows the results when the serration ratio is 1:1.9 to 4.1.
 図4の横軸はx/y(%)を示し、縦軸は頻度を示す。図4から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。 The horizontal axis in FIG. 4 indicates x/y (%), and the vertical axis indicates frequency. As is clear from FIG. 4, the x/y ratios for naturally occurring fibroin are all less than 64.2% (64.14% being the highest).
 第3の人工フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。 For the third artificial fibroin, for example, one or more sequences encoding (A) n motifs are deleted from the cloned natural fibroin gene sequence such that x/y is 64.2% or more. can be obtained by Alternatively, for example, an amino acid sequence corresponding to deletion of one or more (A) n motifs is designed such that x/y is 64.2% or more from the amino acid sequence of naturally occurring fibroin. It can also be obtained by chemically synthesizing a nucleic acid encoding the amino acid sequence described above. In any case, in addition to the modification corresponding to the deletion of the (A) n motif from the amino acid sequence of naturally occurring fibroin, one or more amino acid residues are substituted, deleted, inserted and/or added. Alterations in the amino acid sequence corresponding to what has been done may be made.
 第3の人工フィブロインのより具体的な例として、(3-i)配列番号17(Met-PRT399)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(3-ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 More specific examples of the third artificial fibroin include (3-i) SEQ ID NO: 17 (Met-PRT399), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met -PRT799), or (3-ii) SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. Mention may be made of artificial fibroin.
 (3-i)の人工フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ-REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の人工フィブロインで説明したとおりである。 The artificial fibroin of (3-i) will be explained. The amino acid sequence represented by SEQ ID NO: 17 is every two (A) n The motif was deleted and one [(A) n motif-REP] was inserted in front of the C-terminal sequence. The amino acid sequence shown by SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 is as described for the second artificial fibroin.
 配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。 The value of x/y at the jagged ratio of 1:1.8 to 11.3 of the amino acid sequence represented by SEQ ID NO: 10 (corresponding to naturally occurring fibroin) is 15.0%. The x/y values of the amino acid sequence shown by SEQ ID NO: 17 and the amino acid sequence shown by SEQ ID NO: 7 are both 93.4%. The value of x/y in the amino acid sequence shown by SEQ ID NO: 8 is 92.7%. The value of x/y in the amino acid sequence shown by SEQ ID NO: 9 is 89.8%. The z/w values in the amino acid sequences represented by SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 are 46.8%, 56.2%, 70.1%, 66.0%, respectively. 1% and 70.0%.
 (3-i)の人工フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。 The (3-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
 (3-ii)の人工フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The artificial fibroin (3-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9. The artificial fibroin of (3-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (3-ii)の人工フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。 The artificial fibroin of (3-ii) has a sequence identity of 90% or more with the amino acid sequence shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and from the N-terminal side to the C-terminal side , the numbers of amino acid residues of REP of two adjacent [(A) n motif-REP] units are sequentially compared, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the number of amino acid residues of the other Amino acid residues of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3 (Giza ratio is 1:1.8 to 11.3) It is preferable that x/y is 64.2% or more, where x is the maximum sum of the cardinal numbers and y is the total number of amino acid residues in the domain sequence.
 第3の人工フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。 The third artificial fibroin may contain the tag sequence described above at either or both of the N-terminus and C-terminus.
 タグ配列を含む人工フィブロインのより具体的な例として、(3-iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3-iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 As more specific examples of artificial fibroin containing a tag sequence, (3-iii) the amino acid represented by SEQ ID NO: 18 (PRT399), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799) sequence, or (3-iv) an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. .
 配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。 The amino acid sequences represented by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 have SEQ ID NO: 11 at the N-terminus of the amino acid sequences represented by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively. The amino acid sequence shown in (including His tag sequence and hinge sequence) is added.
 (3-iii)の人工フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。 The artificial fibroin of (3-iii) may consist of the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
 (3-iv)の人工フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The (3-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. The artificial fibroin of (3-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (3-iv)の人工フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)モチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。 (3-iv) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and , the numbers of amino acid residues of REP of two adjacent [(A) n motif-REP] units are sequentially compared, and when the number of amino acid residues of REP with a small number of amino acid residues is set to 1, the number of amino acid residues of the other Let x be the maximum value of the total sum of the amino acid residue numbers of two adjacent [(A) n motif-REP] units with a ratio of the number of amino acid residues of REP of 1.8 to 11.3. , x/y is preferably 64.2% or more, where y is the total number of amino acid residues in the domain sequence.
 第3の人工フィブロインは、人工タンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。 The third artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host. The sequence of the secretory signal can be appropriately set according to the type of host.
 第4の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の人工フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の人工フィブロインは、上述した第2の人工フィブロインと、第3の人工フィブロインの特徴を併せ持つ人工フィブロインである。具体的な態様等は、第2の人工フィブロイン、及び第3の人工フィブロインで説明したとおりである。 The fourth artificial fibroin has an amino acid sequence whose domain sequence has a reduced content of (A) n motifs and a reduced content of glycine residues compared to naturally occurring fibroin. have. The domain sequence of the fourth artificial fibroin has at least one or more (A) n motifs deleted, and at least one or more glycine residues in REP is deleted compared to the naturally-derived fibroin. It can be said to have an amino acid sequence corresponding to substitution with another amino acid residue. That is, the fourth artificial fibroin is an artificial fibroin having both the features of the second artificial fibroin and the third artificial fibroin. Specific aspects and the like are as described in the second artificial fibroin and the third artificial fibroin.
 第4の人工フィブロインのより具体的な例として、(4-i)配列番号7(Met-PRT410)、配列番号8(Met-PRT525)、配列番号9(Met-PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4-ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む人工フィブロインの具体的な態様は上述のとおりである。 As more specific examples of the fourth artificial fibroin, (4-i) SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525), SEQ ID NO: 9 (Met-PRT799), SEQ ID NO: 13 (PRT410 ), the amino acid sequence shown in SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799), or (4-ii) SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 An artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in . Specific embodiments of the artificial fibroin comprising the amino acid sequence shown in SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 are as described above.
 第5の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。 The fifth artificial fibroin has a domain sequence in which one or more amino acid residues in REP are replaced with amino acid residues with a larger hydrophobicity index than in naturally occurring fibroin, and/or REP It may have an amino acid sequence that includes regions of high local hydrophobicity index corresponding to the insertion of one or more amino acid residues with high hydrophobicity index therein.
 局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。 A region with a locally high hydrophobicity index is preferably composed of 2 to 4 consecutive amino acid residues.
 上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。 The amino acid residue having a large hydrophobicity index is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). A residue is more preferred.
 第5の人工フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。 The fifth artificial fibroin has one or more amino acid residues in REP substituted with amino acid residues having a larger hydrophobicity index than the naturally occurring fibroin, and/or one or more In addition to the modification corresponding to the insertion of an amino acid residue with a large hydrophobicity index, one or more amino acid residues are substituted, deleted, inserted and / or added as compared to naturally occurring fibroin There may be alterations in the amino acid sequence corresponding to what has been done.
 第5の人工フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。 For the fifth artificial fibroin, for example, one or more hydrophilic amino acid residues (eg, amino acid residues with a negative hydrophobicity index) in REP are replaced with hydrophobic amino acid residues from the cloned natural fibroin gene sequence. by substituting a group (for example, an amino acid residue with a positive hydrophobicity index) and/or by inserting one or more hydrophobic amino acid residues into REP. Further, for example, substitution of one or more hydrophilic amino acid residues in REP with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and/or one or more hydrophobic amino acid residues in REP It can also be obtained by designing an amino acid sequence corresponding to the insertion of and chemically synthesizing a nucleic acid encoding the designed amino acid sequence. In any case, substitution of one or more hydrophilic amino acid residues in REP with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and/or one or more hydrophobic amino acids in REP In addition to modifications corresponding to residue insertions, amino acid sequence modifications corresponding to substitutions, deletions, insertions and/or additions of one or more amino acid residues may also be made.
 第5の人工フィブロインは、式1:[(A)モチーフ-REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。 The fifth artificial fibroin comprises a domain sequence represented by Formula 1: [(A) n motif-REP] m , and from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence Let p be the total number of amino acid residues contained in a region where the average value of the hydrophobic index of four consecutive amino acid residues is 2.6 or more in all REPs contained in the sequences excluding the sequences from the domain sequence, p/q is 6, where q is the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence. It may have an amino acid sequence that is greater than or equal to .2%.
 アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。 Regarding the hydrophobicity index of amino acid residues, a known index (Hydropathy index: Kyte J, & Doolittle R (1982) "A simple method for displaying the hydropathic character of a protein", J. Mol. Biol., 157, pp. 105-132). Specifically, the hydropathic index (hereinafter also referred to as “HI”) of each amino acid is as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ-REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。 A method for calculating p/q will be described in more detail. For the calculation, the sequence from the domain sequence represented by the formula 1: [(A) n motif-REP] m excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence (hereinafter referred to as “sequence A”) is used. First, in all REPs contained in sequence A, the average value of the hydrophobic index of 4 consecutive amino acid residues is calculated. The average value of the hydrophobicity index is obtained by dividing the sum of HI of each amino acid residue contained in four consecutive amino acid residues by 4 (the number of amino acid residues). The average value of the hydrophobicity index is obtained for all four consecutive amino acid residues (each amino acid residue is used to calculate the average value 1 to 4 times). Next, a region in which the average value of the hydrophobic index of 4 consecutive amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to multiple "4 consecutive amino acid residues with an average hydrophobicity index of 2.6 or more", it is included as one amino acid residue in the region. become. The total number of amino acid residues contained in the region is p. Also, the total number of amino acid residues contained in sequence A is q.
 例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図5に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図5に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図5の場合28/170=16.47%となる。 For example, if 20 “continuous 4 amino acid residues with an average hydrophobic index of 2.6 or more” are extracted (no overlap), the average hydrophobic index of 4 consecutive amino acid residues is 2 A region that is 0.6 or greater will contain 20 consecutive 4-amino acid residues (no overlap), and p is 20×4=80. Further, for example, when two "consecutive 4 amino acid residues having an average hydrophobicity index of 2.6 or more" exist overlapping by one amino acid residue, the hydrophobic index of the consecutive 4 amino acid residues A region with an average of 2.6 or more contains 7 amino acid residues (p=2×4−1=7, where “−1” is duplicate subtraction). For example, in the case of the domain sequence shown in FIG. 5, there are seven non-overlapping “continuous 4-amino acid residues with an average hydrophobicity index of 2.6 or more”, so p is 7×4= 28. For example, in the case of the domain sequence shown in FIG. 5, q is 4+50+4+40+4+10+4+20+4+30=170 (not including the (A) n motif present at the end of the C-terminal side). Then p/q (%) can be calculated by dividing p by q. In the case of FIG. 5, 28/170=16.47%.
 第5の人工フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。 In the fifth artificial fibroin, p/q is preferably 6.2% or more, more preferably 7% or more, even more preferably 10% or more, and 20% or more. Even more preferably, it is still more preferably 30% or more. Although the upper limit of p/q is not particularly limited, it may be, for example, 45% or less.
 第5の人工フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。 The fifth artificial fibroin is, for example, the amino acid sequence of the cloned naturally-occurring fibroin so as to satisfy the above p/q conditions, and one or more hydrophilic amino acid residues in REP (for example, a hydrophobicity index). negative amino acid residue) with a hydrophobic amino acid residue (e.g., an amino acid residue with a positive hydrophobicity index), and/or inserting one or more hydrophobic amino acid residues in REP can be obtained by locally modifying an amino acid sequence containing a region with a large hydrophobicity index. Alternatively, for example, it can be obtained by designing an amino acid sequence that satisfies the above p/q conditions from the amino acid sequence of naturally occurring fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence. In any case, one or more amino acid residues in REP have been replaced with amino acid residues having a higher hydrophobicity index compared to naturally-occurring fibroin, and/or one or more In addition to the modification corresponding to the insertion of an amino acid residue with a large hydrophobicity index, further modification corresponding to the substitution, deletion, insertion and/or addition of one or more amino acid residues may be performed. .
 疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。 Amino acid residues with a large hydrophobicity index are not particularly limited, but areoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). ) are preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
 第5の人工フィブロインのより具体的な例として、(5-i)配列番号19(Met-PRT720)、配列番号20(Met-PRT665)若しくは配列番号21(Met-PRT666)で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 As more specific examples of the fifth artificial fibroin, (5-i) an amino acid sequence represented by SEQ ID NO: 19 (Met-PRT720), SEQ ID NO: 20 (Met-PRT665), or SEQ ID NO: 21 (Met-PRT666); or (5-ii) artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
 (5-i)の人工フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met-PRT410)で示されるアミノ酸配列に対し、C末端側の端末のドメイン配列を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met-PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。 (5-i) artificial fibroin will be explained. The amino acid sequence shown by SEQ ID NO: 19 consists of 3 amino acid residues every other REP except for the terminal domain sequence on the C-terminal side with respect to the amino acid sequence shown by SEQ ID NO: 7 (Met-PRT410). The amino acid sequence (VLI) was inserted at two sites, some glutamine (Q) residues were substituted with serine (S) residues, and some amino acids on the C-terminal side were deleted. The amino acid sequence represented by SEQ ID NO: 20 is the amino acid sequence represented by SEQ ID NO: 8 (Met-PRT525) in which an amino acid sequence (VLI) consisting of three amino acid residues is inserted at every other REP. be. The amino acid sequence shown by SEQ ID NO: 21 is obtained by inserting two amino acid sequences (VLI) each consisting of 3 amino acid residues every other REP into the amino acid sequence shown by SEQ ID NO: 8.
 (5-i)の人工フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。 The (5-i) artificial fibroin may consist of the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
 (5-ii)の人工フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The artificial fibroin (5-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21. The artificial fibroin of (5-ii) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (5-ii)の人工フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。 The artificial fibroin of (5-ii) has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21, and is located on the most C-terminal side (A) n Amino acids contained in a region where the average hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs contained in the domain sequence excluding the sequence from the motif to the C-terminus of the domain sequence Let p be the total number of residues, and q be the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence. , p/q is preferably 6.2% or more.
 第5の人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。 The fifth artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus.
 タグ配列を含む人工フィブロインのより具体的な例として、(5-iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5-iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、人工フィブロインを挙げることができる。 More specific examples of artificial fibroin containing a tag sequence include (5-iii) the amino acid sequence represented by SEQ ID NO: 22 (PRT720), SEQ ID NO: 23 (PRT665) or SEQ ID NO: 24 (PRT666), or (5-iv ) Artificial fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24.
 配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。 The amino acid sequences shown in SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 are added to the N-terminals of the amino acid sequences shown in SEQ ID NO: 19, SEQ ID NO: 20 and SEQ ID NO: 21, respectively, where the amino acid sequence shown in SEQ ID NO: 11 (His tag sequence and hinge sequence) are added.
 (5-iii)の人工フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。 The artificial fibroin of (5-iii) may consist of the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24.
 (5-iv)の人工フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の人工フィブロインもまた、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The (5-iv) artificial fibroin contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO:22, SEQ ID NO:23 or SEQ ID NO:24. The artificial fibroin of (5-iv) is also a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m . The sequence identity is preferably 95% or more.
 (5-iv)の人工フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。 (5-iv) artificial fibroin has 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24, and is located on the most C-terminal side (A) n Amino acids contained in a region where the average hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs contained in the domain sequence excluding the sequence from the motif to the C-terminus of the domain sequence Let p be the total number of residues, and q be the total number of amino acid residues contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence. , p/q is preferably 6.2% or more.
 第5の人工フィブロインは、人工タンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。 The fifth artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host. The sequence of the secretory signal can be appropriately set according to the type of host.
 第6の人工フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。 A sixth artificial fibroin has an amino acid sequence with a reduced content of glutamine residues compared to naturally occurring fibroin.
 第6の人工フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。 The sixth artificial fibroin preferably contains at least one motif selected from the GGX motif and the GPGXX motif in the REP amino acid sequence.
 第6の人工フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。 When the sixth artificial fibroin contains a GPGXX motif in REP, the GPGXX motif content is usually 1% or more, may be 5% or more, and preferably 10% or more. The upper limit of the GPGXX motif content is not particularly limited, and may be 50% or less, or 30% or less.
 本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。 As used herein, the "GPGXX motif content" is a value calculated by the following method.
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(人工フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。 Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), the number of GPGXX motifs contained in the region in all REPs contained in the sequence excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence The number obtained by multiplying the total by three (that is, the total number of G and P in the GPGXX motif) is defined as s, and the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is taken from the domain sequence. The GPGXX motif content rate is calculated as s/t, where t is the total number of amino acid residues in all REPs excluding (A) n motifs.
 GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。 In the calculation of the GPGXX motif content rate, the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" is "the most C-terminal side (A) The sequence from the n motif to the C-terminus of the domain sequence” (the sequence corresponding to REP) may include sequences that are poorly correlated with sequences characteristic of fibroin, and m is small If the domain sequence is short (that is, if the domain sequence is short), it affects the calculation result of the GPGXX motif content rate, so this effect is to be eliminated. When a "GPGXX motif" is located at the C-terminus of REP, it is treated as a "GPGXX motif" even if "XX" is, for example, "AA".
 図2は、人工フィブロインのドメイン配列を示す模式図である。図2を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図2に示した人工フィブロインのドメイン配列(「[(A)モチーフ-REP]-(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図2中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図2中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図2の人工フィブロインの場合21/150=14.0%となる。 FIG. 2 is a schematic diagram showing the domain sequence of artificial fibroin. A method for calculating the GPGXX motif content will be specifically described with reference to FIG. First, in the artificial fibroin domain sequence (“[(A) n motif-REP] m -(A) n motif” type) shown in FIG. (A) The sequence obtained by removing the sequence from the n motif to the C-terminus of the domain sequence from the domain sequence” (sequence shown as “region A” in FIG. 2). The number of GPGXX motifs is 7, and s is 7×3=21. Similarly, all REPs are "sequences obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" (the sequence shown as "region A" in FIG. .), the total number of amino acid residues t of all REPs further excluding the (A) n motif from the sequence is 50+40+10+20+30=150. Next, s/t (%) can be calculated by dividing s by t, which is 21/150=14.0% for artificial fibroin in FIG.
 第6の人工フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。 The sixth artificial fibroin preferably has a glutamine residue content of 9% or less, more preferably 7% or less, even more preferably 4% or less, and particularly preferably 0%. .
 本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。 As used herein, the "glutamine residue content" is a value calculated by the following method.
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(人工フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図2の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。 Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), all contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminal of the domain sequence from the domain sequence (sequence corresponding to "region A" in FIG. 2) REP, the total number of glutamine residues contained in the region is u, the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and (A) n The glutamine residue content is calculated as u/t, where t is the total number of amino acid residues in all REPs excluding motifs. In the calculation of the glutamine residue content, the target is the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" because of the reasons described above. It is the same.
 第6の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。 The sixth artificial fibroin has a domain sequence corresponding to deletion of one or more glutamine residues in REP or substitution with other amino acid residues as compared to the naturally-occurring fibroin. It may have an amino acid sequence.
 「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。 "Another amino acid residue" may be an amino acid residue other than a glutamine residue, but preferably an amino acid residue with a higher hydrophobicity index than a glutamine residue. Hydrophobicity indexes of amino acid residues are shown in Table 1.
 表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。 As shown in Table 1, amino acid residues having a higher hydrophobicity index than glutamine residues include isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M ) amino acid residues selected from alanine (A), glycine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H); can. Among these, amino acid residues selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) are more preferred. , isoleucine (I), valine (V), leucine (L) and phenylalanine (F).
 第6の人工フィブロインは、REPの疎水性度(ハイドロパシー・インデックス)が、例えば、-0.80以上、-0.70、-0.60以上、-0.50以上、-0.40以上、-0.30以上、-0.20以上、-0.10以上、0.00以上、0.10以上、0.20以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、又は0.70以上であってよい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。 The sixth artificial fibroin has a REP hydrophobicity (hydropathy index) of, for example, -0.80 or more, -0.70, -0.60 or more, -0.50 or more, or -0.40 or more. , -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0 .35 or greater, 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater. There is no particular upper limit to the hydrophobicity of REP, and it may be 1.0 or less, or 0.7 or less.
 本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。 "REP hydrophobicity" as used herein is a value calculated by the following method.
 式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロイン(人工フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図2の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。 Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif fibroin (artificial fibroin or naturally occurring fibroin), all contained in the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminal of the domain sequence from the domain sequence (sequence corresponding to "region A" in FIG. 2) In the REP, the sum of the hydrophobicity indices of each amino acid residue in the region is v, and the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and further ( A) The hydrophobicity of REP is calculated as v/t, where t is the total number of amino acid residues in all REPs excluding n motifs. In calculating the hydrophobicity of REP, the reason for targeting "the sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" is the reason described above. It is the same.
 第6の人工フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。 A sixth artificial fibroin has a domain sequence lacking one or more glutamine residues in REP and/or one or more glutamine residues in REP compared to the naturally-occurring fibroin In addition to the modification corresponding to the substitution of another amino acid residue, there may be modifications of the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues. .
 第6の人工フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。 The sixth artificial fibroin is produced, for example, by deleting one or more glutamine residues in REP from the cloned naturally occurring fibroin gene sequence, and/or by deleting one or more glutamine residues in REP. can be obtained by substituting the amino acid residue of Also, for example, deletion of one or more glutamine residues in REP from the amino acid sequence of naturally occurring fibroin, and/or substitution of one or more glutamine residues in REP with other amino acid residues It can also be obtained by designing an amino acid sequence corresponding to , and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
 第6の人工フィブロインのより具体的な例として、(6-i)配列番号25(Met-PRT888)、配列番号26(Met-PRT965)、配列番号27(Met-PRT889)、配列番号28(Met-PRT916)、配列番号29(Met-PRT918)、配列番号30(Met-PRT699)、配列番号31(Met-PRT698)、配列番号32(Met-PRT966)、配列番号41(Met-PRT917)若しくは配列番号42(Met-PRT1028)で示されるアミノ酸配列を含む人工フィブロイン、又は(6-ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41若しくは配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む人工フィブロインを挙げることができる。 More specific examples of the sixth artificial fibroin include (6-i) SEQ ID NO: 25 (Met-PRT888), SEQ ID NO: 26 (Met-PRT965), SEQ ID NO: 27 (Met-PRT889), SEQ ID NO: 28 (Met -PRT916), SEQ ID NO: 29 (Met-PRT918), SEQ ID NO: 30 (Met-PRT699), SEQ ID NO: 31 (Met-PRT698), SEQ ID NO: 32 (Met-PRT966), SEQ ID NO: 41 (Met-PRT917) or sequence artificial fibroin comprising the amino acid sequence represented by number 42 (Met-PRT1028), or (6-ii) SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42, and an artificial fibroin comprising an amino acid sequence having 90% or more sequence identity.
 (6-i)の人工フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。 The artificial fibroin in (6-i) will be explained. The amino acid sequence shown by SEQ ID NO:25 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO:7 (Met-PRT410) with VL. The amino acid sequence shown by SEQ ID NO: 26 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with TS, and replacing the remaining Q with A. The amino acid sequence shown by SEQ ID NO: 27 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with VL, and replacing the remaining Q with I. The amino acid sequence shown by SEQ ID NO:28 is obtained by substituting VI for all QQs in the amino acid sequence shown by SEQ ID NO:7 and L for the remaining Qs. The amino acid sequence shown by SEQ ID NO: 29 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with VF, and replacing the remaining Q with I.
 配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met-PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。 The amino acid sequence shown by SEQ ID NO: 30 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 8 (Met-PRT525) with VL. The amino acid sequence shown by SEQ ID NO: 31 is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 8 with VL, and replacing the remaining Q with I.
 配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中に存在する20個のドメイン配列の領域を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。 The amino acid sequence represented by SEQ ID NO: 32 consists of 20 domain sequence regions present in the amino acid sequence represented by SEQ ID NO: 7 (Met-PRT410) that are repeated twice, and all QQ in the sequence are replaced with VF, And the remaining Q is replaced with I.
 配列番号41で示されるアミノ酸配列(Met-PRT917)は、配列番号7で示されるアミノ酸配列中のQQを全てLIに置換し、かつ残りのQをVに置換したものである。配列番号42で示されるアミノ酸配列(Met-PRT1028)は、配列番号7で示されるアミノ酸配列中のQQを全てIFに置換し、かつ残りのQをTに置換したものである。 The amino acid sequence shown by SEQ ID NO: 41 (Met-PRT917) is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO: 7 with LI and the remaining Qs with V. The amino acid sequence shown by SEQ ID NO:42 (Met-PRT1028) is obtained by replacing all QQs in the amino acid sequence shown by SEQ ID NO:7 with IF, and replacing the remaining Q with T.
 配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。 SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 and SEQ ID NO: 42 are all glutamine residues The group content is below 9% (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (6-i)の人工フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列からなるものであってもよい。 The artificial fibroin of (6-i) is SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42 It may consist of the amino acid sequence shown.
 (6-ii)の人工フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41又は配列番号42で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の人工フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 The artificial fibroin of (6-ii) is SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 or SEQ ID NO: 42 Amino acid sequences having 90% or greater sequence identity with the indicated amino acid sequences are included. The artificial fibroin of (6-ii) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif A protein containing a sequence. The sequence identity is preferably 95% or more.
 (6-ii)の人工フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の人工フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。 The artificial fibroin (6-ii) preferably has a glutamine residue content of 9% or less. In addition, the artificial fibroin (6-ii) preferably has a GPGXX motif content of 10% or more.
 第6の人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、人工フィブロインの単離、固定化、検出及び可視化等が可能となる。 The sixth artificial fibroin may contain a tag sequence at either or both of the N-terminus and C-terminus. This makes it possible to isolate, immobilize, detect and visualize artificial fibroin.
 タグ配列を含む人工フィブロインのより具体的な例として、(6-iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)、配列番号40(PRT966)、配列番号43(PRT917)若しくは配列番号44(PRT1028)で示されるアミノ酸配列を含む人工フィブロイン、又は(6-iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43若しくは配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む人工フィブロインを挙げることができる。 More specific examples of artificial fibroin containing a tag sequence include (6-iii) SEQ ID NO: 33 (PRT888), SEQ ID NO: 34 (PRT965), SEQ ID NO: 35 (PRT889), SEQ ID NO: 36 (PRT916), SEQ ID NO: 37 (PRT918), SEQ ID NO: 38 (PRT699), SEQ ID NO: 39 (PRT698), SEQ ID NO: 40 (PRT966), SEQ ID NO: 43 (PRT917) or SEQ ID NO: 44 (PRT1028) artificial fibroin comprising an amino acid sequence, or ( 6-iv) SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 and 90 Artificial fibroins comprising amino acid sequences with greater than % sequence identity can be mentioned.
 配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32、配列番号41及び配列番号42で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43及び配列番号44で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。 The amino acid sequences shown in SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 and SEQ ID NO: 44 are SEQ ID NO: 25 , SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 41 and SEQ ID NO: 42 at the N-terminus of SEQ ID NO: 11 The amino acid sequence (including the His-tag sequence and hinge sequence) is added. Since the tag sequence was only added to the N-terminus, there was no change in the glutamine residue content, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 , SEQ ID NO: 40, SEQ ID NO: 43 and SEQ ID NO: 44 all have a glutamine residue content of 9% or less (Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (6-iii)の人工フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列からなるものであってもよい。 The artificial fibroin of (6-iii) is SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 It may consist of the amino acid sequence shown.
 (6-iv)の人工フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40、配列番号43又は配列番号44で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の人工フィブロインもまた、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。 (6-iv) artificial fibroin is SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 43 or SEQ ID NO: 44 Amino acid sequences having 90% or greater sequence identity with the indicated amino acid sequences are included. The artificial fibroin of (6-iv) also has a domain represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif A protein containing a sequence. The sequence identity is preferably 95% or more.
 (6-iv)の人工フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の人工フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。 The artificial fibroin (6-iv) preferably has a glutamine residue content of 9% or less. In addition, the artificial fibroin (6-iv) preferably has a GPGXX motif content of 10% or more.
 第6の人工フィブロインは、人工タンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。 The sixth artificial fibroin may contain a secretion signal for releasing the protein produced in the artificial protein production system to the outside of the host. The sequence of the secretory signal can be appropriately set according to the type of host.
 人工フィブロインは、第1の人工フィブロイン、第2の人工フィブロイン、第3の人工フィブロイン、第4の人工フィブロイン、第5の人工フィブロイン、及び第6の人工フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ人工フィブロインであってもよい。 The artificial fibroin has at least two or more of the characteristics of the first artificial fibroin, the second artificial fibroin, the third artificial fibroin, the fourth artificial fibroin, the fifth artificial fibroin, and the sixth artificial fibroin. It may be an artificial fibroin having the characteristics of
 本実施形態に係る人工フィブロインはまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質であってよい。人工フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。 The artificial fibroin according to this embodiment also has a domain sequence represented by Formula 1: [(A)n motif-REP]m or Formula 2: [(A)n motif-REP]m-(A)n motif It may be a protein containing The artificial fibroin may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence. The N-terminal sequence and C-terminal sequence are typically, but not limited to, regions that do not have repeated amino acid motifs characteristic of fibroin and consist of about 100 amino acids.
 本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるアミノ酸配列を意味する。ここで、(A)モチーフは4~27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が80%以上である。REPは10~200アミノ酸残基から構成されるアミノ酸配列を示す。mは10~300の整数を示す。mは、20~300の整数であることが好ましく、30~300の整数であることがより好ましい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。 As used herein, the term "domain sequence" refers to a fibroin-specific crystalline region (typically corresponding to the (A) n motif of the amino acid sequence) and an amorphous region (typically corresponding to the REP of the amino acid sequence). ) and is represented by Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif means an array. Here, the (A) n motif represents an amino acid sequence composed of 4 to 27 amino acid residues, and the number of alanine residues is 80% or more of the total number of amino acid residues in the (A) n motif. REP indicates an amino acid sequence composed of 10-200 amino acid residues. m represents an integer of 10-300. m is preferably an integer of 20-300, more preferably an integer of 30-300. A plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences. A plurality of REPs may have the same amino acid sequence or different amino acid sequences.
 ドメイン配列中に複数存在する(A)モチーフは、少なくとも7つがアラニン残基のみで構成されることが好ましい。アラニン残基のみで構成されるとは、(A)モチーフが、(Ala)(Alaはアラニン残基を示す。)で表されるアミノ酸配列を有することを意味する。kは、好ましくは4~27の整数、より好ましくは4~20の整数、更に好ましくは4~16の整数を示す。 At least seven of the (A) n motifs present in the domain sequence are preferably composed only of alanine residues. Consisting only of alanine residues means that the (A) n motif has an amino acid sequence represented by (Ala) k (Ala represents an alanine residue). k is preferably an integer of 4-27, more preferably an integer of 4-20, and still more preferably an integer of 4-16.
 REPは、10~200アミノ酸残基から構成される。REPを構成するアミノ酸残基の1以上が、グリシン残基、セリン残基、及びアラニン残基からなる群より選択されるアミノ酸残基であってよい。すなわち、REPは、グリシン残基、セリン残基、及びアラニン残基からなる群より選択されるアミノ酸残基を含んでいてよい。 REP is composed of 10 to 200 amino acid residues. One or more of the amino acid residues constituting REP may be amino acid residues selected from the group consisting of glycine residues, serine residues, and alanine residues. That is, REP may contain amino acid residues selected from the group consisting of glycine residues, serine residues, and alanine residues.
 REPを構成するアミノ酸残基の1以上が、疎水性アミノ酸残基であってよい。すなわち、REPは、疎水性アミノ酸残基を含んでいることが好ましい。疎水性アミノ酸残基とは、疎水性指標がプラスであるアミノ酸残基を意味する。アミノ酸残基の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)については、公知の指標公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。疎水性アミノ酸残基としては、例えば、イソロイシン(HI:4.5)、バリン(HI:4.2)、ロイシン(HI:3.8)、フェニルアラニン(HI:2.8)、メチオニン(HI:1.9)、アラニン(HI:1.8)が挙げられる。 One or more of the amino acid residues constituting REP may be hydrophobic amino acid residues. That is, REP preferably contains hydrophobic amino acid residues. A hydrophobic amino acid residue means an amino acid residue with a positive hydrophobicity index. Regarding the hydrophobicity index of amino acid residues (hydropathy index, hereinafter also referred to as "HI"), a known index known index (Hydropathy index: Kyte J, & Doolittle R (1982) "A simple method for displaying the hydropathic character of a protein", J. Mol. Biol., 157, pp. 105-132). Hydrophobic amino acid residues include, for example, isoleucine (HI: 4.5), valine (HI: 4.2), leucine (HI: 3.8), phenylalanine (HI: 2.8), methionine (HI: 1.9) and alanine (HI: 1.8).
 本実施形態に係る人工フィブロインにおいて、ドメイン配列は、天然由来のフィブロインと比較して、REP中にシステイン残基が挿入されたことに相当するアミノ酸配列を有することが好ましい。 In the artificial fibroin according to this embodiment, the domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue into REP, as compared with naturally occurring fibroin.
 ドメイン配列は、REP中のグリシン残基、セリン残基、又はアラニン残基と隣り合う位置に、システイン残基が挿入されたことに相当するアミノ酸配列を有していることが好ましく、REP中のグリシン残基と隣り合う位置に、システイン残基が挿入されたことに相当するアミノ酸配列を有していることがより好ましい。REP中のシステイン残基は、グリシン残基、セリン残基、又はアラニン残基と、グリシン残基、セリン残基、又はアラニン残基との間に位置していてよく、セリン残基と、グリシン残基との間に位置していてよい。 The domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue at a position adjacent to a glycine residue, a serine residue, or an alanine residue in REP. More preferably, it has an amino acid sequence corresponding to a cysteine residue inserted at a position adjacent to the glycine residue. A cysteine residue in REP may be located between a glycine residue, a serine residue, or an alanine residue and a glycine residue, a serine residue, or an alanine residue; residues.
 ドメイン配列は、REP中の疎水性アミノ酸残基と隣り合う位置に、システイン残基が挿入されたことに相当するアミノ酸配列を有していることが好ましい。この場合、分子間で疎水性アミノ酸残基同士が疎水的相互作用により固定される。REP中のシステイン残基は、疎水性アミノ酸残基の隣に位置していてよく、疎水性アミノ酸残基と、疎水性アミノ酸残基以外のアミノ酸残基との間に、位置していてもよく、疎水性アミノ酸残基と、グリシン残基、セリン残基、又はアラニン残基との間に位置していてよく、疎水性アミノ酸残基と、グリシン残基との間に位置していてよい。疎水性アミノ酸残基は、イソロイシン残基、バリン残基、ロイシン残基、フェニルアラニン残基、メチオニン残基、及びアラニン残基からなる群より選択される1種であってよい。 The domain sequence preferably has an amino acid sequence corresponding to the insertion of a cysteine residue at the position adjacent to the hydrophobic amino acid residue in REP. In this case, hydrophobic amino acid residues are fixed between molecules by hydrophobic interaction. A cysteine residue in REP may be positioned next to a hydrophobic amino acid residue, or may be positioned between a hydrophobic amino acid residue and an amino acid residue other than a hydrophobic amino acid residue. , a hydrophobic amino acid residue and a glycine residue, a serine residue, or an alanine residue, and may be positioned between a hydrophobic amino acid residue and a glycine residue. Hydrophobic amino acid residues may be one selected from the group consisting of isoleucine residues, valine residues, leucine residues, phenylalanine residues, methionine residues, and alanine residues.
 ドメイン配列は、天然由来のフィブロインと比較して、ドメイン配列のN末端及び/又はC末端の近傍に位置するREP中に、システイン残基が挿入されたことに相当するアミノ酸配列を有していてよい。この場合、分子鎖を長くすることができる。本明細書において、ドメイン配列のN末端の近傍に位置するREPとは、ドメイン配列のN末端から1~3番目に位置するREPを意味する。例えば、システイン残基は、ドメイン配列のN末端から1~2番目に位置するREP中に位置していてよい。本明細書において、ドメイン配列のC末端の近傍に位置するREPとは、ドメイン配列のC末端から1~3番目に位置するREPを意味する。例えば、システイン残基は、ドメイン配列のC末端から1~2番目に位置するREP中に位置していてよい。システイン残基は、ドメイン配列の最もN末端側及び/又は最もC末端側に位置するREP中に位置していることが好ましい。 The domain sequence has an amino acid sequence corresponding to the insertion of a cysteine residue into the REP located near the N-terminus and/or C-terminus of the domain sequence compared to naturally-occurring fibroin. good. In this case, the molecular chain can be lengthened. As used herein, a REP located near the N-terminus of a domain sequence means a REP located 1st to 3rd from the N-terminus of the domain sequence. For example, a cysteine residue may be located in the REP positioned 1-2 from the N-terminus of the domain sequence. As used herein, a REP located near the C-terminus of a domain sequence means a REP located 1st to 3rd from the C-terminus of the domain sequence. For example, a cysteine residue may be located in the REP positioned 1-2 from the C-terminus of the domain sequence. Cysteine residues are preferably located in the most N-terminal and/or most C-terminal REP of the domain sequence.
 ドメイン配列は、天然由来のフィブロインと比較して、REP中の中央又は中央近傍にシステイン残基が挿入されたことに相当するアミノ酸配列を有していてよい。本明細書において、REP中のアミノ酸配列の中央近傍とは、REPの中央に位置するアミノ酸残基(中央に位置するアミノ酸残基が2つ存在する場合はN末端側のアミノ酸残基)からN末端側に向かって1~5番目の位置、又はREPの中央に位置するアミノ酸残基(中央に位置するアミノ酸残基が2つ存在する場合はC末端側のアミノ酸残基)から1~5番目の位置を示す。例えば、システイン残基は、REPの中央に位置していてもよく、REPの中央に位置するアミノ酸残基からN末端側、又はC末端側に向かって1~3番目又は1~2番目に位置していてもよい。 The domain sequence may have an amino acid sequence corresponding to the insertion of a cysteine residue at or near the center in REP compared to naturally occurring fibroin. As used herein, the vicinity of the center of the amino acid sequence in REP refers to the amino acid residue located in the center of REP (when there are two amino acid residues located in the center, the amino acid residue on the N-terminal side) to N 1st to 5th positions toward the terminal side, or 1st to 5th amino acid residues located in the center of REP (when there are two amino acid residues located in the center, amino acid residues on the C-terminal side) indicates the position of For example, the cysteine residue may be located in the center of REP, and is located at the 1st to 3rd or 1st to 2nd positions toward the N-terminal side or the C-terminal side from the amino acid residue located in the center of REP. You may have
 人工フィブロインは、REPのアミノ酸配列中に、GPGXXモチーフ(Gはグリシン残基、Pはプロリン残基、Xはグリシン残基以外のアミノ酸残基を示す。)を含むことが好ましい。REP中にこのモチーフが含まれることにより、人工フィブロインの伸度を向上させることができる。 The artificial fibroin preferably contains a GPGXX motif (G represents a glycine residue, P represents a proline residue, and X represents an amino acid residue other than a glycine residue) in the amino acid sequence of REP. Inclusion of this motif in REP can improve the elongation of the artificial fibroin.
 人工フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、好ましくは10%以上である。この場合、人工フィブロイン繊維の応力がより一層高くなる。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。 When the artificial fibroin contains a GPGXX motif in REP, the GPGXX motif content is usually 1% or more, may be 5% or more, and preferably 10% or more. In this case, the stress of the artificial fibroin fiber becomes even higher. The upper limit of the GPGXX motif content is not particularly limited, and may be 50% or less, or 30% or less.
 本明細書において、「GPGXXモチーフ含有率」は、以下の方法によって算出される値である。式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロインにおいて、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をcとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をdとしたときに、GPGXXモチーフ含有率はc/dとして算出される。 As used herein, the "GPGXX motif content" is a value calculated by the following method. Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif, the most C-terminal In all REPs contained in the sequence excluding the sequence from the located (A) n motif to the C-terminus of the domain sequence from the domain sequence, triple the total number of GPGXX motifs contained in that region (i.e., (corresponding to the total number of G and P in the GPGXX motif) is c, the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and the (A) n motif is further removed. The GPGXX motif content is calculated as c/d, where d is the total number of amino acid residues in all REPs removed.
 GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。 In the calculation of the GPGXX motif content rate, the "sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" is "the most C-terminal side (A) The sequence from the n motif to the C-terminus of the domain sequence” (the sequence corresponding to REP) may include sequences that are poorly correlated with sequences characteristic of fibroin, and m is small If the domain sequence is short (that is, if the domain sequence is short), it affects the calculation result of the GPGXX motif content rate, so this effect is to be eliminated. When a "GPGXX motif" is located at the C-terminus of REP, it is treated as a "GPGXX motif" even if "XX" is, for example, "AA".
 図6は、フィブロインのドメイン配列を示す模式図である。図6を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図6に示したフィブロインのドメイン配列(「[(A)モチーフ-REP]-(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図6中、「領域A」で示した配列。)に含まれているため、cを算出するためのGPGXXモチーフの個数は7であり、cは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図6中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数dは50+40+10+20+30=150である。次に、cをdで除すことによって、c/d(%)を算出することができ、図6のフィブロインの場合21/150=14.0%となる。 FIG. 6 is a schematic diagram showing the domain sequence of fibroin. A method for calculating the GPGXX motif content will be specifically described with reference to FIG. First, in the fibroin domain sequence (“[(A) n motif-REP] m -(A) n motif” type) shown in FIG. A) GPGXX for calculating c because it is included in the sequence obtained by removing the sequence from the n motif to the C-terminus of the domain sequence from the domain sequence (sequence shown as “region A” in FIG. 6) The number of motifs is 7, and c is 7×3=21. Similarly, all REPs are "sequences obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" (the sequence shown as "region A" in FIG. .), the total number of amino acid residues d of all REPs excluding the (A) n motif from the sequence is 50+40+10+20+30=150. Next, c/d (%) can be calculated by dividing c by d, which is 21/150=14.0% for fibroin in FIG.
 人工フィブロインは、REPの疎水性度(ハイドロパシー・インデックス:疎水性指標)が、例えば、-0.80、-0.70、-0.06以上、-0.50以上、-0.40以上、-0.30以上、-0.20以上、-0.10以上、0.00以上、0.10以上、0.20以上、0.22以上、0.25以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上、0.60以上、0.65以上、0.70以上であってよい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。 Artificial fibroin has a REP hydrophobicity (hydropathy index: hydrophobicity index) of, for example, -0.80, -0.70, -0.06 or more, -0.50 or more, -0.40 or more. , -0.30 or more, -0.20 or more, -0.10 or more, 0.00 or more, 0.10 or more, 0.20 or more, 0.22 or more, 0.25 or more, 0.30 or more, 0 0.35 or greater, 0.40 or greater, 0.45 or greater, 0.50 or greater, 0.55 or greater, 0.60 or greater, 0.65 or greater, or 0.70 or greater. There is no particular upper limit to the hydrophobicity of REP, and it may be 1.0 or less, or 0.7 or less.
 本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含むフィブロインにおいて、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図6の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をeとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をfとしたときに、REPの疎水性度はe/fとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。 As used herein, the "hydrophobicity of REP" is a value calculated by the following method. Formula 1: [(A) n motif-REP] m or Formula 2: [(A) n motif-REP] m -(A) n motif, the most C-terminal In all REPs contained in the sequence obtained by excluding the sequence from the located (A) n motif to the C-terminus of the domain sequence from the domain sequence (sequence corresponding to “region A” in FIG. 6), each amino acid in the region The sum of the hydrophobicity indices of the residues is e, the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence is removed from the domain sequence, and all REPs excluding the (A) n motif The hydrophobicity of REP is calculated as e/f, where f is the total number of amino acid residues in . In calculating the hydrophobicity of REP, the reason for targeting "the sequence obtained by removing the sequence from the (A) n motif located on the most C-terminal side to the C-terminus of the domain sequence from the domain sequence" is the reason described above. It is the same.
 本実施形態に係る人工フィブロインの分子量は、特に限定されないが、例えば、10kDa以上700kDa以下であってよい。本実施形態に係る人工フィブロインの分子量は、例えば、2kDa以上、3kDa以上、4kDa以上、5kDa以上、6kDa以上、7kDa以上、8kDa以上、9kDa以上、10kDa以上、20kDa以上、30kDa以上、40kDa以上、50kDa以上、60kDa以上、70kDa以上、80kDa以上、90kDa以上、又は100kDa以上であってよく、600kDa以下、500kDa以下、400kDa以下、360kDa未満、300kDa以下、又は200kDa以下であってよい。 Although the molecular weight of the artificial fibroin according to this embodiment is not particularly limited, it may be, for example, 10 kDa or more and 700 kDa or less. The molecular weight of the artificial fibroin according to the present embodiment is, for example, 2 kDa or more, 3 kDa or more, 4 kDa or more, 5 kDa or more, 6 kDa or more, 7 kDa or more, 8 kDa or more, 9 kDa or more, 10 kDa or more, 20 kDa or more, 30 kDa or more, 40 kDa or more, 50 kDa. 60 kDa or more, 70 kDa or more, 80 kDa or more, 90 kDa or more, or 100 kDa or more, and may be 600 kDa or less, 500 kDa or less, 400 kDa or less, 360 kDa or less, 300 kDa or less, or 200 kDa or less.
 (i)の人工フィブロインは、配列番号46、配列番号47、配列番号48、配列番号49、配列番号50、又は配列番号51で示されるアミノ酸配列のみを有するものであってもよい。(ii)の人工フィブロインは、配列番号52、配列番号53、配列番号54、又は配列番号55で示されるアミノ酸配列のみを有するものであってもよい。 The artificial fibroin (i) may have only the amino acid sequence shown in SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, or SEQ ID NO: 51. The artificial fibroin of (ii) may have only the amino acid sequence shown in SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, or SEQ ID NO:55.
 上述の人工フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これによって、人工フィブロインの単離、固定化、検出及び可視化等が可能となる。 The artificial fibroin described above may contain a tag sequence at either or both of the N-terminus and C-terminus. This enables isolation, immobilization, detection, visualization, etc. of artificial fibroin.
 タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による人工フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号70又は配列番号71で示されるアミノ酸配列(Hisタグを含むアミノ酸配列)が挙げられる。 Examples of tag sequences include affinity tags that utilize specific affinity (binding, affinity) with other molecules. A specific example of the affinity tag is a histidine tag (His tag). A His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and because it has the property of specifically binding to metal ions such as nickel, artificial fibroin is isolated by metal chelating chromatography. can be used for A specific example of the tag sequence is the amino acid sequence represented by SEQ ID NO: 70 or SEQ ID NO: 71 (amino acid sequence containing a His tag).
 また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。 In addition, tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can be used.
 さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に人工フィブロインを精製することができる。 Furthermore, it is also possible to use "epitope tags" that utilize antigen-antibody reactions. By adding an antigenic peptide (epitope) as a tag sequence, an antibody against the epitope can be bound. Examples of epitope tags include HA (peptide sequence of influenza virus hemagglutinin) tag, myc tag, FLAG tag, and the like. Artificial fibroin can be easily purified with high specificity by using an epitope tag.
 さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した人工フィブロインを回収することもできる。 Furthermore, a tag sequence that can be cleaved by a specific protease can also be used. Artificial fibroin from which the tag sequence has been cut off can also be recovered by treating the protein adsorbed via the tag sequence with protease.
 タグ配列を含む人工フィブロインのより具体的な例として、(iii)配列番号60(PRT15)、配列番号61(PRT16)、配列番号62(PRT17)、配列番号63(PRT18)、配列番号64(PRT19)、若しくは配列番号65(PRT20)で示されるアミノ酸配列を含む、人工フィブロイン、又は(iv)配列番号66(PRT21)、配列番号67(PRT22)、配列番号68(PRT23)、若しくは配列番号69(PRT24)で示されるアミノ酸配列を含む、人工フィブロインを挙げることができる。 More specific examples of artificial fibroin containing a tag sequence include (iii) SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19) ), or an artificial fibroin comprising the amino acid sequence shown in SEQ ID NO: 65 (PRT20), or (iv) SEQ ID NO: 66 (PRT21), SEQ ID NO: 67 (PRT22), SEQ ID NO: 68 (PRT23), or SEQ ID NO: 69 ( Artificial fibroin containing the amino acid sequence shown in PRT24) can be mentioned.
 なお、配列番号60(PRT15)、配列番号61(PRT16)、配列番号62(PRT17)、配列番号63(PRT18)、配列番号64(PRT19)、及び配列番号65(PRT20)で示されるアミノ酸配列は、それぞれ、配列番号46(PRT1)、配列番号47(PRT2)、配列番号48(PRT3)、配列番号49(PRT4)、配列番号50(PRT5)、及び配列番号51(PRT6)で示されるアミノ酸配列のN末端に、配列番号70で示されるアミノ酸配列を含むタグ配列を導入したものである。また、配列番号66(PRT21)、配列番号67(PRT22)、配列番号68(PRT23)、及び配列番号69(PRT24)で示されるアミノ酸配列は、それぞれ、配列番号52(PRT7)、配列番号53(PRT8)、配列番号54(PRT9)、及び配列番号55(PRT10)で示されるアミノ酸配列のN末端に、配列番号70で示されるアミノ酸配列を含むタグ配列を導入したものである。 The amino acid sequences represented by SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19), and SEQ ID NO: 65 (PRT20) are , SEQ ID NO: 46 (PRT1), SEQ ID NO: 47 (PRT2), SEQ ID NO: 48 (PRT3), SEQ ID NO: 49 (PRT4), SEQ ID NO: 50 (PRT5), and SEQ ID NO: 51 (PRT6), respectively. A tag sequence containing the amino acid sequence shown in SEQ ID NO: 70 is introduced at the N-terminus of . In addition, the amino acid sequences shown in SEQ ID NO: 66 (PRT21), SEQ ID NO: 67 (PRT22), SEQ ID NO: 68 (PRT23), and SEQ ID NO: 69 (PRT24) are SEQ ID NO: 52 (PRT7) and SEQ ID NO: 53 ( PRT8), SEQ ID NO: 54 (PRT9), and SEQ ID NO: 55 (PRT10) with a tag sequence including the amino acid sequence of SEQ ID NO: 70 introduced at the N-terminus.
 (iii)の人工フィブロインは、配列番号60、配列番号61、配列番号62、配列番号63、配列番号64、又は配列番号65で示されるアミノ酸配列のみを有するものであってもよい。 The artificial fibroin of (iii) may have only the amino acid sequence shown in SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62, SEQ ID NO: 63, SEQ ID NO: 64, or SEQ ID NO: 65.
 配列番号60(PRT15)、配列番号61(PRT16)、配列番号62(PRT17)、配列番号63(PRT18)、配列番号64(PRT19)、又は配列番号65(PRT20)で示されるアミノ酸配列を含む、人工フィブロインのGPGXXモチーフ含有率は、それぞれ40.2%、39.9%、39.9%、39.7%、39.3%、及び38.6%であり、いずれも10%以上である。 SEQ ID NO: 60 (PRT15), SEQ ID NO: 61 (PRT16), SEQ ID NO: 62 (PRT17), SEQ ID NO: 63 (PRT18), SEQ ID NO: 64 (PRT19), or SEQ ID NO: 65 (PRT20) The GPGXX motif content of the artificial fibroin is 40.2%, 39.9%, 39.9%, 39.7%, 39.3%, and 38.6%, respectively, all of which are 10% or more. .
 (iv)の人工フィブロインは、配列番号66、配列番号67、配列番号68、若しくは配列番号69で示されるアミノ酸配列のみを有するものであってもよい。 (iv) The artificial fibroin may have only the amino acid sequence shown in SEQ ID NO: 66, SEQ ID NO: 67, SEQ ID NO: 68, or SEQ ID NO: 69.
 配列番号66(PRT21)、配列番号67(PRT22)、配列番号68(PRT23)、又は配列番号69(PRT24)で示されるアミノ酸配列を含む、人工フィブロインのGPGXXモチーフ含有率は、それぞれ39.9%、39.9%、39.3%、及び38.6%であり、いずれも10%以上である。 The GPGXX motif content of the artificial fibroin containing the amino acid sequence shown in SEQ ID NO: 66 (PRT21), SEQ ID NO: 67 (PRT22), SEQ ID NO: 68 (PRT23), or SEQ ID NO: 69 (PRT24) is 39.9%, respectively. , 39.9%, 39.3%, and 38.6%, all of which are 10% or more.
 上述の人工フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。 The artificial fibroin described above may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host. The sequence of the secretory signal can be appropriately set according to the type of host.
〔核酸〕
 一実施形態に係る核酸は、上記人工フィブロインをコードする。核酸の具体例として、配列番号46、配列番号47、配列番号48、配列番号49、配列番号50、配列番号51、配列番号52、配列番号53、配列番号54、又は配列番号55で示されるアミノ酸配列を含む人工フィブロイン、又はこれらのアミノ酸配列のN末端及びC末端のいずれか一方若しくは両方に配列番号70又は配列番号71で示されるアミノ酸配列(タグ配列)を結合させた人工フィブロイン等をコードする核酸が挙げられる。
[Nucleic acid]
A nucleic acid according to one embodiment encodes the artificial fibroin. Specific examples of nucleic acids are amino acids represented by SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, or SEQ ID NO: 55 Encodes artificial fibroin containing sequences, or artificial fibroin or the like in which the amino acid sequence (tag sequence) represented by SEQ ID NO: 70 or SEQ ID NO: 71 is bound to either or both of the N-terminus and C-terminus of these amino acid sequences Nucleic acids are included.
 一実施形態に係る核酸は、上記人工フィブロインをコードする核酸の相補鎖とストリンジェントな条件下でハイブリダイズし、かつ式1:[(A)モチーフ-REP]、又は式2:[(A)モチーフ-REP]-(A)モチーフで表されるドメイン配列を含む人工フィブロインをコードする核酸である。当該核酸によりコードされる人工フィブロインの上記ドメイン配列は、天然由来のフィブロインと比較して、REP中にシステイン残基が挿入されたことに相当するアミノ酸配列を有する。 A nucleic acid according to one embodiment hybridizes under stringent conditions to a complementary strand of the artificial fibroin-encoding nucleic acid, and has formula 1: [(A) n motif-REP] m or formula 2: [( A) n -motif-REP] m -(A) A nucleic acid encoding an artificial fibroin comprising a domain sequence represented by the n- motif. The above domain sequence of the artificial fibroin encoded by the nucleic acid has an amino acid sequence corresponding to the insertion of a cysteine residue into REP, compared to naturally-occurring fibroin.
 「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。「ストリンジェントな条件」は、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。低ストリンジェントな条件とは、少なくとも85%以上の同一性が配列間に存在する時のみハイブリダイゼーションが起こることを意味し、例えば、0.5%SDSを含む5×SSCを用い、42℃でハイブリダイズする条件が挙げられる。中ストリンジェントな条件とは、少なくとも90%以上の同一性が配列間に存在する時のみハイブリダイゼーションが起こることを意味し、例えば、0.5%SDSを含む5×SSCを用い、50℃でハイブリダイズする条件が挙げられる。高ストリンジェントな条件とは、少なくとも95%以上の同一性が配列間に存在する時のみハイブリダイゼーションが起こることを意味し、例えば、0.5%SDSを含む5×SSCを用い、60℃でハイブリダイズする条件が挙げられる。 "Stringent conditions" refer to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. "Stringent conditions" may be any of low stringent conditions, medium stringent conditions and high stringent conditions. Low stringency conditions means that hybridization occurs only when there is at least 85% or more identity between the sequences. Conditions for hybridization include: Moderately stringent conditions means that hybridization occurs only when there is at least 90% identity between the sequences, for example, using 5xSSC containing 0.5% SDS at 50°C. Conditions for hybridization include: High stringency conditions means that hybridization occurs only when there is at least 95% or more identity between the sequences. Conditions for hybridization include:
〔宿主及び発現ベクター〕
 一実施形態に係る発現ベクターは、上記核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する。調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。
[Host and expression vector]
An expression vector according to one embodiment comprises the nucleic acid sequence described above and one or more regulatory sequences operably linked to the nucleic acid sequence. A regulatory sequence is a sequence that controls expression of a recombinant protein in a host (eg, promoter, enhancer, ribosome binding sequence, transcription termination sequence, etc.), and can be appropriately selected according to the type of host. The type of expression vector can be appropriately selected from plasmid vectors, virus vectors, cosmid vectors, fosmid vectors, artificial chromosome vectors, etc., depending on the type of host.
 一実施形態に係る宿主は、上記発現ベクターで形質転換されたものである。宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。 A host according to one embodiment is transformed with the above expression vector. As hosts, both prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be suitably used.
 発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、一実施形態に係る核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。 As the expression vector, those capable of autonomous replication in host cells or capable of integration into the chromosome of the host and containing a promoter at a position at which the nucleic acid according to one embodiment can be transcribed are preferably used.
 細菌等の原核生物を宿主として用いる場合は、一実施形態に係る発現ベクターは、原核生物中で自立複製が可能であると同時に、プロモーター、リボソーム結合配列、一実施形態に係る核酸及び転写終結配列を含むベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。 When prokaryotes such as bacteria are used as hosts, the expression vector according to one embodiment is capable of autonomous replication in the prokaryote, and at the same time includes a promoter, a ribosome binding sequence, a nucleic acid according to one embodiment, and a transcription termination sequence. It is preferably a vector containing A gene controlling a promoter may be included.
 原核生物としては、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属、及びシュードモナス属等に属する微生物を挙げることができる。 Examples of prokaryotes include microorganisms belonging to the genera Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, and Pseudomonas.
 エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ BL21(ノバジェン社)、エシェリヒア・コリ BL21(DE3)(ライフテクノロジーズ社)、エシェリヒア・コリ BLR(DE3)(メルクミリポア社)、エシェリヒア・コリ DH1、エシェリヒア・コリ GI698、エシェリヒア・コリ HB101、エシェリヒア・コリ JM109、エシェリヒア・コリ K5(ATCC 23506)、エシェリヒア・コリ KY3276、エシェリヒア・コリ MC1000、エシェリヒア・コリ MG1655(ATCC 47076)、エシェリヒア・コリ No.49、エシェリヒア・コリ Rosetta(DE3)(ノバジェン社)、エシェリヒア・コリ TB1、エシェリヒア・コリ Tuner(ノバジェン社)、エシェリヒア・コリ Tuner(DE3)(ノバジェン社)、エシェリヒア・コリ W1485、エシェリヒア・コリ W3110(ATCC 27325)、エシェリヒア・コリ(Escherichia coli) XL1-Blue、及びエシェリヒア・コリ XL2-Blue等を挙げることができる。 Examples of microorganisms belonging to the genus Escherichia include Escherichia coli BL21 (Novagen), Escherichia coli BL21 (DE3) (Life Technologies), Escherichia coli BLR (DE3) (Merck Millipore), Escherichia coli DH1, Escherichia · Coli GI698, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli K5 (ATCC 23506), Escherichia coli KY3276, Escherichia coli MC1000, Escherichia coli MG1655 (ATCC 47076), Escherichia coli No. 49, Escherichia coli Rosetta (DE3) (Novagen), Escherichia coli TB1, Escherichia coli Tuner (Novagen), Escherichia coli Tuner (DE3) (Novagen), Escherichia coli W1485, Escherichia coli W3110 ( ATCC 27325), Escherichia coli XL1-Blue, and Escherichia coli XL2-Blue.
 ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ、ブレビバチルス・ボルステレンシス、ブレビバチルス・セントロポラスブレビバチルス・フォルモサス、ブレビバチルス・インボカツス、ブレビバチルス・ラチロスポラス、ブレビバチルス・リムノフィルス、ブレビバチルス・パラブレビス、ブレビバチルス・レウスゼリ、ブレビバチルス・サーモルバー、ブレビバチルス・ブレビス47(FERM BP-1223)、ブレビバチルス・ブレビス47K(FERM BP-2308)、ブレビバチルス・ブレビス47-5(FERM BP-1664)、ブレビバチルス・ブレビス47-5Q(JCM8975)、ブレビバチルス・チョウシネンシスHPD31(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S(FERM BP-6623)、ブレビバチルス・チョウシネンシスHPD31-OK(FERM BP-4573)、及びブレビバチルス・チョウシネンシスSP3株(Takara社製)等を挙げることができる。 Examples of microorganisms belonging to the genus Brevibacillus include Brevibacillus agri, Brevibacillus borsterensis, Brevibacillus centropolus Brevibacillus formosus, Brevibacillus imvocatus, Brevibacillus latyrosporus, Brevibacillus limnophilus, Brevibacillus parabrevis , Brevibacillus reuszeri, Brevibacillus thermoluvar, Brevibacillus brevis 47 (FERM BP-1223), Brevibacillus brevis 47K (FERM BP-2308), Brevibacillus brevis 47-5 (FERM BP-1664), Brevibacillus brevis Bacillus brevis 47-5Q (JCM8975), Brevibacillus choshinensis HPD31 (FERM BP-1087), Brevibacillus choshinensis HPD31-S (FERM BP-6623), Brevibacillus choshinensis HPD31-OK (FERM BP- 4573), and Brevibacillus choshinensis SP3 strain (manufactured by Takara).
 セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス(Serratia liquefacience)ATCC14460、セラチア・エントモフィラ(Serratia entomophila)、セラチア・フィカリア(Serratia ficaria)、セラチア・フォンティコーラ(Serratia fonticola)、セラチア・グリメシ(Serratia grimesii)、セラチア・プロテアマキュランス(Serratia proteamaculans)、セラチア・オドリフェラ(Serratia odorifera)、セラチア・プリムシカ(Serratia plymuthica)、及びセラチア・ルビダエ(Serratia rubidaea)等を挙げることができる。 Examples of microorganisms belonging to the genus Serratia include Serratia liquefaciens ATCC14460, Serratia entomophila, Serratia ficaria, Serratia fonticola, and Serratia grimesi. (Serratia grimesii), Serratia proteamaculans, Serratia odorifera, Serratia polymuthica, and Serratia rubidae.
 バチルス属に属する微生物として、例えば、バチルス・サチラス(Bacillus subtilis)、及びバチルス・アミロリケファシエンス(Bacillus amyloliquefaciens)等を挙げることができる。 Examples of microorganisms belonging to the genus Bacillus include Bacillus subtilis and Bacillus amyloliquefaciens.
 ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム ATCC15354等を挙げることができる。 Examples of microorganisms belonging to the genus Microbacterium include Microbacterium Ammoniaphyllum ATCC15354.
 ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)ATCC14020、ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカムATCC14067)ATCC13826,ATCC14067、ブレビバクテリウム・インマリオフィラム(Brevibacterium immariophilum)ATCC14068、ブレビバクテリウム・ラクトフェルメンタム(コリネバクテリウム・グルタミカムATCC13869)ATCC13665,ATCC13869、ブレビバクテリウム・ロゼウムATCC13825、ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)ATCC14066、ブレビバクテリウム・チオゲニタリスATCC19240、ブレビバクテリウム・アルバムATCC15111、及びブレビバクテリウム・セリヌムATCC15112等を挙げることができる。 Examples of microorganisms belonging to the genus Brevibacterium include, for example, Brevibacterium divericatum (Corynebacterium glutamicum) ATCC14020, Brevibacterium flavum (Corynebacterium glutamicum ATCC14067) ATCC13826, ATCC14067, Brevibacterium inmariophyllum (Brevibacterium immariophilum)ATCC14068、ブレビバクテリウム・ラクトフェルメンタム(コリネバクテリウム・グルタミカムATCC13869)ATCC13665,ATCC13869、ブレビバクテリウム・ロゼウムATCC13825、ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)ATCC14066、ブレビバクテリウム・thiogenitalis ATCC19240, Brevibacterium album ATCC15111, and Brevibacterium serinum ATCC15112.
 コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス(Corynebacterium ammoniagenes)ATCC6871,ATCC6872、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)ATCC13032、コリネバクテリウム・グルタミカム ATCC14067、コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)ATCC13870、コリネバクテリウム・アセトグルタミカムATCC15806、コリネバクテリウム・アルカノリティカムATCC21511、コリネバクテリウム・カルナエATCC15991、コリネバクテリウム・グルタミカムATCC13020,ATCC13032,ATCC13060、コリネバクテリウム・リリウムATCC15990、コリネバクテリウム・メラセコーラATCC17965、コリネバクテリウム・サーモアミノゲネスAJ12340(FERMBP-1539)、及びコリネバクテリウム・ハーキュリスATCC13868等を挙げることができる。 Examples of microorganisms belonging to the genus Corynebacterium include Corynebacterium ammoniagenes ATCC6871 and ATCC6872, Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC14067, and Corynebacterium glutamicum ATCC14067.ラム(Corynebacterium acetoacidophilum)ATCC13870、コリネバクテリウム・アセトグルタミカムATCC15806、コリネバクテリウム・アルカノリティカムATCC21511、コリネバクテリウム・カルナエATCC15991、コリネバクテリウム・グルタミカムATCC13020,ATCC13032,ATCC13060、コリネバクテリウム・リリウムATCC15990、 Corynebacterium melasecola ATCC17965, Corynebacterium thermoaminogenes AJ12340 (FERMBP-1539), Corynebacterium herculis ATCC13868, and the like.
 シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・フルオレッセンス(Pseudomonas fluorescens)、シュードモナス・ブラシカセラム(Pseudomonas brassicacearum)、シュードモナス・フルバ(Pseudomonas fulva)、及びシュードモナス・エスピー(Pseudomonas sp.)D-0110等を挙げることができる。 Examples of microorganisms belonging to the genus Pseudomonas include Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas brassicacearum, Pseudomonas brassicacerum, Pseudomonas fulva, and Pseudomonas Pseudomonas. (Pseudomonas sp.) D-0110 and the like.
 上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110 (1972)〕、プロトプラスト法(特開昭63-248394号公報)、又はGene,17,107(1982)やMolecular & General Genetics,168,111(1979)に記載の方法等を挙げることができる。 Any method for introducing DNA into the host cell can be used as the method for introducing the expression vector into the host cell. For example, a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-248394), or the methods described in Gene, 17, 107 (1982) and Molecular & General Genetics, 168, 111 (1979). can be mentioned.
 ブレビバチルス属に属する微生物の形質転換は、例えば、Takahashiらの方法(J.Bacteriol.,1983,156:1130-1134)や、Takagiらの方法(Agric.Biol.Chem.,1989,53:3099-3100)、又はOkamotoらの方法(Biosci.Biotechnol.Biochem.,1997,61:202-203)により実施することができる。 Transformation of microorganisms belonging to the genus Brevibacillus, for example, the method of Takahashi et al. (J. Bacteriol., 1983, 156: 1130-1134) and the method of Takagi et al. -3100), or the method of Okamoto et al. (Biosci. Biotechnol. Biochem., 1997, 61: 202-203).
 一実施形態に係る核酸を導入するベクター(以下、単に「ベクター」という。)としては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pKK233-2(Pharmacia社製)、pSE280(Invitrogen社製)、pGEMEX-1(Promega社製)、pQE-8(QIAGEN社製)、pKYP10(特開昭58-110600号公報)、pKYP200〔Agric.Biol.Chem.,48,669(1984)〕、pLSA1〔Agric.Biol.Chem.,53,277(1989)〕、pGEL1〔Proc.Natl.Acad.Sci.USA,82,4306(1985)〕、pBluescript II SK(-)(Stratagene社製)、pTrs30〔Escherichiacoli JM109/pTrS30(FERM BP-5407)より調製〕、pTrs32〔Escherichia coli JM109/pTrS32(FERM BP-5408)より調製〕、pGHA2〔Escherichia coli IGHA2(FERM B-400)より調製、特開昭60-221091号公報〕、pGKA2〔Escherichia coli IGKA2(FERM BP-6798)より調製、特開昭60-221091号公報〕、pTerm2(US4686191、US4939094、US5160735)、pSupex、pUB110、pTP5、pC194、pEG400〔J.Bacteriol.,172,2392(1990)〕、pGEX(Pharmacia社製)、及びpETシステム(Novagen社製)等を挙げることができる。 Examples of vectors for introducing a nucleic acid according to one embodiment (hereinafter simply referred to as "vectors") include pBTrp2, pBTac1, and pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (manufactured by Pharmacia), and pSE280. (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Patent Application Laid-Open No. 58-110600), pKYP200 [Agric. Biol. Chem. , 48, 669 (1984)], pLSA1 [Agric. Biol. Chem. , 53, 277 (1989)], pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescript II SK(-) (manufactured by Stratagene), pTrs30 [prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)], pTrs32 [Escherichia coli JM109/pTrS32 (FERM08BP-54BP-54BP-5407)] )], pGHA2 [prepared from Escherichia coli IGHA2 (FERM B-400), JP-A-60-221091], pGKA2 [prepared from Escherichia coli IGKA2 (FERM BP-6798), JP-A-60-221091 Publication], pTerm2 (US4686191, US4939094, US5160735), pSupex, pUB110, pTP5, pC194, pEG400 [J. Bacteriol. , 172, 2392 (1990)], pGEX (manufactured by Pharmacia), and pET system (manufactured by Novagen).
 宿主としてEscherichia coliを用いる場合は、例えば、pUC18、pBluescriptII、pSupex、pET22b、及びpCold等を好適なベクターとして挙げることができる。 When Escherichia coli is used as the host, suitable vectors include, for example, pUC18, pBluescriptII, pSupex, pET22b, and pCold.
 ブレビバチルス属に属する微生物に好適なベクターの具体例として、枯草菌ベクターとして公知であるpUB110、又はpHY500(特開平2-31682号公報)、pNY700(特開平4-278091号公報)、pHY4831(J.Bacteriol.,1987,1239-1245)、pNU200(鵜高重三、日本農芸化学会誌1987,61:669-676)、pNU100(Appl.Microbiol.Biotechnol.,1989,30:75-80)、pNU211(J.Biochem.,1992,112:488-491)、pNU211R2L5(特開平7-170984号公報)、pNH301(Appl.Environ.Microbiol.,1992,58:525-531)、pNH326、pNH400(J.Bacteriol.,1995,177:745-749)、pHT210(特開平6-133782号公報)、pHT110R2L5(Appl.Microbiol.Biotechnol.,1994,42:358-363)、又は大腸菌とブレビバチルス属に属する微生物とのシャトルベクターであるpNCO2(特開2002-238569号公報)等を挙げることができる。 Specific examples of vectors suitable for microorganisms belonging to the genus Brevibacillus include pUB110, which is known as a Bacillus subtilis vector, or pHY500 (JP-A-2-31682), pNY700 (JP-A-4-278091), pHY4831 (J Bacteriol., 1987, 1239-1245), pNU200 (Shigezo Udaka, Journal of Japan Agricultural Chemistry 1987, 61: 669-676), pNU100 (Appl. Microbiol. Biotechnol., 1989, 30: 75-80), pNU211 (J. Biochem., 1992, 112: 488-491), pNU211R2L5 (JP-A-7-170984), pNH301 (Appl. Environ. Microbiol., 1992, 58: 525-531), pNH326, pNH400 (J. Bacteriol., 1995, 177:745-749), pHT210 (JP-A-6-133782), pHT110R2L5 (Appl. Microbiol. Biotechnol., 1994, 42:358-363), or Escherichia coli and microorganisms belonging to the genus Brevibacillus and pNCO2 (Japanese Unexamined Patent Application Publication No. 2002-238569), which is a shuttle vector for .
 プロモーターとしては、宿主細胞中で機能するものであれば制限されない。例えば、trpプロモーター(Ptrp)、lacプロモーター、PLプロモーター、PRプロモーター、T7プロモーター等の大腸菌又はファージ等に由来するプロモーターを挙げることができる。またPtrpを2つ直列させたプロモーター(Ptrp×2)、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。 The promoter is not limited as long as it functions in the host cell. Examples thereof include promoters derived from Escherichia coli, phage, etc., such as trp promoter (Ptrp), lac promoter, PL promoter, PR promoter, and T7 promoter. In addition, artificially designed and modified promoters such as a promoter in which two Ptrps are arranged in series (Ptrp×2), tac promoter, lacT7 promoter, let I promoter, and the like can also be used.
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。発現ベクターにおいて、上記核酸の発現には転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。 It is preferable to use a plasmid in which the distance between the Shine-Dalgarno sequence, which is the ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (eg, 6 to 18 bases). In the expression vector, a transcription termination sequence is not necessarily required for expression of the above nucleic acid, but it is preferred to place a transcription termination sequence directly under the structural gene.
 真核生物の宿主としては、例えば、酵母、糸状真菌(カビ等)及び昆虫細胞を挙げることができる。 Examples of eukaryotic hosts include yeast, filamentous fungi (molds, etc.), and insect cells.
 酵母としては、例えば、サッカロマイセス(Saccharomyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、クリベロマイセス(Kluyveromyces)属、トリコスポロン(Trichosporon)属、シワニオミセス(Schwanniomyces)属、ピキア(Pichia)属、キャンディダ(Candida)属、ヤロウィア属及びハンゼヌラ属等に属する酵母を挙げることができる。より具体的には、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、クリベロマイセス・ラクチス(Kluyveromyces lactis)、クリベロマイセス・マルキシアヌス(Kluyveromyces marxianus)、トリコスポロン・プルランス(Trichosporon pullulans)、シワニオマイセス・アルビウス(Schwanniomyces alluvius)、シワニオマイセス・オシデンタリス(Schwanniomyces occidentalis)、キャンディダ・ユーティリス(Candida utilis)、ピキア・パストリス(Pichia pastoris)ピキア・アングスタ(Pichia angusta)、ピキア・メタノリカ(Pichia methanolica)、ピキア・ポリモルファ(Pichia polymorpha)、ピキア・スチピチス(Pichia stipitis)、ヤロウィア・リポリティカ(Yarrowia lipolytica)、及びハンゼヌラ・ポリモルファ(Hansenula polymorpha)等を挙げることができる。 As yeast, for example, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida , yeast belonging to the genus Yarrowia and Hansenula.より具体的には、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、クリベロマイセス・ラクチス(Kluyveromyces lactis)、クリベロマイセス・マルキシアヌス(Kluyveromyces marxianus)、トリコスポロン・プルランス(Trichosporon pullulans)、シワニオマイセス・Schwanniomyces alluvius, Schwanniomyces occidentalis, Candida utilis, Pichia pastoris, Pichia angusta, Pichia morpha Pichia Pichiola (Pichia polymorpha), Pichia stipitis, Yarrowia lipolytica, and Hansenula polymorpha.
 酵母を宿主細胞として用いる場合の発現ベクターは通常、複製起点(宿主における増幅が必要である場合)及び大腸菌中でのベクターの増殖のための選抜マーカー、酵母における組換えタンパク質発現のためのプロモーター及びターミネーター、並びに酵母のための選抜マーカーを含むことが好ましい。 When yeast is used as a host cell, the expression vector usually contains an origin of replication (if amplification in the host is required) and a selectable marker for propagation of the vector in E. coli, a promoter for recombinant protein expression in yeast, and a It is preferred to include a terminator as well as a selectable marker for yeast.
 発現ベクターが非組込みベクターの場合、さらに自己複製配列(ARS)を含むことが好ましい。これによって細胞内における発現ベクターの安定性を向上させることができる(Myers、A.M.、et al.(1986)Gene 45:299-310)。 When the expression vector is a non-integrating vector, it preferably further contains an autonomously replicating sequence (ARS). This can improve the stability of the expression vector in cells (Myers, AM, et al. (1986) Gene 45:299-310).
 酵母を宿主として用いる場合のベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、YIp、pHS19、pHS15、pA0804、pHIL3Ol、pHIL-S1、pPIC9K、pPICZα、pGAPZα、及びpPICZ B等を挙げることができる。 Examples of vectors when yeast is used as a host include YEp13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), YIp, pHS19, pHS15, pA0804, pHIL3Ol, pHIL-S1, pPIC9K, pPICZα, pGAPZα, and pPICZ B etc. can be mentioned.
 プロモーターとしては、酵母中で発現できるものであれば制限されない。プロモーターとしては、例えば、ヘキソースキナーゼ等の解糖系の遺伝子のプロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショックポリペプチドプロモーター、MFα1 プロモーター、CUP 1プロモーター、pGAPプロモーター、pGCW14プロモーター、AOX1プロモーター、及びMOXプロモーター等を挙げることができる。 The promoter is not limited as long as it can be expressed in yeast. Examples of promoters include promoters of glycolytic genes such as hexose kinase, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal1 promoter, gal10 promoter, heat shock polypeptide promoter, MFα1 promoter, and CUP1 promoter. , pGAP promoter, pGCW14 promoter, AOX1 promoter, and MOX promoter.
 酵母への発現ベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができる。酵母への発現ベクターの導入方法としては、例えば、エレクトロポレーション法(Methods Enzymol.,194,182(1990))、スフェロプラスト法(Proc.Natl.Acad.Sci.,USA,81,4889(1984))、酢酸リチウム法(J.Bacteriol.,153,163(1983))、及びProc.Natl.Acad.Sci.USA,75,1929(1978)記載の方法等を挙げることができる。 Any method for introducing DNA into yeast can be used as a method for introducing an expression vector into yeast. Examples of methods for introducing expression vectors into yeast include electroporation (Methods Enzymol., 194, 182 (1990)), spheroplast method (Proc. Natl. Acad. Sci., USA, 81, 4889 ( 1984)), the lithium acetate method (J. Bacteriol., 153, 163 (1983)), and Proc. Natl. Acad. Sci. USA, 75, 1929 (1978), and the like.
 糸状真菌としては、例えば、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、ウスチラーゴ(Ustilago)属、トリコデルマ(Trichoderma)属、ノイロスポラ(Neurospora)属、フザリウム(Fusarium)属、フミコーラ(Humicola)属、ペニシリウム(Penicillium)属、マイセリオフトラ(Myceliophtora)属、ボトリティス(Botryts)属、マグナポルサ(Magnaporthe)属、ムコア(Mucor)属、メタリチウム(Metarhizium)属、モナスカス(Monascus)属、リゾプス(Rhizopus)属、及びリゾムコア属に属する菌等を挙げることができる。 Examples of filamentous fungi include Acremonium genus, Aspergillus genus, Ustilago genus, Trichoderma genus, Neurospora genus, Fusarium genus, Humicola genus, Penicillium genus, Myceliophtora genus, Botryts genus, Magnaporthe genus, Mucor genus, Metalhizium genus, Monascus genus, Rhizopus genus , and bacteria belonging to the genus Rhizomucoa.
 糸状真菌の具体例として、アクレモニウム・アラバメンゼ(Acremonium alabamense)、アクレモニウム・セルロリティカス(Acremonium cellulolyticus)、アスペルギルス・アクレアツス(アキュレータス)(Aspergillus aculeatus)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・サケ(Aspergillus sake)、アスペルギルス・ゾジエ(ソーヤ)(Aspergillus sojae)、アスペルギルス・テュビゲンシス(Aspergillus tubigensis)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・ニデュランス(Aspergillus nidulans)、アスペルギルス・パラシチクス(Aspergillus parasiticus)、アスペルギルス・フィクム(フィキュウム)(Aspergillus ficuum)、アスペルギルス・フェニクス(Aspergillus phoeicus)、アスペルギルス・フォエチズス(フェチダス)(Aspergillus foetidus)、アスペルギルス・フラーブス(Aspergillus flavus)、アスペルギルス・フミガタス(Aspergillus fumigatus)、アスペルギルス・ヤポニクス(ジャポニカス)(Aspergillus japonicus)、トリコデルマ・ビリデ(Trichoderma viride)、トリコデルマ・ハージアヌム(Trichoderma harzianum)、トリコデルマ・リーゼイ(Trichoderma reseei)、クリソスポリウム・ルクノエンス(Chrysosporium lucknowense)、サーモアスクス(Thermoascus)、スポロトリクム(Sporotrichum)、スポロトリクム・セルロフィルム(Sporotrichum cellulophilum)、タラロマイセス(Talaromyces)、チエラビア・テレストリス(Thielavia terrestris)、チラビア(Thielavia)、ノイロスポラ・クラザ(Neurospora crassa)、フザリウム・オキシスポーラス(Fusarium oxysporus)、フザリウム・グラミネルム(Fusarium graminearum)、フザリウム・ベネナツム(Fusarium venenatum)、フミコーラ・インソレンス(Humicola insolens)、ペニシリウム・クリゾゲナム(Penicillium chrysogenum)、ペニシリウム・カマンベルティ(Penicillium camemberti)、ペニシリウム・カネセンス(Penicillium canescens)、ペニシリウム・エメルソニ(Penicillium emersonii)、ペニシリウム・フニクロスム(Penicillium funiculosum)、ペニシリウム・グリゼオロゼウム(Penicillium griseoroseum)、ペニシリウム・パープロゲナム(Penicillium purpurogenum)、ペニシリウム・ロケフォルチ(Penicillium roqueforti)、マイセリオフトラ・サーモフィルム(Myceliophtaora thermophilum)、ムコア・アンビグス(Mucor ambiguus)、ムコア・シイルシネロイデェス(Mucor circinelloides)、ムコア・フラギリス(Mucor fragilis)、ムコア・ヘマリス(Mucor hiemalis)、ムコア・イナエクイスポラス(Mucor inaequisporus)、ムコア・オブロンジエリプティカス(Mucor oblongiellipticus)、ムコア・ラセモサス(Mucor racemosus)、ムコア・レクルバス(Mucor recurvus)、ムコア・サトゥルニナス(Mocor saturninus)、ムコア・サブティリススミウス(Mocor subtilissmus)、オガタエア・ポリモルファ(Ogataea polymorpha)、ファネロケーテ・クリソスポリウム(Phanerochaete chrysosporium)、リゾムコア・ミーヘイ(Rhizomucor miehei)、リゾムコア・プシルス(Rhizomucor pusillus)、及びリゾプス・アルヒザス(Rhizopus arrhizus)等を挙げることができる。 Specific examples of filamentous fungi include Acremonium alabamense, Acremonium cellulolyticus, Aspergillus aculeatus, Aspergillus awamori, Aspergillus awamori Aspergillus oryzae)、アスペルギルス・サケ(Aspergillus sake)、アスペルギルス・ゾジエ(ソーヤ)(Aspergillus sojae)、アスペルギルス・テュビゲンシス(Aspergillus tubigensis)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・ニデュランス(Aspergillus nidulans)、アスペルギルス・パラシチクス(Aspergillus parasiticus)、アスペルギルス・フィクム(フィキュウム)(Aspergillus ficuum)、アスペルギルス・フェニクス(Aspergillus phoeicus)、アスペルギルス・フォエチズス(フェチダス)(Aspergillus foetidus)、アスペルギルス・フラーブス(Aspergillus flavus)、アスペルギルス・フミガタス(Aspergillus fumigatus )、アスペルギルス・ヤポニクス(ジャポニカス)(Aspergillus japonicus)、トリコデルマ・ビリデ(Trichoderma viride)、トリコデルマ・ハージアヌム(Trichoderma harzianum)、トリコデルマ・リーゼイ(Trichoderma reseei)、クリソスポリウム・ルクノエンス(Chrysosporium lucknowense)、サーモアスクス( Thermoascus, Sporotrichum, Sporotrichum cellulophilum, Talaromyces, Thielavia terrestris, Thielavia, Neurospora oxyspora, Neurospora oxy.ポーラス(Fusarium oxysporus)、フザリウム・グラミネルム(Fusarium graminearum)、フザリウム・ベネナツム(Fusarium venenatum)、フミコーラ・インソレンス(Humicola insolens)、ペニシリウム・クリゾゲナム(Penicillium chrysogenum)、ペニシリウム・カマンベルティ(Penicillium camemberti)、ペニシリウム・カネセンス(Penicillium canescens)、ペニシリウム・エメルソニ(Penicillium emersonii)、ペニシリウム・フニクロスム(Penicillium funiculosum)、ペニシリウム・グリゼオロゼウム(Penicillium griseoroseum)、ペニシリウム・パープロゲナム(Penicillium purpurogenum)、ペニシリウム・ロケフォルチ(Penicillium roqueforti)、マイセリオフトラ・サーモFilm (Myceliophtaora thermophilum), Mucor ambigus, Mucor circinelloides, Mucor fragilis, Mucor himalis, Mucor inaequisporus , Mucor oblongiellipticus, Mucor racemosus, Mucor recurvus, Mocor saturninus, Mocor subtilismus, Ogataea Examples include Ogataea polymorpha, Phanerochaete chrysosporium, Rhizomucor miehei, Rhizomucor pusillus, and Rhizopus arhiza.
 宿主が糸状真菌である場合のプロモーターとしては、解糖系に関する遺伝子、構成的発現に関する遺伝子、加水分解に関する酵素遺伝子等いずれであってもよい。宿主が糸状真菌である場合のプロモーターとしては、具体的には、amyB、glaA、agdA、glaB、TEF1、xynF1tannasegene、No.8AN、gpdA、pgkA、enoA、melO、sodM、catA、及びcatB等を挙げることができる。 When the host is a filamentous fungus, the promoter may be a gene related to glycolysis, a gene related to constitutive expression, an enzyme gene related to hydrolysis, or the like. Specific examples of promoters when the host is a filamentous fungus include amyB, glaA, agdA, glaB, TEF1, xynF1tannasegene, No. 8AN, gpdA, pgkA, enoA, melO, sodM, catA, and catB, and the like.
 糸状真菌への発現ベクターの導入は、従来公知の方法を用いて行うことができる。糸状真菌への発現ベクターの導入方法としては、例えば、Cohenらの方法(塩化カルシウム法)[Proc.Natl.Acad.Sci.USA,69:2110(1972)]、プロトプラスト法[Mol.Gen.Genet.,168:111(1979)]、コンピテント法[J.Mol.Biol.,56:209(1971)]、エレクトロポレーション法等が挙げられる。 Introduction of expression vectors into filamentous fungi can be performed using conventionally known methods. Methods for introducing expression vectors into filamentous fungi include, for example, the method of Cohen et al. (calcium chloride method) [Proc. Natl. Acad. Sci. USA, 69:2110 (1972)], protoplast method [Mol. Gen. Genet. , 168:111 (1979)], competent methods [J. Mol. Biol. , 56:209 (1971)], electroporation, and the like.
 昆虫細胞として、例えば、鱗翅類の昆虫細胞が挙げられる。昆虫細胞としては、より具体的には、Sf9、及びSf21等のスポドプテラ・フルギペルダ(Spodoptera frugiperda)由来の昆虫細胞、並びに、High 5等のイラクサギンウワバ(Trichoplusia ni)由来の昆虫細胞等が挙げられる。 Insect cells include, for example, Lepidoptera insect cells. More specifically, insect cells include Spodoptera frugiperda-derived insect cells such as Sf9 and Sf21, and Trichoplusia ni-derived insect cells such as High 5. .
 昆虫細胞を宿主として用いる場合のベクターとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等のバキュロウイルス(Baculovirus Expression Vectors, A Laboratory Manual,W.H.Freeman and Company,New York(1992))を挙げることができる。 Examples of vectors when insect cells are used as hosts include Baculovirus Expression Vectors such as Autographa californica nuclear polyhedrosis virus, which is a virus that infects insects of the family Mothidae. , A Laboratory Manual, WH Freeman and Company, New York (1992)).
 昆虫細胞を宿主として用いる場合には、例えば、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、Baculovirus Expression Vectors, A Laboratory Manual,W.H.Freeman and Company, New York(1992)、及びBio/Technology,6,47(1988)等に記載された方法によって、ポリペプチドを発現することができる。すなわち、組換え遺伝子導入ベクター及びバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルス(発現ベクター)を得た後、さらに組換えウイルスを昆虫細胞に感染させ、ポリペプチドを発現させることができる。該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、及びpBlueBacIII(ともにInvitrogen社製)等を挙げることができる。 When using insect cells as hosts, for example, Current Protocols in Molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual, W. H. Polypeptides can be expressed by methods described in Freeman and Company, New York (1992), and Bio/Technology, 6, 47 (1988). That is, after co-introducing a recombinant gene transfer vector and a baculovirus into insect cells to obtain a recombinant virus (expression vector) in the insect cell culture supernatant, the insect cells are further infected with the recombinant virus to produce a polypeptide. can be expressed. Examples of gene transfer vectors used in this method include pVL1392, pVL1393, and pBlueBacIII (both manufactured by Invitrogen).
 組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターとバキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法(特開平2-227075号公報)、及びリポフェクション法(Proc.Natl.Acad.Sci.USA,84,7413(1987))等を挙げることができる。 Methods for co-introducing a recombinant gene transfer vector and baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (JP-A-2-227075) and the lipofection method (Proc. Natl. Acad.Sci.USA, 84, 7413 (1987)).
 一実施形態に係る組換えベクターは、形質転換体選択のための選択マーカー遺伝子をさらに含有していることが好ましい。例えば、大腸菌においては、選択マーカー遺伝子としては、テトラサイクリン、アンピシリン、カナマイシン等の各種薬剤に対する耐性遺伝子を用いることができる。栄養要求性に関与する遺伝子変異を相補できる劣性の選択マーカーも使用できる。酵母においては、選択マーカー遺伝子として、ジェネティシンに対する耐性遺伝子を用いることができ、栄養要求性に関与する遺伝子変異を相補する遺伝子、LEU2、URA3、TRP1、HIS3等の選択マーカーも使用できる。糸状真菌においては、選択マーカー遺伝子として、niaD(Biosci.Biotechnol.Biochem.,59,1795-1797(1995))、argB(Enzyme Microbiol Technol,6,386-389,(1984)),sC(Gene,84,329-334,(1989))、ptrA(BiosciBiotechnol Biochem,64,1416-1421,(2000))、pyrG(BiochemBiophys Res Commun,112,284-289,(1983)),amdS(Gene,26,205-221,(1983))、オーレオバシジン耐性遺伝子(Mol Gen Genet,261,290-296,(1999))、ベノミル耐性遺伝子(Proc Natl Acad Sci USA,83,4869-4873,(1986))及びハイグロマイシン耐性遺伝子(Gene,57,21-26,(1987))からなる群より選ばれるマーカー遺伝子、ロイシン要求性相補遺伝子等が挙げられる。また、宿主が栄養要求性変異株の場合には、選択マーカー遺伝子として当該栄養要求性を相補する野生型遺伝子を用いることもできる。 A recombinant vector according to one embodiment preferably further contains a selection marker gene for transformant selection. For example, in E. coli, resistance genes to various drugs such as tetracycline, ampicillin, and kanamycin can be used as selectable marker genes. Recessive selectable markers that can complement genetic mutations involved in auxotrophy can also be used. In yeast, genes resistant to geneticin can be used as selectable marker genes, and selectable markers such as LEU2, URA3, TRP1, and HIS3, genes that complement gene mutations involved in auxotrophy can also be used. In filamentous fungi, selectable marker genes include niaD (Biosci. Biotechnol. Biochem., 59, 1795-1797 (1995)), argB (Enzyme Microbiol Technol, 6, 386-389, (1984)), sC (Gene, 84, 329-334, (1989)), ptrA (BiosciBiotechnol Biochem, 64, 1416-1421, (2000)), pyrG (Biochem Biophys Res Commun, 112, 284-289, (1983)), amdS (Gene, 26, 205-221, (1983)), aureobasidin resistance gene (Mol Gen Genet, 261, 290-296, (1999)), benomyl resistance gene (Proc Natl Acad Sci USA, 83, 4869-4873, (1986)) and hygromycin-resistant genes (Gene, 57, 21-26, (1987)), marker genes selected from the group, leucine-requiring complementary genes, and the like. Moreover, when the host is an auxotrophic mutant strain, a wild-type gene that complements the auxotrophy can be used as the selectable marker gene.
 一実施形態に係る発現ベクターで形質転換された宿主の選択は、上記核酸に選択的に結合するプローブを用いたプラークハイブリダイゼーション及びコロニーハイブリダイゼーション等で行うことができる。当該プローブとしては、上記核酸の配列情報に基づき、PCR法によって増幅した部分DNA断片をラジオアイソトープ又はジゴキシゲニンで修飾したものを用いることができる。 A host transformed with an expression vector according to one embodiment can be selected by plaque hybridization, colony hybridization, or the like using a probe that selectively binds to the nucleic acid. As the probe, a partial DNA fragment amplified by PCR based on the sequence information of the above nucleic acid and modified with a radioisotope or digoxigenin can be used.
〔人工フィブロインの製造方法〕
 人工フィブロインは、上記発現ベクターで形質転換された宿主に、上記核酸を発現させる工程を含む方法によって、製造することができる。発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。酵母、動物細胞、昆虫細胞によって発現させた場合には、糖又は糖鎖が付加されたポリペプチドとして人工フィブロインを得ることができる。
[Method for producing artificial fibroin]
Artificial fibroin can be produced by a method comprising the step of expressing the above nucleic acid in a host transformed with the above expression vector. As the expression method, in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning, Second Edition. When expressed in yeast, animal cells, or insect cells, artificial fibroin can be obtained as a polypeptide to which a sugar or sugar chain has been added.
 人工フィブロインは、例えば、上記発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に本実施形態に係る人工フィブロインを生成蓄積させ、該培養培地から採取することによって製造することができる。上記宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。 Artificial fibroin can be produced, for example, by culturing a host transformed with the expression vector in a culture medium, producing and accumulating the artificial fibroin according to the present embodiment in the culture medium, and collecting the artificial fibroin from the culture medium. can be done. The method of culturing the host in the culture medium can be carried out according to a method commonly used for culturing the host.
 上記宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、上記宿主の培養培地として、該宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、該宿主の培養を効率的に行える培地であれば、天然培地、及び合成培地のいずれを用いてもよい。 When the host is a prokaryote such as E. coli or a eukaryote such as yeast, the culture medium for the host contains a carbon source, a nitrogen source, an inorganic salt, etc. that can be assimilated by the host, Either a natural medium or a synthetic medium may be used as long as the medium can efficiently perform the above.
 炭素源としては、該宿主が資化し得るものであればよい。炭素源としては、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。 Any carbon source can be used as long as it can be assimilated by the host. Carbon sources include carbohydrates such as glucose, fructose, sucrose, and molasses containing these, starch and starch hydrolysates, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol. can be done.
 窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。 Nitrogen sources include, for example, ammonia, ammonium chloride, ammonium sulfate, ammonium salts of inorganic or organic acids such as ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolysates, soybean meal and soybean meal hydrolysates, various fermented cells and their digests can be used.
 無機塩としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。 As inorganic salts, for example, potassium dibasic phosphate, dibasic potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate can be used.
 大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。 Prokaryotes such as E. coli or eukaryotes such as yeast can be cultured under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is, for example, 15-40°C. Culture time is usually 16 hours to 7 days. The pH of the culture medium during cultivation is preferably maintained between 3.0 and 9.0. The pH of the culture medium can be adjusted using inorganic acids, organic acids, alkaline solutions, urea, calcium carbonate, ammonia, and the like.
 また、培養中必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。 In addition, antibiotics such as ampicillin and tetracycline may be added to the culture medium as necessary during the culture. When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, isopropyl-β-D-thiogalactopyranoside or the like is used when culturing a microorganism transformed with an expression vector using a lac promoter, and indole acrylic when culturing a microorganism transformed with an expression vector using a trp promoter. Acids and the like may be added to the medium.
 昆虫細胞の培養培地としては、例えば、一般に使用されているTNM-FH培地(Pharmingen社製)、Sf-900 II SFM培地(Life Technologies社製)、ExCell400、ExCell405(いずれもJRH Biosciences社製)、及びGrace‘s Insect Medium(Nature,195,788(1962))等を用いることができる。 Culture media for insect cells include, for example, commonly used TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM medium (manufactured by Life Technologies), ExCell400, ExCell405 (both manufactured by JRH Biosciences), and Grace's Insect Medium (Nature, 195, 788 (1962)).
 昆虫細胞の培養は、例えば、培養培地のpH6~7、培養温度25~30℃等の条件下で、培養時間1~5日間とすることができる。また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培養培地に添加してもよい。 Insect cells can be cultured for 1 to 5 days under conditions such as a culture medium with a pH of 6 to 7 and a culture temperature of 25 to 30°C. In addition, antibiotics such as gentamicin may be added to the culture medium as necessary during the culture.
 宿主が植物細胞の場合、形質転換された植物細胞をそのまま培養してもよく、また植物の器官に分化させて培養することができる。該植物細胞を培養する培地としては、例えば、一般に使用されているムラシゲ・アンド・スクーグ(MS)培地、ホワイト(White)培地、又はこれらの培地にオーキシン、サイトカイニン等、植物ホルモンを添加した培地等を用いることができる。 When the host is a plant cell, the transformed plant cell can be cultured as it is, or it can be differentiated into plant organs and cultured. Examples of the medium for culturing the plant cells include commonly used Murashige and Skoog (MS) medium, White medium, or these medium supplemented with plant hormones such as auxin and cytokinin. can be used.
 動物細胞の培養は、例えば、培養培地のpH5~9、培養温度20~40℃等の条件下で、培養時間3~60日間とすることができる。また、培養中必要に応じて、カナマイシン、ハイグロマイシン等の抗生物質を培地に添加してもよい。 Animal cells can be cultured for 3 to 60 days under conditions such as a culture medium with a pH of 5 to 9 and a culture temperature of 20 to 40°C. Moreover, antibiotics such as kanamycin and hygromycin may be added to the medium as necessary during the culture.
 上記発現ベクターで形質転換された宿主を用いて人工フィブロインを生産する方法としては、該人工フィブロインを宿主細胞内に生産させる方法、宿主細胞外に分泌させる方法、及び宿主細胞外膜上に生産させる方法等がある。使用する宿主細胞、及び生産させる人工フィブロインの構造を変えることによって、これらの各方法を選択することができる。 Methods of producing artificial fibroin using a host transformed with the expression vector include a method of producing the artificial fibroin in the host cell, a method of secreting the artificial fibroin outside the host cell, and a method of producing it on the extracellular membrane of the host cell. There are methods, etc. Each of these methods can be selected by varying the host cell used and the structure of the artificial fibroin produced.
 例えば、人工フィブロインが宿主細胞内又は宿主細胞外膜上に生産される場合、ポールソンらの方法(J.Biol.Chem.,264,17619(1989))、ロウらの方法(Proc.Natl.Acad.Sci.USA,86,8227(1989)、Genes Develop.,4,1288(1990))、又は特開平5-336963号公報、国際公開第94/23021号等に記載の方法を準用することによって、人工フィブロインを宿主細胞外に積極的に分泌させるように変更させることができる。すなわち、遺伝子組換えの手法を用いて、人工フィブロインの活性部位を含むポリペプチドにシグナルペプチドを付加した形で発現させることによって、人工フィブロインを宿主細胞外に積極的に分泌させることができる。 For example, when artificial fibroin is produced in the host cell or on the host cell extracellular membrane, the method of Paulson et al. USA, 86, 8227 (1989), Genes Develop., 4, 1288 (1990)), or by applying the methods described in JP-A-5-336963, WO 94/23021, etc. , can be modified to actively secrete artificial fibroin out of host cells. That is, artificial fibroin can be actively secreted outside the host cell by expressing a polypeptide containing the active site of artificial fibroin with a signal peptide added thereto using a genetic recombination technique.
 上記発現ベクターで形質転換された宿主によって生産された人工フィブロインは、タンパク質の単離精製に通常用いられている方法で単離及び精製することができる。例えば、人工フィブロインが、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離によって回収し、水系緩衝液にけん濁させた後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等によって宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することによって得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。 Artificial fibroin produced by a host transformed with the above expression vector can be isolated and purified by methods commonly used for protein isolation and purification. For example, when artificial fibroin is expressed in a dissolved state in cells, the host cells are recovered by centrifugation after the completion of culture, suspended in an aqueous buffer, and then subjected to an ultrasonic crusher, a French press, or a Manton. The host cells are disrupted with a Gaulin homogenizer, Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a method commonly used for protein isolation and purification, that is, a solvent extraction method, a salting-out method using ammonium sulfate, etc., a desalting method, an organic solvent Precipitation method, diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei) and other resins, anion exchange chromatography, S-Sepharose FF (Pharmacia) and other resins, etc. Ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, and electrophoresis such as isoelectric focusing A purified sample can be obtained by using the methods such as the above alone or in combination.
 上記クロマトグラフィーとしては、フェニル-トヨパール(東ソー)、DEAE-トヨパール(東ソー)、セファデックスG-150(ファルマシアバイオテク)を用いたカラムクロマトグラフィーが好ましく用いられる。 As the above chromatography, column chromatography using Phenyl-Toyopearl (Tosoh), DEAE-Toyopearl (Tosoh), and Sephadex G-150 (Pharmacia Biotech) is preferably used.
 また、人工フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことによって、沈殿画分として人工フィブロインの不溶体を回収する。回収した人工フィブロインの不溶体は蛋白質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によって人工フィブロインの精製標品を得ることができる。 In addition, when the artificial fibroin forms an insoluble form in the cells and is expressed, the host cells are similarly collected, crushed, and centrifuged to collect the insoluble form of the artificial fibroin as a precipitate fraction. The collected insoluble artificial fibroin can be solubilized with a protein denaturant. After this operation, a purified preparation of artificial fibroin can be obtained by the same isolation and purification method as described above.
 人工フィブロイン、又は人工フィブロインに糖鎖の付加された誘導体が細胞外に分泌された場合には、培養上清から人工フィブロイン又はその誘導体を回収することができる。すなわち、培養物を遠心分離等の手法で処理することによって培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることによって、精製標品を得ることができる。 When artificial fibroin or a derivative of artificial fibroin to which a sugar chain is added is secreted extracellularly, the artificial fibroin or its derivative can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a technique such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
〔バインダ〕
 バインダにはタンパク質、ペプチド、多糖、オリゴ糖、糖ポリマー、脂肪酸、脂肪酸ポリマーなど、ポリフェノールなど高分子ポリマーであれば種類を問わない。これらのバインダには、原料繊維に付着する性質を有するものであっても、有しないものであってもよい。「付着する性質」とは、種類の異なる物質が近接しておかれたときに両者の間に働く相互作用によって結びつける性質であり、「濡れ」および「凝集」を包含する。相互作用としては、van der Waals力、表面張力、界面張力、静電的相互作用などとも呼ばれる。
[Binder]
Any type of binder can be used as long as it is a high-molecular polymer such as protein, peptide, polysaccharide, oligosaccharide, sugar polymer, fatty acid, fatty acid polymer, or polyphenol. These binders may or may not have the property of adhering to raw material fibers. The "property of adhering" is the property of binding different types of substances when they are brought close to each other by interaction, and includes "wetting" and "aggregation". The interaction is also called van der Waals force, surface tension, interfacial tension, electrostatic interaction, and the like.
 付着性バインダは、原料繊維に付着した後、酵素反応によりバインダと原料繊維、またはバインダ同士を架橋することで原料繊維の束を固定化し、太径の人工ポリペプチド繊維を形成する。また、非付着性バインダは、筒状容器に入れる等して原料繊維を束ねた後、酵素反応によりバインダと原料繊維、またはバインダ同士を架橋することで原料繊維の束を固定化し、太径の人工ポリペプチド繊維を形成する。 After adhering to the raw material fibers, the adhesive binder immobilizes the bundle of the raw material fibers by enzymatic reaction to crosslink the binder and the raw material fibers, or between the binders, forming large-diameter artificial polypeptide fibers. In addition, the non-adhesive binder is prepared by bundling the raw material fibers in a cylindrical container or the like, and then by enzymatic reaction to cross-link the binder and the raw material fibers, or between the binders to fix the bundle of the raw material fibers, resulting in a large diameter. Form artificial polypeptide fibers.
 付着性バインダとしては、ポリペプチド、ペプチド、タンパク質、多糖類、フェノール性化合物が挙げられ、好ましくは、フィブロイン(天然及び人工を含む)、ゼラチン、コラーゲン、カゼイングルー、デンプン、クラフトリグニン、粘性多糖類が挙げられる。 Adhesive binders include polypeptides, peptides, proteins, polysaccharides, phenolic compounds, preferably fibroin (including natural and artificial), gelatin, collagen, casein glue, starch, kraft lignin, viscous polysaccharides. is mentioned.
 非付着性バインダとしては、例えば、ポリペプチド、ペプチド、フェノール性化合物、多糖類が挙げられる。ポリペプチド又はペプチドは、好ましくは、チロシン又はリジン、システインのいずれかを含むポリペプチド又はペプチドである。フェノール性化合物は、好ましくはポリフェノールであり、多糖類は、好ましくは、フェノール類が結合した多糖類(例えば、甜菜ペクチンなど)が挙げられる。 Examples of non-adhesive binders include polypeptides, peptides, phenolic compounds, and polysaccharides. The polypeptide or peptide is preferably a polypeptide or peptide containing either tyrosine, lysine or cysteine. Phenolic compounds are preferably polyphenols, and polysaccharides are preferably polysaccharides to which phenols are bound (eg, sugar beet pectin, etc.).
 本実施形態に係る人工ポリペプチド繊維の製造方法において、バインダの使用量は、原料繊維の質量を基準として、0.001~10000質量%であればよく、0.1~1000質量%、1~100質量%、または3~30質量%であることが好ましい。 In the method for producing an artificial polypeptide fiber according to the present embodiment, the amount of the binder used may be 0.001 to 10000% by mass, based on the mass of the raw material fiber. It is preferably 100% by mass, or 3 to 30% by mass.
〔酵素〕
 本実施形態で使用する酵素は、原料繊維及びバインダの少なくとも一方を酵素の基質として認識できる酵素であればよく、酸化還元酵素であってもタンパク質架橋化酵素であってもよい。架橋化酵素には、アシル基転移酵素、酸化還元酵素も包含される。
〔enzyme〕
The enzyme used in the present embodiment may be any enzyme that can recognize at least one of the raw material fiber and the binder as a substrate for the enzyme, and may be an oxidoreductase or a protein cross-linking enzyme. Cross-linking enzymes also include acyltransferases and oxidoreductases.
 タンパク質架橋化酵素としては、例えば、ポリフェノールオキシダーゼ(チロシナーゼ)、ペルオキシダーゼ、マルチ銅オキシダーゼ(ラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラスミン)、トランスグルタミナーゼ、リジルオキシダーゼ、プロテインジスルフィドイソメラーゼ、プロテインジスルフィドレダクターゼ、スルフヒドリルオキシダーゼ、リポキシゲナーゼが挙げられる。 Examples of protein cross-linking enzymes include polyphenol oxidase (tyrosinase), peroxidase, multi-copper oxidase (laccase, bilirubin oxidase, ascorbic acid oxidase, ceruloplasmin), transglutaminase, lysyl oxidase, protein disulfide isomerase, protein disulfide reductase, sulfhydryl oxidase. , lipoxygenase.
 タンパク質架橋化酵素は、好ましくは酸化還元酵素であり、具体的にはポリフェノールオキシダーゼ(チロシナーゼ)、ペルオキシダーゼ、マルチ銅オキシダーゼ(ラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラスミン)、リジルオキシダーゼ、スルフヒドリルオキシダーゼが挙げられる。より好ましくはラッカーゼ、ビリルビンオキシダーゼ、ペルオキシダーゼ、チロシナーゼであり、更に好ましくはラッカーゼ、ビリルビンオキシダーゼ、ペルオキシダーゼである。 The protein cross-linking enzyme is preferably an oxidoreductase, and specific examples include polyphenol oxidase (tyrosinase), peroxidase, multicopper oxidase (laccase, bilirubin oxidase, ascorbic acid oxidase, ceruloplasmin), lysyl oxidase, and sulfhydryl oxidase. be done. More preferred are laccase, bilirubin oxidase, peroxidase and tyrosinase, and still more preferred are laccase, bilirubin oxidase and peroxidase.
 より好ましい酵素としては、例えば、ラッカーゼ、ビリルビンオキシダーゼ、ペルオキシダーゼとグルコースオキシダーゼの併用である。 More preferred enzymes are, for example, laccase, bilirubin oxidase, and combined use of peroxidase and glucose oxidase.
 酸化還元酵素は、バインダおよび原料繊維の少なくとも一方が有する化学構造を酸化または還元することにより、反応性官能基(例えば、アルデヒド)を生成できる酵素であれば、特に限定されない。酸化還元酵素としては、例えば、以下のものが挙げられる。 The oxidoreductase is not particularly limited as long as it can generate a reactive functional group (eg, aldehyde) by oxidizing or reducing the chemical structure of at least one of the binder and raw fiber. Examples of oxidoreductases include the following.
(1)基質特異性が低く、活性中心に金属イオンを含む酵素(例えば、ラッカーゼ等のマルチ銅オキシダーゼ)
(2)タンパク質中のリジン残基のε-アミノ基を酸化してアルデヒド基を生じさせる酵素(例えば、リジルオキシダーゼ)
(3)タンパク質中のシステイン残基のスルフヒドリル基を酸化させる酵素(例えば、スルフヒドリルオキシダーゼ)
(4)タンパク質中のチロシン残基のフェノール性水酸基を酸化してο-キノンを生じさせる酵素(例えば、チロシナーゼ)
(5)酸化反応における酸素供与体として過酸化水素を必要とする酵素(例えば、ペルオキシダーゼ、過酸化水素の生成のためにグルコースオキシダーゼと併用してもよい。)
(1) Enzymes with low substrate specificity and containing metal ions in the active center (for example, multi-copper oxidases such as laccase)
(2) an enzyme that oxidizes the ε-amino group of a lysine residue in a protein to produce an aldehyde group (eg, lysyl oxidase)
(3) Enzymes that oxidize sulfhydryl groups of cysteine residues in proteins (e.g., sulfhydryl oxidase)
(4) Enzymes that oxidize phenolic hydroxyl groups of tyrosine residues in proteins to yield o-quinones (eg, tyrosinase)
(5) Enzymes that require hydrogen peroxide as an oxygen donor in oxidation reactions (for example, peroxidase, which may be used in combination with glucose oxidase to generate hydrogen peroxide)
 ここで、マルチ銅オキシダーゼとは、活性中心に銅原子を有し、ポリフェノール、メトキシフェノール、ジアミン、ビリルビン、アスコルビン酸などの種々の基質から電子を取り出し(酸化)、分子状酸素を還元する酵素群の総称である。これまでに、銅原子の数は2~8個の酵素が知られているが、分析時の酵素標品の状態、分析法によりばらつきが見られる。マルチ銅オキシダーゼとしては、例えば、ラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラスミンなどが挙げられる。 Here, multi-copper oxidase is a group of enzymes that have a copper atom in the active center, extract (oxidize) electrons from various substrates such as polyphenols, methoxyphenols, diamines, bilirubin, and ascorbic acid, and reduce molecular oxygen. is a generic term for Enzymes with 2 to 8 copper atoms have been known so far, but there are variations depending on the state of the enzyme sample at the time of analysis and the analysis method. Multicopper oxidases include, for example, laccase, bilirubin oxidase, ascorbate oxidase, ceruloplasmin and the like.
 バインダと酵素の好ましい組合せは、例えば、ポリペプチドとラッカーゼ、ポリフェノールとラッカーゼ、ポリペプチドとビリルビンオキシダーゼ、ポリペプチドとパーオキシダーゼ、ポリペプチドとパーオキシダーゼとグルコースオキシダーゼ、より好ましくはシルクフィブロインとラッカーゼ、シルクフィブロインとビリルビンオキシダーゼ、シルクフィブロインとパーオキシダーゼ、シルクフィブロインとパーオキシダーゼとグルコースオキシダーゼ、ゼラチンとラッカーゼである。 Preferred combinations of binder and enzyme are, for example, polypeptide and laccase, polyphenol and laccase, polypeptide and bilirubin oxidase, polypeptide and peroxidase, polypeptide and peroxidase and glucose oxidase, more preferably silk fibroin and laccase, silk fibroin and bilirubin oxidase, silk fibroin and peroxidase, silk fibroin and peroxidase and glucose oxidase, gelatin and laccase.
 従来、バインダ(特にタンパク質)の架橋及び接着では、酸化剤としてベンゾキノン、グルタルアルデヒド、ホルムアルデヒドを使用して行われてきた(例えば、非特許文献1参照)。しかし、ベンゾキノンやアルデヒド類は酸化剤として知られているが、臭気があり、皮膚や粘膜への刺激性が強く、作業者への身体的負担や環境負荷も大きいことから、廃液処理が必要となる。また、アルデヒド類を使用すると、より長い反応時間を要したり、得られる太径の人工ポリペプチド繊維が着色したりする。しかし、本実施形態に係る方法であれば、酵素反応によって太径化を達成できるため、上述の酸化剤を使用する必要がなく、作業者への負担及び環境負荷を低減し得る。また、一部の実施形態では、酵素の基質特異性が高いため、副反応が抑制され、不純物の混入も低減し得る。 Conventionally, cross-linking and adhesion of binders (especially proteins) have been performed using benzoquinone, glutaraldehyde, and formaldehyde as oxidizing agents (see, for example, Non-Patent Document 1). However, although benzoquinone and aldehydes are known to be oxidizing agents, they have an odor, are highly irritating to the skin and mucous membranes, and pose a physical burden on workers and the environment. Become. In addition, when aldehydes are used, a longer reaction time is required, and the resulting large-diameter artificial polypeptide fibers are colored. However, according to the method according to the present embodiment, enzymatic reaction can be used to increase the diameter, so there is no need to use the above-described oxidizing agent, and the burden on workers and the environmental load can be reduced. Also, in some embodiments, the high substrate specificity of the enzyme may reduce side reactions and reduce contamination.
 本実施形態に係る方法は、さらに原料繊維(細径の人工ポリペプチド繊維)を調製する工程を備えてもよい。本工程によって得られた原料繊維を束ねて、酵素反応により架橋させることができる。また、本工程は、例えば、特許文献1の記載の方法を参考にして、人工ポリペプチドから紡糸工程を経て得た細径の人工ポリペプチド繊維を原料繊維として利用してもよい。 The method according to the present embodiment may further comprise a step of preparing raw material fibers (thin-diameter artificial polypeptide fibers). The raw fibers obtained by this step can be bundled and crosslinked by an enzymatic reaction. In addition, in this step, for example, by referring to the method described in Patent Document 1, a thin artificial polypeptide fiber obtained through a spinning process from an artificial polypeptide may be used as a raw material fiber.
 本実施形態に係る方法では、酵素が原料繊維及びバインダの少なくとも一方と反応し、反応性官能基を生じさせ、周辺に存在する原料繊維又はバインダと化学的に結合することにより架橋される。得られる人工ポリペプチド繊維の模式図を図1に示す。図1に示すように、原料繊維1がバインダ2を介して互いに接合し、全体として1つの太い繊維10が形成される。 In the method according to the present embodiment, the enzyme reacts with at least one of the raw material fiber and the binder to generate a reactive functional group, which is crosslinked by chemically bonding with the surrounding raw material fiber or binder. A schematic diagram of the resulting artificial polypeptide fiber is shown in FIG. As shown in FIG. 1, raw material fibers 1 are bonded together via a binder 2 to form a single thick fiber 10 as a whole.
〔原料繊維(細径の人工ポリペプチド繊維)の製造方法〕
 原料繊維は、公知の紡糸方法によって製造することができる。すなわち、例えば、タンパク質を主成分として含む原料繊維を製造する際には、まず、上述した方法に準じて製造したタンパク質(例えば、改変フィブロイン)をジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ギ酸、又はヘキサフルオロイソプロパノール(HFIP)等の溶媒に、必要に応じて、溶解促進剤としての無機塩と共に添加し、溶解してドープ液を作製する。次いで、このドープ液を用いて、湿式紡糸、乾式紡糸、乾湿式紡糸又は溶融紡糸等の公知の紡糸方法により紡糸して、目的とする原料繊維を得ることができる。好ましい紡糸方法としては、湿式紡糸又は乾湿式紡糸を挙げることができる。
[Method for producing raw material fiber (thin artificial polypeptide fiber)]
Raw fibers can be produced by a known spinning method. That is, for example, when producing a raw material fiber containing protein as a main component, first, a protein (for example, modified fibroin) produced according to the above-described method is added to dimethyl sulfoxide (DMSO), N,N-dimethylformamide ( DMF), formic acid, or hexafluoroisopropanol (HFIP), if necessary, together with an inorganic salt as a dissolution accelerator, are added and dissolved to prepare a dope solution. Then, using this dope solution, spinning is performed by a known spinning method such as wet spinning, dry spinning, dry-wet spinning, or melt spinning to obtain the desired raw material fiber. Preferred spinning methods include wet spinning or dry-wet spinning.
 図7は、原料繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図7に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、未延伸糸製造装置2と、湿熱延伸装置3と、乾燥装置4とを有している。 FIG. 7 is an explanatory diagram schematically showing an example of a spinning device for producing raw fibers. A spinning device 10 shown in FIG. 7 is an example of a spinning device for dry-wet spinning, and includes an extrusion device 1 , an undrawn yarn producing device 2 , a wet-heat drawing device 3 , and a drying device 4 .
 紡糸装置10を使用した紡糸方法を説明する。まず、貯槽7に貯蔵されたドープ液6が、ギアポンプ8により口金9から押し出される。ラボスケールにおいては、ドープ液をシリンダーに充填し、シリンジポンプを用いてノズルから押し出してもよい。次いで、押し出されたドープ液6は、エアギャップ19を経て、凝固液槽20の凝固液11内に供給され、溶媒が除去されて、タンパク質が凝固し、繊維状凝固体が形成される。次いで、繊維状凝固体が、延伸浴(洗浄浴)槽21内の温水12中に供給されて、延伸される。延伸倍率は供給ニップローラ13と引き取りニップローラ14との速度比によって決まる。その後、延伸された繊維状凝固体が、乾燥装置4に供給され、糸道22内で乾燥されて、原料繊維36が、巻糸体5として得られる。18a~18gは糸ガイドである。 A spinning method using the spinning device 10 will be described. First, the dope liquid 6 stored in the storage tank 7 is pushed out from the mouthpiece 9 by the gear pump 8 . On a lab scale, the dope solution may be filled into a cylinder and pushed out through a nozzle using a syringe pump. Next, the extruded dope liquid 6 is supplied through the air gap 19 into the coagulation liquid 11 of the coagulation liquid bath 20, the solvent is removed, the protein is coagulated, and a fibrous coagulum is formed. Next, the fibrous coagulum is fed into hot water 12 in a drawing bath (washing bath) tank 21 and drawn. The draw ratio is determined by the speed ratio between the supply nip roller 13 and the take-up nip roller 14 . After that, the drawn fibrous coagulate is supplied to the drying device 4 and dried in the yarn path 22 to obtain the raw material fibers 36 as the wound yarn 5 . 18a-18g are thread guides.
 凝固液11としては、脱溶媒できる溶媒であればよく、例えば、メタノール、エタノール及び2-プロパノール等の炭素数1~5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0~30℃であることが好ましい。口金9として、直径0.1~0.6mmのノズルを有するシリンジポンプを使用する場合、押出し速度は1ホール当たり、0.2~6.0ml/時間が好ましく、1.4~4.0ml/時間であることがより好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える長さがあればよく、例えば、200~500mmである。未延伸糸の引き取り速度は、例えば、1~20m/分であってよく、1~3m/分であることが好ましい。凝固液11中での滞留時間は、例えば、0.01~3分であってよく、0.05~0.15分であることが好ましい。また、凝固液11中で延伸(前延伸)をしてもよい。凝固液槽20は多段設けてもよく、また延伸は必要に応じて、各段、又は特定の段で行ってもよい。 The coagulating liquid 11 may be any solvent that can remove the solvent, and examples thereof include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol and 2-propanol, and acetone. The coagulation liquid 11 may contain water as appropriate. The temperature of the coagulation liquid 11 is preferably 0 to 30.degree. When a syringe pump having a nozzle with a diameter of 0.1 to 0.6 mm is used as the nozzle 9, the extrusion rate is preferably 0.2 to 6.0 ml/hour, preferably 1.4 to 4.0 ml/hour. Time is more preferred. The distance over which the coagulated protein passes through the coagulation liquid 11 (substantially, the distance from the thread guide 18a to the thread guide 18b) should be sufficient for efficient removal of the solvent, for example, 200 to 500 mm. is. The undrawn yarn take-up speed may be, for example, 1 to 20 m/min, preferably 1 to 3 m/min. The residence time in the coagulation liquid 11 may be, for example, 0.01 to 3 minutes, preferably 0.05 to 0.15 minutes. Further, stretching (pre-stretching) may be performed in the coagulating liquid 11 . The coagulation liquid bath 20 may be provided in multiple stages, and stretching may be performed in each stage or in a specific stage as required.
 なお、原料繊維を得る際に実施される延伸は、例えば、上記した凝固液槽20内で行う前延伸、及び延伸浴槽21内で行う湿熱延伸の他、乾熱延伸も採用される。 The drawing performed when obtaining the raw material fiber may be, for example, the pre-drawing performed in the coagulating liquid tank 20 and the wet-heat drawing performed in the drawing bath 21, as well as the dry-heat drawing.
 湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。温度としては、例えば、50~90℃であってよく、75~85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1~10倍延伸することができ、2~8倍延伸することが好ましい。 Wet heat stretching can be performed in hot water, in a solution of hot water added with an organic solvent or the like, or in steam heating. The temperature may be, for example, 50 to 90°C, preferably 75 to 85°C. In wet heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times, preferably 2 to 8 times.
 乾熱延伸は、電気管状炉、乾熱板等を使用して行うことができる。温度としては、例えば、140℃~270℃であってよく、160℃~230℃が好ましい。乾熱延伸では、未延伸糸(又は前延伸糸)を、例えば、0.5~8倍延伸することができ、1~4倍延伸することが好ましい。 Dry heat drawing can be performed using an electric tubular furnace, a dry heat plate, or the like. The temperature may be, for example, 140°C to 270°C, preferably 160°C to 230°C. In the dry heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 0.5 to 8 times, preferably 1 to 4 times.
 湿熱延伸及び乾熱延伸はそれぞれ単独で行ってもよく、またこれらを多段で、又は組み合わせて行ってもよい。すなわち、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸行い、二段目延伸を湿熱延伸行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。 The wet heat drawing and the dry heat drawing may be performed independently, or they may be performed in multiple stages or in combination. That is, the first step drawing is performed by wet heat drawing, the second step drawing is performed by dry heat drawing, or the first step drawing is performed by wet heat drawing, the second step drawing is performed by wet heat drawing, and the third step drawing is performed by dry heat drawing. For example, wet heat stretching and dry heat stretching can be combined as appropriate.
 最終的な延伸倍率は、その下限値が、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍超、2倍以上、3倍以上、4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上のうちのいずれかであり、上限値が、好ましくは40倍以下、30倍以下、20倍以下、15倍以下、14倍以下、13倍以下、12倍以下、11倍以下、10倍以下である。 The lower limit of the final draw ratio is preferably more than 1 times, 2 times or more, 3 times or more, 4 times or more, 5 times or more, 6 times with respect to the undrawn yarn (or pre-drawn yarn). 7 times or more, 8 times or more, 9 times or more, and the upper limit is preferably 40 times or less, 30 times or less, 20 times or less, 15 times or less, 14 times or less, 13 times or less. , 12 times or less, 11 times or less, and 10 times or less.
 なお、上述した湿潤状態と乾燥状態で伸縮を繰り返す原料繊維は、例えば、紡糸して得られた繊維(すなわち、紡糸後、水と接触する前の繊維)を水により収縮させる収縮工程を備える製造方法により得ることができる。収縮工程は、例えば、上述紡糸方法により製造した繊維(紡糸後、水と接触する前の繊維)を、水と接触させて不可逆的に収縮させるステップ(接触ステップ)を備えるものであってよい。収縮工程は、接触ステップの後、繊維を乾燥させて更に収縮させるステップ(乾燥ステップ)を備えるものであってもよい。 In addition, the raw material fiber that repeatedly stretches and contracts in the wet state and the dry state described above is manufactured by, for example, shrinking the fiber obtained by spinning (that is, the fiber before contacting with water after spinning) with water. method. The shrinking step may include, for example, a step of irreversibly shrinking the fibers produced by the above spinning method (fibers after spinning but before contact with water) by contacting them with water (contacting step). The shrinking step may comprise, after the contacting step, drying the fibers to further shrink them (drying step).
 原料繊維の繊維径(断面の直径)は、例えば5~100μm、10~90μm、20~80μm、30~70μm、または40~60μmであってよい。 The fiber diameter (cross-sectional diameter) of the raw material fiber may be, for example, 5 to 100 μm, 10 to 90 μm, 20 to 80 μm, 30 to 70 μm, or 40 to 60 μm.
〔第二実施形態〕
 本発明の第二実施形態は、第一実施形態に記載の方法により得られる人工ポリペプチド繊維である。本実施形態に係る人工ポリペプチド繊維は、図1に示すように、原料繊維1がバインダ2を介して互いに接合して、全体として1つの太い繊維10を形成している。
[Second embodiment]
A second embodiment of the invention is an artificial polypeptide fiber obtainable by the method according to the first embodiment. In the artificial polypeptide fiber according to this embodiment, as shown in FIG. 1, raw material fibers 1 are bonded together via a binder 2 to form one thick fiber 10 as a whole.
 本実施形態に係る人工ポリペプチド繊維(太径の人工ポリペプチド繊維)の繊維径(断面の直径)は、例えば0.5~5.0mm、1.0~4.5mm、1.5~4.0mm、2.0~3.5mm、または2.5~3.0mmであってよい。人工ポリペプチド繊維を構成する原料繊維の本数は、通常、束ねる原料繊維の本数と一致し、例えば、5~100本、10~90本、20~80本、30~70本、または40~60本の範囲で調整し得る。 The fiber diameter (cross-sectional diameter) of the artificial polypeptide fiber (large-diameter artificial polypeptide fiber) according to the present embodiment is, for example, 0.5 to 5.0 mm, 1.0 to 4.5 mm, 1.5 to 4.0 mm. 0 mm, 2.0-3.5 mm, or 2.5-3.0 mm. The number of raw fibers constituting the artificial polypeptide fiber usually matches the number of raw fibers to be bundled, for example, 5 to 100, 10 to 90, 20 to 80, 30 to 70, or 40 to 60. It can be adjusted within the scope of the book.
 本実施形態に係る人工ポリペプチド繊維に含まれる人工ポリペプチドは、構造タンパクを含むことが好ましく、フィブロインを含むことがより好ましく、クモ糸フィブロインを含むことが更に好ましい。 The artificial polypeptide contained in the artificial polypeptide fiber according to the present embodiment preferably contains a structural protein, more preferably fibroin, and even more preferably spider silk fibroin.
〔第三実施形態〕
 本発明の第三実施形態は、人工ポリペプチドを含む繊維を互いに接着するための接着剤であって、バインダと、前記人工ポリペプチド及び前記バインダの少なくとも一方と反応する酵素と、を含む接着剤である。
[Third Embodiment]
A third embodiment of the present invention is an adhesive for bonding fibers containing an artificial polypeptide together, the adhesive comprising a binder and an enzyme that reacts with at least one of the artificial polypeptide and the binder. is.
 本実施形態に係る接着剤の対象となる「人工ポリペプチドを含む繊維」は、第一実施形態に記載の原料繊維の定義を参照できる。また、バインダ及び酵素についても、第一実施形態の記載を参照できる。 For the "fiber containing the artificial polypeptide" that is the target of the adhesive according to this embodiment, the definition of the raw material fiber described in the first embodiment can be referred to. Also, the description of the first embodiment can be referred to for the binder and the enzyme.
 本実施形態に係る接着剤は、バインダを含有する第1組成物と、酵素を含有する第2組成物との組合せであってもよく、バインダと酵素の両方を含有する組成物であってもよい。バインダが酵素の反応基質である場合には、前者の形態が好ましい。 The adhesive according to the present embodiment may be a combination of a first composition containing a binder and a second composition containing an enzyme, or a composition containing both a binder and an enzyme. good. The former form is preferred when the binder is a reaction substrate for an enzyme.
 本実施形態に係る接着剤を構成する組成物は、バインダ及び/又は酵素に加えて、溶媒、賦形剤、緩衝剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。溶媒としては、ジメチルスルホキシド(DMSO)、ジエチレングリコールモノエーテル、エタノール、メタノール、イソプロパノールが挙げられる。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。 The composition constituting the adhesive according to the present embodiment contains solvents, excipients, buffers, stabilizers, preservatives, preservatives, physiological saline, etc. in addition to binders and/or enzymes. good too. Solvents include dimethylsulfoxide (DMSO), diethylene glycol monoether, ethanol, methanol, isopropanol. As excipients, starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used. Phosphate, citrate, acetate and the like can be used as buffers. Propylene glycol, ascorbic acid and the like can be used as stabilizers. Preservatives that can be used include phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like. Ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol, etc. can be used as antiseptics.
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 The present invention will be described more specifically below based on examples. However, the present invention is not limited to the following examples.
〔改変フィブロインの製造〕
(1)発現ベクターの構築
 配列番号15で示されるアミノ酸配列を有する改変フィブロイン(PRT799)及び配列番号37で示されるアミノ酸配列を有する改変フィブロイン(PRT918)を設計した。
[Production of modified fibroin]
(1) Construction of Expression Vector A modified fibroin (PRT799) having the amino acid sequence shown in SEQ ID NO: 15 and a modified fibroin (PRT918) having the amino acid sequence shown in SEQ ID NO: 37 were designed.
 設計したアミノ酸配列を有するタンパク質をコードする核酸をそれぞれ合成した。当該核酸には、5’末端にNdeIサイト、終止コドン下流にEcoRIサイトを付加した。これら2種類の核酸をそれぞれクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、それぞれタンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。 A nucleic acid encoding a protein with the designed amino acid sequence was synthesized. An NdeI site was added to the 5' end of the nucleic acid, and an EcoRI site was added downstream of the termination codon. These two types of nucleic acids were each cloned into a cloning vector (pUC118). Thereafter, the same nucleic acid was treated with restriction enzymes NdeI and EcoRI, cut out, and then recombined into the protein expression vector pET-22b(+) to obtain an expression vector.
(2)改変フィブロインの発現
 得られた発現ベクターで、それぞれ大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液をアンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
(2) Expression of Modified Fibroin Escherichia coli BLR (DE3) was transformed with each of the obtained expression vectors. The transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours. The culture solution was added to 100 mL of seed culture medium (Table 4) containing ampicillin so that the OD 600 was 0.005. The temperature of the culture solution was kept at 30° C., and flask culture was performed until OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加して形質転換大腸菌を植菌した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。 The seed culture solution was added to a jar fermenter to which 500 mL of production medium (Table 5) was added so that the OD 600 was 0.05, and the transformed E. coli was inoculated. The temperature of the culture solution was kept at 37° C. and the pH was constantly controlled to 6.9 for culturing. Also, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、目的の改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする改変フィブロインサイズのバンドの出現により、目的とする改変フィブロインの発現を確認した。 Immediately after the glucose in the production medium was completely consumed, the feed solution (glucose 455 g/1 L, Yeast Extract 120 g/1 L) was added at a rate of 1 mL/min. The temperature of the culture solution was kept at 37° C. and the pH was constantly controlled to 6.9 for culturing. Also, the dissolved oxygen concentration in the culture medium was maintained at 20% of the dissolved oxygen saturation concentration, and culture was carried out for 20 hours. After that, 1 M isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of the desired modified fibroin. After 20 hours from the addition of IPTG, the culture solution was centrifuged to collect the cells. SDS-PAGE was performed using the cells prepared from the culture solution before and after the addition of IPTG, and the expression of the desired modified fibroin was confirmed by the appearance of the desired modified fibroin size band depending on the addition of IPTG. bottom.
(3)改変フィブロンの精製
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mMTris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mMTris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8Mグアニジン塩酸塩、10mMリン酸二水素ナトリウム、20mMNaCl、1mMTris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。
(3) Purification of Modified Fibrons Cells collected 2 hours after the addition of IPTG were washed with 20 mM Tris-HCl buffer (pH 7.4). The washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi). The disrupted cells were centrifuged to obtain a precipitate. The resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until high purity. The precipitate after washing was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10mM sodium dihydrogen phosphate, 20mM NaCl, 1mM Tris-HCl, pH 7.0) to a concentration of 100mg/mL, and was incubated at 60°C for 30 minutes. Stir with a stirrer for 1 minute to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein obtained after dialysis was recovered by centrifugation, water was removed with a freeze dryer, and a freeze-dried powder was recovered.
〔原料繊維の調製〕
(1)紡糸液(ドープ液)の調製
 4質量%になるように塩化リチウムを溶解したDMSOを溶媒として用い、上記で製造した改変フィブロイン(PRT799又はPRT918)の凍結乾燥粉末を、濃度24質量%となるように溶媒に添加した。90℃のアルミブロックヒーターで1時間溶解させた後、不溶物と泡を取り除き、紡糸液(ドープ液)をそれぞれ得た。
[Preparation of Raw Fiber]
(1) Preparation of Spinning Solution (Dope Solution) DMSO in which lithium chloride was dissolved to a concentration of 4% by mass was used as a solvent. was added to the solvent so that After melting with an aluminum block heater at 90° C. for 1 hour, insoluble matter and bubbles were removed to obtain a spinning solution (dope solution).
(2)紡糸
 紡糸液をリザーブタンクに充填し、0.1又は0.2mm径のモノホールノズルからギアポンプを用い100質量%メタノール凝固浴槽中へ吐出させた。吐出量は0.01~0.08mL/分に調整した。凝固後、100質量%メタノール洗浄浴槽で洗浄及び延伸を行った。洗浄及び延伸後、乾熱板を用いて乾燥させ、得られた原糸(改変フィブロイン繊維)を巻き取った。原糸(原料繊維)の繊維径は40μmであった。紡糸条件は、以下のとおりである。
(2) Spinning A spinning solution was filled in a reserve tank and discharged from a monohole nozzle with a diameter of 0.1 or 0.2 mm into a 100% by mass methanol coagulation bath using a gear pump. The discharge rate was adjusted to 0.01-0.08 mL/min. After solidification, it was washed and stretched in a 100 wt% methanol washing bath. After washing and stretching, it was dried using a dry heat plate, and the obtained raw yarn (modified fibroin fiber) was wound up. The fiber diameter of the original yarn (raw material fiber) was 40 μm. The spinning conditions are as follows.
 ノズル孔径: 0.3mm
 凝固液: 18%硫酸ナトリウム水溶液
 凝固液の温度: 50℃
 水洗浄浴の温度: 40℃
 ホットローラー温度: 100℃
Nozzle hole diameter: 0.3mm
Coagulation liquid: 18% sodium sulfate aqueous solution Temperature of coagulation liquid: 50°C
Water wash bath temperature: 40°C
Hot roller temperature: 100°C
〔バインダ溶液の調製〕
 カイコの繭(1g)に対して、0.02M炭酸ナトリウム水溶液(400mL)を加えて、80~90℃で30分以上加温した。加温した液をペーパーフィルターでろ過して、MilliQ水で洗浄後、風乾してシルク繊維を得た。得られたシルク繊維(0.76g)に9.3M臭化リチウム水溶液(3mL)を加えた後、混合液を60℃で5時間以上加温して、シルク繊維を完全に溶解させた。遠心分離により不溶物を除去し、透析でバッファー50mMトリス塩酸バッファー、pH7.0、150mM塩化ナトリウムの交換を繰り返した。その後、50mMトリス塩酸バッファー、pH7.0、150mM塩化ナトリウムのバッファーに置換して、シルクフィブロイン溶液を得た。得られたシルクフィブロイン溶液を分けて、表6に示すように各種酵素を所定の濃度となるように加えて、バインダ溶液E1~E3を得た。比較のため、溶液NE1(バインダも酵素も含有しない)、溶液NE2(酵素を含有しない)、溶液NE3(バインダを含有しない)、溶液NE4(バインダを含有しない)を調製した。
Figure JPOXMLDOC01-appb-T000006
[Preparation of binder solution]
A 0.02 M sodium carbonate aqueous solution (400 mL) was added to silkworm cocoons (1 g), and the mixture was heated at 80 to 90° C. for 30 minutes or longer. The warmed liquid was filtered through a paper filter, washed with MilliQ water, and air-dried to obtain silk fibers. After adding 9.3 M lithium bromide aqueous solution (3 mL) to the obtained silk fibers (0.76 g), the mixture was heated at 60° C. for 5 hours or longer to completely dissolve the silk fibers. Insoluble materials were removed by centrifugation, and dialysis was repeated to exchange buffer 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride. Thereafter, the buffer was replaced with a 50 mM Tris-hydrochloride buffer, pH 7.0, 150 mM sodium chloride buffer to obtain a silk fibroin solution. The obtained silk fibroin solution was divided, and various enzymes were added as shown in Table 6 so as to have a predetermined concentration to obtain binder solutions E1 to E3. For comparison, solutions NE1 (no binder or enzyme), NE2 (no enzyme), NE3 (no binder) and NE4 (no binder) were prepared.
Figure JPOXMLDOC01-appb-T000006
 酵素としては、ラッカーゼ(天野エンザイム(株)製)、ビリルビンオキシダーゼ(天野エンザイム(株)製)、グルコースオキシダーゼ(天野エンザイム(株)製)、及びペルオキシダーゼ(天野エンザイム(株)製)を使用した。 As enzymes, laccase (manufactured by Amano Enzyme Co., Ltd.), bilirubin oxidase (manufactured by Amano Enzyme Co., Ltd.), glucose oxidase (manufactured by Amano Enzyme Co., Ltd.), and peroxidase (manufactured by Amano Enzyme Co., Ltd.) were used.
〔太径の人工ポリペプチド繊維の調製〕
 20~25本の原料繊維(PRT918)の束を1mLの7本のピペットにそれぞれ通して、各ピペット内で繊維を伸ばすように両端をテープで固定しつつ、キャップした。得られた7本のピペット中に、表6に示される7種類のバインダ溶液とバッファー(pH7.0の50mMトリス塩酸バッファーに150mM塩化ナトリウムを添加したもの)をそれぞれ加えて、室温で表7に記載の時間、インキュベートした。溶液が固形化(溶液が白濁してチューブから流れ出なくなる状態)するか、3時間経過した時点で、ピペットから人工ポリペプチド繊維を取り出して、乾燥した。なお、溶液NE1、NE2、NE3又はNE4を使用した場合は、3時間のインキュベート後であっても、溶液は固形化しなかった。
[Preparation of large-diameter artificial polypeptide fiber]
A bundle of 20-25 raw fibers (PRT918) was passed through each of seven 1 mL pipettes and capped while taped at both ends to stretch the fibers in each pipette. The seven binder solutions and buffers (50 mM Tris-HCl buffer of pH 7.0 with 150 mM sodium chloride added) shown in Table 6 were added to the seven pipettes thus obtained, and the mixture was added to Table 7 at room temperature. Incubated for the indicated time. When the solution solidified (the solution became cloudy and stopped flowing out of the tube), or after 3 hours had passed, the artificial polypeptide fiber was removed from the pipette and dried. Note that when solutions NE1, NE2, NE3 or NE4 were used, the solutions did not solidify even after 3 hours of incubation.
 その後、ピペットから取り出した人工ポリペプチド繊維を走査電子顕微鏡でそれぞれ観察したところ、溶液E1、E2又はE3を使用した場合には、インキュベート中に原料繊維が相互に架橋されて、太径の人工ポリペプチド繊維を形成したことが確認された。かくして得られた太径の人工ポリペプチド繊維を、それぞれ実施例1、実施例2、実施例3とした。一方、溶液NE1、NE2、NE3及びNE4のうち、溶液NE2を加えた場合のみにおいて、原料繊維同士の接着が多少認められたものの、他の溶液では繊維同士の接着は認められなかった。また、溶液NE1、NE2、NE3又はNE4を使用した場合、3時間のインキュベート後であっても、溶液は固形しなかった。これらの人工ポリペプチド繊維のうち、溶液NE1、NE2を使用して得られた繊維を、それぞれ比較例1、比較例2とした。 After that, when the artificial polypeptide fibers taken out from the pipette were observed with a scanning electron microscope, it was found that when solutions E1, E2, or E3 were used, the raw material fibers were crosslinked to each other during incubation, resulting in large-diameter artificial polypeptide fibers. It was confirmed that peptide fibers were formed. The large-diameter artificial polypeptide fibers thus obtained were referred to as Example 1, Example 2, and Example 3, respectively. On the other hand, among the solutions NE1, NE2, NE3 and NE4, only when the solution NE2 was added, some adhesion between the raw fibers was observed, but no adhesion between the fibers was observed with the other solutions. Also, when solutions NE1, NE2, NE3 or NE4 were used, the solutions did not solidify even after 3 hours of incubation. Among these artificial polypeptide fibers, fibers obtained using solutions NE1 and NE2 were designated as Comparative Examples 1 and 2, respectively.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実際の手順を図8に示す。写真1は、原料繊維(PRT918)を束ねた様子を示す写真である。写真2は、束ねた原料繊維をピペットの中に入れ、片方の開口部をシールで塞いだ様子を示す写真である。写真3は、他方の開口部をシールで塞いだ様子を示す写真である。写真4は、得られた太径の人工ポリペプチド繊維を示す写真である。太径の人工ポリペプチド繊維の太さはいずれも1.6mmであった。 Fig. 8 shows the actual procedure. Photograph 1 is a photograph showing how raw fibers (PRT918) are bundled. Photo 2 shows a state in which the bundled raw material fibers are placed in a pipette and one opening is closed with a seal. Photograph 3 is a photograph showing a state in which the other opening is closed with a seal. Photograph 4 is a photograph showing the obtained artificial polypeptide fiber having a large diameter. All of the thick artificial polypeptide fibers had a thickness of 1.6 mm.
 20~25本束ねた原料繊維(PRT918)を比較例3として使用した。 A raw material fiber (PRT918) bundled with 20 to 25 fibers was used as Comparative Example 3.
〔人工ポリペプチド繊維の物性評価〕
(1)引張試験
 実施例1~3及び比較例1~2の繊維の強度を、引張試験機(装置名:INSTRON3345、INSTRON社製)を用いて、下記の物性評価基準にしたがい評価し、比較例3の応力と比較した。
[Evaluation of physical properties of artificial polypeptide fiber]
(1) Tensile test The strength of the fibers of Examples 1 to 3 and Comparative Examples 1 and 2 was evaluated and compared using a tensile tester (device name: INSTRON3345, manufactured by INSTRON) according to the following physical property evaluation criteria. A comparison was made with the stress of Example 3.
<物性評価>
 A:比較例3の応力を100としたとき、その応力が150以上である
 B:その応力が、比較例3の応力より0.1gf/den以上大きい
 C:その応力αと比較例3の応力βとの差(すなわち、α-β)が-0.1gf/den超、0.1gf/den未満同程度である
 D:その応力が比較例3の応力より0.1gf/den以上小さい
<Physical property evaluation>
A: When the stress of Comparative Example 3 is 100, the stress is 150 or more B: The stress is greater than the stress of Comparative Example 3 by 0.1 gf/den or more C: The stress α and the stress of Comparative Example 3 The difference from β (that is, α-β) is more than -0.1 gf / den and less than 0.1 gf / den and is comparable D: The stress is 0.1 gf / den or more smaller than the stress of Comparative Example 3
(2)洗浄試験
 実施例1~3の繊維5本と比較例1~3の繊維5本(接着しなかった場合は5束、すなわち25本)をそれぞれガラス容器に入れ、還元剤(トリス(2-カルボキシエチル)ホスフィン塩酸塩)を含有する水溶液を加えて浸漬させ、15分間超音波をかけた。その後、人工ポリペプチド繊維の接着が解けているかを目視により観察し、下記の評価基準にしたがい評価した。
(2) Washing test 5 fibers of Examples 1 to 3 and 5 fibers of Comparative Examples 1 to 3 (5 bundles, that is, 25 fibers when not bonded) were placed in a glass container, and a reducing agent (Tris ( 2-Carboxyethyl)phosphine hydrochloride) was added and immersed and sonicated for 15 minutes. After that, it was visually observed whether or not the adhesion of the artificial polypeptide fiber was loosened, and evaluated according to the following evaluation criteria.
<洗浄試験>
 A:洗浄試験後に全ての繊維の融着が残っている
 B:洗浄試験後に4束の繊維の融着が残っている(1束は融着が解けた)
 C:洗浄試験後に2~3束の繊維の融着が残っている(2~3束の融着が解けた)
 D:洗浄試験後に0~1束の繊維の融着が残っている(4~5束の融着が解けた)
<Washing test>
A: All fibers remain fused after the washing test. B: 4 bundles of fibers remain fused after the washing test (one bundle is unfused).
C: 2 to 3 bundles of fused fibers remained after the washing test (2 to 3 bundles of fused bonds were unbonded).
D: 0 to 1 bundle of fibers remains fused after washing test (4 to 5 bundles of fused are unbonded)
 結果を表8に示す。物性試験において、実施例1~3は、引っ張り歪みを高めていくと、一度に破断したが、比較例1~3は、数回にわけて段階的に破断した。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows the results. In the physical property test, Examples 1 to 3 broke at once as the tensile strain was increased, but Comparative Examples 1 to 3 broke stepwise several times.
Figure JPOXMLDOC01-appb-T000008
〔バインダ溶液の調製〕
 凍結乾燥豚皮由来のゼラチン・タイプA(MP Biomedicals,LLC社製)を所定の濃度となるように水に加えて、60℃に加温した。加温により、ゼラチンは完全に溶解した。得られたゼラチン水溶液にバッファーとして20mM酢酸ナトリウム水溶液を加えて、pHを5.0に調整した。
[Preparation of binder solution]
Freeze-dried pigskin-derived gelatin type A (manufactured by MP Biomedicals, LLC) was added to water to a predetermined concentration and heated to 60°C. Gelatin was completely dissolved by heating. A 20 mM sodium acetate aqueous solution was added as a buffer to the resulting gelatin aqueous solution to adjust the pH to 5.0.
 得られたゼラチン溶液(0.5mL)をガラス試験管に入れて、表9に示すようにラッカーゼ(天野エンザイム(株)製)を添加して、バインダ溶液E4を得た。
Figure JPOXMLDOC01-appb-T000009
The obtained gelatin solution (0.5 mL) was placed in a glass test tube, and laccase (manufactured by Amano Enzyme Co., Ltd.) was added as shown in Table 9 to obtain a binder solution E4.
Figure JPOXMLDOC01-appb-T000009
(3)太径の人工ポリペプチド繊維の製造
 20~25本の原料繊維の束を1mLのピペットに通して、ピペット内で繊維を伸ばすように両端をテープで固定しつつ、キャップした。得られたピペット中に、バインダ溶液と20mM酢酸ナトリウムバッファーpH5.0をそれぞれ加えて、50℃で3時間インキュベートした。インキュベート中に、原料繊維は相互に架橋され、太径の人工ポリペプチド繊維(実施例4)を形成した。溶液が固形化(溶液が白濁してチューブから流れ出なくなる状態)するタイミングまたは一定時間後に、ピペットから人工ポリペプチド繊維を取り出して、乾燥した。得られた人工ポリペプチド繊維の太さはいずれも1.6mmであった。
(3) Production of large-diameter artificial polypeptide fiber A bundle of 20 to 25 raw material fibers was passed through a 1 mL pipette and capped while fixing both ends with tape so as to stretch the fibers in the pipette. A binder solution and 20 mM sodium acetate buffer pH 5.0 were added to the resulting pipette and incubated at 50° C. for 3 hours. During incubation, the raw fibers were cross-linked to each other to form large-diameter artificial polypeptide fibers (Example 4). At the timing when the solution solidified (a state in which the solution became cloudy and stopped flowing out of the tube) or after a certain period of time, the artificial polypeptide fiber was taken out from the pipette and dried. All the obtained artificial polypeptide fibers had a thickness of 1.6 mm.
(4)洗浄試験
 得られた人工ポリペプチド繊維を還元剤(トリス(2-カルボキシエチル)ホスフィン塩酸塩)を含有する水溶液に浸漬させ、15分間、超音波をかけた。バインダ溶液E4を加えたピペットから取り出した繊維束においてのみ、繊維同士の接着が維持されていた。
(4) Washing test The obtained artificial polypeptide fiber was immersed in an aqueous solution containing a reducing agent (tris(2-carboxyethyl)phosphine hydrochloride) and subjected to ultrasonic waves for 15 minutes. Only the fiber bundle taken out from the pipette to which the binder solution E4 was added maintained adhesion between the fibers.
〔バインダ溶液の調製〕
 上記と同様にして得られたシルクフィブロイン溶液を分けて、表10に示すように各種酵素を所定の濃度となるように加えて、バインダ溶液E5~E8を得た。比較のため、溶液NE6(酵素を含有しない)、溶液NE7(酵素を含有しない)を調製した。
Figure JPOXMLDOC01-appb-T000010
[Preparation of binder solution]
The silk fibroin solutions obtained in the same manner as described above were divided, and various enzymes were added to give predetermined concentrations as shown in Table 10 to obtain binder solutions E5 to E8. For comparison, solutions NE6 (no enzyme) and NE7 (no enzyme) were prepared.
Figure JPOXMLDOC01-appb-T000010
〔太径の人工ポリペプチド繊維の調製〕
 バインダの濃度や反応時間を変更した以外、実施例1~3と同様にして、太径の人工ポリペプチド繊維を製造した。使用したバインダ溶液と反応時間を表11に示す。比較例4~5は、実施例5と同様にして調製した。
Figure JPOXMLDOC01-appb-T000011
[Preparation of large-diameter artificial polypeptide fiber]
Large-diameter artificial polypeptide fibers were produced in the same manner as in Examples 1 to 3, except that the concentration of the binder and the reaction time were changed. Table 11 shows the binder solutions and reaction times used. Comparative Examples 4-5 were prepared in the same manner as Example 5.
Figure JPOXMLDOC01-appb-T000011
〔人工ポリペプチド繊維の物性評価〕
(1)引張試験
 実施例5~8及び比較例4~5の繊維の強度を、引張試験機(装置名:INSTRON3345、INSTRON社製)用いて、上記の物性評価基準にしたがい評価し、比較例3の応力と比較した。
[Evaluation of physical properties of artificial polypeptide fiber]
(1) Tensile test The strength of the fibers of Examples 5 to 8 and Comparative Examples 4 to 5 was evaluated using a tensile tester (device name: INSTRON3345, manufactured by INSTRON) according to the above physical property evaluation criteria. 3 stress.
(2)洗浄試験
 実施例5~8の繊維5本と比較例4~5の繊維5本(接着しなかった場合は5束、すなわち25本)をそれぞれガラス容器に入れ、還元剤(トリス(2-カルボキシエチル)ホスフィン塩酸塩)を含有する水溶液を加えて浸漬させ、15分間超音波をかけた。その後、人工ポリペプチド繊維の接着が解けているかを目視により観察し、上記の評価基準にしたがい評価した。
(2) Washing test Five fibers of Examples 5 to 8 and five fibers of Comparative Examples 4 to 5 (5 bundles when not bonded, that is, 25 fibers) were placed in a glass container, and a reducing agent (Tris ( 2-Carboxyethyl)phosphine hydrochloride) was added and immersed and sonicated for 15 minutes. After that, it was visually observed whether or not the adhesion of the artificial polypeptide fiber was loosened, and evaluated according to the evaluation criteria described above.
 結果を表12に示す。実施例5~8は、応力が、比較例3の応力より0.1gf/den以上大きく、洗浄試験後に全ての繊維の融着が残っていた。
Figure JPOXMLDOC01-appb-T000012
Table 12 shows the results. Examples 5-8 had a stress greater than that of Comparative Example 3 by 0.1 gf/den or more, and all fibers remained fused after the washing test.
Figure JPOXMLDOC01-appb-T000012
〔バインダ溶液の調製〕
 シルクフィブロインに代えて、表13に示すように市販のシュガービート由来ペクチンに、50mMトリス塩酸バッファー、pH7.0、150mM塩化ナトリウムのバッファーを加えて、バインダ溶液E9を得た。
Figure JPOXMLDOC01-appb-T000013
[Preparation of binder solution]
A binder solution E9 was obtained by adding a 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride buffer to commercially available sugar beet-derived pectin as shown in Table 13 instead of silk fibroin.
Figure JPOXMLDOC01-appb-T000013
〔太径の人工ポリペプチド繊維の調製〕
 バインダの濃度や反応時間を変更した以外、実施例1と同様にして、太径の人工ポリペプチド繊維を製造した。使用したバインダ溶液と反応時間を表14に示す。比較例6は、実施例8と同様にして調製した。
Figure JPOXMLDOC01-appb-T000014
[Preparation of large-diameter artificial polypeptide fiber]
Large-diameter artificial polypeptide fibers were produced in the same manner as in Example 1, except that the concentration of the binder and the reaction time were changed. Table 14 shows the binder solutions and reaction times used. Comparative Example 6 was prepared in the same manner as Example 8.
Figure JPOXMLDOC01-appb-T000014
〔人工ポリペプチド繊維の物性評価〕
(1)洗浄試験
 実施例9の繊維5本と比較例6の繊維5本(接着しなかった場合は5束、すなわち25本)をそれぞれガラス容器に入れ、還元剤(トリス(2-カルボキシエチル)ホスフィン塩酸塩)を含有する水溶液を加えて浸漬させ、15分間超音波をかけた。その後、人工ポリペプチド繊維の接着が解けているかを目視により観察し、上記の評価基準にしたがい評価した。
[Evaluation of physical properties of artificial polypeptide fiber]
(1) Washing test Five fibers of Example 9 and five fibers of Comparative Example 6 (5 bundles, ie, 25 fibers when not bonded) were placed in a glass container, and a reducing agent (tris(2-carboxyethyl ) phosphine hydrochloride) was added and immersed, and ultrasonic waves were applied for 15 minutes. After that, it was visually observed whether or not the adhesion of the artificial polypeptide fiber was loosened, and evaluated according to the evaluation criteria described above.
 結果を表15に示す。実施例9では、洗浄試験後に全ての繊維の融着が残っていたが、比較例6では、接着効果が見られなかった。
Figure JPOXMLDOC01-appb-T000015
Table 15 shows the results. In Example 9, all fibers remained fused after the wash test, but in Comparative Example 6, no adhesive effect was observed.
Figure JPOXMLDOC01-appb-T000015
〔バインダ溶液の調製〕
 酵素に代えて、表16に示すように化学系酸化剤(グルタルアルデヒド、ホルムアルデヒド)に、50mMトリス塩酸バッファー、pH7.0、150mM塩化ナトリウムのバッファーを加えて、バインダ溶液E9~11を得た。
Figure JPOXMLDOC01-appb-T000016
[Preparation of binder solution]
Binder solutions E9 to E11 were obtained by adding a buffer of 50 mM Tris-HCl buffer, pH 7.0, 150 mM sodium chloride to chemical oxidants (glutaraldehyde, formaldehyde) as shown in Table 16 instead of the enzyme.
Figure JPOXMLDOC01-appb-T000016
〔太径の人工ポリペプチド繊維の調製〕
 バインダの濃度や反応時間を変更した以外、実施例1と同様にして、太径の人工ポリペプチド繊維を製造した。使用したバインダ溶液と反応時間を表17に示す。
Figure JPOXMLDOC01-appb-T000017
[Preparation of large-diameter artificial polypeptide fiber]
Large-diameter artificial polypeptide fibers were produced in the same manner as in Example 1, except that the concentration of the binder and the reaction time were changed. Table 17 shows the binder solutions and reaction times used.
Figure JPOXMLDOC01-appb-T000017
〔人工ポリペプチド繊維の物性評価〕
(1)引張試験
 比較例7~9の繊維の強度を、引張試験機(装置名:INSTRON3345、INSTRON社製)用いて、上記の物性評価基準にしたがい評価し、比較例3の応力と比較した。
[Evaluation of physical properties of artificial polypeptide fiber]
(1) Tensile test The strength of the fibers of Comparative Examples 7 to 9 was evaluated using a tensile tester (device name: INSTRON3345, manufactured by INSTRON) according to the physical property evaluation criteria described above, and compared with the stress of Comparative Example 3. .
(2)洗浄試験
 比較例7~9の繊維5本(接着しなかった場合は5束、すなわち25本)をそれぞれガラス容器に入れ、還元剤(トリス(2-カルボキシエチル)ホスフィン塩酸塩)を含有する水溶液を加えて浸漬させ、15分間超音波をかけた。その後、人工ポリペプチド繊維の接着が解けているかを目視により観察し、上記の評価基準にしたがい評価した。
(2) Washing test 5 fibers of Comparative Examples 7 to 9 (5 bundles when not bonded, ie 25 fibers) were placed in a glass container, and a reducing agent (tris(2-carboxyethyl)phosphine hydrochloride) was added. The containing aqueous solution was added and immersed, and ultrasonic waves were applied for 15 minutes. After that, it was visually observed whether or not the adhesion of the artificial polypeptide fiber was loosened, and evaluated according to the above evaluation criteria.
 結果を表18に示す。酵素に代えて化学系酸化剤を使用すると、シルクフィブロインは固形化するものの、反応速度が遅く、より長い反応時間を要した。また、洗浄試験の結果が劣っており、繊維に着色が見られ、酵素と比較すると実用性が低いと考えられた。
Figure JPOXMLDOC01-appb-T000018
The results are shown in Table 18. When chemical oxidizing agents were used instead of enzymes, silk fibroin was solidified, but the reaction rate was slow and longer reaction times were required. In addition, the results of the washing test were inferior, and the fibers were colored.
Figure JPOXMLDOC01-appb-T000018

Claims (20)

  1.  人工ポリペプチドを含む複数本の原料繊維を束ねる工程と、
     得られた原料繊維の束を、バインダ及び酵素を含有する組成物に接触させる工程と、
    を含む、人工ポリペプチド繊維の製造方法。
    A step of bundling a plurality of raw fibers containing an artificial polypeptide;
    a step of contacting the obtained bundle of raw material fibers with a composition containing a binder and an enzyme;
    A method of making an engineered polypeptide fiber, comprising:
  2.  前記酵素が酸化酵素を含む、請求項1に記載の人工ポリペプチド繊維の製造方法。 The method for producing an artificial polypeptide fiber according to claim 1, wherein the enzyme includes an oxidase.
  3.  前記酸化酵素が、ラッカーゼ、ビリルビンオキシダーゼ、グルコースオキシダーゼ、およびペルオキシダーゼからなる群から選択される少なくとも1つである、請求項2に記載の人工ポリペプチド繊維の製造方法。 The method for producing an artificial polypeptide fiber according to claim 2, wherein the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
  4.  前記人工ポリペプチドが構造タンパクを含む、請求項1~3のいずれか一項に記載の人工ポリペプチド繊維の製造方法。 The method for producing an artificial polypeptide fiber according to any one of claims 1 to 3, wherein the artificial polypeptide contains a structural protein.
  5.  前記人工ポリペプチドがフィブロインを含む、請求項1~3のいずれか一項に記載の人工ポリペプチド繊維の製造方法。 The method for producing an artificial polypeptide fiber according to any one of claims 1 to 3, wherein the artificial polypeptide contains fibroin.
  6.  前記人工ポリペプチドがクモ糸フィブロインを含む、請求項1~3のいずれか一項に記載の人工ポリペプチド繊維の製造方法。 The method for producing an artificial polypeptide fiber according to any one of claims 1 to 3, wherein the artificial polypeptide contains spider silk fibroin.
  7.  請求項1~3のいずれか一項に記載の方法で製造される人工ポリペプチド繊維。 An artificial polypeptide fiber produced by the method according to any one of claims 1 to 3.
  8.  請求項4に記載の方法で製造される人工ポリペプチド繊維。 An artificial polypeptide fiber produced by the method according to claim 4.
  9.  請求項5に記載の方法で製造される人工ポリペプチド繊維。 An artificial polypeptide fiber produced by the method according to claim 5.
  10.  請求項6に記載の方法で製造される人工ポリペプチド繊維。 An artificial polypeptide fiber produced by the method according to claim 6.
  11.  人工ポリペプチドを含む複数本の原料繊維が、バインダを介して互いに接合されている、人工ポリペプチド繊維。 An artificial polypeptide fiber in which multiple raw fibers containing artificial polypeptides are joined together via a binder.
  12.  前記人工ポリペプチドが構造タンパクを含む、請求項11に記載の人工ポリペプチド繊維。 The artificial polypeptide fiber according to claim 11, wherein said artificial polypeptide comprises a structural protein.
  13.  前記人工ポリペプチドがフィブロインを含む、請求項11に記載の人工ポリペプチド繊維。 The artificial polypeptide fiber according to claim 11, wherein said artificial polypeptide comprises fibroin.
  14.  前記人工ポリペプチドがクモ糸フィブロインを含む、請求項11に記載の人工ポリペプチド繊維。 The artificial polypeptide fiber according to claim 11, wherein the artificial polypeptide comprises spider silk fibroin.
  15.  人工ポリペプチドを含む繊維を互いに接着するための接着剤であって、
     バインダと、前記人工ポリペプチド及び前記バインダの少なくとも一方と反応する酵素と、を含む接着剤。
    An adhesive for adhering fibers comprising engineered polypeptides together, comprising:
    An adhesive comprising a binder and an enzyme that reacts with at least one of the artificial polypeptide and the binder.
  16.  前記酵素が酸化酵素である、請求項15に記載の接着剤。 The adhesive according to claim 15, wherein the enzyme is an oxidase.
  17.  前記酸化酵素が、ラッカーゼ、ビリルビンオキシダーゼ、グルコースオキシダーゼ、およびペルオキシダーゼからなる群から選択される少なくとも1つである、請求項16に記載の接着剤。 The adhesive according to claim 16, wherein the oxidase is at least one selected from the group consisting of laccase, bilirubin oxidase, glucose oxidase, and peroxidase.
  18.  前記人工ポリペプチドが構造タンパクを含む、請求項15~17のいずれか一項に記載の接着剤。 The adhesive according to any one of claims 15 to 17, wherein said artificial polypeptide comprises a structural protein.
  19.  前記人工ポリペプチドがフィブロインを含む、請求項15~17のいずれか一項に記載の接着剤。 The adhesive according to any one of claims 15 to 17, wherein said artificial polypeptide comprises fibroin.
  20.  前記人工ポリペプチドがクモ糸フィブロインを含む、請求項15~17のいずれか一項に記載の接着剤。 The adhesive according to any one of claims 15 to 17, wherein the artificial polypeptide comprises spider silk fibroin.
PCT/JP2022/034270 2021-09-13 2022-09-13 Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive WO2023038154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-148845 2021-09-13
JP2021148845 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023038154A1 true WO2023038154A1 (en) 2023-03-16

Family

ID=85506544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034270 WO2023038154A1 (en) 2021-09-13 2022-09-13 Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive

Country Status (1)

Country Link
WO (1) WO2023038154A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581548A (en) * 1978-12-13 1980-06-19 Kuraray Co Ltd Bundle of fine fiber and their preparation
CN103088503A (en) * 2013-01-10 2013-05-08 韩仕银 Modification method of collagen fiber bundles
JP2020122249A (en) * 2019-01-31 2020-08-13 国立大学法人信州大学 Method for producing fibroin fiber and fibroin solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581548A (en) * 1978-12-13 1980-06-19 Kuraray Co Ltd Bundle of fine fiber and their preparation
CN103088503A (en) * 2013-01-10 2013-05-08 韩仕银 Modification method of collagen fiber bundles
JP2020122249A (en) * 2019-01-31 2020-08-13 国立大学法人信州大学 Method for producing fibroin fiber and fibroin solution

Similar Documents

Publication Publication Date Title
JP6736802B2 (en) Modified fibroin
JP6736801B2 (en) Modified fibroin
JP7048058B2 (en) Modified fibroin
JP6959482B2 (en) A molded product, a method for manufacturing the molded product, and a method for improving the toughness of the molded product.
JP7133810B2 (en) modified fibroin
WO2018043698A1 (en) Molded body and method for producing molded body
WO2023038154A1 (en) Large-diameter artificial polypeptide fiber, method for manufacturing same, and adhesive
JP2020120642A (en) Modified fibroin fiber manufacturing method and protein solution
WO2019151432A1 (en) Method for preparing oil adhesion protein crimped fiber
WO2021015153A1 (en) Modified fibroin
WO2020145363A1 (en) Modified fibroin
US20230128695A1 (en) Synthetic Polymer and Method for Producing Same, Molding Material, and Molded Body
WO2019146765A1 (en) Material for protein molded body, protein molded body, and method for producing protein molded body
JP2020120643A (en) Modified fibroin fiber manufacturing method and protein solution
JP2021095346A (en) Method for producing modified fibroin crosslinked body
JP2024020557A (en) modified fibroin
WO2019131924A1 (en) Molded body and molded-body manufacturing method
WO2019117296A1 (en) Method for producing molded product and molded product
JP2021054751A (en) Method for producing structural protein molded product
JP2020055762A (en) Method for producing mold molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547165

Country of ref document: JP