WO2019054396A1 - Agent for inhibiting number of bacteria of genus fusobacterium and/or bacteria of genus sutterella - Google Patents

Agent for inhibiting number of bacteria of genus fusobacterium and/or bacteria of genus sutterella Download PDF

Info

Publication number
WO2019054396A1
WO2019054396A1 PCT/JP2018/033742 JP2018033742W WO2019054396A1 WO 2019054396 A1 WO2019054396 A1 WO 2019054396A1 JP 2018033742 W JP2018033742 W JP 2018033742W WO 2019054396 A1 WO2019054396 A1 WO 2019054396A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
fusobacterium
kestose
genus
months
Prior art date
Application number
PCT/JP2018/033742
Other languages
French (fr)
Japanese (ja)
Inventor
実可子 篠原
吉弘 門田
巧 栃尾
Original Assignee
物産フードサイエンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 物産フードサイエンス株式会社 filed Critical 物産フードサイエンス株式会社
Priority to JP2019542255A priority Critical patent/JP7262391B2/en
Publication of WO2019054396A1 publication Critical patent/WO2019054396A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention is an agent for suppressing the number of Fusobacterium bacteria and / or bacteria of the genus Stelerus, which comprises 1-kestose as an active ingredient, a food composition for suppressing the number of bacteria, a feed for animals for suppressing the number of bacteria and a method for suppressing the number of bacteria
  • the present invention relates to a method of preventing or treating hemorrhagic diarrhea and use of 1-kestose for producing a medicament for preventing or treating acute hemorrhagic diarrhea.
  • Fusobacterium (Fusobacterium) is an anaerobic gram-negative bacillus and has been reported to inhabit the digestive organs of animals such as human intestine and oral cavity.
  • Sterella bacteria (Sutterella) are also anaerobic or microaerophilic gram-negative short bacilli and are a component species of the intestinal flora of animals such as humans.
  • Fusobacterium bacteria and Stellara bacteria are associated with various diseases and health conditions, for example, prominent in feces of dogs suffering from acute hemorrhagic diarrhea (Acute hemorrhagic diarrihea; AHD). The increase is suggested to be involved in such diseases (Non-patent Document 1; Table 3 and FIG. 3 etc.).
  • AHD in dogs is characterized by symptoms such as bloody vomiting and diarrhea, and is a digestive disease that can be concentrated and become serious.
  • antibiotics have been administered for the purpose of suspicion of Clostridial infection and for the prevention of sepsis (non-patented).
  • Literature 2 discloses the intestinal bacterial flora is destroyed or resistant bacteria are generated.
  • the present inventors have made it a task to suppress the number of Fusobacterium bacteria and bacteria of Stellara bacteria without causing the above-mentioned risks associated with the use of antibiotics.
  • Another object of the present invention is to contribute to the prevention and treatment of diseases such as AHD by suppressing the number of such bacteria. That is, the present invention provides a substance and method capable of effectively suppressing the number of Fusobacterium bacteria and Sterella bacteria, and a substance and method which can contribute to the prevention and treatment of diseases such as AHD. With the goal.
  • the agent for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention comprises 1-kestose as an active ingredient.
  • the agent for suppressing the number of bacteria according to the present invention can be suitably used to suppress the number of Fusobacterium bacteria and / or bacteria of Stella bacteria in dogs.
  • the bacteria count inhibitor according to the present invention can be suitably used for the prevention or treatment of acute hemorrhagic diarrhea.
  • the food composition for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention contains 1-kestose as an active ingredient.
  • the animal feed for reducing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention contains 1-kestose as an active ingredient.
  • the method for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention is a Fusobacterium bacteria and / or Stellara bacteria in the human or animal body by allowing the human or animal to take in 1-kestose. It has the process of suppressing the number of bacteria.
  • the method for preventing or treating AHD according to the present invention is a method for preventing or treating AHD, by causing a human or animal suffering from or capable of suffering from AHD to ingest 1-kestose into the body of the human or animal. Suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria in
  • the use of 1-kestose according to the present invention is the use of 1-kestose for producing a medicament for preventing or treating AHD.
  • the present invention it is possible to effectively suppress the number of at least one of Fusobacterium bacteria and / or Stellara bacteria in human or animal organisms.
  • the suppression of the number of bacteria can contribute to the prevention and treatment of diseases such as AHD.
  • 1-kestose is a kind of oligosaccharide which is contained in vegetables and grains such as onion, garlic, barley, rye, etc., and it is a substance with eating experience since ancient times, mutagenicity test, acute The safety is extremely high as toxicity is not observed in any of the toxicity test, subchronic toxicity test and chronic toxicity test (Food and Development, Vol. 49, No. 12, p. 9, 2014).
  • 1-kestose is highly soluble in water and has a good sweet taste similar to sugar, so it can be taken on a daily basis as it is or as a seasoning such as a sweetener etc. It can be easily incorporated into pharmaceuticals, animal feeds and the like.
  • Fusobacterium bacteria and Stellara spp. Can be conveniently and effectively taken without any risk (the destruction of the intestinal bacterial flora and the development of resistant bacteria) caused by the use of the above-mentioned antibiotics.
  • the number of at least one of the bacteria can be suppressed.
  • the term "Fusobacterium” refers to a bacterium belonging to the genus Fusobacterium.
  • the bacteria belonging to the genus Fusobacterium for example, Fusobacterium mortiferum, Fusobacterium necrophorum, Fusobacterium gondinoformans, Fusobacterium russii, Fusobacterium perfoetens, Fusobacterium simum, Fusobacterium simiae, Fusobacterium nuclearium,
  • Sterella bacteria refers to bacteria belonging to the genus Stellara.
  • bacteria belonging to the genus Stellara include Sutterella wadsworthensis, Sutterella parvirubra, Sutterella stercoricanis and the like.
  • 1-kestose is a trisaccharide oligosaccharide consisting of one molecule of glucose and two molecules of fructose.
  • 1-kestose can be produced by using sucrose as a substrate and performing an enzyme reaction with an enzyme as disclosed in JP-A-58-201980. Specifically, first, ⁇ -fructofuranosidase is added to a sucrose solution, and the mixture is allowed to stand at 37 ° C. to 50 ° C. for about 20 hours to perform an enzyme reaction to obtain a 1-kestose-containing reaction solution.
  • 1-kestose-containing reaction solution By subjecting this 1-kestose-containing reaction solution to a chromatographic separation method as disclosed in JP-A-2000-232878, 1-kestose and other sugars (glucose, fructose, sucrose, tetrasaccharide or more) can be obtained.
  • the oligosaccharide is separated and purified to obtain a high purity 1-kestose solution.
  • the high purity 1-kestose solution is concentrated and then crystallized by a crystallization method as disclosed in Japanese Examined Patent Publication No. 6-70075 to obtain 1-kestose as crystals.
  • 1-kestose is contained in commercially available fructooligosaccharides, it may be used as it is or after separation and purification of 1-kestose from fructooligosaccharides by the method described above. That is, as the 1-kestose of the present invention, a 1-kestose-containing composition such as an oligosaccharide containing 1-kestose may be used.
  • the purity of 1-kestose is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
  • the "purity" of 1-kestose refers to the mass% of 1-kestose when the total mass of sugar is 100.
  • 1-kestose is used by being ingested by humans or animals.
  • an intake amount (dosage amount) of 1-kestose for example, 0.04 g / kg body weight or more per day can be mentioned.
  • the amount of intake concerned may be divided into several times and ingested not only once a day.
  • any method may be used as long as it reaches the intestine which is a habitat of Fusobacterium bacteria and Stelerus bacteria.
  • a method of orally ingesting 1-kestose into a human or an animal as it is, or in the form of food or drink, medicine, or animal feed specifically, there can be mentioned a method of orally ingesting 1-kestose into a human or an animal as it is, or in the form of food or drink, medicine, or animal feed.
  • the method of administering 1-kestose directly from the anus or via a inserted tube 1-kestose is added to the enteral nutrient, and this is inserted into the digestive tract such as stomach or small intestine, etc.
  • the method of administering by enteral nutrition etc. can be mentioned.
  • AHD can be prevented or treated by allowing humans or animals to ingest 1-kestose to suppress the number of at least one of Fusobacterium bacteria and / or Stellara bacteria in the body or intestine.
  • 1-kestose can be used to manufacture a pharmaceutical for the prevention or treatment of AHD.
  • “suppressing the number of bacteria” refers to suppressing an increase in the number of bacteria in any cell, tissue or organ of a living body.
  • the number of bacteria of the bacteria in the intestine can be obtained by measuring the number of bacteria of the bacteria in feces. Can be checked whether or not Specifically, for example, as shown in Example 1 (5) described later, 16S rDNA is subjected to real-time PCR using primers specific to the bacteria, using feces before and after intake of 1-kestose as a sample. Count the number of copies. Primers specific to the bacteria can be designed based on the known base sequences of the bacteria.
  • specific primers can be designed based on the 16S rDNA sequences shown in SEQ ID NO: 1-4 for Fusobacterium bacteria and in SEQ ID NO: 5 for Stellaella bacteria.
  • real-time PCR can be performed using a commercially available kit for quantifying the bacteria.
  • the 16S rDNA copy number can be used as an indicator of the number of bacteria. Therefore, as a result of measuring the 16S rDNA copy number of Fusobacterium or Sterella bacteria, if the 16S rDNA copy number in feces after intake of 1-kestose is smaller than before intake, intake of 1-kestose suppresses the number of bacteria.
  • the number of bacteria in feces before and after 1-kestose intake is about those who are in the condition that the number of Fusobacterium bacteria and bacteria of Sterella bacteria increase with the passage of time, such as those suffering from acute hemorrhagic diarrhea (AHD). If the degree of increase is small, even if it is the same degree (constant) or increased, it can be judged that the number of bacteria is suppressed by the intake of 1-kestose.
  • Examples of the form of the microbe number inhibitor of the present invention and the preventive or therapeutic drug for AHD include forms consisting only of 1-kestose which is an active ingredient, as well as forms of pharmaceuticals, food additives, supplements and the like.
  • its dosage form is, for example, powder, tablet, sugar coating, capsule, granule, dry syrup, liquid, syrup, drop, drink, etc. Or a liquid dosage form can be mentioned.
  • the pharmaceutical preparations, food additives and supplements of each of the above dosage forms can be produced by methods known to those skilled in the art.
  • 800 g of 1-kestose and 200 g of lactose are mixed well, and then 300 mL of 90% ethanol is added to wet it. Subsequently, the wet powder is granulated and then air-dried at 60 ° C. for 16 hours, and then sized to obtain 1000 g of a powder of appropriate fineness (800 mg / 1 g of 1-kestose content).
  • the food composition for controlling the number of bacteria according to the present invention may be in the form of ordinary food such as confectionery, beverages, processed foods, health foods, infant foods, etc. besides those consisting of only 1-kestose which is an active ingredient. Can be mentioned. When it is in the form of food or drink, it can be manufactured by adding an active ingredient in a normal manufacturing process. Since the sweetness of 1-kestose is 30, and its taste, physical properties, and processability are close to those of sucrose, some or all of the sugar is replaced with 1-kestose, etc. It can be handled in the same manner as sugar to produce various foods and beverages.
  • the form of animal feed for suppressing number of bacteria of the present invention is also composed of only 1-kestose which is an active ingredient, dairy cattle feed, feed for beef cattle, livestock feed such as pig feed, poultry feed, etc., dog feed
  • the form of normal animal feed such as pet feed (pet food) such as cat feed, can be mentioned. When it is in the form of a normal animal feed, it can be produced by adding an active ingredient in the production process.
  • Example 1 Changes in the number of Fusobacterium spp. And Sterella spp.
  • 1-kestose intake (1) Preparation of a tablet mainly composed of 1-kestose 1-kestose (purity 98% by mass or more; product food science) 800 g and stearin 8 g of magnesium acid is thoroughly mixed and then used in a continuous tableting machine (RT-S-9, Kikusui Seisakusho Ltd.) for tableting to give 2000 tablets (1-kestose content: 396 mg / 1) with a diameter of 8 mm and a weight of 400 mg. Got a lock).
  • a continuous tableting machine R-S-9, Kikusui Seisakusho Ltd.
  • DNA was extracted from this suspension using Magtration System 12 GC (Precision System Science) and GC series MagDEA DNA 200 (Precision System Science). The concentration of DNA was measured using a spectrophotometer ND-1000 (NanDrop Technologies), adjusted to 10 ng / ⁇ L, and used as total fecal DNA.
  • sequences with high homology are grouped as one group, and this is classified into one bacterial species (or one genus) Treated as.
  • the sequence with the highest frequency of appearance in the group was taken as a representative sequence, and the homology analysis with the sequence database was performed to identify the bacterial species.
  • the abundance ratio was calculated as a percentage of the number of leads in each group to the total number of leads.
  • the chimera sequence check is ⁇ Robert C. Edgar et al., BIOIN FORMATICS, Vol. 27, No. 16, pp. 2194-2200, June 2011>
  • the homology analysis is ⁇ Chika Kasai et al., BMC Gastroenterology, 15 In the volume, article 100, August 2015>.
  • the abundance ratio of the 16S rDNA of Fusobacterium bacteria was 7.18 at the start of the test, while 1.53 after 1 month after the start of the test and 1.98 after 2 months.
  • One month after the end of 44, 1-kestose intake (3 months later) was 2.41.
  • the abundance ratio of 16S rDNA of Fusobacterium mortiferum was 5.97 at the beginning of the test, whereas it was 1.64 after 1 month, 1.55 after 2 months, 1.85 after 3 months Met.
  • the abundance ratio of 16S rDNA of Fusobacterium varium was 0.55 at the start of the test, whereas it was 0.09 after 1 month, 0.07 after 2 months and 0.23 after 3 months Met.
  • the abundance ratio of 16S rDNA of Fusobacterium perfoetens was 0.46 at the beginning of the test, whereas it was 0.03 after 1 month, 0.06 after 2 months and 0.08 after 3 months Met.
  • the abundance ratio of 16S rDNA of Fusobacterium necrogenes was 0.13 at the beginning of the test, whereas it was 0.02 after 1 month, 0.04 after 2 months, 0.01 after 3 months Met.
  • the abundance ratio of 16S rDNA of Fusobacterium bacteria starts the test at any time point one month after the start of the test, two months after and one month after the end of the intake of 1-kestose (three months later) It was noticeably small compared to the time. From this result, it was revealed that intake of 1-kestose reduces the abundance ratio of 16S rDNA of Fusobacterium bacteria in feces.
  • the abundance ratio of 16S rDNA of Sterella bacteria was 0.22 at the beginning of the test, but 0.10 after 1 month, 0.09 after 2 months, and the end of 1-kestose intake One month after (3 months after) it was 0.02.
  • the abundance ratio of 16S rDNA of Sutterella stercoricanis was 0.31 at the start of the test, while it was 0.11 after 1 and 2 months and 0.02 after 3 months.
  • the abundance ratio of 16S rDNA of Sterella bacteria starts the test at any time point one month after the start of the test, two months after and one month after the end of the intake of 1-kestose (three months later) It was noticeably small compared to the time. From this result, it was revealed that intake of 1-kestose reduces the abundance ratio of 16S rDNA of Sterella bacteria in feces.
  • real-time PCR was performed in the same manner using Sutterella Detection Kit (Techno Surga Lab) in place of Fusobacterium Detection Kit to quantify the 16S rDNA copy number of Sterella bacteria per gram of feces. Furthermore, real-time PCR is performed in the same manner using a universal primer (forward primer; CCTACGGGAGGCAGCAG (SEQ ID NO: 6), reverse primer: ATTACCGCGGCTGCTGG (SEQ ID NO: 7)) to quantify 16S rDNA copy number of total eubacteria contained in 1 g of feces. did.
  • a universal primer forward primer; CCTACGGGAGGCAGCAG (SEQ ID NO: 6), reverse primer: ATTACCGCGGCTGCTGG (SEQ ID NO: 7)
  • the calibration curve for quantifying Fusobacterium genus bacteria and Sterella genus bacteria was produced based on the result of having performed real-time PCR on the same conditions using the standard sample contained in the said kit.
  • the calibration curve for quantifying whole eubacteria is E. coli.
  • the obtained 16S rDNA copy number was calculated as the median at each collection time of feces.
  • the 16S rDNA copy number (median) of whole eubacteria is shown in the line graph of FIG. 1
  • the 16S rDNA copy number (median) of Fusobacterium bacteria is shown in the line graph of FIG.
  • the values are shown in the line graph of FIG. Assuming that the 16S rDNA copy number at the start of the test is 100%, the 16S rDNA copy number is expressed as a percentage at one month, two months after the start of the test and one month after the end of intake (three months). It was the rate (%).
  • the 16S rDNA copy number of total eubacteria was 100%, and the 16S rDNA copy number of each of Fusobacterium bacteria and Sterella bacteria was expressed as a percentage, and this was taken as the occupancy rate (%).
  • the results for whole eubacteria are shown in Table 2, the results for Fusobacterium bacteria are shown in Table 3, and the results for Sterella bacteria are shown in Table 4.
  • the 16S rDNA copy number of whole eubacteria is 1 month after the start of the test, 2 months after and 1 month after the end of the intake of 1-kestose (3 months after), It increased with the passage of time.
  • the 16S rDNA copy number of Fusobacterium bacteria decreased with the lapse of time from the start of the test.
  • the 16S rDNA copy number of Sterella bacteria also decreased with the passage of time from the start of the test, as shown in FIG. 3 and Table 4.
  • the rate of change of Fusobacterium bacteria was 33% at one month after the start of the test, 40% at two months, and 32% at three months. That is, the number of 16S rDNA copies of the Fusobacterium bacteria is lower than that at the start of the test at any one month after the start of the test, two months after the start of the test, and one month after the end of intake of 1-kestose (three months). It became remarkably small to about 1/3.
  • the occupancy rate of the Fusobacterium bacteria was 4.76% at the start of the test, but 1.20% after one month from the start of the test, 1.35% after two months, after three months The rate was 0.82%. That is, the percentage of Fusobacterium bacteria in total eubacterial bacteria at one month after the start of the test, two months after the start of the test and one month after the end of the intake of 1-kestose (after three months) In comparison, they were significantly reduced to about 1 ⁇ 4, 1 ⁇ 3 and 1 ⁇ 6, respectively.
  • the rate of change of Sterella bacteria was 59% one month after the start of the test, 50% two months later, and 17% three months later. That is, the number of 16S rDNA copies of the Sterella bacteria is 1 month after the start of the test, 2 months after the start of the test, and 1 month after the end of the intake of 1-kestose (3 months after). It becomes significantly smaller from about 1/2 to less than 1/5.
  • the occupancy rate of Sterella bacteria was 0.13% at the start of the test, while 0.06% at one month after the start of the test, 0.04% at two months after the test
  • the result was 0.01%. That is, in any one month after the start of the test, two months after, and one month after the end of intake of 1-kestose (three months after), the ratio of the bacteria of the bacteria belonging to all eubacterial bacteria is the same as at the start of the test. In comparison, they were significantly reduced to 1/4, 1/6 and 1/24, respectively.

Abstract

[Problem] To provide an agent for inhibiting the number of bacteria of the genus Fusobacterium and/or bacteria of the genus Sutterella, the agent being capable of effectively inhibiting the number of bacteria of the genus Fusobacterium and bacteria of the genus Sutterella and capable of contributing to the prevention and treatment of diseases such as acute hemorrhagic diarrhea. [Solution] An agent for inhibiting the number of bacteria of the genus Fusobacterium and/or bacteria of the genus Sutterella having 1-kestose as an active ingredient. The present invention can obtain an agent for inhibiting the number of bacteria of the genus Fusobacterium and/or bacteria of the genus Sutterella that can effectively inhibit the number of bacteria of the genus Fusobacterium and bacteria of the genus Sutterella, is highly safe, and can be compounded easily with various foods and pharmaceuticals or taken conveniently on a daily basis.

Description

フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制剤Inhibitors for the number of Fusobacterium bacteria and / or Stellara bacteria
 本発明は、1-ケストースを有効成分とする、フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制剤、菌数抑制用食品組成物、菌数抑制用動物用飼料および菌数抑制方法、急性出血性下痢の予防または治療方法ならびに急性出血性下痢の予防または治療用医薬品を製造するための1-ケストースの使用に関する。 The present invention is an agent for suppressing the number of Fusobacterium bacteria and / or bacteria of the genus Stelerus, which comprises 1-kestose as an active ingredient, a food composition for suppressing the number of bacteria, a feed for animals for suppressing the number of bacteria and a method for suppressing the number of bacteria The present invention relates to a method of preventing or treating hemorrhagic diarrhea and use of 1-kestose for producing a medicament for preventing or treating acute hemorrhagic diarrhea.
 フソバクテリウム属細菌(Fusobacterium)は嫌気性のグラム陰性桿菌であり、ヒトの腸内や口腔内など、動物の消化器官に生息することが報告されている。ステレラ属細菌(Sutterella)もまた、嫌気性または微好気性のグラム陰性短桿菌であり、ヒトなどの動物の腸内細菌叢の構成菌種である。 Fusobacterium (Fusobacterium) is an anaerobic gram-negative bacillus and has been reported to inhabit the digestive organs of animals such as human intestine and oral cavity. Sterella bacteria (Sutterella) are also anaerobic or microaerophilic gram-negative short bacilli and are a component species of the intestinal flora of animals such as humans.
 近年の研究において、フソバクテリウム属細菌やステレラ属細菌は種々の疾患や健康状態との関連が示唆されており、例えば、急性出血性下痢(Acute hemorrhagic diarrihea; AHD)に罹患したイヌの糞便において顕著な増加が見られることから、係る疾患に関与することが示唆されている(非特許文献1;表3および図3など)。 Recent studies have suggested that Fusobacterium bacteria and Stellara bacteria are associated with various diseases and health conditions, for example, prominent in feces of dogs suffering from acute hemorrhagic diarrhea (Acute hemorrhagic diarrihea; AHD). The increase is suggested to be involved in such diseases (Non-patent Document 1; Table 3 and FIG. 3 etc.).
 イヌのAHDは、血液の混じった嘔吐や下痢といった症状を特徴とし、血液が濃縮されて重篤な状態となる場合もある消化器系疾患である。AHDの治療には、従来、体液調整や栄養補給を目的として輸液が行われるほか、クロストリジウム属感染症を疑って、また、敗血症予防を目的として、抗生物質の投与が行われている(非特許文献2)。しかしながら、抗生物質は、AHDの治療上での有効性に議論の余地がある上、腸内細菌叢の破壊や耐性菌を生じさせるといったリスクがある(非特許文献3)。 AHD in dogs is characterized by symptoms such as bloody vomiting and diarrhea, and is a digestive disease that can be concentrated and become serious. In the treatment of AHD, in addition to infusion for the purpose of body fluid adjustment and nutritional support, antibiotics have been administered for the purpose of suspicion of Clostridial infection and for the prevention of sepsis (non-patented). Literature 2). However, antibiotics are controversial in the therapeutic efficacy of AHD, and there is a risk that the intestinal bacterial flora is destroyed or resistant bacteria are generated (Non-patent Document 3).
 そこで、本発明者らは、抗生物質の使用に伴う上述のリスクを生じさせずに、フソバクテリウム属細菌やステレラ属細菌の菌数を抑制することを課題とした。また、係る細菌の菌数を抑制することにより、AHD等の疾患の予防や治療に寄与することを課題とした。すなわち、本発明は、フソバクテリウム属細菌やステレラ属細菌の菌数を効果的に抑制することができる物質および方法、ならびに、AHD等の疾患の予防や治療に寄与しうる物質および方法を提供することを目的とする。 Therefore, the present inventors have made it a task to suppress the number of Fusobacterium bacteria and bacteria of Stellara bacteria without causing the above-mentioned risks associated with the use of antibiotics. Another object of the present invention is to contribute to the prevention and treatment of diseases such as AHD by suppressing the number of such bacteria. That is, the present invention provides a substance and method capable of effectively suppressing the number of Fusobacterium bacteria and Sterella bacteria, and a substance and method which can contribute to the prevention and treatment of diseases such as AHD. With the goal.
 本発明者らは、鋭意研究の結果、1-ケストースが、体内のフソバクテリウム属細菌およびステレラ属細菌の少なくともいずれかの菌数を顕著に抑制することを見出した。そこで、この知見に基づいて、下記の各発明を完成した。 As a result of earnest studies, the present inventors have found that 1-kestose significantly suppresses the number of Fusobacterium bacteria and / or Stellara bacteria in the body. Then, based on this knowledge, the following each invention was completed.
(1)本発明に係るフソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制剤は、1-ケストースを有効成分とする。 (1) The agent for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention comprises 1-kestose as an active ingredient.
(2)本発明に係る菌数抑制剤は、イヌにおけるフソバクテリウム属細菌および/またはステレラ属細菌の菌数を抑制するために好適に用いることができる。 (2) The agent for suppressing the number of bacteria according to the present invention can be suitably used to suppress the number of Fusobacterium bacteria and / or bacteria of Stella bacteria in dogs.
(3)本発明に係る菌数抑制剤は、急性出血性下痢の予防または治療に好適に用いることができる。 (3) The bacteria count inhibitor according to the present invention can be suitably used for the prevention or treatment of acute hemorrhagic diarrhea.
(4)本発明に係るフソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制用食品組成物は、1-ケストースを有効成分とする。 (4) The food composition for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention contains 1-kestose as an active ingredient.
(5)本発明に係るフソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制用動物用飼料は、1-ケストースを有効成分とする。 (5) The animal feed for reducing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention contains 1-kestose as an active ingredient.
(6)本発明に係るフソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制方法は、ヒトまたは動物に1-ケストースを摂取させることにより前記ヒトまたは動物の体内におけるフソバクテリウム属細菌および/またはステレラ属細菌の数を抑制する工程を有する。 (6) The method for suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria according to the present invention is a Fusobacterium bacteria and / or Stellara bacteria in the human or animal body by allowing the human or animal to take in 1-kestose. It has the process of suppressing the number of bacteria.
(7)本発明に係るAHDの予防または治療方法は、AHDを罹患している、または、罹患する可能性があるヒトもしくは動物に、1-ケストースを摂取させることにより、前記ヒトもしくは動物の体内におけるフソバクテリウム属細菌および/またはステレラ属細菌の数を抑制する工程を有する。 (7) The method for preventing or treating AHD according to the present invention is a method for preventing or treating AHD, by causing a human or animal suffering from or capable of suffering from AHD to ingest 1-kestose into the body of the human or animal. Suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria in
(8)本発明に係る1-ケストースの使用は、AHDの予防または治療用医薬品を製造するための1-ケストースの使用である。 (8) The use of 1-kestose according to the present invention is the use of 1-kestose for producing a medicament for preventing or treating AHD.
 本発明によれば、ヒトや動物の生体におけるフソバクテリウム属細菌およびステレラ属細菌の少なくともいずれかの菌数を効果的に抑制することができる。また、係る細菌の菌数を抑制することにより、AHD等の疾患の予防や治療に寄与することができる。 According to the present invention, it is possible to effectively suppress the number of at least one of Fusobacterium bacteria and / or Stellara bacteria in human or animal organisms. In addition, the suppression of the number of bacteria can contribute to the prevention and treatment of diseases such as AHD.
 また、1-ケストースは、タマネギやニンニク、大麦、ライ麦などの野菜や穀物にも含まれているオリゴ糖の一種であり、古来より食経験を有する物質であることや、変異原性試験、急性毒性試験、亜慢性毒性試験および慢性毒性試験のいずれにおいても毒性が認められていないことから、安全性は極めて高い(食品と開発、Vol.49、No.12、第9頁、2014年)。さらに、1-ケストースは水溶性が高く、砂糖に似た良好な甘味質を有するため、そのまま、あるいは甘味料等の調味料として、日常的に簡便に摂取することができるほか、様々な食品や医薬品、動物用飼料等に容易に配合することができる。 In addition, 1-kestose is a kind of oligosaccharide which is contained in vegetables and grains such as onion, garlic, barley, rye, etc., and it is a substance with eating experience since ancient times, mutagenicity test, acute The safety is extremely high as toxicity is not observed in any of the toxicity test, subchronic toxicity test and chronic toxicity test (Food and Development, Vol. 49, No. 12, p. 9, 2014). Furthermore, 1-kestose is highly soluble in water and has a good sweet taste similar to sugar, so it can be taken on a daily basis as it is or as a seasoning such as a sweetener etc. It can be easily incorporated into pharmaceuticals, animal feeds and the like.
 したがって、本発明によれば、上述の抗生物質使用によって生じるようなリスク(腸内細菌叢の破壊や耐性菌の発生)を全く懸念することなく、簡便かつ効果的に、フソバクテリウム属細菌およびステレラ属細菌の少なくともいずれかの菌数を抑制することができる。 Therefore, according to the present invention, Fusobacterium bacteria and Stellara spp. Can be conveniently and effectively taken without any risk (the destruction of the intestinal bacterial flora and the development of resistant bacteria) caused by the use of the above-mentioned antibiotics. The number of at least one of the bacteria can be suppressed.
試験開始時から3ヶ月後(1-ケストースの摂取終了から1ヶ月後)までの、糞便中の全真正細菌の16S rDNAコピー数を示す折れ線グラフである。It is a line graph which shows the 16S rDNA copy number of the whole eubacteria in feces from three months after a test start (one month after the completion of 1-kestose intake). 試験開始時から3ヶ月後(1-ケストースの摂取終了から1ヶ月後)までの、糞便中のフソバクテリウム属細菌の16S rDNAコピー数を示す折れ線グラフである。It is a line graph which shows the 16S rDNA copy number of the Fusobacterium genus bacteria in feces from three months after a test start to 1 month (one month after the completion of 1-kestose intake). 試験開始時から3ヶ月後(1-ケストースの摂取終了から1ヶ月後)までの、糞便中のステレラ属細菌の16S rDNAコピー数を示す折れ線グラフである。It is a line graph which shows the 16S rDNA copy number of the Sterella bacteria in feces from three months after a test start to 1 month (one month after the completion of 1-kestose intake).
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明において、「フソバクテリウム属細菌」は、フソバクテリウム属に属する細菌をいう。フソバクテリウム属に属する細菌としては、例えば、Fusobacterium mortiferum, Fusobacterium necrophorum, Fusobacterium gonidoformans, Fusobacterium russii, Fusobacterium perfoetens, Fusobacterium rectum, Fusobacterium simiae, Fusobacterium nucleatum, Fusobacterium varium, Fusobacterium sp. M3333などを挙げることができる。 In the present invention, the term "Fusobacterium" refers to a bacterium belonging to the genus Fusobacterium. As the bacteria belonging to the genus Fusobacterium, for example, Fusobacterium mortiferum, Fusobacterium necrophorum, Fusobacterium gondinoformans, Fusobacterium russii, Fusobacterium perfoetens, Fusobacterium simum, Fusobacterium simiae, Fusobacterium nuclearium,
 本発明において、「ステレラ属細菌」は、ステレラ属に属する細菌をいう。ステレラ属に属する細菌としては、例えば、Sutterella wadsworthensis, Sutterella parvirubra, Sutterella stercoricanisなどを挙げることができる。 In the present invention, "Sterella bacteria" refers to bacteria belonging to the genus Stellara. Examples of bacteria belonging to the genus Stellara include Sutterella wadsworthensis, Sutterella parvirubra, Sutterella stercoricanis and the like.
 1-ケストースは、1分子のグルコースと2分子のフルクトースからなる三糖類のオリゴ糖である。1-ケストースは、スクロースを基質として、特開昭58-201980号公報に開示されているような酵素による酵素反応を行うことにより作ることができる。具体的には、まず、β-フルクトフラノシダーゼをスクロース溶液に添加し、37℃~50℃で20時間程度静置することにより酵素反応を行って、1-ケストース含有反応液を得る。この1-ケストース含有反応液を、特開2000-232878号公報で開示されているようなクロマト分離法に供することよって、1-ケストースと他の糖(ブドウ糖、果糖、ショ糖、4糖以上のオリゴ糖)とを分離して精製し、高純度1-ケストース溶液を得る。続いて、この高純度1-ケストース溶液を濃縮した後、特公平6-70075号公報に開示されているような結晶化法で結晶化することにより、1-ケストースを結晶として得ることができる。 1-kestose is a trisaccharide oligosaccharide consisting of one molecule of glucose and two molecules of fructose. 1-kestose can be produced by using sucrose as a substrate and performing an enzyme reaction with an enzyme as disclosed in JP-A-58-201980. Specifically, first, β-fructofuranosidase is added to a sucrose solution, and the mixture is allowed to stand at 37 ° C. to 50 ° C. for about 20 hours to perform an enzyme reaction to obtain a 1-kestose-containing reaction solution. By subjecting this 1-kestose-containing reaction solution to a chromatographic separation method as disclosed in JP-A-2000-232878, 1-kestose and other sugars (glucose, fructose, sucrose, tetrasaccharide or more) can be obtained. The oligosaccharide is separated and purified to obtain a high purity 1-kestose solution. Subsequently, the high purity 1-kestose solution is concentrated and then crystallized by a crystallization method as disclosed in Japanese Examined Patent Publication No. 6-70075 to obtain 1-kestose as crystals.
 また、1-ケストースは市販のフラクトオリゴ糖に含まれているため、これをそのまま、あるいは、フラクトオリゴ糖から上述の方法により1-ケストースを分離精製して用いてもよい。すなわち、本発明の1-ケストースとして、1-ケストースを含有するオリゴ糖などの1-ケストース含有組成物を用いてもよい。1-ケストース含有組成物を用いる場合、1-ケストースの純度は80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。なお、本発明において、1-ケストースの「純度」とは、糖の総質量を100とした場合の、1-ケストースの質量%をいう。 Further, since 1-kestose is contained in commercially available fructooligosaccharides, it may be used as it is or after separation and purification of 1-kestose from fructooligosaccharides by the method described above. That is, as the 1-kestose of the present invention, a 1-kestose-containing composition such as an oligosaccharide containing 1-kestose may be used. When the 1-kestose-containing composition is used, the purity of 1-kestose is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. In the present invention, the "purity" of 1-kestose refers to the mass% of 1-kestose when the total mass of sugar is 100.
 1-ケストースは、ヒトまたは動物に摂取させることにより用いる。1-ケストースの摂取量(投与量)としては、例えば、1日あたり0.04g/kg体重以上を挙げることができる。係る摂取量は、1日1回に限らず、複数回に分割して摂取してもよい。 1-kestose is used by being ingested by humans or animals. As an intake amount (dosage amount) of 1-kestose, for example, 0.04 g / kg body weight or more per day can be mentioned. The amount of intake concerned may be divided into several times and ingested not only once a day.
 1-ケストースをヒトや動物に摂取させる方法としては、フソバクテリウム属細菌やステレラ属細菌の生息場所である腸内に到達させる方法であればよい。そのような方法として、具体的には、1-ケストースを、そのまま、あるいは飲食物や医薬品、動物用飼料の形態で、ヒトまたは動物に経口摂取させる方法を挙げることができる。その他、1-ケストースを肛門から直接あるいは挿入したチューブを経由して投与する方法、1-ケストースを経腸栄養剤に添加して、これを、胃や小腸などの消化管に挿入したチューブを経由して経腸栄養法により投与する方法などを挙げることができる。 As a method of feeding 1-kestose to humans and animals, any method may be used as long as it reaches the intestine which is a habitat of Fusobacterium bacteria and Stelerus bacteria. As such a method, specifically, there can be mentioned a method of orally ingesting 1-kestose into a human or an animal as it is, or in the form of food or drink, medicine, or animal feed. In addition, the method of administering 1-kestose directly from the anus or via a inserted tube, 1-kestose is added to the enteral nutrient, and this is inserted into the digestive tract such as stomach or small intestine, etc. And the method of administering by enteral nutrition etc. can be mentioned.
 上述のとおり、フソバクテリウム属細菌およびステレラ属細菌の菌数は、急性出血性下痢(AHD)に罹患したイヌの糞便中において、健康なイヌと比較して顕著に増加していることが報告されており(非特許文献1;表3および図3など)、このことから、係る疾患に関与することが示唆されている。 As mentioned above, the numbers of Fusobacterium bacteria and Stellara bacteria have been reported to be significantly increased in feces of dogs suffering from acute hemorrhagic diarrhea (AHD) compared to healthy dogs. It is suggested that it is involved in such diseases (see Non-patent Document 1; Table 3 and FIG. 3 etc.).
 したがって、1-ケストースをヒトや動物に摂取させてその体内ないし腸内においてフソバクテリウム属細菌またはステレラ属細菌の少なくともいずれかの菌数を抑制することにより、AHDを予防または治療することができる。また、1-ケストースは、AHDの予防または治療用医薬品を製造するために使用することができる。 Therefore, AHD can be prevented or treated by allowing humans or animals to ingest 1-kestose to suppress the number of at least one of Fusobacterium bacteria and / or Stellara bacteria in the body or intestine. In addition, 1-kestose can be used to manufacture a pharmaceutical for the prevention or treatment of AHD.
 本発明において、細菌の「菌数を抑制する」とは、生体のいずれかの細胞ないし組織・器官における当該細菌の菌数の増加を抑制することをいう。 In the present invention, "suppressing the number of bacteria" refers to suppressing an increase in the number of bacteria in any cell, tissue or organ of a living body.
 例えば、腸における当該細菌の菌数は、糞便中の当該細菌の菌数と相関していると考えられるため、糞便中の当該細菌の菌数を計測することにより、腸において当該細菌の菌数が抑制されたか否かを確認することができる。具体的には、例えば、後述する実施例1(5)に示すように、1-ケストースの摂取前後の糞便を試料として、当該細菌に特異的なプライマーを用いたリアルタイムPCR法を行って16S rDNAコピー数を計測する。当該細菌に特異的なプライマーは、当該細菌の公知の塩基配列に基づいて設計することができる。例えば、フソバクテリウム属細菌であれば配列番号1~4に、ステレラ属細菌であれば配列番号5に、それぞれ示す16S rDNA配列に基づいて特異的プライマーを設計することができる。また、簡便には、当該細菌を定量するための市販のキットを用いてリアルタイムPCR法を行うこともできる。 For example, since the number of bacteria of the bacteria in the intestine is considered to be correlated with the number of bacteria of the bacteria in feces, the number of bacteria of the bacteria in the intestine can be obtained by measuring the number of bacteria of the bacteria in feces. Can be checked whether or not Specifically, for example, as shown in Example 1 (5) described later, 16S rDNA is subjected to real-time PCR using primers specific to the bacteria, using feces before and after intake of 1-kestose as a sample. Count the number of copies. Primers specific to the bacteria can be designed based on the known base sequences of the bacteria. For example, specific primers can be designed based on the 16S rDNA sequences shown in SEQ ID NO: 1-4 for Fusobacterium bacteria and in SEQ ID NO: 5 for Stellaella bacteria. Also, conveniently, real-time PCR can be performed using a commercially available kit for quantifying the bacteria.
 当該細菌の16S rDNAコピー数と当該細菌の菌数とは相関関係にあるため、16S rDNAコピー数は、菌数の指標とすることができる。よって、フソバクテリウム属細菌またはステレラ属細菌の16S rDNAコピー数を計測した結果、1-ケストースの摂取後の糞便における16S rDNAコピー数が摂取前よりも小さければ、1-ケストースの摂取により菌数が抑制されたと判断することができる。また、急性出血性下痢(AHD)の罹患者などの、フソバクテリウム属細菌やステレラ属細菌の菌数が時間経過に伴い増加する状態にある者については、1-ケストース摂取前後の糞便における菌数が同程度(一定)、あるいは増加していても、その増加の程度が小さければ、1-ケストースの摂取により菌数が抑制されたと判断することができる。 Since there is a correlation between the 16S rDNA copy number of the bacteria and the number of bacteria of the bacteria, the 16S rDNA copy number can be used as an indicator of the number of bacteria. Therefore, as a result of measuring the 16S rDNA copy number of Fusobacterium or Sterella bacteria, if the 16S rDNA copy number in feces after intake of 1-kestose is smaller than before intake, intake of 1-kestose suppresses the number of bacteria. It can be determined that In addition, the number of bacteria in feces before and after 1-kestose intake is about those who are in the condition that the number of Fusobacterium bacteria and bacteria of Sterella bacteria increase with the passage of time, such as those suffering from acute hemorrhagic diarrhea (AHD). If the degree of increase is small, even if it is the same degree (constant) or increased, it can be judged that the number of bacteria is suppressed by the intake of 1-kestose.
 本発明の菌数抑制剤やAHDの予防または治療用医薬品の形態としては、有効成分である1-ケストースのみからなるもののほか、医薬品や食品添加剤、サプリメントなどの形態を挙げることができる。医薬品や食品添加剤、サプリメントの形態とする場合、その剤型としては、例えば、散剤、錠剤、糖衣剤、カプセル剤、顆粒剤、ドライシロップ剤、液剤、シロップ剤、ドロップ剤、ドリンク剤等の固形または液状の剤型を挙げることができる。 Examples of the form of the microbe number inhibitor of the present invention and the preventive or therapeutic drug for AHD include forms consisting only of 1-kestose which is an active ingredient, as well as forms of pharmaceuticals, food additives, supplements and the like. When it is in the form of pharmaceuticals, food additives, supplements, its dosage form is, for example, powder, tablet, sugar coating, capsule, granule, dry syrup, liquid, syrup, drop, drink, etc. Or a liquid dosage form can be mentioned.
 上記各剤型の医薬品や食品添加剤、サプリメントは、当業者に公知の方法で製造することができる。例えば、散剤であれば、1-ケストース800gおよび乳糖200gをよく混合した後、90%エタノール300mLを添加して湿潤させる。続いて、湿潤粉末を造粒した後、60℃で16時間通風乾燥し、その後、整粒して、適当な細かさの散剤1000g(1-ケストース含有量800mg/1g)を得ることができる。また、錠剤であれば、1-ケストース300g、粉末還元水飴380g、コメデンプン180gおよびデキストリン100gをよく混合した後、90(v/v)%エタノール300mLを添加して湿潤させ、湿潤粉末を得る。この湿潤粉末を押し出し造粒した後、60℃で16時間通風乾燥して顆粒を得る。この顆粒を850μmの篩を用いて整粒した後、顆粒470gに対してショ糖脂肪酸エステル50gを添加して混合する。これを、ロータリー打錠機(6B-2、菊水製作所)に供して打錠することにより、直径8mm、重量200mgの錠剤5000錠(1-ケストース含有量60mg/1錠)を得ることができる。その他、後述する実施例1(1)に記載の方法で錠剤を製造することもできる。 The pharmaceutical preparations, food additives and supplements of each of the above dosage forms can be produced by methods known to those skilled in the art. For example, in the case of powder, 800 g of 1-kestose and 200 g of lactose are mixed well, and then 300 mL of 90% ethanol is added to wet it. Subsequently, the wet powder is granulated and then air-dried at 60 ° C. for 16 hours, and then sized to obtain 1000 g of a powder of appropriate fineness (800 mg / 1 g of 1-kestose content). In the case of tablets, 300 g of 1-kestose, 380 g of powdered reduced starch syrup, 180 g of rice starch and 100 g of dextrin are thoroughly mixed, and then 300 mL of 90 (v / v)% ethanol is added to obtain a wet powder. The wet powder is extruded and granulated and then air-dried at 60 ° C. for 16 hours to obtain granules. The granules are sized using an 850 μm sieve, and 50 g of sucrose fatty acid ester is added to and mixed with 470 g of the granules. By using this in a rotary tableting machine (6B-2, manufactured by Kikusui Seisakusho Co., Ltd.), it is possible to obtain 5,000 tablets (containing 1-kestose content 60 mg / 1 tablet) having a diameter of 8 mm and a weight of 200 mg. In addition, tablets can also be produced by the method described in Example 1 (1) described later.
 また、本発明の菌数抑制用食品組成物の形態としては、有効成分である1-ケストースのみからなるもののほか、菓子や飲料、加工食品、健康食品、乳幼児食品などの通常の飲食物の形態を挙げることができる。飲食物の形態とする場合は、通常の製造過程で、有効成分を添加して製造することができる。1-ケストースの甘味度は30で、その味質・物性・加工性はショ糖に近いことから、各種飲食物の製造過程において、砂糖の一部または全部を1-ケストースに置き換えるなどして、砂糖と同様に扱って各種飲食物を製造することができる。 Further, the food composition for controlling the number of bacteria according to the present invention may be in the form of ordinary food such as confectionery, beverages, processed foods, health foods, infant foods, etc. besides those consisting of only 1-kestose which is an active ingredient. Can be mentioned. When it is in the form of food or drink, it can be manufactured by adding an active ingredient in a normal manufacturing process. Since the sweetness of 1-kestose is 30, and its taste, physical properties, and processability are close to those of sucrose, some or all of the sugar is replaced with 1-kestose, etc. It can be handled in the same manner as sugar to produce various foods and beverages.
 本発明の菌数抑制用動物用飼料の形態もまた、有効成分である1-ケストースのみからなるもののほか、乳牛飼料や肉牛用飼料、養豚飼料、養鶏飼料等の家畜用飼料、イヌ用飼料やネコ用飼料等の愛玩動物用飼料(ペットフード)といった通常の動物用飼料の形態を挙げることができる。通常の動物用飼料の形態とする場合は、その製造過程で有効成分を添加して製造することができる。 The form of animal feed for suppressing number of bacteria of the present invention is also composed of only 1-kestose which is an active ingredient, dairy cattle feed, feed for beef cattle, livestock feed such as pig feed, poultry feed, etc., dog feed The form of normal animal feed, such as pet feed (pet food) such as cat feed, can be mentioned. When it is in the form of a normal animal feed, it can be produced by adding an active ingredient in the production process.
 以下、本発明について、各実施例に基づいて説明する。なお、本発明の技術的範囲は、これらの実施例によって示される特徴に限定されない。 Hereinafter, the present invention will be described based on each example. The technical scope of the present invention is not limited to the features shown by these embodiments.
<実施例1>1-ケストース摂取によるフソバクテリウム属およびステレラ属の菌数変化
(1)1-ケストースを主成分とする錠剤の調製
 1-ケストース(純度98質量%以上;物産フードサイエンス)800gおよびステアリン酸マグネシウム8gをよく混合した後、連続打錠機(RT-S-9、菊水製作所)に供して打錠することにより、直径8mm、重量400mgの錠剤2000錠(1-ケストース含有量396mg/1錠)を得た。
<Example 1> Changes in the number of Fusobacterium spp. And Sterella spp. By 1-kestose intake (1) Preparation of a tablet mainly composed of 1-kestose 1-kestose (purity 98% by mass or more; product food science) 800 g and stearin 8 g of magnesium acid is thoroughly mixed and then used in a continuous tableting machine (RT-S-9, Kikusui Seisakusho Ltd.) for tableting to give 2000 tablets (1-kestose content: 396 mg / 1) with a diameter of 8 mm and a weight of 400 mg. Got a lock).
(2)1-ケストースを経口摂取させたビーグル犬の飼育および糞便の採取
 試験期間を3ヶ月として、5頭のビーグル犬に、本実施例1(1)の錠剤を1日当たり2g(1日当たりの1-ケストース摂取量が1980mg)摂取させながら2ヶ月間飼育した。その後、経過観察の為に、錠剤を摂取させずに1ヶ月間飼育した。試験開始時、試験開始から1ヶ月後、2ヶ月後、および3ヶ月後(試験終了時)に、採便容器スプーン型キットを用いて直腸便を採取し、-80℃で凍結保存した。
(2) Breeding of beagle dogs fed orally with 1-kestose and collection of feces With the test period being 3 months, 5 beagle dogs were given 2 g of the tablet of Example 1 (1) per day The animals were bred for 2 months while taking 1-kestose intake (1980 mg). Thereafter, for follow-up observation, the animals were reared for 1 month without taking a tablet. At the beginning of the test, and one month, two months, and three months after the start of the test (at the end of the test), rectal stool was collected using a stool collection spoon type kit and stored frozen at -80.degree.
(3)総DNAの抽出
 〈Shunsuke Takahashiら、PLosONE、第9巻、第8号、e105592、2014年8月〉に記載の方法に従って、本実施例1(2)の糞便から総DNAを抽出した。具体的には、まず、4Mのグアニジンチオシアネート、100mMのトリスHCl(pH9.0)および40mMのEDTAを含む水溶液に、氷上で融解した糞便100mgを懸濁し、FastPrep FP100A(MP Biomedicals)を用いてジルコニアビーズで粉砕して懸濁液を得た。Magtration System 12GC(Precision System Science)およびGC series MagDEA DNA 200(Precision System Science)を用いて、この懸濁液からDNAを抽出した。DNAの濃度を分光測光器ND-1000(NanDrop Technologies)を用いて測定し、10ng/μLとなるように調製して、これを糞便由来総DNAとした。
(3) Extraction of total DNA Total DNA was extracted from feces of Example 1 (2) according to the method described in <Shunsuke Takahashi et al., PLosONE, Vol. 9, No. 8, e105592, August 2014>. . Specifically, first, 100 mg of feces melted on ice is suspended in an aqueous solution containing 4 M guanidine thiocyanate, 100 mM Tris HCl (pH 9.0) and 40 mM EDTA, and zirconia is added using FastPrep FP 100 A (MP Biomedicals). Triturate with beads to obtain a suspension. DNA was extracted from this suspension using Magtration System 12 GC (Precision System Science) and GC series MagDEA DNA 200 (Precision System Science). The concentration of DNA was measured using a spectrophotometer ND-1000 (NanDrop Technologies), adjusted to 10 ng / μL, and used as total fecal DNA.
(4)糞便中の微生物由来DNAの網羅的解析
 本実施例1(2)の糞便に含まれる、細菌および古細菌の種類と存在比率の網羅的解析を行った。具体的には、〈Shunsuke Takahashiら、PLosONE、第9巻、第8号、e105592、2014年8月〉に記載の方法に従い、ユニバーサルプライマーを用いて、本実施例1(3)の糞便由来総DNAに含まれる、細菌由来の16S rDNAを増幅した後、次世代シークエンサーMiSeq(Illumina)によりその塩基配列を解読した。得られた塩基配列データから、データの質(クオリティ)が低いものおよびキメラ配列由来のものを排除した後、相同性が高い配列を1つの群としてまとめ、これを1菌種(または1属)として扱った。当該1群の中で出現頻度が最も高い配列を代表配列として、配列データベースとの相同性解析を行い菌種を同定した。存在比率は、総リード数に占める各群のリード数の割合を百分率として算出した。なお、キメラ配列のチェックは〈Robert C. Edgarら、BIOINFORMATICS、第27巻、16号、第2194-2200頁、2011年6月〉に、相同性解析は〈Chika Kasaiら、BMC Gastroenterology、第15巻、記事100号、2015年8月〉に、それぞれ記載の方法に準じて行った。  
(4) Comprehensive Analysis of Microorganism-Derived DNA in Feces A comprehensive analysis of the types and abundances of bacteria and archaea contained in the feces of Example 1 (2) was performed. Specifically, according to the method described in <Shunsuke Takahashi et al., PLosONE, Vol. 9, No. 8, e105592, August 2014>, using the universal primer, feces-derived total of Example 1 (3) After amplification of 16S rDNA derived from bacteria contained in DNA, its nucleotide sequence was decoded by the next-generation sequencer MiSeq (Illumina). From the obtained nucleotide sequence data, after excluding those with low data quality and those derived from a chimeric sequence, sequences with high homology are grouped as one group, and this is classified into one bacterial species (or one genus) Treated as. The sequence with the highest frequency of appearance in the group was taken as a representative sequence, and the homology analysis with the sequence database was performed to identify the bacterial species. The abundance ratio was calculated as a percentage of the number of leads in each group to the total number of leads. The chimera sequence check is <Robert C. Edgar et al., BIOIN FORMATICS, Vol. 27, No. 16, pp. 2194-2200, June 2011>, and the homology analysis is <Chika Kasai et al., BMC Gastroenterology, 15 In the volume, article 100, August 2015>.
 この網羅的解析の結果、フソバクテリウム属およびステレラ属、ならびに、Fusobacterium mortiferum、Fusobacterium varium、Fusobacterium perfoetens、Fusobacterium necrogenesおよびSutterella stercoricanisの存在比率に顕著な減少が見られた。各菌種の代表配列(16S rDNAの部分配列)を配列番号1~5にそれぞれ示す。また、各菌種(属)の存在比率を表1に示す。なお、表1において、存在比率の値は、5頭のビーグル犬における中央値を示す。 As a result of this comprehensive analysis, the abundance ratio of Fusobacterium and Stellara, and Fusobacterium mortiferum, Fusobacterium varium, Fusobacterium perfoetens, Fusobacterium necrogenes and Sutterella stercoricanis was found to be remarkable. The representative sequences (partial sequences of 16S rDNA) of each bacterial species are shown in SEQ ID NOs: 1 to 5, respectively. Further, the abundance ratio of each bacterial species (genus) is shown in Table 1. In Table 1, the value of the abundance ratio indicates the median value of five beagle dogs.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、フソバクテリウム属細菌の16S rDNAの存在比率は、試験開始時は7.18であったのに対して、試験開始から1ヶ月後は1.53、2ヶ月後は1.44、1-ケストースの摂取終了から1ヶ月後(3ヶ月後)は2.41であった。また、Fusobacterium mortiferumの16S rDNAの存在比率は、試験開始時は5.97であったのに対して、1ヶ月後は1.64、2ヶ月後は1.55、3ヶ月後は1.85であった。また、Fusobacterium variumの16S rDNAの存在比率は、試験開始時は0.55であったのに対して、1ヶ月後は0.09、2ヶ月後は0.07、3ヶ月後は0.23であった。また、Fusobacterium perfoetensの16S rDNAの存在比率は、試験開始時は0.46であったのに対して、1ヶ月後は0.03、2ヶ月後は0.06、3ヶ月後は0.08であった。また、Fusobacterium necrogenesの16S rDNAの存在比率は、試験開始時は0.13であったのに対して、1ヶ月後は0.02、2ヶ月後は0.04、3ヶ月後は0.01であった。 As shown in Table 1, the abundance ratio of the 16S rDNA of Fusobacterium bacteria was 7.18 at the start of the test, while 1.53 after 1 month after the start of the test and 1.98 after 2 months. One month after the end of 44, 1-kestose intake (3 months later) was 2.41. In addition, the abundance ratio of 16S rDNA of Fusobacterium mortiferum was 5.97 at the beginning of the test, whereas it was 1.64 after 1 month, 1.55 after 2 months, 1.85 after 3 months Met. In addition, the abundance ratio of 16S rDNA of Fusobacterium varium was 0.55 at the start of the test, whereas it was 0.09 after 1 month, 0.07 after 2 months and 0.23 after 3 months Met. In addition, the abundance ratio of 16S rDNA of Fusobacterium perfoetens was 0.46 at the beginning of the test, whereas it was 0.03 after 1 month, 0.06 after 2 months and 0.08 after 3 months Met. In addition, the abundance ratio of 16S rDNA of Fusobacterium necrogenes was 0.13 at the beginning of the test, whereas it was 0.02 after 1 month, 0.04 after 2 months, 0.01 after 3 months Met.
  以上のとおり、フソバクテリウム属細菌の16S rDNAの存在比率は、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれの時点においても、試験開始時と比較して顕著に小さかった。この結果から、1-ケストースの摂取により、糞便中のフソバクテリウム属細菌の16S rDNAの存在比率が減少することが明らかになった。 As described above, the abundance ratio of 16S rDNA of Fusobacterium bacteria starts the test at any time point one month after the start of the test, two months after and one month after the end of the intake of 1-kestose (three months later) It was noticeably small compared to the time. From this result, it was revealed that intake of 1-kestose reduces the abundance ratio of 16S rDNA of Fusobacterium bacteria in feces.
 また、ステレラ属細菌の16S rDNAの存在比率は、試験開始時は0.22であったのに対して、1ヶ月後は0.10、2ヶ月後は0.09、1-ケストースの摂取終了から1ヶ月後(3ヶ月後)は0.02であった。また、Sutterella stercoricanisの16S rDNAの存在比率は、試験開始時は0.31であったのに対して、1ヶ月後および2ヶ月後は0.11、3ヶ月後は0.02であった。 In addition, the abundance ratio of 16S rDNA of Sterella bacteria was 0.22 at the beginning of the test, but 0.10 after 1 month, 0.09 after 2 months, and the end of 1-kestose intake One month after (3 months after) it was 0.02. In addition, the abundance ratio of 16S rDNA of Sutterella stercoricanis was 0.31 at the start of the test, while it was 0.11 after 1 and 2 months and 0.02 after 3 months.
 以上のとおり、ステレラ属細菌の16S rDNAの存在比率は、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれの時点においても、試験開始時と比較して顕著に小さかった。この結果から、1-ケストースの摂取により、糞便中のステレラ属細菌の16S rDNAの存在比率が減少することが明らかになった。 As described above, the abundance ratio of 16S rDNA of Sterella bacteria starts the test at any time point one month after the start of the test, two months after and one month after the end of the intake of 1-kestose (three months later) It was noticeably small compared to the time. From this result, it was revealed that intake of 1-kestose reduces the abundance ratio of 16S rDNA of Sterella bacteria in feces.
 そこで、フソバクテリウム属細菌およびステレラ属細菌の菌数について定量的解析を行うこととした。 Therefore, it was decided to carry out a quantitative analysis on the number of bacteria of Fusobacterium spp.
(5)リアルタイムPCR法による菌数の定量的解析
 本実施例1(2)の糞便中のフソバクテリウム属細菌およびステレラ属細菌の菌数を、リアルタイムPCR法により定量した。具体的には、本実施例1(3)の糞便由来総DNAを鋳型として、Fusobacterium Detection Kit(Cat. No. RO-0005)(テクノスルガ・ラボ)、リアルタイムPCR試薬「SYBR Premix Ex Taq II (T1i RNase H Plus)」(タカラ)およびリアルタイムPCR装置「Rotor-Gene Q 」(キアゲン)を用いて、添付の使用書に従ってリアルタイムPCRを行い、糞便1gあたりのフソバクテリウム属細菌の16S rDNAコピー数を定量した。
(5) Quantitative Analysis of the Number of Bacteria by Real-Time PCR The number of Fusobacterium bacteria and bacteria of the genus Stellara in feces of the present Example 1 (2) was quantified by real-time PCR. Specifically, Fusobacterium Detection Kit (Cat. No. RO-0005) (Techno Surga Lab), real-time PCR reagent “SYBR Premix Ex Taq II Real-time PCR was performed using T1i RNase H Plus) (Takara) and real-time PCR equipment "Rotor-Gene Q" (QIAGEN) according to the attached instructions to quantify the 16S rDNA copy number of Fusobacterium bacteria per gram of feces did.
 また、Fusobacterium Detection Kitに代えてSutterella Detection Kit(テクノスルガ・ラボ)を用いて、同様にリアルタイムPCRを行い、糞便1gあたりのステレラ属細菌の16S rDNAコピー数を定量した。さらに、ユニバーサルプライマー(フォワードプライマー;CCTACGGGAGGCAGCAG(配列番号6)、リバースプライマー;ATTACCGCGGCTGCTGG(配列番号7))を用いて同様にリアルタイムPCRを行い、糞便1gに含まれる全真正細菌の16S rDNAコピー数を定量した。 Also, real-time PCR was performed in the same manner using Sutterella Detection Kit (Techno Surga Lab) in place of Fusobacterium Detection Kit to quantify the 16S rDNA copy number of Sterella bacteria per gram of feces. Furthermore, real-time PCR is performed in the same manner using a universal primer (forward primer; CCTACGGGAGGCAGCAG (SEQ ID NO: 6), reverse primer: ATTACCGCGGCTGCTGG (SEQ ID NO: 7)) to quantify 16S rDNA copy number of total eubacteria contained in 1 g of feces. did.
 なお、フソバクテリウム属細菌およびステレラ属細菌を定量するための検量線は、上記キットに含まれる標準試料を使用して同条件でリアルタイムPCRを行った結果を基に作製した。一方、全真正細菌を定量するための検量線は、E.coli JCM1649Tの16S rDNA配列(配列番号8)を組み込んだプラスミドDNAを標準試料として、フォワードプライマー;AGAGTTTGATCCTGGCTCAG(配列番号9)およびリバースプライマー;GGTTACCTTGTTACGACTT(配列番号10)を用いてリアルタイムPCRを行った結果を基に作製した。 In addition, the calibration curve for quantifying Fusobacterium genus bacteria and Sterella genus bacteria was produced based on the result of having performed real-time PCR on the same conditions using the standard sample contained in the said kit. On the other hand, the calibration curve for quantifying whole eubacteria is E. coli. The results of real-time PCR using plasmid DNA incorporating 16S rDNA sequence (SEQ ID NO: 8) of E. coli JCM1649T as a standard sample, forward primer; AGAGTTTGATCCTGGCTCAG (SEQ ID NO: 9) and reverse primer; GGTTACCTTGTTACGACTT (SEQ ID NO: 10) Based on
 求めた16S rDNAコピー数は、糞便の採取時期ごとに、中央値を算出した。全真正細菌の16S rDNAコピー数(中央値)を図1の折れ線グラフに、フソバクテリウム属細菌の16S rDNAコピー数(中央値)を図2の折れ線グラフに、ステレラ属細菌の16S rDNAコピー数(中央値)を図3の折れ線グラフに、それぞれ示す。また、試験開始時の16S rDNAコピー数を100%として、試験開始から1ヶ月後、2ヶ月後および摂取終了から1ヶ月後(3ヶ月後)の16S rDNAコピー数を百分率で表し、これを変化率(%)とした。また、全真正細菌の16S rDNAコピー数を100%として、フソバクテリウム属細菌およびステレラ属細菌のそれぞれの16S rDNAコピー数を百分率で表し、これを占有率(%)とした。全真正細菌についての結果を表2に、フソバクテリウム属細菌についての結果を表3に、ステレラ属細菌についての結果を表4に、それぞれ示す。 The obtained 16S rDNA copy number was calculated as the median at each collection time of feces. The 16S rDNA copy number (median) of whole eubacteria is shown in the line graph of FIG. 1, the 16S rDNA copy number (median) of Fusobacterium bacteria is shown in the line graph of FIG. The values are shown in the line graph of FIG. Assuming that the 16S rDNA copy number at the start of the test is 100%, the 16S rDNA copy number is expressed as a percentage at one month, two months after the start of the test and one month after the end of intake (three months). It was the rate (%). In addition, the 16S rDNA copy number of total eubacteria was 100%, and the 16S rDNA copy number of each of Fusobacterium bacteria and Sterella bacteria was expressed as a percentage, and this was taken as the occupancy rate (%). The results for whole eubacteria are shown in Table 2, the results for Fusobacterium bacteria are shown in Table 3, and the results for Sterella bacteria are shown in Table 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図1および表2に示すように、全真正細菌の16S rDNAコピー数は、試験開始時から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)と、時間経過に伴って増加した。これに対して、図2および表3に示すように、フソバクテリウム属細菌の16S rDNAコピー数は試験開始時から時間経過に伴って減少した。ステレラ属細菌の16S rDNAコピー数もまた、図3および表4に示すように、試験開始時から時間経過に伴って減少した。 As shown in FIG. 1 and Table 2, the 16S rDNA copy number of whole eubacteria is 1 month after the start of the test, 2 months after and 1 month after the end of the intake of 1-kestose (3 months after), It increased with the passage of time. On the other hand, as shown in FIG. 2 and Table 3, the 16S rDNA copy number of Fusobacterium bacteria decreased with the lapse of time from the start of the test. The 16S rDNA copy number of Sterella bacteria also decreased with the passage of time from the start of the test, as shown in FIG. 3 and Table 4.
 詳細には、表3に示すように、フソバクテリウム属細菌の変化率は、試験開始から1ヶ月後では33%、2ヶ月後では40%、3ヶ月後では32%であった。すなわち、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれにおいても、試験開始時と比較して、フソバクテリウム属細菌の16S rDNAコピー数が1/3程度まで顕著に小さくなった。 Specifically, as shown in Table 3, the rate of change of Fusobacterium bacteria was 33% at one month after the start of the test, 40% at two months, and 32% at three months. That is, the number of 16S rDNA copies of the Fusobacterium bacteria is lower than that at the start of the test at any one month after the start of the test, two months after the start of the test, and one month after the end of intake of 1-kestose (three months). It became remarkably small to about 1/3.
 また、フソバクテリウム属細菌の占有率は、試験開始時は4.76%であったのに対して、試験開始から1ヶ月後では1.20%、2ヶ月後では1.35%、3ヶ月後では0.82%であった。すなわち、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれにおいても、全真正細菌中に占めるフソバクテリウム属細菌の割合が、試験開始時と比較して、それぞれ1/4程度、1/3程度および1/6程度まで、顕著に小さくなった。 In addition, the occupancy rate of the Fusobacterium bacteria was 4.76% at the start of the test, but 1.20% after one month from the start of the test, 1.35% after two months, after three months The rate was 0.82%. That is, the percentage of Fusobacterium bacteria in total eubacterial bacteria at one month after the start of the test, two months after the start of the test and one month after the end of the intake of 1-kestose (after three months) In comparison, they were significantly reduced to about 1⁄4, 1⁄3 and 1⁄6, respectively.
 以上のとおり、糞便中のフソバクテリウム属細菌の16S rDNAコピー数および全真正細菌中に占める割合は、いずれも、1-ケストースの摂取により顕著に小さくなった。また、係る減少効果は1-ケストースの摂取終了後も継続していた。この結果から、1-ケストースは、イヌの生体内において、フソバクテリウム属細菌の菌数を抑制する作用が顕著に大きいことが明らかになった。 As described above, both the 16S rDNA copy number of the Fusobacterium bacteria in feces and the proportion in the total eubacteria were significantly reduced by the intake of 1-kestose. In addition, the reduction effect continued even after the end of 1-kestose intake. From these results, it was revealed that 1-kestose has a remarkably large effect of suppressing the number of Fusobacterium bacteria in the living body of a dog.
 次に、表4に示すように、ステレラ属細菌の変化率は、試験開始から1ヶ月後では59%、2ヶ月後では50%、3ヶ月後では17%であった。すなわち、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれにおいても、試験開始時と比較して、ステレラ属細菌の16S rDNAコピー数が1/2程度~1/5未満まで顕著に小さくなった。 Next, as shown in Table 4, the rate of change of Sterella bacteria was 59% one month after the start of the test, 50% two months later, and 17% three months later. That is, the number of 16S rDNA copies of the Sterella bacteria is 1 month after the start of the test, 2 months after the start of the test, and 1 month after the end of the intake of 1-kestose (3 months after). It becomes significantly smaller from about 1/2 to less than 1/5.
 また、ステレラ属細菌の占有率は、試験開始時は0.13%であったのに対して、試験開始から1ヶ月後では0.06%、2ヶ月後では0.04%、3ヶ月後では0.01%であった。すなわち、試験開始から1ヶ月後、2ヶ月後および1-ケストースの摂取終了から1ヶ月後(3ヶ月後)のいずれにおいても、全真正細菌中に占めるステレラ属細菌の割合が、試験開始時と比較して、それぞれ1/4、1/6および1/24まで、顕著に小さくなった。 In addition, the occupancy rate of Sterella bacteria was 0.13% at the start of the test, while 0.06% at one month after the start of the test, 0.04% at two months after the test The result was 0.01%. That is, in any one month after the start of the test, two months after, and one month after the end of intake of 1-kestose (three months after), the ratio of the bacteria of the bacteria belonging to all eubacterial bacteria is the same as at the start of the test. In comparison, they were significantly reduced to 1/4, 1/6 and 1/24, respectively.
 以上のとおり、糞便中のステレラ属細菌の16S rDNAコピー数および全真正細菌中に占める割合は、いずれも、1-ケストースの摂取により顕著に小さくなった。また、係る減少効果は1-ケストースの摂取終了後も継続していた。この結果から、1-ケストースは、イヌの生体内において、ステレラ属細菌の菌数を抑制する作用が顕著に大きいことが明らかになった。 As described above, both the 16S rDNA copy number and the proportion of total eubacteria in the Sterella bacteria in feces were significantly reduced by the intake of 1-kestose. In addition, the reduction effect continued even after the end of 1-kestose intake. From these results, it was revealed that 1-kestose has a significantly large effect of suppressing the number of Sterella bacteria in the living body of dogs.

Claims (8)

  1.  1-ケストースを有効成分とする、フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制剤。 The 1-kestose is an active ingredient which is an agent for controlling the number of Fusobacterium bacteria and / or Stellara bacteria.
  2.  イヌにおけるフソバクテリウム属細菌および/またはステレラ属細菌の菌数を抑制するために用いられる、請求項1に記載の菌数抑制剤。 The microbe number suppressing agent according to claim 1, which is used to suppress the number of Fusobacterium bacteria and / or Stellara bacteria in dogs.
  3.  急性出血性下痢の予防または治療に用いられることを特徴とする、請求項1または2に記載の菌数抑制剤。 The microbe number suppressing agent according to claim 1 or 2, which is used for the prevention or treatment of acute hemorrhagic diarrhea.
  4.  1-ケストースを有効成分とする、フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制用食品組成物。 1-A food composition for controlling the number of Fusobacterium bacteria and / or Stelerus bacteria, which comprises 1-kestose as an active ingredient.
  5.  1-ケストースを有効成分とする、フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制用動物用飼料。 1-Animal feed for controlling the number of Fusobacterium bacteria and / or Stelerus bacteria, which comprises 1-kestose as an active ingredient.
  6.  ヒトまたは動物に1-ケストースを摂取させることにより前記ヒトまたは動物の体内におけるフソバクテリウム属細菌および/またはステレラ属細菌の菌数を抑制する工程を有する、フソバクテリウム属細菌および/またはステレラ属細菌の菌数抑制方法。 The number of Fusobacterium bacteria and / or Sterella bacteria having a step of suppressing the number of Fusobacterium bacteria and / or Stelerus bacteria in the human or animal body by feeding 1-kestose to the human or animal How to control.
  7.  急性出血性下痢を罹患している、または、罹患する可能性があるヒトもしくは動物に、1-ケストースを摂取させることにより、前記ヒトもしくは動物の体内におけるフソバクテリウム属細菌および/またはステレラ属細菌の菌数を抑制する工程を有する、急性出血性下痢の予防または治療方法。 A human or animal suffering from or capable of suffering from acute hemorrhagic diarrhea, is a Fusobacterium bacteria and / or bacteria of the genus Stellara in the human or animal by taking 1-kestose. A method for preventing or treating acute hemorrhagic diarrhea, comprising the step of suppressing the number.
  8.  急性出血性下痢の予防または治療用医薬品を製造するための1-ケストースの使用。 Use of 1-kestose for the manufacture of a medicament for the prevention or treatment of acute hemorrhagic diarrhea.
PCT/JP2018/033742 2017-09-13 2018-09-12 Agent for inhibiting number of bacteria of genus fusobacterium and/or bacteria of genus sutterella WO2019054396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019542255A JP7262391B2 (en) 2017-09-13 2018-09-12 Fusobacterium and/or Stella bacteria count inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175375 2017-09-13
JP2017-175375 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054396A1 true WO2019054396A1 (en) 2019-03-21

Family

ID=65722735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033742 WO2019054396A1 (en) 2017-09-13 2018-09-12 Agent for inhibiting number of bacteria of genus fusobacterium and/or bacteria of genus sutterella

Country Status (2)

Country Link
JP (1) JP7262391B2 (en)
WO (1) WO2019054396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102568A (en) * 2019-12-25 2021-07-15 物産フードサイエンス株式会社 Bacterial count suppressant for genus frischella

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306781A (en) * 2004-04-21 2005-11-04 Hokuren Federation Of Agricult Coop:The Oligosaccharide for bifidobacterium proliferation
JP2007512840A (en) * 2003-12-01 2007-05-24 ザ・アイムス・カンパニー Composition for companion animals containing short-chain oligofructose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512840A (en) * 2003-12-01 2007-05-24 ザ・アイムス・カンパニー Composition for companion animals containing short-chain oligofructose
JP2005306781A (en) * 2004-04-21 2005-11-04 Hokuren Federation Of Agricult Coop:The Oligosaccharide for bifidobacterium proliferation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUCHODOLSKI, J. S. ET AL.: "The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease", PLOS ONE, vol. 7, no. 12, 2012, pages 1 - 13, XP055221020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102568A (en) * 2019-12-25 2021-07-15 物産フードサイエンス株式会社 Bacterial count suppressant for genus frischella

Also Published As

Publication number Publication date
JPWO2019054396A1 (en) 2020-08-27
JP7262391B2 (en) 2023-04-21

Similar Documents

Publication Publication Date Title
JP6275931B1 (en) Intestinal butyric acid increasing agent and butyric acid-producing bacteria proliferating agent
JP6573639B2 (en) Intestinal bacterial count inhibitors, foods, and pharmaceuticals
JP6301024B2 (en) Felicaribacterium spp.
JP7262391B2 (en) Fusobacterium and/or Stella bacteria count inhibitor
WO2020179871A1 (en) Eggerthella bacterial count suppressor
JP4723320B2 (en) Blood leptin level increasing agent
JP5041228B2 (en) Digestion-enhancing feed, odor-reducing feed, intestinal-type feed, calorie absorption rate-adjusted feed, meat quality-improving feed, immunity-enhancing feed, fertility-improving feed, feed-type water purification agent, multifunctional food
CN101454011B (en) Tri and tetra-oligo-saccharides suitable as agglutination agents for enteric pathogens
TW202008996A (en) An active substance of Bifidobacterium lactis GKK2, a composition comprising thereof and its use for promoting longevity
JP7228367B2 (en) Ruminococcus bacterium count inhibitor
AU2020292062B2 (en) Composition for preventing, treating, or improving gastrointestinal diseases comprising strain of genus Corynebacterium and culture thereof
Jiang et al. Denatonium as a bitter taste receptor agonist damages jejunal epithelial cells of yellow-feathered chickens via inducing apoptosis
JP4778946B2 (en) Blood uric acid level lowering agent
JP2001340055A (en) Method for feeding livestock and poultry and artificial milk composition for feeding
JP2020097558A (en) Agents for suppressing cell number of tyzzerella bacteria
JP2014172902A (en) Diabetic conditions improving agent of sargassum horneri fermentation product using lactobacillus plantarum
JP6511878B2 (en) Intestinal bacterial flora improvement agent
WO2023002939A1 (en) Composition for preventing or ameliorating inflammatory bowel disease and composition for regulating intestinal bacterial flora
JP2022075294A (en) Agent that lowers blood ammonia concentration
CN109464435B (en) Pharmaceutical composition for preventing and treating fish liver inflammation
US20220088092A1 (en) Compositions and methods for increasing the viability of freeze-dried probiotics
JP2018111658A (en) Norovirus discharge promoting composition and norovirus secondary infection preventive composition
Amachawadi Selection and co-selection of antimicrobial resistance in gut enterococci of swine and cattle fed diets supplemented with copper, tylosin, and chlortetracycline
JP6247185B2 (en) Vylophila bacterium growth inhibitor and method for suppressing virulence bacteria growth
CN117015309A (en) Use of lactobacillus for inhibiting methanogenic bacteria growth or reducing methane emissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856067

Country of ref document: EP

Kind code of ref document: A1