WO2019054382A1 - Slip control device - Google Patents

Slip control device Download PDF

Info

Publication number
WO2019054382A1
WO2019054382A1 PCT/JP2018/033678 JP2018033678W WO2019054382A1 WO 2019054382 A1 WO2019054382 A1 WO 2019054382A1 JP 2018033678 W JP2018033678 W JP 2018033678W WO 2019054382 A1 WO2019054382 A1 WO 2019054382A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
compensation
value
feedback
proportional
Prior art date
Application number
PCT/JP2018/033678
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 小坂
平田 淳一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018016389A external-priority patent/JP7149713B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019054382A1 publication Critical patent/WO2019054382A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a slip control device that suppresses tire slip of a vehicle, and more particularly to a slip control device of an electric vehicle in which each wheel is driven by an electric motor.
  • a slip control device that prevents the wheels from spinning or locking when the vehicle is accelerating or decelerating.
  • a torque command correction value including a term obtained by multiplying the angular acceleration by the feedback gain is used. Feedback control to the torque command.
  • Patent Document 1 when the value of the angular acceleration of the drive wheel exceeds the angular acceleration threshold during acceleration, feedback to torque command is performed using a torque command correction value including a value obtained by multiplying the angular acceleration by a feedback gain.
  • a method of performing slip control by performing control is described. In this slip control, the angular acceleration threshold or the feedback gain is changed in accordance with the wheel rotational speed.
  • the feedback gain is changed because a large torque can not be produced in the high rotation range.
  • the wheel rotational speed is measured from the change in the number of input pulses per unit time. When traveling at low speed, the number of input pulses per unit time itself decreases, so the measurement accuracy deteriorates. If the measurement accuracy of the wheel rotational speed is degraded, vibration is generated by feedback control, so stable feedback control can not be performed.
  • the slip ratio ⁇ is calculated from the wheel rotation speed ⁇ and the vehicle speed V according to the following equation (Equation (1)), and the wheel rotation speed is included in the equation (1).
  • R 0 is the radius of the tire.
  • An object of the present invention is to provide a slip control device capable of performing stable slip control even when the measurement accuracy of the wheel rotation speed deteriorates at low speed, and preventing the vehicle behavior from being disturbed.
  • the slip control device 11 is mounted on a vehicle 1 capable of being accelerated by power running of the electric motor 4 and decelerated by regeneration, and the wheel rotational speed deviation ⁇ with respect to the allowable rotational speed ⁇ ′ of the wheel rotational speed ⁇ .
  • the wheel is calculated using at least one of a variable proportional gain K P performing proportional compensation and a variable differential gain K D performing differential compensation and a variable integral gain K I performing integral compensation.
  • a slip control device 11 which acquires a feedback calculation value K PID from a rotational speed deviation ⁇ , changes an input braking / driving command value using the feedback calculation value K PID , and drives the motor 4,
  • V th_P , V th_I , V th_D D a gain used to obtain the feedback calculation value K PID among the proportional gain K P and the differential gain K D
  • both gains K P , K D or any one of the gains are decreased
  • the gain used to obtain the feedback calculation value K PID is the proportional gain K
  • the gain to be used is reduced, and the integral gain K I is maintained or reduced as it is,
  • the ratio of the size after reduction to the size before reduction of each gain K P , K I , K D After the reduction of the integral gain K I among the ratios ⁇ P , ⁇ I , ⁇
  • the post-decrease rates ⁇ P , ⁇ I and ⁇ D also include the rates when maintaining the gains not to be decreased. Further, the "integral gain K I wherein the greatest proportion alpha I after reduction in” is one of the other gain K P, decreases after the ratio of K D alpha P, reduction of alpha D and integral gain K I As long as the post proportion ⁇ I is the same, it may be sufficient to satisfy the items described in “Relationship to be satisfied” to be described later.
  • the predetermined threshold value V th and the allowable rotation speed ⁇ ′ are appropriately determined by design and the like.
  • the feedback gain changing unit 14 reduces the feedback gain when the vehicle speed V is less than or equal to the predetermined threshold value V th , but the slip control device 11 calculates the feedback calculation value K PID.
  • the feedback control to be performed may be any of PID control, PI control, and ID control.
  • the gain is reduced as described above, but the magnitude relationship of the ratio of the magnitude of the gain after the reduction to that before the reduction is the after-reduction ratio ⁇ I of the integral gain K I
  • the other may be any relationship as long as it is the largest.
  • PID control may be either lowered only one of the proportional gain K P and the differential gain K D.
  • ⁇ I of the integral gain K I must always be the largest, in this case, the value of the integral gain K I is not necessarily reduced.
  • the after-reduction rates ⁇ P , ⁇ I and ⁇ D of the respective gains K P , K I and K D include all cases where the following conditions are satisfied.
  • PI control ⁇ I ⁇ ⁇ P
  • ID control K I / K B_P
  • ⁇ I K I / K B_I
  • ⁇ D K D / K B_D .
  • K P , K I , and K D are the magnitudes of the respective gains after the decrease (during the decrease)
  • K B — P , K B — I , and K B — D are magnitudes (reference values) of the respective gains before reduction.
  • each gain is indicated before and after the drop, it is marked as K P , K I and K D in the same manner as after the drop (during the drop).
  • V Th_P Vth_I of the vehicle speed V to lower from the reference value of each gain, V Th_I, When V Th_d, inevitably, it is necessary to satisfy the following equation.
  • the slip control device 11 is mounted on a vehicle 1 capable of being accelerated by power running of the electric motor 4 and decelerated by regeneration and has a slip ratio ⁇ calculated from the wheel rotation speed ⁇ and the vehicle speed V.
  • the feedback calculation value K PID is calculated from the slip ratio deviation ⁇ using the integral gain K I of the above, and the input driving / driving command value is changed using the feedback calculation value K PID to drive the electric motor 4
  • the slip control device 11 is
  • the vehicle speed V is a predetermined threshold value V th (V th_P, V th_I , V th_D) when: among the proportional gain K P and the derivative gain K D, the gain to be used for acquisition of the feedback calculation value K PID is proportional gain K P and the derivative gain K D both
  • the post-decrease rates ⁇ P , ⁇ I and ⁇ D also include the rates when maintaining the gains not to be decreased.
  • the conditions and the method for reducing the gain are the same as the slip control device 11 according to the first configuration.
  • the feedback control may be any of PID control, PI control, and ID control.
  • PID control may reduce both the proportional gain K P and the differential gain K D, or may be either only to reduce the.
  • the predetermined threshold value V th and slip ratio allowable value ⁇ ′ are values appropriately determined by design and the like.
  • wheel rotational speed deviation ⁇ for example, deviation ⁇ of wheel rotational speed ⁇ with respect to allowable rotational speed ⁇ ′ obtained by multiplying wheel rotational speed ⁇ by a predetermined constant
  • slip ratio deviation ⁇ slip ratio allowable value ⁇ ′ (upper limit The variation of slip ratio ⁇ with respect to (> 0) or the lower limit ( ⁇ 0) becomes large.
  • feedback control includes proportional compensation, integral compensation and differential compensation.
  • Differential compensation and proportional compensation tend to be oscillatory due to fluctuations of the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ .
  • the differential compensation differentiates the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ , and thus amplifies the vibration.
  • the proportional compensation also reflects the fluctuation of the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ as it is on the compensation value.
  • integral compensation does not easily become oscillatory even if the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ change. Integral compensation integrates the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ , and therefore reduces the influence of fluctuations in the wheel rotational speed deviation ⁇ and the slip ratio deviation ⁇ .
  • the gains (proportional gain K P and derivative gain K D, respectively ) of the proportional compensation and derivative compensation that are likely to generate vibrations are reduced or zeroed to weaken or ineffective the proportional compensation and derivative compensation.
  • stable slip control can be performed even when the measurement accuracy of the wheel rotation speed ⁇ deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
  • the feedback gain changing unit 14 (14A) determines whether the vehicle is accelerating or decelerating, and the proportional gain K P , the integral gain K I , and the differential gain K D are determined during acceleration and deceleration.
  • the method of reducing the gain to be reduced when the vehicle speed V is less than or equal to the threshold value V th may be changed for any one or more. That is, the type of compensation for reducing the gain may be changed between acceleration and deceleration, or the degree of reduction may be changed, or the change of the degree of reduction may be changed. Since the influence of each gain K P , K I , and K D on stable slip control differs between deceleration and acceleration, it is preferable to change the method of reducing the gain between deceleration and acceleration.
  • the slip control device 11 further applies an established rule, and acquires the allowable wheel rotation speed ⁇ ′ from the detection value of the state quantity of the factor of the vehicle affecting the slip.
  • the wheel rotation speed deviation calculation unit 13 for calculating the wheel rotation speed deviation ⁇ , and the proportional compensation, integral compensation, and differential compensation, respectively.
  • a controller 15A that acquires a feedback operation value K PID from the wheel rotational speed deviation ⁇ , and a control that changes the input braking / driving command value using the feedback operation value K PID and outputs it to the controller 10 of the motor 4
  • the feedback gain changing unit 14 includes a drive command value calculating unit 16, and the feedback gain changing unit 14 performs proportional gain control during acceleration at the same vehicle speed when the vehicle is decelerating.
  • Down K P or derivative gain K the post-change ratio alpha P of D ', ⁇ I', ⁇ D may 'an integral gain K I the ratio after reduction alpha I' of a structure to reduce the divided by the.
  • the post-change ratio of each gain K P , K I , K D at deceleration is ⁇ P ', ⁇ I ', ⁇ D ', each at acceleration
  • the post-change ratio of the gains K P , K I and K D is ⁇ P , ⁇ I and ⁇ D , respectively
  • the gain K P satisfies the following relationship , K I , change K D.
  • a map or the like is determined in advance the relationship between the detection value of the vehicle speed V and the steering wheel angle [delta] h and the allowable rotation speed omega 'by the allowable rotation speed acquisition section 12, the defined relationship May be used to obtain the allowable rotation speed ⁇ ′.
  • the allowable rotation speed ⁇ ′ may be acquired in consideration of the yaw rate ⁇ .
  • the allowable rotation speed acquisition unit 12 may set a value obtained by multiplying the detected value of the wheel rotation speed ⁇ by a predetermined constant as the allowable rotation speed ⁇ ′.
  • the slip control device 11 further includes a slip ratio calculation unit 21 that calculates a slip ratio ⁇ from the wheel rotational speed ⁇ and the vehicle speed V5, and a slip ratio deviation that calculates the slip ratio deviation ⁇ .
  • a controller 15A for acquiring a feedback calculation value K PID from the slip ratio deviation ⁇ using the calculation unit 22, the gains K P , K I , and K D of the proportional compensation, the integral compensation, and the differential compensation, and And a braking / driving command value calculating unit 16A for changing the inputted braking / driving command value using the feedback calculation value K PID and outputting the same to the controller of the motor 4.
  • the feedback gain changing unit 14A when you are in, than during acceleration at the same vehicle speed, the proportional gain K P or the change after the proportion of the derivative gain K D ⁇ P ', ⁇ I ' alpha D may 'an integral gain K I the ratio after reduction alpha I' of a structure to reduce the divided by the.
  • the gains K P , K I , and K D are changed so as to satisfy the following relationship.
  • the feedback gain changing unit 14 when the vehicle speed V is less than the threshold value V th, either or both of the proportional gain K P and the derivative gain K D, a configuration for changing a value equal to or close to zero It is also good.
  • the after-reduction ratio ⁇ P ( ⁇ 0 _P ) or ⁇ D ( ⁇ 0 _D ) or Both of them may be zero or close to zero.
  • the “value close to zero” is a value that can be regarded as zero in control, and is determined by design.
  • a plurality of drive wheels 2 may be independently controlled in the vehicle 1, and the electric motor 4 may be configured to drive the corresponding drive wheels 2 of the plurality of drive wheels 2.
  • the electric motor 4 in the vehicle 1 capable of independently controlling the drive wheels 2 may be an in-wheel motor type or an on-board type.
  • the slip control of each drive wheel 2 can be performed independently, so that the slip control effect can be obtained more effectively.
  • the slip control device is provided in a vehicle 1 provided with a rotary electric motor 4 that constitutes an in-wheel motor drive device 3 for each of the four drive wheels 2. .
  • the vehicle 1 is capable of accelerating by powering and decelerating by regeneration of the electric motor 4, and can control four wheels independently.
  • each in-wheel motor drive device 3 decelerates the rotation output of the wheel bearing 5, the electric motor 4, and the electric motor 4 to the hub wheel 5 a that is the rotating wheel of the wheel bearing 5. And a speed reducer 6 for transmission.
  • the wheel of the drive wheel 1 (FIG. 1) is attached to the hub wheel 5a.
  • the motor 4 is, for example, an AC motor such as a synchronous motor, and includes a stator 4a and a rotor 4b.
  • the in-wheel motor drive device 3 is provided with a wheel rotational speed sensor 7 (FIG. 1).
  • the wheel rotation speed sensor 7 includes, for example, a magnetic encoder and a magnetic sensor, and outputs a pulse train of pulse intervals proportional to the wheel rotation speed ⁇ .
  • the resolver 23 is a sensor that detects the rotational speed of the rotor of the motor 4 and outputs a value proportional to the wheel rotational speed.
  • the amount of depression of an accelerator pedal and a brake pedal is input from various sensors 9 to a host ECU 8 such as a VCU that comprehensively controls the vehicle 1, and the host ECU 8 controls the motor 4 of each drive wheel 1. Distribute the braking and driving command to ten.
  • the motor controller 10 controls an inverter that converts DC power of a battery (not shown) into AC power according to the motor 3, and controls the output of the inverter according to the input control command and outputs the rotational phase of the motor 3 and the like. It is comprised with the control means which performs control of efficiency etc. according to it.
  • the motor controller 10 is provided for each of the individual electric motors 4, but two each of the front wheel side and the rear wheel side are combined in one case, and in FIG. Shown as a block of one motor controller 10.
  • the various sensors 9 represent an accelerator pedal sensor, a brake pedal sensor, and other various sensors as one representative.
  • the slip control device 11 intervenes between the host ECU 8 and the motor controller 10.
  • the slip control device 11 is provided for each of the motors 4 but is represented by one block in FIG.
  • the vehicle speed V is input to the slip control device 11 from the vehicle speed detection means 17, and each wheel rotational speed ⁇ detected by the wheel rotational speed sensor 7 of each motor 4 is input via the motor controller 10.
  • FIG. 2 shows an example of a conceptual configuration of the slip control device 11.
  • the slip control device 11 includes an allowable rotation speed acquisition unit 12, a wheel rotation speed deviation calculation unit 13, a feedback gain change unit 14, a controller 15, and a braking / driving command value calculation unit 16.
  • the allowable rotation speed acquisition unit 12 is a unit that acquires the allowable wheel rotation speed ⁇ ′ from the detection value of the state quantity of the factor of the vehicle that affects the slip by applying a defined rule.
  • the determined rule for example, the relationship between the detected values of the vehicle speed V, the steering wheel angle ⁇ h and the yaw rate ⁇ and the allowable rotation speed ⁇ ′ is determined by a map (not shown) etc.
  • the unit 12 is to obtain the allowable rotation speed ⁇ ′ using this relationship.
  • the yaw rate ⁇ may not necessarily be included in the above relationship.
  • the allowable rotation speed acquisition unit 12 may obtain the allowable wheel rotation speed ⁇ ′ by multiplying the wheel rotation speed ⁇ by a predetermined constant.
  • the map is stored in storage means such as a memory of the slip control device 11.
  • the vehicle speed V is detected by the vehicle speed detection means 17.
  • the steering wheel angle [delta] h is the steering angle from the neutral position of the steering wheel (not shown), is measured by the steering wheel angle measuring means 18.
  • the yaw rate ⁇ is measured by the yaw rate measurement means 19 installed in the vehicle 1.
  • the wheel rotational speed ⁇ is detected by the wheel rotational speed sensor 7 (see FIG. 1) and transferred from the motor controller 10.
  • the wheel rotational speed deviation calculation unit 13 is a means for calculating the deviation of the wheel rotational speed ⁇ with respect to the allowable rotational speed ⁇ ′, that is, the wheel rotational speed deviation ⁇ (the deviation of the actual wheel rotational speed ⁇ from the allowable rotational speed).
  • the controller 15 is, for example, a PID controller, and uses feedback gains for the wheel rotational speed deviation ⁇ using variable gains K P , K I and K D for performing proportional compensation, integral compensation, and differential compensation, respectively. It is a means to calculate K PID .
  • the feedback calculation value KPID is a value in the same unit as the braking / driving instruction given from the host ECU 8 to the slip control device 11, and is a torque value in this example.
  • the braking / driving command value calculation unit 16 is means for changing the braking / driving command value input from the host ECU 8 using the feedback calculation value KPID and outputting it to the motor controller 10.
  • the braking / driving command value commanded by the host ECU 8 is a torque command value
  • the feedback operation value K PID is also a torque value. Therefore, in this example, the braking / driving command value calculation unit 16 is a torque command value calculation unit.
  • the feedback gain changing unit 14 is means for changing the gains K P , K I , and K D of the proportional compensation, integral compensation, and differential compensation used by the controller 15, and the vehicle speed V is a threshold value V th.
  • the proportional gain K P and the derivative gain K out and D the gain used for calculation of the feedback calculation value K PID proportional gain K P and the differential gain K gain both in which case both D K P , K D or one of the gains is decreased
  • the gain used for calculation of the feedback calculation value K PID is any one of the proportional gain K P and the differential gain K D
  • the used gain is decreased
  • integral gain K I is or decreased to maintain it
  • the proportion of the size is reduced after the ratio alpha P after below, ⁇ I, ⁇ D (but also the ratio after reduction ratio when the gain does not decrease was maintained alpha P, alpha I, referred to as alpha D) for,
  • K P , K I , and K D are the magnitudes of the respective gains after the decrease (during the decrease)
  • K B — P , K B — I , and K B — D are magnitudes (reference values) of the respective gains before reduction.
  • ⁇ I may be larger than ⁇ P and ⁇ D as follows. That is, the same value may be excluded.
  • PID control ⁇ I > ⁇ P and ⁇ I > ⁇ D (however, the relationship between ⁇ P and ⁇ D does not matter). If PI control, ⁇ I > ⁇ P In the case of ID control, ⁇ I > ⁇ D
  • the feedback gain changing unit 14 performs the proportional compensation and integration when the vehicle speed V is equal to or less than the threshold values V th_P , V th_I , and V th_D determined for each gain as the threshold value V th.
  • the ratio of the size after reduction to the size before reduction of the gain K I of the integral compensation by reducing the gains K P , K I and K D of the compensation and the differential compensation, the gain of the proportional compensation and the derivative compensation The ratio of the size after reduction to the size before reduction of K P and K D is made larger.
  • ⁇ of each gain is expressed by the following equations (2) to (2) It becomes 4).
  • ⁇ P K P / K B_P
  • ⁇ I K I / K B_I
  • ⁇ D K D / K B_D
  • the feedback gain changing unit 14 makes the after-reduction rates ⁇ P and ⁇ D of the proportional gain K P and the differential gain K D smaller than the after-reduction rate ⁇ I of the integral gain K I.
  • the feedback gain changing unit 14 changes the gains K P and K D of the proportional compensation and the differential compensation to zero.
  • the gains K P and K D of the proportional compensation and the differential compensation may not necessarily be reduced to zero, but may be values close to zero. Proportions after reduction ⁇ P and ⁇ D of proportional gain K P and differential gain K D may be different values or may be the same value as each other.
  • the feedback gain changing unit 14 The proportional gain K P is changed from 1000 to 0, and at this time, the ratio ⁇ P of the size after change is 0%, The integral gain K I is changed from 10 to 2, and at this time, the ratio ⁇ I of the size after the change is 20%, The derivative gain K D is changed from 0 to 100, this time, the ratio alpha D size after the change is 0%.
  • alpha P and alpha value of D is may be smaller than ⁇ I, ⁇ P and alpha D so that different values K P, a K D You may change it.
  • V th — P , V th — I and V th — D of the velocity determined for each gain may be different values or may be the same value.
  • the magnitude relationship is necessarily as follows (see FIGS. 4 and 5).
  • V th_I V V th _ P and V th _ I V V th _ D (however, the magnitude relationship between V th _ P and V th _ D does not matter)
  • V th_I V V th_P In the case of ID control, V th_I V V th_D
  • the feedback gain changing unit 14 changes the gain of the integral compensation (integral gain K I ) by determining whether the vehicle is accelerating or decelerating. Specifically, when accelerating, the gain K I of the integral compensation is made smaller than the reference value. When decelerating, the integral gain is made larger than that during acceleration at the same vehicle speed V.
  • the "reference value" is a value appropriately and independently determined by design.
  • the feedback gain changing unit 14 includes an acceleration / deceleration determination unit 14a that determines whether the vehicle 1 is accelerating or decelerating. The acceleration / deceleration determination unit 14a determines whether the vehicle is accelerating or decelerating based on, for example, the positive / negative acceleration signal of an acceleration sensor (not shown).
  • the integral compensation integrates the wheel rotational speed deviation ⁇ , thereby reducing the influence of the fluctuation of the wheel rotational speed deviation ⁇ . Therefore, at the time of low speed traveling, the proportional compensation gain K P and the differential compensation gain K D which easily cause vibration are reduced or made zero to invalidate the proportional compensation and the differential compensation. As a result, stable slip control can be performed even when the measurement accuracy of the wheel rotation speed ⁇ deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
  • the feedback gain changing unit 14 determines whether the vehicle 1 is accelerating or decelerating, and makes the integral compensation gain K I smaller than the reference value when accelerating.
  • slip control can be performed while suppressing vibration by making the integral compensation gain K I smaller than the reference value.
  • the responsiveness of the slip control is reduced, but this is not a problem because the behavior of the vehicle is less likely to be disturbed even if the responsiveness is reduced at low speed traveling.
  • the feedback gain changing unit 14 makes the integral gain K I larger than when accelerating at the same vehicle speed V.
  • the integral value of the wheel rotational speed deviation ⁇ is large until the vehicle is decelerated to low speed. Therefore, even if the measured value of the wheel rotation speed ⁇ fluctuates at low speed traveling, the influence on the value of the integral compensation becomes small. Therefore, even if the integral gain K I is made larger than at the time of acceleration, vibrations are less likely to occur.
  • feedback control can be performed with better responsiveness. If feedback control can be performed with high responsiveness, it is possible to prevent locking of the wheels and to prevent disturbance of the vehicle behavior.
  • any one gain may be changed, or there may be a gain not to be changed (see FIG. 11).
  • each gain K P , K I , K D in feedback control is changed according to the vehicle speed V, and it is further determined whether the vehicle 1 is accelerating or decelerating.
  • the method of reducing the gain K I different, stable slip control can be performed even if the measurement accuracy of the wheel rotation speed ⁇ deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
  • this embodiment is applied to the vehicle 1 which can control each drive wheel 2 of four wheels independently, and since slip control of each drive wheel 2 can be performed independently, a slip control effect is acquired more effectively.
  • vehicle 1 which can control each drive wheel 2 of four wheels independently, and since slip control of each drive wheel 2 can be performed independently, a slip control effect is acquired more effectively.
  • the slip control device 11 differs from the first embodiment in the slip control device 11 in the vehicle 1 described above with FIG.
  • the slip control device 11 includes a slip ratio calculating unit 21, a slip ratio deviation calculating unit 22, a feedback gain changing unit 14A, a controller 15A, and a braking / driving command value calculating unit. And 16A.
  • Slip rate calculating section 21 a slip ratio lambda, the wheel rotation speed omega, the vehicle speed V, the using yaw rate ⁇ and the steering wheel angle [delta] h is calculated by the following equation (5) to (10).
  • R 0 is a tire radius
  • is a side slip angle at the vehicle center of gravity
  • d f is a front wheel tread
  • d r is a rear wheel tread
  • l f is a distance from the center of gravity position to the front wheel position.
  • the subscripts of V, ⁇ and ⁇ indicate which wheel the vehicle speed V, the steering wheel angle ⁇ h or the wheel rotational speed ⁇ is.
  • FL is the left front wheel
  • FR is the right.
  • RL is a left rear wheel
  • RR is a right rear wheel.
  • the slip ratio ⁇ represents the degree of slip of the drive wheel 2
  • 0 in the grip state, ⁇ > 0 in the locked state, and ⁇ ⁇ 0 in the wheel spin.
  • the vehicle speed V is detected by the vehicle speed detection means 17.
  • the steering wheel angle [delta] h is the steering angle from the neutral position of the steering wheel (not shown), is measured by the steering wheel angle measuring means 18.
  • the yaw rate ⁇ is measured by the yaw rate measuring means 19.
  • the wheel rotational speed ⁇ is detected by the wheel rotational speed sensor 7 (see FIG. 1) and transferred from the motor controller 10.
  • Slip ratio deviation calculation unit 22 is a deviation of slip ratio ⁇ from slip ratio allowable value ⁇ ′ (upper limit (> 0) or lower limit ( ⁇ 0)), that is, slip ratio deviation ⁇ (actual slip ratio ⁇ slip ratio Calculate the deviation from the tolerance value).
  • the slip ratio allowable value ⁇ ' is appropriately determined by design based on simulation and the like.
  • the controller 15A monitors the slip ratio ⁇ of each drive wheel 2, and when the slip ratio ⁇ exceeds the slip ratio allowable value ⁇ ′ (upper limit (> 0) or lower limit ( ⁇ 0)), the slip ratio A PID operation is performed on the deviation ⁇ to obtain a feedback operation value K PID .
  • K P , K I and K D are proportional gain, integral gain and differential gain, respectively.
  • feedback control for performing all of proportional compensation, integral compensation, and differential compensation is shown as an example, but it is also applicable to feedback control for performing proportional compensation and integral compensation or feedback control for performing integral compensation and differential compensation. Good.
  • the acceleration / deceleration determination unit 14a determines whether the vehicle 1 is accelerating or decelerating.
  • the acceleration / deceleration determining unit 14a determines, for example, whether the vehicle is accelerating or decelerating based on whether the longitudinal acceleration signal of the acceleration sensor (not shown) is positive or negative.
  • the acceleration / deceleration determination unit 14a is provided as a part of the feedback gain change unit 14A.
  • the feedback gain changing unit 14A obtains the proportional gain K P , the integral gain K I , and the differential gain K D described above according to the vehicle speed V.
  • the feedback gain changing unit 14A is a means for changing the gains K P , K I and K D of the proportional compensation, integral compensation and differential compensation used by the controller 15A, and the vehicle speed V is determined for each gain.
  • the threshold values V th _ P , V th _ I and V th _ D are below, the gains K P , K I and K D of the proportional compensation, the integral compensation and the differential compensation are reduced, respectively, and the gain K I of the integral compensation is reduced.
  • the ratio of the size after reduction to the size before reduction is made larger than the ratio of the size after reduction to the size before reduction of gains K P and K D of proportional compensation and differential compensation, respectively.
  • ⁇ of each gain is expressed by Equations (12) to (14).
  • ⁇ P K P / K B_P
  • ⁇ I K I / K B_I
  • ⁇ D K D / K B_D
  • Feedback gain changing unit 14A is the value of alpha P and alpha D smaller than alpha I.
  • the feedback gain changing unit 14A changes the gains K P and K D of each of the proportional compensation and the differential compensation to zero.
  • the gains K P and K D of the proportional compensation and the differential compensation may not necessarily be reduced to zero, but may be values close to zero.
  • the feedback gain changing unit 14A The proportional gain K P is changed from 1000 to 0, and at this time, the ratio ⁇ P of the size after change is 0%, The integral gain K I is changed from 10 to 2, and at this time, the ratio ⁇ I of the size after the change is 20%, The derivative gain K D is changed from 0 to 100, this time, the ratio alpha D size after the change is 0%.
  • alpha P and alpha value of D is may be smaller than ⁇ I, ⁇ P and alpha D so that different values K P, a K D You may change it.
  • the feedback gain changing unit 14 changes the gain of the integral compensation (integral gain K I ) by determining whether the vehicle 1 is accelerating or decelerating. Specifically, when accelerating, the gain K I of the integral compensation is made smaller than the reference value. When decelerating, the integral gain is made larger than that during acceleration at the same vehicle speed V. Further, at the time of deceleration, the value of the integral gain does not necessarily have to be reduced, and may be kept at the reference value.
  • the “reference value” is a value appropriately determined by design.
  • Braking drive command value calculation unit 16A by adding the feedback calculation value K PID to the controller 15A has been calculated braking driving command value higher ECU8 is commanded to acquire a braking drive command value to be output.
  • the braking / driving command value commanded by the host ECU 8 is a torque command value
  • the feedback operation value K PID is also a torque value. Therefore, in this example, the braking / driving command value calculation unit 16A is a torque command value calculation unit.
  • the torque command value of the drive wheel 2 is controlled so that the slip rate ⁇ becomes equal to or less than the slip rate allowable value ⁇ ′, and locking or spin of the drive wheel 2 can be suppressed.
  • the controller 15A includes proportional compensation and integral compensation and / or differential compensation.
  • the slip ratio deviation ⁇ also changes.
  • differential compensation is the most likely to be the cause of vibration, and next proportional compensation is the cause of the vibration.
  • integral compensation is less likely to cause vibration.
  • the differential compensation amplifies the vibration because it differentiates the slip ratio deviation.
  • Proportional compensation reflects the fluctuation of slip ratio deviation ⁇ as it is on the compensation value.
  • integral compensation integrates the slip ratio deviation, thereby reducing the influence of fluctuations in the measured value.
  • proportional compensation or differential compensation which is a cause of vibration, or both of them are weakened or canceled at low speeds.
  • the proportional gain K P and the differential gain K D are respectively set to ⁇ 0 _P and ⁇ 0 _D at a vehicle speed of 0 km / h.
  • proportional compensation or differential compensation can be invalidated.
  • V th_P ⁇ V th_D is used, but V th_P and V th_D may have the same value.
  • the integral compensation also changes the value continuously at vehicle speeds of 0 to V th_I km / h. In this case, always alpha I ⁇ alpha P, and changing the value such that ⁇ I ⁇ ⁇ D.
  • V Th_I since it is necessary to set so that V th_I ⁇ V th_P and V th_I ⁇ V th_D, for example, 10 km / h.
  • Integral gain K I is always in the same manner as FIG. 4 ⁇ I ⁇ ⁇ P, and changing the value such that ⁇ I ⁇ ⁇ D.
  • each gain is linearly changed, but the present invention is not limited to this.
  • ⁇ I ⁇ ⁇ P and may be changed non-linearly if the relationship ⁇ I ⁇ ⁇ D is satisfied. Further, as shown in FIG.
  • the value of ⁇ set by h may be maintained.
  • the gain of integral compensation (integral gain K I ) is, for example, one-fourth of the reference value (for example, gain of 15 km / h or more) at vehicle speed V 0 km / h as shown in FIG. As it is done, the gain K I is changed continuously (linear to the vehicle speed in the illustrated example).
  • the integral gain K I is not set to 0 at the vehicle speed V 0 km / h. This is because slip control does not operate if the integral gain is also set to zero.
  • FIG. 8 shows vehicle speed V during acceleration, wheel speed, slip control and slip ratio deviation (that is, proportional compensation value), integral compensation value, and differential compensation value in time series.
  • a vehicle speed threshold V th_I ′ which is smaller than the vehicle speed threshold V th_I during acceleration is set, and the value is changed in the range of 0 to V th_I km / h.
  • the after-reduction rates ⁇ I and ⁇ I ′ of the integral compensation gain are compared between acceleration and deceleration, it is more effective to reduce the acceleration as shown in FIG.
  • the ratio of the gains of proportional compensation or differential compensation is compared, the ratio of gain is made smaller at the time of deceleration than at the time of acceleration. As shown in FIG.
  • the threshold V 0 which vehicle speed when accelerating V th different deceleration threshold V 0 which vehicle speed ', V th' the, V 0 ⁇ V 0 ' ⁇ V th ⁇ V It may be set to be th ′ and the value may be changed continuously between V 0 ′ and V th ′ km / h.
  • FIG. 11 shows vehicle speed V during deceleration, wheel speed, slip control and slip ratio deviation (that is, proportional compensation value), integral compensation value, and differential compensation value in time series.
  • slip control can be performed while suppressing vibration by setting the gain at the time of low speed traveling and deceleration.
  • the integral gain can be set larger than at the time of acceleration, the responsiveness of slip control can be secured, and the vehicle behavior is less likely to be disturbed.
  • each gain K P , K I , K D in feedback control is changed according to the vehicle speed V, and is the vehicle accelerated or decelerated?
  • the change in gain K I different between acceleration and deceleration, stable slip control can be performed even if the measurement accuracy of wheel rotational speed ⁇ deteriorates at low speed, and vehicle behavior is It can prevent disorder.
  • Each item described in the second embodiment is the deviation between the slip ratio ⁇ and the slip ratio allowable value ⁇ ′ calculated using the wheel rotational speed ⁇ and the vehicle speed V in the second embodiment. While ⁇ is used, the first embodiment can be applied to the first embodiment as it is, except that the deviation ⁇ between the wheel rotation speed ⁇ and the allowable rotation speed ⁇ ′ is used. . The matters described in the first embodiment can be applied to the second embodiment as it is, except for the difference in the deviation.
  • the present invention relates to an on-board four-wheel independent drive vehicle and left and right wheel independent drive
  • the present invention can be applied to vehicles such as two-wheel drive vehicles of one type and one motor type.

Abstract

Provided is a slip control device with which it is possible to exercise stable slip control even when the accuracy of measuring a wheel rotation speed deteriorates during low speed time and prevent vehicle behavior from being disturbed. The present invention is applied to a slip control device 11 for calculating deviation (Δω) between a wheel rotation speed (ω) and a permissible rotation speed (ω') or deviation (Δλ) of a slip ratio (λ), and exercising feedback control by the deviation (Δω) using each of variable gains (PKI, KP, KD) for performing integral compensation and proportional compensation or differential compensation or both. A feedback gain change unit (14, 14A) is included which, when a vehicle speed (V) is less than or equal to a threshold (Vth), reduces one or both of a proportional gain (KP) and a differential gain (KD) and maintains as is or reduces an integral gain (KI) among the gains used for the feedback control.

Description

スリップ制御装置Slip control device 関連出願Related application
 本出願は、2017年9月13日出願の特願2017-175418および2018年2月1日出願の特願2018-016389の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-175418 filed on Sep. 13, 2017 and Japanese Patent Application No. 2018-016389 filed on Feb. 1, 2018, which are incorporated by reference in their entirety. Quoted as making money.
 この発明は、車両のタイヤスリップを抑制するスリップ制御装置に関し、特に各車輪を電動機で駆動する電気自動車のスリップ制御装置に関する。 The present invention relates to a slip control device that suppresses tire slip of a vehicle, and more particularly to a slip control device of an electric vehicle in which each wheel is driven by an electric motor.
 従来より、車両の加速時もしくは減速時に車輪がスピンもしくはロックするのを防止するスリップ制御装置が知られている。例えば、特許文献1に記載の方法では、加速時に駆動輪の角加速度の値が角加速度しきい値を超えた場合に、角加速度にフィードバックゲインを乗じた項を含むトルク指令補正値を用いて、トルク指令にフィードバック制御を行う。 Conventionally, a slip control device is known that prevents the wheels from spinning or locking when the vehicle is accelerating or decelerating. For example, in the method described in Patent Document 1, when the value of the angular acceleration of the drive wheel exceeds the angular acceleration threshold during acceleration, a torque command correction value including a term obtained by multiplying the angular acceleration by the feedback gain is used. Feedback control to the torque command.
特開平8-182119号公報JP-A-8-182119 特開2017-022870号公報JP 2017-022870 A
 特許文献1には、加速時に駆動輪の角加速度の値が角加速度しきい値を超えた場合に、角加速度にフィードバックゲインを乗じた値を含むトルク指令補正値を用いて、トルク指令にフィードバック制御を行うことで、スリップ制御を行う方法が記載されている。このスリップ制御では、車輪回転速度に応じて角加速度しきい値またはフィードバックゲインを設定変更している。 In Patent Document 1, when the value of the angular acceleration of the drive wheel exceeds the angular acceleration threshold during acceleration, feedback to torque command is performed using a torque command correction value including a value obtained by multiplying the angular acceleration by a feedback gain. A method of performing slip control by performing control is described. In this slip control, the angular acceleration threshold or the feedback gain is changed in accordance with the wheel rotational speed.
 ここで、特許文献1の方法ではモータの出力特性を考慮し、高回転域では大トルクが出せないためにフィードバックゲインを変更している。しかし低速走行時の車輪回転速度の測定値の変動を考慮していない。車輪回転速度は、単位時間あたりの入力パルス数の変化から測定している。低速走行時には単位時間あたりの入力パルス数自体が減少するため、測定精度が悪化する。車輪回転速度の測定精度が悪化するとフィードバック制御によって振動が発生するため、安定したフィードバック制御を行うことができない。 Here, in the method of Patent Document 1, in consideration of the output characteristics of the motor, the feedback gain is changed because a large torque can not be produced in the high rotation range. However, it does not take into consideration fluctuations in measured values of wheel rotational speed at low speeds. The wheel rotational speed is measured from the change in the number of input pulses per unit time. When traveling at low speed, the number of input pulses per unit time itself decreases, so the measurement accuracy deteriorates. If the measurement accuracy of the wheel rotational speed is degraded, vibration is generated by feedback control, so stable feedback control can not be performed.
 車輪回転速度ではなく、スリップ率を用いてフィードバック制御を行う場合も上記と同様で、車輪回転速度の測定値が変動すると安定したフィードバック制御を行うことができない。それは、スリップ率λは、車輪回転速度ωと車速Vとから次の計算式(式(1))により計算されるが、この式(1)に車輪回転速度が含まれるためである。なお、Rはタイヤの半径である。
Figure JPOXMLDOC01-appb-M000001
When feedback control is performed using the slip ratio instead of the wheel rotational speed, similar to the above, stable feedback control can not be performed if the measured value of the wheel rotational speed fluctuates. The slip ratio λ is calculated from the wheel rotation speed ω and the vehicle speed V according to the following equation (Equation (1)), and the wheel rotation speed is included in the equation (1). R 0 is the radius of the tire.
Figure JPOXMLDOC01-appb-M000001
 振動を抑制するために、一律にゲインを小さくする方法も考えられるが、ゲインを小さくするとスリップ制御の応答性が低下するため車輪のスピンもしくはロックを防止できない可能性がある。
 また、車速Vが高いときに車輪がスピンまたはロックすると車両挙動が乱れて危険な場合がある。
Although it is conceivable to uniformly reduce the gain in order to suppress the vibration, if the gain is reduced, the responsiveness of the slip control may be reduced, so that it may not be possible to prevent the spin or lock of the wheel.
In addition, if the wheels spin or lock when the vehicle speed V is high, the vehicle behavior may be disturbed and dangerous.
 この発明の目的は、低速時に車輪回転速度の測定精度が悪化しても安定したスリップ制御を行うことができ、車両挙動が乱れることを防止できるスリップ制御装置を提供することである。 An object of the present invention is to provide a slip control device capable of performing stable slip control even when the measurement accuracy of the wheel rotation speed deteriorates at low speed, and preventing the vehicle behavior from being disturbed.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, for convenience, reference will be made to the reference numerals of the embodiments.
 この発明の第1の構成に係るスリップ制御装置11は、電動機4の力行による加速と回生による減速が可能な車両1に搭載され、車輪回転速度ωの許容回転速度ω′に対する車輪回転速度偏差Δωを計算すると共に、比例補償を行う可変の比例ゲインKおよび微分補償を行う可変の微分ゲインKのうちの少なくとも一方のゲインと積分補償を行う可変の積分ゲインKとを用いて前記車輪回転速度偏差Δωからフィードバック演算値KPIDを取得し、入力された制駆動指令値を前記フィードバック演算値KPIDを用いて変更して前記電動機4を駆動するスリップ制御装置11であって、
 車速Vが所定のしきい値Vth(Vth_P、Vth_I、Vth_DD)以下のときに、前記比例ゲインKおよび微分ゲインKのうち、前記フィードバック演算値KPIDの取得に用いるゲインが比例ゲインKおよび微分ゲインKの両方である場合はこれら両方のゲインK,Kまたはいずれか一方のゲインを低下させ、前記フィードバック演算値KPIDの取得に用いるゲインが比例ゲインKおよび微分ゲインKのいずれか一方である場合はその用いるゲインを低下させ、前記積分ゲインKはそのまま維持させるかまたは低下させ、
 前記各ゲインK,K,Kの低下前の大きさに対する低下後の大きさの割合である低下後割合α,α,αのうち、前記積分ゲインKの前記低下後割合αを最も大きくするフィードバックゲイン変更部14を備える。
The slip control device 11 according to the first configuration of the present invention is mounted on a vehicle 1 capable of being accelerated by power running of the electric motor 4 and decelerated by regeneration, and the wheel rotational speed deviation Δω with respect to the allowable rotational speed ω ′ of the wheel rotational speed ω. The wheel is calculated using at least one of a variable proportional gain K P performing proportional compensation and a variable differential gain K D performing differential compensation and a variable integral gain K I performing integral compensation. A slip control device 11 which acquires a feedback calculation value K PID from a rotational speed deviation Δω, changes an input braking / driving command value using the feedback calculation value K PID , and drives the motor 4,
When the vehicle speed V is less than or equal to a predetermined threshold value V th (V th_P , V th_I , V th_D D), a gain used to obtain the feedback calculation value K PID among the proportional gain K P and the differential gain K D If both are the proportional gain K P and the derivative gain K D , both gains K P , K D or any one of the gains are decreased, and the gain used to obtain the feedback calculation value K PID is the proportional gain K If either P or differential gain K D is used, the gain to be used is reduced, and the integral gain K I is maintained or reduced as it is,
The ratio of the size after reduction to the size before reduction of each gain K P , K I , K D After the reduction of the integral gain K I among the ratios α P , α I , α D after reduction The feedback gain change unit 14 that maximizes the ratio α I is provided.
 なお、前記低下後割合α,α,αには、低下させないゲインについて維持させた場合の割合も含まれる。また、前記「積分ゲインKの前記低下後割合αを最も大きくする」とは、他のいずれかのゲインK,Kの低下後割合α,αと積分ゲインKの低下後割合αとが同じである場合を含み、後述の「〔満たすべき関係〕」で述べる事項を満足していればよい。前記所定のしきい値Vthおよび許容回転速度ω′は、設計などにより適宜定められる。 The post-decrease rates α P , α I and α D also include the rates when maintaining the gains not to be decreased. Further, the "integral gain K I wherein the greatest proportion alpha I after reduction in" is one of the other gain K P, decreases after the ratio of K D alpha P, reduction of alpha D and integral gain K I As long as the post proportion α I is the same, it may be sufficient to satisfy the items described in “Relationship to be satisfied” to be described later. The predetermined threshold value V th and the allowable rotation speed ω ′ are appropriately determined by design and the like.
 この構成につき説明すると、フィードバックゲイン変更部14は、車速Vが所定のしきい値Vth以下のときに、フィードバックゲインを低下させるが、前記スリップ制御装置11が前記フィードバック演算値KPIDを計算して行うフィードバック制御は、PID制御、PI制御、およびID制御のいずれであってもよい。ある車速閾値Vth以下の場合に、上記のようにゲインを低下させるが、低下前に対する低下後のゲインの大きさの割合の大小関係は、積分のゲインKの前記低下後割合αが最も大きくなっていれば、その他はいかなる関係であってもよい。 In this configuration, the feedback gain changing unit 14 reduces the feedback gain when the vehicle speed V is less than or equal to the predetermined threshold value V th , but the slip control device 11 calculates the feedback calculation value K PID. The feedback control to be performed may be any of PID control, PI control, and ID control. When the vehicle speed threshold V th or less, the gain is reduced as described above, but the magnitude relationship of the ratio of the magnitude of the gain after the reduction to that before the reduction is the after-reduction ratio α I of the integral gain K I The other may be any relationship as long as it is the largest.
 PID制御の場合、比例ゲインKと微分ゲインKのどちらか一方のみを低下させてもよい。ただし、常に積分ゲインKの前記低下後割合αが最も大きくならなければならないため、この場合は必然的に積分ゲインKの値は低下させない。 If PID control, may be either lowered only one of the proportional gain K P and the differential gain K D. However, since the after-reduction ratio α I of the integral gain K I must always be the largest, in this case, the value of the integral gain K I is not necessarily reduced.
 つまり、各ゲインK,K,Kの低下後割合α,α,αは、以下の条件を満たす場合をすべて含む。
〔満たすべき関係〕
 PID制御であれば、  α ≧ α  かつ α ≧ α (ただし、αとαの大小関係は問わない。)
 PI制御であれば、   α ≧ α
 ID制御であれば、   α ≧ α
 ただし、
  α=K/KB_P、 α=K/KB_I、 α=K/KB_Dである。
 ここで、
  K、K、Kは、低下後(低下途中)の各ゲインの大きさであり、
  KB_P、KB_I、KB_Dは、低下前の各ゲインの大きさ(基準値)である。
 なお、この明細書において、各ゲインにつき、特に低下の前後を区別せずに示す場合は、低下後(低下途中)と同じで、K、K、Kと標記している。
That is, the after-reduction rates α P , α I and α D of the respective gains K P , K I and K D include all cases where the following conditions are satisfied.
[Relationship to be satisfied]
In the case of PID control, α I αα P and α I α α D (however, the relation between α P and α D does not matter).
If PI control, α I α α P
In the case of ID control, α I α α D
However,
α P = K P / K B_P , α I = K I / K B_I , and α D = K D / K B_D .
here,
K P , K I , and K D are the magnitudes of the respective gains after the decrease (during the decrease),
K B — P , K B — I , and K B — D are magnitudes (reference values) of the respective gains before reduction.
In this specification, in the case where each gain is indicated before and after the drop, it is marked as K P , K I and K D in the same manner as after the drop (during the drop).
 ここで、各ゲインを基準値から低下させる車速Vのしきい値をVth_P、Vth_I、Vth_Dとすると、必然的に、次式を満たす必要がある。
  Vth_I ≦ Vth_P、Vth_D 
 このとき、Vth_PとVth_Dの大小関係は問わず、上記3つのしきい値は全て同じ(Vth_P=Vth_I=Vth_D=Vth)でもよい。
Here, the threshold V Th_P of the vehicle speed V to lower from the reference value of each gain, V Th_I, When V Th_d, inevitably, it is necessary to satisfy the following equation.
V th_I ≦ V th_P , V th_D
At this time, all the three threshold values may be the same ( Vth_P = Vth_I = Vth_D = Vth ) regardless of the magnitude relationship between Vth_P and Vth_D .
 0 km/hでの各ゲインの低下後割合をα0_P、α0_I、α0_Dとしたとき、上記α=KP/ KB_P、α=KI/ KB_I、αD=KD/ KB_D の関係式を満たすならば、α0_P、α0_I、α0_Dをどのように設定しても良い。0< V0< Vth(=Vth_P、Vth_Dのどちらか大きい方)となるようにV0を設定し、V0までα0_P、α0_I、α0_Dのいずれかもしくは複数を維持してもよい。 Assuming that the post-drop ratio of each gain at 0 km / h is α 0 _ P , α 0 _ I , α 0 _ D , the above α P = K P / K B _ P , α I = K I / K B _ I , α D = K D / If the relational expression K B _D is satisfied, α 0 _P , α 0 _I , and α 0 _D may be set in any way. 0 <V 0 <V th is set to V 0 such that (= V th_P, either larger or V Th_d), until V 0 α 0_P, α 0_I, by keeping one or more alpha 0_D It is also good.
 この発明の第2の構成に係るスリップ制御装置11は、電動機4の力行による加速と回生による減速が可能な車両1に搭載され、車輪回転速度ωと車速Vとから算出されるスリップ率λのスリップ率許容値λ′に対するスリップ率偏差Δλを計算すると共に、比例補償を行う可変の比例ゲインKおよび微分補償を行う可変の微分ゲインKのうちの少なくとも一方のゲインと積分補償を行う可変の積分ゲインKとを用いて前記スリップ率偏差Δλからフィードバック演算値KPIDを計算し、入力された制駆動指令値を前記フィードバック演算値KPIDを用いて変更して前記電動機4を駆動するスリップ制御装置11であって、
 車速Vが所定のしきい値Vth(Vth_P、Vth_I、Vth_D)以下のときに、前記比例ゲインKおよび微分ゲインKのうち、前記フィードバック演算値KPIDの取得に用いるゲインが比例ゲインKおよび微分ゲインKの両方である場合はこれら両方のゲインK,Kまたはいずれか一方のゲインを低下させ、前記フィードバック演算値KPIDの計算に用いるゲインが比例ゲインKおよび微分ゲインKのいずれか一方である場合はその用いるゲインを低下させ、前記積分ゲインKはそのまま維持させまたは低下させ、
 前記各ゲインK,K,Kの低下前の大きさに対する低下後の大きさの割合である低下後割合α,α,αのうち、前記積分ゲインKの前記低下後割合αを最も大きくするフィードバックゲイン変更部14Aを備える。
The slip control device 11 according to the second configuration of the present invention is mounted on a vehicle 1 capable of being accelerated by power running of the electric motor 4 and decelerated by regeneration and has a slip ratio λ calculated from the wheel rotation speed ω and the vehicle speed V. A variable that performs integral compensation with at least one of a variable proportional gain K P that performs proportional compensation and a variable differential gain K D that performs differential compensation while calculating slip ratio deviation Δλ with respect to slip ratio tolerance λ ′ The feedback calculation value K PID is calculated from the slip ratio deviation Δλ using the integral gain K I of the above, and the input driving / driving command value is changed using the feedback calculation value K PID to drive the electric motor 4 The slip control device 11 is
The vehicle speed V is a predetermined threshold value V th (V th_P, V th_I , V th_D) when: among the proportional gain K P and the derivative gain K D, the gain to be used for acquisition of the feedback calculation value K PID is proportional gain K P and the derivative gain K D both gain K P of both the case of the, K D, or any decrease one of the gain, the gain used for calculation of the feedback calculation value K PID proportional gain K P and derivative gain K if either one of the D reduces the gain of using them, the integral gain K I is or decrease as it is maintained,
The ratio of the size after reduction to the size before reduction of each gain K P , K I , K D After the reduction of the integral gain K I among the ratios α P , α I , α D after reduction A feedback gain changing unit 14A that maximizes the ratio α I is provided.
 なお、前記低下後割合α,α,αには、低下させないゲインについて維持させた場合の割合も含まれる。また、ゲインを低下させる条件および方法は、第1の構成に係るスリップ制御装置11と同じである。例えば、第1の構成に係るスリップ制御装置11と同じく、フィードバック制御は、PID制御、PI制御、およびID制御のいずれであってもよい。前記ゲインを低下させるときに、PID制御の場合、比例ゲインKと微分ゲインKの両方を低下させてもよく、または、どちらか一方のみを低下させてもよい。
 前記所定のしきい値Vthおよびスリップ率許容値λ′は、設計などにより適宜に定められる値である。
The post-decrease rates α P , α I and α D also include the rates when maintaining the gains not to be decreased. Further, the conditions and the method for reducing the gain are the same as the slip control device 11 according to the first configuration. For example, as in the slip control device 11 according to the first configuration, the feedback control may be any of PID control, PI control, and ID control. When reducing the gain in the case of PID control, may reduce both the proportional gain K P and the differential gain K D, or may be either only to reduce the.
The predetermined threshold value V th and slip ratio allowable value λ ′ are values appropriately determined by design and the like.
 これら第1および第2の構成に係るスリップ制御装置11の作用につき説明する。
 低速走行時は、車輪回転速度ωの検出出力がパルスである場合に、単位時間当たりの入力パルス数が減少することなどから、車輪回転速度ωの測定精度が悪化する。そのため、車輪回転速度偏差Δω(例えば、車輪回転速度ωに所定の定数を乗じた許容回転速度ω′に対する車輪回転速度ωの偏差Δωや、スリップ率偏差Δλ(スリップ率許容値λ′(上限値(>0)または下限値(≦0)に対するスリップ率λの偏差)の変動が大きくなる。
The operation of the slip control device 11 according to the first and second configurations will be described.
During low-speed traveling, when the detection output of the wheel rotational speed ω is a pulse, the number of input pulses per unit time decreases, and the measurement accuracy of the wheel rotational speed ω deteriorates. Therefore, wheel rotational speed deviation Δω (for example, deviation Δω of wheel rotational speed ω with respect to allowable rotational speed ω ′ obtained by multiplying wheel rotational speed ω by a predetermined constant, slip ratio deviation Δλ (slip ratio allowable value λ ′ (upper limit The variation of slip ratio λ with respect to (> 0) or the lower limit (≦ 0) becomes large.
 ここで、フィードバック制御には比例補償、積分補償および微分補償がある。微分補償および比例補償は、車輪回転速度偏差Δωやスリップ率偏差Δλの変動によって振動的になりやすい。微分補償は車輪回転速度偏差Δωやスリップ率偏差Δλを微分するため振動を増幅させてしまう。比例補償も車輪回転速度偏差Δωやスリップ率偏差Δλの変動をそのまま補償値に反映させてしまう。一方積分補償は、車輪回転速度偏差Δωやスリップ率偏差Δλが変動しても振動的になり難い。積分補償は、車輪回転速度偏差Δωやスリップ率偏差Δλを積分するため、車輪回転速度偏差Δωやスリップ率偏差Δλの変動の影響を小さくする。 Here, feedback control includes proportional compensation, integral compensation and differential compensation. Differential compensation and proportional compensation tend to be oscillatory due to fluctuations of the wheel rotational speed deviation Δω and the slip ratio deviation Δλ. The differential compensation differentiates the wheel rotational speed deviation Δω and the slip ratio deviation Δλ, and thus amplifies the vibration. The proportional compensation also reflects the fluctuation of the wheel rotational speed deviation Δω and the slip ratio deviation Δλ as it is on the compensation value. On the other hand, integral compensation does not easily become oscillatory even if the wheel rotational speed deviation Δω and the slip ratio deviation Δλ change. Integral compensation integrates the wheel rotational speed deviation Δω and the slip ratio deviation Δλ, and therefore reduces the influence of fluctuations in the wheel rotational speed deviation Δω and the slip ratio deviation Δλ.
 そこで、低速走行時は振動を発生させやすい比例補償および微分補償それぞれのゲイン(それぞれ比例ゲインKおよび微分ゲインK)を低下させるか、または零にして比例補償および微分補償を弱めるかまたは無効化する。これにより、低速時に車輪回転速度ωの測定精度が悪化しても安定したスリップ制御を行うことができ、車両挙動が乱れることを防止できる。 Therefore, at low speeds, the gains (proportional gain K P and derivative gain K D, respectively ) of the proportional compensation and derivative compensation that are likely to generate vibrations are reduced or zeroed to weaken or ineffective the proportional compensation and derivative compensation. Turn As a result, stable slip control can be performed even when the measurement accuracy of the wheel rotation speed ω deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
 前記フィードバックゲイン変更部14(14A)は、車両が加速しているか減速しているかを判断し、加速時と減速時とで、前記比例ゲインK、積分ゲインK、および微分ゲインKのいずれか一つまたは複数について、前記車速Vがしきい値Vth以下のときに低下させるゲインの低下の方法を変えてもよい。すなわち、加速時と減速時とで、ゲインを低下させる補償の種類を変えてもよく、また低下の程度を変えてもよく、低下の程度の変化を変えてもよい。減速時と加速時とでは、安定したスリップ制御に対する各ゲインK,K,Kの影響が異なるため、減速時と加速時とで前記ゲインの低下の方法を変えることが好ましい。 The feedback gain changing unit 14 (14A) determines whether the vehicle is accelerating or decelerating, and the proportional gain K P , the integral gain K I , and the differential gain K D are determined during acceleration and deceleration. The method of reducing the gain to be reduced when the vehicle speed V is less than or equal to the threshold value V th may be changed for any one or more. That is, the type of compensation for reducing the gain may be changed between acceleration and deceleration, or the degree of reduction may be changed, or the change of the degree of reduction may be changed. Since the influence of each gain K P , K I , and K D on stable slip control differs between deceleration and acceleration, it is preferable to change the method of reducing the gain between deceleration and acceleration.
 前記第1の構成に係るスリップ制御装置11は、さらに、定められた規則を適用して、スリップに影響する車両の因子の状態量の検出値から前記許容車輪回転速度ω′を取得する許容回転速度取得部12と、前記車輪回転速度偏差Δωを計算する車輪回転速度偏差計算部13と、前記比例補償、積分補償、および微分補償それぞれの前記ゲインK,K,Kを用いて前記車輪回転速度偏差Δωからフィードバック演算値KPIDを取得する制御器15Aと、前記入力された制駆動指令値を前記フィードバック演算値KPIDを用いて変更して前記電動機4のコントローラ10へ出力する制駆動指令値計算部16とを備え、前記フィードバックゲイン変更部14は、車両が減速しているときには、同じ車速における加速時よりも、比例ゲインKもしくは微分ゲインKの前記変化後割合αP’、αI’、αD’を積分ゲインKの前記低下後割合αI’で除した値を小さくする構成としてもよい。 The slip control device 11 according to the first configuration further applies an established rule, and acquires the allowable wheel rotation speed ω ′ from the detection value of the state quantity of the factor of the vehicle affecting the slip. Using the gains K P , K I , and K D of the speed compensation unit 12, the wheel rotation speed deviation calculation unit 13 for calculating the wheel rotation speed deviation Δω, and the proportional compensation, integral compensation, and differential compensation, respectively. A controller 15A that acquires a feedback operation value K PID from the wheel rotational speed deviation Δω, and a control that changes the input braking / driving command value using the feedback operation value K PID and outputs it to the controller 10 of the motor 4 The feedback gain changing unit 14 includes a drive command value calculating unit 16, and the feedback gain changing unit 14 performs proportional gain control during acceleration at the same vehicle speed when the vehicle is decelerating. Down K P or derivative gain K the post-change ratio alpha P of D ', α I', α D may 'an integral gain K I the ratio after reduction alpha I' of a structure to reduce the divided by the.
 すなわち、減速時の各ゲインK,K,Kの前記変化後割合(変化前の大きさに対する変化後の割合)をそれぞれαP’、αI’、αD’、加速時の各ゲインK,K,Kの前記変化後割合(変化前の大きさに対する変化後の割合)をそれぞれαP、αI、αDとしたとき、以下の関係を満たすようにゲインK,K,Kを変更する。
   PID制御であれば、 αP /αI ≧ αP’/αI’  かつ αDI ≧ αD’/αI
   PI制御であれば、αP /αI ≧ αP’/αI’ 
   ID制御であれば、αDI ≧ αD’/αI
 減速時は積分補償が支配的となるようにゲインK,K,Kを変化させることで、より安定したフィードバック制御が可能となる。この場合に、加速時と減速時で積分ゲインKの前記割合αIを比較した場合は、加速時の方を小さくする方がより効果的である。また、加速時と減速時で比例補償、微分補償のゲインK,Kの前記割合αP’、αD’を比較した場合には、減速時の方を小さくする方が効果的である。
That is, the post-change ratio of each gain K P , K I , K D at deceleration (the ratio after change to the size before change) is α P ', α I ', α D ', each at acceleration Assuming that the post-change ratio of the gains K P , K I and K D (the ratio after the change to the size before change) is α P , α I and α D , respectively, the gain K P satisfies the following relationship , K I , change K D.
In the case of PID control, α P / α I αα P '/ α I ' and α D / α I αα D '/ α I '
In the case of PI control, α P / α I α α P '/ α I '
In the case of ID control, α D / α I α α D '/ α I '
At the time of deceleration, by changing the gains K P , K I and K D so that integral compensation becomes dominant, more stable feedback control becomes possible. In this case, when comparing the percentage alpha I integral gain K I at acceleration and deceleration is better to reduce the person at the time of acceleration is more effective. In addition, when the proportions α P 'and α D ' of the gains K P and K D for proportional compensation and differential compensation are compared between acceleration and deceleration, it is more effective to reduce the deceleration. .
 前記定められた規則としては、例えばマップ等で車速Vおよびハンドル角δの検出値と許容回転速度ω′との関係を定めておき、前記許容回転速度取得部12が、この定められた関係を用いて許容回転速度ω′を取得することであってもよい。さらにヨーレートγを加味して許容回転速度ω′を取得してもよい。代わりに、前記許容回転速度取得部12は、車輪回転速度ωの検出値に所定の定数を乗じた値を許容回転速度ω′としてもよい。 As the established rules, for example, a map or the like is determined in advance the relationship between the detection value of the vehicle speed V and the steering wheel angle [delta] h and the allowable rotation speed omega 'by the allowable rotation speed acquisition section 12, the defined relationship May be used to obtain the allowable rotation speed ω ′. Furthermore, the allowable rotation speed ω ′ may be acquired in consideration of the yaw rate γ. Alternatively, the allowable rotation speed acquisition unit 12 may set a value obtained by multiplying the detected value of the wheel rotation speed ω by a predetermined constant as the allowable rotation speed ω ′.
 前記第2の構成に係るスリップ制御装置11は、さらに、前記車輪回転速度ωと前記車速V5とからスリップ率λを計算するスリップ率計算部21と、前記スリップ率偏差Δλを計算するスリップ率偏差計算部22と、前記比例補償、積分補償、および微分補償それぞれの前記ゲインK,K,Kを用いて前記スリップ率偏差Δλからフィードバック演算値KPIDを取得する制御器15Aと、前記入力された制駆動指令値を前記フィードバック演算値KPIDを用いて変更して前記電動機4のコントローラへ出力する制駆動指令値計算部16Aとを備え、前記フィードバックゲイン変更部14Aは、車両が減速しているときには、同じ車速における加速時よりも、比例ゲインKもしくは微分ゲインKの前記変化後割合αP’、αI’、αD’を積分ゲインKの前記低下後割合αI’で除した値を小さくする構成としてもよい。
 第1の構成と同様に、以下の関係を満たすようにゲインK,K,Kを変更する。
   PID制御であれば、 αP /αI ≧ αP’/αI’  かつ αDI ≧ αD’/αI
   PI制御であれば、αP /αI ≧ αP’/αI’ 
   ID制御であれば、αDI ≧ αD’/αI
 このように、減速時は積分補償が支配的となるようにゲインK,K,Kを変化させることで、より安定したフィードバック制御が可能となる。
The slip control device 11 according to the second configuration further includes a slip ratio calculation unit 21 that calculates a slip ratio λ from the wheel rotational speed ω and the vehicle speed V5, and a slip ratio deviation that calculates the slip ratio deviation Δλ. A controller 15A for acquiring a feedback calculation value K PID from the slip ratio deviation Δλ using the calculation unit 22, the gains K P , K I , and K D of the proportional compensation, the integral compensation, and the differential compensation, and And a braking / driving command value calculating unit 16A for changing the inputted braking / driving command value using the feedback calculation value K PID and outputting the same to the controller of the motor 4. The feedback gain changing unit 14A when you are in, than during acceleration at the same vehicle speed, the proportional gain K P or the change after the proportion of the derivative gain K D α P ', α I ' alpha D may 'an integral gain K I the ratio after reduction alpha I' of a structure to reduce the divided by the.
As in the first configuration, the gains K P , K I , and K D are changed so as to satisfy the following relationship.
In the case of PID control, α P / α I αα P '/ α I ' and α D / α I αα D '/ α I '
In the case of PI control, α P / α I α α P '/ α I '
In the case of ID control, α D / α I α α D '/ α I '
As described above, by changing the gains K P , K I and K D so that integral compensation becomes dominant during deceleration, more stable feedback control is possible.
 前記フィードバックゲイン変更部14は、車速Vが前記しきい値Vth以下のときに、比例ゲインKおよび微分ゲインKのいずれか一方または両方を、零または零に近い値に変更する構成としてもよい。このように比例ゲインKおよび微分ゲインKのいずれか一方または両方を、零または零に近い値に変更することで、前記低下後割合α(α0_P)もしくはα(α0_D)あるいはその両方を零もしくは零に近い値としてもよい。前記「零に近い値」は、制御上で零と見做せる値であり、設計により定められる。 The feedback gain changing unit 14, when the vehicle speed V is less than the threshold value V th, either or both of the proportional gain K P and the derivative gain K D, a configuration for changing a value equal to or close to zero It is also good. Thus, by changing one or both of the proportional gain K P and the differential gain K D to zero or a value close to zero, the after-reduction ratio α P (α 0 _P ) or α D (α 0 _D ) or Both of them may be zero or close to zero. The “value close to zero” is a value that can be regarded as zero in control, and is determined by design.
 前記車両1には複数の駆動輪2が独立に制御可能に設けられ、前記電動機4は、前記複数の駆動輪2のうちの対応する駆動輪2を駆動するように構成されてもよい。駆動輪2を独立に制御できる車両1における前記電動機4は、インホイールモータ型であっても、オンボード型であってもよい。駆動輪2を独立に制御できる車両1の場合、個々の駆動輪2のスリップ制御を独立に行えるため、スリップ制御効果がより効果的に得られる。 A plurality of drive wheels 2 may be independently controlled in the vehicle 1, and the electric motor 4 may be configured to drive the corresponding drive wheels 2 of the plurality of drive wheels 2. The electric motor 4 in the vehicle 1 capable of independently controlling the drive wheels 2 may be an in-wheel motor type or an on-board type. In the case of the vehicle 1 in which the drive wheels 2 can be controlled independently, the slip control of each drive wheel 2 can be performed independently, so that the slip control effect can be obtained more effectively.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1および第2の実施形態に係るスリップ制御装置を搭載した車両の一例の概念構成を示す説明図である。 図1のスリップ制御装置の概念構成を示す機能ブロック図である。 第2の実施形態に係るスリップ制御装置の概念構成を示す機能ブロック図である。 図1または図3のスリップ制御装置によるフィードバックゲインの変更例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインの他の変更例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインのさらに他の変更例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインのさらに他の変更例を示すグラフである。 補償値、車速、および車輪速の時間変化例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインのさらに他の変更例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインのさらに他の変更例を示すグラフである。 図1または図3のスリップ制御装置によるフィードバックゲインのさらに他の変更例を示すグラフである。 補償値、車速、および車輪速の他の時間変化例を示すグラフである。 インホイールモータ駆動装置の一例を示す断面図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the conceptual structure of an example of the vehicle carrying the slip control apparatus which concerns on the 1st and 2nd embodiment of this invention. It is a functional block diagram which shows the conceptual structure of the slip control apparatus of FIG. It is a functional block diagram showing a conceptual composition of a slip control device concerning a 2nd embodiment. It is a graph which shows the example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the time change example of compensation value, a vehicle speed, and a wheel speed. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the other example of a change of the feedback gain by the slip control apparatus of FIG. 1 or FIG. It is a graph which shows the compensation value, a vehicle speed, and the other example of time change of a wheel speed. It is a sectional view showing an example of an in-wheel motor drive.
<<車両全体構成>>
 この発明の第1の実施形態を図1、図2、および図13と共に説明する。図1に示すように、この実施形態に係るスリップ制御装置は、4輪の駆動輪2それぞれに、インホイールモータ駆動装置3を構成する回転型の電動機4を備えた車両1に設けられている。車両1は、電動機4の、力行による加速と回生による減速が可能であり、また4輪を独立して制御可能である。
<< Whole vehicle configuration >>
A first embodiment of the present invention will be described in conjunction with FIG. 1, FIG. 2 and FIG. As shown in FIG. 1, the slip control device according to this embodiment is provided in a vehicle 1 provided with a rotary electric motor 4 that constitutes an in-wheel motor drive device 3 for each of the four drive wheels 2. . The vehicle 1 is capable of accelerating by powering and decelerating by regeneration of the electric motor 4, and can control four wheels independently.
 各インホイールモータ駆動装置3は、例えば図13に示すように、車輪用軸受5と、前記電動機4と、この電動機4の回転出力を車輪用軸受5の回転輪となるハブ輪5aに減速して伝達する減速機6とを備える。前記ハブ輪5aに駆動輪1(図1)のホイールが取付けられる。電動機4は、例えば同期モータ等の交流モータであり、ステータ4aとロータ4bとを有する。インホイールモータ駆動装置3には、車輪回転速度センサ7(図1)が設けられている。車輪回転速度センサ7は、例えば磁気エンコーダと磁気センサとで構成され、車輪回転速度ωに比例したパルス間隔のパルス列を出力する。また車輪回転速度センサ7の代わりに図13のレゾルバ23の値を用いてもよい。レゾルバ23は、電動機4のロータの回転速度を検出するセンサであり、車輪回転速度に比例した値を出力する。 For example, as shown in FIG. 13, each in-wheel motor drive device 3 decelerates the rotation output of the wheel bearing 5, the electric motor 4, and the electric motor 4 to the hub wheel 5 a that is the rotating wheel of the wheel bearing 5. And a speed reducer 6 for transmission. The wheel of the drive wheel 1 (FIG. 1) is attached to the hub wheel 5a. The motor 4 is, for example, an AC motor such as a synchronous motor, and includes a stator 4a and a rotor 4b. The in-wheel motor drive device 3 is provided with a wheel rotational speed sensor 7 (FIG. 1). The wheel rotation speed sensor 7 includes, for example, a magnetic encoder and a magnetic sensor, and outputs a pulse train of pulse intervals proportional to the wheel rotation speed ω. Further, instead of the wheel rotational speed sensor 7, the value of the resolver 23 of FIG. 13 may be used. The resolver 23 is a sensor that detects the rotational speed of the rotor of the motor 4 and outputs a value proportional to the wheel rotational speed.
 図1において、車両1の統括制御を行うVCU等の上位ECU8に、各種センサ9からアクセルペダルおよびブレーキペダルの踏み込み量等が入力され、上位ECU8は各駆動輪1の電動機4を制御するモータコントローラ10に制駆動指令を分配する。モータコントローラ10は、バッテリ(図示せず)の直流電力を電動機3に応じて交流電力に変換するインバータと、入力された制駆動指令に従って前記インバータの出力を制御すると共に電動機3の回転位相等に応じた効率化等の制御を行う制御手段とで構成される。モータコントローラ10は、個々の電動機4毎に設けられているが、前輪側および後輪側の二つずつがそれぞれ一つの筐体に纏められており、図1ではその纏められたものを、一つのモータコントローラ10のブロックとして示している。 In FIG. 1, the amount of depression of an accelerator pedal and a brake pedal is input from various sensors 9 to a host ECU 8 such as a VCU that comprehensively controls the vehicle 1, and the host ECU 8 controls the motor 4 of each drive wheel 1. Distribute the braking and driving command to ten. The motor controller 10 controls an inverter that converts DC power of a battery (not shown) into AC power according to the motor 3, and controls the output of the inverter according to the input control command and outputs the rotational phase of the motor 3 and the like. It is comprised with the control means which performs control of efficiency etc. according to it. The motor controller 10 is provided for each of the individual electric motors 4, but two each of the front wheel side and the rear wheel side are combined in one case, and in FIG. Shown as a block of one motor controller 10.
 前記各種センサ9は、アクセルペダルセンサ、ブレーキペダルセンサ、および他の種々のセンサを一つで代表して示している。前記上位ECU8とモータコントローラ10との間に、スリップ制御装置11が介在する。 The various sensors 9 represent an accelerator pedal sensor, a brake pedal sensor, and other various sensors as one representative. The slip control device 11 intervenes between the host ECU 8 and the motor controller 10.
 スリップ制御装置11は、個々の電動機4に対して設けられているが、図1では一つのブロックで代表して示している。スリップ制御装置11には、車速検出手段17から車速Vが入力され、かつ各電動機4の車輪回転速度センサ7で検出された各車輪回転速度ωが、モータコントローラ10を介して入力される。 The slip control device 11 is provided for each of the motors 4 but is represented by one block in FIG. The vehicle speed V is input to the slip control device 11 from the vehicle speed detection means 17, and each wheel rotational speed ω detected by the wheel rotational speed sensor 7 of each motor 4 is input via the motor controller 10.
  <<第1の実施形態、スリップ制御装置>>
 図2は、スリップ制御装置11の概念構成例を示す。スリップ制御装置11は、許容回転速度取得部12と、車輪回転速度偏差計算部13と、フィードバックゲイン変更部14と、制御器15と、制駆動指令値計算部16とを備える。許容回転速度取得部12は、定められた規則を適用して、スリップに影響する車両の因子の状態量の検出値から前記許容車輪回転速度ω′を取得する手段である。前記定められた規則としては、例えばマップ(図示せず)等で車速V、ハンドル角δ、およびヨーレートγの検出値と許容回転速度ω′との関係を定めておき、前記許容回転速度取得部12が、この関係を用いて許容回転速度ω′を取得することである。なお、ヨーレートγは必ずしも上記関係に含まれなくてもよい。代わりに、前記許容回転速度取得部12は、車輪回転速度ωに所定の定数を乗じて許容車輪回転数ω′を求めてもよい。前記マップは、スリップ制御装置11のメモリのような記憶手段に記憶されている。
<< First Embodiment, Slip Control Device >>
FIG. 2 shows an example of a conceptual configuration of the slip control device 11. The slip control device 11 includes an allowable rotation speed acquisition unit 12, a wheel rotation speed deviation calculation unit 13, a feedback gain change unit 14, a controller 15, and a braking / driving command value calculation unit 16. The allowable rotation speed acquisition unit 12 is a unit that acquires the allowable wheel rotation speed ω ′ from the detection value of the state quantity of the factor of the vehicle that affects the slip by applying a defined rule. As the determined rule, for example, the relationship between the detected values of the vehicle speed V, the steering wheel angle δ h and the yaw rate γ and the allowable rotation speed ω ′ is determined by a map (not shown) etc. The unit 12 is to obtain the allowable rotation speed ω ′ using this relationship. The yaw rate γ may not necessarily be included in the above relationship. Alternatively, the allowable rotation speed acquisition unit 12 may obtain the allowable wheel rotation speed ω ′ by multiplying the wheel rotation speed ω by a predetermined constant. The map is stored in storage means such as a memory of the slip control device 11.
 車速Vは、車速検出手段17により検出される。ハンドル角δは、ステアリングハンドル(図示せず)の中立位置からの操舵角度であり、ハンドル角測定手段18で測定される。ヨーレートγは、車両1に設置されたヨーレート測定手段19で測定される。車輪回転速度ωは、前記車輪回転速度センサ7(図1参照)により検出されて前記モータコントローラ10から転送される。 The vehicle speed V is detected by the vehicle speed detection means 17. The steering wheel angle [delta] h is the steering angle from the neutral position of the steering wheel (not shown), is measured by the steering wheel angle measuring means 18. The yaw rate γ is measured by the yaw rate measurement means 19 installed in the vehicle 1. The wheel rotational speed ω is detected by the wheel rotational speed sensor 7 (see FIG. 1) and transferred from the motor controller 10.
 車輪回転速度偏差計算部13は、車輪回転速度ωの前記許容回転速度ω′に対する偏差、つまり車輪回転速度偏差Δω(実際の車輪回転速度ωの許容回転速度からのずれ)を算出する手段である。制御器15は、例えばPID制御器であり、比例補償、積分補償、および微分補償をそれぞれ行うための可変のゲインK、K,Kを用いて前記車輪回転速度偏差Δωに対するフィードバック演算値KPIDを計算する手段である。このフィードバック演算値KPIDは、上位ECU8からスリップ制御装置11に与えられる制駆動指令と同じ単位の値であり、この例ではトルク値である。 The wheel rotational speed deviation calculation unit 13 is a means for calculating the deviation of the wheel rotational speed ω with respect to the allowable rotational speed ω ′, that is, the wheel rotational speed deviation Δω (the deviation of the actual wheel rotational speed ω from the allowable rotational speed). . The controller 15 is, for example, a PID controller, and uses feedback gains for the wheel rotational speed deviation Δω using variable gains K P , K I and K D for performing proportional compensation, integral compensation, and differential compensation, respectively. It is a means to calculate K PID . The feedback calculation value KPID is a value in the same unit as the braking / driving instruction given from the host ECU 8 to the slip control device 11, and is a torque value in this example.
 制駆動指令値計算部16は、上位ECU8から入力された制駆動指令値を、前記フィードバック演算値KPIDを用いて変更してモータコントローラ10へ出力する手段である。この例では、上位ECU8が指令する制駆動指令値はトルク指令値であり、フィードバック演算値KPIDもトルク値である。したがってこの例では、制駆動指令値計算部16は、トルク指令値計算部である。 The braking / driving command value calculation unit 16 is means for changing the braking / driving command value input from the host ECU 8 using the feedback calculation value KPID and outputting it to the motor controller 10. In this example, the braking / driving command value commanded by the host ECU 8 is a torque command value, and the feedback operation value K PID is also a torque value. Therefore, in this example, the braking / driving command value calculation unit 16 is a torque command value calculation unit.
 フィードバックゲイン変更部14は、前記制御器15が用いる前記比例補償、積分補償、および微分補償それぞれの前記ゲインK,K,Kを変更する手段であり、車速Vがしきい値Vth以下のときに、前記比例ゲインKおよび微分ゲインKのうち、前記フィードバック演算値KPIDの計算に用いるゲインが比例ゲインKおよび微分ゲインKの両方である場合は両方のゲインK,Kまたはいずれか一方のゲインを低下させ、前記フィードバック演算値KPIDの計算に用いるゲインが比例ゲインKおよび微分ゲインKのいずれか一方である場合はその用いるゲインを低下させ、前記積分ゲインKはそのまま維持させるかまたは低下させ、前記各ゲインK,K,Kの低下前の大きさに対する低下後の大きさの割合である低下後割合α,α,α(ただし低下させないゲインについては維持させた場合の割合も低下後割合α,α,αと称す)について、前記積分ゲインKの前記低下後割合αを最も大きくする。 The feedback gain changing unit 14 is means for changing the gains K P , K I , and K D of the proportional compensation, integral compensation, and differential compensation used by the controller 15, and the vehicle speed V is a threshold value V th. when: the proportional gain K P and the derivative gain K out and D, the gain used for calculation of the feedback calculation value K PID proportional gain K P and the differential gain K gain both in which case both D K P , K D or one of the gains is decreased, and when the gain used for calculation of the feedback calculation value K PID is any one of the proportional gain K P and the differential gain K D , the used gain is decreased, integral gain K I is or decreased to maintain it, the relative magnitude of the pre-reduction of the gain K P, K I, K D The proportion of the size is reduced after the ratio alpha P after below, α I, α D (but also the ratio after reduction ratio when the gain does not decrease was maintained alpha P, alpha I, referred to as alpha D) for, The post-reduction ratio α I of the integral gain K I is maximized.
 ここで、「前記積分ゲインKの前記低下後割合αを最も大きくする」とは、次の関係を満たすことである。
〔満たすべき関係〕
 PID制御であれば、  α ≧ α  かつ α ≧ α (ただし、αとαの大小関係は問わない。)
 PI制御であれば、   α ≧ α
 ID制御であれば、   α ≧ α
 ただし、
  α=K/KB_P、 α=K/KB_I、 α=K/KB_Dである。
 ここで、
  K、K、Kは、低下後(低下途中)の各ゲインの大きさであり、
  KB_P、KB_I、KB_Dは、低下前の各ゲインの大きさ(基準値)である。
 なお、次のように、αがαおよびαよりも大きくてもよい。つまり、同じ値となる場合を除いてもよい。
 PID制御であれば、  α > α  かつ α > α (ただし、αとαの大小関係は問わない。)
 PI制御であれば、   α > α
 ID制御であれば、   α > α
Here, “to make the ratio α I after the decrease of the integral gain K I the largest” means to satisfy the following relationship.
[Relationship to be satisfied]
In the case of PID control, α I αα P and α I α α D (however, the relation between α P and α D does not matter).
If PI control, α I α α P
In the case of ID control, α I α α D
However,
α P = K P / K B_P , α I = K I / K B_I , and α D = K D / K B_D .
here,
K P , K I , and K D are the magnitudes of the respective gains after the decrease (during the decrease),
K B — P , K B — I , and K B — D are magnitudes (reference values) of the respective gains before reduction.
Note that α I may be larger than α P and α D as follows. That is, the same value may be excluded.
For PID control, α I > α P and α I > α D (however, the relationship between α P and α D does not matter).
If PI control, α I > α P
In the case of ID control, α I > α D
 フィードバックゲイン変更部14は、より具体的には、車速Vが前記しきい値Vthとしてゲイン毎に定められたしきい値Vth_P、Vth_I、Vth_D以下のときに、前記比例補償、積分補償、および微分補償の前記各ゲインK,K,Kを低下させ、積分補償のゲインKの低下前の大きさに対する低下後の大きさの割合を、比例補償および微分補償のゲインK,Kの低下前の大きさに対する低下後の大きさの割合よりも大きくする。低下前の各ゲインの大きさをそれぞれKB_P,KB_I,KB_Dとし、低下後の大きさの割合である低下後割合をαとすると、各ゲインのαは次の式(2)~(4)となる。
    α=K / KB_P  (2)
    α=K / KB_I  (3)
    α=K / KB_D  (4)
 フィードバックゲイン変更部14は、比例ゲインKおよび微分ゲインKの低下後割合α、αの値を積分ゲインKの低下後割合αよりも小さくする。例えば、フィードバックゲイン変更部14は、比例補償および微分補償のゲインK、Kを零に変更する。比例補償および微分補償のゲインK、Kは、必ずしも零まで低下させなくてもよく、零に近い値としてもよい。比例ゲインKおよび微分ゲインKの低下後割合α、αは、別々の値であっても、互いに同じ値であってもよい。
More specifically, the feedback gain changing unit 14 performs the proportional compensation and integration when the vehicle speed V is equal to or less than the threshold values V th_P , V th_I , and V th_D determined for each gain as the threshold value V th. The ratio of the size after reduction to the size before reduction of the gain K I of the integral compensation by reducing the gains K P , K I and K D of the compensation and the differential compensation, the gain of the proportional compensation and the derivative compensation The ratio of the size after reduction to the size before reduction of K P and K D is made larger. Assuming that the size of each gain before reduction is K B — P , K B — I and K B — D, and the ratio after reduction which is the ratio of the size after reduction is α, α of each gain is expressed by the following equations (2) to (2) It becomes 4).
α P = K P / K B_P (2)
α I = K I / K B_I (3)
α D = K D / K B_D (4)
The feedback gain changing unit 14 makes the after-reduction rates α P and α D of the proportional gain K P and the differential gain K D smaller than the after-reduction rate α I of the integral gain K I. For example, the feedback gain changing unit 14 changes the gains K P and K D of the proportional compensation and the differential compensation to zero. The gains K P and K D of the proportional compensation and the differential compensation may not necessarily be reduced to zero, but may be values close to zero. Proportions after reduction α P and α D of proportional gain K P and differential gain K D may be different values or may be the same value as each other.
 一例を挙げると、前記フィードバックゲイン変更部14は、
  比例ゲインKを1000から0に変化させ、このとき、変化後の大きさの割合αは0%であり、
  積分ゲインKを10から2に変化させ、このとき、変化後の大きさの割合αは20%であり、
  微分ゲインKを100から0に変化させ、このとき、変化後の大きさの割合αは0%である。この例ではαとαの両方を零にしたが、αとαの値がαよりも小さければよく、αとαが異なる値となるようにK、Kを変更してもよい。
As an example, the feedback gain changing unit 14
The proportional gain K P is changed from 1000 to 0, and at this time, the ratio α P of the size after change is 0%,
The integral gain K I is changed from 10 to 2, and at this time, the ratio α I of the size after the change is 20%,
The derivative gain K D is changed from 0 to 100, this time, the ratio alpha D size after the change is 0%. In this example was zero both alpha P and alpha D, alpha P and alpha value of D is may be smaller than α I, α P and alpha D so that different values K P, a K D You may change it.
 なお、前記ゲイン毎に定められた速度のしきい値Vth_P、Vth_I、Vth_Dは、別々の値であってもよく、また互いに同じ値であってもよい。ただし、大小関係は、必然的に次のようになる(図4、図5参照)。
 PID制御であれば、  Vth_I ≦ Vth_P  かつ Vth_I ≦ Vth_D (ただし、Vth_PとVth_Dの大小関係は問わない)
 PI制御であれば、   Vth_I ≦ Vth_P
 ID制御であれば、   Vth_I ≦ Vth_D
Note that the threshold values V th — P , V th — I and V th — D of the velocity determined for each gain may be different values or may be the same value. However, the magnitude relationship is necessarily as follows (see FIGS. 4 and 5).
In the case of PID control, V th_I V V th _ P and V th _ I V V th _ D (however, the magnitude relationship between V th _ P and V th _ D does not matter)
In the case of PI control, V th_I V V th_P
In the case of ID control, V th_I V V th_D
 フィードバックゲイン変更部14は、積分補償のゲイン(積分ゲインK)については、車両が加速しているかまたは減速しているかを判断して変更する。具体的には、加速しているときは積分補償のゲインKを基準値よりも小さくする。減速しているときは、同じ車速Vにおける加速時よりも積分ゲインを大きくする。前記「基準値」は、設計により適宜に、かつ独立に定められる値である。フィードバックゲイン変更部14は、車両1が加速しているかまたは減速しているかを判断する加速/減速判断部14aを有する。加速/減速判断部14aは、例えば加速度センサ(図示せず)の前後加速度信号の正負によって、車両が加速しているかまたは減速しているかを判断する。 The feedback gain changing unit 14 changes the gain of the integral compensation (integral gain K I ) by determining whether the vehicle is accelerating or decelerating. Specifically, when accelerating, the gain K I of the integral compensation is made smaller than the reference value. When decelerating, the integral gain is made larger than that during acceleration at the same vehicle speed V. The "reference value" is a value appropriately and independently determined by design. The feedback gain changing unit 14 includes an acceleration / deceleration determination unit 14a that determines whether the vehicle 1 is accelerating or decelerating. The acceleration / deceleration determination unit 14a determines whether the vehicle is accelerating or decelerating based on, for example, the positive / negative acceleration signal of an acceleration sensor (not shown).
 <作用および効果>
 低速走行時は、スリップ制御装置11に車輪回転速度ωとして入力される車輪回転速度センサ7の単位時間当たりのパルス数が減少することなどから、車輪回転速度ωの測定精度が悪化する。そのため、車輪回転速度偏差Δωの変動が大きくなる。ここで、フィードバック制御における微分補償、および比例補償は、車輪回転速度偏差Δωの変動によって振動的になりやすい。微分補償は、車輪回転速度偏差Δωを微分するため振動を増幅させてしまう。比例補償も車輪回転速度偏差Δωの変動をそのまま補償値に反映させてしまう。一方積分補償は、車輪回転速度偏差Δωが変動しても振動的になり難い。積分補償は、車輪回転速度偏差Δωを積分するため、車輪回転速度偏差Δωの変動の影響を小さくする。そこで、低速走行時は、振動を発生させやすい比例補償ゲインKおよび微分補償ゲインKを低下させるか、または零にして比例補償および微分補償を無効化する。これにより、低速時に車輪回転速度ωの測定精度が悪化しても安定したスリップ制御を行うことができ、車両挙動が乱れることを防止できる。
<Action and effect>
During low-speed traveling, the number of pulses per unit time of the wheel rotational speed sensor 7 input to the slip control device 11 as the wheel rotational speed ω decreases, and the measurement accuracy of the wheel rotational speed ω deteriorates. Therefore, the fluctuation of the wheel rotational speed deviation Δω becomes large. Here, differential compensation in feedback control and proportional compensation are likely to become oscillatory due to fluctuations in the wheel rotational speed deviation Δω. Differential compensation amplifies the vibration to differentiate the wheel rotational speed deviation Δω. The proportional compensation also reflects the fluctuation of the wheel rotational speed deviation Δω as it is to the compensation value. On the other hand, integral compensation is less likely to become oscillatory even if the wheel rotational speed deviation Δω changes. The integral compensation integrates the wheel rotational speed deviation Δω, thereby reducing the influence of the fluctuation of the wheel rotational speed deviation Δω. Therefore, at the time of low speed traveling, the proportional compensation gain K P and the differential compensation gain K D which easily cause vibration are reduced or made zero to invalidate the proportional compensation and the differential compensation. As a result, stable slip control can be performed even when the measurement accuracy of the wheel rotation speed ω deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
 積分補償のゲインKの影響については、車両1が加速しているかまたは減速しているかによって異なる。そこで、フィードバックゲイン変更部14は、車両1が加速しているかまたは減速しているかを判断し、加速しているときは積分補償ゲインKを基準値よりも小さくする。加速している時は、積分補償ゲインKを基準値よりも小さくすることで、振動を抑制しつつスリップ制御を行うことができる。これにより、スリップ制御の応答性が低下するが、低速走行時には応答性が下がっても車両挙動が乱れにくいため問題とならない。 The influence of the gain K I of the integral compensation differs depending on whether the vehicle 1 is accelerating or decelerating. Therefore, the feedback gain changing unit 14 determines whether the vehicle 1 is accelerating or decelerating, and makes the integral compensation gain K I smaller than the reference value when accelerating. During acceleration, slip control can be performed while suppressing vibration by making the integral compensation gain K I smaller than the reference value. As a result, the responsiveness of the slip control is reduced, but this is not a problem because the behavior of the vehicle is less likely to be disturbed even if the responsiveness is reduced at low speed traveling.
 車両が減速している時は、フィードバックゲイン変更部14は、同じ車速Vにおける加速時よりも積分ゲインKを大きくする。減速時は、低速まで車両が減速するまでの間に車輪回転速度偏差Δωの積分値が大きくなっている。そのため、低速走行時に車輪回転速度ωの測定値が変動しても、積分補償の値に与える影響は微小となる。したがって、加速時よりも積分ゲインKを大きくしても、振動が発生しにくい。加速時よりも積分ゲインKを大きくすることで、より応答性良くフィードバック制御を行うことができる。応答性良くフィードバック制御ができると、車輪のロックを防ぎ車両挙動が乱れることを防止できる。なお、加速時と減速時のゲインの変更方法において、いずれかひとつのゲインを変更してもよく、変更しないゲインがあってもよい(図11参照)。 When the vehicle is decelerating, the feedback gain changing unit 14 makes the integral gain K I larger than when accelerating at the same vehicle speed V. At the time of deceleration, the integral value of the wheel rotational speed deviation Δω is large until the vehicle is decelerated to low speed. Therefore, even if the measured value of the wheel rotation speed ω fluctuates at low speed traveling, the influence on the value of the integral compensation becomes small. Therefore, even if the integral gain K I is made larger than at the time of acceleration, vibrations are less likely to occur. By making the integral gain K I larger than that during acceleration, feedback control can be performed with better responsiveness. If feedback control can be performed with high responsiveness, it is possible to prevent locking of the wheels and to prevent disturbance of the vehicle behavior. In addition, in the method of changing the gain at the time of acceleration and at the time of deceleration, any one gain may be changed, or there may be a gain not to be changed (see FIG. 11).
 上記のように、車速Vに応じてフィードバック制御における各ゲインK,K,Kを変化させ、更に車両1が加速しているかまたは減速しているかを判断し、加速時と減速時でゲインKの低下方法を異なるものとすることで、低速時に車輪回転速度ωの測定精度が悪化しても安定したスリップ制御を行うことができ、車両挙動が乱れることを防止できる。 As described above, each gain K P , K I , K D in feedback control is changed according to the vehicle speed V, and it is further determined whether the vehicle 1 is accelerating or decelerating. By making the method of reducing the gain K I different, stable slip control can be performed even if the measurement accuracy of the wheel rotation speed ω deteriorates at low speed, and the vehicle behavior can be prevented from being disturbed.
 また、この実施形態は、4輪の各駆動輪2を独立に制御できる車両1に適用しており、個々の駆動輪2のスリップ制御を独立に行えるため、スリップ制御効果がより効果的に得られる。なお、作用の詳細については低下後と同様であり、第2の実施形態において説明する。 Moreover, this embodiment is applied to the vehicle 1 which can control each drive wheel 2 of four wheels independently, and since slip control of each drive wheel 2 can be performed independently, a slip control effect is acquired more effectively. Be The details of the operation are the same as those after the decrease and will be described in the second embodiment.
 <<第2の実施形態に係るスリップ制御装置>>
 この発明の第2の実施形態につき、図3ないし図7と共に説明する。この実施形態において、特に説明する事項の他は、第1の実施形態と同様である。
<< Slip Control Device According to Second Embodiment >>
A second embodiment of the present invention will be described in conjunction with FIGS. 3 to 7. This embodiment is the same as the first embodiment, except for items specifically described.
 この実施形態は、図1と共に前述した車両1において、スリップ制御装置11が第1の実施形態とは異なる。図3に示すように、この実施形態に係るスリップ制御装置11は、スリップ率計算部21、スリップ率偏差計算部22と、フィードバックゲイン変更部14Aと、制御器15Aと、制駆動指令値計算部16Aとを備える。 This embodiment differs from the first embodiment in the slip control device 11 in the vehicle 1 described above with FIG. As shown in FIG. 3, the slip control device 11 according to this embodiment includes a slip ratio calculating unit 21, a slip ratio deviation calculating unit 22, a feedback gain changing unit 14A, a controller 15A, and a braking / driving command value calculating unit. And 16A.
 スリップ率計算部21は、スリップ率λを、車輪回転速度ω、車速V、ヨーレートγとハンドル角δを用いて次の式(5)~(10)により算出する。 Slip rate calculating section 21, a slip ratio lambda, the wheel rotation speed omega, the vehicle speed V, the using yaw rate γ and the steering wheel angle [delta] h is calculated by the following equation (5) to (10).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、Rはタイヤ半径、βは車両重心点での横滑り角、dは前輪トレッド、dは後輪トレッド、lは重心位置から前輪車輪位置までの距離である。また、V、δ、ωの添字は、いずれの車輪についての車速V,ハンドル角δ、または車輪回転速度ωであるかを示しており、具体的には、FLは左前輪、FRは右前輪、RLは左後輪、RRは右後輪を示す。スリップ率λは駆動輪2の滑り度合いを表しており、グリップ状態ではλ=0、ロック時はλ>0、ホイルスピン時はλ<0とする。 Here, R 0 is a tire radius, β is a side slip angle at the vehicle center of gravity, d f is a front wheel tread, d r is a rear wheel tread, and l f is a distance from the center of gravity position to the front wheel position. The subscripts of V, δ and ω indicate which wheel the vehicle speed V, the steering wheel angle δ h or the wheel rotational speed ω is. Specifically, FL is the left front wheel, and FR is the right. The front wheel, RL is a left rear wheel, and RR is a right rear wheel. The slip ratio λ represents the degree of slip of the drive wheel 2, and λ = 0 in the grip state, λ> 0 in the locked state, and λ <0 in the wheel spin.
 車速Vは、車速検出手段17により検出される。ハンドル角δは、ステアリングハンドル(図示せず)の中立位置からの操舵角度であり、ハンドル角測定手段18で測定される。ヨーレートγは、ヨーレート測定手段19で測定される。車輪回転速度ωは、前記車輪回転速度センサ7(図1参照)により検出されて前記モータコントローラ10から転送される。 The vehicle speed V is detected by the vehicle speed detection means 17. The steering wheel angle [delta] h is the steering angle from the neutral position of the steering wheel (not shown), is measured by the steering wheel angle measuring means 18. The yaw rate γ is measured by the yaw rate measuring means 19. The wheel rotational speed ω is detected by the wheel rotational speed sensor 7 (see FIG. 1) and transferred from the motor controller 10.
 スリップ率偏差計算部22は、スリップ率許容値λ′(上限値(>0)または下限値(<0))に対するスリップ率λの偏差、つまりスリップ率偏差Δλ(実際のスリップ率λのスリップ率許容値からのずれ)を計算する。スリップ率許容値λ′は、シミュレーション等に基づく設計により適宜に定められる。 Slip ratio deviation calculation unit 22 is a deviation of slip ratio λ from slip ratio allowable value λ ′ (upper limit (> 0) or lower limit (<0)), that is, slip ratio deviation Δλ (actual slip ratio λ slip ratio Calculate the deviation from the tolerance value). The slip ratio allowable value λ 'is appropriately determined by design based on simulation and the like.
 制御器15Aは、各駆動輪2のスリップ率λを監視し、スリップ率λがスリップ率許容値λ′(上限値(>0)または下限値(<0))を超えた場合に、スリップ率偏差Δλに対するPID演算を行い、フィードバック演算値KPIDを得る。 The controller 15A monitors the slip ratio λ of each drive wheel 2, and when the slip ratio λ exceeds the slip ratio allowable value λ ′ (upper limit (> 0) or lower limit (<0)), the slip ratio A PID operation is performed on the deviation Δλ to obtain a feedback operation value K PID .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
ここで、K,K,Kは、それぞれ比例ゲイン、積分ゲイン、微分ゲインである。本実施例では、比例補償、積分補償、微分補償のすべてを行うフィードバック制御を例に示すが、比例補償と積分補償を行うフィードバック制御、あるいは積分補償と微分補償を行うフィードバック制御に適用してもよい。 Here, K P , K I and K D are proportional gain, integral gain and differential gain, respectively. In this embodiment, feedback control for performing all of proportional compensation, integral compensation, and differential compensation is shown as an example, but it is also applicable to feedback control for performing proportional compensation and integral compensation or feedback control for performing integral compensation and differential compensation. Good.
 加速/減速判断部14aは、車両1が加速しているかまたは減速しているかを判断する。加速/減速判断部14aは、例えば、加速度センサ(図示せず)の前後加速度信号の正負によって、車両が加速しているかまたは減速しているかを判断する。加速/減速判断部14aは、フィードバックゲイン変更部14Aの一部として設けられている。 The acceleration / deceleration determination unit 14a determines whether the vehicle 1 is accelerating or decelerating. The acceleration / deceleration determining unit 14a determines, for example, whether the vehicle is accelerating or decelerating based on whether the longitudinal acceleration signal of the acceleration sensor (not shown) is positive or negative. The acceleration / deceleration determination unit 14a is provided as a part of the feedback gain change unit 14A.
 フィードバックゲイン変更部14Aは、前述した比例ゲインK、積分ゲインK、および微分ゲインKを、車速Vに応じて求める。 The feedback gain changing unit 14A obtains the proportional gain K P , the integral gain K I , and the differential gain K D described above according to the vehicle speed V.
 フィードバックゲイン変更部14Aは、前記制御器15Aが用いる前記比例補償、積分補償、および微分補償それぞれの前記ゲインK,K,Kを変更する手段であり、車速Vがゲイン毎に定められたしきい値Vth_P、Vth_I、Vth_D以下のときに、前記比例補償、積分補償、および微分補償それぞれの前記ゲインK,K,Kを低下させ、積分補償のゲインKの低下前の大きさに対する低下後の大きさの割合を、比例補償および微分補償それぞれのゲインK,Kの低下前の大きさに対する低下後の大きさの割合よりも大きくする。低下前の各ゲインの大きさをそれぞれKB_P,KB_I,KB_Dとし、低下後の大きさの割合をαとすると、各ゲインのαは式(12)~(14)となる。
    α=K / KB_P  (12)
    α=K / KB_I  (13)
    α=K / KB_D  (14)
 フィードバックゲイン変更部14Aは、αとαの値をαよりも小さくする。例えば、フィードバックゲイン変更部14Aは、比例補償および微分補償それぞれのゲインK,Kを零に変更する。比例補償および微分補償それぞれのゲインK,Kは、必ずしも零まで低下させなくてもよく、零に近い値としてもよい。
The feedback gain changing unit 14A is a means for changing the gains K P , K I and K D of the proportional compensation, integral compensation and differential compensation used by the controller 15A, and the vehicle speed V is determined for each gain. When the threshold values V th _ P , V th _ I and V th _ D are below, the gains K P , K I and K D of the proportional compensation, the integral compensation and the differential compensation are reduced, respectively, and the gain K I of the integral compensation is reduced. The ratio of the size after reduction to the size before reduction is made larger than the ratio of the size after reduction to the size before reduction of gains K P and K D of proportional compensation and differential compensation, respectively. Assuming that the size of each gain before reduction is K B — P , K B — I , and K B — D, and the ratio of the size after reduction is α, α of each gain is expressed by Equations (12) to (14).
α P = K P / K B_P (12)
α I = K I / K B_I (13)
α D = K D / K B_D (14)
Feedback gain changing unit 14A is the value of alpha P and alpha D smaller than alpha I. For example, the feedback gain changing unit 14A changes the gains K P and K D of each of the proportional compensation and the differential compensation to zero. The gains K P and K D of the proportional compensation and the differential compensation may not necessarily be reduced to zero, but may be values close to zero.
 一例を挙げると、前記フィードバックゲイン変更部14Aは、
  比例ゲインKを1000から0に変化させ、このとき、変化後の大きさの割合αは0%であり、
  積分ゲインKを10から2に変化させ、このとき、変化後の大きさの割合αは20%であり、
  微分ゲインKを100から0に変化させ、このとき、変化後の大きさの割合αは0%である。この例ではαとαの両方を零にしたが、αとαの値がαよりも小さければよく、αとαが異なる値となるようにK、Kを変更してもよい。
As an example, the feedback gain changing unit 14A
The proportional gain K P is changed from 1000 to 0, and at this time, the ratio α P of the size after change is 0%,
The integral gain K I is changed from 10 to 2, and at this time, the ratio α I of the size after the change is 20%,
The derivative gain K D is changed from 0 to 100, this time, the ratio alpha D size after the change is 0%. In this example was zero both alpha P and alpha D, alpha P and alpha value of D is may be smaller than α I, α P and alpha D so that different values K P, a K D You may change it.
 フィードバックゲイン変更部14は、積分補償のゲイン(積分ゲインK)については、車両1が加速しているかまたは減速しているかを判断して変更する。具体的には、加速しているときは積分補償のゲインKを基準値よりも小さくする。減速しているときは、同じ車速Vにおける加速時よりも積分ゲインを大きくする。また、減速時は積分ゲインの値を必ずしも低下させる必要はなく、基準値のままとしてもよい。前記「基準値」は、設計により適宜に定められる値である。 The feedback gain changing unit 14 changes the gain of the integral compensation (integral gain K I ) by determining whether the vehicle 1 is accelerating or decelerating. Specifically, when accelerating, the gain K I of the integral compensation is made smaller than the reference value. When decelerating, the integral gain is made larger than that during acceleration at the same vehicle speed V. Further, at the time of deceleration, the value of the integral gain does not necessarily have to be reduced, and may be kept at the reference value. The “reference value” is a value appropriately determined by design.
 制駆動指令値計算部16Aは、上位ECU8が指令した制駆動指令値に制御器15Aが算出したフィードバック演算値KPIDを加算することで、出力する制駆動指令値を取得する。この例では、上位ECU8が指令する制駆動指令値はトルク指令値であり、フィードバック演算値KPIDもトルク値である。したがってこの例では、制駆動指令値計算部16Aは、トルク指令値計算部である。トルク指令値が負の場合、すなわち回生ブレーキをかけている場合は回生ブレーキを緩めるような調整後トルク指令値、かつ、トルク指令値が正の場合は駆動トルクを緩めるような調整後トルク指令値を算出する。これにより、スリップ率λがスリップ率許容値λ′以下になるように前記駆動輪2のトルク指令値が制御され、駆動輪2のロックまたはスピンを抑制できる。 Braking drive command value calculation unit 16A, by adding the feedback calculation value K PID to the controller 15A has been calculated braking driving command value higher ECU8 is commanded to acquire a braking drive command value to be output. In this example, the braking / driving command value commanded by the host ECU 8 is a torque command value, and the feedback operation value K PID is also a torque value. Therefore, in this example, the braking / driving command value calculation unit 16A is a torque command value calculation unit. If the torque command value is negative, that is, if the regenerative brake is applied, the adjusted torque command value that loosens the regenerative brake, and if the torque command value is positive, the adjusted torque command value that loosens the driving torque Calculate As a result, the torque command value of the drive wheel 2 is controlled so that the slip rate λ becomes equal to or less than the slip rate allowable value λ ′, and locking or spin of the drive wheel 2 can be suppressed.
<作用および効果>
 前述したように、制御器15Aは、比例補償と、積分補償および/または微分補償とを備える。ここで、低速走行時は車輪回転速度ωの測定精度が悪化するため、スリップ率λの変動が大きくなる。スリップ率λの変動によってスリップ率偏差Δλにも変動が生じる。変動が生じたスリップ率偏差Δλが制御器15Aに入力されると、微分補償が最も振動の原因となりやすく、次に比例補償が振動の原因となる。一方積分補償は振動の原因となりにくい。微分補償はスリップ率偏差を微分するため振動を増幅させてしまう。比例補償はスリップ率偏差Δλの変動をそのまま補償値に反映させてしまう。一方、積分補償はスリップ率偏差を積分するため、測定値の変動の影響を小さくする。
<Action and effect>
As described above, the controller 15A includes proportional compensation and integral compensation and / or differential compensation. Here, at the time of low speed traveling, the measurement accuracy of the wheel rotation speed ω is deteriorated, so that the fluctuation of the slip ratio λ becomes large. Due to the fluctuation of the slip ratio λ, the slip ratio deviation Δλ also changes. When slip ratio deviation Δλ in which fluctuation occurs is input to the controller 15A, differential compensation is the most likely to be the cause of vibration, and next proportional compensation is the cause of the vibration. On the other hand, integral compensation is less likely to cause vibration. The differential compensation amplifies the vibration because it differentiates the slip ratio deviation. Proportional compensation reflects the fluctuation of slip ratio deviation Δλ as it is on the compensation value. On the other hand, integral compensation integrates the slip ratio deviation, thereby reducing the influence of fluctuations in the measured value.
 上記の理由から、振動の原因となりやすい比例補償もしくは微分補償、またはこれら両方を低速走行時に弱めるかもしくは無効化する。例えば、車速0km/hで比例ゲインKと微分ゲインKをα0_P、α0_Dとなるようにそれぞれ設定する。このとき、α0_Pもしくはα0_Dを零とすれば、比例補償もしくは微分補償を無効化できる。これら2つのゲインKおよびKは、図4に示すように車速0~Vth_P、Vth_Dkm/hにて値を連続的(図示の例では車速に対して線形)に変化させる。Vth_P、Vth_Dはそれぞれ車速に対するゲインのしきい値であり、10~15km/h、例えばVth_P=12km/h、Vth_D=15km/hに設定される。この例ではVth_P≠Vth_Dとしたが、Vth_PとVth_Dを同じ値としてもよい。図4では積分補償も同様に車速0~Vth_Ikm/hにて値を連続的に変化させる。このとき、必ずα≧α、かつα≧αとなるように値を変化させる。Vth_Iは、Vth_I≦Vth_P、かつVth_I≦Vth_Dとなるように設定する必要があるため、例えば10km/hとする。この例では、Vth_IをVth_P、Vth_Dと異なる値としたが、Vth_I=Vth_P、またはVth_I=Vth_Dとなるように設定してもよい。例えば、Vth_I=Vth_P≦Vth_Dのように微分補償のみ車速のしきい値を大きくしてもよい。 For the above reasons, proportional compensation or differential compensation, which is a cause of vibration, or both of them are weakened or canceled at low speeds. For example, the proportional gain K P and the differential gain K D are respectively set to α 0 _P and α 0 _D at a vehicle speed of 0 km / h. At this time, by setting α 0 — P or α 0 — D to zero, proportional compensation or differential compensation can be invalidated. These two gains K P and K D change their values continuously (linearly with respect to the vehicle speed in the illustrated example) at vehicle speeds of 0 to V thP and V thD km / h as shown in FIG. V th — P and V th — D are threshold values of gain with respect to the vehicle speed, and are set to 10 to 15 km / h, for example, V thP = 12 km / h and V thD = 15 km / h. In this example, V th_P ≠ V th_D is used, but V th_P and V th_D may have the same value. In FIG. 4, the integral compensation also changes the value continuously at vehicle speeds of 0 to V th_I km / h. In this case, always alpha I ≧ alpha P, and changing the value such that α I ≧ α D. V Th_I, since it is necessary to set so that V th_IV th_P and V th_IV th_D,, for example, 10 km / h. In this example, V th_I the V Th_P, was a value different from the V Th_d, may be set so that V th_I = V th_P or V th_I = V th_D,. For example, the threshold value of the vehicle speed may be increased only for differential compensation, such as V th — I = V thP ≦ V th — D.
 このとき、図5のように、α0_P、α0_Dの大小関係は車速によって入れ替わってもよい。積分ゲインKは、図4と同様に常にα≧α、かつα≧αとなるように値を変化させる。図4と図5の実施例では各ゲインを線形に変化させているが、この限りではない。α≧α、かつα≧αの関係が満たされるならば非線形に変化させてもよい。また、図6のように、0<V<Vthを設定し、V~Vth km/hにて値を連続的に変化させ、0~V km/hまではVkm/hで設定されるαの値を維持してもよい。α0_P、α0_Dは、図7のようにα=0を維持してもよい。αは、零に限らず、零に近い値であってもよい。また、加速/減速判断部の判断から、加速時と減速時でゲインの変化を異なるものとする。 At this time, as shown in FIG. 5, the magnitude relationship between α 0 _P and α 0 _D may be switched depending on the vehicle speed. Integral gain K I is always in the same manner as FIG. 4 α I ≧ α P, and changing the value such that α I ≧ α D. In the embodiments of FIGS. 4 and 5, each gain is linearly changed, but the present invention is not limited to this. α I ≧ α P, and may be changed non-linearly if the relationship α I ≧ α D is satisfied. Further, as shown in FIG. 6, 0 <V 0 <Set V th, V 0 ~ V th km / h continuously changed value at, 0 ~ V 0 km / h to the V 0 miles / The value of α set by h may be maintained. α 0 — P and α 0 — D may maintain α = 0 as shown in FIG. α is not limited to zero but may be a value close to zero. Further, based on the judgment of the acceleration / deceleration judgment unit, it is assumed that changes in gain are different between acceleration and deceleration.
 加速時には、積分補償のゲイン(積分ゲインK)は、例えば、図9のように車速Vkm/hで基準値(例えば15km/h以上のゲイン)の1/4とし、車速Vが上昇するにつれて連続的(図示の例では車速に対して線形)にゲインKを変化させる。 During acceleration, the gain of integral compensation (integral gain K I ) is, for example, one-fourth of the reference value (for example, gain of 15 km / h or more) at vehicle speed V 0 km / h as shown in FIG. As it is done, the gain K I is changed continuously (linear to the vehicle speed in the illustrated example).
 このとき、比例ゲインKや微分ゲインKとは異なり、車速Vkm/hで積分ゲインKを0としない。積分ゲインも0にしてしまうと、スリップ制御が作動しなくなるからである。 At this time, unlike the proportional gain K P and the derivative gain K D , the integral gain K I is not set to 0 at the vehicle speed V 0 km / h. This is because slip control does not operate if the integral gain is also set to zero.
 図8に加速時の車速V、車輪速、スリップ制御とスリップ率偏差(つまり比例補償値)、積分補償値、微分補償値を時系列で示す。上記のように低速走行中、加速時のゲインを設定することで、振動を抑制しつつスリップ制御を行うことができる。またスリップ制御の応答性が低下するが、例えば15km/h以下のような低速走行時にはスリップ制御の応答性が低下しても車両挙動が乱れにくいため問題とならない。 FIG. 8 shows vehicle speed V during acceleration, wheel speed, slip control and slip ratio deviation (that is, proportional compensation value), integral compensation value, and differential compensation value in time series. As described above, by setting the gain at the time of acceleration while traveling at low speed, it is possible to perform slip control while suppressing vibration. In addition, although the responsiveness of the slip control is reduced, for example, when the vehicle is traveling at a low speed such as 15 km / h or less, even if the responsiveness of the slip control is reduced, the vehicle behavior is not easily disturbed.
 減速時には、以下の式(14)を満たすようにいずれかもしくは複数のゲインを変更する。
 α/α ≧ α’/α’ かつ α/α ≧ α’/α’   (14)
ここで、減速時の、各ゲインの低下後割合(低下前の大きさに対する低下後の割合)をそれぞれα’、α’、α’とする。すなわち、加速時と減速時で積分補償のゲインの前記割合を比較した場合には、減速時の方が加速時よりもゲインの前記割合を大きくする。例えば、図9のように、加速時の車速閾値Vth_Iよりも小さい値となる車速閾値Vth_I’を設定し、0~Vth_I km/hにて値を変化させる。加速時と減速時で積分補償のゲインの前記低下後割合α、α’を比較した場合は、同図のように加速時の方を小さくする方がより効果的である。一方、比例補償もしくは微分補償のゲインの前記割合を比較した場合には、減速時の方が加速時よりもゲインの前記割合を小さくする。例えば図10のように、加速時の車速のしきい値V、Vthと異なる減速時の車速のしきい値V’、Vth’を、V<V’<Vth<Vth’となるように設定し、V’~Vth’km/hにて値を連続的に変化させてもよい。
At the time of deceleration, one or more gains are changed to satisfy the following equation (14).
α P / α I αα P '/ α I ' and α D / α I α α D '/ α I ' (14)
Here, it is assumed that the post-drop ratio of each gain (the ratio after the drop to the size before the drop) at the time of deceleration is α P ′, α P ′, and α D ′, respectively. That is, when the ratio of the integral compensation gain is compared between the acceleration and the deceleration, the ratio of the gain is larger at the deceleration than at the acceleration. For example, as shown in FIG. 9, a vehicle speed threshold V th_I ′ which is smaller than the vehicle speed threshold V th_I during acceleration is set, and the value is changed in the range of 0 to V th_I km / h. When the after-reduction rates α I and α I ′ of the integral compensation gain are compared between acceleration and deceleration, it is more effective to reduce the acceleration as shown in FIG. On the other hand, when the ratio of the gains of proportional compensation or differential compensation is compared, the ratio of gain is made smaller at the time of deceleration than at the time of acceleration. As shown in FIG. 10, for example, the threshold V 0 which vehicle speed when accelerating, V th different deceleration threshold V 0 which vehicle speed ', V th' the, V 0 <V 0 '< V th <V It may be set to be th ′ and the value may be changed continuously between V 0 ′ and V th ′ km / h.
 加速時と減速時で比例補償、微分補償のゲインの前記低下後割合α、α’、α、α’、α’を比較した場合には、同図のように減速時の方が小さくする方が効果的である。ここで、図10の例では比例ゲインと微分ゲインを同時に変化させたが、別々に変化させてもよい。また、図11に示すように加速時と減速時で、例えば微分ゲインのみゲインの変更方法を変えなくてもよい。上記のように加速時と減速時でゲインの変化方法を変更することで、より安定したフィードバック制御が可能となる。 As shown in the figure, when proportional ratios after acceleration / deceleration are compared for the proportional compensation and differential compensation gains after the reductions α P , α P ', α D , α D ' and α I '. It is more effective to make it smaller. Here, although the proportional gain and the derivative gain are simultaneously changed in the example of FIG. 10, they may be changed separately. Further, as shown in FIG. 11, it is not necessary to change the method of changing the gain only at the time of acceleration and at the time of deceleration, for example. As described above, by changing the method of changing the gain at the time of acceleration and at the time of deceleration, more stable feedback control becomes possible.
 図11に減速時の車速V、車輪速、スリップ制御とスリップ率偏差(つまり比例補償値)、積分補償値、微分補償値を時系列で示す。上記のように低速走行時、減速時のゲインを設定することで、振動を抑制しつつスリップ制御を行うことができる。更に、加速時よりも積分ゲインを大きく設定できるためスリップ制御の応答性も確保することができ、車両挙動が乱れにくい。 FIG. 11 shows vehicle speed V during deceleration, wheel speed, slip control and slip ratio deviation (that is, proportional compensation value), integral compensation value, and differential compensation value in time series. As described above, slip control can be performed while suppressing vibration by setting the gain at the time of low speed traveling and deceleration. Furthermore, since the integral gain can be set larger than at the time of acceleration, the responsiveness of slip control can be secured, and the vehicle behavior is less likely to be disturbed.
 このように、この実施形態のスリップ制御装置11によれば、車速Vに応じてフィードバック制御における各ゲインK,K,Kを変化させ、更に車両が加速しているかまたは減速しているかを判断し、加速時と減速時でゲインKの変化を異なるものとすることで、低速時に車輪回転速度ωの測定精度が悪化しても安定したスリップ制御を行うことができ、車両挙動が乱れることを防止することができる。 As described above, according to the slip control device 11 of this embodiment, each gain K P , K I , K D in feedback control is changed according to the vehicle speed V, and is the vehicle accelerated or decelerated? By making the change in gain K I different between acceleration and deceleration, stable slip control can be performed even if the measurement accuracy of wheel rotational speed ω deteriorates at low speed, and vehicle behavior is It can prevent disorder.
 なお、第2の実施形態につき説明した各事項は、偏差につき、第2の実施形態では車輪回転速度ωと車速Vとを用いて算出されるスリップ率λとスリップ率許容値λ′との偏差Δλを用いているのに対して、第1の実施形態では車輪回転速度ωと許容回転速度ω′との偏差Δωを用いていることを除き、第1の実施形態にそのまま適用することができる。また、前記偏差につき異なる点を除いて、第1の実施形態につき説明した事項は、第2の実施形態にそのまま適用することができる。 Each item described in the second embodiment is the deviation between the slip ratio λ and the slip ratio allowable value λ ′ calculated using the wheel rotational speed ω and the vehicle speed V in the second embodiment. While Δλ is used, the first embodiment can be applied to the first embodiment as it is, except that the deviation Δω between the wheel rotation speed ω and the allowable rotation speed ω ′ is used. . The matters described in the first embodiment can be applied to the second embodiment as it is, except for the difference in the deviation.
 なお、前記各実施形態は、4輪にインホイールモータ駆動装置3を用いた車両1に適用した場合につき説明したが、この発明は、オンボード型の4輪独立駆動車や、左右輪独立駆動型の2輪駆動車、1モータ型等の車両に適用することができる。 Although each of the above embodiments has been described in the case where the invention is applied to a vehicle 1 using the in-wheel motor drive device 3 for four wheels, the present invention relates to an on-board four-wheel independent drive vehicle and left and right wheel independent drive The present invention can be applied to vehicles such as two-wheel drive vehicles of one type and one motor type.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all the modifications within the meaning and scope equivalent to the claims.
4…電動機
7…車輪回転速度センサ
11…スリップ制御装置
14、14A…フィードバックゲイン変更部
17…車速検出手段
V…車速
λ…スリップ率
λ′…スリップ率許容値
Δλ…スリップ率偏差
ω…車輪回転速度
ω′…許容回転速度
Δω…車輪回転速度偏差
PID…フィードバック演算値
Reference Signs List 4 motor 7 wheel rotational speed sensor 11 slip control device 14 14A feedback gain changing unit 17 vehicle speed detection means V vehicle speed λ slip ratio λ ′ slip ratio allowable value Δλ slip ratio deviation ω wheel rotation Speed ω '... Permissible rotation speed Δω ... Wheel rotational speed deviation K PID ... Feedback calculation value

Claims (8)

  1.  電動機の力行による加速と回生による減速が可能な車両に搭載され、車輪回転速度の許容車輪回転速度に対する車輪回転速度偏差を計算すると共に、比例補償を行う可変の比例ゲインおよび微分補償を行う可変の微分ゲインのうちの少なくとも一方のゲインと積分補償を行う可変の積分ゲインとを用いて前記車輪回転速度偏差からフィードバック演算値を取得し、入力された制駆動指令値を前記フィードバック演算値を用いて変更して前記電動機を駆動するスリップ制御装置であって、
     車速が所定のしきい値以下のときに、前記比例ゲインおよび微分ゲインのうち、前記フィードバック演算値の取得に用いるゲインが比例ゲインおよび微分ゲインの両方である場合はこれら両方のゲインまたはいずれか一方のゲインを低下させ、前記フィードバック演算値の取得に用いるゲインが比例ゲインおよび微分ゲインのいずれか一方である場合はその用いるゲインを低下させ、前記積分ゲインはそのまま維持させるかまたは低下させ、
     前記各ゲインの低下前の大きさに対する低下後の大きさの割合である低下後割合のうち、前記積分ゲインの前記低下後割合を最も大きくする、フィードバックゲイン変更部を備えた、スリップ制御装置。
    It is mounted on a vehicle that can be accelerated by motor powering and decelerated by regeneration, and it calculates the wheel rotational speed deviation of the wheel rotational speed from the allowable wheel rotational speed, and also performs variable compensation with proportional compensation and variable compensation with proportional compensation. A feedback operation value is obtained from the wheel rotational speed deviation using at least one of the differential gains and a variable integration gain that performs integration compensation, and the input braking / driving command value is used using the feedback operation value. It is a slip control device which changes and drives said electric motor,
    When the vehicle speed is less than a predetermined threshold value and the gain used to obtain the feedback calculation value is both a proportional gain and a differential gain, either one of the proportional gain and the derivative gain, or both of these gains. The gain is decreased, and if the gain used to acquire the feedback operation value is either a proportional gain or a differential gain, the gain used is decreased and the integral gain is maintained or reduced as it is,
    A slip control device, comprising: a feedback gain changing unit that maximizes the after-reduction ratio of the integral gain among the after-reduction ratio that is the ratio of the after-reduction size to the before-reduction size of each gain.
  2.  電動機の力行による加速と回生による減速が可能な車両に搭載され、車輪回転速度と車速とから算出されるスリップ率のスリップ率許容値に対するスリップ率偏差を計算すると共に、比例補償を行う可変の比例ゲインおよび微分補償を行う可変の微分ゲインのうちの少なくとも一方のゲインと積分補償を行う可変の積分ゲインとを用いて前記スリップ率偏差からフィードバック演算値を取得し、入力された制駆動指令値を前記フィードバック演算値を用いて変更して前記電動機を駆動するスリップ制御装置であって、
     車速が所定のしきい値以下のときに、前記比例ゲインおよび微分ゲインのうち、前記フィードバック演算値の取得に用いるゲインが比例ゲインおよび微分ゲインの両方である場合はこれら両方のゲインまたはいずれか一方のゲインを低下させ、前記フィードバック演算値の取得に用いるゲインが比例ゲインおよび微分ゲインのいずれか一方である場合はその用いるゲインを低下させ、前記積分ゲインはそのまま維持させるかまたは低下させ、
     前記各ゲインの低下前の大きさに対する低下後の大きさの割合である低下後割合のうち、前記積分ゲインの前記低下後割合を最も大きくする、フィードバックゲイン変更部を備えた、スリップ制御装置。
    A variable proportional unit that is mounted on a vehicle that can be accelerated by power running of an electric motor and decelerated by regeneration, calculates slip ratio deviation with respect to slip ratio allowable value of slip ratio calculated from wheel rotation speed and vehicle speed, and performs proportional compensation. The feedback calculation value is obtained from the slip ratio deviation using at least one of the gain and the variable differential gain that performs differential compensation and the variable integral gain that performs integral compensation, and the input control drive command value is A slip control device for driving the electric motor by changing using the feedback calculation value,
    When the vehicle speed is less than a predetermined threshold value and the gain used to obtain the feedback calculation value is both a proportional gain and a differential gain, either one of the proportional gain and the derivative gain, or both of these gains. The gain is decreased, and if the gain used to acquire the feedback operation value is either a proportional gain or a differential gain, the gain used is decreased and the integral gain is maintained or reduced as it is,
    A slip control device, comprising: a feedback gain changing unit that maximizes the after-reduction ratio of the integral gain among the after-reduction ratio that is the ratio of the after-reduction size to the before-reduction size of each gain.
  3.  請求項1に記載のスリップ制御装置において、前記フィードバックゲイン変更部は、車両が加速しているか減速しているかを判断し、加速時と減速時とで、前記比例ゲイン、積分ゲイン、および微分ゲインのいずれか一つまたは複数について、前記車速が前記しきい値以下のときに低下させる前記ゲインの低下の方法を異なるものとするスリップ制御装置。 The slip control device according to claim 1, wherein the feedback gain changing unit determines whether the vehicle is accelerating or decelerating, and the proportional gain, the integral gain, and the derivative gain at the time of acceleration and at the time of deceleration. The slip control device according to any one or more of the above, wherein the method of reducing the gain to be reduced when the vehicle speed is less than or equal to the threshold value is different.
  4.  請求項2に記載のスリップ制御装置において、前記フィードバックゲイン変更部は、車両が加速しているか減速しているかを判断し、加速時と減速時とで、前記比例ゲイン、積分ゲイン、および微分ゲインのいずれか一つまたは複数について、前記車速が前記しきい値以下のときに低下させる前記ゲインの低下の方法を異なるものとするスリップ制御装置。 The slip control device according to claim 2, wherein the feedback gain changing unit determines whether the vehicle is accelerating or decelerating, and the proportional gain, the integral gain, and the derivative gain at the time of acceleration and at the time of deceleration. The slip control device according to any one or more of the above, wherein the method of reducing the gain to be reduced when the vehicle speed is less than or equal to the threshold value is different.
  5.  請求項1または3に記載のスリップ制御装置において、さらに、
     定められた規則を適用して、スリップに影響する車両の因子の状態量の検出値から前記許容車輪回転速度を取得する許容回転速度取得部と、
     前記車輪回転速度偏差を計算する車輪回転速度偏差計算部と、
     前記積分補償と、比例補償および/または微分補償とをそれぞれ行う可変の各ゲインを用いて前記車輪回転速度偏差から前記フィードバック演算値を取得する制御器と、
     前記入力された制駆動指令値を前記フィードバック演算値を用いて変更して前記電動機のコントローラへ出力する制駆動指令値計算部とを備え、
     前記フィードバックゲイン変更部は、車両が減速しているときには、同じ車速における加速時よりも、比例ゲインもしくは微分ゲインの前記変化後割合を積分ゲインの前記低下後割合で除した値を小さくする、スリップ制御装置。
    In the slip control device according to claim 1 or 3, further,
    An allowable rotation speed acquisition unit that acquires the allowable wheel rotation speed from detection values of state quantities of factors of a vehicle that affect slip by applying a defined rule;
    A wheel rotation speed deviation calculation unit that calculates the wheel rotation speed deviation;
    A controller for obtaining the feedback calculation value from the wheel rotational speed deviation using variable gains respectively performing the integral compensation and proportional compensation and / or derivative compensation;
    And a braking / driving command value calculation unit that changes the input braking / driving command value using the feedback calculation value and outputs the same to the controller of the motor.
    The said feedback gain change part makes a value which divided the ratio after change of proportional gain or derivative gain by ratio after the fall of integral gain smaller than the time of acceleration in the same vehicle speed, when the vehicle is decelerating. Control device.
  6.  請求項2または4に記載のスリップ制御装置において、さらに、
     前記車輪回転速度と前記車速とからスリップ率を計算するスリップ率計算部と、
     前記スリップ率偏差を計算するスリップ率偏差計算部と、
     前記積分補償と、比例補償および/または微分補償とをそれぞれ行う可変の各ゲインを用いて前記スリップ率偏差から前記フィードバック演算値を取得する制御器と、
     前記入力された制駆動指令値を前記フィードバック演算値を用いて変更して前記電動機のコントローラへ出力する制駆動指令値計算部とを備え、
     前記フィードバックゲイン変更部は、車両が減速しているときには、同じ車速における加速時よりも、比例ゲインもしくは微分ゲインの前記変化後割合を積分ゲインの前記低下後割合で除した値を小さくする、スリップ制御装置。
    In the slip control device according to claim 2 or 4, further,
    A slip ratio calculation unit that calculates a slip ratio from the wheel rotational speed and the vehicle speed;
    A slip ratio deviation calculation unit that calculates the slip ratio deviation;
    A controller for acquiring the feedback calculation value from the slip ratio deviation using variable gains respectively performing the integral compensation and proportional compensation and / or derivative compensation;
    And a braking / driving command value calculation unit that changes the input braking / driving command value using the feedback calculation value and outputs the same to the controller of the motor.
    The said feedback gain change part makes a value which divided the ratio after change of proportional gain or derivative gain by ratio after the fall of integral gain smaller than the time of acceleration in the same vehicle speed, when the vehicle is decelerating. Control device.
  7.  請求項1ないし請求項6のいずれか1項に記載のスリップ制御装置において、前記フィードバックゲイン変更部は、車速が前記しきい値以下のときに、比例ゲインおよび微分ゲインのいずれか一方または両方を、零または零に近い値に変更するスリップ制御装置。 The slip control device according to any one of claims 1 to 6, wherein the feedback gain changing unit is configured to set one or both of a proportional gain and a differential gain when the vehicle speed is less than or equal to the threshold. A slip control device that changes the value to zero, or close to zero.
  8.  請求項1ないし請求項7のいずれか1項に記載のスリップ制御装置において、前記車両には複数の駆動輪が独立に制御可能に設けられ、前記電動機は、前記複数の駆動輪のうちの対応する駆動輪を駆動するように構成されている、スリップ制御装置。
     
    The slip control device according to any one of claims 1 to 7, wherein the vehicle is provided with a plurality of drive wheels independently and controllably, and the electric motor corresponds to one of the plurality of drive wheels. A slip control device configured to drive a drive wheel.
PCT/JP2018/033678 2017-09-13 2018-09-11 Slip control device WO2019054382A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017175418 2017-09-13
JP2017-175418 2017-09-13
JP2018-016389 2018-02-01
JP2018016389A JP7149713B2 (en) 2017-09-13 2018-02-01 slip control device

Publications (1)

Publication Number Publication Date
WO2019054382A1 true WO2019054382A1 (en) 2019-03-21

Family

ID=65688666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033678 WO2019054382A1 (en) 2017-09-13 2018-09-11 Slip control device

Country Status (2)

Country Link
CN (1) CN109484203B (en)
WO (1) WO2019054382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111824154A (en) * 2019-04-15 2020-10-27 比亚迪股份有限公司 Vehicle control method and device and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435442B (en) * 2019-08-19 2021-03-16 安徽江淮汽车集团股份有限公司 Control method and device for low-speed running jitter of pure electric truck

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022870A (en) * 2015-07-10 2017-01-26 Ntn株式会社 Slip control device
WO2017073184A1 (en) * 2015-10-26 2017-05-04 三菱電機株式会社 Vehicle-speed control device
JP2017093003A (en) * 2015-11-02 2017-05-25 Ntn株式会社 Slip control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850735B2 (en) * 2002-02-04 2006-11-29 株式会社ジェイテクト Electric power steering device
JP2016088155A (en) * 2014-10-30 2016-05-23 株式会社ジェイテクト Control device of electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022870A (en) * 2015-07-10 2017-01-26 Ntn株式会社 Slip control device
WO2017073184A1 (en) * 2015-10-26 2017-05-04 三菱電機株式会社 Vehicle-speed control device
JP2017093003A (en) * 2015-11-02 2017-05-25 Ntn株式会社 Slip control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111824154A (en) * 2019-04-15 2020-10-27 比亚迪股份有限公司 Vehicle control method and device and vehicle
CN111824154B (en) * 2019-04-15 2022-05-13 比亚迪股份有限公司 Vehicle control method and device and vehicle

Also Published As

Publication number Publication date
CN109484203B (en) 2023-07-11
CN109484203A (en) 2019-03-19

Similar Documents

Publication Publication Date Title
EP3190000B1 (en) Electronic stability control system for vehicle
US10967870B2 (en) Hill descent system for vehicle and control method thereof
KR100903665B1 (en) Motion control device for vehicle using information added acceleration
JP5800092B2 (en) Braking / driving force control device
US9889743B2 (en) Vehicle control device and vehicle control method
US10933875B2 (en) Vehicle turning control device
US10099559B2 (en) Vehicle control device of four-wheel independent drive vehicle for when one wheel is lost
US20150266487A1 (en) Centroid estimation device and centroid estimation method
JP5790883B2 (en) Braking / driving force control device
CN105377622A (en) Slip control device for electric vehicle
US20180304768A1 (en) Vehicle turning control device
KR20150062779A (en) Enhancement of cornering stability of direct-drive electric vehicle
WO2019054382A1 (en) Slip control device
JP2019155970A (en) Control device of vehicle and control method of vehicle
JP4862423B2 (en) Vehicle state estimation and control device
WO2021220693A1 (en) Control device for vehicle
JP7149713B2 (en) slip control device
JP2014040225A (en) Braking force control device
WO2021080011A1 (en) Control device
JP4835198B2 (en) Vehicle behavior control device
JP2016094139A (en) Vehicle speed estimation device of four-wheel drive vehicle and control device
JP6664885B2 (en) Vehicle braking / driving torque control device
JP7380911B2 (en) Vehicle control device
JP6679348B2 (en) Vehicle front-rear speed estimation device
JP2651937B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855631

Country of ref document: EP

Kind code of ref document: A1