WO2019054185A1 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
WO2019054185A1
WO2019054185A1 PCT/JP2018/032054 JP2018032054W WO2019054185A1 WO 2019054185 A1 WO2019054185 A1 WO 2019054185A1 JP 2018032054 W JP2018032054 W JP 2018032054W WO 2019054185 A1 WO2019054185 A1 WO 2019054185A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
combustion engine
internal combustion
disposed
timing control
Prior art date
Application number
PCT/JP2018/032054
Other languages
French (fr)
Japanese (ja)
Inventor
亮 田所
功 土井
山田 吉彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019541983A priority Critical patent/JP6808844B2/en
Publication of WO2019054185A1 publication Critical patent/WO2019054185A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a valve timing control device for an internal combustion engine that controls the opening and closing timing of an intake valve and an exhaust valve.
  • the reduction mechanism reduces the rotational speed of the electric motor integrally provided on the timing sprocket and transmits it to the camshaft. By this, the relative rotational phase of the camshaft with respect to the timing sprocket is converted.
  • the eccentric shaft portion of the speed reduction mechanism provided integrally with the motor output shaft of the electric motor may cause a shake during driving. If a shake occurs in the eccentric shaft portion, a relatively large clearance is provided between a plurality of internal teeth provided on the inner periphery of the internal gear forming portion of the reduction mechanism and a roller provided between the internal teeth. There may be an abnormal noise (interference sound).
  • One object of the present invention is to suppress the generation of abnormal noise of a speed reduction mechanism during driving.
  • the gear portion integrally formed on the outer periphery of the drive rotating body is disposed offset to the meshing portion side of the speed reduction mechanism than the first bearing on the camshaft side in the rotation axis direction of the drive rotating body. It is characterized by having done.
  • FIG. 1 is a longitudinal sectional view showing a valve timing control device for an internal combustion engine according to a first embodiment of the present invention. It is a disassembled perspective view which shows the main component in this embodiment. It is the sectional view on the AA line of FIG.
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 2 is a cross-sectional view taken along the line CC of FIG.
  • It is a top view which shows the unit of the motor output shaft and the iron core rotor which are provided to this embodiment.
  • It is the D section enlarged view of FIG.
  • valve timing control device for an internal combustion engine according to the present invention will be described based on the drawings.
  • the present invention is applied to the intake valve side of a four-cylinder internal combustion engine.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a valve timing control device for an internal combustion engine according to the present invention
  • FIG. 2 is an exploded perspective view showing main components in this embodiment
  • FIG. 3 is an AA of FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1
  • FIG. 5 is a cross-sectional view taken along the line CC of FIG.
  • This valve timing control device includes a timing sprocket 1 (hereinafter referred to as “sprocket 1”), which is a driving rotating body rotationally driven by a crankshaft of an internal combustion engine, and a bearing on a cylinder head 01.
  • sprocket 1 a timing sprocket 1
  • a camshaft 2 rotatably supported via a portion 02 and rotated by a rotational force transmitted from the sprocket 1, and a cover member 3 disposed at a position on one end side (forward side) of the sprocket 1 in the rotational axis direction
  • a phase change mechanism 4 disposed between the sprocket 1 and the camshaft 2 and changing the relative rotational phase of the two according to the engine operation state.
  • Sprocket 1 is formed in a cylindrical shape by a metal material, for example, iron-based metal, and is integrally provided on a sprocket main body 1a having an inner peripheral surface with a step diameter-like shape and the outer periphery of the sprocket main body 1a. , And a gear portion 1b receiving rotational force from the crankshaft via the chain 16).
  • a metal material for example, iron-based metal
  • a cylindrical internal tooth forming portion 5 which constitutes a part of a speed reducing mechanism 11 described later is integrally provided.
  • the gear portion 1 b is integrally provided not on the end of the sprocket main body 1 a on the camshaft 2 side of the timing sprocket 1 but on the end of the cover member 3 side. . That is, the gear portion 1b is conventionally provided on the outer periphery of the end portion of the sprocket main body 1a on the camshaft 2 side (dotted line in FIG. 1), but in the present embodiment, as shown by solid line in FIG. It is offset from the end position on the camshaft 2 side to the outer periphery of the end portion on the cover member 3 side.
  • a large diameter ball bearing 43 which is a first bearing, is interposed between the sprocket main body 1a and a driven member 9, which is a driven rotating body described later and fixed to the front end of the camshaft 2.
  • the sprocket 1 is supported on the camshaft 2 so as to be relatively rotatable by the large diameter ball bearing 43.
  • a plurality of (six in the present embodiment) bolt insertion holes 1c are formed through the outer peripheral portion of the sprocket main body 1a (the internal tooth forming portion 5) at substantially equally spaced positions in the circumferential direction.
  • the large diameter ball bearing 43 is composed of an outer ring 43a, an inner ring 43b, and a ball 43c interposed between the both rings 43a and 43b.
  • the outer ring 43a is fixed to the inner peripheral side of the sprocket main body 1a, whereas the inner ring 43b is fixed to the outer peripheral side of the driven member 9.
  • the internal gear forming portion 5 is formed in the same cylindrical shape as the inner and outer diameters of the sprocket main body 1a, and is integrally provided on the outer periphery of the front end portion on the cover member 3 side. A plurality of internal teeth 5a of a shape are formed.
  • a motor housing 12 described later is disposed to face in the axial direction.
  • six female screw holes 12e corresponding to the bolt insertion holes 1c are formed at equal intervals in the circumferential direction of the rear end portion on the internal tooth configuration portion 5 side.
  • annular holding plate 6 is disposed at a rear end portion of the sprocket body 1a on the opposite side (camshaft 2 side) to the internal tooth forming portion 5.
  • the holding plate 6 is integrally formed of a metal plate material, and as shown in FIG. 1, the outer diameter is set to be substantially the same as the outer diameter of the sprocket main body 1a.
  • the holding plate 6 is integrally provided with a stopper convex portion 6b projecting radially inward, that is, toward the central axis direction, at a predetermined position of the inner peripheral edge of the inner peripheral portion 6a.
  • the stopper convex portion 6b is formed in a substantially fan shape, and the tip end edge 6c is formed in an arc shape along the circular arc inner peripheral surface of the stopper concave portion 2c described later. Further, six bolt insertion holes 6 d are formed at equal intervals in the circumferential direction at positions corresponding to the bolt insertion holes 1 c of the sprocket body 1 a on the outer peripheral portion of the holding plate 6.
  • the holding plate 6 is positioned with respect to the sprocket main body 1 a via a pin 44 in the radial direction of the rotation shaft.
  • Sprocket main body 1a (internal tooth forming portion 5), holding plate 6 and motor housing 12 are connected from the rotational axis direction by six bolts 7 inserted and screwed into respective bolt insertion holes 1c and 6d and female screw holes 12e. ing.
  • the sprocket main body 1a and the internal gear forming portion 5 are configured as a casing of a speed reduction mechanism 11 described later.
  • the camshaft 2 is provided at its outer periphery with two oval drive cams that open the two intake valves per cylinder. Further, the cam shaft 2 is integrally provided with a flange portion 2 a at one end portion on the side of the cover member 3 in the rotational axis direction. Further, a disk-like convex portion 2b is integrally provided at the center of the front end surface of the flange portion 2a. The outer diameter of the convex portion 2 b is smaller than the outer diameter of the flange portion 2 a.
  • a bolt insertion hole is formed along the direction of the internal rotational axis from the front end face of the projection 2b, and a female screw hole 2f is formed on the tip end side of the bolt insertion hole.
  • the convex part 2b is engage
  • radial and axial positioning of the driven member 9 with respect to the camshaft 2 is performed.
  • the flange portion 2a is arranged such that the outer peripheral portion of the front end surface is in contact with the axial outer end surface of the inner ring 43b of the large diameter ball bearing 43 after assembling the respective components.
  • the flange portion 2a is coupled in the rotational axis direction by the axial force of the cam bolt 10 in a state where the convex portion 2b is axially fitted into the fitting hole 9d of the fixed end 9a.
  • the bottom surface of the fitting hole 9d is disposed at a position overlapping the large diameter ball bearing 43 in the radial direction of the rotation shaft of the sprocket main body 1a.
  • a stopper concave portion 2c in which the stopper convex portion 6b of the holding plate 6 is engaged is formed along the circumferential direction.
  • the stopper concave portion 2c is formed in an arc shape having a predetermined length in the circumferential direction, and both end edges of the stopper convex portion 6b rotated in the arc length range abut on the opposing edges 2d and 2e in the circumferential direction, respectively. It is supposed to be.
  • the relative rotational position of the camshaft 2 with respect to the sprocket 1 on the maximum advance side or the maximum retard side is mechanically restricted.
  • the cover member 3 is integrally formed in a cup shape by a metal material, for example, an aluminum alloy material, and is disposed so as to cover the front end of the motor housing 12.
  • the cover member 3 has a bulging cover main body 3a and an annular mounting flange 3b integrally formed on the outer peripheral edge on the opening side of the cover main body 3a.
  • the cover body 3a has a cylindrical wall 3c integrally provided on the outer peripheral side along the axial direction.
  • a part of a holding body 28 described later is fitted and held on the inner peripheral surface of the holding hole 3d formed inside.
  • the mounting flange 3b is provided with a plurality of (four in the present invention) boss portions 3e at substantially equally spaced positions (about 90 ° positions) in the circumferential direction on the outer peripheral portion.
  • Bolt insertion holes 3f are respectively formed through the bosses 3e.
  • bolts 63 screwed into respective female screw holes 49c formed in a plurality of bosses 49b formed at four places in the circumferential direction of an annular wall 49a formed in the chain case 49 are inserted. . Therefore, the cover member 3 is fixed to the chain case 49 by the bolts 63.
  • a large diameter oil seal 61 is interposed between the inner peripheral surface of the stepped portion on the outer peripheral side of the cover main body 3 a and the outer peripheral surface of the motor housing 12.
  • the large diameter oil seal 61 has a seal portion slidably in sliding contact with the outer peripheral surface of the motor housing 12 via a backup spring, and seals between the cover member 3 and the motor housing 12.
  • the chain case 49 is disposed and fixed along the vertical direction so as to cover the chain 16 wound around the gear portion 1b of the sprocket body 1a on the front end side of the cylinder head 01 and the cylinder block. .
  • the driven member 9 is integrally formed of, for example, an iron-based metal which is a metal material, and as shown in FIGS. 1 and 2, a disk-shaped fixed end 9a formed on the camshaft 2 side and the fixed end It is comprised from the cylindrical part 9b which protruded in the axial direction from the inner peripheral front end surface of the part 9a.
  • a disc-like fitting hole 9d is formed at the center of the rear end face on the camshaft 2 side.
  • the convex portion 2b of the camshaft 2 is fitted from the axial direction, and the bottom surface is pressed against the tip surface of the convex portion 2b from the axial direction by the axial force of the cam bolt 10.
  • the driven member 9 is integrally coupled to the camshaft 2.
  • a holder 41 which is a cylindrical holding member for holding a plurality of rollers 48 described later is integrally provided on the outer peripheral portion of the fixed end 9a.
  • an insertion hole 9c through which the shaft portion 10b of the cam bolt 10 is inserted is formed at the center.
  • a small diameter ball bearing 37 which is a second bearing
  • a needle bearing 38 which is a third bearing
  • the gear portion 1b disposed offset to the cover member 3 side of the sprocket main body 1a is placed between the large diameter ball bearing 43 as the first bearing and the small diameter ball bearing 37 as the second bearing. ing. Further, the gear portion 1 b is disposed at a position where it radially overlaps from the rotation axis of the sprocket 1 with respect to the internal teeth 5 a of the internal gear forming portion 5 and the needle bearing 38 which is the third bearing.
  • the end face of the head portion 10a on the side of the shaft portion 10b abuts and supports the inner ring of the small diameter ball bearing 37 from the axial direction.
  • a male screw portion 10 c screwed to the female screw hole 2 f of the camshaft 2 is formed on the outer periphery of the tip end portion of the shaft portion 10 b.
  • the phase change mechanism 4 mainly includes an electric motor 8 disposed on the front end side of the cylindrical portion 9 b of the driven member 9 and a speed reduction mechanism 11 for reducing the rotational speed of the electric motor 8 and transmitting it to the camshaft 2. It is done.
  • the electric motor 8 is a DC motor with a brush as shown in FIGS. 1 and 2 and includes a motor housing 12 that rotates integrally with the sprocket 1 and a motor rotatably provided inside the motor housing 12.
  • the motor housing 12 is integrally formed with a housing main body 12a formed in a cylindrical shape with a bottom from an iron-based metal that is a metal material, and a rear end of the housing main body 12a on the camshaft 2 It is comprised from the partition wall 12b.
  • the housing main body 12 a is formed to have the same outer diameter as the sprocket main body 1 a (the internal gear forming portion 5), and is bolted to the internal gear forming portion 5 in the axial direction.
  • the partition wall 12b is formed with a large diameter shaft portion insertion hole 12c through which an eccentric shaft portion 39 described later is inserted at a substantially central position.
  • a cylindrical extension 12d projecting in the direction of the cover member 3 is integrally provided at a hole edge of the shaft insertion hole 12c.
  • FIG. 6 is a plan view showing the motor output shaft 13 of the electric motor 8 and the iron core rotor 17.
  • the motor output shaft 13 is formed in a step cylindrical shape, and the large diameter portion 13a on the camshaft 2 side with the step portion 13c formed substantially at the center position in the axial direction. , And a small diameter portion 13b on the cover member 3 side.
  • the iron core rotor 17 is press-fitted and fixed to the outer periphery, and an eccentric shaft portion 39 which is an eccentric rotating body is integrally provided on the rear end side. Further, a ball bearing 37 and a needle bearing 38 are provided on the inner periphery of the large diameter portion 13a.
  • the inner ring is fixed to the step small diameter portion at the tip of the cylindrical portion 9b
  • the outer ring is fixed to the inner peripheral surface of the large diameter portion 13a
  • the motor output shaft 13 is supported by the cylindrical portion 9b.
  • the annular member 20 made of a synthetic resin material is fixed to the outer periphery
  • the commutator 21 is fixed to the entire outer peripheral surface of the annular member 20.
  • the annular member 20 and the commutator 21 are axially positioned by the step 13 c.
  • the annular member 20 is formed such that the outer diameter thereof is substantially the same as the outer diameter of the large diameter portion 13a, and the axial length thereof is formed slightly shorter than the small diameter portion 13b.
  • the plug 50 is press-fitted and fixed to the inner periphery of the small diameter portion 13 b.
  • the plug body 50 is formed in a cylindrical shape with a bottom from a synthetic resin material, and a seal ring 51 resiliently contacting the inner peripheral surface of the small diameter portion 13b is provided on the outer periphery.
  • the seal ring 51 regulates the lubricating oil introduced into the inside from the side of the large diameter portion 13 a of the motor output shaft 13 so as not to flow to the inside of the cover member 3.
  • the iron core rotor 17 is formed of a magnetic material having a plurality of magnetic poles, and the outer peripheral side is configured as a bobbin having a slot for winding the coil wire of the coil 18.
  • the commutator 21 is annularly formed of a conductive material, and the ends of the drawn coil wire of the coil 18 are electrically connected to the segments divided into the same number as the number of poles of the iron core rotor 17.
  • the permanent magnet 14 is formed in a cylindrical shape as a whole and has a plurality of magnetic poles in the circumferential direction.
  • the sealing plate 15 is formed by molding, and is composed of a plate main body 15a of a synthetic resin material and a metal plate 15b embedded in the plate main body 15a.
  • the sealing plate 15 is formed with a shaft insertion hole 15c through which one end of the motor output shaft 13 and the like are inserted at a central position.
  • the metal plate 15b has its outer periphery exposed from the plate body 15a caulked and fixed to the stepped portion of the front end of the housing body 12a.
  • the sealing plate 15 is housed slidably along the radial direction in the pair of resin holders 23a and 23b provided on the plate main body 15a and the respective resin holders 23a and 23b.
  • Inner and outer double annular power supply slip rings 26a embedded and fixed in a state where the outer end faces are exposed on the front end surfaces of the pair of switching brushes 25a and 25b and the resin holders 23a and 23b. It has 26b and pigtail harness 27a, 27b which electrically connects each brush 25a, 25b and each slip ring 26a, 26b.
  • the tip end surfaces of the brushes 25a and 25b elastically contact the outer peripheral surface of the commutator 21 from the outside in the radial direction due to the spring force of the coil springs 24a and 24b.
  • the cover body 3a is attached with a holder 28 integrally molded of a synthetic resin material.
  • the holding body 28 is formed substantially in an L shape in a side view, and has a substantially cylindrical brush holding portion 28a inserted into the holding hole 3d, and the brush holding portion 28a.
  • a connector portion 28b at the upper end portion, a bracket portion 28c which is integrally protruded on one side of the brush holding portion 28a and is bolted to the cover main body 3a, and a pair of feeding terminals embedded mostly in the inside And 29 have pieces 29 and 29.
  • the brush holding portion 28a extends substantially in the horizontal direction (axial direction), and is a pair of rectangular cylindrical brush holders made of a conductive material at the inner upper and lower positions (inner and outer peripheral sides with respect to the axis of the motor housing 12). 31a and 31b are respectively mold fixed.
  • each of the brush holders 31a and 31b a pair of feeding brushes 30a and 30b whose axial end faces contact with the feeding slip rings 26a and 26b in the axial direction, respectively, can slide in the axial direction. It is held.
  • the pair of feeding terminal pieces 29, 29 are formed in parallel and in a crank shape along the vertical direction, and the terminals 29a, 29a on one side (lower end side) are arranged in an exposed state on the outer surface of the bottom wall.
  • the terminals 29b and 29b on the other side are provided in a projecting manner in the female fitting groove 28d of the connector portion 28b.
  • the other terminals 29b and 29b are connected to a control unit (not shown) via a female terminal and a harness (not shown).
  • each of the power supply brushes 30a and 30b is formed in a substantially rectangular shape, and is driven by the spring force of a pair of second coil springs 33a and 33b resiliently mounted on the rear side. It is biased in the direction of each slip ring 26a, 26b. Further, the rear end portions of the power supply brushes 30a and 30b and the one side terminals 29a and 29a are electrically connected by a pair of pigtail harnesses (not shown) which can be flexibly deformed.
  • a seal ring 34 for sealing the space between the inner peripheral surface of the cylindrical wall 3c and the brush holding portion 28a is held in an annular fitting groove formed on the outer periphery on the base side of the brush holding portion 28a.
  • a bolt insertion hole 28e is formed in a substantially central position.
  • a bolt screwed into a female screw hole (not shown) formed in the cover main body 3a is inserted, and the entire holding body 28 is attached to the cover main body 3a.
  • FIG. 7 is an enlarged view of a portion D of FIG. 1
  • FIG. 8 is an enlarged view of a portion E of FIG.
  • the reduction gear mechanism 11 is a cylindrical eccentric shaft 39 that performs eccentric rotational movement, and a medium diameter that is a fourth bearing provided on the outer periphery of the eccentric shaft 39.
  • a ball bearing 47, a plurality of rollers 48 as rolling elements provided on the outer periphery of the medium diameter ball bearing 47, and a holder 41 for allowing movement in the radial direction while holding the rollers 48 in the rolling direction have.
  • the eccentric shaft portion 39 is formed of hardened steel and extends in the axial direction from the outer end edge of the large diameter portion 13 a of the motor output shaft 13.
  • the eccentric shaft 39 has an outer diameter slightly smaller than the outer diameter of the large diameter portion 13a of the motor output shaft 13, and the outer peripheral surface is an annular eccentric cam surface 39a.
  • the eccentric shaft portion 39 is supported by the cylindrical portion 9 b via a needle bearing 38.
  • the needle bearing 38 includes a cylindrical retainer 38a press-fitted to the inner peripheral surface of the eccentric shaft 39, and a plurality of needle rollers 38b rotatably held inside the retainer 38a.
  • the needle roller 38b rolls between the inner peripheral surface of the eccentric shaft 39 and the outer peripheral surface of the cylindrical portion 9b, and bears the eccentric shaft 39 on the cylindrical portion 9b.
  • the thickness of the eccentric cam surface 39 a changes in the circumferential direction, and the axial center Y of the outer diameter is slightly eccentric from the axial center X of the motor output shaft 13 in the radial direction. That is, the thickness of the eccentric shaft 39 changes in the circumferential direction and the minimum thickness 39c and the maximum thickness at the position (180 ° position) opposite to the minimum thickness 39c from the radial direction of the rotation axis And a thick portion 39d.
  • the eccentric cam surface 39a the axial center Y of the eccentric shaft 39 is slightly eccentric in the radial direction from the axial center X of the motor output shaft 13.
  • the eccentric shaft 39 is formed with an annular groove 39e in which a snap ring 56 described later is fitted on the outer peripheral surface of the tip end on the camshaft 2 side.
  • the eccentric shaft portion 39 and the needle bearing 38 are disposed at a position overlapping the gear portion 1 b in the radial direction from the rotation axis of the sprocket main body 1 a.
  • the medium diameter ball bearing 47 is composed of an inner ring 47a, and a ball 47c interposed between the outer ring 47b and both the rings 47a and 47b.
  • the medium diameter ball bearing 47 is disposed at a position overlapping the gear portion 1b in the radial direction of the rotation shaft of the sprocket main body 1a.
  • the inner ring 47a is opposed to the inner peripheral surface 47d with a minute gap C of about 0.1 mm without being press-fitted to the outer peripheral surface of the cam surface 39a of the eccentric shaft portion 39.
  • the inner ring 47a is in contact with the step edge 39b between the front end edge in the axial direction and the large diameter portion 13a of the motor output shaft 13, while the rear end edge is also shown in FIG. In the axial direction. Therefore, the inner ring 47a is positioned in the axial direction (width direction) by the step edge 39b and the snap ring 56, and the removal from the cam surface 39a is restricted.
  • the outer ring 47 b is in a free state without being fixed in the axial direction (width direction). That is, in the outer ring 47b, one end face on the side of the electric motor 8 in the width direction does not contact any part, and the other end face is a minute first gap C1 between the outer face and the inner side face of the cage 41 opposed thereto. Is formed and free.
  • the outer ring 47b has the outer circumferential surface on which the outer circumferential surface of each roller 48 rollably abuts, and on the outer circumferential side, an annular second gap C2 is formed as shown in FIG. .
  • the entire medium diameter ball bearing 47 is movable in the radial direction according to the eccentric rotation of the eccentric shaft portion 39, that is, the eccentric movement is possible by the second gap C2.
  • the thickness t in the radial direction of the inner ring 47a is set larger than the thickness in the radial direction of the inner ring of a general ball bearing. Therefore, the inner ring 47a is necessarily formed to have an outer diameter larger than usual. For this reason, the number of balls 47c is larger than the number of balls of a general ball bearing. As a result, the surface pressure against the entire ball 47c is reduced, and the durability can be improved.
  • the retainer 41 is bent in a substantially L-shape in cross section from the front end of the outer periphery of the fixed end 9a to a bottomed cylindrical shape projecting in the same direction as the cylindrical portion 9b. Is formed.
  • the cylindrical distal end portion 41a of the holder 41 extends in the direction of the partition wall 12b of the housing main body 12a via the annular concave housing space S1 formed between the cylindrical end portion 41a and the partition wall 12b. Also, as shown in FIGS. 1 to 3 and 7, substantially rectangular shaped rollers that hold the plurality of rollers 48 so as to be able to roll, respectively, at substantially equally spaced positions in the circumferential direction of the cylindrical tip portion 41 a A plurality of holding holes 41 b are formed at equal intervals in the circumferential direction.
  • the roller holding holes 41 b are configured to restrict the circumferential movement while allowing the radial movement of the holders 41 of the rollers 48. Further, the total number of roller holding holes 41 b (rollers 48) is one less than the total number of internal teeth 5 a of the internal tooth configuration portion 5.
  • Each roller 48 is formed of, for example, a steel-based iron-based metal, and is fitted into the internal teeth 5 a of the internal gear component 5 while moving in the radial direction with the eccentric motion of the medium diameter ball bearing 47. Further, each roller 48 can be rocked in the radial direction while being guided in the circumferential direction by the both side edges of the roller holding hole 41 b of the holder 41.
  • each roller 48 In the state where each roller 48 is accommodated in each roller holding hole 41b and set between the inner teeth 5a and the outer ring 47b, as shown in FIG. 7, the outer surface of the roller 48 and the inner surface of the inner teeth 5a. And a radial clearance C3 (backlash) is formed therebetween. Further, in this state, a cage clearance is formed between the outer surface of the roller 48 and the opposite side surface of the roller holding hole 41b. The radial clearance C3 and the cage clearance are necessary to ensure the operation responsiveness of the rolling initial stage of the roller 48 at the time of the conversion operation of the reduction gear mechanism 11.
  • the radial clearance C3 is set smaller than the minute clearance C between the cam surface 39a of the eccentric shaft 39 and the inner peripheral surface of the inner ring 47a.
  • Lubricating oil supplied from the main oil gallery (not shown) to the sliding parts of the internal combustion engine is introduced into the inside of the casing of the reduction gear mechanism 11 through the oil introducing circuit 52.
  • the oil introduction circuit 52 is provided with an introduction passage 53 formed in the cylinder head 01, an introduction hole 54 which is formed in the inner axial direction of the camshaft 2 and whose upstream end communicates with the introduction passage 53, and a fixed end 9a.
  • An oil hole 55 is formed inside and has an upstream end communicating with the introduction hole 54 and a downstream end opened near the needle bearing 38 in the reduction gear mechanism 11.
  • a recess 40 is formed on the outer peripheral surface of the largest thickness portion 39d. Further, in the recess 40, a plate spring 42 which is a biasing member is accommodated and disposed.
  • the recess 40 is formed by cutting the outer peripheral portion of the largest thickness portion 39 d of the eccentric shaft 39 in a rectangular shape along the tangential direction to form a D-cut (crescent) shape in a longitudinal cross section. Further, the bottom surface 40 a of the recess 40 is formed flat.
  • the recess 40 is formed such that the length W in the width direction thereof is smaller than the width W 1 of the inner ring 47 a of the medium diameter ball bearing 47. Further, the recess 40 is formed on the width center side of the inner ring 47a, that is, in the area inside the both end edges of the inner ring 47a. Furthermore, the recess 40 is disposed at an overlapping position in the radial direction of the rotation shaft of the sprocket main body 1a with respect to the gear portion 1b.
  • the plate spring 42 is formed by bending an elongated rectangular stainless steel plate into an arc shape (curved shape).
  • the plate spring 42 includes an arc top 42a at a central position in the longitudinal direction, and both ends 42b and 42c extending in the left and right direction around the arc top 42a.
  • the plate spring 42 is disposed at a position where the plate spring 42 radially overlaps the gear portion 1 b from the position where the recess 40 is formed.
  • the arc top 42a protrudes outward in an arc shape, and the outer surface is in contact with the inner peripheral surface 47d of the inner ring 47a radially outward with a slight elastic force.
  • both end portions 42 b and 42 c are respectively formed to be bent outward along a substantially horizontal direction, and the rectangular lower surfaces 42 d and 42 e are in contact with the bottom surface 40 a of the recess 40.
  • the lower surfaces 42 d and 42 e of the both end portions 42 b and 42 c are in contact with both end surfaces of the bottom surface 40 a of the recess 40 in a surface contact state.
  • the top portion 42 a is in contact with the inner peripheral surface 47 d of the inner ring 47 a of the medium diameter ball bearing 47. That is, in a state where the plate spring 42 is set in the recess 40, the both end portions 42b and 42c are in contact with both end surfaces of the recess bottom surface 40a with a slight elastic force.
  • top portion 42 a is also in contact with the inner peripheral surface 47 d of the inner ring 47 a of the ball bearing 47 with a slight elastic force. Therefore, the spring force of relative reverse acts by the elastic force of these parts, and a spring load is given. By this spring load, the eccentric shaft portion 39 and the inner ring 47a of the ball bearing 47 are elastically integrated.
  • the leaf spring 42 is formed to have a length L in the longitudinal direction sufficiently smaller than the length of the recess 40, and allows elastic deformation in the free stretch direction in the recess 40.
  • the lower surfaces 42d and 42e of the both ends 42b and 42c usually center on the top 42a, and the left and right in FIG. It is supposed to slide on.
  • the width W3 of the plate spring 42 is smaller than the width W of the recess 40, and the side edges of the plate spring 42 are also in the width direction of the recess 40 during elastic deformation in the expansion and contraction direction of itself. It is formed so as not to interfere with the opposite inner side surfaces of the
  • the control unit performs engine control by detecting the current engine operating state based on information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, an accelerator opening sensor, etc., which are not shown.
  • the control unit also controls the rotation of the electric motor 8 based on the rotational position signal of the motor output shaft 13 detected by a rotation detection mechanism (not shown).
  • a rotation detection mechanism not shown.
  • the relative rotational phase of the camshaft 2 with respect to the sprocket 1 is controlled via the reduction gear mechanism 11.
  • the rotational force is transmitted to the motor housing 12 via the internal gear 5 to synchronously rotate.
  • the rotational force of the internal gear forming portion 5 is transmitted from the rollers 48 to the camshaft 2 via the cage 41 and the driven member 9.
  • each drive cam of the camshaft 2 opens and closes each intake valve through the spring force of the valve spring.
  • the coil 18 of the electric motor 8 is connected to the coil 18 of the electric motor 8 from the control unit via the terminal pieces 29, 29 and the pigtail harnesses, the power feeding brushes 30a, 30b, the slip rings 26a, 26b, etc. It is energized. As a result, the motor output shaft 13 is rotationally driven, and the torque reduced in speed is transmitted to the camshaft 2 via the reduction mechanism 11.
  • each roller 48 is guided by the roller holding hole 41b in the radial direction every one rotation of the motor output shaft 13 while passing over one internal tooth 5a of the internal gear forming portion 5 and adjacent to the other internal tooth 5a adjacent thereto. Move while rolling. The rolling contact is made in the circumferential direction while repeating this sequentially.
  • the rotation of the motor output shaft 13 is decelerated by the rolling contact of the rollers 48, and the rotational force is transmitted to the driven member 9 (camshaft 2). Note that the speed reduction ratio at this time can be set arbitrarily according to the number of rollers 48 and the like.
  • the camshaft 2 rotates in the forward and reverse directions with respect to the sprocket 1 to convert the relative rotational phase. Therefore, the open / close timing of each intake valve is controlled to be advanced or retarded.
  • the engine performance such as fuel efficiency and output of the engine can be improved by converting the opening / closing timing of the intake valve to the advance side or the retard side to the maximum.
  • the pressing force from the radially outer side against the roller 49 is transmitted from the radially outer side to the eccentric shaft portion 39 from the roller 48 via the medium diameter ball bearing 47. For this reason, the rattling between the eccentric cam surface 39a of the eccentric shaft 39 and the outer surface of the inner ring 47a is absorbed, and the deflection of the eccentric shaft 39 is sufficiently suppressed, and the generation of rattling noise can be suppressed.
  • the gear portion 1b is disposed between the large diameter ball bearing 43 and the small diameter ball bearing 37 in the radial direction of the sprocket body 1a, and a part of the internal teeth 5a and the roller 48 or the medium diameter ball The position is overlapped with the bearing 47 and the needle bearing 38.
  • the flange 2 a (one end) side approaches the gear 1 b by fitting the projection 2 b into the fitting hole 9 d. Therefore, since the tension load of the chain 16 can be received at one end side of the camshaft 2 through the gear portion 1 b, the amount of inclination of the driven member 9 can be suppressed to a small amount. Therefore, the radial clearance C3 between the inner surface of the inner teeth 5a and the outer surface of the roller 48 can be further reduced.
  • the gear portion 1 b is located between the permanent magnet 14 and the large diameter ball bearing 43 in the direction along the rotation axis of the sprocket body 1 a. Therefore, the tension load applied from the chain 16 to the gear portion 1b acts on the side of the eccentric shaft 39, so that the rotational runout due to the gravity of the permanent magnet 14 is suppressed, and the motor output including the eccentric shaft 39 The deflection of the entire shaft 13 can also be suppressed.
  • the clearances of the components such as the radial clearance C3 are not reduced (narrowed) structurally, but are reduced by the tensile force of the gear portion 1b by the chain 16 or the spring force of the plate spring 42.
  • the speed reduction mechanism 11 There is no influence on the operation response of the speed reduction mechanism 11. That is, since the gear portion 1b is rotated in one direction by the chain 16, and the plate spring 42 is rotated in accordance with the forward and reverse rotation of the motor output shaft 13 and the eccentric shaft portion 39, the spring force in the direction of each internal tooth 5a The point of action of is constantly changing. Therefore, although the radial clearance C3 decreases in part, it does not decrease in other parts. For this reason, there is no influence of the operation response of the reduction gear mechanism 11.
  • the top portion 42a of the plate spring 42 resiliently abuts on the inner circumferential surface 47d of the inner ring 47a, the corresponding contact is automatically aligned with the recess 40 and the portion of the longest distance of the inner ring 47a.
  • the plate spring 42 elastically deforms in the direction of expansion and contraction freely in the recess 40 during elastic deformation, and the lower surfaces 42d and 42e of the both end portions 42b and 42c slide freely along the flat surface of the bottom surface 40a.
  • a stable spring load can be obtained.
  • the recess 40 and the plate spring 42 are formed such that the widths W and W3 of the eccentric shaft 39 in the rotational direction are smaller than the width W4 of the inner ring 47a of the medium-diameter ball bearing 47. For this reason, since the formation space of the recessed part 40 of the rotating shaft direction with respect to the cam surface 39a of the eccentric shaft part 39 can be made small, the length of the rotating shaft direction can be shortened as much as possible. As a result, the degree of freedom in layout is improved, and the apparatus can be made compact.
  • the present invention is not limited to the application to a reduction gear mechanism having a roller, and can be applied to any device as long as the eccentric shaft portion and the inner ring are configured to be relatively rotatable.
  • the invention can also be applied to a planetary gear reducer having a planetary gear capable of planetary motion while meshing with the internal teeth of the internal gear component by rotating the eccentric shaft.
  • a planetary gear is disposed on the outer periphery of the eccentric shaft portion, and a bearing having an inner ring and an outer ring is disposed between the outer periphery of the eccentric shaft portion and the inner periphery of the planetary gear.
  • timing pulley etc. by belt transmission other than a timing sprocket as a drive rotary body.
  • valve timing control device for an internal combustion engine based on the embodiment described above, for example, one of the aspects described below can be considered.
  • a drive rotating body to which a rotational force from a crankshaft is transmitted, a driven rotating body fixed to the camshaft, and the drive rotating body and the driven rotating body.
  • a first bearing for bearing the drive rotor, an electric motor disposed on the drive rotor, and changing the relative rotational position of the driven rotor relative to the drive rotor by the rotational force of a motor output shaft, and the drive rotor A reduction mechanism for reducing the rotational speed of the motor output shaft and transmitting it to the driven rotor, and integrally on the outer periphery of the drive rotor, the rotation of the drive rotor And a gear portion offset from the first bearing in the axial direction toward the meshing portion of the speed reduction mechanism.
  • a second bearing disposed between the motor output shaft and the driven rotor and bearing the motor output shaft is provided, and the gear portion has a direction along the rotational axis of the drive rotor. Are disposed between the first bearing and the second bearing.
  • the gear portion since the position of the gear portion is between the first bearing and the second bearing, the gear portion is supported in a double support state. Therefore, it is possible to suppress radial runout, play and the like of the drive rotating body.
  • the gear portion is disposed between the center in the width direction of the first bearing and the center in the width direction of the second bearing in the direction along the rotation axis direction of the drive rotating body.
  • the gear portion is disposed so as to overlap with the meshing portion of the speed reduction mechanism in the radial direction of the rotation shaft of the drive rotating body.
  • the gear portion is disposed at a position overlapping the meshing portion, rattling of the meshing portion can be suppressed.
  • a third bearing is disposed between the motor output shaft and the driven rotor, and on a side portion of the second bearing on the camshaft side in a direction along the rotational axis of the drive rotor.
  • the gear portion, the meshing portion and the third bearing are disposed in a state where they overlap in the radial direction of the rotation shaft of the drive rotating body.
  • the clearance and the third in the meshing portion are generated by the tension of the endless chain, for example, wound around the gear portion. Both bearing clearances can be reduced.
  • the speed reducing mechanism includes an eccentric shaft portion disposed at an end of the motor output shaft in the rotational axis direction, a fourth bearing disposed on an outer periphery of the eccentric shaft portion, and the meshing portion.
  • a plurality of rolling elements disposed between the teeth and the outer ring of the fourth bearing, and the driven rotating body, the plurality of rolling elements being partitioned, and the driving rotation of the plurality of rolling elements
  • a holding member for allowing radial movement of the rotational axis of the body,
  • the gear portion, the internal teeth, the third bearing, and the fourth bearing are disposed in a state where they overlap in a radial direction of a rotation shaft of the drive rotating body.
  • the gear portion, the internal teeth, and the third and fourth bearings are radially overlapped, the internal clearances of the four members are reduced together. it can. As a result, rattling is suppressed and noise can be reduced.
  • the speed reduction mechanism has a gap between the eccentric shaft portion and the fourth bearing, and is disposed in this gap to generate a biasing force in the radial direction from the rotation axis of the drive rotating body. It has a biasing member, and the gear portion and the biasing member are disposed so as to overlap in the radial direction of the rotational axis of the drive rotating body.
  • the gap can be reduced. By this, it is possible to more effectively reduce the generation of noise due to backlash.
  • the third bearing is a needle bearing.
  • the biasing force transmitted from the gear portion can reduce the clearance in the needle bearing.
  • the driven rotating body has a fitting hole into which one end of the camshaft in the rotation axis direction is fitted, and the fitting hole is the first one in the radial direction of the rotation axis of the drive rotating body. It has a bottom surface on which one end of the camshaft abuts at a position overlapping the bearing.
  • a drive rotating body having a gear portion on the outer periphery to which a rotational force from a crankshaft is transmitted, a driven rotating body fixed to the camshaft, and the drive rotating body and the driven rotating body
  • the first bearing for bearing the drive rotor, and the electric motor for changing the relative rotational position of the driven rotor relative to the drive rotor by the rotational force of the motor output shaft.
  • a motor, and a reduction mechanism having an engagement portion on the inner periphery of the drive rotating body, and decelerating the rotational speed of the motor output shaft and transmitting it to the driven rotating body;
  • the engagement portion of the speed reduction mechanism is inclined about the first bearing by a cord-like tension wound around the gear portion so that the clearance between the engagement portion and the roller provided in the engagement portion is reduced. Is configured.
  • the electric motor has a stator coil fixed to the outside, and a permanent magnet fixed to the outer periphery of the motor output shaft, and the second motor is interposed between the motor output shaft and the driven rotor.
  • a bearing is provided, and the gear portion is provided between the permanent magnet and the first bearing in a direction along the rotation axis of the drive rotating body.
  • the unique arrangement configuration can suppress the runout of the motor output shaft due to the permanent magnet.
  • SYMBOLS 1 Timing sprocket (drive rotary body) 1a ... Sprocket main body 1b ... Gear part, 2 ... Camshaft, 4 ... Phase change mechanism, 5 ... Internal tooth structure part, 5a ... Internal tooth (meshing part), 8 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The present invention has: a large-diameter ball bearing 43 that is disposed between a sprocket body 1a and a fixed end section 9a of a driven member 9 to thereby bear a sprocket 1; an electric motor 8 that changes the relative rotational position of the driven member with respect to the sprocket; a speed reducing mechanism 11 that has a plurality of internal teeth 5a on the inner circumference of an internal tooth configuration part 5, and that reduces the rotation speed of a motor output shaft 13 and transmits the rotation to the driven member; and gear parts 1b provided integrally with the outer circumference of the sprocket body and disposed to be offset toward the internal teeth side. The gear parts are disposed so as to radially overlap a needle bearing 38 and a medium-diameter ball bearing 47, and the internal teeth and a roller 48. Accordingly, the generation of noise of the speed reducing mechanism can be suppressed during operation.

Description

内燃機関のバルブタイミング制御装置Valve timing control system for internal combustion engine
 本発明は、吸気弁や排気弁の開閉タイミングを制御する内燃機関のバルブタイミング制御装置に関する。 The present invention relates to a valve timing control device for an internal combustion engine that controls the opening and closing timing of an intake valve and an exhaust valve.
 特許文献1に記載された従来の内燃機関のバルブタイミング制御装置は、タイミングスプロケットに一体的に設けられた電動モータの回転速度を減速機構が減速してカムシャフトに伝達する。これによって、タイミングスプロケットに対するカムシャフトの相対回転位相を変換するようになっている。 In the conventional valve timing control device for an internal combustion engine described in Patent Document 1, the reduction mechanism reduces the rotational speed of the electric motor integrally provided on the timing sprocket and transmits it to the camshaft. By this, the relative rotational phase of the camshaft with respect to the timing sprocket is converted.
特開2015-227650号公報JP, 2015-227650, A
 このようなバルブタイミング制御装置にあっては、電動モータのモータ出力軸と一体に設けられた減速機構の偏心軸部が駆動中に振れが発生するおそれがある。この偏心軸部に振れが発生すると、減速機構の内歯構成部の内周に有する複数の内歯と該各内歯間に有するローラとの間に形成されたクリアランスなどを介して比較的大きな異音(干渉音)が発生するおそれがある。 In such a valve timing control device, the eccentric shaft portion of the speed reduction mechanism provided integrally with the motor output shaft of the electric motor may cause a shake during driving. If a shake occurs in the eccentric shaft portion, a relatively large clearance is provided between a plurality of internal teeth provided on the inner periphery of the internal gear forming portion of the reduction mechanism and a roller provided between the internal teeth. There may be an abnormal noise (interference sound).
 本発明は、駆動中における減速機構の異音の発生を抑制することを1つの目的としている。 One object of the present invention is to suppress the generation of abnormal noise of a speed reduction mechanism during driving.
 本発明の一つの態様としては、とりわけ、駆動回転体の外周に一体に有する歯車部を、駆動回転体の回転軸方向のカムシャフト側の第1軸受よりも減速機構の噛み合い部側にオフセット配置したことを特徴としている。 In one aspect of the present invention, the gear portion integrally formed on the outer periphery of the drive rotating body is disposed offset to the meshing portion side of the speed reduction mechanism than the first bearing on the camshaft side in the rotation axis direction of the drive rotating body. It is characterized by having done.
 本発明の一つの態様によれば、減速機構の異音の発生を抑制することができる。 According to one aspect of the present invention, it is possible to suppress the generation of abnormal noise in the speed reduction mechanism.
本発明の第1実施形態に係る内燃機関のバルブタイミング制御装置を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a valve timing control device for an internal combustion engine according to a first embodiment of the present invention. 本実施形態における主要な構成部材を示す分解斜視図である。It is a disassembled perspective view which shows the main component in this embodiment. 図1のA-A線断面図である。It is the sectional view on the AA line of FIG. 図1のB-B線断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. 図1のC-C線断面図である。FIG. 2 is a cross-sectional view taken along the line CC of FIG. 本実施形態に供されるモータ出力軸と鉄心ロータのユニットを示す平面図である。It is a top view which shows the unit of the motor output shaft and the iron core rotor which are provided to this embodiment. 図1のD部拡大図である。It is the D section enlarged view of FIG. 図3のE部拡大図である。It is the E section enlarged view of FIG.
 以下、本発明に係る内燃機関のバルブタイミング制御装置の実施形態を図面に基づいて説明する。なお、この実施形態では、例えば4気筒内燃機関の吸気弁側に適用したものである。 Hereinafter, an embodiment of a valve timing control device for an internal combustion engine according to the present invention will be described based on the drawings. In this embodiment, for example, the present invention is applied to the intake valve side of a four-cylinder internal combustion engine.
 図1は本発明に係る内燃機関のバルブタイミング制御装置の一実施形態を示す縦断面図、図2は本実施形態における主要な構成部材を示す分解斜視図、図3は図1のA-A線断面図、図4は図1のB-B線断面図、図5は図1のC-C線断面図である。 FIG. 1 is a longitudinal sectional view showing an embodiment of a valve timing control device for an internal combustion engine according to the present invention, FIG. 2 is an exploded perspective view showing main components in this embodiment, and FIG. 3 is an AA of FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1, and FIG. 5 is a cross-sectional view taken along the line CC of FIG.
 このバルブタイミング制御装置は、図1及び図2に示すように、内燃機関のクランクシャフトによって回転駆動する駆動回転体であるタイミングスプロケット1(以下、スプロケット1という。)と、シリンダヘッド01上に軸受部02を介して回転可能に支持され、スプロケット1から伝達された回転力によって回転するカムシャフト2と、スプロケット1の回転軸方向の一端側(前方側)の位置に配置されたカバー部材3と、スプロケット1とカムシャフト2の間に配置されて、機関運転状態に応じて両者1,2の相対回転位相を変更する位相変更機構4と、を備えている。 This valve timing control device, as shown in FIGS. 1 and 2, includes a timing sprocket 1 (hereinafter referred to as “sprocket 1”), which is a driving rotating body rotationally driven by a crankshaft of an internal combustion engine, and a bearing on a cylinder head 01. A camshaft 2 rotatably supported via a portion 02 and rotated by a rotational force transmitted from the sprocket 1, and a cover member 3 disposed at a position on one end side (forward side) of the sprocket 1 in the rotational axis direction And a phase change mechanism 4 disposed between the sprocket 1 and the camshaft 2 and changing the relative rotational phase of the two according to the engine operation state.
 スプロケット1は、金属材である例えば鉄系金属によって円筒状に形成され、内周面が段差径状のスプロケット本体1aと、該スプロケット本体1aの外周に一体に設けられて、タイミングチェーン16(以下、チェーン16という。)を介してクランクシャフトからの回転力を受ける歯車部1bと、を備えている。 Sprocket 1 is formed in a cylindrical shape by a metal material, for example, iron-based metal, and is integrally provided on a sprocket main body 1a having an inner peripheral surface with a step diameter-like shape and the outer periphery of the sprocket main body 1a. , And a gear portion 1b receiving rotational force from the crankshaft via the chain 16).
 また、スプロケット本体1aの前端側には、後述する減速機構11の一部を構成する円筒状の内歯構成部5が一体に設けられている。 Further, on the front end side of the sprocket main body 1a, a cylindrical internal tooth forming portion 5 which constitutes a part of a speed reducing mechanism 11 described later is integrally provided.
 歯車部1bは、図1にも示すように、スプロケット本体1aのタイミングスプロケット1の回転軸方向のカムシャフト2側の端部ではなく、カバー部材3側の端部外周に一体に設けられている。つまり、この歯車部1bは、従来ではスプロケット本体1aのカムシャフト2側の端部外周に設けられている(図1の一点鎖線)が、本実施形態では、図1の実線で示すように、カムシャフト2側の端部位置からカバー部材3側の端部外周にオフセット配置されている。 As shown in FIG. 1, the gear portion 1 b is integrally provided not on the end of the sprocket main body 1 a on the camshaft 2 side of the timing sprocket 1 but on the end of the cover member 3 side. . That is, the gear portion 1b is conventionally provided on the outer periphery of the end portion of the sprocket main body 1a on the camshaft 2 side (dotted line in FIG. 1), but in the present embodiment, as shown by solid line in FIG. It is offset from the end position on the camshaft 2 side to the outer periphery of the end portion on the cover member 3 side.
 スプロケット本体1aとカムシャフト2の前端部に固定された後述する従動回転体である従動部材9との間には、第1軸受である大径ボールベアリング43が介装されている。この大径ボールベアリング43によって、スプロケット1がカムシャフト2に相対回転可能に支持されている。スプロケット本体1a(内歯構成部5)の外周部には、複数(本実施形態では6つ)のボルト挿通孔1cが周方向のほぼ等間隔位置に貫通形成されている。 A large diameter ball bearing 43, which is a first bearing, is interposed between the sprocket main body 1a and a driven member 9, which is a driven rotating body described later and fixed to the front end of the camshaft 2. The sprocket 1 is supported on the camshaft 2 so as to be relatively rotatable by the large diameter ball bearing 43. A plurality of (six in the present embodiment) bolt insertion holes 1c are formed through the outer peripheral portion of the sprocket main body 1a (the internal tooth forming portion 5) at substantially equally spaced positions in the circumferential direction.
 大径ボールベアリング43は、外輪43aと、内輪43b及び該両輪43a、43bの間に介装されたボール43cと、から構成されている。外輪43aは、スプロケット本体1aの内周側に固定されているのに対して内輪43bは、従動部材9の外周側に固定されている。 The large diameter ball bearing 43 is composed of an outer ring 43a, an inner ring 43b, and a ball 43c interposed between the both rings 43a and 43b. The outer ring 43a is fixed to the inner peripheral side of the sprocket main body 1a, whereas the inner ring 43b is fixed to the outer peripheral side of the driven member 9.
 内歯構成部5は、スプロケット本体1aの内外径と同じ円筒状に形成されて、カバー部材3側の前端部外周側に一体に設けられていると共に、内周には、噛み合い部である波形状の複数の内歯5aが形成されている。 The internal gear forming portion 5 is formed in the same cylindrical shape as the inner and outer diameters of the sprocket main body 1a, and is integrally provided on the outer periphery of the front end portion on the cover member 3 side. A plurality of internal teeth 5a of a shape are formed.
 また、内歯構成部5の前端側には、後述するモータハウジング12が軸方向から対向配置されている。このモータハウジング12は、内歯構成部5側の後端部の周方向の等間隔位置に各ボルト挿通孔1cに対応した6つの雌ねじ孔12eが形成されている。 Further, on the front end side of the internal gear forming portion 5, a motor housing 12 described later is disposed to face in the axial direction. In the motor housing 12, six female screw holes 12e corresponding to the bolt insertion holes 1c are formed at equal intervals in the circumferential direction of the rear end portion on the internal tooth configuration portion 5 side.
 さらに、スプロケット本体1aの内歯構成部5と反対側(カムシャフト2側)の後端部には、円環状の保持プレート6が配置されている。この保持プレート6は、金属板材によって一体に形成され、図1に示すように、外径がスプロケット本体1aの外径とほぼ同一に設定されている。また、保持プレート6は、内周部6aの内周縁所定位置に径方向内側、つまり中心軸方向に向かって突出したストッパ凸部6bが一体に設けられている。 Further, an annular holding plate 6 is disposed at a rear end portion of the sprocket body 1a on the opposite side (camshaft 2 side) to the internal tooth forming portion 5. The holding plate 6 is integrally formed of a metal plate material, and as shown in FIG. 1, the outer diameter is set to be substantially the same as the outer diameter of the sprocket main body 1a. Further, the holding plate 6 is integrally provided with a stopper convex portion 6b projecting radially inward, that is, toward the central axis direction, at a predetermined position of the inner peripheral edge of the inner peripheral portion 6a.
 このストッパ凸部6bは、図1及び図4に示すように、ほぼ扇状に形成されて、先端縁6cが後述するストッパ凹部2cの円弧状内周面に沿った円弧状に形成されている。さらに、保持プレート6の外周部のスプロケット本体1aの各ボルト挿通孔1cと対応した位置には、6つのボルト挿通孔6dが周方向の等間隔位置に貫通形成されている。 As shown in FIGS. 1 and 4, the stopper convex portion 6b is formed in a substantially fan shape, and the tip end edge 6c is formed in an arc shape along the circular arc inner peripheral surface of the stopper concave portion 2c described later. Further, six bolt insertion holes 6 d are formed at equal intervals in the circumferential direction at positions corresponding to the bolt insertion holes 1 c of the sprocket body 1 a on the outer peripheral portion of the holding plate 6.
 なお、保持プレート6は、スプロケット本体1aに対してピン44を介して回転軸における径方向の位置決めがなされている。 The holding plate 6 is positioned with respect to the sprocket main body 1 a via a pin 44 in the radial direction of the rotation shaft.
 スプロケット本体1a(内歯構成部5)と、保持プレート6及びモータハウジング12は、各ボルト挿通孔1c、6dと雌ねじ孔12eに挿通、螺着する6本のボルト7によって回転軸方向から結合されている。 Sprocket main body 1a (internal tooth forming portion 5), holding plate 6 and motor housing 12 are connected from the rotational axis direction by six bolts 7 inserted and screwed into respective bolt insertion holes 1c and 6d and female screw holes 12e. ing.
 なお、スプロケット本体1aと内歯構成部5は、後述する減速機構11のケーシングとして構成されている。 The sprocket main body 1a and the internal gear forming portion 5 are configured as a casing of a speed reduction mechanism 11 described later.
 カムシャフト2は、外周に一気筒当たり2つの吸気弁をそれぞれ開作動させる2つの卵形の駆動カムが設けられている。また、カムシャフト2は、回転軸方向のカバー部材3側の一端部にフランジ部2aが一体に設けられている。また、このフランジ部2aの前端面中央には、円盤状の凸部2bが一体に設けられている。この凸部2bは、外径がフランジ部2aの外径よりも小さく形成されている。 The camshaft 2 is provided at its outer periphery with two oval drive cams that open the two intake valves per cylinder. Further, the cam shaft 2 is integrally provided with a flange portion 2 a at one end portion on the side of the cover member 3 in the rotational axis direction. Further, a disk-like convex portion 2b is integrally provided at the center of the front end surface of the flange portion 2a. The outer diameter of the convex portion 2 b is smaller than the outer diameter of the flange portion 2 a.
 また、カムシャフト2は、凸部2bの前端面から内部回転軸心方向に沿ってボルト挿入孔が形成されていると共に、このボルト挿入孔の先端側には雌ねじ孔2fが形成されている。 In the camshaft 2, a bolt insertion hole is formed along the direction of the internal rotational axis from the front end face of the projection 2b, and a female screw hole 2f is formed on the tip end side of the bolt insertion hole.
 凸部2bは、図1に示すように、後述する従動部材9の固定端部9a外面に形成された嵌合穴9dに嵌め込まれている。これによって、カムシャフト2に対する従動部材9の径方向及び軸方向の位置決めがなされている。また、フランジ部2aは、各構成部品の組み付け後に、前端面の外周部が大径ボールベアリング43の内輪43bの軸方向外端面に当接配置されるようになっている。このフランジ部2aは、凸部2bが固定端部9aの嵌合穴9dに対して軸方向から嵌め込まれた状態でカムボルト10の軸力によって回転軸方向から結合されている。 The convex part 2b is engage | inserted in the fitting hole 9d formed in the fixed end 9a outer surface of the driven member 9 mentioned later, as shown in FIG. Thus, radial and axial positioning of the driven member 9 with respect to the camshaft 2 is performed. In addition, the flange portion 2a is arranged such that the outer peripheral portion of the front end surface is in contact with the axial outer end surface of the inner ring 43b of the large diameter ball bearing 43 after assembling the respective components. The flange portion 2a is coupled in the rotational axis direction by the axial force of the cam bolt 10 in a state where the convex portion 2b is axially fitted into the fitting hole 9d of the fixed end 9a.
 嵌合穴9dの底面は、スプロケット本体1aの回転軸の径方向において大径ボールベアリング43にオーバーラップする位置に配置形成されている。 The bottom surface of the fitting hole 9d is disposed at a position overlapping the large diameter ball bearing 43 in the radial direction of the rotation shaft of the sprocket main body 1a.
 また、フランジ部2aの外周には、図4に示すように、保持プレート6のストッパ凸部6bが係入するストッパ凹部2cが円周方向に沿って形成されている。このストッパ凹部2cは、円周方向へ所定長さの円弧状に形成されて、この円弧長さ範囲で回動したストッパ凸部6bの両端縁が周方向の対向縁2d、2eにそれぞれ当接するようになっている。この両凹凸部2c、6bの各当接位置において、スプロケット1に対するカムシャフト2の最大進角側あるいは最大遅角側の相対回転位置を機械的に規制するようになっている。 Further, as shown in FIG. 4, on the outer periphery of the flange portion 2a, a stopper concave portion 2c in which the stopper convex portion 6b of the holding plate 6 is engaged is formed along the circumferential direction. The stopper concave portion 2c is formed in an arc shape having a predetermined length in the circumferential direction, and both end edges of the stopper convex portion 6b rotated in the arc length range abut on the opposing edges 2d and 2e in the circumferential direction, respectively. It is supposed to be. At each contact position of the two uneven portions 2c and 6b, the relative rotational position of the camshaft 2 with respect to the sprocket 1 on the maximum advance side or the maximum retard side is mechanically restricted.
 カバー部材3は、図1及び図2に示すように、金属材である例えばアルミニウム合金材によってカップ状に一体に形成され、モータハウジング12の前端部を覆うように配置されている。このカバー部材3は、膨出状のカバー本体3aと、このカバー本体3aの開口側の外周縁に一体に形成された円環状の取付フランジ3bと、を有している。 As shown in FIGS. 1 and 2, the cover member 3 is integrally formed in a cup shape by a metal material, for example, an aluminum alloy material, and is disposed so as to cover the front end of the motor housing 12. The cover member 3 has a bulging cover main body 3a and an annular mounting flange 3b integrally formed on the outer peripheral edge on the opening side of the cover main body 3a.
 カバー本体3aは、外周部側に円筒壁3cが軸方向に沿って一体に設けられている。この円筒壁3cは、内部に形成された保持用孔3dの内周面に後述する保持体28の一部が嵌合保持されている。 The cover body 3a has a cylindrical wall 3c integrally provided on the outer peripheral side along the axial direction. In the cylindrical wall 3c, a part of a holding body 28 described later is fitted and held on the inner peripheral surface of the holding hole 3d formed inside.
 取付フランジ3bは、図1及び図2に示すように、外周部に複数(本願発明では4つ)のボス部3eが周方向のほぼ等間隔位置(約90°位置)に設けられている。この各ボス部3eには、ボルト挿通孔3fがそれぞれ貫通形成されている。このボルト挿通孔3fには、チェーンケース49に有する環状壁49aの周方向4箇所に形成された複数のボス部49bに有する各雌ねじ孔49cに螺着するボルト63が挿通するようになっている。したがって、カバー部材3は、各ボルト63によってチェーンケース49に固定されている。 As shown in FIGS. 1 and 2, the mounting flange 3b is provided with a plurality of (four in the present invention) boss portions 3e at substantially equally spaced positions (about 90 ° positions) in the circumferential direction on the outer peripheral portion. Bolt insertion holes 3f are respectively formed through the bosses 3e. In this bolt insertion hole 3f, bolts 63 screwed into respective female screw holes 49c formed in a plurality of bosses 49b formed at four places in the circumferential direction of an annular wall 49a formed in the chain case 49 are inserted. . Therefore, the cover member 3 is fixed to the chain case 49 by the bolts 63.
 また、カバー本体3aの外周側の段差部内周面とモータハウジング12の外周面との間には、大径なオイルシール61が介装されている。この大径オイルシール61は、シール部がバックアップスプリングを介してモータハウジング12の外周面に摺動可能に弾接して、カバー部材3とモータハウジング12との間をシールしている。 A large diameter oil seal 61 is interposed between the inner peripheral surface of the stepped portion on the outer peripheral side of the cover main body 3 a and the outer peripheral surface of the motor housing 12. The large diameter oil seal 61 has a seal portion slidably in sliding contact with the outer peripheral surface of the motor housing 12 via a backup spring, and seals between the cover member 3 and the motor housing 12.
 チェーンケース49は、図1に示すように、シリンダヘッド01とシリンダブロックの前端側にスプロケット本体1aの歯車部1bに巻回されたチェーン16を覆うように上下方向に沿って配置固定されている。 As shown in FIG. 1, the chain case 49 is disposed and fixed along the vertical direction so as to cover the chain 16 wound around the gear portion 1b of the sprocket body 1a on the front end side of the cylinder head 01 and the cylinder block. .
 従動部材9は、例えば金属材である鉄系金属によって一体に形成され、図1及び図2に示すように、カムシャフト2側に形成された円板状の固定端部9aと、この固定端部9aの内周前端面から軸方向へ突出した円筒部9bと、から構成されている。 The driven member 9 is integrally formed of, for example, an iron-based metal which is a metal material, and as shown in FIGS. 1 and 2, a disk-shaped fixed end 9a formed on the camshaft 2 side and the fixed end It is comprised from the cylindrical part 9b which protruded in the axial direction from the inner peripheral front end surface of the part 9a.
 固定端部9aは、カムシャフト2側の後端面中央位置に円盤状の嵌合穴9dが形成されている。この嵌合穴9dは、前述したように、カムシャフト2の凸部2bが軸方向から嵌り込んで、カムボルト10の軸力によって底面が凸部2bの先端面に軸方向から圧接する。これによって、従動部材9が、カムシャフト2に一体的に結合されている。 In the fixed end 9a, a disc-like fitting hole 9d is formed at the center of the rear end face on the camshaft 2 side. In the fitting hole 9d, as described above, the convex portion 2b of the camshaft 2 is fitted from the axial direction, and the bottom surface is pressed against the tip surface of the convex portion 2b from the axial direction by the axial force of the cam bolt 10. Thus, the driven member 9 is integrally coupled to the camshaft 2.
 また、固定端部9aの外周部には、後述する複数のローラ48を保持する円筒状の保持部材である保持器41が一体に設けられている。 Further, a holder 41 which is a cylindrical holding member for holding a plurality of rollers 48 described later is integrally provided on the outer peripheral portion of the fixed end 9a.
 固定端部9aと円筒部9bは、図1に示すように、中央にカムボルト10の軸部10bが挿通される挿通孔9cが貫通形成されている。また円筒部9bは、外周に第2軸受である小径ボールベアリング37と第3軸受であるニードルベアリング38が軸方向に並んで設けられている。 As shown in FIG. 1, in the fixed end 9a and the cylindrical portion 9b, an insertion hole 9c through which the shaft portion 10b of the cam bolt 10 is inserted is formed at the center. In the cylindrical portion 9b, a small diameter ball bearing 37, which is a second bearing, and a needle bearing 38, which is a third bearing, are provided on the outer periphery in the axial direction.
 そして、スプロケット本体1aのカバー部材3側にオフセット配置された歯車部1bは、第1軸受である大径ボールベアリング43と第2軸受である小径ボールベアリング37との間に配置された状態になっている。また、この歯車部1bは、内歯構成部5の内歯5aと第3軸受であるニードルベアリング38に対してスプロケット1の回転軸心から径方向でオーバーラップする位置に配置されている。 Then, the gear portion 1b disposed offset to the cover member 3 side of the sprocket main body 1a is placed between the large diameter ball bearing 43 as the first bearing and the small diameter ball bearing 37 as the second bearing. ing. Further, the gear portion 1 b is disposed at a position where it radially overlaps from the rotation axis of the sprocket 1 with respect to the internal teeth 5 a of the internal gear forming portion 5 and the needle bearing 38 which is the third bearing.
 カムボルト10は、図1に示すように、頭部10aの軸部10b側の端面が小径ボールベアリング37の内輪を軸方向から当接支持している。また、軸部10bの先端部外周には、カムシャフト2の雌ねじ孔2fに螺着する雄ねじ部10cが形成されている。 As shown in FIG. 1, in the cam bolt 10, the end face of the head portion 10a on the side of the shaft portion 10b abuts and supports the inner ring of the small diameter ball bearing 37 from the axial direction. Further, a male screw portion 10 c screwed to the female screw hole 2 f of the camshaft 2 is formed on the outer periphery of the tip end portion of the shaft portion 10 b.
 位相変更機構4は、従動部材9の円筒部9bの前端側に配置された電動モータ8と、該電動モータ8の回転速度を減速してカムシャフト2に伝達する減速機構11と、から主として構成されている。 The phase change mechanism 4 mainly includes an electric motor 8 disposed on the front end side of the cylindrical portion 9 b of the driven member 9 and a speed reduction mechanism 11 for reducing the rotational speed of the electric motor 8 and transmitting it to the camshaft 2. It is done.
 電動モータ8は、図1及び図2に示すように、ブラシ付きのDCモータであって、スプロケット1と一体に回転するモータハウジング12と、該モータハウジング12の内部に回転可能に設けられたモータ出力軸13と、モータハウジング12の内周面に周方向に沿って固定された円弧状の4つの永久磁石14と、モータハウジング12の前端開口を封止する封止プレート15と、を備えている。 The electric motor 8 is a DC motor with a brush as shown in FIGS. 1 and 2 and includes a motor housing 12 that rotates integrally with the sprocket 1 and a motor rotatably provided inside the motor housing 12. An output shaft 13, four arc-shaped permanent magnets 14 fixed along the circumferential direction on the inner circumferential surface of the motor housing 12, and a sealing plate 15 sealing the front end opening of the motor housing 12 There is.
 モータハウジング12は、図1に示すように、金属材である鉄系金属によって有底筒状に形成されたハウジング本体12aと、該ハウジング本体12aのカムシャフト2側の後端部に一体に有する仕切壁12bと、から構成されている。 As shown in FIG. 1, the motor housing 12 is integrally formed with a housing main body 12a formed in a cylindrical shape with a bottom from an iron-based metal that is a metal material, and a rear end of the housing main body 12a on the camshaft 2 It is comprised from the partition wall 12b.
 ハウジング本体12aは、スプロケット本体1a(内歯構成部5)と同じ外径に形成されて、内歯構成部5に軸方向からボルト固定されている。 The housing main body 12 a is formed to have the same outer diameter as the sprocket main body 1 a (the internal gear forming portion 5), and is bolted to the internal gear forming portion 5 in the axial direction.
 仕切壁12bは、ほぼ中央位置に後述する偏心軸部39を挿通させる大径な軸部挿通孔12cが形成されている。また、この軸部挿通孔12cの孔縁には、カバー部材3方向へ突出した円筒状の延出部12dが一体に設けられている。 The partition wall 12b is formed with a large diameter shaft portion insertion hole 12c through which an eccentric shaft portion 39 described later is inserted at a substantially central position. In addition, a cylindrical extension 12d projecting in the direction of the cover member 3 is integrally provided at a hole edge of the shaft insertion hole 12c.
 図6は電動モータ8のモータ出力軸13と鉄心ロータ17を示す平面図である。 FIG. 6 is a plan view showing the motor output shaft 13 of the electric motor 8 and the iron core rotor 17.
 モータ出力軸13は、図1及び図6に示すように、段差円筒状に形成されて、軸方向のほぼ中央位置に形成された段差部13cを介してカムシャフト2側の大径部13aと、カバー部材3側の小径部13bと、から構成されている。 As shown in FIGS. 1 and 6, the motor output shaft 13 is formed in a step cylindrical shape, and the large diameter portion 13a on the camshaft 2 side with the step portion 13c formed substantially at the center position in the axial direction. , And a small diameter portion 13b on the cover member 3 side.
 大径部13aは、外周に鉄心ロータ17が圧入固定されていると共に、後端側に偏心回転体である偏心軸部39が一体に設けられている。また、大径部13aの内周には、ボールベアリング37とニードルベアリング38が設けられている。 In the large diameter portion 13a, the iron core rotor 17 is press-fitted and fixed to the outer periphery, and an eccentric shaft portion 39 which is an eccentric rotating body is integrally provided on the rear end side. Further, a ball bearing 37 and a needle bearing 38 are provided on the inner periphery of the large diameter portion 13a.
 ボールベアリング37は、内輪が円筒部9bの先端部の段差小径部に固定され、外輪が大径部13aの内周面に固定されて、モータ出力軸13を円筒部9bに軸受けしている。一方、小径部13bは、外周に合成樹脂材の円環部材20が固定されていると共に、該円環部材20の外周面全体にコミュテータ21が固定されている。 In the ball bearing 37, the inner ring is fixed to the step small diameter portion at the tip of the cylindrical portion 9b, the outer ring is fixed to the inner peripheral surface of the large diameter portion 13a, and the motor output shaft 13 is supported by the cylindrical portion 9b. On the other hand, in the small diameter portion 13b, the annular member 20 made of a synthetic resin material is fixed to the outer periphery, and the commutator 21 is fixed to the entire outer peripheral surface of the annular member 20.
 この円環部材20とコミュテータ21は、段差部13cによって軸方向の位置決めがなされている。円環部材20は、その外径が大径部13aの外径とほぼ同一に形成されていると共に、軸方向の長さが小径部13bよりも僅かに短く形成されている。 The annular member 20 and the commutator 21 are axially positioned by the step 13 c. The annular member 20 is formed such that the outer diameter thereof is substantially the same as the outer diameter of the large diameter portion 13a, and the axial length thereof is formed slightly shorter than the small diameter portion 13b.
 また、小径部13bの内周には、栓体50が圧入固定されている。この栓体50は、合成樹脂材によって有底円筒状に形成されて、外周に小径部13bの内周面に弾接するシールリング51が設けられている。このシールリング51は、モータ出力軸13の大径部13a側から内部へ導入された潤滑油がカバー部材3の内側へ流れないように規制するようになっている。 Moreover, the plug 50 is press-fitted and fixed to the inner periphery of the small diameter portion 13 b. The plug body 50 is formed in a cylindrical shape with a bottom from a synthetic resin material, and a seal ring 51 resiliently contacting the inner peripheral surface of the small diameter portion 13b is provided on the outer periphery. The seal ring 51 regulates the lubricating oil introduced into the inside from the side of the large diameter portion 13 a of the motor output shaft 13 so as not to flow to the inside of the cover member 3.
 鉄心ロータ17は、複数の磁極を持つ磁性材によって形成され、外周側がコイル18のコイル線を巻回させるスロットを有するボビンとして構成されている。 The iron core rotor 17 is formed of a magnetic material having a plurality of magnetic poles, and the outer peripheral side is configured as a bobbin having a slot for winding the coil wire of the coil 18.
 コミュテータ21は、導電材によって円環状に形成されて、鉄心ロータ17の極数と同数に分割された各セグメントに前記コイル18の引き出されたコイル線の端末が電気的に接続されている。 The commutator 21 is annularly formed of a conductive material, and the ends of the drawn coil wire of the coil 18 are electrically connected to the segments divided into the same number as the number of poles of the iron core rotor 17.
 永久磁石14は、図1に示すように、全体が円筒状に形成されて円周方向に複数の磁極を有している。 As shown in FIG. 1, the permanent magnet 14 is formed in a cylindrical shape as a whole and has a plurality of magnetic poles in the circumferential direction.
 封止プレート15は、モールド成形によって形成されており、合成樹脂材のプレート本体15aと、該プレート本体15a内に埋め込まれた金属板15bと、から構成されている。この封止プレート15は、中央位置にモータ出力軸13の一端部などが挿通される軸挿通孔15cが貫通形成されている。 The sealing plate 15 is formed by molding, and is composed of a plate main body 15a of a synthetic resin material and a metal plate 15b embedded in the plate main body 15a. The sealing plate 15 is formed with a shaft insertion hole 15c through which one end of the motor output shaft 13 and the like are inserted at a central position.
 また、金属板15bは、プレート本体15aから露出した外周部がハウジング本体12aの前端部の段差部にかしめ固定されている。 The metal plate 15b has its outer periphery exposed from the plate body 15a caulked and fixed to the stepped portion of the front end of the housing body 12a.
 封止プレート15は、図5にも示すように、プレート本体15aに設けられた一対の樹脂ホルダー23a、23bと、この各樹脂ホルダー23a、23bの内部に径方向に沿って摺動可能に収容配置された一対の切換用のブラシ25a、25bと、樹脂ホルダー23a、23bの前端面に、各外端面が露出された状態で埋め込み固定された内外二重の円環状の給電用スリップリング26a、26bと、各ブラシ25a、25bと各スリップリング26a、26bとを電気的に接続するピグテールハーネス27a、27bと、を有している。 As also shown in FIG. 5, the sealing plate 15 is housed slidably along the radial direction in the pair of resin holders 23a and 23b provided on the plate main body 15a and the respective resin holders 23a and 23b. Inner and outer double annular power supply slip rings 26a embedded and fixed in a state where the outer end faces are exposed on the front end surfaces of the pair of switching brushes 25a and 25b and the resin holders 23a and 23b. It has 26b and pigtail harness 27a, 27b which electrically connects each brush 25a, 25b and each slip ring 26a, 26b.
 各ブラシ25a、25bは、コイルスプリング24a、24bのばね力で各先端面がコミュテータ21の外周面に径方向外側から弾接している。 The tip end surfaces of the brushes 25a and 25b elastically contact the outer peripheral surface of the commutator 21 from the outside in the radial direction due to the spring force of the coil springs 24a and 24b.
 カバー本体3aは、合成樹脂材によって一体的にモールドされた保持体28が取り付けられている。この保持体28は、図1及び図2に示すように、側面視ほぼL字形状に形成され、保持用孔3dに挿入されるほぼ円筒状のブラシ保持部28aと、該ブラシ保持部28aの上端部に有するコネクタ部28bと、ブラシ保持部28aの一側面に一体に突設されて、カバー本体3aにボルト固定されるブラケット部28cと、内部に大部分が埋設された一対の給電用端子片29、29と、を有している。 The cover body 3a is attached with a holder 28 integrally molded of a synthetic resin material. As shown in FIGS. 1 and 2, the holding body 28 is formed substantially in an L shape in a side view, and has a substantially cylindrical brush holding portion 28a inserted into the holding hole 3d, and the brush holding portion 28a. A connector portion 28b at the upper end portion, a bracket portion 28c which is integrally protruded on one side of the brush holding portion 28a and is bolted to the cover main body 3a, and a pair of feeding terminals embedded mostly in the inside And 29 have pieces 29 and 29.
 ブラシ保持部28aは、ほぼ水平方向(軸方向)に延設されて、内部の上下位置(モータハウジング12の軸心に対して内外周側)に導電材からなる一対の角筒状のブラシホルダ31a、31bがそれぞれモールド固定されている。 The brush holding portion 28a extends substantially in the horizontal direction (axial direction), and is a pair of rectangular cylindrical brush holders made of a conductive material at the inner upper and lower positions (inner and outer peripheral sides with respect to the axis of the motor housing 12). 31a and 31b are respectively mold fixed.
 また、各ブラシホルダ31a、31bは、それぞれの内部に、各先端面が各給電用スリップリング26a、26bに軸方向からそれぞれ当接する一対の給電用ブラシ30a、30bが軸方向へ摺動可能に保持されている。 Further, in each of the brush holders 31a and 31b, a pair of feeding brushes 30a and 30b whose axial end faces contact with the feeding slip rings 26a and 26b in the axial direction, respectively, can slide in the axial direction. It is held.
 一対の給電用端子片29、29は、上下方向に沿って平行かつクランク状に形成され、一方側(下端側)の各端子29a、29aが底壁の外面に露出状態で配置されている。一方、他方側(上端側)の各端子29b、29bは、コネクタ部28bの雌型嵌合溝28d内に突設されている。また、該他方側の各端子29b、29bは、図外の雌端子やハーネスを介して図外のコントロールユニットに接続されている。 The pair of feeding terminal pieces 29, 29 are formed in parallel and in a crank shape along the vertical direction, and the terminals 29a, 29a on one side (lower end side) are arranged in an exposed state on the outer surface of the bottom wall. On the other hand, the terminals 29b and 29b on the other side (upper end side) are provided in a projecting manner in the female fitting groove 28d of the connector portion 28b. The other terminals 29b and 29b are connected to a control unit (not shown) via a female terminal and a harness (not shown).
 各給電用ブラシ30a、30bは、図1及び図2にも示すように、ほぼ長方体に形成されて、後部側に弾装された一対の第2コイルスプリング33a、33bのばね力によってそれぞれ各スリップリング26a、26b方向へ付勢されている。また、給電用ブラシ30a、30bの後端部と一方側端子29a、29aとは、可撓変形可能な図外の一対のピグテールハーネスによって電気的に接続されている。 As shown in FIGS. 1 and 2, each of the power supply brushes 30a and 30b is formed in a substantially rectangular shape, and is driven by the spring force of a pair of second coil springs 33a and 33b resiliently mounted on the rear side. It is biased in the direction of each slip ring 26a, 26b. Further, the rear end portions of the power supply brushes 30a and 30b and the one side terminals 29a and 29a are electrically connected by a pair of pigtail harnesses (not shown) which can be flexibly deformed.
 ブラシ保持部28aの基部側外周に形成された円環状の嵌着溝内には、円筒壁3cの内周面とブラシ保持部28aとの間をシールするシールリング34が保持されている。 A seal ring 34 for sealing the space between the inner peripheral surface of the cylindrical wall 3c and the brush holding portion 28a is held in an annular fitting groove formed on the outer periphery on the base side of the brush holding portion 28a.
 ブラケット部28cは、図2に示すように、ほぼ中央位置にボルト挿通孔28eが貫通形成されている。この各ボルト挿通孔28eには、カバー本体3aに形成された図外の雌ねじ孔に螺着するボルトが挿通されて保持体28全体をカバー本体3aに取り付けるようになっている。 As shown in FIG. 2, in the bracket portion 28c, a bolt insertion hole 28e is formed in a substantially central position. In each of the bolt insertion holes 28e, a bolt screwed into a female screw hole (not shown) formed in the cover main body 3a is inserted, and the entire holding body 28 is attached to the cover main body 3a.
 また、大径部13aの外周面とモータハウジング12の延出部12dの内周面との間には、減速機構11の内部からモータハウジング12内への潤滑油の流入を規制する小径なオイルシール62が設けられている。 In addition, a small diameter oil that restricts the inflow of lubricating oil from the inside of the reduction gear mechanism 11 into the motor housing 12 between the outer peripheral surface of the large diameter portion 13 a and the inner peripheral surface of the extending portion 12 d of the motor housing 12. A seal 62 is provided.
 図7は図1のD部拡大図、図8は図3のE部拡大図である。 7 is an enlarged view of a portion D of FIG. 1, and FIG. 8 is an enlarged view of a portion E of FIG.
 減速機構11は、図1~図3及び図7に示すように、偏心回転運動を行う円筒状の偏心軸部39と、該偏心軸部39の外周に設けられた第4軸受である中径ボールベアリング47と、該中径ボールベアリング47の外周に設けられた複数の転動体であるローラ48と、該各ローラ48を転動方向に保持しつつ径方向の移動を許容する保持器41と、を有している。 As shown in FIGS. 1 to 3 and 7, the reduction gear mechanism 11 is a cylindrical eccentric shaft 39 that performs eccentric rotational movement, and a medium diameter that is a fourth bearing provided on the outer periphery of the eccentric shaft 39. A ball bearing 47, a plurality of rollers 48 as rolling elements provided on the outer periphery of the medium diameter ball bearing 47, and a holder 41 for allowing movement in the radial direction while holding the rollers 48 in the rolling direction ,have.
 偏心軸部39は、焼き入れ鋼材によって形成され、モータ出力軸13の大径部13aの外端縁から軸方向へ沿って延びている。また、偏心軸部39は、外径がモータ出力軸13の大径部13aの外径より僅かに小さく形成されていると共に、外周面が円環状の偏心カム面39aになっている。 The eccentric shaft portion 39 is formed of hardened steel and extends in the axial direction from the outer end edge of the large diameter portion 13 a of the motor output shaft 13. The eccentric shaft 39 has an outer diameter slightly smaller than the outer diameter of the large diameter portion 13a of the motor output shaft 13, and the outer peripheral surface is an annular eccentric cam surface 39a.
 また、偏心軸部39は、円筒部9bにニードルベアリング38を介して軸受けされている。このニードルベアリング38は、偏心軸部39の内周面に圧入された円筒状のリテーナ38aと、該リテーナ38aの内部に回転可能に保持された複数のニードルローラ38bと、から構成されている。このニードルローラ38bは、偏心軸部39の内周面と円筒部9bの外周面との間を転動して、偏心軸部39を円筒部9bに軸受けさせている。 In addition, the eccentric shaft portion 39 is supported by the cylindrical portion 9 b via a needle bearing 38. The needle bearing 38 includes a cylindrical retainer 38a press-fitted to the inner peripheral surface of the eccentric shaft 39, and a plurality of needle rollers 38b rotatably held inside the retainer 38a. The needle roller 38b rolls between the inner peripheral surface of the eccentric shaft 39 and the outer peripheral surface of the cylindrical portion 9b, and bears the eccentric shaft 39 on the cylindrical portion 9b.
 偏心カム面39aは、図3に示すように、円周方向の肉厚が変化して外径の軸中心Yがモータ出力軸13の軸心Xから径方向へ僅かに偏心している。つまり、偏心軸部39は、円周方向で肉厚が変化して最小肉厚部39cと、該最小肉厚部39cに回転軸心の径方向から対向位置(180°位置)にある最大肉厚部39dと、を有している。これによって、偏心カム面39aは、偏心軸部39の軸中心Yがモータ出力軸13の軸心Xから径方向へ僅かに偏心している。また、偏心軸部39は、図7にも示すように、カムシャフト2側の先端部外周面に後述するスナップリング56が嵌着する円環溝39eが形成されている。 As shown in FIG. 3, the thickness of the eccentric cam surface 39 a changes in the circumferential direction, and the axial center Y of the outer diameter is slightly eccentric from the axial center X of the motor output shaft 13 in the radial direction. That is, the thickness of the eccentric shaft 39 changes in the circumferential direction and the minimum thickness 39c and the maximum thickness at the position (180 ° position) opposite to the minimum thickness 39c from the radial direction of the rotation axis And a thick portion 39d. Thus, in the eccentric cam surface 39a, the axial center Y of the eccentric shaft 39 is slightly eccentric in the radial direction from the axial center X of the motor output shaft 13. Further, as shown in FIG. 7, the eccentric shaft 39 is formed with an annular groove 39e in which a snap ring 56 described later is fitted on the outer peripheral surface of the tip end on the camshaft 2 side.
 偏心軸部39とニードルベアリング38は、スプロケット本体1aの回転軸から径方向において、歯車部1bとオーバーラップした位置に配置されている。 The eccentric shaft portion 39 and the needle bearing 38 are disposed at a position overlapping the gear portion 1 b in the radial direction from the rotation axis of the sprocket main body 1 a.
 中径ボールベアリング47は、図1、図3及び図7に示すように、内輪47aと、外輪47b及び両輪47a、47bとの間に介装されたボール47cと、から構成されている。また、この中径ボールベアリング47は、スプロケット本体1aの回転軸の径方向において歯車部1bとオーバーラップした位置に配置されている。 As shown in FIGS. 1, 3 and 7, the medium diameter ball bearing 47 is composed of an inner ring 47a, and a ball 47c interposed between the outer ring 47b and both the rings 47a and 47b. The medium diameter ball bearing 47 is disposed at a position overlapping the gear portion 1b in the radial direction of the rotation shaft of the sprocket main body 1a.
 内輪47aは、内周面47dが偏心軸部39のカム面39aの外周面に圧入されることなく、約0.1mm程度の微小隙間Cをもって対向している。 The inner ring 47a is opposed to the inner peripheral surface 47d with a minute gap C of about 0.1 mm without being press-fitted to the outer peripheral surface of the cam surface 39a of the eccentric shaft portion 39.
 また、内輪47aは、軸方向の前端縁がモータ出力軸13の大径部13aとの間の段差縁39bに当接している一方、後端縁が図7にも示すように、スナップリング56に軸方向から当接している。したがって、内輪47aは、段差縁39bとスナップリング56によって軸方向(幅方向)の位置決めがされていると共に、カム面39aからの抜け出しが規制されている。 Further, the inner ring 47a is in contact with the step edge 39b between the front end edge in the axial direction and the large diameter portion 13a of the motor output shaft 13, while the rear end edge is also shown in FIG. In the axial direction. Therefore, the inner ring 47a is positioned in the axial direction (width direction) by the step edge 39b and the snap ring 56, and the removal from the cam surface 39a is restricted.
 一方、外輪47bは、軸方向(幅方向)で固定されることなくフリーな状態になっている。つまり、この外輪47bは、幅方向の電動モータ8側の一端面がどの部位にも接触せず、また他端面がこれに対向する保持器41の内側面との間に微小な第1隙間C1が形成されてフリーな状態になっている。 On the other hand, the outer ring 47 b is in a free state without being fixed in the axial direction (width direction). That is, in the outer ring 47b, one end face on the side of the electric motor 8 in the width direction does not contact any part, and the other end face is a minute first gap C1 between the outer face and the inner side face of the cage 41 opposed thereto. Is formed and free.
 また、この外輪47bは、外周面に各ローラ48の外周面が転動可能に当接していると共に、外周側には、図1に示すように円環状の第2隙間C2が形成されている。この第2隙間C2によって中径ボールベアリング47全体が、偏心軸部39の偏心回転に伴って径方向へ移動可能、つまり偏心動可能になっている。 In addition, the outer ring 47b has the outer circumferential surface on which the outer circumferential surface of each roller 48 rollably abuts, and on the outer circumferential side, an annular second gap C2 is formed as shown in FIG. . The entire medium diameter ball bearing 47 is movable in the radial direction according to the eccentric rotation of the eccentric shaft portion 39, that is, the eccentric movement is possible by the second gap C2.
 中径ボールベアリング47は、内輪47aの径方向の肉厚tが通常一般のボールベアリングの内輪の径方向の肉厚よりも大きく設定されている。よって、内輪47aは、外径が通常よりも必然的に大きく形成されている。このため、前記ボール47cの個数を通常一般のボールベアリングのボールの数よりも多く配置してある。これによって、ボール47c全体に対する面圧が低くなって耐久性の向上が図れる。 In the medium diameter ball bearing 47, the thickness t in the radial direction of the inner ring 47a is set larger than the thickness in the radial direction of the inner ring of a general ball bearing. Therefore, the inner ring 47a is necessarily formed to have an outer diameter larger than usual. For this reason, the number of balls 47c is larger than the number of balls of a general ball bearing. As a result, the surface pressure against the entire ball 47c is reduced, and the durability can be improved.
 保持器41は、図1及び図7に示すように、固定端部9aの外周部前端から前方へ断面ほぼL字形状に折曲されて、円筒部9bと同方向へ突出した有底円筒状に形成されている。 As shown in FIGS. 1 and 7, the retainer 41 is bent in a substantially L-shape in cross section from the front end of the outer periphery of the fixed end 9a to a bottomed cylindrical shape projecting in the same direction as the cylindrical portion 9b. Is formed.
 この保持器41の筒状先端部41aは、仕切壁12bとの間に形成された円環凹状の収容空間S1を介してハウジング本体12aの仕切壁12b方向へ延出している。また、筒状先端部41aの周方向のほぼ等間隔位置には、図1~図3、図7に示すように、複数のローラ48をそれぞれ転動可能に保持するほぼ長方形状の複数のローラ保持孔41bが周方向の等間隔位置に複数形成されている。 The cylindrical distal end portion 41a of the holder 41 extends in the direction of the partition wall 12b of the housing main body 12a via the annular concave housing space S1 formed between the cylindrical end portion 41a and the partition wall 12b. Also, as shown in FIGS. 1 to 3 and 7, substantially rectangular shaped rollers that hold the plurality of rollers 48 so as to be able to roll, respectively, at substantially equally spaced positions in the circumferential direction of the cylindrical tip portion 41 a A plurality of holding holes 41 b are formed at equal intervals in the circumferential direction.
 このローラ保持孔41bは、各ローラ48の保持器41の径方向の移動を許容しつつ周方向の移動を規制するようになっている。また、ローラ保持孔41b(ローラ48)は、その全体の数が内歯構成部5の内歯5aの全体の歯数よりも1つ少なくなっている。 The roller holding holes 41 b are configured to restrict the circumferential movement while allowing the radial movement of the holders 41 of the rollers 48. Further, the total number of roller holding holes 41 b (rollers 48) is one less than the total number of internal teeth 5 a of the internal tooth configuration portion 5.
 各ローラ48は、例えば鋼製の鉄系金属によって形成され、中径ボールベアリング47の偏心動に伴って径方向へ移動しつつ内歯構成部5の内歯5a内に嵌入されている。また、各ローラ48は、保持器41のローラ保持孔41bの両側縁によって周方向へガイドされつつ径方向へ揺動運動可能になっている。 Each roller 48 is formed of, for example, a steel-based iron-based metal, and is fitted into the internal teeth 5 a of the internal gear component 5 while moving in the radial direction with the eccentric motion of the medium diameter ball bearing 47. Further, each roller 48 can be rocked in the radial direction while being guided in the circumferential direction by the both side edges of the roller holding hole 41 b of the holder 41.
 各ローラ48は、各ローラ保持孔41b内に収容されて内各内歯5aと外輪47bとの間にセットされた状態では、図7に示すように、ローラ48の外面と内歯5aの内面との間に、ラジアルクリアランスC3(バックラッシ)が形成されている。また、この状態でローラ48の外面とローラ保持孔41bの対向する一方の側面との間に、ケージクリアランスが形成されている。このラジアルクリアランスC3とケージクリアランスは、減速機構11の変換作動時おいてローラ48の転動初期の作動応答性を確保するために必要なものである。 In the state where each roller 48 is accommodated in each roller holding hole 41b and set between the inner teeth 5a and the outer ring 47b, as shown in FIG. 7, the outer surface of the roller 48 and the inner surface of the inner teeth 5a. And a radial clearance C3 (backlash) is formed therebetween. Further, in this state, a cage clearance is formed between the outer surface of the roller 48 and the opposite side surface of the roller holding hole 41b. The radial clearance C3 and the cage clearance are necessary to ensure the operation responsiveness of the rolling initial stage of the roller 48 at the time of the conversion operation of the reduction gear mechanism 11.
 また、ラジアルクリアランスC3は、偏心軸部39のカム面39aと内輪47aの内周面との間の微小隙間Cよりも小さく設定されている。 The radial clearance C3 is set smaller than the minute clearance C between the cam surface 39a of the eccentric shaft 39 and the inner peripheral surface of the inner ring 47a.
 減速機構11のケーシング内部には、図外のメインオイルギャラリーから内燃機関の各摺動部などに供給される潤滑油が油導入回路52を介して導入されるようになっている。この油導入回路52は、シリンダヘッド01内に形成された導入通路53と、カムシャフト2の内部軸方向に形成されて、上流端が導入通路53に連通する導入孔54と、固定端部9a内に形成されて、上流端が導入孔54に連通し、下流端が減速機構11内のニードルベアリング38近傍に開口した油孔55とから構成されている。 Lubricating oil supplied from the main oil gallery (not shown) to the sliding parts of the internal combustion engine is introduced into the inside of the casing of the reduction gear mechanism 11 through the oil introducing circuit 52. The oil introduction circuit 52 is provided with an introduction passage 53 formed in the cylinder head 01, an introduction hole 54 which is formed in the inner axial direction of the camshaft 2 and whose upstream end communicates with the introduction passage 53, and a fixed end 9a. An oil hole 55 is formed inside and has an upstream end communicating with the introduction hole 54 and a downstream end opened near the needle bearing 38 in the reduction gear mechanism 11.
 また、偏心軸部39は、図3、図6~図8に示すように、最大肉厚部39dの外周面に凹部40が形成されている。また、この凹部40内には、付勢部材である板ばね42が収容配置されている。 Further, as shown in FIGS. 3 and 6 to 8, in the eccentric shaft 39, a recess 40 is formed on the outer peripheral surface of the largest thickness portion 39d. Further, in the recess 40, a plate spring 42 which is a biasing member is accommodated and disposed.
 具体的に説明すると、凹部40は、偏心軸部39の最大肉厚部39dの外周部を接線方向に沿って長方形状に切欠されて縦断面Dカット状(三日月状)に形成されている。また、凹部40は、底面40aが平坦状に形成されている。 Specifically, the recess 40 is formed by cutting the outer peripheral portion of the largest thickness portion 39 d of the eccentric shaft 39 in a rectangular shape along the tangential direction to form a D-cut (crescent) shape in a longitudinal cross section. Further, the bottom surface 40 a of the recess 40 is formed flat.
 凹部40は、その幅方向の長さWが中径ボールベアリング47の内輪47aの幅W1よりも小さく形成されている。また、この凹部40は、内輪47aの幅中心側に形成されて、つまり内輪47aの両端縁より内側の領域に形成されている。さらに、この凹部40は、歯車部1bに対してスプロケット本体1aの回転軸の径方向において、オーバーラップした位置に配置されている。 The recess 40 is formed such that the length W in the width direction thereof is smaller than the width W 1 of the inner ring 47 a of the medium diameter ball bearing 47. Further, the recess 40 is formed on the width center side of the inner ring 47a, that is, in the area inside the both end edges of the inner ring 47a. Furthermore, the recess 40 is disposed at an overlapping position in the radial direction of the rotation shaft of the sprocket main body 1a with respect to the gear portion 1b.
 板ばね42は、細長い長方形のステンレス鋼板を円弧状(湾曲状)に折曲形成されている。この板ばね42は、長手方向の中央位置に有する円弧頂部42aと、該円弧頂部42aを中心に左右方向へ延びた両端部42b、42cと、から構成されている。 The plate spring 42 is formed by bending an elongated rectangular stainless steel plate into an arc shape (curved shape). The plate spring 42 includes an arc top 42a at a central position in the longitudinal direction, and both ends 42b and 42c extending in the left and right direction around the arc top 42a.
 この板ばね42は、凹部40の形成位置からして歯車部1bに径方向でオーバーラップした位置に配置されている。 The plate spring 42 is disposed at a position where the plate spring 42 radially overlaps the gear portion 1 b from the position where the recess 40 is formed.
 円弧頂部42aは、外方へ円弧状に突出し、外面が内輪47aの内周面47dに径方向外側に向かって僅かな弾性力をもって当接している。 The arc top 42a protrudes outward in an arc shape, and the outer surface is in contact with the inner peripheral surface 47d of the inner ring 47a radially outward with a slight elastic force.
 一方、両端部42b、42cは、それぞれが外側へほぼ水平方向に沿って折曲形成され、それぞれの矩形状の下面42d、42eが凹部40の底面40aに当接している。 On the other hand, both end portions 42 b and 42 c are respectively formed to be bent outward along a substantially horizontal direction, and the rectangular lower surfaces 42 d and 42 e are in contact with the bottom surface 40 a of the recess 40.
 すなわち、この板ばね42は、凹部40内にセットされた状態では、両端部42b、42cの各下面42d、42eが凹部40の底面40aの両端面に面接触状態で当接している。一方、頂部42aは、中径ボールベアリング47の内輪47aの内周面47dに対して当接している。つまり、板ばね42が凹部40内にセットされた状態では、両端部42b、42cが凹部底面40aの両端面に僅かな弾性力をもって当接している。また、頂部42aもボールベアリング47の内輪47aの内周面47dに僅かな弾性力をもって当接している。したがって、これらの各部の弾性力によって相対的な逆方向のばね力が作用してばね荷重が付与されるのである。このばね荷重によって、偏心軸部39とボールベアリング47の内輪47aが弾性的に一体化している。 That is, in the state where the plate spring 42 is set in the recess 40, the lower surfaces 42 d and 42 e of the both end portions 42 b and 42 c are in contact with both end surfaces of the bottom surface 40 a of the recess 40 in a surface contact state. On the other hand, the top portion 42 a is in contact with the inner peripheral surface 47 d of the inner ring 47 a of the medium diameter ball bearing 47. That is, in a state where the plate spring 42 is set in the recess 40, the both end portions 42b and 42c are in contact with both end surfaces of the recess bottom surface 40a with a slight elastic force. Further, the top portion 42 a is also in contact with the inner peripheral surface 47 d of the inner ring 47 a of the ball bearing 47 with a slight elastic force. Therefore, the spring force of relative reverse acts by the elastic force of these parts, and a spring load is given. By this spring load, the eccentric shaft portion 39 and the inner ring 47a of the ball bearing 47 are elastically integrated.
 この板ばね42は、長手方向の長さLが凹部40の長さよりも十分に小さく形成されて、凹部40内での自由な伸縮方向への弾性変形が許容されている。この弾性変形、つまり長さ方向に向かって自由に伸縮変形したときには、通常は頂部42aを中心として両端部42b、42cの各下面42d、42eが、凹部40の底面40a上を図8中、左右に摺動するようになっている。 The leaf spring 42 is formed to have a length L in the longitudinal direction sufficiently smaller than the length of the recess 40, and allows elastic deformation in the free stretch direction in the recess 40. In this elastic deformation, that is, when it is freely expanded and contracted in the length direction, the lower surfaces 42d and 42e of the both ends 42b and 42c usually center on the top 42a, and the left and right in FIG. It is supposed to slide on.
 この板ばね42は、図6に示すように、幅長さW3が凹部40の幅長さWよりも小さく形成されて、自身の伸縮方向への弾性変形時にも両側縁が凹部40の幅方向の対向両内側面に干渉することないように形成されている。 As shown in FIG. 6, the width W3 of the plate spring 42 is smaller than the width W of the recess 40, and the side edges of the plate spring 42 are also in the width direction of the recess 40 during elastic deformation in the expansion and contraction direction of itself. It is formed so as not to interfere with the opposite inner side surfaces of the
 コントロールユニットは、図外のクランク角センサやエアーフローメータ、水温センサ、アクセル開度センサなど各種のセンサ類から情報信号に基づいて現在の機関運転状態を検出して機関制御を行う。また、コントロールユニットは、図外の回転検出機構で検出されたモータ出力軸13の回転位置信号に基づいて電動モータ8の回転制御を行う。これによって、減速機構11を介してカムシャフト2のスプロケット1に対する相対回転位相を制御するようになっている。
〔本実施形態の作用〕
 まず、機関が始動してクランクシャフトが回転駆動すると歯車部1bに巻回されたチェーン16を介してスプロケット1が回転する。その回転力が内歯構成部5を介してモータハウジング12に伝達されて同期回転する。一方、内歯構成部5の回転力が、各ローラ48から保持器41及び従動部材9を経由してカムシャフト2に伝達される。これによって、カムシャフト2の各駆動カムがバルブスプリングのばね力を介して各吸気弁を開閉作動させる。
The control unit performs engine control by detecting the current engine operating state based on information signals from various sensors such as a crank angle sensor, an air flow meter, a water temperature sensor, an accelerator opening sensor, etc., which are not shown. The control unit also controls the rotation of the electric motor 8 based on the rotational position signal of the motor output shaft 13 detected by a rotation detection mechanism (not shown). Thus, the relative rotational phase of the camshaft 2 with respect to the sprocket 1 is controlled via the reduction gear mechanism 11.
[Operation of this embodiment]
First, when the engine is started and the crankshaft is rotationally driven, the sprocket 1 is rotated via the chain 16 wound around the gear portion 1b. The rotational force is transmitted to the motor housing 12 via the internal gear 5 to synchronously rotate. On the other hand, the rotational force of the internal gear forming portion 5 is transmitted from the rollers 48 to the camshaft 2 via the cage 41 and the driven member 9. Thereby, each drive cam of the camshaft 2 opens and closes each intake valve through the spring force of the valve spring.
 そして、機関始動後の所定の機関運転時には、コントロールユニットから各端子片29,29や各ピグテールハーネス及び給電用ブラシ30a、30b、各スリップリング26a、26bなどを介して電動モータ8のコイル18に通電される。これによって、モータ出力軸13が回転駆動し、この回転力が減速機構11を介してカムシャフト2に減速された回転力が伝達される。 Then, at the time of predetermined engine operation after engine start, the coil 18 of the electric motor 8 is connected to the coil 18 of the electric motor 8 from the control unit via the terminal pieces 29, 29 and the pigtail harnesses, the power feeding brushes 30a, 30b, the slip rings 26a, 26b, etc. It is energized. As a result, the motor output shaft 13 is rotationally driven, and the torque reduced in speed is transmitted to the camshaft 2 via the reduction mechanism 11.
 すなわち、モータ出力軸13の回転に伴い偏心軸部39が偏心回転する。そうすると、各ローラ48は、モータ出力軸13の1回転毎に各ローラ保持孔41bで径方向へガイドされながら内歯構成部5の一つの内歯5aを乗り越えて隣接する他の内歯5aに転動しながら移動する。これを順次繰り返しながら円周方向へ転接する。この各ローラ48の転接によってモータ出力軸13の回転が減速されつつ従動部材9(カムシャフト2)に回転力が伝達される。なお、このときの減速比は、各ローラ48の個数などによって任意に設定することが可能である。 That is, as the motor output shaft 13 rotates, the eccentric shaft 39 eccentrically rotates. Then, each roller 48 is guided by the roller holding hole 41b in the radial direction every one rotation of the motor output shaft 13 while passing over one internal tooth 5a of the internal gear forming portion 5 and adjacent to the other internal tooth 5a adjacent thereto. Move while rolling. The rolling contact is made in the circumferential direction while repeating this sequentially. The rotation of the motor output shaft 13 is decelerated by the rolling contact of the rollers 48, and the rotational force is transmitted to the driven member 9 (camshaft 2). Note that the speed reduction ratio at this time can be set arbitrarily according to the number of rollers 48 and the like.
 これにより、カムシャフト2は、スプロケット1に対して正逆相対回転して相対回転位相が変換される。したがって、各吸気弁は、開閉タイミングが進角側あるいは遅角側に変換制御される。このように、吸気弁の開閉タイミングが進角側あるいは遅角側へ最大に変換されることによって機関の燃費や出力などの機関性能の向上が図れる。 Thereby, the camshaft 2 rotates in the forward and reverse directions with respect to the sprocket 1 to convert the relative rotational phase. Therefore, the open / close timing of each intake valve is controlled to be advanced or retarded. Thus, the engine performance such as fuel efficiency and output of the engine can be improved by converting the opening / closing timing of the intake valve to the advance side or the retard side to the maximum.
 また、前述のように、クランクシャフトからの回転力がチェーン16と歯車部1bを介してスプロケット1に伝達される。このとき、チェーン16には張力が発生し、この張力が歯車部1bに対して図1中の下方への引っ張り力として作用する。 Further, as described above, the rotational force from the crankshaft is transmitted to the sprocket 1 through the chain 16 and the gear portion 1b. At this time, tension is generated in the chain 16, and this tension acts as a downward pulling force in FIG. 1 on the gear portion 1b.
 チェーン16によって歯車部1bに対して下方への引っ張り力が作用すると、該歯車部1bと径方向でオーバーラップした位置にある内歯5aからローラ48に対して径方向外側から押圧力が働く。このため、内歯5aの内面とローラ48との間の特にラジアルクリアランスC3が減少する。これにより、内歯5aの内面とローラ48の外面との間のガタが吸収されて振動や異音(ガタ音)の発生を抑制できる。 When a downward tensile force acts on the gear portion 1 b by the chain 16, a pressing force is exerted from the radially outer side on the roller 48 from the internal teeth 5 a located at a position radially overlapped with the gear portion 1 b. For this reason, especially the radial clearance C3 between the inner surface of the internal tooth 5a and the roller 48 is reduced. As a result, rattling between the inner surface of the internal teeth 5a and the outer surface of the roller 48 is absorbed, and the generation of vibration and noise (later noise) can be suppressed.
 また、ローラ49に対する径方向外側からの押圧力は、ローラ48から中径ボールベアリング47を介して偏心軸部39に径方向外側から伝達される。このため、偏心軸部39の偏心カム面39aと内輪47aの外面との間のガタが吸収されて、偏心軸部39の振れが十分に抑えられてガタ音の発生を抑制できる。 Further, the pressing force from the radially outer side against the roller 49 is transmitted from the radially outer side to the eccentric shaft portion 39 from the roller 48 via the medium diameter ball bearing 47. For this reason, the rattling between the eccentric cam surface 39a of the eccentric shaft 39 and the outer surface of the inner ring 47a is absorbed, and the deflection of the eccentric shaft 39 is sufficiently suppressed, and the generation of rattling noise can be suppressed.
 したがって、減速機構11の前述した各構成部材間からの異音の発生が十分に抑制することが可能になる。 Therefore, it is possible to sufficiently suppress the generation of abnormal noise from among the above-described constituent members of the speed reduction mechanism 11.
 特に、本実施形態では、歯車部1bは、スプロケット本体1aの径方向において、大径ボールベアリング43と小径ボールベアリング37との間に配置され、一部の内歯5aとローラ48や中径ボールベアリング47及びニードルベアリング38にオーバーラップした位置にある。 In particular, in the present embodiment, the gear portion 1b is disposed between the large diameter ball bearing 43 and the small diameter ball bearing 37 in the radial direction of the sprocket body 1a, and a part of the internal teeth 5a and the roller 48 or the medium diameter ball The position is overlapped with the bearing 47 and the needle bearing 38.
 このため、前述したチェーン16の張力によるラジアルクリアランスC3の減少の他に、大径、小径ボールベアリング43,37の内部クリアランスや中径ボールベアリング47の内部クリアランスを効果的に減少させることができる。 Therefore, in addition to the reduction of the radial clearance C3 due to the tension of the chain 16 described above, the internal clearance of the large and small diameter ball bearings 43 and 37 and the internal clearance of the medium diameter ball bearing 47 can be effectively reduced.
 したがって、これらのそれぞれのクリアランスの減少による各部間のガタが抑制されて、減速機構11全体の異音の発生を効果的に抑制することが可能になる。この結果、バルブタイミング制御装置の品質の低下を抑制できる。 Therefore, the play between each part by reduction of each of these clearances is controlled, and it becomes possible to control generation of unusual noise of the reduction gear mechanism 11 whole effectively. As a result, it is possible to suppress the deterioration of the quality of the valve timing control device.
 また、カムシャフト2は、凸部2bが嵌合穴9d内に嵌め合うことによりフランジ部2a(一端部)側が歯車部1bに近づくことになる。よって、歯車部1bを介してチェーン16の張力荷重をカムシャフト2の一端部側で受けることができることから、従動部材9の傾き量を小さく抑えることができる。このため、内歯5aの内面とローラ48の外面との間のラジアルクリアランスC3をさらに減少できる。 Further, with the camshaft 2, the flange 2 a (one end) side approaches the gear 1 b by fitting the projection 2 b into the fitting hole 9 d. Therefore, since the tension load of the chain 16 can be received at one end side of the camshaft 2 through the gear portion 1 b, the amount of inclination of the driven member 9 can be suppressed to a small amount. Therefore, the radial clearance C3 between the inner surface of the inner teeth 5a and the outer surface of the roller 48 can be further reduced.
 歯車部1bは、スプロケット本体1aの回転軸に沿った方向において永久磁石14と大径ボールベアリング43との間に位置している。このため、チェーン16から歯車部1bに掛かった張力荷重は、偏心軸部39側に作用することから、永久磁石14の重力に起因した回転振れが抑えられて、偏心軸部39を含むモータ出力軸13全体の振れも抑制できる。 The gear portion 1 b is located between the permanent magnet 14 and the large diameter ball bearing 43 in the direction along the rotation axis of the sprocket body 1 a. Therefore, the tension load applied from the chain 16 to the gear portion 1b acts on the side of the eccentric shaft 39, so that the rotational runout due to the gravity of the permanent magnet 14 is suppressed, and the motor output including the eccentric shaft 39 The deflection of the entire shaft 13 can also be suppressed.
 しかも、電動モータ8のモータ出力軸13の回転に伴って偏心軸部39が回転すると、板ばね42のばね力が内輪47aの内周面47dに作用して中径ボールベアリング47全体を径方向へ押圧する。これによって、ローラ48が、図3に示す矢印方向へ押し上げられてラジアルクリアランスC3を減少させる。 In addition, when the eccentric shaft 39 rotates with the rotation of the motor output shaft 13 of the electric motor 8, the spring force of the plate spring 42 acts on the inner peripheral surface 47d of the inner ring 47a to radially rotate the entire medium diameter ball bearing 47. Press it. As a result, the roller 48 is pushed up in the direction of the arrow shown in FIG. 3 to reduce the radial clearance C3.
 このラジアルクリアランスC3を減少させることにより、回転方向のケージクリアランスも減少させることが可能になる。 By reducing this radial clearance C3, it is also possible to reduce the cage clearance in the rotational direction.
 したがって、前述したチェーン16の張力による作用と相俟って、ローラ48の外面と内歯5a内面との干渉が抑制されて、振動やガタ音の発生をさらに低減させることが可能になる。 Therefore, in conjunction with the above-described action by the tension of the chain 16, the interference between the outer surface of the roller 48 and the inner surface of the inner teeth 5a is suppressed, and the generation of vibration and rattling noise can be further reduced.
 なお、本実施形態では、ラジアルクリアランスC3などの各部のクリアランスを、構造的に小さく(狭く)するのではなく、チェーン16による歯車部1bの引っ張り力や板ばね42のばね力によって小さくすることから、減速機構11の作動応答性には影響がない。つまり、歯車部1bは、チェーン16によって一方向へ回転し、板ばね42は、モータ出力軸13と偏心軸部39の正逆回転に伴って回転することから、各内歯5a方向のばね力の作用点が常に変化している。したがって、ラジアルクリアランスC3は一部分では減少するものの、他の部分では減少しない。このため、減速機構11の作動応答性の影響がない。 In the present embodiment, the clearances of the components such as the radial clearance C3 are not reduced (narrowed) structurally, but are reduced by the tensile force of the gear portion 1b by the chain 16 or the spring force of the plate spring 42. There is no influence on the operation response of the speed reduction mechanism 11. That is, since the gear portion 1b is rotated in one direction by the chain 16, and the plate spring 42 is rotated in accordance with the forward and reverse rotation of the motor output shaft 13 and the eccentric shaft portion 39, the spring force in the direction of each internal tooth 5a The point of action of is constantly changing. Therefore, although the radial clearance C3 decreases in part, it does not decrease in other parts. For this reason, there is no influence of the operation response of the reduction gear mechanism 11.
 また、板ばね42の頂部42aが、内輪47aの内周面47dに弾性的に当接することから、該当接点が凹部40と内輪47aの最長距離の部分に自動調心される。 Further, since the top portion 42a of the plate spring 42 resiliently abuts on the inner circumferential surface 47d of the inner ring 47a, the corresponding contact is automatically aligned with the recess 40 and the portion of the longest distance of the inner ring 47a.
 さらに、板ばね42は、弾性変形時に凹部40内において自由な伸縮方向の弾性変形を行い、両端部42b、42cの各下面42d、42eが底面40aの平坦な面に沿って自由に摺動することから安定したばね荷重が得られる。 Furthermore, the plate spring 42 elastically deforms in the direction of expansion and contraction freely in the recess 40 during elastic deformation, and the lower surfaces 42d and 42e of the both end portions 42b and 42c slide freely along the flat surface of the bottom surface 40a. Thus, a stable spring load can be obtained.
 また、凹部40と板ばね42は、その偏心軸部39の回転方向の幅長さW,W3が、中径ボールベアリング47の内輪47aの幅長さW4よりも小さく形成されている。このため、偏心軸部39のカム面39aに対する回転軸方向の凹部40の形成スペースを小さくできることから、回転軸方向の長さを可及的に短くできる。これによって、レイアウトの自由度が向上すると共に、装置のコンパクト化が図れる。 The recess 40 and the plate spring 42 are formed such that the widths W and W3 of the eccentric shaft 39 in the rotational direction are smaller than the width W4 of the inner ring 47a of the medium-diameter ball bearing 47. For this reason, since the formation space of the recessed part 40 of the rotating shaft direction with respect to the cam surface 39a of the eccentric shaft part 39 can be made small, the length of the rotating shaft direction can be shortened as much as possible. As a result, the degree of freedom in layout is improved, and the apparatus can be made compact.
 また、板ばね42の両端部42b、42cの下面42d、42eが、凹部40の平坦な底面40aに当接することによって、板ばね42の弾性変形時における傾きが抑制されて、バックラッシのバラツキの発生を抑制することができる。 Further, when the lower surfaces 42d and 42e of the both end portions 42b and 42c of the plate spring 42 abut on the flat bottom surface 40a of the recess 40, the inclination at the time of elastic deformation of the plate spring 42 is suppressed and generation of backlash variation occurs. Can be suppressed.
 また、本発明は、ローラを有する減速機構への適用に限られず、例えば、偏心軸部と内輪が相対回転可能に構成されているものであればいずれの装置にも適用可能である。例えば、偏心軸部を回転することで内歯構成部の内歯に噛合いつつ遊星運動が可能な遊星歯車を有する遊星歯車型減速機にも適用可能である。この場合は、偏心軸部の外周に遊星歯車が配置され、偏心軸部の外周と遊星歯車の内周の間に内輪と外輪を有する軸受が配置される。 Further, the present invention is not limited to the application to a reduction gear mechanism having a roller, and can be applied to any device as long as the eccentric shaft portion and the inner ring are configured to be relatively rotatable. For example, the invention can also be applied to a planetary gear reducer having a planetary gear capable of planetary motion while meshing with the internal teeth of the internal gear component by rotating the eccentric shaft. In this case, a planetary gear is disposed on the outer periphery of the eccentric shaft portion, and a bearing having an inner ring and an outer ring is disposed between the outer periphery of the eccentric shaft portion and the inner periphery of the planetary gear.
 また、駆動回転体としてタイミングスプロケットの他に、ベルト伝達によるタイミングプーリなどに適用することも可能である。 Moreover, it is also possible to apply to the timing pulley etc. by belt transmission other than a timing sprocket as a drive rotary body.
 以上説明した実施形態に基づく内燃機関のバルブタイミング制御装置としては、例えば、以下に述べる態様のものが考えられる。 As a valve timing control device for an internal combustion engine based on the embodiment described above, for example, one of the aspects described below can be considered.
 その一つの態様として、クランクシャフトからの回転力が伝達される駆動回転体と、カムシャフトに固定される従動回転体と、前記駆動回転体と前記従動回転体との間に配置されて、前記駆動回転体を軸受けする第1軸受と、前記駆動回転体に配置され、モータ出力軸の回転力によって前記駆動回転体に対する前記従動回転体の相対回転位置を変更する電動モータと、前記駆動回転体の内周に噛み合い部を有し、前記モータ出力軸の回転速度を減速して前記従動回転体に伝達する減速機構と、前記駆動回転体の外周に一体に有し、該駆動回転体の回転軸方向の前記第1軸受よりも前記減速機構の噛み合い部側にオフセット配置された歯車部と、を有している。 According to one aspect of the present invention, there is provided a drive rotating body to which a rotational force from a crankshaft is transmitted, a driven rotating body fixed to the camshaft, and the drive rotating body and the driven rotating body. A first bearing for bearing the drive rotor, an electric motor disposed on the drive rotor, and changing the relative rotational position of the driven rotor relative to the drive rotor by the rotational force of a motor output shaft, and the drive rotor A reduction mechanism for reducing the rotational speed of the motor output shaft and transmitting it to the driven rotor, and integrally on the outer periphery of the drive rotor, the rotation of the drive rotor And a gear portion offset from the first bearing in the axial direction toward the meshing portion of the speed reduction mechanism.
 さらに好ましくは、前記モータ出力軸と前記従動回転体の間に配置され、前記モータ出力軸を軸受けする第2軸受を有し、前記歯車部は、前記駆動回転体の回転軸方向に沿った方向において前記第1軸受と第2軸受との間に配置されている。 More preferably, a second bearing disposed between the motor output shaft and the driven rotor and bearing the motor output shaft is provided, and the gear portion has a direction along the rotational axis of the drive rotor. Are disposed between the first bearing and the second bearing.
 この発明によれば、歯車部の位置が第1軸受と第2軸受の間に存在することから、この歯車部は両持ち状態に支持されることになる。したがって、駆動回転体の径方向の振れやガタなどを抑制できる。 According to the present invention, since the position of the gear portion is between the first bearing and the second bearing, the gear portion is supported in a double support state. Therefore, it is possible to suppress radial runout, play and the like of the drive rotating body.
 さらに好ましくは、前記歯車部は、前記駆動回転体の回転軸方向に沿った方向において前記第1軸受の幅方向の中心と第2軸受の幅方向の中心との間に配置されている。 More preferably, the gear portion is disposed between the center in the width direction of the first bearing and the center in the width direction of the second bearing in the direction along the rotation axis direction of the drive rotating body.
 さらに好ましくは、前記歯車部は、前記駆動回転体の回転軸の径方向で前記減速機構の噛み合い部とオーバーラップして配置されている。 More preferably, the gear portion is disposed so as to overlap with the meshing portion of the speed reduction mechanism in the radial direction of the rotation shaft of the drive rotating body.
 この発明によれば、歯車部が噛み合い部とオーバーラップした位置に配置されていることから、噛み合い部のガタなどを抑制できる。 According to the present invention, since the gear portion is disposed at a position overlapping the meshing portion, rattling of the meshing portion can be suppressed.
 さらに好ましくは、前記モータ出力軸と前記従動回転体の間であって、駆動回転体の回転軸方向に沿った方向で前記第2軸受の前記カムシャフト側の側部に配置された第3軸受を有し、前記歯車部と噛み合い部及び第3軸受が、前記駆動回転体の回転軸の径方向でオーバーラップした状態で配置されている。 More preferably, a third bearing is disposed between the motor output shaft and the driven rotor, and on a side portion of the second bearing on the camshaft side in a direction along the rotational axis of the drive rotor. The gear portion, the meshing portion and the third bearing are disposed in a state where they overlap in the radial direction of the rotation shaft of the drive rotating body.
 この発明の態様によれば、前記三者が径方向でオーバーラップした状態で配置されていることから、前記歯車部に巻回された例えば無端状のチェーンの張力によって噛み合い部におけるクリアランスと第3軸受のクリアランスの両方を低減できる。 According to the aspect of the present invention, since the three members are disposed in the radially overlapped state, the clearance and the third in the meshing portion are generated by the tension of the endless chain, for example, wound around the gear portion. Both bearing clearances can be reduced.
 さらに好ましくは、前記減速機構は、前記モータ出力軸の回転軸方向の端部に配置された偏心軸部と、該偏心軸部の外周に配置された第4軸受と、前記噛み合い部である内歯と前記第4軸受の外輪との間に配置された複数の転動体と、前記従動回転体に設けられ、前記複数の転動体の間を仕切り、かつ、前記複数の転動体の前記駆動回転体の回転軸の径方向の移動を許容する保持部材と、を有し、
 前記歯車部と前記内歯と第3軸受及び第4軸受は、前記駆動回転体の回転軸の径方向でオーバーラップした状態で配置されている。
More preferably, the speed reducing mechanism includes an eccentric shaft portion disposed at an end of the motor output shaft in the rotational axis direction, a fourth bearing disposed on an outer periphery of the eccentric shaft portion, and the meshing portion. A plurality of rolling elements disposed between the teeth and the outer ring of the fourth bearing, and the driven rotating body, the plurality of rolling elements being partitioned, and the driving rotation of the plurality of rolling elements And a holding member for allowing radial movement of the rotational axis of the body,
The gear portion, the internal teeth, the third bearing, and the fourth bearing are disposed in a state where they overlap in a radial direction of a rotation shaft of the drive rotating body.
 この発明の態様によれば、前記歯車部と前記内歯と第3軸受及び第4軸受が、径方向でオーバーラップ配置されていることから、これら四つの部材のそれぞれの内部クリアランスを一緒に低減できる。この結果、ガタが抑制されて騒音を低減できる。 According to the aspect of the present invention, since the gear portion, the internal teeth, and the third and fourth bearings are radially overlapped, the internal clearances of the four members are reduced together. it can. As a result, rattling is suppressed and noise can be reduced.
 さらに好ましくは、前記減速機構は、前記偏心軸部と第4軸受との間に隙間を有すると共に、この隙間に配置されて前記駆動回転体の回転軸心から径方向に付勢力を発生する付勢部材を有し、前記歯車部と付勢部材は、前記駆動回転体の回転軸心の径方向でオーバーラップ配置されている。 More preferably, the speed reduction mechanism has a gap between the eccentric shaft portion and the fourth bearing, and is disposed in this gap to generate a biasing force in the radial direction from the rotation axis of the drive rotating body. It has a biasing member, and the gear portion and the biasing member are disposed so as to overlap in the radial direction of the rotational axis of the drive rotating body.
 この発明の態様によれば、前記歯車部から噛み合い部に伝達される付勢力に対抗して付勢部材の付勢力が噛み合い部方向に作用することから、前記隙間を減少できる。これによって、さらに効果的にガタによる騒音の発生を低減できる。 According to the aspect of the present invention, since the biasing force of the biasing member acts in the direction of the meshing portion against the biasing force transmitted from the gear portion to the meshing portion, the gap can be reduced. By this, it is possible to more effectively reduce the generation of noise due to backlash.
 さらに好ましくは、前記第3軸受は、ニードルベアリングである。 More preferably, the third bearing is a needle bearing.
 したがって、ニードルベアリングによって前記歯車部(チェーンの張力)からの大きな荷重を受けることができる一方、歯車部から伝達される付勢力によってニードルベアリング内のクリアランスを小さくすることができる。 Therefore, while the needle bearing can receive a large load from the gear portion (chain tension), the biasing force transmitted from the gear portion can reduce the clearance in the needle bearing.
 さらに好ましくは、前記従動回転体は、前記カムシャフトの回転軸方向の一端部が嵌め込まれる嵌合穴を有し、この嵌合穴は、前記駆動回転体の回転軸の径方向で前記第1軸受とオーバーラップする位置に前記カムシャフトの一端部が当接する底面を有する。 More preferably, the driven rotating body has a fitting hole into which one end of the camshaft in the rotation axis direction is fitted, and the fitting hole is the first one in the radial direction of the rotation axis of the drive rotating body. It has a bottom surface on which one end of the camshaft abuts at a position overlapping the bearing.
 したがって、カムシャフトの一端部が嵌合穴を介して従動回転体の内側に入り込んでいるため、カムシャフトの一端部を前記歯車部に近づけることができる。これによって、従動回転体がチェーンの張力により荷重を受けることによる傾き量を抑制できる。したがって、噛み合い部とローラとの間のクリアランスをさらに小さくできる。 Therefore, since one end of the camshaft is inserted into the inside of the driven rotor via the fitting hole, one end of the camshaft can be brought close to the gear portion. As a result, it is possible to suppress the amount of inclination due to the driven rotating body receiving a load by the tension of the chain. Therefore, the clearance between the meshing portion and the roller can be further reduced.
 別の好ましい態様としては、クランクシャフトからの回転力が伝達される歯車部を外周に有する駆動回転体と、カムシャフトに固定される従動回転体と、前記駆動回転体と前記従動回転体との間に配置されて、前記駆動回転体を軸受けする第1軸受と、前記駆動回転体に配置され、モータ出力軸の回転力によって前記駆動回転体に対する前記従動回転体の相対回転位置を変更する電動モータと、前記駆動回転体の内周に噛み合い部を有し、前記モータ出力軸の回転速度を減速して前記従動回転体に伝達する減速機構と、を備え、
 前記減速機構の噛み合い部は、前記歯車部に巻回される索状の張力によって前記第1軸受を中心として傾くことによって前記噛み合い部と該噛み合い部に有するローラとの間のクリアランスが小さくなるように構成されている。
In another preferable aspect, a drive rotating body having a gear portion on the outer periphery to which a rotational force from a crankshaft is transmitted, a driven rotating body fixed to the camshaft, and the drive rotating body and the driven rotating body The first bearing for bearing the drive rotor, and the electric motor for changing the relative rotational position of the driven rotor relative to the drive rotor by the rotational force of the motor output shaft. A motor, and a reduction mechanism having an engagement portion on the inner periphery of the drive rotating body, and decelerating the rotational speed of the motor output shaft and transmitting it to the driven rotating body;
The engagement portion of the speed reduction mechanism is inclined about the first bearing by a cord-like tension wound around the gear portion so that the clearance between the engagement portion and the roller provided in the engagement portion is reduced. Is configured.
 さらに好ましくは、前記電動モータは、外部に固定されるステータコイルと、前記モータ出力軸の外周に固定される永久磁石と、を有し、前記モータ出力軸と前記従動回転体の間に第2軸受を有し、前記歯車部は、前記駆動回転体の回転軸に沿った方向において前記永久磁石と第1軸受との間に有している。 More preferably, the electric motor has a stator coil fixed to the outside, and a permanent magnet fixed to the outer periphery of the motor output shaft, and the second motor is interposed between the motor output shaft and the driven rotor. A bearing is provided, and the gear portion is provided between the permanent magnet and the first bearing in a direction along the rotation axis of the drive rotating body.
 したがって、前記特異な配置構成によって前記モータ出力軸の永久磁石による振れを抑制できる。 Therefore, the unique arrangement configuration can suppress the runout of the motor output shaft due to the permanent magnet.
 1…タイミングスプロケット(駆動回転体)、1a…スプロケット本体、1b…歯車部、2…カムシャフト、4…位相変更機構、5…内歯構成部、5a…内歯(噛み合い部)、8…電動モータ、9…従動部材(従動回転体)、11…減速機構、12…モータハウジング、13…モータ出力軸、16…タイミングチェーン、37…小径ボールベアリング(第2軸受)、38…ニードルベアリング(第3軸受)、39…偏心軸部、39a…カム面、40…凹部、40a…底面、41…保持器(保持部材)、42…板ばね(付勢部材)、42a…円弧頂部(中央部)、42b、42c…両端部、43…大径ボールベアリング(第1軸受)、47…中径ボールベアリング(第4軸受)、47a…内輪、47b…外輪、47c…ボール、48…ローラ(転動体) DESCRIPTION OF SYMBOLS 1 ... Timing sprocket (drive rotary body) 1a ... Sprocket main body 1b ... Gear part, 2 ... Camshaft, 4 ... Phase change mechanism, 5 ... Internal tooth structure part, 5a ... Internal tooth (meshing part), 8 ... Electricity Motor 9, driven member (followed rotating body), 11: reduction mechanism, 12: motor housing, 13: motor output shaft, 16: timing chain, 37: small diameter ball bearing (second bearing), 38: needle bearing (second 3 Bearings) 39 Eccentric shaft 39a Cam surface 40 Concave 40a Bottom surface 41 Retainer (holding member) 42 Plate spring (biasing member) 42a Arc top (central portion) , 42b, 42c: both ends, 43: large diameter ball bearing (first bearing), 47: medium diameter ball bearing (fourth bearing), 47a: inner ring, 47b: outer ring, 47c: ball, 48: roller Rolling elements)

Claims (11)

  1.  クランクシャフトからの回転力が伝達される駆動回転体と、
     カムシャフトに固定される従動回転体と、
     前記駆動回転体と前記従動回転体との間に配置されて、前記駆動回転体を軸受けする第1軸受と、
     前記駆動回転体に配置され、モータ出力軸の回転力によって前記駆動回転体に対する前記従動回転体の相対回転位置を変更する電動モータと、
     前記駆動回転体の内周に噛み合い部を有し、前記モータ出力軸の回転速度を減速して前記従動回転体に伝達する減速機構と、
     前記駆動回転体の外周に一体に有し、該駆動回転体の回転軸方向の前記第1軸受よりも前記減速機構の噛み合い部側にオフセット配置された歯車部と、
     を有することを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotating body to which a rotational force from a crankshaft is transmitted,
    A driven rotor fixed to the camshaft;
    A first bearing, disposed between the drive rotor and the driven rotor, for bearing the drive rotor;
    An electric motor disposed on the drive rotating body and changing a relative rotational position of the driven rotating body with respect to the drive rotating body by rotational force of a motor output shaft;
    A decelerating mechanism having a meshing portion on the inner periphery of the drive rotor, and decelerating the rotational speed of the motor output shaft and transmitting it to the driven rotor;
    A gear portion that is integrally formed on the outer periphery of the drive rotating body, and is disposed offset to the meshing portion side of the speed reduction mechanism than the first bearing in the rotational axis direction of the drive rotating body;
    And a valve timing control device for an internal combustion engine.
  2.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記モータ出力軸と前記従動回転体の間に配置され、前記モータ出力軸を軸受けする第2軸受を有し、
     前記歯車部は、前記駆動回転体の回転軸方向に沿った方向において前記第1軸受と第2軸受との間に配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 1,
    A second bearing disposed between the motor output shaft and the driven rotor and bearing the motor output shaft;
    The valve timing control device for an internal combustion engine, wherein the gear portion is disposed between the first bearing and the second bearing in a direction along a rotation axis direction of the drive rotating body.
  3.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記歯車部は、前記駆動回転体の回転軸方向に沿った方向において前記第1軸受の幅方向の中心と第2軸受の幅方向の中心との間に配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 2,
    The internal combustion engine is characterized in that the gear portion is disposed between the center in the width direction of the first bearing and the center in the width direction of the second bearing in the direction along the rotational axis direction of the drive rotating body. Engine valve timing control device.
  4.  請求項2に記載の内燃機関のバルブタイミング制御装置において、
     前記歯車部は、前記駆動回転体の回転軸の径方向で前記減速機構の噛み合い部とオーバーラップして配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 2,
    A valve timing control device for an internal combustion engine, wherein the gear portion is disposed so as to overlap with the meshing portion of the speed reduction mechanism in the radial direction of the rotation shaft of the drive rotating body.
  5.  請求項4に記載の内燃機関のバルブタイミング制御装置において、
     前記モータ出力軸と前記従動回転体の間であって、駆動回転体の回転軸方向に沿った方向で前記第2軸受の前記カムシャフト側の側部に配置された第3軸受を有し、
     前記歯車部と噛み合い部及び第3軸受が、前記駆動回転体の回転軸の径方向でオーバーラップした状態で配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 4,
    A third bearing is disposed between the motor output shaft and the driven rotor, and on a side of the second bearing on the camshaft side in a direction along the rotational axis of the drive rotor.
    A valve timing control device for an internal combustion engine, wherein the gear portion, the meshing portion and the third bearing are disposed in an overlapping state in a radial direction of a rotation shaft of the drive rotating body.
  6.  請求項5に記載の内燃機関のバルブタイミング制御装置において、
     前記減速機構は、
     前記モータ出力軸の回転軸方向の端部に配置された偏心軸部と、
     該偏心軸部の外周に配置された第4軸受と、
     前記噛み合い部である内歯と前記第4軸受の外輪との間に配置された複数の転動体と、
     前記従動回転体に設けられ、前記複数の転動体の間を仕切り、かつ、前記複数の転動体の前記駆動回転体の回転軸の径方向の移動を許容する保持部材と、
     を有し、
     前記歯車部と前記内歯と第3軸受及び第4軸受は、前記駆動回転体の回転軸の径方向でオーバーラップした状態で配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 5,
    The reduction mechanism is
    An eccentric shaft disposed at an end of the motor output shaft in the rotational axis direction;
    A fourth bearing disposed on the outer periphery of the eccentric shaft;
    A plurality of rolling elements disposed between the internal teeth as the meshing portion and the outer ring of the fourth bearing;
    A holding member provided on the driven rotor, partitioning the plurality of rolling elements, and allowing the radial movement of the rotation shaft of the drive rotor of the plurality of rolling elements;
    Have
    A valve timing control device for an internal combustion engine, wherein the gear portion, the internal teeth, the third bearing, and the fourth bearing are disposed in an overlapping state in a radial direction of a rotation shaft of the drive rotating body.
  7.  請求項6に記載の内燃機関のバルブタイミング制御装置において、
     前記減速機構は、前記偏心軸部と第4軸受との間に隙間を有すると共に、この隙間に配置されて前記駆動回転体の回転軸心から径方向に付勢力を発生する付勢部材を有し、
     前記歯車部と付勢部材は、前記駆動回転体の回転軸心の径方向でオーバーラップ配置されていることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 6,
    The speed reduction mechanism has a gap between the eccentric shaft portion and the fourth bearing, and has an urging member disposed in this gap to generate a biasing force in the radial direction from the rotation axis of the drive rotating body. And
    The valve timing control device for an internal combustion engine, wherein the gear portion and the biasing member are disposed so as to overlap in the radial direction of the rotation axis of the drive rotating body.
  8.  請求項4に記載の内燃機関のバルブタイミング制御装置において、
     前記第3軸受は、ニードルベアリングであることを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 4,
    The valve timing control device for an internal combustion engine, wherein the third bearing is a needle bearing.
  9.  請求項1に記載の内燃機関のバルブタイミング制御装置において、
     前記従動回転体は、前記カムシャフトの回転軸方向の一端部が嵌め込まれる嵌合穴を有し、
     この嵌合穴は、前記駆動回転体の回転軸の径方向で前記第1軸受とオーバーラップする位置に前記カムシャフトの一端部が当接する底面を有することを特徴とする内燃機関のバルブタイミング制御装置。
    In the valve timing control device for an internal combustion engine according to claim 1,
    The driven rotor has a fitting hole into which one end of the camshaft in the rotational axis direction is fitted.
    The valve timing control of an internal combustion engine, wherein the fitting hole has a bottom surface which one end portion of the camshaft abuts at a position overlapping with the first bearing in a radial direction of a rotational shaft of the drive rotating body. apparatus.
  10.  クランクシャフトからの回転力が伝達される歯車部を外周に有する駆動回転体と、
     カムシャフトに固定される従動回転体と、
     前記駆動回転体と前記従動回転体との間に配置されて、前記駆動回転体を軸受けする第1軸受と、
     前記駆動回転体に配置され、モータ出力軸の回転力によって前記駆動回転体に対する前記従動回転体の相対回転位置を変更する電動モータと、
     前記駆動回転体の内周に噛み合い部を有し、前記モータ出力軸の回転速度を減速して前記従動回転体に伝達する減速機構と、
     を備え、
     前記減速機構の噛み合い部は、前記歯車部に巻回される索状の張力によって前記第1軸受を中心として傾くことによって前記噛み合い部と該噛み合い部に有するローラとの間のクリアランスが小さくなるように構成されていることを特徴とする内燃機関のバルブタイミング制御装置。
    A driving rotating body having a gear portion on the outer periphery to which a rotational force from a crankshaft is transmitted;
    A driven rotor fixed to the camshaft;
    A first bearing, disposed between the drive rotor and the driven rotor, for bearing the drive rotor;
    An electric motor disposed on the drive rotating body and changing a relative rotational position of the driven rotating body with respect to the drive rotating body by rotational force of a motor output shaft;
    A decelerating mechanism having a meshing portion on the inner periphery of the drive rotor, and decelerating the rotational speed of the motor output shaft and transmitting it to the driven rotor;
    Equipped with
    The engagement portion of the speed reduction mechanism is inclined about the first bearing by a cord-like tension wound around the gear portion so that the clearance between the engagement portion and the roller provided in the engagement portion is reduced. A valve timing control device for an internal combustion engine, comprising:
  11.  請求項10に記載の内燃機関のバルブタイミング制御装置において、
     前記電動モータは、外部に固定されるステータコイルと、前記モータ出力軸の外周に固定される永久磁石と、を有し、
     前記モータ出力軸と前記従動回転体の間に第2軸受を有し、
     前記歯車部は、前記駆動回転体の回転軸に沿った方向において前記永久磁石と第1軸受との間に有することを特徴とする内燃機関のバルブタイミング制御装置。
    The valve timing control device for an internal combustion engine according to claim 10,
    The electric motor has a stator coil fixed to the outside, and a permanent magnet fixed to the outer periphery of the motor output shaft,
    A second bearing between the motor output shaft and the driven rotor;
    A valve timing control device for an internal combustion engine, wherein the gear portion is provided between the permanent magnet and a first bearing in a direction along a rotation axis of the drive rotating body.
PCT/JP2018/032054 2017-09-12 2018-08-30 Valve timing control device for internal combustion engine WO2019054185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541983A JP6808844B2 (en) 2017-09-12 2018-08-30 Internal combustion engine valve timing controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174441 2017-09-12
JP2017174441 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019054185A1 true WO2019054185A1 (en) 2019-03-21

Family

ID=65723686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032054 WO2019054185A1 (en) 2017-09-12 2018-08-30 Valve timing control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6808844B2 (en)
WO (1) WO2019054185A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280423A (en) * 1998-03-26 1999-10-12 Mazda Motor Corp Valve timing variable device
US20130081587A1 (en) * 2011-09-30 2013-04-04 Delphi Technologies, Inc. Harmonic Drive Camshaft Phaser with a Harmonic Drive Ring to Prevent Ball Cage Deflection
US20150133256A1 (en) * 2013-11-08 2015-05-14 Iwis Motorsysteme Gmbh & Co. Kg Lantern-type gear unit
JP2015132178A (en) * 2014-01-09 2015-07-23 株式会社デンソー Valve timing adjustment apparatus
JP2017008837A (en) * 2015-06-23 2017-01-12 株式会社日本自動車部品総合研究所 Valve timing adjustment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280423A (en) * 1998-03-26 1999-10-12 Mazda Motor Corp Valve timing variable device
US20130081587A1 (en) * 2011-09-30 2013-04-04 Delphi Technologies, Inc. Harmonic Drive Camshaft Phaser with a Harmonic Drive Ring to Prevent Ball Cage Deflection
US20150133256A1 (en) * 2013-11-08 2015-05-14 Iwis Motorsysteme Gmbh & Co. Kg Lantern-type gear unit
JP2015132178A (en) * 2014-01-09 2015-07-23 株式会社デンソー Valve timing adjustment apparatus
JP2017008837A (en) * 2015-06-23 2017-01-12 株式会社日本自動車部品総合研究所 Valve timing adjustment device

Also Published As

Publication number Publication date
JPWO2019054185A1 (en) 2020-10-08
JP6808844B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6814621B2 (en) Internal combustion engine valve timing controller
KR101624784B1 (en) System for controlling valve timing of internal combustion engine
JP2013167181A (en) Valve timing control apparatus for internal combustion engine
KR101624776B1 (en) Device for controlling valve timing of internal combustion engine and method for removing lid body
JP6338550B2 (en) Deceleration mechanism and valve timing control device for internal combustion engine using the deceleration mechanism
JP2011256798A (en) Variable valve system for internal combustion engine
JP6174160B2 (en) Valve timing control device for internal combustion engine
KR101656926B1 (en) Variable valve device for internal combustion engine
JP6345877B2 (en) Valve timing control device for internal combustion engine
JP5693312B2 (en) Valve timing control device for internal combustion engine
JP2018155209A (en) Valve timing control device for internal combustion engine
JP2014025481A (en) Variable valve device of internal combustion engine
WO2015137323A1 (en) Valve-timing control device for internal combustion engine
JP6266810B2 (en) Valve timing control device for internal combustion engine
JP6808844B2 (en) Internal combustion engine valve timing controller
JP6174262B2 (en) Variable valve operating device and valve timing control device for internal combustion engine
JP6347764B2 (en) Valve timing control device for internal combustion engine and method for assembling the device
JP6685380B2 (en) Valve timing control device for internal combustion engine
JP2016151244A (en) Valve timing control device for internal combustion engine
JP6274900B2 (en) Valve timing control device for internal combustion engine
JP5993352B2 (en) Variable valve operating apparatus and roller reduction mechanism for internal combustion engine
JP6326333B2 (en) Valve timing control device for internal combustion engine
JP2018017202A (en) Valve timing control device of internal combustion engine, and speed reduction mechanism of valve timing control device
WO2016009790A1 (en) Variable valve device for internal combustion engines
WO2020039743A1 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855967

Country of ref document: EP

Kind code of ref document: A1