WO2019054091A1 - Motor driving device, motor, electric power steering device, motor driving method and storage medium - Google Patents

Motor driving device, motor, electric power steering device, motor driving method and storage medium Download PDF

Info

Publication number
WO2019054091A1
WO2019054091A1 PCT/JP2018/029462 JP2018029462W WO2019054091A1 WO 2019054091 A1 WO2019054091 A1 WO 2019054091A1 JP 2018029462 W JP2018029462 W JP 2018029462W WO 2019054091 A1 WO2019054091 A1 WO 2019054091A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
value
hall elements
motor
rotation angle
Prior art date
Application number
PCT/JP2018/029462
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 ▲高▼田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019541950A priority Critical patent/JPWO2019054091A1/en
Publication of WO2019054091A1 publication Critical patent/WO2019054091A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a motor drive device, a motor, an electric power steering device, a motor drive method, and a recording medium.
  • a motor drive device for driving a motor used in an electric power steering device or the like detects a rotation angle of the motor using a plurality of Hall elements.
  • the rotation angle detection device described in Patent Document 1 detects the rotation angle of a rotating body based on analog Hall signals output from a plurality of Hall elements.
  • the rotation angle detection device described in Patent Document 1 does not monitor whether any one of the plurality of Hall elements is moving normally. Therefore, there is a possibility that the rotation angle may be determined using the failed Hall element, which may be disadvantageous in terms of the reliability of the detection value.
  • An object of the present invention is, for example, to provide a motor drive device that is advantageous in terms of the reliability of the detected value of the rotation angle of the motor.
  • a motor drive is a motor drive for driving a motor, and an analog signal whose output value periodically changes with respect to an electrical angle corresponding to a rotation angle of a motor rotor. From the three detection units, monitoring three Hall elements that output the signal, monitoring analog signals output from the three Hall elements, and specifying the Hall element that outputs the analog signal whose output value exceeds the limit value A calculation unit that calculates the rotation angle using the output analog signal, and the calculation unit calculates two of the three Hall elements when none of the three Hall elements is specified by the monitoring unit. The two analog signals output from the Hall element are processed to calculate the rotation angle, and when any one of the three Hall elements is specified by the monitoring unit, the remaining two holes are calculated.
  • a motor includes the motor drive described above, a stator having a three-phase coil, and a rotor having a magnet.
  • An electric power steering apparatus includes a motor driven by the above-described motor drive apparatus.
  • a motor drive method is a motor drive method for driving a motor, wherein an electrical angle corresponding to the rotation angle is output from three Hall elements that detect the rotation angle of a motor rotor.
  • the step of acquiring three analog signals whose output value changes periodically with respect to each other, and monitoring whether the output value of any of the acquired three analog signals exceeds the limit value Calculate the total value of each of the output values of the first monitor process that specifies the Hall element that outputs the exceeding analog signal and the output value of the three analog signals for each electrical angle, and the calculated total value matches the fixed value Is monitored, and if the total value does not match the fixed value, electric angle candidates corresponding to each of the output values are determined, and the analog signal output from any two of the three Hall elements is obtained.
  • a recording medium is a computer-readable recording medium storing a program that causes a computer to execute the above-described motor driving method for driving a motor.
  • a motor drive device, a motor drive method, and a recording medium storing a program that causes a computer to execute the motor drive method are advantageous in terms of the reliability of the detected value of the rotation angle of the motor. Can be provided. Further, since the reliability of the detection value of the rotation angle of the motor of the motor drive device is improved, the reliability of the motor and the electric power steering device can be improved.
  • FIG. 1 is a schematic view of an electric power steering apparatus provided with a motor drive device.
  • FIG. 2 is a block diagram showing the configuration of the motor drive device.
  • FIG. 3 is a flowchart showing a monitoring process of the Hall element by the monitoring unit.
  • FIG. 1 is a schematic view of an electric power steering device 1 provided with a motor drive device 30 according to the present embodiment.
  • the electric power steering apparatus 1 is an apparatus for assisting a driver's steering wheel operation in transportation equipment such as a car. By providing the motor drive device 30 of the present embodiment, the stability of control of the electric power steering device 1 is improved.
  • the electric power steering apparatus 1 of the present embodiment includes a steering angle detection unit 10, a motor 20, and a motor drive device 30.
  • the motor 20 and the motor drive device 30 are built in a common housing.
  • the motor 20 By making the motor 20 into a so-called mechanical-electrical integrated type, for example, the device can be miniaturized.
  • the steering angle detection unit 10 is attached to the steering shaft 92.
  • the steering angle detection unit 10 detects the steering angle of the steering wheel 91.
  • the detection result is output from the steering angle detection unit 10 to the motor drive device 30.
  • a three-phase synchronous brushless motor is used as the motor 20.
  • the motor 20 is composed of three-phase coils, and when the motor 20 is driven, current is supplied from the motor drive device 30 to each phase in the motor 20.
  • current is supplied, a rotating magnetic field is generated between a stator having a three-phase coil and a rotor having a magnet.
  • the rotor rotates with respect to the stator of the motor 20.
  • the motor drive device 30 supplies a drive current to the motor 20 to drive the motor 20 using the electric power obtained from the external power supply 40.
  • the driving force generated from the motor 20 is transmitted to the wheel 93 via the gearbox 50. Thereby, the steering angle of the wheel 93 is changed.
  • the electric power steering apparatus 1 amplifies the torque of the steering shaft 92 by the motor 20 to change the steering angle of the wheel 93. Therefore, the driver can operate the steering wheel 91 with a light force.
  • FIG. 2 is a block diagram showing the configuration of the motor drive device 30.
  • the motor drive device 30 has a rotational position detection unit 31, a monitoring unit 32, a calculation unit 33, a control unit 34, an inverter drive unit 35, and an inverter circuit 36.
  • the monitoring unit 32, the operation unit 33, and the control unit 34 include, for example, a computer having an operation processing unit such as a CPU, a memory such as a RAM, and a storage unit such as a hard disk drive.
  • an electric circuit having an arithmetic device such as a microcontroller may be used.
  • the rotational position detection unit 31 is a Hall element provided coaxially with the rotation axis of the motor 20 or a Hall element for detecting the magnetic field of the sensor magnet.
  • three Hall elements 31A, 31B and 31C that output analog signals whose output value changes periodically with respect to an electrical angle corresponding to the rotation angle (also referred to as a mechanical angle) of the rotor of the motor 20
  • the Hall elements 31A, 31B and 31C are arranged at intervals of 120 degrees along the rotation direction of the rotor. Also, the magnetic field of the two-pole sensor magnet is detected. Therefore, the mechanical angle of the rotor and the electrical angle of the Hall element coincide.
  • the number and arrangement of Hall elements used and the number of poles of the magnet can be changed.
  • a linear Hall IC may be used as a Hall element that outputs an analog signal.
  • the monitoring unit 32 monitors the analog signal output from the rotational position detecting unit 31, and specifies the rotational position detecting unit 31 that outputs an analog signal whose output value exceeds the limit value.
  • the monitoring unit 32 monitors analog signals output from the Hall elements 31A, 31B, and 31C, and specifies Hall elements that output analog signals whose output value exceeds the limit value.
  • the calculation unit 33 uses the analog signal output from the rotational position detection unit 31 to calculate the rotation angle of the rotor.
  • the rotation angle of the rotor is calculated using the analog signals output from the Hall elements 31A, 31B and 31C.
  • the control unit 34 outputs a drive signal indicating the rotation amount of the rotor to the inverter drive unit 35 based on the rotation angle of the rotor calculated by the calculation unit 33, the detection result by the steering angle detection unit 10, and the like.
  • the drive signal is, for example, a PWM drive signal of a pulse width modulation method (PWM method).
  • the inverter drive unit 35 is an electric circuit for operating the inverter circuit 36.
  • the inverter drive unit 35 supplies the drive signal output from the control unit 34 to the inverter circuit 36.
  • the inverter circuit 36 is an electric circuit that supplies the current supplied from the external power supply 40 to each phase of the motor 20.
  • the inverter circuit 36 has a switching element such as a field effect transistor.
  • the inverter circuit 36 switches on / off of the current path flowing to each phase by the switching element based on the drive signal supplied from the inverter drive unit 35.
  • ⁇ Motor Driving Method> As a Hall element that outputs an analog signal whose output value exceeds the limit value, a motor driving method when none of the Hall elements 31A, 31B, and 31C is specified by the monitoring unit 32 will be described. .
  • the calculation unit 33 processes two analog signals output from any two of the three Hall elements to calculate the rotation angle, and the control unit 34 calculates the rotation angle of the rotor calculated by the calculation unit 33. To generate a drive signal that indicates the amount of rotation of the rotor.
  • operation unit 33 processes the two analog signals output from the remaining two Hall elements to calculate the rotation angle
  • control unit 34 uses the rotation angle of the rotor calculated by operation unit 33. , Generates a drive signal indicating an amount of rotation of the rotor.
  • the motor drive device 30 of the present embodiment it is possible to identify the broken Hall element among the three Hall elements, so by processing the signals from the Hall elements other than the broken Hall element.
  • the detection of the rotation angle of the motor can be continued. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • the limit value used by the monitoring unit 32 is the distance between the Hall element and the magnet that generates the magnetic field corresponding to the magnetic flux density detected by the Hall element, the size of the magnetic flux density, and the magnetic flux density and the output value of the Hall element It is determined based on at least one of the relationship with Since the limit value can be determined by the characteristics of the Hall element used, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • the calculation unit 33 performs processing to make the phase difference between two analog signals 90 degrees and processing to make the peaks of output values uniform.
  • the phase difference of the analog signal is also 120 degrees.
  • the detection of the rotation angle of the motor can be continued by the processing of the calculation unit 33. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • Arithmetic unit 33 obtains a first corrected analog signal obtained by adding the other analog signal to one of two analog signals, and obtains a first corrected analog signal having a phase difference of 60 degrees with each other and one analog signal. Get a combination of
  • the detection of the rotation angle of the motor can be continued by the processing of the calculation unit 33. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • Arithmetic unit 33 obtains a second corrected analog signal obtained by adding the other analog signal to the first corrected analog signal, and obtains a combination of the second corrected analog signal and one analog signal having a phase difference of 90 degrees. obtain.
  • a process by the arithmetic unit 33 for obtaining a combination of analog signals having a phase difference of 90 degrees with each other will be specifically described.
  • the analog signals output from the Hall elements 31A, 31B and 31C are referred to as a first signal H A , a second signal H B and a third signal H C , respectively.
  • a first signal H A phase difference between the second signal H B is 120 degrees.
  • Other first signal H A and the third signal H C, the relationship of the phase difference of the second signal H B and the third signal H C is similar.
  • a phase difference between the first correction analog signal and the first signal H A plus a second signal H B to the first signal H A becomes 60 degrees.
  • the phase difference between the second corrected analog signal and the second signal H B is 90 degrees.
  • the second corrected analog signal may not be necessary to obtain the second corrected analog signal.
  • the second signal H B instead of adding a second signal H B to the first signal H A, the second signal H B by adding a first signal H A, to obtain a first correction analog signal, first to the first correction analog signal.
  • Two signals H B may be added to obtain a second corrected analog signal.
  • the phase difference between the second corrected analog signal and the first signal HA is 90 degrees.
  • the relationship between the applied signal and the applied signal does not depend on the direction of rotation of the rotor.
  • the detection of the rotation angle of the motor can be continued. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the calculation unit 33 may perform processing to align the peak values of the first corrected analog signal and one of the analog signals.
  • the process of aligning the peaks is unnecessary. By aligning the peaks, detection of the rotation angle of the motor can be continued even if the amplitudes of the two analog signals are not aligned. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the calculation unit 33 may align one of the peak values of the first corrected analog signal and one of the analog signals with the other peak value. This processing also allows the detection of the rotation angle of the motor to be continued even when the amplitudes of the two analog signals do not match. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the computing unit 33 performs processing to make the peak values of the second corrected analog signal and one of the analog signals uniform.
  • the detection of the rotation angle of the motor can be continued. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the calculation unit 33 may align one of the peak values of the second corrected analog signal and one of the analog signals with the other peak value. This processing also allows the detection of the rotation angle of the motor to be continued even when the amplitudes of the two analog signals do not match. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the operation unit 33 uses the two analog signals output from any two Hall elements out of the three Hall elements as described above.
  • the rotation angle is calculated by the process.
  • the rotation angle of the motor can be detected by processing the signals from two of the three Hall elements. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence on the detection accuracy of the rotation angle due to the failure of the Hall elements, which may be advantageous in cost, for example.
  • the device mounting area can be reduced, which may be advantageous in terms of the device size.
  • the rotation angle of the motor can be detected, thereby improving the workability of the arrangement of the Hall elements. sell.
  • the Hall element may be broken.
  • the monitoring unit 32 calculates the total value of the output values of the analog signals output from the three Hall elements for each electrical angle corresponding to the rotation angle of the rotor, and determines the calculated total value and the fixed value. And identify the faulty Hall element based on the comparison result.
  • the fixed value is the sum of the output values at each electrical angle when the three Hall elements are moving normally.
  • the first signal H A , the second signal H B and the third signal H C output from the Hall elements 31A, 31 B and 31 C , respectively, have a constant output value peak, so when operating normally, The sum of the output values is unchanged at any electrical angle.
  • the monitoring unit 32 specifies the failed Hall element as follows. First, in the case where the total value calculated for each electrical angle does not match the fixed value, the monitoring unit 32 measures the electric values corresponding to the output values of the first signal H A , the second signal H B and the third signal H C. Ask for a corner candidate. Next, a Hall element for outputting an analog signal of an output value corresponding to a second candidate different from the first candidate corresponding to the output value of the analog signal output from any two of the three Hall elements Identify. The calculation unit 33 processes the analog signal of the output value corresponding to the first candidate to calculate the rotation angle.
  • the monitoring unit 32 determines that the Hall element that outputs the analog signal corresponding to the first candidate is the Hall element operating normally, and breaks the Hall element that outputs the analog signal corresponding to the second candidate. It is determined that the Hall element has been For example, if the Hall element 31C is faulty, at least a portion of the candidates of the electrical angle corresponding to the output value of the first signal H A and the second signal H B (first candidate mentioned above) are overlapped . Then, the candidate of the electrical angle corresponding to the output value of the third signal H C is a second candidate different from the first candidate. Calculating section 33 calculates the rotational angle by processing the analog signal of the first signal H A and the second signal H B.
  • the failed Hall element can be identified. Therefore, the rotation angle of the motor can be obtained by processing the signals from the other Hall elements other than the failed Hall element. Detection can continue. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • the monitoring unit 32 may hold the correspondence between the output value and the electrical angle in advance, and determine the electrical angle candidate based on the correspondence.
  • the correspondence relationship means, for example, a correspondence relationship in which the electrical angle corresponds to ⁇ degrees or ⁇ degrees, for the output value of x volts of the first signal HA .
  • One or two electrical angles correspond to one output value.
  • the monitoring unit 32 may calculate the candidate of the electrical angle by calculation from the output value of the analog signal.
  • the case of calculating the candidate of the electrical angle from the output value of the first signal HA will be described as an example.
  • the output value of the first signal HA is referred to as a first output value VA, and the maximum output value of the first signal HA is referred to as VMA .
  • ⁇ A1 180 ⁇ (sin ⁇ 1 A ⁇ 180 / ⁇ )) (1)
  • ⁇ A2 sin ⁇ 1 A ⁇ 180 / ⁇ , (A ⁇ 0) (2)
  • ⁇ A2 sin ⁇ 1 A ⁇ 180 / ⁇ , (A ⁇ 0) (3)
  • ⁇ B1 120 + (sin ⁇ 1 B ⁇ 180 / ⁇ ))
  • ⁇ B2 ⁇ 60 ⁇ sin ⁇ 1 B ⁇ 180 / ⁇ , ( ⁇ 1 ⁇ B ⁇ ⁇ 0.866)
  • ⁇ B2 300 ⁇ sin ⁇ 1 B ⁇ 180 / ⁇ , ( ⁇ 0.866 ⁇ B ⁇ 1) (6)
  • the output value of the third signal H C is taken as the third output value V C
  • the maximum output value of the third signal H C is V MC
  • ⁇ C1 240 + (sin ⁇ 1 C ⁇ 180 / ⁇ ))
  • ⁇ C2 60 ⁇ sin ⁇ 1 C ⁇ 180 / ⁇ , ( ⁇ 1 ⁇ B ⁇ ⁇ 0.866)
  • ⁇ C2 270 + sin ⁇ 1 C ⁇ 180 / ⁇ , ( ⁇ 0.866 ⁇ B ⁇ 1) (9)
  • the computing unit 33 calculates the rotation angle using two analog signals output from any two Hall elements of the three Hall elements.
  • the monitoring unit 32 may also use the detection result of the steering angle detection unit 10 to specify the failed Hall element. That is, first, the monitoring unit 32 calculates the rotation angle by the operation unit 33 for each of the three types of combinations obtained by selecting two Hall elements from the three Hall elements. The monitoring unit 32 compares the calculation result with the detection result of the steering angle detection unit 10, and specifies a combination corresponding to the rotation angle closest to the detection result among the three types of combinations. The monitoring unit 32 specifies the Hall element included in both of the remaining combinations as the failed Hall element.
  • the faulty Hall element is identified based on the detection result of the steering angle detection unit without calculating the table showing the correspondence between the output value of the Hall element and the electrical angle or the candidate of the electrical angle. be able to.
  • the monitoring of the Hall element by the method of the first embodiment and the monitoring of the Hall element by the method of the second embodiment may be performed alone or in combination. When used in combination, the order is random.
  • the detection of the rotation angle of the motor can be continued by processing the signals from the Hall elements other than the failed Hall element. it can. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • the monitoring according to the second embodiment even if the total value matches the fixed value, it is possible that one of the output values may exceed the limit value used in the monitoring according to the first embodiment. Even in this case, it is possible to specify the failed Hall element by using the monitoring according to the second embodiment and the monitoring according to the first embodiment in combination. Therefore, by processing the signals from the Hall elements other than the failed Hall element, the detection of the rotation angle of the motor can be continued. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • FIG. 3 is a flowchart of a monitoring process of a Hall element by the monitoring unit 32 according to the first embodiment and the second embodiment.
  • the case of performing monitoring referred to as a second monitoring step) according to the method of the second embodiment next to monitoring (referred to as a first monitoring step) according to the method of the first embodiment will be described.
  • step S30 the monitoring unit 32 acquires three analog signals.
  • step S31 the monitoring unit 32 monitors whether or not the output value of any of the three analog signals exceeds the limit value. If the limit value is exceeded, a Hall element that outputs an analog signal exceeding the limit value is specified in step S32. Step S31 and step S32 are the first monitoring step.
  • the monitoring unit 32 calculates the total value of the output values of the three analog signals for each electrical angle in step S33, and the calculated total value matches the fixed value. Monitor if it is
  • step S34 the monitoring unit 32 determines the candidate of the electrical angle corresponding to each of the output values, and outputs the analog signal output from any two of the three Hall elements. Find the first candidate corresponding to the value. Also, the monitoring unit 32 specifies a Hall element that outputs an analog signal of an output value corresponding to a second candidate different from the first candidate. Step S33 and step S34 are the second monitoring step.
  • step S35 the calculation unit 33 calculates a rotation angle using any two analog signals of the three analog signals.
  • the order of the first monitoring step and the second monitoring step may be switched. Moreover, you may perform in parallel.
  • a program that causes a computer to execute the above driving method may be stored in a computer readable recording medium such as a semiconductor memory, and the computer may execute the program to realize the driving method including the above monitoring method.
  • the above monitoring method it is possible to identify the broken Hall element among the three Hall elements, so that the detection of the rotation angle of the motor is continued by processing the signals from the Hall elements other than the broken Hall element. Can. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  • the motor 20 is not limited to three phases.
  • the motor drive device 30 described above may be applied to devices other than the power steering device.
  • the motor drive device 30 described above may drive a motor used in another part of a transportation device such as a car.
  • a motor mounted on an apparatus other than an automobile such as an industrial robot may be driven by the motor drive device 30 described above.

Abstract

[PROBLEM] To provide a motor driving device that excels in providing reliable detection values for the rotation angle of a motor. [SOLUTION] A motor driving device that drives a motor, said device comprising: three Hall elements that each output an analogue signal, the output value thereof periodically changing with respect to an electrical angle corresponding to the rotation angle of a rotor in the motor; a monitoring unit that monitors the analogue signals output from the three Hall elements and identifies any of the Hall elements outputting an analogue signal with an output value exceeding a limit value; and a calculation unit that uses the analogue signals output from the three Hall elements to calculate the rotation angle. If none of the three Hall elements have been identified by the monitoring unit, the calculation unit processes two analogue signals output from two of the three Hall elements and calculates the rotation angle. If one of the three Hall elements has been identified by the monitoring unit, the calculation unit processes the two analogue signals output from the remaining two Hall elements and calculates the rotation angle.

Description

モータ駆動装置、モータ、電動パワーステアリング装置、モータ駆動方法、および記録媒体Motor drive device, motor, electric power steering device, motor drive method, and recording medium
 本発明は、モータ駆動装置、モータ、電動パワーステアリング装置、モータ駆動方法、および記録媒体に関する。 The present invention relates to a motor drive device, a motor, an electric power steering device, a motor drive method, and a recording medium.
 電動パワーステアリング装置等に使用されるモータを駆動するモータ駆動装置は、複数のホール素子を用いてモータの回転角度を検出する。特許文献1に記載の回転角度検出装置は、複数のホール素子から出力されるアナログホール信号をもとに回転体の回転角度を検出する。 A motor drive device for driving a motor used in an electric power steering device or the like detects a rotation angle of the motor using a plurality of Hall elements. The rotation angle detection device described in Patent Document 1 detects the rotation angle of a rotating body based on analog Hall signals output from a plurality of Hall elements.
日本特開2014-228413号公報Japanese Patent Application Laid-Open No. 2014-228413
 特許文献1に記載の回転角度検出装置は、複数のホール素子のいずれかが正常に動いているか否かを監視していない。したがって、故障したホール素子を用いて回転角度を求めてしまう可能性があり、検出値の信頼性の点で不利となりうる。 The rotation angle detection device described in Patent Document 1 does not monitor whether any one of the plurality of Hall elements is moving normally. Therefore, there is a possibility that the rotation angle may be determined using the failed Hall element, which may be disadvantageous in terms of the reliability of the detection value.
 本発明は、例えば、モータの回転角度の検出値の信頼性の点で有利なモータ駆動装置を提供することを目的とする。 An object of the present invention is, for example, to provide a motor drive device that is advantageous in terms of the reliability of the detected value of the rotation angle of the motor.
 本願の例示的な一実施形態に係るモータ駆動装置は、モータを駆動するモータ駆動装置であって、モータのロータの回転角度に対応する電気角に対して出力値が周期的に変化するアナログ信号を出力する3つのホール素子と、3つのホール素子から出力されたアナログ信号を監視して、出力値が制限値を超えるアナログ信号を出力するホール素子を特定する監視部と、3つの検出部から出力されたアナログ信号を用いて回転角度を算出する演算部と、を有し、演算部は、3つのホール素子のいずれもが監視部により特定されていない場合、3つのホール素子のうち2つのホール素子から出力された2つのアナログ信号を処理して回転角度を算出し、3つのホール素子のうちいずれか1つが監視部により特定された場合、残りの2つのホール素子から出力された2つのアナログ信号を処理して回転角度を算出する、ことを特徴とする。本願の例示的な一実施形態に係るモータは、上述のモータ駆動装置と、3相のコイルを有するステータと、マグネットを有するロータと、を備える。本願の例示的な一実施形態に係る電動パワーステアリング装置は、上述のモータ駆動装置により駆動されるモータを備える。 A motor drive according to an exemplary embodiment of the present application is a motor drive for driving a motor, and an analog signal whose output value periodically changes with respect to an electrical angle corresponding to a rotation angle of a motor rotor. From the three detection units, monitoring three Hall elements that output the signal, monitoring analog signals output from the three Hall elements, and specifying the Hall element that outputs the analog signal whose output value exceeds the limit value A calculation unit that calculates the rotation angle using the output analog signal, and the calculation unit calculates two of the three Hall elements when none of the three Hall elements is specified by the monitoring unit. The two analog signals output from the Hall element are processed to calculate the rotation angle, and when any one of the three Hall elements is specified by the monitoring unit, the remaining two holes are calculated. It processes the two analog signals outputted from the child calculates a rotation angle, characterized in that. A motor according to an exemplary embodiment of the present application includes the motor drive described above, a stator having a three-phase coil, and a rotor having a magnet. An electric power steering apparatus according to an exemplary embodiment of the present application includes a motor driven by the above-described motor drive apparatus.
 本願の例示的な一実施形態に係るモータ駆動方法は、モータを駆動するモータ駆動方法であって、モータのロータの回転角度を検出する3つのホール素子から出力され、回転角度に対応する電気角に対して出力値が周期的に変化する3つのアナログ信号を取得する工程と、取得した3つのアナログ信号のいずれかの出力値が制限値を超えていないか否かを監視して制限値を超えるアナログ信号を出力するホール素子を特定する第1監視工程と、3つのアナログ信号の出力値のそれぞれの合計値を電気角ごとに算出し、求めた合計値が固定値と一致しているか否かを監視して、合計値が固定値と一致しない場合において、出力値のそれぞれに対応した電気角の候補を求め、3つのホール素子のうちいずれか2つから出力されたアナログ信号の出力値に対応した第1の候補とは異なる第2の候補に対応した出力値の前記アナログ信号を出力するホール素子を特定する第2監視工程と、を含む、ことを特徴とする。本願の例示的な一実施形態に係る記録媒体は、モータを駆動する上述のモータ駆動方法をコンピュータに実行させるプログラムが記憶されたコンピュータ読み取り可能な記録媒体である。 A motor drive method according to an exemplary embodiment of the present application is a motor drive method for driving a motor, wherein an electrical angle corresponding to the rotation angle is output from three Hall elements that detect the rotation angle of a motor rotor. The step of acquiring three analog signals whose output value changes periodically with respect to each other, and monitoring whether the output value of any of the acquired three analog signals exceeds the limit value Calculate the total value of each of the output values of the first monitor process that specifies the Hall element that outputs the exceeding analog signal and the output value of the three analog signals for each electrical angle, and the calculated total value matches the fixed value Is monitored, and if the total value does not match the fixed value, electric angle candidates corresponding to each of the output values are determined, and the analog signal output from any two of the three Hall elements is obtained. Comprising a second monitoring step of specifying a Hall element which outputs the analog signal of the output value corresponding to the different second candidate from the first candidate corresponding to the force value, and wherein the. A recording medium according to an exemplary embodiment of the present application is a computer-readable recording medium storing a program that causes a computer to execute the above-described motor driving method for driving a motor.
 本願の例示的な一実施形態によれば、モータの回転角度の検出値の信頼性の点で有利なモータ駆動装置、モータ駆動方法およびモータ駆動方法をコンピュータに実行させるプログラムが記憶された記録媒体を提供することができる。また、モータ駆動装置のモータの回転角度の検出値の信頼性が向上するため、モータおよび電動パワーステアリング装置の信頼性を向上することができる。 According to an exemplary embodiment of the present application, a motor drive device, a motor drive method, and a recording medium storing a program that causes a computer to execute the motor drive method are advantageous in terms of the reliability of the detected value of the rotation angle of the motor. Can be provided. Further, since the reliability of the detection value of the rotation angle of the motor of the motor drive device is improved, the reliability of the motor and the electric power steering device can be improved.
図1は、モータ駆動装置を備えた電動パワーステアリング装置の概略図である。FIG. 1 is a schematic view of an electric power steering apparatus provided with a motor drive device. 図2は、モータ駆動装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the motor drive device. 図3は、監視部によるホール素子の監視工程を示すフローチャートである。FIG. 3 is a flowchart showing a monitoring process of the Hall element by the monitoring unit.
 以下、本発明を実施するための形態について図面などを参照して説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。以下に、本願の例示的な第1実施形態に係るモータ駆動装置、モータ、および電動パワーステアリング装置、モータ駆動方法、記録媒体を説明する。
 <電動パワーステアリング装置>図1は、本実施形態に係るモータ駆動装置30を備えた電動パワーステアリング装置1の概略図である。電動パワーステアリング装置1は、自動車等の輸送機器において、運転者のハンドル操作を補助する装置である。本実施形態のモータ駆動装置30を備えることで、電動パワーステアリング装置1の制御の安定性が向上する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Hereinafter, a motor drive device, a motor, an electric power steering device, a motor drive method, and a recording medium according to a first exemplary embodiment of the present application will be described.
<Electric Power Steering Device> FIG. 1 is a schematic view of an electric power steering device 1 provided with a motor drive device 30 according to the present embodiment. The electric power steering apparatus 1 is an apparatus for assisting a driver's steering wheel operation in transportation equipment such as a car. By providing the motor drive device 30 of the present embodiment, the stability of control of the electric power steering device 1 is improved.
 図1に示すように、本実施形態の電動パワーステアリング装置1は、操舵角検出部10、モータ20、およびモータ駆動装置30を有する。本実施形態では、モータ20およびモータ駆動装置30は、共通の筐体に内蔵される。モータ20をいわゆる機電一体型とすることで、例えば、装置を小型化することができる。 As shown in FIG. 1, the electric power steering apparatus 1 of the present embodiment includes a steering angle detection unit 10, a motor 20, and a motor drive device 30. In the present embodiment, the motor 20 and the motor drive device 30 are built in a common housing. By making the motor 20 into a so-called mechanical-electrical integrated type, for example, the device can be miniaturized.
  <舵角検出部>操舵角検出部10は、ステアリングシャフト92に取り付けられている。操舵角検出部10は、ステアリングホイール91の操舵角を検出する。検出結果は、操舵角検出部10からモータ駆動装置30へ出力される。 The steering angle detection unit 10 is attached to the steering shaft 92. The steering angle detection unit 10 detects the steering angle of the steering wheel 91. The detection result is output from the steering angle detection unit 10 to the motor drive device 30.
  <モータ>本実施形態では、モータ20として三相同期ブラシレスモータを用いる。モータ20は三相のコイルで構成され、モータ20の駆動時には、モータ駆動装置30からモータ20内の各相に電流が供給される。電流が供給されると、三相のコイルを有するステータと、マグネットを有するロータとの間に、回転磁界が発生する。その結果、モータ20の固定子に対して回転子が回転する。 <Motor> In the present embodiment, a three-phase synchronous brushless motor is used as the motor 20. The motor 20 is composed of three-phase coils, and when the motor 20 is driven, current is supplied from the motor drive device 30 to each phase in the motor 20. When current is supplied, a rotating magnetic field is generated between a stator having a three-phase coil and a rotor having a magnet. As a result, the rotor rotates with respect to the stator of the motor 20.
  <モータ駆動装置>モータ駆動装置30は、外部電源40から得られる電力を利用して、モータ20に駆動電流を供給してモータ20を駆動する。モータ20から生じる駆動力は、ギアボックス50を介して車輪93に伝達される。これにより、車輪93の舵角が変化する。このように、電動パワーステアリング装置1は、ステアリングシャフト92のトルクを、モータ20により増幅させて、車輪93の舵角を変化させる。したがって、運転者は、軽い力でステアリングホイール91を操作することができる。 <Motor Drive Device> The motor drive device 30 supplies a drive current to the motor 20 to drive the motor 20 using the electric power obtained from the external power supply 40. The driving force generated from the motor 20 is transmitted to the wheel 93 via the gearbox 50. Thereby, the steering angle of the wheel 93 is changed. Thus, the electric power steering apparatus 1 amplifies the torque of the steering shaft 92 by the motor 20 to change the steering angle of the wheel 93. Therefore, the driver can operate the steering wheel 91 with a light force.
 図2は、モータ駆動装置30の構成を示したブロック図である。図2に示すように、モータ駆動装置30は、回転位置検出部31と、監視部32と、演算部33と、制御部34と、インバータ駆動部35と、インバータ回路36と、を有する。監視部32、演算部33および制御部34は、例えば、CPU等の演算処理部、RAM等のメモリ、およびハードディスクドライブ等の記憶部を有するコンピュータを含む。コンピュータに代えて、マイクロコントローラ等の演算装置を有する電気回路を用いてもよい。 FIG. 2 is a block diagram showing the configuration of the motor drive device 30. As shown in FIG. As shown in FIG. 2, the motor drive device 30 has a rotational position detection unit 31, a monitoring unit 32, a calculation unit 33, a control unit 34, an inverter drive unit 35, and an inverter circuit 36. The monitoring unit 32, the operation unit 33, and the control unit 34 include, for example, a computer having an operation processing unit such as a CPU, a memory such as a RAM, and a storage unit such as a hard disk drive. Instead of the computer, an electric circuit having an arithmetic device such as a microcontroller may be used.
  <回転位置検出部>回転位置検出部31は、モータ20の回転軸と同軸に設けられたロータのマグネットまたはセンサマグネットの磁界を検出するホール素子である。特に、本実施形態では、モータ20のロータの回転角度(機械角ともいう)に対応する電気角に対して出力値が周期的に変化するアナログ信号を出力する3つのホール素子31A、31Bおよび31Cを用いる。また、ホール素子31A、31Bおよび31Cは、ロータの回転方向に沿って120度間隔で配置される。また、2極のセンサマグネットの磁界を検出するものとする。したがって、ロータの機械角とホール素子の電気角とは一致する。なお、用いるホール素子の数、配置およびマグネットの極数は変更しうる。また、アナログ信号を出力するホール素子として、リニアホールICを用いてもよい。 <Rotational Position Detection Unit> The rotational position detection unit 31 is a Hall element provided coaxially with the rotation axis of the motor 20 or a Hall element for detecting the magnetic field of the sensor magnet. In particular, in the present embodiment, three Hall elements 31A, 31B and 31C that output analog signals whose output value changes periodically with respect to an electrical angle corresponding to the rotation angle (also referred to as a mechanical angle) of the rotor of the motor 20 Use The Hall elements 31A, 31B and 31C are arranged at intervals of 120 degrees along the rotation direction of the rotor. Also, the magnetic field of the two-pole sensor magnet is detected. Therefore, the mechanical angle of the rotor and the electrical angle of the Hall element coincide. The number and arrangement of Hall elements used and the number of poles of the magnet can be changed. Alternatively, a linear Hall IC may be used as a Hall element that outputs an analog signal.
  <監視部>監視部32は、回転位置検出部31から出力されたアナログ信号を監視して、出力値が制限値を超えるアナログ信号を出力する回転位置検出部31を特定する。本実施形態では、監視部32は、ホール素子31A、31Bおよび31Cから出力されたアナログ信号を監視して、出力値が制限値を超えるアナログ信号を出力するホール素子を特定する。 <Monitoring Unit> The monitoring unit 32 monitors the analog signal output from the rotational position detecting unit 31, and specifies the rotational position detecting unit 31 that outputs an analog signal whose output value exceeds the limit value. In the present embodiment, the monitoring unit 32 monitors analog signals output from the Hall elements 31A, 31B, and 31C, and specifies Hall elements that output analog signals whose output value exceeds the limit value.
  <演算部>演算部33は、回転位置検出部31から出力されたアナログ信号を用いてロータの回転角度を算出する。本実施形態では、ホール素子31A、31Bおよび31Cから出力されたアナログ信号を用いてロータの回転角度を算出する。 <Calculation Unit> The calculation unit 33 uses the analog signal output from the rotational position detection unit 31 to calculate the rotation angle of the rotor. In this embodiment, the rotation angle of the rotor is calculated using the analog signals output from the Hall elements 31A, 31B and 31C.
  <制御部>制御部34は、演算部33が算出したロータの回転角度、操舵角検出部10による検出結果などに基づいて、ロータの回転量を示す駆動信号をインバータ駆動部35に出力する。駆動信号は、例えば、パルス幅変調方式(PWM方式)のPWM駆動信号である。 <Control Unit> The control unit 34 outputs a drive signal indicating the rotation amount of the rotor to the inverter drive unit 35 based on the rotation angle of the rotor calculated by the calculation unit 33, the detection result by the steering angle detection unit 10, and the like. The drive signal is, for example, a PWM drive signal of a pulse width modulation method (PWM method).
  <インバータ駆動部>インバータ駆動部35は、インバータ回路36を動作させるための電気回路である。インバータ駆動部35は、制御部34が出力した駆動信号を、インバータ回路36に供給する。 <Inverter Drive Unit> The inverter drive unit 35 is an electric circuit for operating the inverter circuit 36. The inverter drive unit 35 supplies the drive signal output from the control unit 34 to the inverter circuit 36.
  <インバータ回路>インバータ回路36は、外部電源40から供給された電流をモータ20の各相に供給する電気回路である。インバータ回路36は、電界効果トランジスタなどのスイッチング素子を有する。インバータ回路36は、インバータ駆動部35から供給された駆動信号に基づいて、各相へ流れる電流経路の導通および遮断をスイッチング素子により切り替える。 <Inverter Circuit> The inverter circuit 36 is an electric circuit that supplies the current supplied from the external power supply 40 to each phase of the motor 20. The inverter circuit 36 has a switching element such as a field effect transistor. The inverter circuit 36 switches on / off of the current path flowing to each phase by the switching element based on the drive signal supplied from the inverter drive unit 35.
  <モータ駆動方法>まず、出力値が制限値を超えるアナログ信号を出力するホール素子として、ホール素子31A、31Bおよび31Cのいずれもが監視部32により特定されていない場合のモータ駆動方法について説明する。この場合、演算部33は、3つのうち任意の2つのホール素子から出力された2つのアナログ信号を処理して回転角度を算出し、制御部34は、演算部33が算出したロータの回転角度を用いて、ロータの回転量を示す駆動信号を生成する。 <Motor Driving Method> First, as a Hall element that outputs an analog signal whose output value exceeds the limit value, a motor driving method when none of the Hall elements 31A, 31B, and 31C is specified by the monitoring unit 32 will be described. . In this case, the calculation unit 33 processes two analog signals output from any two of the three Hall elements to calculate the rotation angle, and the control unit 34 calculates the rotation angle of the rotor calculated by the calculation unit 33. To generate a drive signal that indicates the amount of rotation of the rotor.
 次に、出力値が制限値を超えるアナログ信号を出力するホール素子として、ホール素子31A、31Bおよび31Cのうちいずれか1つが監視部32により特定された場合のモータ駆動方法について説明する。この場合、演算部33は、残りの2つのホール素子から出力された2つのアナログ信号を処理して回転角度を算出し、制御部34は、演算部33が算出したロータの回転角度を用いて、ロータの回転量を示す駆動信号を生成する。 Next, a motor drive method in the case where one of the Hall elements 31A, 31B, and 31C is specified by the monitoring unit 32 as a Hall element that outputs an analog signal whose output value exceeds the limit value will be described. In this case, operation unit 33 processes the two analog signals output from the remaining two Hall elements to calculate the rotation angle, and control unit 34 uses the rotation angle of the rotor calculated by operation unit 33. , Generates a drive signal indicating an amount of rotation of the rotor.
 以上の通り、本実施形態のモータ駆動装置30によれば、3つのホール素子のうち故障したホール素子を特定することができるため、故障したホール素子以外のホール素子からの信号を処理することでモータの回転角度の検出を継続することができる。したがって、回転角度の検出値の信頼性の点で有利となりうる。 As described above, according to the motor drive device 30 of the present embodiment, it is possible to identify the broken Hall element among the three Hall elements, so by processing the signals from the Hall elements other than the broken Hall element. The detection of the rotation angle of the motor can be continued. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
 (制限値)監視部32が用いる制限値は、ホール素子とホール素子が検知する磁束密度に対応する磁場を発生させる磁石との距離、磁束密度の大きさ、および磁束密度とホール素子の出力値との関係のうち少なくともいずれかに基づいて決定される。使用するホール素子の特性によって制限値を決定することができるため、回転角度の検出値の信頼性の点で有利となりうる。 (Limit value) The limit value used by the monitoring unit 32 is the distance between the Hall element and the magnet that generates the magnetic field corresponding to the magnetic flux density detected by the Hall element, the size of the magnetic flux density, and the magnetic flux density and the output value of the Hall element It is determined based on at least one of the relationship with Since the limit value can be determined by the characteristics of the Hall element used, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
 (回転角度の算出)演算部33によるロータの回転角度の算出方法について説明する。本実施形態では、演算部33は、ホール素子31A、31Bおよび31Cのそれぞれが出力するアナログ信号のうち、いずれか2つを処理して回転角度を算出する。 (Calculation of Rotation Angle) A method of calculating the rotation angle of the rotor by the calculation unit 33 will be described. In the present embodiment, the computing unit 33 processes any two of analog signals output from the Hall elements 31A, 31B, and 31C to calculate a rotation angle.
 本実施形態では、演算部33は、2つのアナログ信号の位相差を90度とする処理および出力値のピークを揃える処理をする。本実施形態では、120度間隔で各ホール素子が配置されているため、アナログ信号の位相差も120度となる。演算部33の処理によって、互いの位相差が90度のアナログ信号の組み合わせが得られる。 In the present embodiment, the calculation unit 33 performs processing to make the phase difference between two analog signals 90 degrees and processing to make the peaks of output values uniform. In the present embodiment, since the respective Hall elements are arranged at an interval of 120 degrees, the phase difference of the analog signal is also 120 degrees. By the processing of the arithmetic unit 33, a combination of analog signals having a phase difference of 90 degrees with each other is obtained.
 演算部33の処理によって、2つのアナログ信号の位相差が90度とならない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 Even when the phase difference between the two analog signals is not 90 degrees, the detection of the rotation angle of the motor can be continued by the processing of the calculation unit 33. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 演算部33は、2つのアナログ信号のうち一方のアナログ信号に他方のアナログ信号を加えた第1補正アナログ信号を得て、互いの位相差が60度の第1補正アナログ信号および一方のアナログ信号からなる組み合わせを得る。 Arithmetic unit 33 obtains a first corrected analog signal obtained by adding the other analog signal to one of two analog signals, and obtains a first corrected analog signal having a phase difference of 60 degrees with each other and one analog signal. Get a combination of
 演算部33の処理によって、2つのアナログ信号の位相差が90度とならない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 Even when the phase difference between the two analog signals is not 90 degrees, the detection of the rotation angle of the motor can be continued by the processing of the calculation unit 33. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 演算部33は、第1補正アナログ信号にさらに他方のアナログ信号を加えた第2補正アナログ信号を得て、互いの位相差が90度の第2補正アナログ信号および一方のアナログ信号からなる組み合わせを得る。 Arithmetic unit 33 obtains a second corrected analog signal obtained by adding the other analog signal to the first corrected analog signal, and obtains a combination of the second corrected analog signal and one analog signal having a phase difference of 90 degrees. obtain.
 互いの位相差が90度のアナログ信号の組み合わせを得る演算部33による処理を具体的に説明する。まず、ホール素子31A、31Bおよび31Cのそれぞれが出力するアナログ信号をそれぞれ第1信号H、第2信号Hおよび第3信号Hとする。本実施形態では、第1信号Hと第2信号Hとの位相差は120度である。その他、第1信号Hと第3信号H、第2信号Hと第3信号Hの位相差の関係も同様である。 A process by the arithmetic unit 33 for obtaining a combination of analog signals having a phase difference of 90 degrees with each other will be specifically described. First, the analog signals output from the Hall elements 31A, 31B and 31C are referred to as a first signal H A , a second signal H B and a third signal H C , respectively. In this embodiment, a first signal H A phase difference between the second signal H B is 120 degrees. Other first signal H A and the third signal H C, the relationship of the phase difference of the second signal H B and the third signal H C is similar.
 本実施形態では、例えば、第1信号Hに第2信号Hを加えた第1補正アナログ信号と第1信号Hとの位相差は、60度となる。第1補正アナログ信号にさらに第2信号Hを加えた第2補正アナログ信号と、第1信号Hとの位相差は、30度となる。この結果、第2補正アナログ信号と第2信号Hとの位相差は、90度となる。 In the present embodiment, for example, a phase difference between the first correction analog signal and the first signal H A plus a second signal H B to the first signal H A becomes 60 degrees. A second correction analog signal obtained by adding an additional second signal H B to the first correction analog signal, the phase difference between the first signal H A becomes 30 degrees. As a result, the phase difference between the second corrected analog signal and the second signal H B is 90 degrees.
 ホール素子の配置によっては、第2補正アナログ信号を得る必要がない場合もありうる。また、第1信号Hに第2信号Hを加えるのではなく、第2信号Hに第1信号Hを加えて、第1補正アナログ信号を得て、第1補正アナログ信号に第2信号Hを加えて第2補正アナログ信号を得てもよい。この場合は、第2補正アナログ信号と第1信号Hとの位相差が90度となる。加える信号と加えられる信号との関係は、ロータの回転方向によらない。 Depending on the arrangement of the Hall elements, it may not be necessary to obtain the second corrected analog signal. Further, instead of adding a second signal H B to the first signal H A, the second signal H B by adding a first signal H A, to obtain a first correction analog signal, first to the first correction analog signal Two signals H B may be added to obtain a second corrected analog signal. In this case, the phase difference between the second corrected analog signal and the first signal HA is 90 degrees. The relationship between the applied signal and the applied signal does not depend on the direction of rotation of the rotor.
 以上の通り、演算部33の処理によって、2つのアナログ信号の位相差が90度とならない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 As described above, even if the phase difference between the two analog signals is not 90 degrees by the processing of the calculation unit 33, the detection of the rotation angle of the motor can be continued. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 また、演算部33は、第1補正アナログ信号および一方のアナログ信号に対し、それぞれのピーク値を揃える処理を行ってもよい。なお、本実施形態では、ピークを揃える処理は不要である。ピークを揃える処理によって、2つのアナログ信号の振幅が揃わない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 In addition, the calculation unit 33 may perform processing to align the peak values of the first corrected analog signal and one of the analog signals. In the present embodiment, the process of aligning the peaks is unnecessary. By aligning the peaks, detection of the rotation angle of the motor can be continued even if the amplitudes of the two analog signals are not aligned. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 演算部33は、第1補正アナログ信号および一方のアナログ信号のうちいずれか一方のピーク値を他方のピーク値に揃えてもよい。この処理によっても、2つのアナログ信号の振幅が揃わない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 The calculation unit 33 may align one of the peak values of the first corrected analog signal and one of the analog signals with the other peak value. This processing also allows the detection of the rotation angle of the motor to be continued even when the amplitudes of the two analog signals do not match. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 なお、本実施形態では、演算部33は、第2補正アナログ信号および一方のアナログ信号に対し、それぞれのピーク値を揃える処理を行う。この処理によって、2つのアナログ信号の振幅が揃わない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 Note that, in the present embodiment, the computing unit 33 performs processing to make the peak values of the second corrected analog signal and one of the analog signals uniform. By this processing, even when the amplitudes of the two analog signals do not match, the detection of the rotation angle of the motor can be continued. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 また、演算部33は、第2補正アナログ信号および一方のアナログ信号のうちいずれか一方のピーク値を他方のピーク値に揃えてもよい。この処理によっても、2つのアナログ信号の振幅が揃わない場合であっても、モータの回転角度の検出を継続することができる。したがって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 In addition, the calculation unit 33 may align one of the peak values of the second corrected analog signal and one of the analog signals with the other peak value. This processing also allows the detection of the rotation angle of the motor to be continued even when the amplitudes of the two analog signals do not match. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence of the failure of the Hall elements on the detection accuracy of the rotation angle, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 なお、3つのホール素子のいずれもが故障していない場合には、演算部33は、3つのホール素子のうち任意の2つのホール素子から出力された2つのアナログ信号を用いて上記と同様の処理によって回転角度を算出する。 When none of the three Hall elements fail, the operation unit 33 uses the two analog signals output from any two Hall elements out of the three Hall elements as described above. The rotation angle is calculated by the process.
 したがって、3つのホール素子のうち2つのホール素子からの信号を処理することでモータの回転角度を検出することができる。よって、ホール素子の故障による回転角度の検出精度への影響を抑えるために、モータ駆動装置に用いるホール素子の数を増やす必要がなくなり、例えば、コストの点で有利となりうる。また、素子の実装面積を低減できるため、装置サイズの点でも有利となりうる。 Therefore, the rotation angle of the motor can be detected by processing the signals from two of the three Hall elements. Therefore, it is not necessary to increase the number of Hall elements used in the motor drive device in order to suppress the influence on the detection accuracy of the rotation angle due to the failure of the Hall elements, which may be advantageous in cost, for example. In addition, the device mounting area can be reduced, which may be advantageous in terms of the device size.
 また、2つのアナログ信号の位相差が90度でない、かつ、振幅が揃っていない場合であっても、モータの回転角度の検出をすることができるため、ホール素子の配置の作業性が向上しうる。 In addition, even if the phase difference between the two analog signals is not 90 degrees and the amplitudes are not uniform, the rotation angle of the motor can be detected, thereby improving the workability of the arrangement of the Hall elements. sell.
 本願の例示的な第2実施形態によれば、ホール素子が出力するアナログ信号の出力値が制限値を超えない場合であっても、ホール素子が故障している場合もありうる。本実施形態では、監視部32が3つのホール素子から出力されたアナログ信号の出力値のそれぞれの合計値をロータの回転角に対応する電気角ごとに算出し、求めた合計値と固定値とを比較して、比較結果に基づいて故障したホール素子を特定する。 According to the second exemplary embodiment of the present application, even if the output value of the analog signal output from the Hall element does not exceed the limit value, the Hall element may be broken. In the present embodiment, the monitoring unit 32 calculates the total value of the output values of the analog signals output from the three Hall elements for each electrical angle corresponding to the rotation angle of the rotor, and determines the calculated total value and the fixed value. And identify the faulty Hall element based on the comparison result.
 固定値とは、3つのホール素子が正常に動いているときの各電気角における出力値の合計値である。ホール素子31A、31Bおよび31Cのそれぞれが出力する第1信号H、第2信号Hおよび第3信号Hは、出力値のピークが一定であるため、正常に動作している場合は、どの電気角においても出力値の合計値は不変である。 The fixed value is the sum of the output values at each electrical angle when the three Hall elements are moving normally. The first signal H A , the second signal H B and the third signal H C output from the Hall elements 31A, 31 B and 31 C , respectively, have a constant output value peak, so when operating normally, The sum of the output values is unchanged at any electrical angle.
 監視部32は、つぎのようにして故障したホール素子を特定する。まず、監視部32は、電気角ごとに算出した合計値が固定値と一致しない場合において、第1信号H、第2信号Hおよび第3信号Hの出力値のそれぞれに対応した電気角の候補を求める。つぎに、3つのホール素子のうちいずれか2つから出力されたアナログ信号の出力値に対応した第1の候補とは異なる第2の候補に対応した出力値のアナログ信号を出力するホール素子を特定する。演算部33は、第1の候補に対応した出力値のアナログ信号を処理して回転角度を算出する。 The monitoring unit 32 specifies the failed Hall element as follows. First, in the case where the total value calculated for each electrical angle does not match the fixed value, the monitoring unit 32 measures the electric values corresponding to the output values of the first signal H A , the second signal H B and the third signal H C. Ask for a corner candidate. Next, a Hall element for outputting an analog signal of an output value corresponding to a second candidate different from the first candidate corresponding to the output value of the analog signal output from any two of the three Hall elements Identify. The calculation unit 33 processes the analog signal of the output value corresponding to the first candidate to calculate the rotation angle.
 すなわち、監視部32は、第1の候補に対応したアナログ信号を出力するホール素子を正常に動作しているホール素子と判断し、第2の候補に対応したアナログ信号を出力するホール素子を故障したホール素子と判断する。例えば、ホール素子31Cが故障している場合は、第1信号Hおよび第2信号Hの出力値に対応した電気角の候補の少なくとも一部(上記でいう第1の候補)が重複する。そして、第3信号Hの出力値に対応した電気角の候補は、第1の候補とは異なる第2の候補となる。演算部33は、第1信号Hおよび第2信号Hのアナログ信号を処理して回転角度を算出する。 That is, the monitoring unit 32 determines that the Hall element that outputs the analog signal corresponding to the first candidate is the Hall element operating normally, and breaks the Hall element that outputs the analog signal corresponding to the second candidate. It is determined that the Hall element has been For example, if the Hall element 31C is faulty, at least a portion of the candidates of the electrical angle corresponding to the output value of the first signal H A and the second signal H B (first candidate mentioned above) are overlapped . Then, the candidate of the electrical angle corresponding to the output value of the third signal H C is a second candidate different from the first candidate. Calculating section 33 calculates the rotational angle by processing the analog signal of the first signal H A and the second signal H B.
 以上の通り、出力値が制限値を超えない場合であっても、故障したホール素子を特定することができるため、故障したホール素子以外のホール素子からの信号を処理することでモータの回転角度の検出を継続することができる。したがって、回転角度の検出値の信頼性の点で有利となりうる。 As described above, even when the output value does not exceed the limit value, the failed Hall element can be identified. Therefore, the rotation angle of the motor can be obtained by processing the signals from the other Hall elements other than the failed Hall element. Detection can continue. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
 (電気角の候補の求め方)監視部32は、出力値と電気角との対応関係を予め保持し、電気角の候補を対応関係に基づいて決定してもよい。この対応関係とは、例えば、第1信号Hのxボルトの出力値には、電気角はα度またはβ度が対応する対応関係のことをいう。1つの出力値には、1つか2つの電気角が対応する。対応関係を用いる場合、電気角の候補を演算により求める必要がなくなり、例えば、監視部32の演算負荷を抑制することができる。 (How to Determine Electrical Angle Candidate) The monitoring unit 32 may hold the correspondence between the output value and the electrical angle in advance, and determine the electrical angle candidate based on the correspondence. The correspondence relationship means, for example, a correspondence relationship in which the electrical angle corresponds to α degrees or β degrees, for the output value of x volts of the first signal HA . One or two electrical angles correspond to one output value. When the correspondence relationship is used, it is not necessary to obtain candidates for the electrical angle by calculation, and for example, the calculation load of the monitoring unit 32 can be suppressed.
 監視部32は、アナログ信号の出力値から演算により電気角の候補を算出してもよい。第1信号Hの出力値から電気角の候補を算出する場合を例に説明する。第1信号Hの出力値を第1出力値VA、第1信号Hの最大出力値をVMAとする。 The monitoring unit 32 may calculate the candidate of the electrical angle by calculation from the output value of the analog signal. The case of calculating the candidate of the electrical angle from the output value of the first signal HA will be described as an example. The output value of the first signal HA is referred to as a first output value VA, and the maximum output value of the first signal HA is referred to as VMA .
 A=V/VMAとして、候補θA1および候補θA2は式(1)~(3)で算出される。
 θA1=180-(sin-1A×180/π))・・・(1)
 θA2=sin-1A×180/π、(A≧0)・・・(2)
 θA2=sin-1A×180/π、(A<0)・・・(3)
The candidate θ A1 and the candidate θ A2 are calculated by the equations (1) to (3) as A = V A / V MA .
θ A1 = 180− (sin −1 A × 180 / π)) (1)
θ A2 = sin −1 A × 180 / π, (A ≧ 0) (2)
θ A2 = sin −1 A × 180 / π, (A <0) (3)
 なお、第2信号Hの出力値から電気角の候補を算出する場合は、第2信号Hの出力値を第2出力値Vとして、第2信号Hの最大出力値をVMB、B=V/VMBとして、候補θB1および候補θB2は式(4)~(6)で算出される。
 θB1=120+(sin-1B×180/π))・・・(4)
 θB2=-60-sin-1B×180/π、(-1≦B≦-0.866)・・・(5)
 θB2=300-sin-1B×180/π、(-0.866≦B≦1)・・・(6)
When the candidate of the electrical angle is calculated from the output value of the second signal H B, the output value of the second signal H B is taken as the second output value V B , and the maximum output value of the second signal H B is V MB The candidate θ B1 and the candidate θ B2 are calculated by Equations (4) to (6), where B = V B / V MB .
θ B1 = 120 + (sin −1 B × 180 / π)) (4)
θ B2 = −60−sin −1 B × 180 / π, ( −1 ≦ B ≦ −0.866) (5)
θ B2 = 300−sin −1 B × 180 / π, (−0.866 ≦ B ≦ 1) (6)
 第3信号Hの出力値から電気角の候補を算出する場合は、第3信号Hの出力値を第3出力値Vとして、第3信号Hの最大出力値をVMC、C=V/VMCとして、候補θC1および候補θC2は式(7)~(9)で算出される。
 θC1=240+(sin-1C×180/π))・・・(7)
 θC2=60-sin-1C×180/π、(-1≦B≦-0.866)・・・(8)
 θC2=270+sin-1C×180/π、(-0.866≦B≦1)・・・(9)
When calculating the candidate of the electrical angle from the output value of the third signal H C, the output value of the third signal H C is taken as the third output value V C , and the maximum output value of the third signal H C is V MC , C The candidate θ C1 and the candidate θ C2 are calculated by the equations (7) to (9) as = V C / V MC .
θ C1 = 240 + (sin −1 C × 180 / π)) (7)
θ C2 = 60−sin −1 C × 180 / π, ( −1 ≦ B ≦ −0.866) (8)
θ C2 = 270 + sin −1 C × 180 / π, (−0.866 ≦ B ≦ 1) (9)
 以上の通り、電気角の候補を計算で求めることで、例えば、出力値と電気角との対応関係を示すテーブルを作成する必要がなくなる利点がある。 As described above, there is an advantage that it is not necessary to create a table indicating the correspondence between the output value and the electrical angle, for example, by obtaining the electrical angle candidate by calculation.
 なお、固定値と合計値とが一致する場合は、演算部33は、3つのホール素子のうち任意の2つのホール素子から出力された2つのアナログ信号を用いて回転角度を算出する。 When the fixed value and the total value match, the computing unit 33 calculates the rotation angle using two analog signals output from any two Hall elements of the three Hall elements.
 また、監視部32は、操舵角検出部10の検出結果を用いて故障したホール素子を特定してもよい。すなわち、まず、監視部32は、3つのホール素子から2つのホール素子を選んで得られる3種類の組み合わせのそれぞれについて、演算部33により回転角度を算出する。監視部32は、算出結果と、操舵角検出部10の検出結果とを比較し、3種類の組み合わせのうち、最も検出結果に近い回転角度に対応する組み合わせを特定する。監視部32は、残りの組み合わせの両方に含まれるホール素子を故障したホール素子として特定する。 The monitoring unit 32 may also use the detection result of the steering angle detection unit 10 to specify the failed Hall element. That is, first, the monitoring unit 32 calculates the rotation angle by the operation unit 33 for each of the three types of combinations obtained by selecting two Hall elements from the three Hall elements. The monitoring unit 32 compares the calculation result with the detection result of the steering angle detection unit 10, and specifies a combination corresponding to the rotation angle closest to the detection result among the three types of combinations. The monitoring unit 32 specifies the Hall element included in both of the remaining combinations as the failed Hall element.
 この方法によれば、ホール素子の出力値と電気角との対応関係を示すテーブルや、電気角の候補を算出することなく、舵角検出部の検出結果に基づいて故障したホール素子を特定することができる。 According to this method, the faulty Hall element is identified based on the detection result of the steering angle detection unit without calculating the table showing the correspondence between the output value of the Hall element and the electrical angle or the candidate of the electrical angle. be able to.
 第1実施形態の方法によるホール素子の監視と第2実施形態の方法によるホール素子の監視とは、それぞれ単独としてもよいし、併用してもよい。併用する場合は、順不同である。 The monitoring of the Hall element by the method of the first embodiment and the monitoring of the Hall element by the method of the second embodiment may be performed alone or in combination. When used in combination, the order is random.
 いずれの場合も、3つのホール素子のうち故障したホール素子を特定することができるため、故障したホール素子以外のホール素子からの信号を処理することでモータの回転角度の検出を継続することができる。したがって、回転角度の検出値の信頼性の点で有利となりうる。 In any case, since it is possible to identify the failed Hall element among the three Hall elements, the detection of the rotation angle of the motor can be continued by processing the signals from the Hall elements other than the failed Hall element. it can. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
 第2実施形態による監視で、合計値が固定値と一致する場合であっても、出力値のいずれかが第1実施形態の監視で用いる制限値を超える場合がありうる。この場合でも、第2実施形態による監視と第1実施形態による監視を併用することで故障したホール素子を特定することができる。したがって、故障したホール素子以外のホール素子からの信号を処理することでモータの回転角度の検出を継続することができる。したがって、回転角度の検出値の信頼性の点で有利となりうる。 In the monitoring according to the second embodiment, even if the total value matches the fixed value, it is possible that one of the output values may exceed the limit value used in the monitoring according to the first embodiment. Even in this case, it is possible to specify the failed Hall element by using the monitoring according to the second embodiment and the monitoring according to the first embodiment in combination. Therefore, by processing the signals from the Hall elements other than the failed Hall element, the detection of the rotation angle of the motor can be continued. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
  <フローチャート>図3は、第1実施形態および第2実施形態に係る監視部32によるホール素子の監視工程のフローチャートである。第1実施形態の方法による監視(第1監視工程という)のつぎに第2実施形態の方法による監視(第2監視工程という)を行う場合について説明する。 <Flowchart> FIG. 3 is a flowchart of a monitoring process of a Hall element by the monitoring unit 32 according to the first embodiment and the second embodiment. The case of performing monitoring (referred to as a second monitoring step) according to the method of the second embodiment next to monitoring (referred to as a first monitoring step) according to the method of the first embodiment will be described.
 まず、工程S30にて、監視部32が3つのアナログ信号を取得する。次に、工程S31にて、監視部32は、3つのアナログ信号のいずれかの出力値が制限値を超えていないか否かを監視する。制限値を超えた場合には、工程S32にて、制限値を超えるアナログ信号を出力するホール素子を特定する。工程S31および工程S32が第1監視工程である。 First, in step S30, the monitoring unit 32 acquires three analog signals. Next, in step S31, the monitoring unit 32 monitors whether or not the output value of any of the three analog signals exceeds the limit value. If the limit value is exceeded, a Hall element that outputs an analog signal exceeding the limit value is specified in step S32. Step S31 and step S32 are the first monitoring step.
 制限値を超えていない場合は、工程S33にて、監視部32は、3つのアナログ信号の出力値のそれぞれの合計値を電気角ごとに算出し、求めた合計値が固定値と一致しているか否かを監視する。 If the limit value is not exceeded, the monitoring unit 32 calculates the total value of the output values of the three analog signals for each electrical angle in step S33, and the calculated total value matches the fixed value. Monitor if it is
 一致していない場合には、工程S34にて、監視部32は、出力値のそれぞれに対応した電気角の候補を求め、3つのホール素子のうちいずれか2つから出力されたアナログ信号の出力値に対応した第1の候補を求める。また、監視部32は、第1の候補とは異なる第2の候補に対応した出力値のアナログ信号を出力するホール素子を特定する。工程S33および工程S34が第2監視工程である。 If they do not match, in step S34, the monitoring unit 32 determines the candidate of the electrical angle corresponding to each of the output values, and outputs the analog signal output from any two of the three Hall elements. Find the first candidate corresponding to the value. Also, the monitoring unit 32 specifies a Hall element that outputs an analog signal of an output value corresponding to a second candidate different from the first candidate. Step S33 and step S34 are the second monitoring step.
 なお、固定値と合計値とが一致する場合は、工程S35にて、演算部33は、3つのアナログ信号のうち、任意の2つのアナログ信号を用いて回転角度を算出する。第1監視工程と第2監視工程との順番が入れ替えてもよい。また、並列して実行してもよい。 When the fixed value and the total value match, in step S35, the calculation unit 33 calculates a rotation angle using any two analog signals of the three analog signals. The order of the first monitoring step and the second monitoring step may be switched. Moreover, you may perform in parallel.
 上記駆動方法をコンピュータに実行させるプログラムを半導体メモリ等のコンピュータ読み取り可能な記録媒体に記憶させ、コンピュータによってプログラムを実行して、上記監視方法を含む駆動方法を実現してもよい。 A program that causes a computer to execute the above driving method may be stored in a computer readable recording medium such as a semiconductor memory, and the computer may execute the program to realize the driving method including the above monitoring method.
 以上の監視方法により、3つのホール素子のうち故障したホール素子を特定することができるため、故障したホール素子以外のホール素子からの信号を処理することでモータの回転角度の検出を継続することができる。したがって、回転角度の検出値の信頼性の点で有利となりうる。 According to the above monitoring method, it is possible to identify the broken Hall element among the three Hall elements, so that the detection of the rotation angle of the motor is continued by processing the signals from the Hall elements other than the broken Hall element. Can. Therefore, it can be advantageous in terms of the reliability of the detected value of the rotation angle.
 なお、モータ20は、3相に限られない。また、上記のモータ駆動装置30を、パワーステアリング装置以外の装置に適用してもよい。例えば、上記のモータ駆動装置30によって、自動車等の輸送機器の他の部位に用いられるモータを駆動させてもよい。また、上記のモータ駆動装置30によって、産業用ロボットなどの自動車以外の機器に搭載されるモータを駆動させてもよい。 The motor 20 is not limited to three phases. Also, the motor drive device 30 described above may be applied to devices other than the power steering device. For example, the motor drive device 30 described above may drive a motor used in another part of a transportation device such as a car. In addition, a motor mounted on an apparatus other than an automobile such as an industrial robot may be driven by the motor drive device 30 described above.
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the present invention.

Claims (14)

  1.  モータを駆動するモータ駆動装置であって、
     前記モータのロータの回転角度に対応する電気角に対して出力値が周期的に変化するアナログ信号を出力する3つのホール素子と、
     前記3つのホール素子から出力された前記アナログ信号を監視して、前記出力値が制限値を超える前記アナログ信号を出力する前記ホール素子を特定する監視部と、
     前記3つのホール素子から出力された前記アナログ信号を用いて前記回転角度を算出する演算部と、を有し、
     前記演算部は、
     前記3つのホール素子のいずれもが前記監視部により特定されていない場合、前記3つのホール素子のうち2つの前記ホール素子から出力された2つの前記アナログ信号を処理して前記回転角度を算出し、
     前記3つのホール素子のうちいずれか1つが前記監視部により特定された場合、残りの2つの前記ホール素子から出力された2つの前記アナログ信号を処理して前記回転角度を算出する、ことを特徴とするモータ駆動装置。
    A motor drive unit for driving the motor, wherein
    Three Hall elements that output analog signals whose output value changes periodically with respect to an electrical angle corresponding to the rotation angle of the motor rotor;
    A monitoring unit that monitors the analog signals output from the three Hall elements and identifies the Hall elements that output the analog signals whose output value exceeds a limit value;
    And a calculation unit that calculates the rotation angle using the analog signal output from the three Hall elements,
    The arithmetic unit is
    If none of the three Hall elements is specified by the monitoring unit, two rotations of the two analog signals output from the two Hall elements of the three Hall elements are processed to calculate the rotation angle. ,
    When any one of the three Hall elements is specified by the monitoring unit, the two analog signals output from the remaining two Hall elements are processed to calculate the rotation angle. Motor drive device.
  2.  前記制限値は、前記ホール素子と前記ホール素子が検知する磁束密度に対応する磁場を発生させる磁石との距離、前記磁束密度の大きさ、および前記磁束密度と前記出力値との関係のうち少なくともいずれかに基づいて決定されることを特徴とする請求項1に記載のモータ駆動装置。 The limit value is at least one of a distance between the Hall element and a magnet generating a magnetic field corresponding to a magnetic flux density detected by the Hall element, a magnitude of the magnetic flux density, and a relationship between the magnetic flux density and the output value. The motor drive device according to claim 1, wherein the motor drive device is determined based on either of them.
  3.  前記監視部は、前記3つのホール素子のいずれもが前記監視部により特定されていない場合、前記3つのホール素子から出力された前記アナログ信号の前記出力値のそれぞれの合計値を前記電気角ごとに算出し、求めた合計値と固定値とを比較して、前記合計値が前記固定値と一致しない場合において、前記出力値のそれぞれに対応した前記電気角の候補を求め、前記3つのホール素子のうちいずれか2つから出力された前記アナログ信号の前記出力値に対応した第1の候補とは異なる第2の候補に対応した前記出力値の前記アナログ信号を出力する前記ホール素子を特定し、
     前記演算部は、前記第1の候補に対応した前記出力値の前記アナログ信号を処理して前記回転角度を算出する、ことを特徴とする請求項1または2に記載のモータ駆動装置。
    The monitoring unit calculates the sum value of the output values of the analog signals output from the three Hall elements for each electrical angle when none of the three Hall elements is specified by the monitoring unit. The calculated total value is compared with a fixed value, and when the total value does not match the fixed value, candidates for the electrical angle corresponding to each of the output values are obtained, and the three holes are calculated. The Hall element that outputs the analog signal of the output value corresponding to a second candidate different from the first candidate corresponding to the output value of the analog signal output from any two of the elements is specified And
    The motor drive device according to claim 1, wherein the arithmetic unit processes the analog signal of the output value corresponding to the first candidate to calculate the rotation angle.
  4.  前記監視部は、前記出力値と前記電気角との対応関係を予め保持し、前記候補を前記対応関係に基づいて決定することを特徴とする請求項3に記載のモータ駆動装置。 The motor drive device according to claim 3, wherein the monitoring unit holds in advance a correspondence between the output value and the electrical angle, and determines the candidate based on the correspondence.
  5.  前記監視部は、前記出力値と、前記出力値を有する前記アナログ信号の最大出力値との比を用いて前記候補を算出することを特徴とする請求項3に記載のモータ駆動装置。 The motor drive device according to claim 3, wherein the monitoring unit calculates the candidate using a ratio of the output value and a maximum output value of the analog signal having the output value.
  6.  モータを駆動するモータ駆動装置であって、
     前記モータのロータの回転角度に対応する電気角に対して出力値が周期的に変化するアナログ信号を出力する3つのホール素子と、
     前記3つのホール素子から出力された前記アナログ信号を監視する監視部と、
     前記3つのホール素子から出力された前記アナログ信号を用いて前記回転角度を算出する演算部と、を有し、
     前記監視部は、前記3つのホール素子から出力された前記アナログ信号の前記出力値のそれぞれの合計値を前記電気角ごとに算出し、求めた合計値と固定値とを比較して、前記合計値が前記固定値と一致しない場合において、前記出力値のそれぞれに対応した前記電気角の候補を求め、前記3つのホール素子のうちいずれか2つから出力された前記アナログ信号の前記出力値に対応した第1の候補とは異なる第2の候補に対応した前記出力値の前記アナログ信号を出力する前記ホール素子を特定し、
     前記演算部は、
     前記合計値が前記固定値と一致する場合、前記3つのホール素子のうち2つの前記ホール素子から出力された2つの前記アナログ信号を処理して前記回転角度を算出し、
     前記合計値が前記固定値と一致しない場合、前記第1の候補に対応した前記出力値の前記アナログ信号を処理して前記回転角度を算出する、ことを特徴とするモータ駆動装置。
    A motor drive unit for driving the motor, wherein
    Three Hall elements that output analog signals whose output value changes periodically with respect to an electrical angle corresponding to the rotation angle of the motor rotor;
    A monitoring unit that monitors the analog signal output from the three Hall elements;
    And a calculation unit that calculates the rotation angle using the analog signal output from the three Hall elements,
    The monitoring unit calculates a total value of the output values of the analog signals output from the three Hall elements for each electrical angle, compares the calculated total value with a fixed value, and calculates the total value. If the value does not match the fixed value, candidates for the electrical angle corresponding to each of the output values are determined, and the output value of the analog signal output from any two of the three Hall elements is obtained as the output value. Identifying the Hall element that outputs the analog signal of the output value corresponding to a second candidate different from the corresponding first candidate;
    The arithmetic unit is
    If the total value matches the fixed value, two rotations of the analog signal output from two of the three Hall elements are processed to calculate the rotation angle;
    A motor drive device characterized by processing said analog signal of said output value corresponding to said 1st candidate, and calculating said rotation angle, when said total value does not correspond with said fixed value.
  7.  前記監視部は、前記出力値と前記電気角との対応関係を予め有し、前記候補を前記対応関係に基づいて決定することを特徴とする請求項6に記載のモータ駆動装置。 The motor drive device according to claim 6, wherein the monitoring unit has a correspondence between the output value and the electrical angle in advance, and determines the candidate based on the correspondence.
  8.  前記監視部は、前記出力値と、前記出力値を有する前記アナログ信号の最大出力値との比を用いて前記候補を算出することを特徴とする請求項6に記載のモータ駆動装置。 The motor drive device according to claim 6, wherein the monitoring unit calculates the candidate using a ratio of the output value to a maximum output value of the analog signal having the output value.
  9.  前記監視部は、前記合計値が前記固定値と一致する場合、前記出力値が制限値を超える前記アナログ信号を出力する前記ホール素子を特定し、
     前記演算部は、前記3つのホール素子のうちいずれか1つが前記監視部により特定された場合、残りの2つの前記ホール素子から出力された2つの前記アナログ信号を処理して前記回転角度を算出する、ことを特徴とする請求項6ないし8のいずれか1項に記載のモータ駆動装置。
    The monitoring unit identifies the Hall element that outputs the analog signal whose output value exceeds a limit value when the total value matches the fixed value,
    The arithmetic unit processes the two analog signals output from the remaining two Hall elements to calculate the rotation angle when any one of the three Hall elements is specified by the monitoring unit. The motor drive device according to any one of claims 6 to 8, wherein:
  10.  請求項1乃至9のうちいずれか1項に記載のモータ駆動装置と、3相のコイルを有するステータと、マグネットを有するロータと、を備えるモータ。 A motor comprising: the motor drive device according to any one of claims 1 to 9; a stator having a three-phase coil; and a rotor having a magnet.
  11.  請求項1乃至9のうちいずれか1項に記載のモータ駆動装置により駆動されるモータを備えることを特徴とする電動パワーステアリング装置。 An electric power steering apparatus comprising a motor driven by the motor drive apparatus according to any one of claims 1 to 9.
  12.  ステアリングの舵角を検出する操舵角検出部を有し、
     前記監視部は、
     前記3つのホール素子から出力された前記アナログ信号の前記出力値のそれぞれの合計値を前記電気角ごとに算出し、求めた合計値と固定値とを比較して、前記合計値が前記固定値と一致しない場合において、
     前記3つのホール素子から2つの前記ホール素子を選んで得られる3種類の組み合わせのそれぞれについて前記演算部により算出された前記回転角度と、前記操舵角検出部の検出結果とを比較し、前記3種類の組み合わせのうち、最も前記検出結果に近い前記回転角度に対応する組み合わせを特定し、残りの組み合わせの両方に含まれる前記ホール素子を特定する、ことを特徴とする請求項11に記載の電動パワーステアリング装置。
    It has a steering angle detection unit that detects the steering angle of the steering,
    The monitoring unit
    The total value of the output values of the analog signals output from the three Hall elements is calculated for each electrical angle, the calculated total value is compared with a fixed value, and the total value is the fixed value. If it does not match
    The rotation angle calculated by the calculation unit is compared with the detection result of the steering angle detection unit for each of the three types of combinations obtained by selecting two of the Hall elements from the three hall elements, and The electric motor according to claim 11, wherein a combination corresponding to the rotation angle closest to the detection result among the kinds of combinations is specified, and the Hall elements included in both of the remaining combinations are specified. Power steering device.
  13.  モータを駆動するモータ駆動方法であって、
     モータのロータの回転角度を検出する3つのホール素子から出力され、前記回転角度に対応する電気角に対して出力値が周期的に変化する3つのアナログ信号を取得する工程と、
     前記取得した3つのアナログ信号のいずれかの前記出力値が制限値を超えていないか否かを監視して前記制限値を超える前記アナログ信号を出力する前記ホール素子を特定する第1監視工程と、
     前記3つのアナログ信号の前記出力値のそれぞれの合計値を前記電気角ごとに算出し、求めた合計値が固定値と一致しているか否かを監視して、前記合計値が前記固定値と一致しない場合において、前記出力値のそれぞれに対応した前記電気角の候補を求め、前記3つのホール素子のうちいずれか2つから出力された前記アナログ信号の前記出力値に対応した第1の候補とは異なる第2の候補に対応した前記出力値の前記アナログ信号を出力する前記ホール素子を特定する第2監視工程と、を含む、ことを特徴とするモータ駆動方法。
    A motor driving method for driving a motor,
    Obtaining three analog signals output from three Hall elements for detecting a rotation angle of a motor rotor and having an output value periodically changing with respect to an electrical angle corresponding to the rotation angle;
    A first monitoring step of monitoring whether or not the output value of any of the acquired three analog signals exceeds a limit value, and identifying the Hall element that outputs the analog signal exceeding the limit value; ,
    A total value of each of the output values of the three analog signals is calculated for each electrical angle, and it is monitored whether the calculated total value matches a fixed value, and the total value is determined as the fixed value. If they do not match, a candidate for the electrical angle corresponding to each of the output values is determined, and a first candidate corresponding to the output value of the analog signal output from any two of the three Hall elements And D. a second monitoring step of identifying the Hall element that outputs the analog signal of the output value corresponding to a second candidate different from the second candidate.
  14.  モータを駆動するモータ駆動方法をコンピュータに実行させるプログラムが記憶されたコンピュータ読み取り可能な記録媒体であって、
     前記モータ駆動方法は、
     3つのホール素子から出力され、前記回転角度に対応する電気角に対して出力値が周期的に変化する3つのアナログ信号を取得する工程と、
     前記取得した3つのアナログ信号のいずれかの前記出力値が制限値を超えていないか否かを監視して前記制限値を超える前記アナログ信号を出力する前記ホール素子を特定する第1監視工程と、
     前記3つのアナログ信号の前記出力値のそれぞれの合計値を前記電気角ごとに算出し、求めた合計値が固定値と一致しているか否かを監視して、前記合計値が前記固定値と一致しない場合において、前記出力値のそれぞれに対応した前記電気角の候補を求め、前記3つのホール素子のうちいずれか2つから出力された前記アナログ信号の前記出力値に対応した第1の候補とは異なる第2の候補に対応した前記出力値の前記アナログ信号を出力する前記ホール素子を特定する第2監視工程と、を含む、ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer readable recording medium storing a program for causing a computer to execute a motor driving method for driving a motor, the computer readable recording medium comprising:
    The motor drive method is
    Acquiring three analog signals that are output from three Hall elements and whose output value changes periodically with respect to an electrical angle corresponding to the rotation angle;
    A first monitoring step of monitoring whether or not the output value of any of the acquired three analog signals exceeds a limit value, and identifying the Hall element that outputs the analog signal exceeding the limit value; ,
    A total value of each of the output values of the three analog signals is calculated for each electrical angle, and it is monitored whether the calculated total value matches a fixed value, and the total value is determined as the fixed value. If they do not match, a candidate for the electrical angle corresponding to each of the output values is determined, and a first candidate corresponding to the output value of the analog signal output from any two of the three Hall elements A second monitoring step of identifying the Hall element that outputs the analog signal of the output value corresponding to a second candidate different from the second candidate.
PCT/JP2018/029462 2017-09-14 2018-08-06 Motor driving device, motor, electric power steering device, motor driving method and storage medium WO2019054091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541950A JPWO2019054091A1 (en) 2017-09-14 2018-08-06 Motor drive, motor, electric power steering device, motor drive method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-176466 2017-09-14
JP2017176466 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054091A1 true WO2019054091A1 (en) 2019-03-21

Family

ID=65723604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029462 WO2019054091A1 (en) 2017-09-14 2018-08-06 Motor driving device, motor, electric power steering device, motor driving method and storage medium

Country Status (2)

Country Link
JP (1) JPWO2019054091A1 (en)
WO (1) WO2019054091A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243195A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Motor control circuit
JP2005319885A (en) * 2004-05-10 2005-11-17 Koito Mfg Co Ltd Lighting device for vehicle
JP2007151266A (en) * 2005-11-25 2007-06-14 Mitsuba Corp Driver for brushless motor and its driving method
JP2009201346A (en) * 2008-01-21 2009-09-03 Daikin Ind Ltd Motor drive controller
JP2012149909A (en) * 2011-01-17 2012-08-09 Jtekt Corp Rotation angle detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243195A (en) * 1990-02-20 1991-10-30 Fujitsu Ltd Motor control circuit
JP2005319885A (en) * 2004-05-10 2005-11-17 Koito Mfg Co Ltd Lighting device for vehicle
JP2007151266A (en) * 2005-11-25 2007-06-14 Mitsuba Corp Driver for brushless motor and its driving method
JP2009201346A (en) * 2008-01-21 2009-09-03 Daikin Ind Ltd Motor drive controller
JP2012149909A (en) * 2011-01-17 2012-08-09 Jtekt Corp Rotation angle detection device

Also Published As

Publication number Publication date
JPWO2019054091A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6083428B2 (en) Electric power steering device for vehicle
JP5760830B2 (en) Control device for three-phase rotating machine
WO2018025759A1 (en) Motor control method, motor drive system, and electric power steering system
US20160233804A1 (en) Motor control device
US10411574B2 (en) Motor controller
CN107820671B (en) Control device for electric power steering device and electric power steering device
KR101336472B1 (en) A method for discriminating the malfuncition of bldc motor control system
JP6769247B2 (en) Rotating electrical system
KR101765444B1 (en) Circuit arrangement and method and device for operating the circuit arrangement
WO2018038021A1 (en) Electric motor apparatus
JP6967470B2 (en) Control device
JP6151107B2 (en) Failure detection device
CN114450885B (en) AC rotary electric machine device
KR20170002759A (en) Failure diagnosis method for hall sensor
WO2017135258A1 (en) Cooling fan control device
WO2019054089A1 (en) Motor drive device, motor, and electric power steering device
JP2006271064A (en) Electric power steering arrangement
WO2019054091A1 (en) Motor driving device, motor, electric power steering device, motor driving method and storage medium
JP2006345683A (en) Current detector
US11843342B2 (en) Motor drive control device and motor drive control method
JP2008278606A (en) Rotational position sensor for rotary electric machines and rotating electrical machine
JP2020137222A (en) Motor controller
KR20160022923A (en) Method for detecting an incorrect angular position of an electric motor
JP2007166687A (en) Motor unit and motor drive control device
KR20160149374A (en) Control apparatus of motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855769

Country of ref document: EP

Kind code of ref document: A1