WO2019054170A1 - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
WO2019054170A1
WO2019054170A1 PCT/JP2018/031710 JP2018031710W WO2019054170A1 WO 2019054170 A1 WO2019054170 A1 WO 2019054170A1 JP 2018031710 W JP2018031710 W JP 2018031710W WO 2019054170 A1 WO2019054170 A1 WO 2019054170A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
control device
motor
brake
solenoid valve
Prior art date
Application number
PCT/JP2018/031710
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 丸尾
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018005059.9T priority Critical patent/DE112018005059T5/en
Publication of WO2019054170A1 publication Critical patent/WO2019054170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/409Systems with stroke simulating devices for driver input characterised by details of the stroke simulating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • F16K31/0679Electromagnet aspects, e.g. electric supply therefor with more than one energising coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up

Definitions

  • the present invention relates to a brake control device.
  • Patent Document 1 discloses a brake control device in which a hydraulic unit and a control circuit are redundantly provided as a countermeasure against the failure of the electric system.
  • One of the objects of the present invention is to provide a brake control device capable of achieving both the redundancy of the electrical system and the suppression of the increase in size of the device.
  • a brake control apparatus includes a first solenoid valve having a first coil and a second coil, a housing having a first surface on which the first solenoid valve is disposed, and a first surface from a first surface. And a control board portion disposed in the winding axial direction of the one coil, having a first solenoid valve control circuit for controlling the first solenoid valve and a second solenoid valve control circuit.
  • the brake control device in the embodiment of the present invention it is possible to achieve both of the redundancy of the electric system and the suppression of the enlargement of the device.
  • FIG. 1 is a schematic view of a brake control device 1 according to a first embodiment.
  • FIG. 1 is an exploded perspective view of a brake control device 1 according to a first embodiment.
  • FIG. 2 is a vertical cross-sectional view of the shutoff valve 12 of the first embodiment.
  • FIG. 2 is a cross-sectional perspective view of the solenoid 39 of the first embodiment.
  • 5 is a perspective view of a main body 831 of Embodiment 1.
  • FIG. 5 is a perspective view of a first control board 40 of Embodiment 1.
  • FIG. 5 is a perspective view of a first control board 41 of Embodiment 1.
  • FIG. 10 is a cross-sectional perspective view of a solenoid 39 of Embodiment 2.
  • FIG. 10 is a cross-sectional perspective view of a solenoid 39 of the third embodiment.
  • FIG. 20 is a perspective view of a solenoid 39 of the fourth embodiment.
  • FIG. 16 is an electric circuit diagram of a solenoid 39 of a fourth embodiment.
  • FIG. 18 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the fifth embodiment.
  • FIG. 21 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the sixth embodiment.
  • FIG. 21 is a perspective view of the main parts of a first control board 40 and a second control board 41 of the seventh embodiment.
  • FIG. 26 is a plan view of the first control board 40 of the eighth embodiment.
  • FIG. 21 is a perspective view of a first control board 40 of the ninth embodiment.
  • FIG. 21 is a perspective view of a second control board 41 of the ninth embodiment.
  • FIG. 1 is a schematic view of the brake control device 1 according to the first embodiment.
  • the brake control device 1 is a general vehicle having only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle having an electric motor (generator) in addition to the internal combustion engine, and an electric motor It is mounted on an electric car etc. equipped with only a motor.
  • the brake control device 1 is provided on each of the wheels (front left wheel FL, front right wheel FR, rear left wheel RL, rear right wheel RR), and has a disc brake that operates in accordance with the fluid pressure of the wheel cylinder 2.
  • the brake control device 1 applies a braking torque to each of the wheels FL to RR by adjusting the fluid pressure of the wheel cylinder 2.
  • the brake control device 1 has brake piping of two systems (a primary P system and a secondary S system).
  • the brake piping system is, for example, an X piping system.
  • P system primary system
  • S system secondary system
  • suffixes P and S are added to the end of the reference numerals.
  • subscripts a to d are added to the end of the reference numerals.
  • the brake pedal 3 is a brake operation member that receives an input of a driver's brake operation.
  • the push rod 4 travels in response to the operation of the brake pedal 3.
  • the master cylinder 5 is operated by the stroke amount of the push rod 4 and generates a brake fluid pressure (master cylinder fluid pressure).
  • the master cylinder 5 is supplied with the brake fluid from a reservoir tank 6 that stores the brake fluid.
  • Master cylinder 5 is a tandem type, and has P piston 51 P and S piston 51 S that stroke according to the stroke of push rod 4.
  • the two pistons 51P and 51S are arranged in series along the axial direction of the push rod 4.
  • the P piston 51 P is connected to the push rod 4.
  • the S piston 51S is a free piston type.
  • a stroke sensor 60 is attached to the master cylinder 5.
  • the stroke sensor 60 detects the stroke amount of the P piston 51 P as the pedal stroke amount of the brake pedal 3.
  • the stroke simulator 7 operates in response to the driver's brake operation.
  • the stroke simulator 7 generates a pedal stroke by the inflow of the brake fluid that has flowed out from the inside of the master cylinder 5 according to the driver's brake operation.
  • the piston 71 of the stroke simulator 7 operates in the axial direction against the biasing force of the spring 73 by the brake fluid supplied from the master cylinder 5. Thereby, the stroke simulator 7 generates an operation reaction force according to the brake operation of the driver.
  • the hydraulic unit 8 can apply braking torque to each of the wheels FL to RR independently of the driver's brake operation.
  • the hydraulic unit 8 receives supply of brake fluid from the master cylinder 5 and the reservoir tank 6.
  • the hydraulic unit 8 is disposed between the master cylinder 5 and the wheel cylinder 2.
  • the hydraulic unit 8 includes a motor 211 of the pump 21 and a plurality of solenoid valves (such as the shutoff valve 12) as an actuator for generating control hydraulic pressure.
  • the pump 21 sucks the brake fluid from the reservoir tank 6 and discharges it toward the wheel cylinder 2.
  • the pump 21 is, for example, a plunger pump or a gear pump.
  • the motor 211 is, for example, a brushed motor.
  • the shutoff valve 12 or the like opens and closes in response to the control signal, and controls the flow of the brake fluid by switching the communication state of the fluid passage 11 or the like.
  • the hydraulic unit 8 pressurizes the wheel cylinder 2 by the brake fluid pressure generated by the pump in a state where the communication between the master cylinder 5 and the wheel cylinder 2 is cut off.
  • the fluid pressure unit 8 also has fluid pressure sensors 35 to 37 for detecting the fluid pressure at various points.
  • the control unit 9 controls the operation of the hydraulic unit 8.
  • information (wheel speed etc.) regarding the traveling state sent from the vehicle side is input to the control unit 9.
  • the control unit 9 performs information processing in accordance with a built-in program based on the input various information, and calculates a target wheel cylinder hydraulic pressure of the wheel cylinder 2.
  • the control unit 9 outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure of the wheel cylinder 2 becomes the target wheel cylinder hydraulic pressure.
  • various types of brake control boost control, antilock control, brake control for vehicle motion control, automatic brake control, regenerative coordinated brake control, etc.
  • the boost control assists the brake operation by generating a brake fluid pressure that is insufficient with the driver's brake pressing force.
  • Anti-lock control suppresses braking slip (lock tendency) of each wheel FL to RR.
  • Vehicle motion control is vehicle behavior stabilization control that prevents skidding or the like.
  • Automatic brake control is preceding vehicle follow-up control, automatic emergency braking, or the like.
  • the regenerative coordinated brake control controls the wheel cylinder hydraulic pressure to achieve the target deceleration in coordination with the regenerative brake.
  • a P hydraulic pressure chamber 52P is defined between both pistons 51P and 51S of the master cylinder 5.
  • a compression coil spring 53P is installed in the P hydraulic pressure chamber 52P.
  • An S hydraulic pressure chamber 52S is defined between the S piston 51S and the bottom portion 541 of the cylinder 54.
  • a compression coil spring 53S is installed in the S hydraulic pressure chamber 52S.
  • a fluid passage (connection fluid passage) 11 opens in each fluid pressure chamber 52P, 52S.
  • Each fluid pressure chamber 52P, 52S is connected to the fluid pressure unit 8 via the fluid passage 11, and can communicate with the wheel cylinder 2.
  • the piston 51 is stroked by the depression operation of the brake pedal 3 by the driver, and the master cylinder fluid pressure is generated according to the decrease of the volume of the fluid pressure chamber 52.
  • the brake fluid is supplied from the fluid pressure chamber 52 to the wheel cylinder 2 through the fluid passage 11.
  • the master cylinder 5 pressurizes the wheel cylinders 2a and 2d of the P system via the P system fluid path (fluid path 11P) with the master cylinder fluid pressure generated in the P fluid pressure chamber 52P. Further, the master cylinder 5 pressurizes the wheel cylinders 2b and 2c of the S system via the fluid path (fluid path 11S) of the S system by the master cylinder fluid pressure generated in the S fluid pressure chamber 52S.
  • the stroke simulator 7 has a cylinder 72, a piston 71 and a spring 73.
  • the cylinder 72 has a cylindrical inner circumferential surface.
  • the cylinder 72 has a piston accommodating portion 721 and a spring accommodating portion 722.
  • the piston accommodating portion 721 is smaller in diameter than the spring accommodating portion 722.
  • a liquid passage 27 described later is always open on the inner peripheral surface of the spring accommodating portion 722.
  • the piston 71 is axially movable in the piston housing portion 721.
  • the piston 71 separates the inside of the cylinder 72 into a positive pressure chamber 711 and a back pressure chamber 712.
  • the fluid passage 26 always opens in the positive pressure chamber 711.
  • the fluid passage 27 always opens in the back pressure chamber 712.
  • a piston seal 75 is installed on the outer periphery of the piston 71.
  • the piston seal 75 is in sliding contact with the inner circumferential surface of the piston housing portion 721 and seals between the inner circumferential surface of the piston housing portion 721 and the outer circumferential surface of the piston 71.
  • the piston seal 75 is a separation seal member that separates fluid-tightly by sealing between the positive pressure chamber 711 and the back pressure chamber 712, and complements the function of the piston 71.
  • the spring 73 is a compression coil spring installed in the back pressure chamber 712 and biases the piston 71 from the back pressure chamber 712 to the positive pressure chamber 711 side.
  • the spring 73 generates a reaction force according to the amount of compression.
  • the spring 73 has a first spring 731 and a second spring 732.
  • the first spring 731 is smaller in diameter and shorter than the second spring 732 and has a smaller wire diameter.
  • the first spring 731 and the second spring 732 are arranged in series between the piston 71 and the spring accommodating portion 722 via the retainer member 74.
  • the fluid passage 11 connects between the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2.
  • the fluid passage 11P branches into a fluid passage 11a and a fluid passage 11d.
  • the fluid passage 11S branches into a fluid passage 11b and a fluid passage 11d.
  • the shutoff valve (first solenoid valve) 12 is a normally-open (open in a non-energized) proportional valve provided in the fluid passage 11.
  • the solenoid proportional valve can realize any degree of opening depending on the current supplied to the solenoid.
  • the fluid passage 11 is separated by the shutoff valve 12 into a fluid passage 11A on the master cylinder 5 side and a fluid passage 11B on the wheel cylinder 2 side.
  • a solenoid-in valve (first solenoid valve) 13 is provided on the wheel cylinder 2 side (liquid passage 11B) relative to the shutoff valve 12 in the liquid passage 11 (liquid passages 11a to 11d) corresponding to the respective wheels FL to RR. It is a normally open solenoid proportional valve.
  • the fluid passage 11 is provided with a bypass fluid passage 14 that bypasses the solenoid valve 13.
  • the bypass fluid passage 14 is provided with a check valve 15 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 5 side.
  • the suction pipe 16 connects the reservoir tank 6 and the internal reservoir 17.
  • the fluid passage 18 connects the internal reservoir 17 and the suction side of the pump 21.
  • the fluid passage 19 connects the discharge side of the pump 21 and between the shutoff valve 12 and the solenoid in valve 13 in the fluid passage 11B.
  • the fluid passage 19 branches into a fluid passage 19P of P system and a fluid passage 19S of S system. Both fluid passages 19P and 19S are connected to the fluid passages 11P and 11S.
  • the two fluid passages 19P and 19S function as communication passages connecting the fluid passages 11P and 11S to each other.
  • the communication valve (first solenoid valve) 20 is a normally-closed (closed in a non-energized state) on-off valve provided in the fluid passage 19.
  • the on / off valve is switched between open and closed in a binary manner according to the current supplied to the solenoid.
  • the pump 21 generates a fluid pressure in the fluid passage 11 by the brake fluid supplied from the reservoir tank 6 to generate a wheel cylinder fluid pressure.
  • the pump 21 is connected to the wheel cylinders 2a to 2d through the fluid passages 19P and 19S and the fluid passages 11P and 11S, and pressurizes the wheel cylinder 2 by discharging the brake fluid to the fluid passages 19P and 19S.
  • the fluid passage 22 connects the bifurcation point of the two fluid passages 19P and 19S to the fluid passage 23.
  • a pressure regulating valve (first solenoid valve) 24 is provided in the fluid path 22.
  • the pressure regulating valve 24 is a normally open electromagnetic proportional valve.
  • the fluid passage 23 connects the wheel cylinder 2 side and the internal reservoir 17 with respect to the solenoid-in valve 13 in the fluid passage 11B.
  • the solenoid out valve (first solenoid valve) 25 is a normally closed on / off valve provided in the fluid passage 23.
  • the fluid passage 26 branches from the fluid passage 11A of the P system and is connected to the positive pressure chamber 711 of the stroke simulator 7. The fluid passage 26 may directly connect the P fluid pressure chamber 52P and the positive pressure chamber 711 without via the fluid passage 11P (11A).
  • the fluid passage 27 connects between the back pressure chamber 712 of the stroke simulator 7 and the fluid passage 11. Specifically, the fluid passage 27 branches from between the shutoff valve 12P and the solenoid-in valve 13 in the fluid passage 11P (11B) and is connected to the back pressure chamber 712.
  • the stroke simulator in valve (first solenoid valve) 28 is a normally closed on / off valve provided in the fluid passage 27.
  • the fluid passage 27 is separated by the stroke simulator in valve 28 into a fluid passage 27A on the back pressure chamber 712 side and a fluid passage 27B on the fluid passage 11 side.
  • a bypass fluid passage 29 is provided in parallel with the fluid passage 27 so as to bypass the stroke simulator in valve 28.
  • the bypass fluid passage 29 connects between the fluid passage 27A and the fluid passage 27B.
  • a check valve 30 is provided in the bypass fluid passage 29.
  • the check valve 30 allows the flow of the brake fluid from the fluid passage 27A to the fluid passage 11 (27B) side, and suppresses the flow of the brake fluid in the reverse direction.
  • the fluid passage 31 connects between the back pressure chamber 712 of the stroke simulator 7 and the fluid passage 23.
  • the stroke simulator out valve (first solenoid valve) 32 is a normally closed on / off valve provided in the fluid passage 31.
  • a bypass fluid passage 33 is provided in parallel with the fluid passage 31 by bypassing the stroke simulator out valve 32.
  • the bypass fluid passage 33 is provided with a check valve 34 that allows the flow of the brake fluid from the fluid passage 23 toward the back pressure chamber 712 and suppresses the flow of the brake fluid in the reverse direction.
  • a master cylinder fluid pressure sensor that detects the fluid pressure (master cylinder fluid pressure and fluid pressure in positive pressure chamber 711) between the shutoff valve 12P and the master cylinder 5 in the fluid path 11P (fluid path 11A) 35 are provided.
  • a wheel cylinder hydraulic pressure sensor P system pressure sensor, S system pressure sensor
  • a discharge pressure sensor 37 is provided between the discharge side of the pump 21 and the communication valve 20 in the fluid passage 19 for detecting the fluid pressure (pump discharge pressure) at this point.
  • the brake system (fluid path 11) connecting the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2 constitutes a first system.
  • the first system is capable of realizing the depression force brake (non-boost control) by generating the wheel cylinder pressure with the master cylinder pressure generated using the depression force.
  • the brake system (the fluid passage 19, the fluid passage 22, the fluid passage 23, etc.) including the pump 21 and connecting the reservoir tank 6 and the wheel cylinder 2 is a second system.
  • This second system constitutes a so-called brake-by-wire device that generates a wheel cylinder fluid pressure by the fluid pressure generated using the pump 21, and can realize boost control as brake-by-wire control.
  • the stroke simulator 7 At the time of brake-by-wire control, the stroke simulator 7 generates an operation reaction force associated with the driver's brake operation.
  • FIG. 2 is an exploded perspective view of the brake control device 1 according to the first embodiment.
  • the brake control device 1 has a hydraulic unit housing 80, a motor case 81, a stroke simulator case 82, and a control unit case 83.
  • the hydraulic unit housing (hereinafter referred to as the housing) 80 is made of, for example, an aluminum alloy, and the front (second surface) 801, the back (first surface) 802, the top 803, the bottom 804, the left side 805 and the right side It is a substantially rectangular housing having a housing 806.
  • the housing 80 is formed therein with respective liquid passages (liquid passages 11 and the like).
  • the housing 80 accommodates therein the pump 21, the respective solenoid valves (the shutoff valve 12 and the like), and the respective fluid pressure sensors (the master cylinder fluid pressure sensor 35 and the like).
  • the housing 80 On the upper surface 803 of the housing 80, four wheel cylinder ports 8031 are formed, and a nipple 8032 is attached.
  • the wheel cylinder port 8031 is connected to the wheel cylinder 2 via a wheel cylinder pipe not shown.
  • a suction pipe 16 is connected to the nipple 8032.
  • fifteen valve housing holes 8021 and four sensor housing holes 8022 are formed.
  • the valve portion 38 of each solenoid valve (the shutoff valve 12 or the like) is accommodated in each valve accommodation hole 8021.
  • Each sensor accommodation hole 8022 accommodates each fluid pressure sensor (master cylinder fluid pressure sensor 35 or the like).
  • the motor case 81 is a metal cylindrical member and accommodates the motor 211 therein.
  • the motor case 81 is fixed to the front surface 801 of the housing 80.
  • the stroke simulator case 82 is made of aluminum alloy and accommodates the stroke simulator 7 therein.
  • the stroke simulator case 82 is fastened to the right side surface 806 of the housing 80 by a screw 835 not shown.
  • the control unit case 83 is molded of a resin material, and accommodates the solenoid 39 of each solenoid valve (the shutoff valve 12 or the like), the first control board 40, and the second control board 41.
  • the first control board 40 and the second control board 41 are control board units.
  • the control unit case 83 has a main body 831 and a cover 832.
  • the main body portion 831 is formed in a concave shape on the front side (housing 80 side) and covers the respective solenoids 39.
  • the main body portion 831 is fastened to the back surface 802 of the housing 80 by a screw not shown.
  • the main body portion 831 has a substrate accommodating portion 8311 on the back side (the side opposite to the side of the housing 80).
  • the first control substrate 40 and the second control substrate 41 are attached to the substrate housing portion 8311.
  • the cover 832 is a lid member that is fixed to the main body portion 831 and covers the substrate storage portion 8311.
  • the first control board 40 controls the energization state of the motor 211 and the respective solenoids 39.
  • the first control substrate 40 is attached to the substrate accommodation portion 8311 in parallel with the back surface 802.
  • the first control board 40 has a first motor drive circuit 401, a first solenoid drive circuit 402, a first motor control circuit 403, and a first solenoid control circuit 404 (see FIG. 6).
  • the first motor drive circuit 401 is a circuit that has a drive element such as a MOSFET and drives the motor 211.
  • the first solenoid drive circuit 402 has a drive element such as a MOSFET and is a circuit that drives each solenoid 39.
  • the first motor control circuit 403 is a circuit that has a microcomputer (or ASIC), a memory, and the like, and drives (a drive element of) the first motor drive circuit 401.
  • the first motor drive circuit 401 and the first motor control circuit 403 are circuits for controlling the first motor.
  • the first solenoid control circuit 404 is a circuit that has a microcomputer, a memory, and the like, and drives (a drive element of) the first solenoid drive circuit 402.
  • the first solenoid drive circuit 402 and the first solenoid control circuit 404 are circuits for controlling the first solenoid valve.
  • the second control board 41 controls the energization state of the motor 211 and the respective solenoids 39.
  • the second control substrate 41 is attached to the substrate accommodation portion 8311 in parallel with the first control substrate 40.
  • the second control board 41 has a second motor drive circuit 411, a second solenoid drive circuit 412, a second motor control circuit 413, and a second solenoid control circuit 414 (see FIG. 7).
  • the second motor drive circuit 411 is a circuit that has a drive element such as a MOSFET and drives the motor 211.
  • the second solenoid drive circuit 412 is a circuit that includes drive elements such as MOSFETs and drives the respective solenoids 39.
  • the second motor control circuit 413 is a circuit that has a microcomputer, a memory, and the like, and drives (a drive element of) the second motor drive circuit 411.
  • the second motor drive circuit 411 and the second motor control circuit 413 are circuits for second motor control.
  • the second solenoid control circuit 414 includes a microcomputer, a memory, and the like, and is a circuit that drives (the drive element of) the second solenoid drive circuit 412.
  • the second solenoid drive circuit 412 and the second solenoid control circuit 414 are circuits for controlling the second solenoid valve.
  • the first motor control circuit, the second motor control circuit, the first solenoid valve control circuit, and the second solenoid valve control circuit constitute a control unit 9.
  • the brake control device 1 has a motor control circuit and a solenoid control circuit redundantly arranged in two systems as described above as a countermeasure against the failure of the electric system. Furthermore, in the brake control device 1, the coils of each solenoid 39 and motor 211 are redundantly arranged in two systems.
  • FIG. FIG. 3 is a longitudinal sectional view of the shutoff valve 12 according to the first embodiment. In addition, illustration of the main-body part 831 is abbreviate
  • the shutoff valve 12 has a cylinder 42, an armature 43, a plunger 44, a valve body 45, a seat member 46 and a seal member 47 as a valve portion 38.
  • the solenoid 39 generates an electromagnetic force by energization.
  • the solenoid 39 is accommodated in a yoke 48 formed of a magnetic material.
  • the details of the solenoid 39 will be described later.
  • the cylinder 42 is disposed on the inner peripheral side of the solenoid 39 and is formed of a nonmagnetic material in a cylindrical shape.
  • the X axis is set in the axial direction of the cylinder 42, and the direction from the valve 38 side to the solenoid 39 side is defined as the X axis positive direction.
  • the armature 43 is formed of a magnetic material, and moves inside the cylinder 42 in the X-axis direction.
  • the armature 43 is biased in the negative X-axis direction by the electromagnetic force generated by the solenoid 39 when the solenoid 39 is energized.
  • the plunger 44 is formed in a rod shape with a nonmagnetic material such as a resin.
  • the X-axis negative direction end of the plunger 44 is a hemispherical valve element.
  • the plunger 44 moves integrally with the armature 43.
  • the valve body 45 is formed of a magnetic material in a cylindrical shape. The valve body 45 accommodates the plunger 44 and a part of the seat member 46 therein.
  • the valve body 45 is inserted into a valve housing hole 8021 formed on the back surface 802 of the housing 80 in the negative X-axis direction, and fixed by a crimped portion (not shown) formed in the valve housing hole 8021.
  • a compression coil spring 49 is provided which biases the plunger 44 in the positive X-axis direction.
  • the seat member 46 is formed in a cylindrical shape and disposed in the valve housing hole 8021.
  • the sheet member 46 has a through hole 461 penetrating in the X-axis direction.
  • the X-axis positive direction end of the through hole 461 is smaller in diameter than the other part.
  • the X-axis positive direction end of the seat member 46 is a seat surface on which the valve body of the plunger 44 is seated.
  • the seal member 47 is an O-ring, and is mounted on the outer peripheral side of the sheet member 46. The seal member 47 seals between the outer peripheral surface of the seat member 46 and the inner peripheral surface of the valve housing hole 8021.
  • the plunger 44 When the solenoid 39 is not energized, the plunger 44 is biased in the positive X-axis direction by the compression coil spring 49, so the valve body is separated from the seat surface, and the fluid passage 11A and the fluid passage 11B are It is communicated via the shutoff valve 12.
  • the solenoid 39 When the solenoid 39 is energized, the plunger 44 moves in the X-axis negative direction against the biasing force of the compression coil spring 49, and the valve body is seated on the seat surface of the seat member 46. Thus, the fluid passage 11A and the fluid passage 11B are shut off by the shutoff valve 12.
  • the first control board 40 is disposed at a predetermined distance (offset) away from the back surface 802 of the housing 80 in the positive X-axis direction.
  • the second control board 41 is disposed so as to be separated from the first control board 40 by a predetermined distance (offset) in the positive X-axis direction.
  • the back surface 802, the first control substrate 40, and the second control substrate 41 are orthogonal to the X axis.
  • the solenoid 39 has a first coil 391 and a second coil 392. The winding axis direction of the first coil 391 and the second coil 392 coincides with the X axis direction.
  • the first coil 391 has a first positive electrode terminal (first terminal) 3911 and a first negative electrode terminal (second terminal) 3912 extending in the positive direction of the X-axis.
  • the lengths (dimensions in the X-axis direction) of both terminals 3911 and 3912 are the same, and the tips (X-axis positive direction ends) thereof are located between the first control board 40 and the second control board 41.
  • the first positive electrode terminal 3911 is soldered (through hole mounting) with the through hole 405 formed in the first control substrate 40.
  • the first negative electrode terminal 3912 is soldered to the through hole 406 formed in the first control substrate 40. Both terminals 3911 and 3912 are connected to the first solenoid drive circuit 402.
  • the second coil 392 is disposed on the outer peripheral side of the first coil 391.
  • the second coil 392 has a second positive electrode terminal (third terminal) 3921 and a second negative electrode terminal (fourth terminal) 3922 extending in the positive direction of the X-axis.
  • the lengths of both terminals 3921 and 3922 are the same, and the tip (the end in the positive direction of the X-axis) is located on the positive side in the X-axis direction with respect to the second control substrate 41.
  • the second positive electrode terminal 3921 penetrates the through hole 407 formed in the first control substrate 40 and is soldered to the through hole 415 formed in the second control substrate 41.
  • the second negative electrode terminal 3922 penetrates the through hole 408 formed in the first control substrate 40 and is soldered to the through hole 416 formed in the second control substrate 41.
  • the through holes 407 and 408 are through holes.
  • Both terminals 3921 and 3922 are insulated from the circuits of the first control board 40.
  • Both terminals 3921 and 3922 are connected to the second solenoid drive circuit 412.
  • both coils 391 and 392 may be used at a predetermined ratio from the normal time.
  • FIG. 4 is a cross-sectional perspective view of the solenoid 39 of the first embodiment.
  • the terminals 3911, 3912, 3921, 3922 are linearly arranged in the order of the second positive electrode terminal 3921, the first positive electrode terminal 3911, the first negative electrode terminal 3912, and the second negative electrode terminal 3922.
  • Each terminal 3911, 3912, 3921, 3922 is held by a resin bobbin around which a coil is wound.
  • each terminal 3911, 3912, 3921, 3922 is collectively referred to as a solenoid terminal portion 393. As shown in FIG.
  • the direction of the magnetic field generated when a current is supplied to the first coil 391 and the direction of the magnetic field generated when a current is supplied to the second coil 392 are The direction of current flow is set to match.
  • the coil of the motor 211 is also similar to that of the solenoid 39, so the illustration and the description thereof will be omitted.
  • FIG. 5 is a perspective view of the main body portion 831 of the first embodiment.
  • the Y axis is set in a direction orthogonal to the X axis and corresponding to the vertical direction in FIG. 2, and the direction from the lower side to the upper side is defined as the Y axis positive direction.
  • the Z axis is set in a direction orthogonal to the X axis and the Y axis and corresponding to the left and right direction in FIG. 2, and the direction from the right to the left is defined as the Z axis positive direction.
  • the terminal holding portion 481 and the solenoid terminal portion 393 of each solenoid 39 project in the X-axis direction on the surface of the main body portion 831 and the substrate housing portion 8311.
  • the main body 831 is formed with an opening 8311 through which the solenoid terminal 393 of each solenoid 39 is inserted.
  • the respective solenoid terminal portions 393 are arranged in the Z-axis direction in four rows. Hereinafter, of the respective rows, the row at the Y axis negative direction end is the first row, and the row at the Y axis positive direction end is the fourth row. Five solenoid terminal portions 393 are arranged in the first row, and four solenoid terminal portions 393 are arranged in the second and third rows. Two solenoid terminal portions 393 are arranged in the fourth row. The solenoid terminal portions 393 in the second and third rows adjacent to each other are held by one terminal holding portion 481.
  • the substrate accommodation portion 8311 includes a first positive terminal (first drive terminal) 2111 of the motor 211, a first negative terminal (first drive terminal) 2112, a second positive terminal (second drive terminal) 2113 and a second 2 A negative electrode terminal (second drive terminal) 2114 protrudes in the X-axis direction.
  • the two terminals 2111, 2112, 2113, and 2114 are provided two by two and arranged in the Y-axis direction.
  • the first positive electrode terminal 2111 is a positive electrode terminal of a first coil of the motor 211.
  • the first negative electrode terminal 2112 is a negative electrode terminal of the first coil of the motor 211.
  • the first positive electrode terminal 2111 and the first negative electrode terminal 2112 are first driving terminals.
  • the second positive electrode terminal 2113 is a positive electrode terminal of the second coil of the motor 211.
  • the second negative electrode terminal 2114 is a negative electrode terminal of the second coil of the motor 211.
  • the second positive electrode terminal 2113 and the second negative electrode terminal 2114 are second driving terminals.
  • the terminals 2111, 2122, 2113, and 2114 are disposed at the centers of the solenoid terminal portions 393 in the second and third rows in the Z-axis direction.
  • the respective terminals 2111, 2121, 2113, and 2114 are arranged at the same position in the Y-axis direction as the respective solenoid terminal portions 393 in the same row.
  • a terminal 8321 of a connector 832 formed on the main body 831 protrudes in the X-axis direction in the substrate accommodation portion 8311.
  • the terminal portion 8321 is disposed near the end of the substrate accommodation portion 8311 in the negative Z-axis direction. Power from the battery and a signal from an external sensor or the like are input to the terminal portion 8321 through a wire connected to the connector 832.
  • a plurality of first claws 833 and second claws 834 project in the X-axis direction from the outer edge of the substrate accommodation portion 8311.
  • the first claw portion 833 engages with a recess 409 (see FIG. 6) formed on the outer edge of the first control substrate 40 to hold the first control substrate 40.
  • the length (the dimension in the X-axis direction) of the second claw portion 834 is formed longer than the first claw portion 833.
  • the second claw portion 834 engages with a recess 417 (see FIG. 7) formed on the outer edge of the second control substrate 41 to hold the second control substrate 41.
  • FIG. 6 is a perspective view of the first control board 40 of the first embodiment.
  • the first control substrate 40 is fastened to the main body 831 by a screw.
  • the outer edge of the first control substrate 40 is formed with a recess 409 that engages with the first claw portion 833.
  • the through holes 405 and 406 and the through holes 407 and 408 corresponding to the respective solenoid terminal portions 393 and the respective terminals 2111, 2122, 2113 and 2114 are arranged in the Z-axis direction in four rows.
  • a through hole 410 through which the terminal portion 8321 of the connector 832 passes is formed in the first control board 40.
  • the through hole 410 is soldered to the terminal 8321.
  • the first motor drive circuit 401 is disposed in the region between each solenoid terminal 393 and the terminal 8321 of the connector 832.
  • the first solenoid drive circuit 402 is disposed in a region on the Y axis negative direction side relative to the solenoid terminal portions 393 in the first row.
  • the first motor control circuit 403 is disposed at a position closer to the Y-axis positive direction than the respective solenoid terminal portions 393 in the fourth row and the respective terminals 2111, 2121, 2113, and 2114 of the motor 211.
  • the first solenoid control circuit 404 is disposed in a region between the solenoid terminal portions 393 in the first row and the solenoid terminal portions 393 in the second row.
  • FIG. 7 is a perspective view of the second control board 41 of the first embodiment.
  • the outer edge of the second control substrate 41 is formed with a recess 417 that engages with the second hook 834.
  • the through holes 415 and 416 corresponding to the respective solenoid terminal portions 393 and the respective terminals 2113 and 2114 are arranged in the Z-axis direction in four rows.
  • a through hole 418 through which the terminal portion 8321 of the connector 832 passes is formed.
  • the through hole 418 is soldered to the terminal 8321.
  • the second motor drive circuit 411 is disposed in the region between each solenoid terminal 393 and the terminal 8321 of the connector 832.
  • the second solenoid drive circuit 412 is disposed in a region on the Y axis negative direction side relative to the solenoid terminal portions 393 in the first row.
  • the second motor control circuit 413 is disposed at a position closer to the Y-axis positive direction than the respective solenoid terminal portions 393 in the fourth row and the respective terminals 2111, 2122, 2113, and 2114 of the motor 211.
  • the second solenoid control circuit 414 is disposed in the region between the solenoid terminal portions 393 in the first row and the solenoid terminal portions 393 in the second row.
  • the solenoid valves (the shutoff valve 12, the solenoid in valve 13, the communication valve 20, the pressure regulating valve 24, the solenoid out valve 25, the stroke simulator in valve 28, the stroke simulator out valve 32) of the fluid pressure unit 8 It has a second coil 392.
  • the first solenoid drive circuit 402 and the first solenoid control circuit 404 are offset from the back surface 802 of the housing 80 in which the solenoid valves are disposed in the positive X-axis direction.
  • the first solenoid drive circuit 402 and the first solenoid control circuit 404 are connected to the first positive electrode terminal 3911 of the first coil 391 and control the respective solenoid valves.
  • the second solenoid drive circuit 412 and the second solenoid control circuit 414 are offset from the back surface 802 in the positive direction of the X-axis.
  • the second solenoid drive circuit 412 and the second solenoid control circuit 414 are connected to the second positive electrode terminal 3921 of the second coil 392, and control the respective solenoid valves. That is, each solenoid valve has a double coil and a control circuit.
  • the control circuit is disposed offset with respect to the mounting surface of each solenoid valve, and is connected by corresponding coils and terminals. In each electromagnetic valve, only one electric system remains in a single mechanical system, so that redundancy of the electric system and suppression of upsizing of the brake control device 1 can be compatible.
  • the first control board 40 is offset from the back surface 802 of the housing 80 where the solenoid valve is disposed in the positive X-axis direction, and the first solenoid drive circuit 402 and the first solenoid control circuit 404 are installed.
  • the second control board 41 is offset from the first control board 40 in the positive X-axis direction, and a second solenoid drive circuit 412 and a second solenoid control circuit 414 are provided. Thereby, the increase in size of the brake control device 1 can be suppressed as compared to the case where two control circuits are installed on one control board.
  • the first negative electrode terminal 3912 of the first coil 391 is connected to the first solenoid drive circuit 402 and the first solenoid control circuit 404.
  • the second negative electrode terminal 3922 of the second coil 392 is connected to the second solenoid drive circuit 412 and the second solenoid control circuit 414.
  • one of the positive electrode terminals 3911 and 31921 or the negative electrode terminals 3912 and 3922 of the coils 391 and 392 is used as a common terminal, it is necessary to be manufactured in consideration of the characteristic difference between each other. is there. On the other hand, cost increase can be suppressed by using dedicated terminals corresponding to the respective coils 391, 392.
  • the second positive electrode terminal 3921 and the second negative electrode terminal 3922 of the second coil 392 are connected to the second control substrate 41 through the through holes (through holes 407 and 408) formed in the first control substrate 40.
  • the terminals 3921 and 3922 do not have to be drawn out so as to bypass the outer edge of the first control substrate 40, so the arrangement of the terminals 3921 and 3922 on the second control substrate 41 can be facilitated.
  • the first positive electrode terminal 3911 and the first negative electrode terminal 3912 of a certain solenoid 39, and the first positive electrode terminal 3911 and the first negative electrode terminal 3912 of the solenoid 39 adjacent to the solenoid 39 in the Z-axis direction are disposed.
  • the circumference of each terminal 3911, 3912, 3921, 3922 is an area (forbidden band) where other circuits can not be arranged along with the soldering of the terminals.
  • the first negative terminal 3912 and the second negative terminal 3922 of a certain solenoid 39, and the second positive terminal 3921 and the first positive terminal 3911 of the solenoid 39 adjacent to the certain solenoid 39 in the Z-axis direction Take an array that overlaps each other. Since at least four adjacent terminals are in an overlapping arrangement, it is possible to suppress the reduction of the board mounting area due to the redundancy.
  • the first positive electrode terminal 3911, the first negative electrode terminal 3912, the second positive electrode terminal 3921, and the second negative electrode terminal 3922 of each solenoid 39 are arranged to overlap linearly.
  • the second positive electrode terminal 3921 is connected to the second control substrate 41 through a through hole 407 formed in the first control substrate 40.
  • the second negative electrode terminal 3922 is connected to the second control substrate 41 through the through hole 408 formed in the first control substrate 40.
  • the motor 211 for driving the pump 21 of the fluid pressure unit 8 has a first positive electrode terminal 2111, a first negative electrode terminal 2112, a second positive electrode terminal 2113, and a second negative electrode terminal 2114.
  • the first motor drive circuit 401 and the first motor control circuit 403 are installed on the first control board 40, and the first positive electrode terminal 2111 and the first negative electrode terminal 2112 are connected.
  • the second motor drive circuit 411 and the second motor control circuit 413 are installed on the second control board 41, and the second positive electrode terminal 2113 and the second negative electrode terminal 2114 are connected.
  • the housing 80 is located opposite the back surface 802 and has a front surface 801 to which a motor 211 is attached. That is, the motor 211 has a coil of double structure and a control circuit.
  • the brake control device 1 has a system of two electric systems of all the actuators (the respective solenoid valves, the motor 211). Therefore, even if an abnormality occurs in one system, the function is performed using the other normal system. The same brake control as normal can be continued without restriction.
  • the housing 80 is continuous with the front surface 801 and the back surface 802, and is continuous with the top surface 803 on which the wheel cylinder port 8031 is disposed, the bottom surface 804 opposite to the top surface 803, and the front surface 801, the back surface 802, the top surface 803 and the bottom surface 804. And a right side 806 opposite to the left side 805. Since the first control board 40 and the second control board 41 are offset from the housing 80 which is a hexahedron shape, the enlargement of the brake control device 1 can be suppressed.
  • the second coil 392 is disposed on the outer periphery of the first coil 391.
  • a first positive electrode terminal 3911 and a first negative electrode terminal 3912 are provided between the second positive electrode terminal 3921 and the second negative electrode terminal 3922. That is, since the solenoid valve is made to be a double system by increasing the terminals to the outside of both terminals in the existing single-layer solenoid valve, it is possible to suppress an increase in the design change location for the existing solenoid valve and suppress an increase in cost. .
  • the direction of the magnetic field generated by supplying a current to the first coil 391 and the direction of the magnetic field generated by supplying a current to the second coil 392 are the same. Thereby, it can suppress that the attraction
  • FIG. 8 is a cross-sectional perspective view of the solenoid 39 of the second embodiment.
  • the solenoid 39 of the second embodiment the first coil 391 and the second coil 392 are aligned in the X-axis direction.
  • the first coil 391 is positioned closer to the positive side in the X-axis direction than the second coil 392.
  • Both coils 391, 392 have the same shape, and when viewed in the X-axis direction, both coils 391, 392 completely overlap.
  • the generated magnetic flux of the coil is proportional to the coil diameter and inversely proportional to the coil length.
  • both coils 391 and 392 of the second embodiment are aligned in the X-axis direction, the resistance value and inductance of both coils 391 and 392 can be equal, and design can be facilitated. Moreover, since the heat_generation
  • FIG. 9 is a cross-sectional perspective view of the solenoid 39 of the third embodiment.
  • a second positive electrode terminal 3921 and a second negative electrode terminal 3922 are disposed between the first positive electrode terminal 3911 and the first negative electrode terminal 3912.
  • FIG. 10 is a perspective view of the solenoid 39 of the fourth embodiment.
  • the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are connected to each other.
  • the second positive electrode terminal 3921 is soldered to the through holes formed in the first control substrate 40 and the second control substrate 41, respectively.
  • An electric circuit diagram is shown in FIG.
  • the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are shared terminals and are connected to the battery.
  • the first negative electrode terminal 3912 is connected to the ground via the drive element of the first solenoid drive circuit 402.
  • the second negative electrode terminal 3922 is connected to the ground through the drive element of the second solenoid drive circuit 404.
  • the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are shared terminals, one through hole of the first control substrate 40 can be reduced as compared with the case where the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are not shared terminals. As a result, the substrate mounting area of the first control substrate 40 can be increased.
  • the basic configuration of the fifth embodiment is the same as that of the first embodiment, so only differences from the first embodiment will be described.
  • the solenoid 39 is the same as the solenoid 39 of the third embodiment shown in FIG.
  • FIG. 12 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the fifth embodiment.
  • the first control substrate 40 of the fifth embodiment has an elongated hole 4078 through which the second positive electrode terminal 3921 and the second negative electrode terminal 3922 penetrate.
  • the basic configuration of the sixth embodiment is the same as that of the first embodiment, so only the differences from the first embodiment will be described.
  • the solenoid 39 is the same as the solenoid 39 of the third embodiment shown in FIG.
  • FIG. 13 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the sixth embodiment.
  • the first control substrate 40 of the sixth embodiment has a notch 4079 through the second positive electrode terminal 3921 and the second negative electrode terminal 3922 at the outer edge.
  • FIG. 14 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the seventh embodiment.
  • the second control substrate 41 of the seventh embodiment has an extension 419 that protrudes in the positive Y-axis direction with respect to the first control substrate 40. Through holes 415 and 416 are disposed in the extension 419.
  • the solenoid 39 of the seventh embodiment the second positive electrode terminal 3921 and the second negative electrode terminal 3922 bypass the outer edge of the first control substrate 40, extend in the positive X-axis direction, and pass through the through holes 415 and 416.
  • the substrate mounting area can be increased, and the first control substrate 40 can be used as the main portion 831. Assemblability at the time of assembling to
  • FIG. 15 is a plan view of the first control substrate 40 of the eighth embodiment.
  • the solenoid 39 of the eighth embodiment the first positive electrode terminal 3911, the first negative electrode terminal 3912, the second positive electrode terminal 3921 and the second negative electrode terminal 3922 are arranged in an arc along the cylindrical outer periphery of the yoke 48.
  • the number of coil turns can be maximized as compared to the case where the terminals 3911, 31912, 3921, 3922 are linearly arranged.
  • FIG. 16 is a perspective view of the first control board 40 of the ninth embodiment
  • FIG. 17 is a perspective view of the second control board 41 of the ninth embodiment.
  • the first control board 40 of the ninth embodiment has a first motor drive circuit 401, a first solenoid drive circuit 402, a second motor drive circuit 411, and a second solenoid drive circuit 412.
  • the second control board 41 has a first motor control circuit 403, a first solenoid control circuit 404, a second motor control circuit 413, and a second solenoid control circuit 414.
  • drive circuits for two systems are disposed on the first control board 40, and control circuits for two systems are disposed on the second control board 41. Therefore, since it is not necessary to connect the second substrate 41 to the terminals of the solenoids 39 and the motor 211, an area for mounting a large circuit such as a microcomputer or an ASIC can be sufficiently secured on the second control substrate 41.
  • the concrete composition of the present invention is not limited to the composition of the embodiment, and there are design changes within the scope of the present invention.
  • the electric system of the coil and the motor may be a triple or more multiplex system. That is, any configuration may be employed as long as a plurality of control circuits are offset from each other, and the multiplexed coils and motors and corresponding control circuits are connected by terminals.
  • the first negative electrode terminal and the second negative electrode terminal may be shared terminals.
  • the solenoid valves mounted on the hydraulic unit only the electric system of some of the solenoid valves may be multiplexed. In the case of the hydraulic unit 8 according to the embodiment, the minimum brake operation is possible by multiplexing the electric systems of at least the shutoff valve 12, the communication valve 20, the pressure regulator valve 24, and the stroke simulator out valve 32.
  • a brake control device includes, in one aspect thereof, a first solenoid valve having a first coil to which a first terminal and a second terminal are connected, and a second coil to which a third terminal and a fourth terminal are connected.
  • a housing having a first surface on which the first solenoid valve is disposed, and a control board portion, which is disposed offset from the first surface in the winding axial direction of the first coil,
  • a circuit for controlling a solenoid valve and a circuit for controlling a second solenoid valve, the first solenoid valve control circuit is connected to the first terminal, controls the first solenoid valve, and controls the second solenoid valve.
  • a control circuit connected to the third terminal and controlling the first solenoid valve;
  • the control board portion is disposed offset from the first surface in the winding axis direction of the first coil, and the first solenoid valve control circuit is installed.
  • a first control substrate, and a second control substrate disposed offset from the first control substrate in the winding axis direction and provided with the second solenoid valve control circuit.
  • the second terminal is connected to the first solenoid valve control circuit
  • the fourth terminal is connected to the second solenoid valve control circuit.
  • the first control substrate has a through hole, and the third terminal and the fourth terminal pass through the through hole to the second control substrate. It is connected.
  • the third coil to which the fifth terminal and the sixth terminal are connected and the fourth coil to which the seventh terminal and the eighth terminal are connected are provided.
  • the second terminal, the fourth terminal, the seventh terminal, and the fifth terminal are mutually different when viewed in a direction parallel to the second control substrate. Take an overlapping array.
  • the first terminal, the second terminal, the third terminal, the fourth terminal, the fourth terminal, when viewed from a direction parallel to the second control substrate The five terminals, the sixth terminal, the seventh terminal, and the eighth terminal are arranged to overlap with each other.
  • the through hole portion has a first through hole and a second through hole, and the third terminal passes the first through hole through the first control hole. And the fourth terminal is connected to the second control board through the second through hole.
  • the control board portion is disposed offset from the first surface in the winding axis direction of the first coil, and the circuit for controlling the first solenoid valve And a first control board on which the second solenoid valve control circuit is installed.
  • the control substrate includes a second control substrate disposed offset from the first control substrate in the winding axial direction.
  • a first drive terminal connected to a first motor control circuit installed on the control board unit, and a second motor installed on the control board unit And a second drive terminal connected to the control circuit, wherein the housing is opposite to the first surface and has a second surface to which the motor is attached.
  • the housing is disposed with a foil cylinder connection port continuous with the first surface and the second surface and connected with a pipe connected to the foil cylinder.
  • the second coil is disposed on the outer periphery of the first coil.
  • the first terminal and the second terminal are between the third terminal and the fourth terminal when viewed in a direction perpendicular to the control substrate portion. is there.
  • the first coil and the second coil overlap when viewed in the winding axis direction of the first coil.
  • the direction of the magnetic field generated by applying a current to the first coil and the direction of the magnetic field generated by applying a current to the second coil are the same. It is a direction.
  • the first terminal and the third terminal are connected to each other.
  • the brake control device includes, in one aspect, a solenoid valve, a motor having a first drive terminal and a second drive terminal, a first surface on which the solenoid valve is disposed, and A housing having a second surface located opposite to the first surface and having the motor attached thereto, and a control board portion, offset from the first surface in the rotational axis direction of the motor
  • the first motor control circuit includes a first motor control circuit and a second motor control circuit, and the first motor control circuit is connected to the first drive terminal to drive the motor, the second motor control The control circuit includes a control substrate portion to which the second drive terminal is connected and which drives the motor.
  • the control board portion is disposed offset from the first surface in the rotational axis direction of the motor, and a first control board on which the first motor control circuit is installed; And a second control substrate disposed offset from the first surface in the direction of the rotational axis of the motor and on which the second motor control circuit is installed.
  • the control board portion is disposed offset from the first surface in the rotational axis direction of the motor, and the first motor control circuit and the second motor It has a first control board on which a control circuit is installed.
  • the control board portion has a second control board disposed offset from the first control board in the rotation axis direction of the motor.
  • the electromagnetic valve includes a first coil to which a first terminal and the second terminal are connected, and a second coil to which a third terminal and a fourth terminal are connected.
  • the control board unit is connected to the first terminal, and a first solenoid valve control circuit for controlling the solenoid valve and the third terminal are connected to control the solenoid valve.
  • a solenoid valve control circuit is connected to the brake control device.
  • the brake control device in one aspect, includes a hydraulic unit and a control unit, and the hydraulic unit connects to a wheel cylinder capable of applying a braking torque to the wheel according to the brake hydraulic pressure.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

This brake control device is provided with: a shutoff valve having a first coil and a second coil; a housing having a rear surface on which the shutoff valve is disposed; and a first control board and a second control board, which are disposed by being offset in the winding axis direction of the first coil from the rear surface, and which have a first electromagnetic valve control circuit and a second electromagnetic valve control circuit for controlling the shutoff valve.

Description

ブレーキ制御装置Brake control device
 本発明は、ブレーキ制御装置に関する。 The present invention relates to a brake control device.
 特許文献1には、電気系統の失陥への対応策として、液圧ユニットおよび制御用回路をそれぞれ冗長化したブレーキ制御装置が開示されている。 Patent Document 1 discloses a brake control device in which a hydraulic unit and a control circuit are redundantly provided as a countermeasure against the failure of the electric system.
米国特許出願公開第2017/0129469号明細書US Patent Application Publication No. 2017/0129469
 しかしながら、上記特許文献1の技術にあっては、複数の液圧ユニットを持つため、大型化を招くおそれがあった。
  本発明の目的の一つは、電気系統の冗長化と装置の大型化の抑制とを両立できるブレーキ制御装置を提供することにある。
However, in the technique of Patent Document 1 described above, since there are a plurality of fluid pressure units, there is a possibility that an increase in size is caused.
One of the objects of the present invention is to provide a brake control device capable of achieving both the redundancy of the electrical system and the suppression of the increase in size of the device.
 本発明の一実施形態におけるブレーキ制御装置は、第1コイルと第2コイルを有する第1電磁弁と、第1電磁弁が配置される第1の面を有するハウジングと、第1の面から第1コイルの巻回軸方向にオフセットして配置され、第1電磁弁を制御する第1電磁弁制御用回路および第2電磁弁制御用回路を有する制御基板部と、を備える。 A brake control apparatus according to an embodiment of the present invention includes a first solenoid valve having a first coil and a second coil, a housing having a first surface on which the first solenoid valve is disposed, and a first surface from a first surface. And a control board portion disposed in the winding axial direction of the one coil, having a first solenoid valve control circuit for controlling the first solenoid valve and a second solenoid valve control circuit.
 よって、本発明の一実施形態におけるブレーキ制御装置によれば、電気系統の冗長化と装置の大型化の抑制とを両立できる。 Therefore, according to the brake control device in the embodiment of the present invention, it is possible to achieve both of the redundancy of the electric system and the suppression of the enlargement of the device.
実施形態1のブレーキ制御装置1の概略図である。1 is a schematic view of a brake control device 1 according to a first embodiment. 実施形態1のブレーキ制御装置1の分解斜視図である。FIG. 1 is an exploded perspective view of a brake control device 1 according to a first embodiment. 実施形態1の遮断弁12の縦断面図である。FIG. 2 is a vertical cross-sectional view of the shutoff valve 12 of the first embodiment. 実施形態1のソレノイド39の断面斜視図である。FIG. 2 is a cross-sectional perspective view of the solenoid 39 of the first embodiment. 実施形態1の本体部831の斜視図である。5 is a perspective view of a main body 831 of Embodiment 1. FIG. 実施形態1の第1制御基板40の斜視図である。5 is a perspective view of a first control board 40 of Embodiment 1. FIG. 実施形態1の第1制御基板41の斜視図である。5 is a perspective view of a first control board 41 of Embodiment 1. FIG. 実施形態2のソレノイド39の断面斜視図である。10 is a cross-sectional perspective view of a solenoid 39 of Embodiment 2. FIG. 実施形態3のソレノイド39の断面斜視図である。FIG. 10 is a cross-sectional perspective view of a solenoid 39 of the third embodiment. 実施形態4のソレノイド39の斜視図である。FIG. 20 is a perspective view of a solenoid 39 of the fourth embodiment. 実施形態4のソレノイド39の電気回路図である。FIG. 16 is an electric circuit diagram of a solenoid 39 of a fourth embodiment. 実施形態5の第1制御基板40および第2制御基板41の要部斜視図である。FIG. 18 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the fifth embodiment. 実施形態6の第1制御基板40および第2制御基板41の要部斜視図である。FIG. 21 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the sixth embodiment. 実施形態7の第1制御基板40および第2制御基板41の要部斜視図である。FIG. 21 is a perspective view of the main parts of a first control board 40 and a second control board 41 of the seventh embodiment. 実施形態8の第1制御基板40の平面図である。FIG. 26 is a plan view of the first control board 40 of the eighth embodiment. 実施形態9の第1制御基板40の斜視図である。FIG. 21 is a perspective view of a first control board 40 of the ninth embodiment. 実施形態9の第2制御基板41の斜視図である。FIG. 21 is a perspective view of a second control board 41 of the ninth embodiment.
 〔実施形態1〕
  図1は、実施形態1のブレーキ制御装置1の概略図である。
  ブレーキ制御装置1は、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた一般的な車両のほか、内燃機関に加えて電動式のモータ(ジェネレータ)を備えたハイブリッド車や、電動式のモータのみを備えた電気自動車等に搭載されている。ブレーキ制御装置1は、各車輪(左前輪FL、右前輪FR、左後輪RL、右後輪RR)に設置され、ホイルシリンダ2の液圧に応じて作動するディスクブレーキを有する。ブレーキ制御装置1は、ホイルシリンダ2の液圧を調整することにより、各車輪FL~RRに制動トルクを付与する。ブレーキ制御装置1は、2系統(プライマリP系統およびセカンダリS系統)のブレーキ配管を有する。ブレーキ配管形式は、例えばX配管形式である。以下、プライマリ系統(以下P系統)に対応する部材とセカンダリ系統(以下、S系統)に対応する部材を区別する場合には、符号の末尾に添字P,Sを付す。また、各車輪FL~RRに対応する部材を区別する場合には、その符号の末尾に添字a~dを付す。
  ブレーキペダル3は、ドライバのブレーキ操作の入力を受けるブレーキ操作部材である。プッシュロッド4は、ブレーキペダル3の操作に応じてストロークする。マスタシリンダ5は、プッシュロッド4のストローク量により作動し、ブレーキ液圧(マスタシリンダ液圧)を発生する。
Embodiment 1
FIG. 1 is a schematic view of the brake control device 1 according to the first embodiment.
The brake control device 1 is a general vehicle having only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle having an electric motor (generator) in addition to the internal combustion engine, and an electric motor It is mounted on an electric car etc. equipped with only a motor. The brake control device 1 is provided on each of the wheels (front left wheel FL, front right wheel FR, rear left wheel RL, rear right wheel RR), and has a disc brake that operates in accordance with the fluid pressure of the wheel cylinder 2. The brake control device 1 applies a braking torque to each of the wheels FL to RR by adjusting the fluid pressure of the wheel cylinder 2. The brake control device 1 has brake piping of two systems (a primary P system and a secondary S system). The brake piping system is, for example, an X piping system. Hereinafter, in order to distinguish members corresponding to the primary system (hereinafter, P system) and members corresponding to the secondary system (hereinafter, S system), suffixes P and S are added to the end of the reference numerals. Further, in order to distinguish members corresponding to the wheels FL to RR, subscripts a to d are added to the end of the reference numerals.
The brake pedal 3 is a brake operation member that receives an input of a driver's brake operation. The push rod 4 travels in response to the operation of the brake pedal 3. The master cylinder 5 is operated by the stroke amount of the push rod 4 and generates a brake fluid pressure (master cylinder fluid pressure).
 マスタシリンダ5は、ブレーキ液を貯留するリザーバタンク6からブレーキ液が補給される。マスタシリンダ5は、タンデム型であり、プッシュロッド4のストロークに応じてストロークするPピストン51PおよびSピストン51Sを有する。両ピストン51P,51Sは、プッシュロッド4の軸方向に沿って直列に並ぶ。Pピストン51Pはプッシュロッド4に接続されている。Sピストン51Sはフリーピストン型である。マスタシリンダ5には、ストロークセンサ60が取り付けられている。ストロークセンサ60は、ブレーキペダル3のペダルストローク量として、Pピストン51Pのストローク量を検出する。
  ストロークシミュレータ7は、ドライバのブレーキ操作に応じて作動する。ストロークシミュレータ7は、ドライバのブレーキ操作に応じてマスタシリンダ5の内部から流出したブレーキ液が流入することで、ペダルストロークを発生させる。ストロークシミュレータ7のピストン71は、マスタシリンダ5から供給されたブレーキ液により、シリンダ72内をスプリング73の付勢力に抗して軸方向に作動する。これにより、ストロークシミュレータ7は、ドライバのブレーキ操作に応じた操作反力を生成する。
The master cylinder 5 is supplied with the brake fluid from a reservoir tank 6 that stores the brake fluid. Master cylinder 5 is a tandem type, and has P piston 51 P and S piston 51 S that stroke according to the stroke of push rod 4. The two pistons 51P and 51S are arranged in series along the axial direction of the push rod 4. The P piston 51 P is connected to the push rod 4. The S piston 51S is a free piston type. A stroke sensor 60 is attached to the master cylinder 5. The stroke sensor 60 detects the stroke amount of the P piston 51 P as the pedal stroke amount of the brake pedal 3.
The stroke simulator 7 operates in response to the driver's brake operation. The stroke simulator 7 generates a pedal stroke by the inflow of the brake fluid that has flowed out from the inside of the master cylinder 5 according to the driver's brake operation. The piston 71 of the stroke simulator 7 operates in the axial direction against the biasing force of the spring 73 by the brake fluid supplied from the master cylinder 5. Thereby, the stroke simulator 7 generates an operation reaction force according to the brake operation of the driver.
 液圧ユニット8は、ドライバのブレーキ操作とは独立して各車輪FL~RRに制動トルクを付与可能である。液圧ユニット8は、マスタシリンダ5およびリザーバタンク6からブレーキ液の供給を受ける。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間に設置されている。液圧ユニット8は、制御液圧を発生するためのアクチュエータとして、ポンプ21のモータ211および複数の電磁弁(遮断弁12等)を有している。ポンプ21は、リザーバタンク6からブレーキ液を吸入し、ホイルシリンダ2へ向けて吐出する。ポンプ21は、例えばプランジャポンプやギヤポンプである。モータ211は、例えばブラシ付きモータである。遮断弁12等は、制御信号に応じて開閉動作し、液路11等の連通状態を切り替えることにより、ブレーキ液の流れを制御する。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間の連通を遮断した状態で、ポンプが発生するブレーキ液圧によりホイルシリンダ2を加圧する。また、液圧ユニット8は、各所の液圧を検出する液圧センサ35~37を有する。 The hydraulic unit 8 can apply braking torque to each of the wheels FL to RR independently of the driver's brake operation. The hydraulic unit 8 receives supply of brake fluid from the master cylinder 5 and the reservoir tank 6. The hydraulic unit 8 is disposed between the master cylinder 5 and the wheel cylinder 2. The hydraulic unit 8 includes a motor 211 of the pump 21 and a plurality of solenoid valves (such as the shutoff valve 12) as an actuator for generating control hydraulic pressure. The pump 21 sucks the brake fluid from the reservoir tank 6 and discharges it toward the wheel cylinder 2. The pump 21 is, for example, a plunger pump or a gear pump. The motor 211 is, for example, a brushed motor. The shutoff valve 12 or the like opens and closes in response to the control signal, and controls the flow of the brake fluid by switching the communication state of the fluid passage 11 or the like. The hydraulic unit 8 pressurizes the wheel cylinder 2 by the brake fluid pressure generated by the pump in a state where the communication between the master cylinder 5 and the wheel cylinder 2 is cut off. The fluid pressure unit 8 also has fluid pressure sensors 35 to 37 for detecting the fluid pressure at various points.
 コントロールユニット9は、液圧ユニット8の作動を制御する。コントロールユニット9には、ストロークセンサ60および液圧センサ35~37から送られる検出値に加え、車両側から送られる走行状態に関する情報(車輪速等)が入力される。コントロールユニット9は、入力された各種情報に基づき、内蔵されるプログラムに従って情報処理を行い、ホイルシリンダ2の目標ホイルシリンダ液圧を演算する。コントロールユニット9は、ホイルシリンダ2のホイルシリンダ液圧が目標ホイルシリンダ液圧となるように液圧ユニット8の各アクチュエータに指令信号を出力する。これにより、各種ブレーキ制御(倍力制御、アンチロック制御、車両運動制御のためのブレーキ制御、自動ブレーキ制御および回生協調ブレーキ制御等)を実現できる。倍力制御は、ドライバのブレーキ踏力では不足するブレーキ液圧を発生してブレーキ操作を補助する。アンチロック制御は、各車輪FL~RRの制動スリップ(ロック傾向)を抑制する。車両運動制御は、横滑り等を防止する車両挙動安定化制御である。自動ブレーキ制御は、先行車追従制御や自動緊急ブレーキ等である。回生協調ブレーキ制御は、回生ブレーキと協調して目標減速度を達成するようにホイルシリンダ液圧を制御する。 The control unit 9 controls the operation of the hydraulic unit 8. In addition to the detection values sent from the stroke sensor 60 and the hydraulic pressure sensors 35 to 37, information (wheel speed etc.) regarding the traveling state sent from the vehicle side is input to the control unit 9. The control unit 9 performs information processing in accordance with a built-in program based on the input various information, and calculates a target wheel cylinder hydraulic pressure of the wheel cylinder 2. The control unit 9 outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure of the wheel cylinder 2 becomes the target wheel cylinder hydraulic pressure. As a result, various types of brake control (boost control, antilock control, brake control for vehicle motion control, automatic brake control, regenerative coordinated brake control, etc.) can be realized. The boost control assists the brake operation by generating a brake fluid pressure that is insufficient with the driver's brake pressing force. Anti-lock control suppresses braking slip (lock tendency) of each wheel FL to RR. Vehicle motion control is vehicle behavior stabilization control that prevents skidding or the like. Automatic brake control is preceding vehicle follow-up control, automatic emergency braking, or the like. The regenerative coordinated brake control controls the wheel cylinder hydraulic pressure to achieve the target deceleration in coordination with the regenerative brake.
 マスタシリンダ5の両ピストン51P,51S間には、P液圧室52Pが画成されている。P液圧室52Pには、圧縮コイルスプリング53Pが設置されている。Sピストン51Sおよびシリンダ54の底部541間には、S液圧室52Sが画成されている。S液圧室52Sには、圧縮コイルスプリング53Sが設置されている。各液圧室52P,52Sには、液路(接続液路)11が開口する。各液圧室52P,52Sは、液路11を介して液圧ユニット8に接続すると共に、ホイルシリンダ2と連通可能である。
  ドライバによるブレーキペダル3の踏み込み操作によってピストン51がストロークし、液圧室52の容積の減少に応じてマスタシリンダ液圧が発生する。両液圧室52P,52Sには略同じマスタシリンダ液圧が発生する。これにより、液圧室52から液路11を介してホイルシリンダ2へ向けてブレーキ液が供給される。マスタシリンダ5は、P液圧室52Pに発生したマスタシリンダ液圧によりP系統の液路(液路11P)を介してP系統のホイルシリンダ2a,2dを加圧する。また、マスタシリンダ5は、S液圧室52Sに発生したマスタシリンダ液圧によりS系統の液路(液路11S)を介してS系統のホイルシリンダ2b,2cを加圧する。
A P hydraulic pressure chamber 52P is defined between both pistons 51P and 51S of the master cylinder 5. A compression coil spring 53P is installed in the P hydraulic pressure chamber 52P. An S hydraulic pressure chamber 52S is defined between the S piston 51S and the bottom portion 541 of the cylinder 54. A compression coil spring 53S is installed in the S hydraulic pressure chamber 52S. A fluid passage (connection fluid passage) 11 opens in each fluid pressure chamber 52P, 52S. Each fluid pressure chamber 52P, 52S is connected to the fluid pressure unit 8 via the fluid passage 11, and can communicate with the wheel cylinder 2.
The piston 51 is stroked by the depression operation of the brake pedal 3 by the driver, and the master cylinder fluid pressure is generated according to the decrease of the volume of the fluid pressure chamber 52. Approximately the same master cylinder fluid pressure is generated in both fluid pressure chambers 52P and 52S. Thereby, the brake fluid is supplied from the fluid pressure chamber 52 to the wheel cylinder 2 through the fluid passage 11. The master cylinder 5 pressurizes the wheel cylinders 2a and 2d of the P system via the P system fluid path (fluid path 11P) with the master cylinder fluid pressure generated in the P fluid pressure chamber 52P. Further, the master cylinder 5 pressurizes the wheel cylinders 2b and 2c of the S system via the fluid path (fluid path 11S) of the S system by the master cylinder fluid pressure generated in the S fluid pressure chamber 52S.
 ストロークシミュレータ7は、シリンダ72、ピストン71およびスプリング73を有する。シリンダ72は円筒状の内周面を有する。シリンダ72は、ピストン収容部721およびスプリング収容部722を有する。ピストン収容部721はスプリング収容部722よりも小径である。スプリング収容部722の内周面には、後述する液路27が常時開口する。ピストン71は、ピストン収容部721内を軸方向に移動可能である。ピストン71は、シリンダ72内を正圧室711と背圧室712とに分離する。正圧室711には、液路26が常時開口する。背圧室712には、液路27が常時開口する。ピストン71の外周には、ピストンシール75が設置されている。ピストンシール75は、ピストン収容部721の内周面に摺接し、ピストン収容部721の内周面およびピストン71の外周面間をシールする。ピストンシール75は、正圧室711および背圧室712間をシールすることでこれらを液密に分離する分離シール部材であり、ピストン71の機能を補完する。スプリング73は、背圧室712内に設置された圧縮コイルスプリングであり、ピストン71を背圧室712側から正圧室711側へ向かって付勢する。スプリング73は、圧縮量に応じて反力を発生する。スプリング73は、第1スプリング731および第2スプリング732を有する。第1スプリング731は、第2スプリング732よりも小径かつ短尺であり、線径が小さい。第1スプリング731および第2スプリング732は、ピストン71およびスプリング収容部722間に、リテーナ部材74を介して直列に配置されている。 The stroke simulator 7 has a cylinder 72, a piston 71 and a spring 73. The cylinder 72 has a cylindrical inner circumferential surface. The cylinder 72 has a piston accommodating portion 721 and a spring accommodating portion 722. The piston accommodating portion 721 is smaller in diameter than the spring accommodating portion 722. A liquid passage 27 described later is always open on the inner peripheral surface of the spring accommodating portion 722. The piston 71 is axially movable in the piston housing portion 721. The piston 71 separates the inside of the cylinder 72 into a positive pressure chamber 711 and a back pressure chamber 712. The fluid passage 26 always opens in the positive pressure chamber 711. The fluid passage 27 always opens in the back pressure chamber 712. A piston seal 75 is installed on the outer periphery of the piston 71. The piston seal 75 is in sliding contact with the inner circumferential surface of the piston housing portion 721 and seals between the inner circumferential surface of the piston housing portion 721 and the outer circumferential surface of the piston 71. The piston seal 75 is a separation seal member that separates fluid-tightly by sealing between the positive pressure chamber 711 and the back pressure chamber 712, and complements the function of the piston 71. The spring 73 is a compression coil spring installed in the back pressure chamber 712 and biases the piston 71 from the back pressure chamber 712 to the positive pressure chamber 711 side. The spring 73 generates a reaction force according to the amount of compression. The spring 73 has a first spring 731 and a second spring 732. The first spring 731 is smaller in diameter and shorter than the second spring 732 and has a smaller wire diameter. The first spring 731 and the second spring 732 are arranged in series between the piston 71 and the spring accommodating portion 722 via the retainer member 74.
 液路11は、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続する。液路11Pは液路11aと液路11dに分岐する。液路11Sは液路11bと液路11dに分岐する。遮断弁(第1電磁弁)12は、液路11に設けられた常開型の(非通電状態で開弁する)電磁比例弁である。電磁比例弁は、ソレノイドに供給される電流に応じて任意の開度を実現できる。液路11は、遮断弁12によって、マスタシリンダ5側の液路11Aとホイルシリンダ2側の液路11Bとに分離されている。
  ソレノイドイン弁(第1電磁弁)13は、液路11における遮断弁12よりもホイルシリンダ2側(液路11B)に、各車輪FL~RRに対応して(液路11a~11d)設けられた常開型の電磁比例弁である。液路11には、ソレノイドイン弁13をバイパスするバイパス液路14が設けられている。バイパス液路14には、ホイルシリンダ2側からマスタシリンダ5側へのブレーキ液の流れのみを許容するチェック弁15が設けられている。
The fluid passage 11 connects between the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2. The fluid passage 11P branches into a fluid passage 11a and a fluid passage 11d. The fluid passage 11S branches into a fluid passage 11b and a fluid passage 11d. The shutoff valve (first solenoid valve) 12 is a normally-open (open in a non-energized) proportional valve provided in the fluid passage 11. The solenoid proportional valve can realize any degree of opening depending on the current supplied to the solenoid. The fluid passage 11 is separated by the shutoff valve 12 into a fluid passage 11A on the master cylinder 5 side and a fluid passage 11B on the wheel cylinder 2 side.
A solenoid-in valve (first solenoid valve) 13 is provided on the wheel cylinder 2 side (liquid passage 11B) relative to the shutoff valve 12 in the liquid passage 11 (liquid passages 11a to 11d) corresponding to the respective wheels FL to RR. It is a normally open solenoid proportional valve. The fluid passage 11 is provided with a bypass fluid passage 14 that bypasses the solenoid valve 13. The bypass fluid passage 14 is provided with a check valve 15 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 5 side.
 吸入配管16は、リザーバタンク6と内部リザーバ17とを接続する。液路18は、内部リザーバ17とポンプ21の吸入側とを接続する。液路19は、ポンプ21の吐出側と、液路11Bにおける遮断弁12とソレノイドイン弁13との間とを接続する。液路19は、P系統の液路19PとS系統の液路19Sとに分岐する。両液路19P,19Sは液路11P,11Sに接続する。両液路19P,19Sは、液路11P,11Sを互いに接続する連通路として機能する。連通弁(第1電磁弁)20は、液路19に設けられた常閉型の(非通電状態で閉弁する)オンオフ弁である。オンオフ弁は、ソレノイドに供給される電流に応じて開閉が2値的に切り替えられる。
  ポンプ21は、リザーバタンク6から供給されるブレーキ液により液路11に液圧を発生させてホイルシリンダ液圧を発生させる。ポンプ21は、液路19P,19Sおよび液路11P,11Sを介してホイルシリンダ2a~2dと接続しており、液路19P,19Sにブレーキ液を吐出することでホイルシリンダ2を加圧する。
The suction pipe 16 connects the reservoir tank 6 and the internal reservoir 17. The fluid passage 18 connects the internal reservoir 17 and the suction side of the pump 21. The fluid passage 19 connects the discharge side of the pump 21 and between the shutoff valve 12 and the solenoid in valve 13 in the fluid passage 11B. The fluid passage 19 branches into a fluid passage 19P of P system and a fluid passage 19S of S system. Both fluid passages 19P and 19S are connected to the fluid passages 11P and 11S. The two fluid passages 19P and 19S function as communication passages connecting the fluid passages 11P and 11S to each other. The communication valve (first solenoid valve) 20 is a normally-closed (closed in a non-energized state) on-off valve provided in the fluid passage 19. The on / off valve is switched between open and closed in a binary manner according to the current supplied to the solenoid.
The pump 21 generates a fluid pressure in the fluid passage 11 by the brake fluid supplied from the reservoir tank 6 to generate a wheel cylinder fluid pressure. The pump 21 is connected to the wheel cylinders 2a to 2d through the fluid passages 19P and 19S and the fluid passages 11P and 11S, and pressurizes the wheel cylinder 2 by discharging the brake fluid to the fluid passages 19P and 19S.
 液路22は、両液路19P,19Sの分岐点と液路23とを接続する。液路22には、調圧弁(第1電磁弁)24が設けられている。調圧弁24は、常開型の電磁比例弁である。液路23は、液路11Bにおけるソレノイドイン弁13よりもホイルシリンダ2側と、内部リザーバ17とを接続する。ソレノイドアウト弁(第1電磁弁)25は、液路23に設けられた常閉型のオンオフ弁である。
  液路26は、P系統の液路11Aから分岐してストロークシミュレータ7の正圧室711に接続する。なお、液路26が、液路11P(11A)を介さずにP液圧室52Pと正圧室711とを直接的に接続するようにしてもよい。
The fluid passage 22 connects the bifurcation point of the two fluid passages 19P and 19S to the fluid passage 23. A pressure regulating valve (first solenoid valve) 24 is provided in the fluid path 22. The pressure regulating valve 24 is a normally open electromagnetic proportional valve. The fluid passage 23 connects the wheel cylinder 2 side and the internal reservoir 17 with respect to the solenoid-in valve 13 in the fluid passage 11B. The solenoid out valve (first solenoid valve) 25 is a normally closed on / off valve provided in the fluid passage 23.
The fluid passage 26 branches from the fluid passage 11A of the P system and is connected to the positive pressure chamber 711 of the stroke simulator 7. The fluid passage 26 may directly connect the P fluid pressure chamber 52P and the positive pressure chamber 711 without via the fluid passage 11P (11A).
 液路27は、ストロークシミュレータ7の背圧室712および液路11間を接続する。具体的には、液路27は、液路11P(11B)における遮断弁12Pとソレノイドイン弁13との間から分岐して背圧室712に接続する。ストロークシミュレータイン弁(第1電磁弁)28は、液路27に設けられた常閉型のオンオフ弁である。液路27は、ストロークシミュレータイン弁28によって、背圧室712側の液路27Aと液路11側の液路27Bとに分離されている。ストロークシミュレータイン弁28をバイパスして液路27と並列にバイパス液路29が設けられている。バイパス液路29は、液路27Aおよび液路27B間を接続する。バイパス液路29にはチェック弁30が設けられている。チェック弁30は、液路27Aから液路11(27B)側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制する。
  液路31は、ストロークシミュレータ7の背圧室712および液路23間を接続する。ストロークシミュレータアウト弁(第1電磁弁)32は、液路31に設けられた常閉型のオンオフ弁である。ストロークシミュレータアウト弁32をバイパスして、液路31と並列にバイパス液路33が設けられている。バイパス液路33には、液路23側から背圧室712側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制するチェック弁34が設けられている。
The fluid passage 27 connects between the back pressure chamber 712 of the stroke simulator 7 and the fluid passage 11. Specifically, the fluid passage 27 branches from between the shutoff valve 12P and the solenoid-in valve 13 in the fluid passage 11P (11B) and is connected to the back pressure chamber 712. The stroke simulator in valve (first solenoid valve) 28 is a normally closed on / off valve provided in the fluid passage 27. The fluid passage 27 is separated by the stroke simulator in valve 28 into a fluid passage 27A on the back pressure chamber 712 side and a fluid passage 27B on the fluid passage 11 side. A bypass fluid passage 29 is provided in parallel with the fluid passage 27 so as to bypass the stroke simulator in valve 28. The bypass fluid passage 29 connects between the fluid passage 27A and the fluid passage 27B. A check valve 30 is provided in the bypass fluid passage 29. The check valve 30 allows the flow of the brake fluid from the fluid passage 27A to the fluid passage 11 (27B) side, and suppresses the flow of the brake fluid in the reverse direction.
The fluid passage 31 connects between the back pressure chamber 712 of the stroke simulator 7 and the fluid passage 23. The stroke simulator out valve (first solenoid valve) 32 is a normally closed on / off valve provided in the fluid passage 31. A bypass fluid passage 33 is provided in parallel with the fluid passage 31 by bypassing the stroke simulator out valve 32. The bypass fluid passage 33 is provided with a check valve 34 that allows the flow of the brake fluid from the fluid passage 23 toward the back pressure chamber 712 and suppresses the flow of the brake fluid in the reverse direction.
 液路11Pにおける遮断弁12Pとマスタシリンダ5との間(液路11A)には、この箇所の液圧(マスタシリンダ液圧および正圧室711内の液圧)を検出するマスタシリンダ液圧センサ35が設けられている。液路11における遮断弁12とソレノイドイン弁13との間には、この箇所の液圧(ホイルシリンダ液圧)を検出するホイルシリンダ液圧センサ(P系統圧センサ、S系統圧センサ)36が設けられている。液路19におけるポンプ21の吐出側と連通弁20との間には、この箇所の液圧(ポンプ吐出圧)を検出する吐出圧センサ37が設けられている。
  遮断弁12が開弁した状態で、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続するブレーキ系統(液路11)は、第1の系統を構成する。この第1の系統は、踏力を用いて発生させたマスタシリンダ液圧によりホイルシリンダ液圧を発生させることで、踏力ブレーキ(非倍力制御)を実現可能である。一方、遮断弁12が閉弁した状態で、ポンプ21を含み、リザーバタンク6およびホイルシリンダ2間を接続するブレーキ系統(液路19、液路22、液路23等)は、第2の系統を構成する。この第2の系統は、ポンプ21を用いて発生させた液圧によりホイルシリンダ液圧を発生させる、いわゆるブレーキバイワイヤ装置を構成し、ブレーキバイワイヤ制御として倍力制御等を実現可能である。ブレーキバイワイヤ制御時、ストロークシミュレータ7は、ドライバのブレーキ操作に伴う操作反力を生成する。
A master cylinder fluid pressure sensor that detects the fluid pressure (master cylinder fluid pressure and fluid pressure in positive pressure chamber 711) between the shutoff valve 12P and the master cylinder 5 in the fluid path 11P (fluid path 11A) 35 are provided. Between the shutoff valve 12 and the solenoid in valve 13 in the fluid passage 11, a wheel cylinder hydraulic pressure sensor (P system pressure sensor, S system pressure sensor) 36 for detecting the hydraulic pressure (wheel cylinder hydraulic pressure) at this point is provided. It is provided. A discharge pressure sensor 37 is provided between the discharge side of the pump 21 and the communication valve 20 in the fluid passage 19 for detecting the fluid pressure (pump discharge pressure) at this point.
With the shutoff valve 12 open, the brake system (fluid path 11) connecting the fluid pressure chamber 52 of the master cylinder 5 and the wheel cylinder 2 constitutes a first system. The first system is capable of realizing the depression force brake (non-boost control) by generating the wheel cylinder pressure with the master cylinder pressure generated using the depression force. On the other hand, when the shutoff valve 12 is closed, the brake system (the fluid passage 19, the fluid passage 22, the fluid passage 23, etc.) including the pump 21 and connecting the reservoir tank 6 and the wheel cylinder 2 is a second system. Configure This second system constitutes a so-called brake-by-wire device that generates a wheel cylinder fluid pressure by the fluid pressure generated using the pump 21, and can realize boost control as brake-by-wire control. At the time of brake-by-wire control, the stroke simulator 7 generates an operation reaction force associated with the driver's brake operation.
 図2は、実施形態1のブレーキ制御装置1の分解斜視図である。
  ブレーキ制御装置1は、液圧ユニットハウジング80、モータケース81、ストロークシミュレータケース82およびコントロールユニットケース83を有する。
  液圧ユニットハウジング(以下、ハウジング)80は、例えばアルミ合金製であって、正面(第2の面)801、背面(第1の面)802、上面803、底面804、左側面805および右側面806を有する略直方形状の筐体である。ハウジング80は、その内部に各液路(液路11等)が形成されている。また、ハウジング80は、その内部にポンプ21、各電磁弁(遮断弁12等)および各液圧センサ(マスタシリンダ液圧センサ35等)を収容する。ハウジング80の上面803には、4個のホイルシリンダポート8031が形成されると共に、ニップル8032が取り付けられている。ホイルシリンダポート8031は、図外のホイルシリンダ配管を介してホイルシリンダ2と接続されている。ニップル8032には吸入配管16が接続されている。ハウジング80の背面802には、15個のバルブ収容孔8021および4個のセンサ収容孔8022が形成されている。各バルブ収容孔8021には、各電磁弁(遮断弁12等)の弁部38が収容されている。各センサ収容孔8022には、各液圧センサ(マスタシリンダ液圧センサ35等)が収容されている。
FIG. 2 is an exploded perspective view of the brake control device 1 according to the first embodiment.
The brake control device 1 has a hydraulic unit housing 80, a motor case 81, a stroke simulator case 82, and a control unit case 83.
The hydraulic unit housing (hereinafter referred to as the housing) 80 is made of, for example, an aluminum alloy, and the front (second surface) 801, the back (first surface) 802, the top 803, the bottom 804, the left side 805 and the right side It is a substantially rectangular housing having a housing 806. The housing 80 is formed therein with respective liquid passages (liquid passages 11 and the like). Further, the housing 80 accommodates therein the pump 21, the respective solenoid valves (the shutoff valve 12 and the like), and the respective fluid pressure sensors (the master cylinder fluid pressure sensor 35 and the like). On the upper surface 803 of the housing 80, four wheel cylinder ports 8031 are formed, and a nipple 8032 is attached. The wheel cylinder port 8031 is connected to the wheel cylinder 2 via a wheel cylinder pipe not shown. A suction pipe 16 is connected to the nipple 8032. On the back surface 802 of the housing 80, fifteen valve housing holes 8021 and four sensor housing holes 8022 are formed. The valve portion 38 of each solenoid valve (the shutoff valve 12 or the like) is accommodated in each valve accommodation hole 8021. Each sensor accommodation hole 8022 accommodates each fluid pressure sensor (master cylinder fluid pressure sensor 35 or the like).
 モータケース81は、金属製の円筒部材であって、その内部にモータ211を収容する。モータケース81は、ハウジング80の正面801に固定されている。
  ストロークシミュレータケース82は、アルミ合金製であって、その内部にストロークシミュレータ7を収容する。ストロークシミュレータケース82は、図外のスクリュ835によりハウジング80の右側面806に締結されている。
  コントロールユニットケース83は、樹脂材料により成形され、各電磁弁(遮断弁12等)のソレノイド39、第1制御基板40、第2制御基板41を収容する。第1制御基板40および第2制御基板41は制御基板部である。コントロールユニットケース83は、本体部831およびカバー832を有する。本体部831は、正面側(ハウジング80側)が凹状に形成され、各ソレノイド39を覆う。本体部831は、図外のスクリュによりハウジング80の背面802に締結されている。本体部831は、その背面側(ハウジング80の側と反対側)に基板収容部8311を有する。基板収容部8311には、第1制御基板40および第2制御基板41が取り付けられている。カバー832は、本体部831に固定され、基板収容部8311を覆う蓋部材である。
The motor case 81 is a metal cylindrical member and accommodates the motor 211 therein. The motor case 81 is fixed to the front surface 801 of the housing 80.
The stroke simulator case 82 is made of aluminum alloy and accommodates the stroke simulator 7 therein. The stroke simulator case 82 is fastened to the right side surface 806 of the housing 80 by a screw 835 not shown.
The control unit case 83 is molded of a resin material, and accommodates the solenoid 39 of each solenoid valve (the shutoff valve 12 or the like), the first control board 40, and the second control board 41. The first control board 40 and the second control board 41 are control board units. The control unit case 83 has a main body 831 and a cover 832. The main body portion 831 is formed in a concave shape on the front side (housing 80 side) and covers the respective solenoids 39. The main body portion 831 is fastened to the back surface 802 of the housing 80 by a screw not shown. The main body portion 831 has a substrate accommodating portion 8311 on the back side (the side opposite to the side of the housing 80). The first control substrate 40 and the second control substrate 41 are attached to the substrate housing portion 8311. The cover 832 is a lid member that is fixed to the main body portion 831 and covers the substrate storage portion 8311.
 第1制御基板40は、モータ211および各ソレノイド39への通電状態を制御する。第1制御基板40は、背面802と平行に基板収容部8311に取り付けられている。第1制御基板40は、第1モータ駆動回路401、第1ソレノイド駆動回路402、第1モータ制御回路403および第1ソレノイド制御回路404を有する(図6参照)。第1モータ駆動回路401は、MOSFET等の駆動素子を有し、モータ211を駆動させる回路である。第1ソレノイド駆動回路402は、MOSFET等の駆動素子を有し、各ソレノイド39を駆動させる回路である。第1モータ制御回路403は、マイコン(またはASIC)やメモリ等を有し、第1モータ駆動回路401(の駆動素子)を駆動させる回路である。第1モータ駆動回路401および第1モータ制御回路403は、第1モータ制御用回路である。第1ソレノイド制御回路404は、マイコンやメモリ等を有し、第1ソレノイド駆動回路402(の駆動素子)を駆動させる回路である。第1ソレノイド駆動回路402および第1ソレノイド制御回路404は、第1電磁弁制御用回路である。 The first control board 40 controls the energization state of the motor 211 and the respective solenoids 39. The first control substrate 40 is attached to the substrate accommodation portion 8311 in parallel with the back surface 802. The first control board 40 has a first motor drive circuit 401, a first solenoid drive circuit 402, a first motor control circuit 403, and a first solenoid control circuit 404 (see FIG. 6). The first motor drive circuit 401 is a circuit that has a drive element such as a MOSFET and drives the motor 211. The first solenoid drive circuit 402 has a drive element such as a MOSFET and is a circuit that drives each solenoid 39. The first motor control circuit 403 is a circuit that has a microcomputer (or ASIC), a memory, and the like, and drives (a drive element of) the first motor drive circuit 401. The first motor drive circuit 401 and the first motor control circuit 403 are circuits for controlling the first motor. The first solenoid control circuit 404 is a circuit that has a microcomputer, a memory, and the like, and drives (a drive element of) the first solenoid drive circuit 402. The first solenoid drive circuit 402 and the first solenoid control circuit 404 are circuits for controlling the first solenoid valve.
 第2制御基板41は、モータ211および各ソレノイド39への通電状態を制御する。第2制御基板41は、第1制御基板40と平行に基板収容部8311に取り付けられている。第2制御基板41は、第2モータ駆動回路411、第2ソレノイド駆動回路412、第2モータ制御回路413および第2ソレノイド制御回路414を有する(図7参照)。第2モータ駆動回路411は、MOSFET等の駆動素子を有し、モータ211を駆動させる回路である。第2ソレノイド駆動回路412は、MOSFET等の駆動素子を有し、各ソレノイド39を駆動させる回路である。第2モータ制御回路413は、マイコンやメモリ等を有し、第2モータ駆動回路411(の駆動素子)を駆動させる回路である。第2モータ駆動回路411および第2モータ制御回路413は、第2モータ制御用回路である。第2ソレノイド制御回路414は、マイコンやメモリ等を有し、第2ソレノイド駆動回路412(の駆動素子)を駆動させる回路である。第2ソレノイド駆動回路412および第2ソレノイド制御回路414は、第2電磁弁制御用回路である。第1モータ制御用回路、第2モータ制御用回路、第1電磁弁制御用回路および第2電磁弁制御用回路は、コントロールユニット9を構成する。 The second control board 41 controls the energization state of the motor 211 and the respective solenoids 39. The second control substrate 41 is attached to the substrate accommodation portion 8311 in parallel with the first control substrate 40. The second control board 41 has a second motor drive circuit 411, a second solenoid drive circuit 412, a second motor control circuit 413, and a second solenoid control circuit 414 (see FIG. 7). The second motor drive circuit 411 is a circuit that has a drive element such as a MOSFET and drives the motor 211. The second solenoid drive circuit 412 is a circuit that includes drive elements such as MOSFETs and drives the respective solenoids 39. The second motor control circuit 413 is a circuit that has a microcomputer, a memory, and the like, and drives (a drive element of) the second motor drive circuit 411. The second motor drive circuit 411 and the second motor control circuit 413 are circuits for second motor control. The second solenoid control circuit 414 includes a microcomputer, a memory, and the like, and is a circuit that drives (the drive element of) the second solenoid drive circuit 412. The second solenoid drive circuit 412 and the second solenoid control circuit 414 are circuits for controlling the second solenoid valve. The first motor control circuit, the second motor control circuit, the first solenoid valve control circuit, and the second solenoid valve control circuit constitute a control unit 9.
 実施形態1のブレーキ制御装置1は、電気系統の失陥への対応策として、上記のように2系統に冗長化されたモータ制御用回路およびソレノイド制御用回路を持つ。さらに、ブレーキ制御装置1では、各ソレノイド39およびモータ211のコイルがそれぞれ2系統に冗長化されている。一例を図3に示す。図3は、実施形態1の遮断弁12の縦断面図である。なお、図3では、本体部831の図示は省略している。
  遮断弁12は、ソレノイド39に加え、弁部38として、シリンダ42、アーマチュア43、プランジャ44、バルブボディ45、シート部材46およびシール部材47を有する。
  ソレノイド39は、通電により電磁力を発生する。ソレノイド39は、磁性材料で形成されたヨーク48に収容されている。ソレノイド39の詳細は後述する。
  シリンダ42は、ソレノイド39の内周側に配置され、非磁性材料で円筒状に形成されている。以下、シリンダ42の軸線方向にX軸を設定し、弁部38の側からソレノイド39の側へ向かう方向をX軸正方向と規定する。
The brake control device 1 according to the first embodiment has a motor control circuit and a solenoid control circuit redundantly arranged in two systems as described above as a countermeasure against the failure of the electric system. Furthermore, in the brake control device 1, the coils of each solenoid 39 and motor 211 are redundantly arranged in two systems. An example is shown in FIG. FIG. 3 is a longitudinal sectional view of the shutoff valve 12 according to the first embodiment. In addition, illustration of the main-body part 831 is abbreviate | omitted in FIG.
In addition to the solenoid 39, the shutoff valve 12 has a cylinder 42, an armature 43, a plunger 44, a valve body 45, a seat member 46 and a seal member 47 as a valve portion 38.
The solenoid 39 generates an electromagnetic force by energization. The solenoid 39 is accommodated in a yoke 48 formed of a magnetic material. The details of the solenoid 39 will be described later.
The cylinder 42 is disposed on the inner peripheral side of the solenoid 39 and is formed of a nonmagnetic material in a cylindrical shape. Hereinafter, the X axis is set in the axial direction of the cylinder 42, and the direction from the valve 38 side to the solenoid 39 side is defined as the X axis positive direction.
 アーマチュア43は、磁性材料で形成され、シリンダ42の内部をX軸方向に移動する。アーマチュア43は、ソレノイド39の通電時、ソレノイド39が発生した電磁力によりX軸負方向側へ付勢される。
  プランジャ44は、樹脂等の非磁性材料で棒状に形成されている。プランジャ44のX軸負方向端は、半球状に形成された弁体である。プランジャ44は、アーマチュア43と一体に移動する。
  バルブボディ45は、磁性材料で円筒状に形成されている。バルブボディ45は、その内部にプランジャ44およびシート部材46の一部を収容する。バルブボディ45は、そのX軸負方向側がハウジング80の背面802に形成されたバルブ収容孔8021に挿入され、バルブ収容孔8021に形成された図外のカシメ部により固定されている。バルブボディ45とプランジャ44のX軸方向間の隙間には、プランジャ44をX軸正方向側へ付勢する圧縮コイルスプリング49が設置されている。
The armature 43 is formed of a magnetic material, and moves inside the cylinder 42 in the X-axis direction. The armature 43 is biased in the negative X-axis direction by the electromagnetic force generated by the solenoid 39 when the solenoid 39 is energized.
The plunger 44 is formed in a rod shape with a nonmagnetic material such as a resin. The X-axis negative direction end of the plunger 44 is a hemispherical valve element. The plunger 44 moves integrally with the armature 43.
The valve body 45 is formed of a magnetic material in a cylindrical shape. The valve body 45 accommodates the plunger 44 and a part of the seat member 46 therein. The valve body 45 is inserted into a valve housing hole 8021 formed on the back surface 802 of the housing 80 in the negative X-axis direction, and fixed by a crimped portion (not shown) formed in the valve housing hole 8021. In a gap between the valve body 45 and the plunger 44 in the X-axis direction, a compression coil spring 49 is provided which biases the plunger 44 in the positive X-axis direction.
 シート部材46は、円筒状に形成され、バルブ収容孔8021内に配置されている。シート部材46は、X軸方向に貫通する貫通孔461を有する。貫通孔461のX軸正方向端部は他の部分よりも小径に形成されている。シート部材46のX軸正方向端は、プランジャ44の弁体が着座するシート面である。
  シール部材47は、Oリングであり、シート部材46の外周側に装着されている。シール部材47は、シート部材46の外周面およびバルブ収容孔8021の内周面間をシールする。
  ソレノイド39が非通電のとき、プランジャ44は圧縮コイルスプリング49によりX軸正方向側へ付勢されているため、弁体はシート面から離間した状態であり、液路11Aと液路11Bとは遮断弁12を介して連通されている。ソレノイド39が通電されると、プランジャ44が圧縮コイルスプリング49の付勢力に抗してX軸負方向へ移動し、弁体がシート部材46のシート面に着座する。これにより、液路11Aと液路11Bとが遮断弁12により遮断される。
The seat member 46 is formed in a cylindrical shape and disposed in the valve housing hole 8021. The sheet member 46 has a through hole 461 penetrating in the X-axis direction. The X-axis positive direction end of the through hole 461 is smaller in diameter than the other part. The X-axis positive direction end of the seat member 46 is a seat surface on which the valve body of the plunger 44 is seated.
The seal member 47 is an O-ring, and is mounted on the outer peripheral side of the sheet member 46. The seal member 47 seals between the outer peripheral surface of the seat member 46 and the inner peripheral surface of the valve housing hole 8021.
When the solenoid 39 is not energized, the plunger 44 is biased in the positive X-axis direction by the compression coil spring 49, so the valve body is separated from the seat surface, and the fluid passage 11A and the fluid passage 11B are It is communicated via the shutoff valve 12. When the solenoid 39 is energized, the plunger 44 moves in the X-axis negative direction against the biasing force of the compression coil spring 49, and the valve body is seated on the seat surface of the seat member 46. Thus, the fluid passage 11A and the fluid passage 11B are shut off by the shutoff valve 12.
 第1制御基板40は、ハウジング80の背面802からX軸正方向側に所定距離離間(オフセット)して配置されている。第2制御基板41は、第1制御基板40からX軸正方向側に所定距離離間(オフセット)して配置されている。背面802、第1制御基板40および第2制御基板41は、X軸と直交する。
  ソレノイド39は、第1コイル391および第2コイル392を有する。第1コイル391および第2コイル392の巻回軸方向は、X軸方向と一致する。
  第1コイル391は、X軸正方向へ延びる第1正極端子(第1端子)3911および第1負極端子(第2端子)3912を有する。両端子3911,3912の長さ(X軸方向寸法)は同一であり、その先端(X軸正方向端)は、第1制御基板40および第2制御基板41との間に位置する。第1正極端子3911は、第1制御基板40に形成されたスルーホール405とはんだ付け(スルーホール実装)されている。第1負極端子3912は、第1制御基板40に形成されたスルーホール406とはんだ付けされている。両端子3911,3912は、第1ソレノイド駆動回路402と接続されている。
The first control board 40 is disposed at a predetermined distance (offset) away from the back surface 802 of the housing 80 in the positive X-axis direction. The second control board 41 is disposed so as to be separated from the first control board 40 by a predetermined distance (offset) in the positive X-axis direction. The back surface 802, the first control substrate 40, and the second control substrate 41 are orthogonal to the X axis.
The solenoid 39 has a first coil 391 and a second coil 392. The winding axis direction of the first coil 391 and the second coil 392 coincides with the X axis direction.
The first coil 391 has a first positive electrode terminal (first terminal) 3911 and a first negative electrode terminal (second terminal) 3912 extending in the positive direction of the X-axis. The lengths (dimensions in the X-axis direction) of both terminals 3911 and 3912 are the same, and the tips (X-axis positive direction ends) thereof are located between the first control board 40 and the second control board 41. The first positive electrode terminal 3911 is soldered (through hole mounting) with the through hole 405 formed in the first control substrate 40. The first negative electrode terminal 3912 is soldered to the through hole 406 formed in the first control substrate 40. Both terminals 3911 and 3912 are connected to the first solenoid drive circuit 402.
 第2コイル392は、第1コイル391の外周側に配置されている。第2コイル392は、X軸正方向へ延びる第2正極端子(第3端子)3921および第2負極端子(第4端子)3922を有する。両端子3921,3922の長さは同一であり、その先端(X軸正方向端)は、第2制御基板41よりもX軸正方向側に位置する。第2正極端子3921は、第1制御基板40に形成された貫通孔407を貫通し、第2制御基板41に形成されたスルーホール415とはんだ付けされている。第2負極端子3922は、第1制御基板40に形成された貫通孔408を貫通し、第2制御基板41に形成されたスルーホール416とはんだ付けされている。貫通孔407,408は貫通孔部である。両端子3921,3922は第1制御基板40の各回路と絶縁されている。両端子3921,3922は、第2ソレノイド駆動回路412と接続されている。
  両コイル391,392の使用方法としては、例えば、電気系統に失陥が発生していない正常時には一方のコイルのみを用い、当該コイルに電気失陥が発生したとき、正常な他方のコイルを用いる。つまり、一方のコイルをバックアップとして用いる。また、正常時から両コイル391,392を所定の割合で用いてもよい。
The second coil 392 is disposed on the outer peripheral side of the first coil 391. The second coil 392 has a second positive electrode terminal (third terminal) 3921 and a second negative electrode terminal (fourth terminal) 3922 extending in the positive direction of the X-axis. The lengths of both terminals 3921 and 3922 are the same, and the tip (the end in the positive direction of the X-axis) is located on the positive side in the X-axis direction with respect to the second control substrate 41. The second positive electrode terminal 3921 penetrates the through hole 407 formed in the first control substrate 40 and is soldered to the through hole 415 formed in the second control substrate 41. The second negative electrode terminal 3922 penetrates the through hole 408 formed in the first control substrate 40 and is soldered to the through hole 416 formed in the second control substrate 41. The through holes 407 and 408 are through holes. Both terminals 3921 and 3922 are insulated from the circuits of the first control board 40. Both terminals 3921 and 3922 are connected to the second solenoid drive circuit 412.
As a method of using the two coils 391 and 392, for example, only one coil is used when no failure occurs in the electric system, and the other normal coil is used when an electric failure occurs in the coils. That is, one coil is used as a backup. Also, both coils 391 and 392 may be used at a predetermined ratio from the normal time.
 図4は、実施形態1のソレノイド39の断面斜視図である。
  X軸方向から見たとき、各端子3911,3912,3921,3922は、第2正極端子3921、第1正極端子3911、第1負極端子3912、第2負極端子3922の順に直線状に並ぶ。各端子3911,3912,3921,3922は、コイルを巻きつけている樹脂製のボビンに保持されている。以下、各端子3911,3912,3921,3922をまとめてソレノイド端子部393と称す。
  図4に示すように、各電磁弁のソレノイド39は、第1コイル391に電流を流したときに発生する磁界の向きと、第2コイル392に電流を流したときに発生する磁界の向きが一致するように電流の流れる方向が設定されている。なお、モータ211のコイルについても、ソレノイド39と同様であるため、図示並びに説明は省略する。
FIG. 4 is a cross-sectional perspective view of the solenoid 39 of the first embodiment.
When viewed from the X-axis direction, the terminals 3911, 3912, 3921, 3922 are linearly arranged in the order of the second positive electrode terminal 3921, the first positive electrode terminal 3911, the first negative electrode terminal 3912, and the second negative electrode terminal 3922. Each terminal 3911, 3912, 3921, 3922 is held by a resin bobbin around which a coil is wound. Hereinafter, each terminal 3911, 3912, 3921, 3922 is collectively referred to as a solenoid terminal portion 393.
As shown in FIG. 4, in the solenoid 39 of each solenoid valve, the direction of the magnetic field generated when a current is supplied to the first coil 391 and the direction of the magnetic field generated when a current is supplied to the second coil 392 are The direction of current flow is set to match. The coil of the motor 211 is also similar to that of the solenoid 39, so the illustration and the description thereof will be omitted.
 図5は、実施形態1の本体部831の斜視図である。
  図5において、X軸と直交する方向であって、図2の上下方向に対応する方向にY軸を設定し、下側から上側へ向かう方向をY軸正方向と規定する。また、X軸およびY軸と直交する方向であって、図2の左右方向に対応する方向にZ軸を設定し、右側から左側へ向かう方向をZ軸正方向と規定する。
  本体部831基板収容部8311の表面には、各ソレノイド39の端子保持部481およびソレノイド端子部393がX軸方向に突出する。本体部831には、各ソレノイド39のソレノイド端子部393が挿通された開口部8311が形成されている。各ソレノイド端子部393は、4列でZ軸方向に並ぶ。以下、各列のうちY軸負方向端の列を1列目、Y軸正方向端の列を4列目とする。1列目には5個のソレノイド端子部393が並び、2列目および3列目には4個のソレノイド端子部393が並ぶ。4列目には2個のソレノイド端子部393が並ぶ。互いに隣接する2列目および3列目の各ソレノイド端子部393は、1つの端子保持部481に保持されている。
FIG. 5 is a perspective view of the main body portion 831 of the first embodiment.
In FIG. 5, the Y axis is set in a direction orthogonal to the X axis and corresponding to the vertical direction in FIG. 2, and the direction from the lower side to the upper side is defined as the Y axis positive direction. Further, the Z axis is set in a direction orthogonal to the X axis and the Y axis and corresponding to the left and right direction in FIG. 2, and the direction from the right to the left is defined as the Z axis positive direction.
The terminal holding portion 481 and the solenoid terminal portion 393 of each solenoid 39 project in the X-axis direction on the surface of the main body portion 831 and the substrate housing portion 8311. The main body 831 is formed with an opening 8311 through which the solenoid terminal 393 of each solenoid 39 is inserted. The respective solenoid terminal portions 393 are arranged in the Z-axis direction in four rows. Hereinafter, of the respective rows, the row at the Y axis negative direction end is the first row, and the row at the Y axis positive direction end is the fourth row. Five solenoid terminal portions 393 are arranged in the first row, and four solenoid terminal portions 393 are arranged in the second and third rows. Two solenoid terminal portions 393 are arranged in the fourth row. The solenoid terminal portions 393 in the second and third rows adjacent to each other are held by one terminal holding portion 481.
 基板収容部8311には、モータ211の第1正極端子(第1駆動用端子)2111、第1負極端子(第1駆動用端子)2112、第2正極端子(第2駆動用端子)2113および第2負極端子(第2駆動用端子)2114がX軸方向に突出する。各端子2111,2112,2113,2114は2個ずつ設けられ、Y軸方向に並ぶ。第1正極端子2111は、モータ211の第1コイルの正極端子である。第1負極端子2112は、モータ211の第1コイルの負極端子である。第1正極端子2111および第1負極端子2112は第1駆動用端子である。第2正極端子2113は、モータ211の第2コイルの正極端子である。第2負極端子2114は、モータ211の第2コイルの負極端子である。第2正極端子2113および第2負極端子2114は第2駆動用端子である。
  各端子2111,2112,2113,2114は、2列目および3列目の各ソレノイド端子部393のZ軸方向中央に配置されている。各端子2111,2112,2113,2114は同列の各ソレノイド端子部393と同じY軸方向位置に配置されている。
The substrate accommodation portion 8311 includes a first positive terminal (first drive terminal) 2111 of the motor 211, a first negative terminal (first drive terminal) 2112, a second positive terminal (second drive terminal) 2113 and a second 2 A negative electrode terminal (second drive terminal) 2114 protrudes in the X-axis direction. The two terminals 2111, 2112, 2113, and 2114 are provided two by two and arranged in the Y-axis direction. The first positive electrode terminal 2111 is a positive electrode terminal of a first coil of the motor 211. The first negative electrode terminal 2112 is a negative electrode terminal of the first coil of the motor 211. The first positive electrode terminal 2111 and the first negative electrode terminal 2112 are first driving terminals. The second positive electrode terminal 2113 is a positive electrode terminal of the second coil of the motor 211. The second negative electrode terminal 2114 is a negative electrode terminal of the second coil of the motor 211. The second positive electrode terminal 2113 and the second negative electrode terminal 2114 are second driving terminals.
The terminals 2111, 2122, 2113, and 2114 are disposed at the centers of the solenoid terminal portions 393 in the second and third rows in the Z-axis direction. The respective terminals 2111, 2121, 2113, and 2114 are arranged at the same position in the Y-axis direction as the respective solenoid terminal portions 393 in the same row.
 基板収容部8311には、本体部831に形成されたコネクタ832の端子部8321がX軸方向に突出する。端子部8321は、基板収容部8311のZ軸負方向端付近に配置されている。端子部8321には、コネクタ832に接続された配線を介してバッテリからの電力や外部センサ等からの信号が入力される。基板収容部8311の外縁には、複数の第1爪部833および第2爪部834がX軸方向に突出する。第1爪部833は、第1制御基板40の外縁に形成された凹部409(図6参照)と係合して第1制御基板40を保持する。第2爪部834の長さ(X軸方向寸法)は、第1爪部833よりも長く形成されている。第2爪部834は、第2制御基板41の外縁に形成された凹部417(図7参照)と係合して第2制御基板41を保持する。 A terminal 8321 of a connector 832 formed on the main body 831 protrudes in the X-axis direction in the substrate accommodation portion 8311. The terminal portion 8321 is disposed near the end of the substrate accommodation portion 8311 in the negative Z-axis direction. Power from the battery and a signal from an external sensor or the like are input to the terminal portion 8321 through a wire connected to the connector 832. A plurality of first claws 833 and second claws 834 project in the X-axis direction from the outer edge of the substrate accommodation portion 8311. The first claw portion 833 engages with a recess 409 (see FIG. 6) formed on the outer edge of the first control substrate 40 to hold the first control substrate 40. The length (the dimension in the X-axis direction) of the second claw portion 834 is formed longer than the first claw portion 833. The second claw portion 834 engages with a recess 417 (see FIG. 7) formed on the outer edge of the second control substrate 41 to hold the second control substrate 41.
 図6は、実施形態1の第1制御基板40の斜視図である。
  第1制御基板40は、スクリュにより本体部831に締結されている。第1制御基板40の外縁には、第1爪部833と係合する凹部409が形成されている。第1制御基板40において、各ソレノイド端子部393および各端子2111,2112,2113,2114と対応するスルーホール405,406および貫通孔407,408は、4列でZ軸方向に並ぶ。また、第1制御基板40には、コネクタ832の端子部8321が貫通するスルーホール410が形成されている。スルーホール410は、端子部8321とはんだ付けされている。
  第1制御基板40上において、第1モータ駆動回路401は、各ソレノイド端子部393とコネクタ832の端子部8321との間の領域に配置されている。第1ソレノイド駆動回路402は、1列目の各ソレノイド端子部393よりもY軸負方向側の領域に配置されている。第1モータ制御回路403は、4列目の各ソレノイド端子部393およびモータ211の各端子2111,2112,2113,2114よりもY軸正方向側の位置に配置されている。第1ソレノイド制御回路404は、1列目の各ソレノイド端子部393と2列目の各ソレノイド端子部393との間の領域に配置されている。
FIG. 6 is a perspective view of the first control board 40 of the first embodiment.
The first control substrate 40 is fastened to the main body 831 by a screw. The outer edge of the first control substrate 40 is formed with a recess 409 that engages with the first claw portion 833. In the first control board 40, the through holes 405 and 406 and the through holes 407 and 408 corresponding to the respective solenoid terminal portions 393 and the respective terminals 2111, 2122, 2113 and 2114 are arranged in the Z-axis direction in four rows. Further, in the first control board 40, a through hole 410 through which the terminal portion 8321 of the connector 832 passes is formed. The through hole 410 is soldered to the terminal 8321.
On the first control board 40, the first motor drive circuit 401 is disposed in the region between each solenoid terminal 393 and the terminal 8321 of the connector 832. The first solenoid drive circuit 402 is disposed in a region on the Y axis negative direction side relative to the solenoid terminal portions 393 in the first row. The first motor control circuit 403 is disposed at a position closer to the Y-axis positive direction than the respective solenoid terminal portions 393 in the fourth row and the respective terminals 2111, 2121, 2113, and 2114 of the motor 211. The first solenoid control circuit 404 is disposed in a region between the solenoid terminal portions 393 in the first row and the solenoid terminal portions 393 in the second row.
 図7は、実施形態1の第2制御基板41の斜視図である。
  第2制御基板41の外縁には、第2爪部834と係合する凹部417が形成されている。第2制御基板41において、各ソレノイド端子部393および各端子2113,2114と対応するスルーホール415,416は、4列でZ軸方向に並ぶ。また、第2制御基板41には、コネクタ832の端子部8321が貫通するスルーホール418が形成されている。スルーホール418は、端子部8321とはんだ付けされている。
  第2制御基板41上において、第2モータ駆動回路411は、各ソレノイド端子部393とコネクタ832の端子部8321との間の領域に配置されている。第2ソレノイド駆動回路412は、1列目の各ソレノイド端子部393よりもY軸負方向側の領域に配置されている。第2モータ制御回路413は、4列目の各ソレノイド端子部393およびモータ211の各端子2111,2112,2113,2114よりもY軸正方向側の位置に配置されている。第2ソレノイド制御回路414は、1列目の各ソレノイド端子部393と2列目の各ソレノイド端子部393との間の領域に配置されている。
FIG. 7 is a perspective view of the second control board 41 of the first embodiment.
The outer edge of the second control substrate 41 is formed with a recess 417 that engages with the second hook 834. In the second control board 41, the through holes 415 and 416 corresponding to the respective solenoid terminal portions 393 and the respective terminals 2113 and 2114 are arranged in the Z-axis direction in four rows. Further, in the second control board 41, a through hole 418 through which the terminal portion 8321 of the connector 832 passes is formed. The through hole 418 is soldered to the terminal 8321.
On the second control board 41, the second motor drive circuit 411 is disposed in the region between each solenoid terminal 393 and the terminal 8321 of the connector 832. The second solenoid drive circuit 412 is disposed in a region on the Y axis negative direction side relative to the solenoid terminal portions 393 in the first row. The second motor control circuit 413 is disposed at a position closer to the Y-axis positive direction than the respective solenoid terminal portions 393 in the fourth row and the respective terminals 2111, 2122, 2113, and 2114 of the motor 211. The second solenoid control circuit 414 is disposed in the region between the solenoid terminal portions 393 in the first row and the solenoid terminal portions 393 in the second row.
 次に、実施形態1の作用効果を説明する。
  液圧ユニット8の各電磁弁(遮断弁12、ソレノイドイン弁13、連通弁20、調圧弁24、ソレノイドアウト弁25、ストロークシミュレータイン弁28、ストロークシミュレータアウト弁32)は、第1コイル391と第2コイル392を有する。第1ソレノイド駆動回路402および第1ソレノイド制御回路404は、各電磁弁が配置されるハウジング80の背面802からX軸正方向側にオフセットして配置されている。第1ソレノイド駆動回路402および第1ソレノイド制御回路404は、第1コイル391の第1正極端子3911が接続され、各電磁弁を制御する。第2ソレノイド駆動回路412および第2ソレノイド制御回路414は、背面802からX軸正方向側にオフセットして配置されている。第2ソレノイド駆動回路412および第2ソレノイド制御回路414は、第2コイル392の第2正極端子3921が接続され、各電磁弁を制御する。つまり、各電磁弁は、二重構造のコイルおよび制御用回路を持つ。制御用回路は、各電磁弁の取り付け面に対してオフセットして配置され、対応するコイルと端子でそれぞれ接続されている。各電磁弁は、機械系統は1系統のままで、電気系統のみが2系統化されているため、電気系統の冗長化とブレーキ制御装置1の大型化の抑制とを両立できる。
Next, the operation and effect of the first embodiment will be described.
The solenoid valves (the shutoff valve 12, the solenoid in valve 13, the communication valve 20, the pressure regulating valve 24, the solenoid out valve 25, the stroke simulator in valve 28, the stroke simulator out valve 32) of the fluid pressure unit 8 It has a second coil 392. The first solenoid drive circuit 402 and the first solenoid control circuit 404 are offset from the back surface 802 of the housing 80 in which the solenoid valves are disposed in the positive X-axis direction. The first solenoid drive circuit 402 and the first solenoid control circuit 404 are connected to the first positive electrode terminal 3911 of the first coil 391 and control the respective solenoid valves. The second solenoid drive circuit 412 and the second solenoid control circuit 414 are offset from the back surface 802 in the positive direction of the X-axis. The second solenoid drive circuit 412 and the second solenoid control circuit 414 are connected to the second positive electrode terminal 3921 of the second coil 392, and control the respective solenoid valves. That is, each solenoid valve has a double coil and a control circuit. The control circuit is disposed offset with respect to the mounting surface of each solenoid valve, and is connected by corresponding coils and terminals. In each electromagnetic valve, only one electric system remains in a single mechanical system, so that redundancy of the electric system and suppression of upsizing of the brake control device 1 can be compatible.
 第1制御基板40は、電磁弁が配置されたハウジング80の背面802からX軸正方向側にオフセットして配置され、第1ソレノイド駆動回路402および第1ソレノイド制御回路404が設置されている。第2制御基板41は、第1制御基板40からX軸正方向側にオフセットして配置され、第2ソレノイド駆動回路412および第2ソレノイド制御回路414が設置されている。これにより、1枚の制御基板に2系統の制御用回路が設置されている場合と比べて、ブレーキ制御装置1の大型化を抑制できる。
  第1ソレノイド駆動回路402および第1ソレノイド制御回路404は、第1コイル391の第1負極端子3912が接続されている。第2ソレノイド駆動回路412および第2ソレノイド制御回路414は、第2コイル392の第2負極端子3922が接続されている。ここで、各コイル391,392の各正極端子3911,3921または各負極端子3912,3922の一方を共用端子とした場合、互いの特性違いを考慮して作製する必要があるため、コストアップを招くおそれがある。これに対し、各コイル391,392に対応して専用端子とすることにより、コストアップを抑制できる。
The first control board 40 is offset from the back surface 802 of the housing 80 where the solenoid valve is disposed in the positive X-axis direction, and the first solenoid drive circuit 402 and the first solenoid control circuit 404 are installed. The second control board 41 is offset from the first control board 40 in the positive X-axis direction, and a second solenoid drive circuit 412 and a second solenoid control circuit 414 are provided. Thereby, the increase in size of the brake control device 1 can be suppressed as compared to the case where two control circuits are installed on one control board.
The first negative electrode terminal 3912 of the first coil 391 is connected to the first solenoid drive circuit 402 and the first solenoid control circuit 404. The second negative electrode terminal 3922 of the second coil 392 is connected to the second solenoid drive circuit 412 and the second solenoid control circuit 414. Here, in the case where one of the positive electrode terminals 3911 and 31921 or the negative electrode terminals 3912 and 3922 of the coils 391 and 392 is used as a common terminal, it is necessary to be manufactured in consideration of the characteristic difference between each other. is there. On the other hand, cost increase can be suppressed by using dedicated terminals corresponding to the respective coils 391, 392.
 第2コイル392の第2正極端子3921および第2負極端子3922は、第1制御基板40に形成された貫通孔部(貫通孔407,408)を通して第2制御基板41に接続されている。これにより、第1制御基板40の外縁を迂回するように両端子3921,3922を引き出す必要がないため、第2制御基板41への両端子3921,3922の配置を容易化できる。
  Y軸方向から見たとき、あるソレノイド39の第1正極端子3911および第1負極端子3912と、当該ソレノイド39とZ軸方向に隣接するソレノイド39の第1正極端子3911および第1負極端子3912と、の間に、あるソレノイド39の第2負極端子3922および隣接するソレノイド39の第2正極端子3921が配置されている。第1制御基板40および第2制御基板41において、各端子3911,3912,3921,3922の周囲は、端子のはんだ付けに伴い、他の回路を配置できない領域(禁止帯)である。このデッドスペースである禁止帯を第2制御基板41用の端子3921,3922の配置スペースとして利用することにより、電気系統の冗長化に伴う基板実装面積の縮小を抑制できる。
The second positive electrode terminal 3921 and the second negative electrode terminal 3922 of the second coil 392 are connected to the second control substrate 41 through the through holes (through holes 407 and 408) formed in the first control substrate 40. Thus, the terminals 3921 and 3922 do not have to be drawn out so as to bypass the outer edge of the first control substrate 40, so the arrangement of the terminals 3921 and 3922 on the second control substrate 41 can be facilitated.
When viewed from the Y-axis direction, the first positive electrode terminal 3911 and the first negative electrode terminal 3912 of a certain solenoid 39, and the first positive electrode terminal 3911 and the first negative electrode terminal 3912 of the solenoid 39 adjacent to the solenoid 39 in the Z-axis direction Between the second negative terminal 3922 of one solenoid 39 and the second positive terminal 3921 of the adjacent solenoid 39 are disposed. In the 1st control board 40 and the 2nd control board 41, the circumference of each terminal 3911, 3912, 3921, 3922 is an area (forbidden band) where other circuits can not be arranged along with the soldering of the terminals. By using the dead band, which is the dead space, as the arrangement space for the terminals 3921 and 3922 for the second control board 41, it is possible to suppress the reduction of the board mounting area due to the redundancy of the electrical system.
 Z軸方向から見たとき、あるソレノイド39の第1負極端子3912および第2負極端子3922と、あるソレノイド39とZ軸方向に隣接するソレノイド39の第2正極端子3921および第1正極端子3911は、互いに重なる配列をとる。少なくとも隣接する4つの端子がオーバーラップする配列であるため、より冗長化に伴う基板実装面積の縮小を抑制できる。
  Z軸方向から見たとき、各ソレノイド39の第1正極端子3911、第1負極端子3912、第2正極端子3921、第2負極端子3922は直線上に重なる配列をとる。全ての端子がオーバーラップする配列であるため、さらに冗長化に伴う基板実装面積の縮小を抑制できる。
  第2正極端子3921は、第1制御基板40に形成された貫通孔407を通して第2制御基板41に接続されている。第2負極端子3922は、第1制御基板40に形成された貫通孔408を通して第2制御基板41に接続されている。これにより、両端子3921,3922が1つの貫通孔を通して第2制御基板41に接続されている場合と比べて、両端子3921,3922同士の接触を抑制できると共に、トータルの開口面積が小さくなることで第1制御基板40の強度低下を抑制できる。
When viewed from the Z-axis direction, the first negative terminal 3912 and the second negative terminal 3922 of a certain solenoid 39, and the second positive terminal 3921 and the first positive terminal 3911 of the solenoid 39 adjacent to the certain solenoid 39 in the Z-axis direction Take an array that overlaps each other. Since at least four adjacent terminals are in an overlapping arrangement, it is possible to suppress the reduction of the board mounting area due to the redundancy.
When viewed from the Z-axis direction, the first positive electrode terminal 3911, the first negative electrode terminal 3912, the second positive electrode terminal 3921, and the second negative electrode terminal 3922 of each solenoid 39 are arranged to overlap linearly. Since all the terminals are in an overlapping arrangement, it is possible to further suppress the reduction of the board mounting area due to the redundancy.
The second positive electrode terminal 3921 is connected to the second control substrate 41 through a through hole 407 formed in the first control substrate 40. The second negative electrode terminal 3922 is connected to the second control substrate 41 through the through hole 408 formed in the first control substrate 40. Thereby, compared with the case where both terminals 3921 and 3922 are connected to the second control substrate 41 through one through hole, the contact between the both terminals 3921 and 3922 can be suppressed and the total opening area is reduced. Thus, the strength reduction of the first control substrate 40 can be suppressed.
 液圧ユニット8のポンプ21を駆動するモータ211は、第1正極端子2111、第1負極端子2112、第2正極端子2113、第2負極端子2114を有する。第1モータ駆動回路401および第1モータ制御回路403は、第1制御基板40に設置され、第1正極端子2111および第1負極端子2112が接続されている。第2モータ駆動回路411および第2モータ制御回路413は、第2制御基板41に設置され、第2正極端子2113および第2負極端子2114が接続されている。ハウジング80は、背面802の反対側に位置し、モータ211が取り付けられた正面801を有する。つまり、モータ211は、二重構造のコイルおよび制御用回路を持つ。モータ211は、機械系統は1系統のままで電気系統のみが2系統化されているため、電気系統の冗長化とブレーキ制御装置1の大型化の抑制とを両立できる。ブレーキ制御装置1は、全てのアクチュエータ(各電磁弁、モータ211)の電気系統が2系統化されているため、一方の系統に異常が発生しても、正常な他方の系統を用いて、機能を制限することなく、正常時と同等のブレーキ制御を継続できる。 The motor 211 for driving the pump 21 of the fluid pressure unit 8 has a first positive electrode terminal 2111, a first negative electrode terminal 2112, a second positive electrode terminal 2113, and a second negative electrode terminal 2114. The first motor drive circuit 401 and the first motor control circuit 403 are installed on the first control board 40, and the first positive electrode terminal 2111 and the first negative electrode terminal 2112 are connected. The second motor drive circuit 411 and the second motor control circuit 413 are installed on the second control board 41, and the second positive electrode terminal 2113 and the second negative electrode terminal 2114 are connected. The housing 80 is located opposite the back surface 802 and has a front surface 801 to which a motor 211 is attached. That is, the motor 211 has a coil of double structure and a control circuit. In the motor 211, only one electric system remains in a single mechanical system, and therefore, it is possible to achieve both the redundancy of the electric system and the suppression of the increase in size of the brake control device 1. The brake control device 1 has a system of two electric systems of all the actuators (the respective solenoid valves, the motor 211). Therefore, even if an abnormality occurs in one system, the function is performed using the other normal system. The same brake control as normal can be continued without restriction.
 ハウジング80は、正面801および背面802と連続し、ホイルシリンダポート8031が配置された上面803と、上面803の反対側に位置する底面804と、正面801、背面802、上面803および底面804と連続する左側面805と、左側面805の反対側に位置する右側面806と、を有する。六面体形状であるハウジング80から第1制御基板40および第2制御基板41がオフセット配置されているため、ブレーキ制御装置1の大型化を抑制できる。
  第2コイル392は、第1コイル391の外周に配置されている。これにより、各コイル392,391で磁束漏れを抑制でき、コイルの冗長化に伴う磁気効率の低下を抑制できる。また、製造が容易である。
  Z軸方向から見たとき、第2正極端子3921および第2負極端子3922間には、第1正極端子3911および第1負極端子3912がある。つまり、既存の1重系の電磁弁における両端子の外側に端子を増やすことで電磁弁を2重系としているため、既存の電磁弁に対する設計変更箇所の増加を抑制でき、コストアップを抑制できる。
  第1コイル391に電流を流すことで発生する磁界の方向と、第2コイル392に電流を流すことで発生する磁界の方向は、同じ方向である。これにより、両磁界が打ち消し合うことでソレノイド39の吸引力が低下するのを抑制できる。
The housing 80 is continuous with the front surface 801 and the back surface 802, and is continuous with the top surface 803 on which the wheel cylinder port 8031 is disposed, the bottom surface 804 opposite to the top surface 803, and the front surface 801, the back surface 802, the top surface 803 and the bottom surface 804. And a right side 806 opposite to the left side 805. Since the first control board 40 and the second control board 41 are offset from the housing 80 which is a hexahedron shape, the enlargement of the brake control device 1 can be suppressed.
The second coil 392 is disposed on the outer periphery of the first coil 391. As a result, magnetic flux leakage can be suppressed in each of the coils 392 and 391, and a reduction in magnetic efficiency due to coil redundancy can be suppressed. Moreover, manufacture is easy.
When viewed from the Z-axis direction, a first positive electrode terminal 3911 and a first negative electrode terminal 3912 are provided between the second positive electrode terminal 3921 and the second negative electrode terminal 3922. That is, since the solenoid valve is made to be a double system by increasing the terminals to the outside of both terminals in the existing single-layer solenoid valve, it is possible to suppress an increase in the design change location for the existing solenoid valve and suppress an increase in cost. .
The direction of the magnetic field generated by supplying a current to the first coil 391 and the direction of the magnetic field generated by supplying a current to the second coil 392 are the same. Thereby, it can suppress that the attraction | suction force of the solenoid 39 declines because both magnetic fields cancel each other.
 〔実施形態2〕
  次に、実施形態2を説明する。実施形態2の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。
  図8は、実施形態2のソレノイド39の断面斜視図である。実施形態2のソレノイド39は、第1コイル391および第2コイル392がX軸方向に並ぶ。第1コイル391は第2コイル392よりもX軸正方向側に位置する。両コイル391,392は同一形状であり、X軸方向から見たとき、両コイル391,392は完全に重なる。
  コイルの発生磁束は、コイル径に比例し、コイル長さに反比例する。実施形態2の両コイル391,392は、X軸方向に並ぶため、両コイル391,392の抵抗値およびインダクタンスを等しくでき、設計の容易化を図れる。また、両コイル391,392の発熱、放熱条件が等しいため、温度上昇による影響が考慮しやすい。
Second Embodiment
Next, a second embodiment will be described. The basic configuration of the second embodiment is the same as that of the first embodiment, so only differences from the first embodiment will be described.
FIG. 8 is a cross-sectional perspective view of the solenoid 39 of the second embodiment. In the solenoid 39 of the second embodiment, the first coil 391 and the second coil 392 are aligned in the X-axis direction. The first coil 391 is positioned closer to the positive side in the X-axis direction than the second coil 392. Both coils 391, 392 have the same shape, and when viewed in the X-axis direction, both coils 391, 392 completely overlap.
The generated magnetic flux of the coil is proportional to the coil diameter and inversely proportional to the coil length. Since both coils 391 and 392 of the second embodiment are aligned in the X-axis direction, the resistance value and inductance of both coils 391 and 392 can be equal, and design can be facilitated. Moreover, since the heat_generation | fever of both coils 391, 392 and thermal radiation conditions are equal, the influence by temperature rise is easy to consider.
 〔実施形態3〕
  次に、実施形態3を説明する。実施形態3の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。
  図9は、実施形態3のソレノイド39の断面斜視図である。実施形態3のソレノイド39は、第1正極端子3911および第1負極端子3912の間に第2正極端子3921および第2負極端子3922が配置されている。
Third Embodiment
Next, the third embodiment will be described. Since the basic configuration of the third embodiment is the same as that of the first embodiment, only differences from the first embodiment will be described.
FIG. 9 is a cross-sectional perspective view of the solenoid 39 of the third embodiment. In the solenoid 39 of the third embodiment, a second positive electrode terminal 3921 and a second negative electrode terminal 3922 are disposed between the first positive electrode terminal 3911 and the first negative electrode terminal 3912.
 〔実施形態4〕
  次に、実施形態4を説明する。実施形態4の基本的な構成は実施形態3と同じであるため、実施形態1との相違点のみ説明する。
  図10は、実施形態4のソレノイド39の斜視図である。実施形態4のソレノイド39は、第1正極端子3911および第2正極端子3921が互いに接続されている。第2正極端子3921は、第1制御基板40および第2制御基板41に形成されたスルーホールとそれぞれはんだ付けされている。図11に電気回路図を示す。第1正極端子3911および第2正極端子3921は、共用端子であり、バッテリと接続されている。第1負極端子3912は、第1ソレノイド駆動回路402の駆動素子を介してグランドと接続されている。第2負極端子3922は、第2ソレノイド駆動回路404の駆動素子を介してグランドと接続されている。
  実施形態4では、第1正極端子3911および第2正極端子3921が共用端子であるため、共用端子ではない場合と比べて、第1制御基板40のスルーホールを1つ削減できる。この結果、第1制御基板40の基板実装面積を増大できる。
Embodiment 4
Next, the fourth embodiment will be described. The basic configuration of the fourth embodiment is the same as that of the third embodiment, so only differences from the first embodiment will be described.
FIG. 10 is a perspective view of the solenoid 39 of the fourth embodiment. In the solenoid 39 of the fourth embodiment, the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are connected to each other. The second positive electrode terminal 3921 is soldered to the through holes formed in the first control substrate 40 and the second control substrate 41, respectively. An electric circuit diagram is shown in FIG. The first positive electrode terminal 3911 and the second positive electrode terminal 3921 are shared terminals and are connected to the battery. The first negative electrode terminal 3912 is connected to the ground via the drive element of the first solenoid drive circuit 402. The second negative electrode terminal 3922 is connected to the ground through the drive element of the second solenoid drive circuit 404.
In the fourth embodiment, since the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are shared terminals, one through hole of the first control substrate 40 can be reduced as compared with the case where the first positive electrode terminal 3911 and the second positive electrode terminal 3921 are not shared terminals. As a result, the substrate mounting area of the first control substrate 40 can be increased.
 〔実施形態5〕
  次に、実施形態5を説明する。実施形態5の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。なお、ソレノイド39は図9に示した実施形態3のソレノイド39と同じである。
  図12は、実施形態5の第1制御基板40および第2制御基板41の要部斜視図である。実施形態5の第1制御基板40は、第2正極端子3921および第2負極端子3922が貫通する長穴4078を有する。これにより、第1制御基板40を本体部831に組み付ける際、両端子3921,第2負極端子3922をそれぞれ個別の貫通穴に通す場合と比べて、両端子3921,3922の挿入性を向上できる。
Fifth Embodiment
Next, the fifth embodiment will be described. The basic configuration of the fifth embodiment is the same as that of the first embodiment, so only differences from the first embodiment will be described. The solenoid 39 is the same as the solenoid 39 of the third embodiment shown in FIG.
FIG. 12 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the fifth embodiment. The first control substrate 40 of the fifth embodiment has an elongated hole 4078 through which the second positive electrode terminal 3921 and the second negative electrode terminal 3922 penetrate. As a result, when the first control board 40 is assembled to the main body 831, the insertability of both the terminals 3921 and 3922 can be improved as compared with the case where both the terminals 3921 and the second negative electrode 3922 are passed through the respective through holes.
 〔実施形態6〕
  次に、実施形態6を説明する。実施形態6の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。なお、ソレノイド39は図9に示した実施形態3のソレノイド39と同じである。
  図13は、実施形態6の第1制御基板40および第2制御基板41の要部斜視図である。実施形態6の第1制御基板40は、外縁に第2正極端子3921および第2負極端子3922を通す切り欠き部4079を有する。これにより、第1制御基板40を本体部831に組み付ける際、両端子3921,第2負極端子3922をそれぞれ個別の貫通穴に通す場合と比べて、両端子3921,3922の挿入性を向上できる。
Sixth Embodiment
Next, the sixth embodiment will be described. The basic configuration of the sixth embodiment is the same as that of the first embodiment, so only the differences from the first embodiment will be described. The solenoid 39 is the same as the solenoid 39 of the third embodiment shown in FIG.
FIG. 13 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the sixth embodiment. The first control substrate 40 of the sixth embodiment has a notch 4079 through the second positive electrode terminal 3921 and the second negative electrode terminal 3922 at the outer edge. As a result, when the first control board 40 is assembled to the main body 831, the insertability of both the terminals 3921 and 3922 can be improved as compared with the case where both the terminals 3921 and the second negative electrode 3922 are passed through the respective through holes.
 〔実施形態7〕
  次に、実施形態7を説明する。実施形態7の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。
  図14は、実施形態7の第1制御基板40および第2制御基板41の要部斜視図である。実施形態7の第2制御基板41は、第1制御基板40よりもY軸正方向側に突出する延長部419を有する。延長部419には、スルーホール415,416が配置されている。実施形態7のソレノイド39において、第2正極端子3921および第2負極端子3922は、第1制御基板40の外縁を迂回してX軸正方向側へ延び、スルーホール415,416を貫通する。実施形態7では、第1制御基板40に第2正極端子3921および第2負極端子3922を貫通させる貫通孔が不要であるため、基板実装面積を増大できると共に、第1制御基板40を本体部831に組み付ける際の組み付け性を向上できる。
Seventh Embodiment
Next, the seventh embodiment will be described. The basic configuration of the seventh embodiment is the same as that of the first embodiment, so only differences from the first embodiment will be described.
FIG. 14 is a perspective view of an essential part of the first control board 40 and the second control board 41 of the seventh embodiment. The second control substrate 41 of the seventh embodiment has an extension 419 that protrudes in the positive Y-axis direction with respect to the first control substrate 40. Through holes 415 and 416 are disposed in the extension 419. In the solenoid 39 of the seventh embodiment, the second positive electrode terminal 3921 and the second negative electrode terminal 3922 bypass the outer edge of the first control substrate 40, extend in the positive X-axis direction, and pass through the through holes 415 and 416. In the seventh embodiment, since the through holes for penetrating the second positive electrode terminal 3921 and the second negative electrode terminal 3922 in the first control substrate 40 are not necessary, the substrate mounting area can be increased, and the first control substrate 40 can be used as the main portion 831. Assemblability at the time of assembling to
 〔実施形態8〕
  次に、実施形態8を説明する。実施形態8の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。
  図15は、実施形態8の第1制御基板40の平面図である。実施形態8のソレノイド39は、第1正極端子3911、第1負極端子3912、第2正極端子3921および第2負極端子3922がヨーク48の円筒外周に沿って円弧状に配列する。これにより、各端子3911,3912,3921,3922が直線上に配列する場合と比べて、コイル巻き数を最大化できる。
[Embodiment 8]
An eighth embodiment will now be described. Since the basic configuration of the eighth embodiment is the same as that of the first embodiment, only differences from the first embodiment will be described.
FIG. 15 is a plan view of the first control substrate 40 of the eighth embodiment. In the solenoid 39 of the eighth embodiment, the first positive electrode terminal 3911, the first negative electrode terminal 3912, the second positive electrode terminal 3921 and the second negative electrode terminal 3922 are arranged in an arc along the cylindrical outer periphery of the yoke 48. As a result, the number of coil turns can be maximized as compared to the case where the terminals 3911, 31912, 3921, 3922 are linearly arranged.
 〔実施形態9〕
  次に、実施形態9を説明する。実施形態9の基本的な構成は実施形態1と同じであるため、実施形態1との相違点のみ説明する。
  図16は実施形態9の第1制御基板40の斜視図、図17は実施形態9の第2制御基板41の斜視図である。実施形態9の第1制御基板40は、第1モータ駆動回路401、第1ソレノイド駆動回路402、第2モータ駆動回路411および第2ソレノイド駆動回路412を有する。第2制御基板41は、第1モータ制御回路403、第1ソレノイド制御回路404、第2モータ制御回路413および第2ソレノイド制御回路414を有する。すなわち、第1制御基板40に2系統分の駆動回路が配置され、第2制御基板41に2系統分の制御回路が配置されている。よって、第2基板41を各ソレノイド39およびモータ211の各端子と接続する必要がないため、第2制御基板41にマイコン、ASIC等の大型回路を実装するエリアを十分に確保できる。
[Embodiment 9]
Next, Embodiment 9 will be described. The basic configuration of the ninth embodiment is the same as that of the first embodiment, so only differences from the first embodiment will be described.
FIG. 16 is a perspective view of the first control board 40 of the ninth embodiment, and FIG. 17 is a perspective view of the second control board 41 of the ninth embodiment. The first control board 40 of the ninth embodiment has a first motor drive circuit 401, a first solenoid drive circuit 402, a second motor drive circuit 411, and a second solenoid drive circuit 412. The second control board 41 has a first motor control circuit 403, a first solenoid control circuit 404, a second motor control circuit 413, and a second solenoid control circuit 414. That is, drive circuits for two systems are disposed on the first control board 40, and control circuits for two systems are disposed on the second control board 41. Therefore, since it is not necessary to connect the second substrate 41 to the terminals of the solenoids 39 and the motor 211, an area for mounting a large circuit such as a microcomputer or an ASIC can be sufficiently secured on the second control substrate 41.
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  コイルおよびモータの電気系統を3重系以上の多重系としてもよい。つまり、複数の制御回路が互いにオフセット配置され、多重化されたコイルおよびモータと対応する制御回路とが、それぞれ端子により接続された構成であればよい。
  第1負極端子および第2負極端子を共用端子としてもよい。
  液圧ユニットに搭載された各電磁弁のうち、一部の電磁弁の電気系統のみを多重化してもよい。実施形態の液圧ユニット8の場合、少なくとも遮断弁12、連通弁20、調圧弁24およびストロークシミュレータアウト弁32の電気系統を多重化することにより、最低限のブレーキ動作が可能である。
Other Embodiments
As mentioned above, although the embodiment for carrying out the present invention was described, the concrete composition of the present invention is not limited to the composition of the embodiment, and there are design changes within the scope of the present invention. Also included in the present invention.
The electric system of the coil and the motor may be a triple or more multiplex system. That is, any configuration may be employed as long as a plurality of control circuits are offset from each other, and the multiplexed coils and motors and corresponding control circuits are connected by terminals.
The first negative electrode terminal and the second negative electrode terminal may be shared terminals.
Among the solenoid valves mounted on the hydraulic unit, only the electric system of some of the solenoid valves may be multiplexed. In the case of the hydraulic unit 8 according to the embodiment, the minimum brake operation is possible by multiplexing the electric systems of at least the shutoff valve 12, the communication valve 20, the pressure regulator valve 24, and the stroke simulator out valve 32.
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
  ブレーキ制御装置は、その一つの態様において、第1端子および第2端子が接続された第1コイルと、第3端子および第4端子が接続された第2コイルと、を有する第1電磁弁と、前記第1電磁弁が配置された第1の面を有するハウジングと、制御基板部であって、前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置され、第1電磁弁制御用回路および第2電磁弁制御用回路を有し、前記第1電磁弁制御用回路は、前記第1端子が接続され、前記第1電磁弁を制御し、前記第2電磁弁制御用回路は、前記第3端子が接続され、前記第1電磁弁を制御する、制御基板部と、を備える。
  より好ましい態様では、上記態様において、前記制御基板部は、前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置され、前記第1電磁弁制御用回路が設置されている第1制御基板と、前記第1制御基板から前記巻回軸方向にオフセットして配置され、前記第2電磁弁制御用回路が設置されている第2制御基板と、を有する。
  別の好ましい態様では、上記態様のいずれかにおいて前記第2端子は、前記第1電磁弁制御用回路に接続され、前記第4端子は、前記第2電磁弁制御用回路に接続されている。
Technical ideas that can be grasped from the embodiments described above will be described below.
A brake control device includes, in one aspect thereof, a first solenoid valve having a first coil to which a first terminal and a second terminal are connected, and a second coil to which a third terminal and a fourth terminal are connected. A housing having a first surface on which the first solenoid valve is disposed, and a control board portion, which is disposed offset from the first surface in the winding axial direction of the first coil, A circuit for controlling a solenoid valve and a circuit for controlling a second solenoid valve, the first solenoid valve control circuit is connected to the first terminal, controls the first solenoid valve, and controls the second solenoid valve. A control circuit connected to the third terminal and controlling the first solenoid valve;
In a more preferable aspect, in the above aspect, the control board portion is disposed offset from the first surface in the winding axis direction of the first coil, and the first solenoid valve control circuit is installed. A first control substrate, and a second control substrate disposed offset from the first control substrate in the winding axis direction and provided with the second solenoid valve control circuit.
In another preferable aspect, in any of the above aspects, the second terminal is connected to the first solenoid valve control circuit, and the fourth terminal is connected to the second solenoid valve control circuit.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1制御基板は、貫通孔部を有し、前記第3端子および前記第4端子は、前記貫通孔部を通して前記第2制御基板に接続されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、第5端子と第6端子とが接続された第3コイルと、第7端子と第8端子とが接続された第4コイルと、を有する第2電磁弁と、を備え、前記第7端子および前記第8端子は、前記貫通孔部を通して前記第2制御基板に接続され、前記第2制御基板に垂直な方向から見たとき、前記第1端子および前記第2端子と、前記第5端子および前記第6端子と、の間に前記第4端子および前記第7端子が配置されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2制御基板と平行な方向から見たとき、前記第2端子、前記第4端子、前記第7端子および前記第5端子は、互いに重なる配列をとる。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2制御基板と平行な方向から見たとき、前記第1端子、前記第2端子、前記第3端子、前記第4端子、前記第5端子、前記第6端子、前記第7端子および前記第8端子は、互いに重なる配列をとる。
In still another preferred aspect, in any of the above aspects, the first control substrate has a through hole, and the third terminal and the fourth terminal pass through the through hole to the second control substrate. It is connected.
In still another preferable aspect, in any of the above aspects, the third coil to which the fifth terminal and the sixth terminal are connected and the fourth coil to which the seventh terminal and the eighth terminal are connected are provided. A second solenoid valve, wherein the seventh terminal and the eighth terminal are connected to the second control substrate through the through hole and when viewed in a direction perpendicular to the second control substrate, The fourth terminal and the seventh terminal are disposed between the first terminal and the second terminal, and the fifth terminal and the sixth terminal.
In still another preferable aspect, in any of the above aspects, the second terminal, the fourth terminal, the seventh terminal, and the fifth terminal are mutually different when viewed in a direction parallel to the second control substrate. Take an overlapping array.
In still another preferable aspect, in any one of the above aspects, the first terminal, the second terminal, the third terminal, the fourth terminal, the fourth terminal, when viewed from a direction parallel to the second control substrate The five terminals, the sixth terminal, the seventh terminal, and the eighth terminal are arranged to overlap with each other.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記貫通孔部は、第1貫通孔および第2貫通孔を有し、前記第3端子は、前記第1貫通孔を通して前記第2制御基板に接続され、前記第4端子は、前記第2貫通孔を通して前記第2制御基板に接続されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板部は、前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置され、前記第1電磁弁制御用回路および前記第2電磁弁制御用回路が設置されている第1制御基板を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板は、前記第1制御基板から前記巻回軸方向にオフセットして配置された第2制御基板を備える。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板部に設置された第1モータ制御用回路に接続された第1駆動用端子と、前記制御基板部に設置された第2モータ制御用回路に接続された第2駆動用端子と、を有するモータを備え、前記ハウジングは、前記第1の面の反対側に位置し、前記モータが取り付けられた第2の面を有する。
In still another preferable aspect, in any of the above aspects, the through hole portion has a first through hole and a second through hole, and the third terminal passes the first through hole through the first control hole. And the fourth terminal is connected to the second control board through the second through hole.
In still another preferable aspect, in any of the above aspects, the control board portion is disposed offset from the first surface in the winding axis direction of the first coil, and the circuit for controlling the first solenoid valve And a first control board on which the second solenoid valve control circuit is installed.
In still another preferred aspect, in any of the above aspects, the control substrate includes a second control substrate disposed offset from the first control substrate in the winding axial direction.
In still another preferable aspect, in any of the above aspects, a first drive terminal connected to a first motor control circuit installed on the control board unit, and a second motor installed on the control board unit And a second drive terminal connected to the control circuit, wherein the housing is opposite to the first surface and has a second surface to which the motor is attached.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ハウジングは、前記第1の面および前記第2の面と連続し、ホイルシリンダに繋がる配管が接続されたホイルシリンダ接続ポートが配置された第3の面と、前記第3の面の反対側に位置する第4の面と、前記第1の面、前記第2の面、前記第3の面および前記第4の面と連続する第5の面と、前記第5の面の反対側に位置する第6の面と、を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2コイルは、前記第1コイルの外周に配置されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板部に垂直な方向から見たとき、前記第3端子および前記第4端子間には、前記第1端子および前記第2端子がある。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1コイルの巻回軸方向から見たとき、前記第1コイルおよび前記第2コイルは重なる。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1コイルに電流を流すことで発生する磁界の方向と、前記第2コイルに電流を流すことで発生する磁界の方向と、は同じ方向である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1端子および前記第3端子は、互いに接続されている。
In still another preferred aspect, in any of the above aspects, the housing is disposed with a foil cylinder connection port continuous with the first surface and the second surface and connected with a pipe connected to the foil cylinder. A third surface, a fourth surface located on the opposite side of the third surface, and a first surface, a second surface, a third surface, and a fourth surface continuous with the fourth surface And a sixth surface opposite to the fifth surface.
In still another preferred aspect, in any of the above aspects, the second coil is disposed on the outer periphery of the first coil.
In still another preferred aspect, in any of the above aspects, the first terminal and the second terminal are between the third terminal and the fourth terminal when viewed in a direction perpendicular to the control substrate portion. is there.
In still another preferred aspect, in any of the above aspects, the first coil and the second coil overlap when viewed in the winding axis direction of the first coil.
In still another preferable aspect, in any of the above aspects, the direction of the magnetic field generated by applying a current to the first coil and the direction of the magnetic field generated by applying a current to the second coil are the same. It is a direction.
In still another preferred aspect, in any of the above aspects, the first terminal and the third terminal are connected to each other.
 また、他の観点から、ブレーキ制御装置は、ある態様において、電磁弁と、第1駆動用端子および第2駆動用端子を有するモータと、前記電磁弁が配置された第1の面と、前記第1の面の反対側に位置し前記モータが取り付けられた第2の面と、を有するハウジングと、制御基板部であって、前記第1の面から前記モータの回転軸方向にオフセットして配置され、第1モータ制御用回路および第2モータ制御用回路を有し、前記第1モータ制御用回路は、前記第1駆動用端子が接続され、前記モータを駆動し、前記第2モータ制御用回路は、前記第2駆動用端子が接続され、前記モータを駆動する、御基板部と、を備える。
  好ましくは、上記態様において、前記制御基板部は、前記第1の面から前記モータの回転軸方向にオフセットして配置され、前記第1モータ制御用回路が設置されている第1制御基板と、前記第1の面から前記モータの回転軸方向にオフセットして配置され、前記第2モータ制御用回路が設置されている第2制御基板と、を有する。
  別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板部は、前記第1の面から前記モータの回転軸方向にオフセットして配置され、前記第1モータ制御用回路および前記第2モータ制御用回路が設置されている第1制御基板を有する。
  別の好ましい態様では、上記態様のいずれかにおいて、前記制御基板部は、前記第1制御基板から前記モータの回転軸方向にオフセットして配置された第2制御基板を有する。
In another aspect, according to another aspect, the brake control device includes, in one aspect, a solenoid valve, a motor having a first drive terminal and a second drive terminal, a first surface on which the solenoid valve is disposed, and A housing having a second surface located opposite to the first surface and having the motor attached thereto, and a control board portion, offset from the first surface in the rotational axis direction of the motor The first motor control circuit includes a first motor control circuit and a second motor control circuit, and the first motor control circuit is connected to the first drive terminal to drive the motor, the second motor control The control circuit includes a control substrate portion to which the second drive terminal is connected and which drives the motor.
Preferably, in the above aspect, the control board portion is disposed offset from the first surface in the rotational axis direction of the motor, and a first control board on which the first motor control circuit is installed; And a second control substrate disposed offset from the first surface in the direction of the rotational axis of the motor and on which the second motor control circuit is installed.
In another preferable aspect, in any of the above aspects, the control board portion is disposed offset from the first surface in the rotational axis direction of the motor, and the first motor control circuit and the second motor It has a first control board on which a control circuit is installed.
In another preferable aspect, in any of the above aspects, the control board portion has a second control board disposed offset from the first control board in the rotation axis direction of the motor.
 別の好ましい態様では、上記態様のいずれかにおいて、前記電磁弁は、第1端子および前記第2端子が接続された第1コイルと、第3端子および第4端子が接続された第2コイルと、を有し、前記制御基板部は、前記第1端子が接続され、前記電磁弁を制御する第1電磁弁制御用回路と、前記第3端子が接続され、前記電磁弁を制御する第2電磁弁制御用回路と、を有する。
  さらに、別の観点から、ブレーキ制御装置は、ある態様において、液圧ユニットおよびコントロールユニットを備え、前記液圧ユニットは、ブレーキ液圧に応じて車輪に制動トルクを付与可能なホイルシリンダに接続する接続液路と、前記接続液路にある電磁弁と、モータによって駆動され、前記接続液路にブレーキ液を供給可能なポンプと、を有し、前記コントロールユニットは、前記電磁弁を制御する第1電磁弁制御用回路と、前記電磁弁を制御する第2電磁弁制御用回路と、前記モータを駆動する第1モータ制御用回路と、前記モータを駆動する第2モータ制御用回路と、を有する。
In another preferable aspect, in any of the above aspects, the electromagnetic valve includes a first coil to which a first terminal and the second terminal are connected, and a second coil to which a third terminal and a fourth terminal are connected. , The control board unit is connected to the first terminal, and a first solenoid valve control circuit for controlling the solenoid valve and the third terminal are connected to control the solenoid valve. And a solenoid valve control circuit.
Furthermore, according to another aspect, the brake control device, in one aspect, includes a hydraulic unit and a control unit, and the hydraulic unit connects to a wheel cylinder capable of applying a braking torque to the wheel according to the brake hydraulic pressure. A connection liquid passage, a solenoid valve in the connection fluid passage, and a pump driven by a motor and capable of supplying a brake fluid to the connection fluid passage, the control unit controlling the solenoid valve (1) a solenoid valve control circuit, a second solenoid valve control circuit for controlling the solenoid valve, a first motor control circuit for driving the motor, and a second motor control circuit for driving the motor Have.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 本願は、2017年9月12日付出願の日本国特許出願第2017-174567号に基づく優先権を主張する。2017年9月12日付出願の日本国特許出願第2017-174567号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2017-174567 filed on Sep. 12, 2017. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-174567, filed on September 12, 2017, is incorporated herein by reference in its entirety.
1  ブレーキ制御装置2  ホイルシリンダ8  液圧ユニット9  コントロールユニット11 液路(接続液路)12 遮断弁(第1電磁弁)13 ソレノイドイン弁(第1電磁弁)20 連通弁(第1電磁弁)21 ポンプ24 調圧弁(第1電磁弁)25 ソレノイドアウト弁(第1電磁弁)28 ストロークシミュレータイン弁(第1電磁弁)32 ストロークシミュレータアウト弁(第1電磁弁)39 ソレノイド40 第1制御基板(制御基板部)41 第2制御基板(制御基板部)80 液圧ユニットハウジング211  モータ391  第1コイル392  第2コイル401  第1モータ駆動回路(第1モータ制御用回路)402  第1ソレノイド駆動回路(第1電磁弁制御用回路)403  第1モータ制御回路(第1モータ制御用回路)404  第1ソレノイド制御回路(第1電磁弁制御用回路)411  第2モータ駆動回路(第2モータ制御用回路)412  第2ソレノイド駆動回路(第2電磁弁制御用回路)413  第2モータ制御回路(第2モータ制御用回路)414  第2ソレノイド制御回路(第2電磁弁制御用回路)801  正面(第2の面)802  背面(第1の面)3911 第1正極端子(第1端子)3912 第1負極端子(第2端子)3921 第2正極端子(第3端子)3922 第2負極端子(第4端子)2111 第1正極端子(第1駆動用端子)2112 第1負極端子(第1駆動用端子)2113 第2正極端子(第2駆動用端子)2114 第2負極端子(第2駆動用端子) 1 brake control device 2 wheel cylinder 8 hydraulic unit 9 control unit 11 fluid passage (connection fluid passage) 12 shutoff valve (first solenoid valve) 13 solenoid in valve (first solenoid valve) 20 communication valve (first solenoid valve) Reference Signs List 21 pump 24 pressure regulating valve (first solenoid valve) 25 solenoid out valve (first solenoid valve) 28 stroke simulator in valve (first solenoid valve) 32 stroke simulator out valve (first solenoid valve) 39 solenoid 40 first control board (Control board portion) 41 second control board (control board portion) 80 hydraulic unit housing 211 motor 391 first coil 392 second coil 401 first motor drive circuit (first motor control circuit) 402 first solenoid drive circuit (First solenoid valve control circuit) 403 First motor control circuit (first motor control circuit) 404 First solenoid control circuit (first solenoid valve control circuit) 411 second motor drive circuit (second motor control circuit) 412 second solenoid drive circuit (second electromagnetic valve control circuit) 413 second motor control circuit (second motor control circuit) 414 second solenoid control circuit (second motor control circuit) Second solenoid valve control circuit) front surface (second surface) 802 rear surface (first surface) 3911 first positive terminal (first terminal) 3912 first negative terminal (second terminal) 3921 second positive terminal (second Third terminal) 3922 second negative terminal (fourth terminal) 2111 first positive terminal (first drive terminal) 2112 first negative terminal (first drive terminal) 2113 second positive terminal (second drive terminal) 2114 Second negative terminal (second drive terminal)

Claims (23)

  1.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     第1端子および第2端子が接続された第1コイルと、第3端子および第4端子が接続された第2コイルと、を有する第1電磁弁と、
     前記第1電磁弁が配置された第1の面を有するハウジングと、
     制御基板部とを備えており、
     該制御基板部は、
     前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置された、第1電磁弁制御用回路および第2電磁弁制御用回路を有しており、
     前記第1電磁弁制御用回路には、前記第1端子が接続されており、前記第1電磁弁制御用回路は前記第1電磁弁を制御しており、
     前記第2電磁弁制御用回路には、前記第3端子が接続されており、前記第2電磁弁制御用回路は前記第1電磁弁を制御する、
     ブレーキ制御装置。
    A brake control device, wherein the brake control device
    A first solenoid valve having a first coil to which a first terminal and a second terminal are connected, and a second coil to which a third terminal and a fourth terminal are connected;
    A housing having a first surface on which the first solenoid valve is disposed;
    And a control board unit,
    The control board unit is
    It has a circuit for controlling a first solenoid valve and a circuit for controlling a second solenoid valve, which are disposed offset from the first surface in the winding axis direction of the first coil,
    The first terminal is connected to the first solenoid valve control circuit, and the first solenoid valve control circuit controls the first solenoid valve.
    The third terminal is connected to the second solenoid valve control circuit, and the second solenoid valve control circuit controls the first solenoid valve.
    Brake control device.
  2.  請求項1に記載のブレーキ制御装置において、
     前記制御基板部は、第1制御基板と第2制御基板とを有しており、
     前記第1制御基板は、前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置されており、前記第1制御基板には、前記第1電磁弁制御用回路が設置されており、
     前記第2制御基板は、前記第1制御基板から前記巻回軸方向にオフセットして配置されており、前記第2制御基板には、前記第2電磁弁制御用回路が設置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    The control board unit includes a first control board and a second control board,
    The first control board is disposed offset from the first surface in the winding axis direction of the first coil, and the first control board is provided with the first solenoid valve control circuit. Yes,
    The second control board is disposed offset from the first control board in the winding axis direction, and the second control board is provided with the circuit for controlling the second solenoid valve.
    Brake control device.
  3.  請求項2に記載のブレーキ制御装置において、
     前記第2端子は、前記第1電磁弁制御用回路に接続され、
     前記第4端子は、前記第2電磁弁制御用回路に接続されている、
     ブレーキ制御装置。
    In the brake control device according to claim 2,
    The second terminal is connected to the first solenoid valve control circuit,
    The fourth terminal is connected to the second solenoid valve control circuit.
    Brake control device.
  4.  請求項3に記載のブレーキ制御装置において、
     前記第1制御基板は、貫通孔部を有し、
     前記第3端子および前記第4端子は、前記貫通孔部を通して前記第2制御基板に接続されている、
     ブレーキ制御装置。
    In the brake control device according to claim 3,
    The first control substrate has a through hole.
    The third terminal and the fourth terminal are connected to the second control substrate through the through hole.
    Brake control device.
  5.  請求項4に記載のブレーキ制御装置において、
     該ブレーキ制御装置は、さらに、第2電磁弁を備えており、
     該第2電磁弁は、第5端子と第6端子とが接続された第3コイルと、第7端子と第8端子とが接続された第4コイルと、を有しており、
     前記第7端子および前記第8端子は、前記貫通孔部を通して前記第2制御基板に接続され、
     前記第2制御基板に垂直な方向から見たとき、前記第1端子および前記第2端子と、前記第5端子および前記第6端子と、の間に前記第4端子および前記第7端子が配置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 4,
    The brake control device further comprises a second solenoid valve,
    The second solenoid valve includes a third coil to which the fifth terminal and the sixth terminal are connected, and a fourth coil to which the seventh terminal and the eighth terminal are connected,
    The seventh terminal and the eighth terminal are connected to the second control substrate through the through holes.
    When viewed in a direction perpendicular to the second control substrate, the fourth terminal and the seventh terminal are disposed between the first terminal and the second terminal, and the fifth terminal and the sixth terminal. Being
    Brake control device.
  6.  請求項5に記載のブレーキ制御装置において、
     前記第2制御基板と平行な方向から見たとき、前記第2端子、前記第4端子、前記第7端子、および前記第5端子は、互いに重なる配列をとる、
     ブレーキ制御装置。
    In the brake control device according to claim 5,
    When viewed in a direction parallel to the second control substrate, the second terminal, the fourth terminal, the seventh terminal, and the fifth terminal are arranged to overlap with each other.
    Brake control device.
  7.  請求項6に記載のブレーキ制御装置において、
     前記第2制御基板と平行な方向から見たとき、前記第1端子、前記第2端子、前記第3端子、前記第4端子、前記第5端子、前記第6端子、前記第7端子、および前記第8端子は、互いに重なる配列をとる、
     ブレーキ制御装置。
    In the brake control device according to claim 6,
    When viewed in a direction parallel to the second control substrate, the first terminal, the second terminal, the third terminal, the fourth terminal, the fifth terminal, the sixth terminal, the seventh terminal, and the seventh terminal The eighth terminals are arranged to overlap with each other.
    Brake control device.
  8.  請求項4に記載のブレーキ制御装置において、
     前記貫通孔部は、第1貫通孔および第2貫通孔を有し、
     前記第3端子は、前記第1貫通孔を通して前記第2制御基板に接続され、
     前記第4端子は、前記第2貫通孔を通して前記第2制御基板に接続されている、
     ブレーキ制御装置。
    In the brake control device according to claim 4,
    The through hole has a first through hole and a second through hole,
    The third terminal is connected to the second control substrate through the first through hole,
    The fourth terminal is connected to the second control substrate through the second through hole.
    Brake control device.
  9.  請求項1に記載のブレーキ制御装置において、
     前記制御基板部は、第1制御基板を有しており、
     前記第1制御基板は、前記第1の面から前記第1コイルの巻回軸方向にオフセットして配置されており、
     前記第1制御基板には、前記第1電磁弁制御用回路および前記第2電磁弁制御用回路が設置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    The control board unit has a first control board,
    The first control substrate is disposed offset from the first surface in the winding axis direction of the first coil,
    The first control board is provided with the first solenoid valve control circuit and the second solenoid valve control circuit.
    Brake control device.
  10.  請求項9に記載のブレーキ制御装置において、
     前記制御基板部は、前記第1制御基板から前記巻回軸方向にオフセットして配置された第2制御基板を備える、
     ブレーキ制御装置。
    In the brake control device according to claim 9,
    The control substrate unit includes a second control substrate disposed offset from the first control substrate in the winding axis direction.
    Brake control device.
  11.  請求項1に記載のブレーキ制御装置において、
     前記ブレーキ制御装置は、さらに、第1駆動用端子と第2駆動用端子とを有するモータを備えており、
     前記第1駆動用端子は、前記制御基板部に設置された第1モータ制御用回路に接続されており、
     前記第2駆動用端子は、前記制御基板部に設置された第2モータ制御用回路に接続されており、
     前記ハウジングは、第2の面を有しており、該第2の面は、前記第1の面の反対側に位置しており、該第2の面には、前記モータが取り付けられている、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    The brake control device further includes a motor having a first drive terminal and a second drive terminal.
    The first drive terminal is connected to a first motor control circuit installed in the control board unit,
    The second drive terminal is connected to a second motor control circuit installed in the control board unit,
    The housing has a second side, the second side is opposite to the first side, and the motor is mounted on the second side. ,
    Brake control device.
  12.  請求項11に記載のブレーキ制御装置において、
     前記ハウジングは、
     前記第1の面および前記第2の面と連続した第3の面であって、ホイルシリンダに繋がる配管が接続されたホイルシリンダ接続ポートが配置された前記第3の面と、
     前記第3の面の反対側に位置する第4の面と、
     前記第1の面、前記第2の面、前記第3の面および前記第4の面と連続する第5の面と、
     前記第5の面の反対側に位置する第6の面と、
     を有するブレーキ制御装置。
    In the brake control device according to claim 11,
    The housing is
    A third surface continuous with the first surface and the second surface, in which a foil cylinder connection port to which a pipe connected to a foil cylinder is connected is disposed;
    A fourth surface opposite to the third surface;
    A fifth surface continuous with the first surface, the second surface, the third surface, and the fourth surface;
    A sixth surface opposite to the fifth surface;
    Brake control device.
  13.  請求項1に記載のブレーキ制御装置において、
     前記第2コイルは、前記第1コイルの外周に配置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    The second coil is disposed on an outer periphery of the first coil.
    Brake control device.
  14.  請求項13に記載のブレーキ制御装置において、
     前記制御基板部に垂直な方向から見たとき、前記第3端子および前記第4端子間には、前記第1端子および前記第2端子がある、
     ブレーキ制御装置。
    In the brake control device according to claim 13,
    When viewed in a direction perpendicular to the control board portion, the first terminal and the second terminal are between the third terminal and the fourth terminal,
    Brake control device.
  15.  請求項1に記載のブレーキ制御装置において、
     前記第1コイルの巻回軸方向から見たとき、前記第1コイルおよび前記第2コイルは重なる、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    When viewed from the winding axis direction of the first coil, the first coil and the second coil overlap.
    Brake control device.
  16.  請求項1に記載のブレーキ制御装置において、
     前記第1コイルに電流を流すことで発生する磁界の方向と、前記第2コイルに電流を流すことで発生する磁界の方向と、は同じ方向である、
     ブレーキ制御装置。
    In the brake control device according to claim 1,
    The direction of the magnetic field generated by applying a current to the first coil and the direction of the magnetic field generated by applying a current to the second coil are the same.
    Brake control device.
  17.  請求項1に記載のブレーキ制御装置において、
     前記第1端子および前記第3端子は、互いに接続されているブレーキ制御装置。
    In the brake control device according to claim 1,
    The brake control device, wherein the first terminal and the third terminal are connected to each other.
  18.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     電磁弁と、
     第1駆動用端子および第2駆動用端子を有するモータと、
     前記電磁弁が配置された第1の面と、前記第1の面の反対側に位置し前記モータが取り付けられた第2の面と、を有するハウジングと、
     制御基板部とを備えており、
     該制御基板部は、前記第1の面から前記モータの回転軸方向にオフセットして配置された、第1モータ制御用回路および第2モータ制御用回路を有しており、
     前記第1モータ制御用回路には、前記第1駆動用端子が接続されており、前記第1モータ制御用回路は前記モータを駆動しており、
     前記第2モータ制御用回路には、前記第2駆動用端子が接続されており、前記第2モータ制御用回路は前記モータを駆動する、
     ブレーキ制御装置。
    A brake control device, wherein the brake control device
    With a solenoid valve,
    A motor having a first drive terminal and a second drive terminal;
    A housing having a first surface on which the solenoid valve is disposed, and a second surface opposite to the first surface to which the motor is attached;
    And a control board unit,
    The control board unit has a first motor control circuit and a second motor control circuit, which are disposed offset from the first surface in the rotational axis direction of the motor.
    The first drive terminal is connected to the first motor control circuit, and the first motor control circuit drives the motor.
    The second drive terminal is connected to the second motor control circuit, and the second motor control circuit drives the motor.
    Brake control device.
  19.  請求項18に記載のブレーキ制御装置において、
     前記制御基板部は、第1制御基板と第2制御基板とを有しており、
     前記第1制御基板は、前記第1の面から前記モータの回転軸方向にオフセットして配置されており、前記第1制御基板には、前記第1モータ制御用回路が設置されており、
     前記第2制御基板は、前記第1の面から前記モータの回転軸方向にオフセットして配置されており、前記第2制御基板には、前記第2モータ制御用回路が設置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 18,
    The control board unit includes a first control board and a second control board,
    The first control board is disposed offset from the first surface in the rotational axis direction of the motor, and the first control board is provided with the first motor control circuit.
    The second control board is disposed offset from the first surface in the rotational axis direction of the motor, and the second control board is provided with the second motor control circuit.
    Brake control device.
  20.  請求項18に記載のブレーキ制御装置において、
     前記制御基板部は、第1制御基板を有しており、
     前記第1制御基板は、前記第1の面から前記モータの回転軸方向にオフセットして配置されており、
     前記第1制御基板には、前記第1モータ制御用回路および前記第2モータ制御用回路が設置されている、
     ブレーキ制御装置。
    In the brake control device according to claim 18,
    The control board unit has a first control board,
    The first control board is disposed offset from the first surface in the rotational axis direction of the motor,
    The first motor control circuit and the second motor control circuit are installed on the first control board.
    Brake control device.
  21.  請求項20に記載のブレーキ制御装置において、
     前記制御基板部は、前記第1制御基板から前記モータの回転軸方向にオフセットして配置された第2制御基板を有する、
     ブレーキ制御装置。
    The brake control device according to claim 20,
    The control board unit has a second control board disposed offset from the first control board in the rotational axis direction of the motor.
    Brake control device.
  22.  請求項18に記載のブレーキ制御装置において、
     前記電磁弁は、
     第1端子および前記第2端子が接続された第1コイルと、
     第3端子および第4端子が接続された第2コイルと、
    を有し、
     前記制御基板部は、
     前記第1端子が接続され、前記電磁弁を制御する第1電磁弁制御用回路と、
     前記第3端子が接続され、前記電磁弁を制御する第2電磁弁制御用回路と、
    を有する、
     ブレーキ制御装置。
    In the brake control device according to claim 18,
    The solenoid valve is
    A first coil to which a first terminal and the second terminal are connected;
    A second coil to which a third terminal and a fourth terminal are connected;
    Have
    The control board unit is
    A first solenoid valve control circuit which is connected to the first terminal and controls the solenoid valve;
    A second solenoid valve control circuit which is connected to the third terminal and controls the solenoid valve;
    Have
    Brake control device.
  23.  ブレーキ制御装置であって、
     該ブレーキ制御装置は液圧ユニットおよびコントロールユニットを備え、
     前記液圧ユニットは、
     ブレーキ液圧に応じて車輪に制動トルクを付与可能なホイルシリンダに接続する接続液路と、
     前記接続液路にある電磁弁と、
     モータによって駆動され、前記接続液路にブレーキ液を供給可能なポンプと、
    を有しており、
     前記コントロールユニットは、
     前記電磁弁を制御する第1電磁弁制御用回路と、
     前記電磁弁を制御する第2電磁弁制御用回路と、
     前記モータを駆動する第1モータ制御用回路と、
     前記モータを駆動する第2モータ制御用回路と、
    を有するブレーキ制御装置。
    A brake control device,
    The brake control device comprises a hydraulic unit and a control unit
    The hydraulic unit
    A connection fluid passage connected to a wheel cylinder capable of applying a braking torque to the wheel according to the brake fluid pressure;
    A solenoid valve in the connection fluid path;
    A pump driven by a motor and capable of supplying a brake fluid to the connection fluid passage;
    And have
    The control unit
    A first solenoid valve control circuit for controlling the solenoid valve;
    A second solenoid valve control circuit for controlling the solenoid valve;
    A first motor control circuit for driving the motor;
    A second motor control circuit for driving the motor;
    Brake control device.
PCT/JP2018/031710 2017-09-12 2018-08-28 Brake control device WO2019054170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018005059.9T DE112018005059T5 (en) 2017-09-12 2018-08-28 BRAKE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174567A JP6857938B2 (en) 2017-09-12 2017-09-12 Brake control device
JP2017-174567 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019054170A1 true WO2019054170A1 (en) 2019-03-21

Family

ID=65722668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031710 WO2019054170A1 (en) 2017-09-12 2018-08-28 Brake control device

Country Status (3)

Country Link
JP (1) JP6857938B2 (en)
DE (1) DE112018005059T5 (en)
WO (1) WO2019054170A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192351A1 (en) * 2020-03-23 2021-09-30 株式会社日立製作所 Onboard control device
CN114701464A (en) * 2022-04-27 2022-07-05 北京京深深向科技有限公司 ABS (anti-lock brake system) system braking redundancy control method and device and ABS system
WO2023016512A1 (en) * 2021-08-12 2023-02-16 芜湖伯特利汽车安全系统股份有限公司 Vehicle braking system having redundant control function and control method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200567B2 (en) * 2018-09-25 2023-01-10 株式会社アドヴィックス vehicle braking controller
JP7196495B2 (en) * 2018-09-25 2022-12-27 株式会社アドヴィックス vehicle braking controller
JP7403970B2 (en) * 2019-04-25 2023-12-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Brake fluid pressure control device
JP2020179793A (en) * 2019-04-26 2020-11-05 株式会社アドヴィックス Vehicular brake controller
DE112022002806T5 (en) 2021-05-28 2024-03-14 Hitachi Astemo, Ltd. Electric braking device and electric disc brake
JP2024038665A (en) * 2022-09-08 2024-03-21 日立Astemo株式会社 brake control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659680U (en) * 1993-01-29 1994-08-19 日信工業株式会社 Solenoid valve device
WO2010113574A1 (en) * 2009-03-31 2010-10-07 日立オートモティブシステムズ株式会社 Brake control device
JP2013228053A (en) * 2012-04-26 2013-11-07 Toyota Motor Corp Solenoid valve device, and hydraulic brake system
JP2014000864A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Solenoid valve device
WO2014184840A1 (en) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 Brake device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008107A (en) * 2004-05-26 2006-01-12 Hitachi Ltd Fluid pressure control device and its manufacturing method
JP6715631B2 (en) 2016-03-22 2020-07-01 日本特殊陶業株式会社 Substrate support member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659680U (en) * 1993-01-29 1994-08-19 日信工業株式会社 Solenoid valve device
WO2010113574A1 (en) * 2009-03-31 2010-10-07 日立オートモティブシステムズ株式会社 Brake control device
JP2013228053A (en) * 2012-04-26 2013-11-07 Toyota Motor Corp Solenoid valve device, and hydraulic brake system
JP2014000864A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Solenoid valve device
WO2014184840A1 (en) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 Brake device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192351A1 (en) * 2020-03-23 2021-09-30 株式会社日立製作所 Onboard control device
JPWO2021192351A1 (en) * 2020-03-23 2021-09-30
JP7260713B2 (en) 2020-03-23 2023-04-18 株式会社日立製作所 On-board control device
AU2020437887B2 (en) * 2020-03-23 2024-01-25 Hitachi, Ltd. Onboard control device
WO2023016512A1 (en) * 2021-08-12 2023-02-16 芜湖伯特利汽车安全系统股份有限公司 Vehicle braking system having redundant control function and control method therefor
CN114701464A (en) * 2022-04-27 2022-07-05 北京京深深向科技有限公司 ABS (anti-lock brake system) system braking redundancy control method and device and ABS system
CN114701464B (en) * 2022-04-27 2023-03-14 北京京深深向科技有限公司 ABS system brake redundancy control method and device and ABS system

Also Published As

Publication number Publication date
DE112018005059T5 (en) 2020-06-18
JP2019048594A (en) 2019-03-28
JP6857938B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6857938B2 (en) Brake control device
CN101121404B (en) Brake hydraulic pressure control unit for vehicle
JP6721207B2 (en) Brake device, brake system and master cylinder
US20170190328A1 (en) Brake Apparatus
US20180251108A1 (en) Electromagnetic Valve, Fluid Pressure Control Device, and Brake Apparatus
US10793130B2 (en) Hydraulic pressure generating device
US20150158474A1 (en) Master cylinder apparatus
US20180304875A1 (en) Hydraulic pressure control device and braking system
CN110944888B (en) Hydraulic control device
US20180312151A1 (en) Hydraulic pressure control device and braking system
KR20210124916A (en) Hydraulic block for a hydraulic unit of a hydraulic power vehicle brake system
WO2019116844A1 (en) Brake control device
JP5719214B2 (en) Brake actuator
WO2019230498A1 (en) Electromagnetic valve and brake control device
JP5810024B2 (en) Solenoid valve structure
JP2009132172A (en) Oil path control modulator
WO2024053348A1 (en) Brake control device
US20140217809A1 (en) Actuator for controlling brake fluid pressure
JP2015071382A (en) Vehicular brake force generation device
JP6230990B2 (en) Brake hydraulic device
JP5810026B2 (en) Filter structure for valves
JP4939383B2 (en) Brake hydraulic control device for vehicle
JP2013228099A (en) Solenoid valve structure
JP2018012377A (en) Brake device and master cylinder
JP2020001417A (en) Brake pressure control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18855348

Country of ref document: EP

Kind code of ref document: A1