WO2019054032A1 - Infrared absorbing glass sheet - Google Patents

Infrared absorbing glass sheet Download PDF

Info

Publication number
WO2019054032A1
WO2019054032A1 PCT/JP2018/026430 JP2018026430W WO2019054032A1 WO 2019054032 A1 WO2019054032 A1 WO 2019054032A1 JP 2018026430 W JP2018026430 W JP 2018026430W WO 2019054032 A1 WO2019054032 A1 WO 2019054032A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
infrared absorbing
thickness
infrared
Prior art date
Application number
PCT/JP2018/026430
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 三田村
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2019541924A priority Critical patent/JPWO2019054032A1/en
Publication of WO2019054032A1 publication Critical patent/WO2019054032A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the present invention relates to an infrared absorbing glass plate, and more particularly to an infrared absorbing glass plate having a function of absorbing infrared rays with a thin plate of 1 mm or less.
  • the transmittance of light in the infrared range also increases. Infrared rays cause the skin to feel greasy due to sunlight passing through the glass and cause the temperature in the car to rise.
  • the transmittance is high, the cooling load on the vehicle is high, and as a result, the environmental load is reduced.
  • the contribution to the purpose becomes small.
  • the window glass with a large area like the front glass mentioned above, or the window glass close to the driver like the side glass the sensation temperature becomes high when the stimulation of sunlight such as the above-mentioned squeaky feeling is strong.
  • the cooling of the vehicle may be used more than necessary.
  • an infrared ray absorbing glass plate in which a component for absorbing infrared rays is contained in soda lime glass which is generally used is used. If the infrared absorption performance is to be improved, the content of the coloring component that absorbs infrared light may be simply increased. However, if the infrared absorption performance is enhanced, the visible light transmittance may be impaired. Since the above-mentioned front glass, side glass and the like are required to secure visibility, it may be insufficient to simply increase the content of the coloring component as described above.
  • an object of the present invention is to obtain a thin sheet glass capable of suppressing transmission of infrared light without largely impairing the visibility.
  • an object of the present invention is to obtain an infrared absorbing glass plate having an infrared absorbing ability at a wavelength of 1500 nm, which is about an infrared absorbing glass plate having a thickness of about 2 mm even with a glass plate having a thickness of about 1 mm.
  • the coloring component is, in mass%, the total amount of iron oxide is 0.75 to 1. in terms of Fe 2 O 3 . 5% and FeO of 0.20 to 0.40%, the plate thickness is 0.4 to 1.1 mm, and when the thickness of the infrared ray absorbing glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72 It is an infrared rays absorption glass board characterized by being less than%.
  • the present invention it has become possible to obtain a thin glass sheet capable of suppressing the transmission of infrared light without largely impairing the visibility.
  • T 1500 the transmittance of infrared light at a wavelength of 1500 nm
  • T 1500 the transmittance of infrared light at a wavelength of 1500 nm
  • the spectral transmittance of a test sample is determined according to JIS Z 8722: 2009, and the value representing the stimulation value Y with respect to the standard light A as a percentage is described as visible light transmittance (hereinafter, “YA”). Also).
  • YA visible light transmittance
  • permeability 70% or more, More preferably, it is 75% or more.
  • CS surface compressive stress
  • soda lime glass refers to a common soda lime glass containing SiO 2 , Na 2 O, and CaO.
  • soda lime glass for example, a glass composition defined in ISO 16293-1: 2008
  • mass% 65 to 75 SiO 2 , 10 to 20 Na 2 O, 0 to 3 K 2 O, 5 to 15 CaO, 0 to 5 MgO, and 0 to 5 Al 2 O 3 It is good also as 3 and containing.
  • the present invention is an infrared ray absorbing glass in which a colored component is contained in the above glass composition. That is, according to the present invention, in the infrared absorbing glass plate containing a coloring component in the glass composition, the coloring component is, by mass%, the total amount of iron oxide is 0.75 to 1.5% in terms of Fe 2 O 3 , And the FeO content is 0.20 to 0.40%, and when the thickness of the infrared absorption glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72% or less.
  • the coloring component is, by mass%, the total amount of iron oxide is 0.80 to 1.5% in terms of Fe 2 O 3 , And the FeO content is 0.20 to 0.40%, and when the thickness of the infrared absorption glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72% or less.
  • Iron oxide is an essential component and is a main component that improves infrared absorption performance. Iron oxide is in a state in which divalent and trivalent are mixed in the glass, and the ratio varies depending on the reduction state of the glass. Therefore, iron oxide is converted to Fe 2 O 3 to indicate the content. In the present invention, the total iron oxide converted to Fe 2 O 3 contains 0.75 to 1.5% by mass. If it is less than 0.75 mass% or less than 0.8 mass%, the suppression effect of T 1500 tends to be insufficient. On the other hand, if it exceeds 1.5 mass%, the combustion heat of the burner etc. It is likely to be absorbed on the surface and the production efficiency may be reduced.
  • the lower limit value may be 0.80 mass% or more, more preferably 0.82 mass% or more.
  • the upper limit value may be preferably 1.4 mass% or less, more preferably 1.30 mass% or less.
  • FeO is known as a component that improves infrared absorption performance.
  • T 1500 by containing 0.20 to 0.40% by mass of FeO, it becomes possible to make T 1500 at a thickness of 1.0 mm 72% or less.
  • it may be 0.22% by mass or more, more preferably 0.25% by mass or more.
  • Ti oxide is an optional component that improves the ultraviolet light absorbing performance, and in the composition system of the present invention, it is a component that works as a reducing agent for iron oxide. In the present invention, it may be contained in the range of 0 to 2.0% by mass. Moreover, when the present inventors examined, in the composition system of the present invention, Ti It was newly found that when the oxide content increased, CS after chemical strengthening tended to increase. Therefore, in addition to the coloring component, it is preferable to contain 0.01 to 2.0% by mass of TiO 2 as the coloring component. Further, more preferably, it may be 0.8 mass% or more. In addition, although Ti oxide exists in the form of Ti 3+ or Ti 4+ in glass, in the present specification, a value obtained by converting the total amount into TiO 2 is used, and the Ti oxide is described as “TiO 2 ”.
  • Ce oxide is an optional component that improves infrared absorption performance, and may be contained in the range of 0 to 1.5% by mass.
  • the Ce oxide is present in the form of Ce 3 + or Ce 4 + in the glass, but in the present specification, the Ce oxide is described as “CeO 2 ” using a value obtained by converting the total amount to CeO 2 .
  • Co oxide, Cr oxide, Se is less than 0.1 mass%
  • Mn oxide is 0.5 mass% for the purpose of adjusting the transmission color, reflection color and various transmittances of glass. You may contain in the range of less than.
  • V 2 O 5 , MoO 3 , CuO, SO 3 , SnO 2 or the like may be contained in a total amount of 1.0 mass% or less.
  • SO 3 is derived from the sodium sulfate added as a clarifying agent in the manufacturing process of the glass, it may be included in small amounts in the composition.
  • NiO leads to the formation of nickel sulfide in the glass.
  • Nickel sulfide can hardly be confirmed visually and hardly harms the glass in a normal state, but the thermal expansion coefficient is large, so the stress may collapse due to its volume expansion at the time of thermal strengthening etc., and the glass may be broken.
  • it since it is also a component for adjusting the transmission color of glass, it may contain 50 ppm or less as an optional component.
  • the infrared absorbing glass plate of the present invention is used for vehicles as described above, and is a glass plate having a transmittance T 1500 at a wavelength of 1500 nm of 72% or less at a thickness of 1 mm. Further, by setting the content of FeO to 0.25% by mass or more, the above-mentioned T 1500 can be made to 69% or less, which is preferable. Moreover, it is preferable that the visible light transmittance YA be 70% or more in order to secure good visibility.
  • a soda lime glass containing a coloring component as the infrared absorbing glass plate of the present invention.
  • a coloring component such as Al 2 O 3 and Na 2 O in the soda-lime glass, with aluminosilicate glass, These glasses may contain a coloring component.
  • the infrared absorbing glass plate of the present invention has a thickness of 0.4 to 1.1 mm, and has good infrared absorbing performance even when the thickness is 1 mm. More preferably, it may be 0.7 to 1.1 mm.
  • the infrared absorbing glass plate of the present invention is preferably a chemically strengthened glass.
  • the chemical strengthening treatment generates a compressive stress on the surface of the glass plate to increase the strength of the glass plate, and as described above, it is possible to compensate for the strength which decreases as the thickness of the glass plate becomes thinner.
  • the infrared absorbing glass plate of the present invention may be a flat plate or a bent glass plate having a curved surface. Generally, since a bent glass plate is often used as a window material for vehicles, it is preferable that the infrared absorbing glass plate has a curved shape.
  • the infrared absorbing glass plate of the present invention is preferably a chemically strengthened glass having a curved shape. Furthermore, the glass plate preferably contains 0.01 to 2.0% by mass of TiO 2 as a coloring component.
  • the laminated glass which has an infrared rays absorption glass plate and one or more glass plates using the infrared rays absorption glass plate of this invention.
  • the said glass plate should just be suitably selected according to the objective, and an infrared rays absorption glass plate, a colored glass plate, and a general soda lime glass glass plate may be sufficient, and plate thickness may be same or different.
  • soda lime glass of 1 mm or more from the viewpoint of weight reduction and maintaining appropriate strength.
  • the upper limit value may be 4 mm or less, more preferably 3 mm or less.
  • said laminated glass integrates an infrared rays absorption glass plate and arbitrary glass plates through an intermediate
  • the intermediate resin film is an adhesive thermoplastic resin, and generally, the laminated glass is integrated by performing heating and pressure treatment using an autoclave or the like.
  • the intermediate resin film one taking a film shape at normal temperature is widely used, and examples thereof include a hot melt type adhesive containing polyvinyl butyral resin (PVB resin) and EVA resin.
  • the intermediate resin film it is possible to use one in which a part thereof is colored, one in which a layer having a sound insulation function is sandwiched, one in which the thickness is inclined, and one in which the surface is embossed.
  • an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a colorant, and an adhesion regulator may be appropriately added and blended to the intermediate resin film.
  • the present invention can be produced using a float method.
  • the float method is a method generally used in producing a glass sheet. In this method, first, the raw material batch, or the raw material batch and the glass cullet are charged into a melting furnace for melting the raw material to form molten glass, and then the molten glass is cast into molten tin on molten tin to form a plate The molded glass is cooled to obtain a glass plate. Moreover, a reducing agent etc. which are not contained in a composition at the time of melting may be added, and the reduction state of glass may be adjusted.
  • various production methods such as a fusion method (including an overflow downdraw method), a downdraw method, a redraw method, a rollout method, and a press method can be used.
  • the glass plate obtained as described above is cut and processed into a desired shape.
  • it may be heated after being cut to apply strengthening treatment.
  • the plate thickness is 0.4 to 1.1 mm, it is preferable to carry out the chemical strengthening treatment as described above.
  • the chemical strengthening treatment generates compressive stress on the surface of the glass plate by ion exchange in which the alkali metal ion A contained most in the glass plate is replaced with the alkali metal ion B having a larger ion radius than the alkali metal ion A. It is a process.
  • the alkali metal ion A is a Na ion
  • at least one selected from the group consisting of a K ion, an Rb ion, and a Cs ion can be used as the alkali metal ion B.
  • the alkali metal ion A is a Na ion
  • the chemical strengthening treatment is performed by bringing the surface of the glass plate containing the alkali metal ion A into contact with a salt containing an alkali metal B ion for a predetermined time. At this time, in order to promote ion exchange, it is desirable to heat the above-mentioned salt or glass plate.
  • a salt containing an alkali metal B ion for a predetermined time.
  • the above-mentioned salt at least one selected from the group consisting of nitrate, sulfate, carbonate, hydroxide and phosphate containing an alkali metal ion B can be used.
  • the temperature of the salt at the time of the above ion exchange may be appropriately determined according to the type of the salt, but is preferably not less than the melting point of the salt and not more than the strain point temperature of the glass plate.
  • the temperature of the salt is 333 ° C. or more and the strain point temperature of the glass plate to be subjected to chemical strengthening treatment. Bring the glass plate into contact with the The time of contact with the salt is not particularly limited, but preferably 0.5 to 8 hours, for example, in the case of immersing the glass plate in the molten salt.
  • Chemically strengthened glass is manufactured by the step of contacting the glass plate with the salt containing the alkali metal ion B.
  • Contacting the glass plate with the salt refers to bringing the glass plate into contact or immersion in a salt bath.
  • contact is a concept including “immersion”.
  • a contact form of the salt a form in which a paste-like salt is brought into direct contact, or a form in which the salt is immersed in a molten salt heated to the melting point or more, etc. are also possible. It is desirable to immerse in
  • the bending process of the glass plate is, for example, placing two glass plates in a stacked state, placing it on a ring mold and passing it through a heating furnace, heating and softening each glass plate, and bending forming into a predetermined shape by gravity.
  • Self-weight bending method is used. In the case where the thickness of the glass is different, in general, a thick glass plate is placed below.
  • a press forming method may be used in which each glass plate is preformed by self-weight bending, and then each glass plate is sandwiched and pressed between a ring mold and a press mold.
  • the glass plate heated to a predetermined temperature is lifted with a ring mold and brought close to a bending mold so that it has a shape along a bending mold.
  • a molding method may be used. It is preferable that the glass plates be stacked via a release agent.
  • this mold release agent ceramic powder etc. which are not melted at the time of heating near the softening point of a glass plate are used suitably.
  • silica stone, aluminum oxide, sodium carbonate, potassium carbonate, calcium carbonate and magnesium oxide are used as the raw material of the glass matrix composition, and ferric oxide, titanium oxide and cerium oxide are used as the raw material of the colorant. It was.
  • sodium sulfate was used as a fining agent, and a carbon-based reducing agent (specifically, carbon powder) was used as a reducing agent.
  • the obtained glass melt was poured out on a graphite mold, and then sufficiently slowly cooled to room temperature in another electric furnace to obtain a glass block. Then, the glass block was optically polished until it became a plate having a thickness of 1.0 mm, to obtain samples of measurement of a glass component composition analysis of 50 mm ⁇ 50 mm, various optical characteristics, and the like. However, about the reference example 1, it was set as the plate shape of 2.0 mm.
  • the glass composition analysis of each of the obtained samples was performed on Fe, Ti, and Ce using a fluorescent X-ray analyzer.
  • the components which take a plurality of oxidation states in glass are converted to predetermined oxidation states as described in the specification, and the total content of each component is Fe 2 O 3 , TiO 2 and CeO 2 respectively. Shown.
  • optical properties The optical characteristics were measured for the transmittance of infrared light at a wavelength of 1500 nm (T 1500 ) and the visible light transmittance (YA) from values measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.).
  • the chemical strengthening treatment was applied to the measurement samples of Examples 1 to 13 and Comparative Examples 1 and 3.
  • the chemical strengthening treatment was performed by preparing a potassium nitrate molten salt bath maintained at 465 ° C., and immersing a measurement sample preheated to the same temperature as the molten salt bath in the molten salt bath for 2 hours. In addition, after immersion, each sample was taken out, cooled and washed to obtain chemically strengthened samples for measurement.
  • T 1500 was 72% or less and YA was 80% or more.
  • T 1500 is 69% or less, and it was found that the infrared absorption performance is higher.
  • Comparative Examples 1, 3 and 6 although the total amount of iron oxide is similar to that of the example, the content of FeO is small, and the infrared absorption performance is not achieved. Moreover, although the content of FeO of Comparative Example 5 is similar to that of the example, the total amount of iron oxide is small, and the infrared absorption performance is not achieved. Further, in Comparative Examples 2 and 7 to 9, the total amount of iron oxide and the content of FeO were smaller than those in Examples, and the infrared absorption performance was not achieved. Further, Comparative Example 4 is a general soda lime glass containing no coloring component and the like, and both YA and T 1500 were high.
  • the reference examples 1 and 2 are the samples made in imitation of the colored glass which has the function to absorb a well-known infrared ray.
  • the said sample measured various optical characteristics as board thickness 2 mm (reference example 1) and board thickness 1 mm (reference example 2).
  • the T 1500 of Reference Example 1 was 67.4%
  • the T 1500 of Reference Example 2 was 78.8%, and it was found that there was a difference of 10% or more. From the above, it was shown that when the plate thickness is reduced, the transmittance of infrared rays is significantly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The purpose of the present invention is to obtain thin sheet glass that is capable of suppressing transmission of infrared rays without significantly compromising visibility. The present invention provides an infrared absorbing glass sheet for vehicles which comprises a colored component in the glass composition, characterized in that the colored component includes, in mass%, a total amount of iron oxide in terms of Fe2O3 of 0.75 to 1.5% and 0.20 to 0.40% of FeO, and characterized by having a thickness of 0.4 to 1.1 mm and having a transmittance of 72% or less at a wavelength of 1500 nm when the thickness of the infrared absorbing glass sheet is 1 mm.

Description

赤外線吸収ガラス板Infrared absorbing glass plate
 本発明は、赤外線吸収ガラス板に関し、特に1mm以下の薄板で赤外線を吸収する機能を有する赤外線吸収ガラス板に関する。 The present invention relates to an infrared absorbing glass plate, and more particularly to an infrared absorbing glass plate having a function of absorbing infrared rays with a thin plate of 1 mm or less.
 近年、温暖化等の環境負荷の低減を目的として、自動車等の車両ではガソリン燃料や電気などのエネルギー効率の向上への要求が高まっている。上記の目的を達成する方法のひとつとして、車両の軽量化が試みられており、車両の窓材として使用されるガラス板においても軽量化が検討されている。例えば、厚みが2mm以下のガラス板を使用した合わせガラス等が検討されている(例えば特許文献1、2参照)。また、上記の軽量化の他にも、赤外線の吸収性能を向上させた着色ガラス等を用いることで、日射光による車内の温度上昇を抑制し、冷房の負荷を低減させる方法も検討されている(例えば特許文献3、4)。 In recent years, in order to reduce environmental load such as global warming, there is an increasing demand for improvement in energy efficiency of gasoline fuel and electricity in vehicles such as automobiles. As one of the methods for achieving the above-mentioned purpose, weight reduction of a vehicle is attempted, and weight reduction is considered also in a glass plate used as a window material of a vehicle. For example, laminated glass using a glass plate having a thickness of 2 mm or less has been studied (see, for example, Patent Documents 1 and 2). In addition to the above-mentioned weight reduction, a method of suppressing the temperature rise in the vehicle due to solar radiation and reducing the cooling load has also been studied by using a colored glass or the like having improved infrared absorption performance. (For example, patent documents 3 and 4).
 上記のように、ガラス板の厚みが薄くなると前述したように軽量になるが、一方で強度が低下してしまうという問題がある。そこで、ガラス板の厚みが薄い薄板ガラスを化学強化処理し、薄板の化学強化ガラスを用いる手法(例えば特許文献5、6参照)が検討されている。 As described above, when the thickness of the glass plate is reduced, it becomes lightweight as described above, but there is a problem that the strength is lowered. Then, the method (for example, refer patent documents 5 and 6) which carries out the chemical strengthening process of the thin glass with a thin thickness of a glass plate, and uses the chemically strengthened glass of a thin plate is examined.
特開2003-55007号公報Japanese Patent Application Publication No. 2003-55007 国際公開2012/137742号公報International Publication 2012/137742 特開平6-166536号公報JP-A-6-166536 特開平9-48635号公報JP-A-9-48635 特表2016-530190号公報Japanese Patent Application Publication No. 2016-530190 特開2016-8161号公報JP, 2016-8161, A
 前述したように、車両の軽量化を目的としてガラス板の厚みを薄くすることが検討されており、近年では特に1mm以下の薄板ガラスを用いるため様々な検討がなされている。しかし、一方でガラス板の厚みを薄くすると各種波長の透過率が高くなる。例えば、車両のフロントガラスやサイドガラスは通常可視光透過率が70%以上の合わせガラスや単板ガラスが使用され、運転者の視認性の確保という観点からはガラス板の厚みを薄くすることは有用である。 As described above, it has been studied to reduce the thickness of the glass plate for the purpose of reducing the weight of the vehicle, and in recent years, various studies have been made in particular because thin glass plates of 1 mm or less are used. However, on the other hand, when the thickness of the glass plate is reduced, the transmittance of various wavelengths is increased. For example, laminated glass or single sheet glass having a visible light transmittance of 70% or more is usually used as a windshield or side glass of a vehicle, and it is useful to reduce the thickness of the glass sheet from the viewpoint of securing the driver's visibility. is there.
 しかし一方で赤外域の光の透過率も上昇してしまう。赤外線はガラスを透過する太陽光に起因する肌のジリジリ感や、車内の温度を上昇させる原因となるものであり、透過率が高くなると車両の冷房負荷が高くなり、結果的に環境負荷の低減という目的への寄与が小さくなってしまうという問題がある。特に、前述したフロントガラスのように大面積の窓ガラスや、サイドガラスのように運転者と近接する窓ガラスにおいて、上記のジリジリ感等の太陽光の刺激が強いと体感温度が高くなってしまい、必要以上に車両の冷房を使用してしまう懸念がある。 However, the transmittance of light in the infrared range also increases. Infrared rays cause the skin to feel greasy due to sunlight passing through the glass and cause the temperature in the car to rise. When the transmittance is high, the cooling load on the vehicle is high, and as a result, the environmental load is reduced. There is a problem that the contribution to the purpose becomes small. In particular, in the window glass with a large area like the front glass mentioned above, or the window glass close to the driver like the side glass, the sensation temperature becomes high when the stimulation of sunlight such as the above-mentioned squeaky feeling is strong. There is a concern that the cooling of the vehicle may be used more than necessary.
 通常、赤外線の透過を抑制可能なガラス板としては、汎用的に用いられるソーダライムガラスに赤外線を吸収する成分を含有させた、赤外線吸収ガラス板が用いられる。赤外線
吸収性能を向上させるのであれば、赤外線を吸収する着色成分の含有量を単純に増加させれば良いが、一方で赤外線の吸収性能を高めると、可視光透過率を損なうことがある。上記のフロントガラスやサイドガラス等は視認性の確保が要求されるため、上記のように単純に着色成分の含有量を増加させるだけでは不十分となる場合がある。
Usually, as a glass plate which can suppress transmission of infrared rays, an infrared ray absorbing glass plate in which a component for absorbing infrared rays is contained in soda lime glass which is generally used is used. If the infrared absorption performance is to be improved, the content of the coloring component that absorbs infrared light may be simply increased. However, if the infrared absorption performance is enhanced, the visible light transmittance may be impaired. Since the above-mentioned front glass, side glass and the like are required to secure visibility, it may be insufficient to simply increase the content of the coloring component as described above.
 そこで本発明は、視認性を大きく損なうことなく、赤外線の透過を抑制可能な薄板ガラスを得る事を目的とした。 Therefore, an object of the present invention is to obtain a thin sheet glass capable of suppressing transmission of infrared light without largely impairing the visibility.
 本発明者が上記課題に対して鋭意検討を行ったところ、赤外線のうち特に1500nm近傍の光の透過率を小さくすると、前述した肌への太陽光の刺激の低減に効果があり、かつ可視光透過率が大きく損なわれないことがわかった。従って、本発明では厚みが1mm程度のガラス板でも、厚みが2mm程度の赤外線吸収ガラス板程度の、波長1500nmの赤外線吸収性能を示す赤外線吸収ガラス板を得る事を目的とした。 The inventors of the present invention have intensively studied the above-mentioned problems, and it is effective to reduce the stimulation of sunlight to the skin as described above by reducing the transmittance of light in the vicinity of 1500 nm among infrared rays, and visible light It was found that the transmittance was not significantly impaired. Therefore, an object of the present invention is to obtain an infrared absorbing glass plate having an infrared absorbing ability at a wavelength of 1500 nm, which is about an infrared absorbing glass plate having a thickness of about 2 mm even with a glass plate having a thickness of about 1 mm.
 すなわち本発明は、ガラス組成中に着色成分を含有する車両用の赤外線吸収ガラス板において、該着色成分は、質量%で、鉄酸化物の全量がFe換算で0.75~1.5%、及びFeOが0.20~0.40%、であり、板厚が0.4~1.1mmであり、該赤外線吸収ガラス板の厚みが1mmのとき、波長1500nmにおける透過率が72%以下であることを特徴とする赤外線吸収ガラス板である。 That is, according to the present invention, in the infrared absorbing glass plate for vehicles containing a coloring component in the glass composition, the coloring component is, in mass%, the total amount of iron oxide is 0.75 to 1. in terms of Fe 2 O 3 . 5% and FeO of 0.20 to 0.40%, the plate thickness is 0.4 to 1.1 mm, and when the thickness of the infrared ray absorbing glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72 It is an infrared rays absorption glass board characterized by being less than%.
 本発明により、視認性を大きく損なうことなく、赤外線の透過を抑制可能な薄板ガラスを得る事が可能となった。特に、厚み1mmにおいて波長1500nmの赤外線の透過を抑制することが可能である。 According to the present invention, it has become possible to obtain a thin glass sheet capable of suppressing the transmission of infrared light without largely impairing the visibility. In particular, it is possible to suppress transmission of infrared light having a wavelength of 1500 nm at a thickness of 1 mm.
1:用語の説明
 本明細書における用語を以下に説明する。
1: Explanation of terms The terms in the present specification are explained below.
(各種光学特性)
 各種光学特性は、ガラス板の厚みによって値が変化し、例えば透過率はガラス板の厚みが厚いほど値が低くなる。従って本明細書では、ガラス板の厚み(以下、「板厚」と記載することもある)が1.0mmの時の各種光学特性を用いることとした。また、本明細書における以下に記載する光学特性は、いずれも分光光度計U-4000(日立製作所製)を用いて測定した値から算出した。
(Various optical characteristics)
The values of the various optical characteristics change depending on the thickness of the glass plate, and for example, the transmittance decreases as the thickness of the glass plate increases. Therefore, in the present specification, it is decided to use various optical characteristics when the thickness of the glass plate (hereinafter sometimes referred to as "plate thickness") is 1.0 mm. In addition, all of the optical characteristics described below in the present specification were calculated from values measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.).
(赤外線吸収性能)
 本明細書では、波長1500nmにおける赤外線の透過率(以下、「T1500」と記載することもある)を測定し、該T1500が低いほど赤外線吸収性能が高いとした。また、車両のフロントガラスやサイドガラスに使用可能な赤外線吸収性能を有する公知のガラス板(厚み2mm)について、複数種類のT1500を測定したところ約67~71%程度となることがわかった。そのため、本明細書ではT1500が72%以下となるものを「赤外線の透過を抑制可能」とした。
(Infrared absorption performance)
In the present specification, the transmittance of infrared light at a wavelength of 1500 nm (hereinafter sometimes referred to as “T 1500 ”) was measured, and the lower the T 1500, the higher the infrared absorption performance. In addition, it was found that a plurality of types of T 1500 were measured on a known glass plate (2 mm in thickness) having infrared absorption performance that can be used for the front glass and side glass of a vehicle, and it was about 67 to 71%. Therefore, in the present specification, those in which T 1500 is 72% or less are referred to as “the transmission of infrared rays can be suppressed”.
(可視光透過率)
 本明細書では、JIS Z8722:2009により供試体の分光透過率を求め、標準の光Aに対する刺激値Yの値を百分率で表した値を可視光透過率(以下、「YA」と記載することもある)とした。また、車両用のフロントガラスやサイドガラスとして用いる場合は、可視光透過率が70%以上、より好ましくは75%以上であるのが好ましい。
(Visible light transmittance)
In the present specification, the spectral transmittance of a test sample is determined according to JIS Z 8722: 2009, and the value representing the stimulation value Y with respect to the standard light A as a percentage is described as visible light transmittance (hereinafter, “YA”). Also). Moreover, when using as a windshield or side glass for vehicles, it is preferable that the visible light transmittance | permeability is 70% or more, More preferably, it is 75% or more.
(表面圧縮応力)
 本明細書では、表面応力計(折原製作所製、FSM-6000LE)を用いて測定した値を、表面圧縮応力(以下、「CS」と記載することもある)とした。
(Surface compressive stress)
In the present specification, a value measured using a surface stress meter (FSM-6000LE, manufactured by Orihara Mfg. Co., Ltd.) is referred to as surface compressive stress (hereinafter sometimes referred to as “CS”).
(ソーダライムガラス)
 本明細書での「ソーダライムガラス」は、SiO、NaO、及びCaOを含む一般的なソーダライムガラスを指すものとする。また、汎用的に流通しているソーダライムガラス(例えば、ISO16293-1:2008に規定されたガラス組成)を用いるものとしてよい。また、例えば質量%で、SiOを65~75、NaOを10~20、KOを0~3、CaOを5~15、MgOを0~5、及びAlを0~3、含有するものとしてもよい。
(Soda lime glass)
The term "soda lime glass" as used herein refers to a common soda lime glass containing SiO 2 , Na 2 O, and CaO. In addition, soda lime glass (for example, a glass composition defined in ISO 16293-1: 2008) which is widely distributed may be used. Also, for example, by mass%, 65 to 75 SiO 2 , 10 to 20 Na 2 O, 0 to 3 K 2 O, 5 to 15 CaO, 0 to 5 MgO, and 0 to 5 Al 2 O 3 It is good also as 3 and containing.
2:着色成分
 本発明は、上記のガラス組成中に着色成分を含有させた赤外線吸収ガラスである。すなわち本発明は、ガラス組成中に着色成分を含有する赤外線吸収ガラス板において、該着色成分は、質量%で、鉄酸化物の全量がFe換算で0.75~1.5%、及びFeOが0.20~0.40%、であり該赤外線吸収ガラス板の厚みが1mmのとき、波長1500nmにおける透過率が72%以下であることを特徴とする赤外線吸収ガラス板である。
2: Colored Component The present invention is an infrared ray absorbing glass in which a colored component is contained in the above glass composition. That is, according to the present invention, in the infrared absorbing glass plate containing a coloring component in the glass composition, the coloring component is, by mass%, the total amount of iron oxide is 0.75 to 1.5% in terms of Fe 2 O 3 , And the FeO content is 0.20 to 0.40%, and when the thickness of the infrared absorption glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72% or less.
 また、好ましくは、ガラス組成中に着色成分を含有する赤外線吸収ガラス板において、該着色成分は、質量%で、鉄酸化物の全量がFe換算で0.80~1.5%、及びFeOが0.20~0.40%、であり該赤外線吸収ガラス板の厚みが1mmのとき、波長1500nmにおける透過率が72%以下であることを特徴とする赤外線吸収ガラス板である。 In addition, preferably, in the infrared ray absorbing glass plate containing a coloring component in the glass composition, the coloring component is, by mass%, the total amount of iron oxide is 0.80 to 1.5% in terms of Fe 2 O 3 , And the FeO content is 0.20 to 0.40%, and when the thickness of the infrared absorption glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72% or less.
 以下に、各着色成分について説明する。 Each coloring component is described below.
(鉄酸化物)
 鉄酸化物は必須成分であり、赤外線吸収性能を向上させる主要な成分である。鉄酸化物はガラス中で2価と3価が混在した状態となっており、その割合はガラスの還元状態によって異なる。そのため、鉄酸化物はFeに換算して含有量を示すこととする。本発明において、Feに換算した全鉄酸化物は0.75~1.5質量%含む。0.75質量%未満、又は0.8質量%未満だとT1500の抑制効果が不十分となり易く、一方で1.5質量%を超えると溶融窯内において、バーナー等の燃焼熱をガラス素地表面で吸収し易くなり生産効率が低下することがある。好ましくは下限値を0.80質量%以上、より好ましくは0.82質量%以上としてもよい。また、上限値を好ましくは1.4質量%以下、より好ましくは1.30質量%以下としてもよい。
(Iron oxide)
Iron oxide is an essential component and is a main component that improves infrared absorption performance. Iron oxide is in a state in which divalent and trivalent are mixed in the glass, and the ratio varies depending on the reduction state of the glass. Therefore, iron oxide is converted to Fe 2 O 3 to indicate the content. In the present invention, the total iron oxide converted to Fe 2 O 3 contains 0.75 to 1.5% by mass. If it is less than 0.75 mass% or less than 0.8 mass%, the suppression effect of T 1500 tends to be insufficient. On the other hand, if it exceeds 1.5 mass%, the combustion heat of the burner etc. It is likely to be absorbed on the surface and the production efficiency may be reduced. Preferably, the lower limit value may be 0.80 mass% or more, more preferably 0.82 mass% or more. Further, the upper limit value may be preferably 1.4 mass% or less, more preferably 1.30 mass% or less.
 本発明は、上記鉄酸化物の一部を還元してFeOとする。FeOは、赤外線吸収性能を向上させる成分として知られている。本発明では、FeOを0.20~0.40質量%含むことによって、厚みが1.0mmの時のT1500を72%以下とすることが可能となる。また、好ましくは0.22質量%以上、より好ましくは0.25質量%以上としてもよい。 In the present invention, a part of the iron oxide is reduced to FeO. FeO is known as a component that improves infrared absorption performance. In the present invention, by containing 0.20 to 0.40% by mass of FeO, it becomes possible to make T 1500 at a thickness of 1.0 mm 72% or less. In addition, it may be 0.22% by mass or more, more preferably 0.25% by mass or more.
(Ti酸化物)
 Ti酸化物は紫外線吸収性能を向上させる任意成分であり、また、本発明の組成系では鉄酸化物に対して還元剤として働く成分である。本発明では0~2.0質量%の範囲で含有していてもよい。また、本発明者らが検討を行ったところ、本発明の組成系では、Ti
酸化物の含有量が増加すると化学強化処理を行った後のCSが高くなる傾向があることが新たにわかった。従って、前記着色成分に加えて、着色成分としてTiOを0.01~2.0質量%含有するのが好ましい。また、より好ましくは0.8質量%以上としてもよい。なお、Ti酸化物はガラス中ではTi3+やTi4+の形で存在するが、本明細書においては全量をTiOに換算した値を用い、Ti酸化物を「TiO」で記載した。
(Ti oxide)
Ti oxide is an optional component that improves the ultraviolet light absorbing performance, and in the composition system of the present invention, it is a component that works as a reducing agent for iron oxide. In the present invention, it may be contained in the range of 0 to 2.0% by mass. Moreover, when the present inventors examined, in the composition system of the present invention, Ti
It was newly found that when the oxide content increased, CS after chemical strengthening tended to increase. Therefore, in addition to the coloring component, it is preferable to contain 0.01 to 2.0% by mass of TiO 2 as the coloring component. Further, more preferably, it may be 0.8 mass% or more. In addition, although Ti oxide exists in the form of Ti 3+ or Ti 4+ in glass, in the present specification, a value obtained by converting the total amount into TiO 2 is used, and the Ti oxide is described as “TiO 2 ”.
(Ce酸化物)
 Ce酸化物は赤外線吸収性能を向上させる任意成分であり、0~1.5質量%の範囲内で含有してもよい。なお、Ce酸化物はガラス中ではCe3+やCe4+の形で存在するが、本明細書においては全量をCeOに換算した値を用い、Ce酸化物を「CeO」で記載した。
(Ce oxide)
Ce oxide is an optional component that improves infrared absorption performance, and may be contained in the range of 0 to 1.5% by mass. The Ce oxide is present in the form of Ce 3 + or Ce 4 + in the glass, but in the present specification, the Ce oxide is described as “CeO 2 ” using a value obtained by converting the total amount to CeO 2 .
(その他任意成分)
 上記の他に、ガラスの透過色、反射色や各種透過率を調整することを目的としてCo酸化物、Cr酸化物、Seを0.1質量%未満、及びMn酸化物を0.5質量%未満の範囲で含有させてもよい。また、ガラスの還元状態の調整等の目的でV、MoO、CuO、SO、及びSnO等を合計で1.0質量%以下含有させてもよい。なお、SOについては、ガラスの製造工程で清澄剤として加える硫酸ナトリウムに由来して、組成中に少量含まれることがある。
(Other optional components)
In addition to the above, Co oxide, Cr oxide, Se is less than 0.1 mass%, and Mn oxide is 0.5 mass% for the purpose of adjusting the transmission color, reflection color and various transmittances of glass. You may contain in the range of less than. In addition, for the purpose of adjusting the reduction state of the glass, etc., V 2 O 5 , MoO 3 , CuO, SO 3 , SnO 2 or the like may be contained in a total amount of 1.0 mass% or less. Note that the SO 3, is derived from the sodium sulfate added as a clarifying agent in the manufacturing process of the glass, it may be included in small amounts in the composition.
 また、NiOはガラス中で硫化ニッケルの形成をもたらすので、本来含有は望ましくない。硫化ニッケルは、目視ではほとんど確認できず、通常の状態ではガラスに害を与えないが、熱膨張係数が大きいので熱強化時などにその体積膨張により応力バランスが崩れて、ガラスが割れることがある。しかし、一方でガラスの透過色を調整する成分でもある為、任意成分として50ppm以下で含んでもよい。 Also, the inclusion is not desirable because NiO leads to the formation of nickel sulfide in the glass. Nickel sulfide can hardly be confirmed visually and hardly harms the glass in a normal state, but the thermal expansion coefficient is large, so the stress may collapse due to its volume expansion at the time of thermal strengthening etc., and the glass may be broken. . However, on the other hand, since it is also a component for adjusting the transmission color of glass, it may contain 50 ppm or less as an optional component.
3:赤外線吸収ガラス板
 本発明の赤外線吸収ガラス板は、前述したように車両用に用いるものであり、厚み1mmのときの波長1500nmにおける透過率T1500が72%以下となるガラス板である。また、FeOの含有量を0.25質量%以上とすることによって、上記のT1500を69%以下とすることが可能となるため好ましい。また、良好な視認性を確保する目的で可視光透過率YAが70%以上となることが好ましい。
3: Infrared Absorbing Glass Plate The infrared absorbing glass plate of the present invention is used for vehicles as described above, and is a glass plate having a transmittance T 1500 at a wavelength of 1500 nm of 72% or less at a thickness of 1 mm. Further, by setting the content of FeO to 0.25% by mass or more, the above-mentioned T 1500 can be made to 69% or less, which is preferable. Moreover, it is preferable that the visible light transmittance YA be 70% or more in order to secure good visibility.
 本発明の赤外線吸収ガラス板は、生産性等の観点からソーダライムガラスに着色成分を含有させたものを用いるのが好ましい。また、化学強化処理等を行う場合は、該ソーダライムガラスのAlやNaO等の含有量を調整した化学強化処理をし易い易強化ガラスや、アルミノシリケートガラス等を用いて、これらガラスに着色成分を含有させてもよい。 From the viewpoint of productivity etc., it is preferable to use a soda lime glass containing a coloring component as the infrared absorbing glass plate of the present invention. When performing the chemical strengthening treatment, etc., and chemical strengthening treatment was easy easy tempered glass content was adjusted such as Al 2 O 3 and Na 2 O in the soda-lime glass, with aluminosilicate glass, These glasses may contain a coloring component.
 本発明の赤外線吸収ガラス板は板厚が0.4~1.1mmであり、厚み1mmのときでも良好な赤外線吸収性能を有するものである。また、より好ましくは0.7~1.1mmとしてもよい。 The infrared absorbing glass plate of the present invention has a thickness of 0.4 to 1.1 mm, and has good infrared absorbing performance even when the thickness is 1 mm. More preferably, it may be 0.7 to 1.1 mm.
 本発明の赤外線吸収ガラス板は、化学強化処理された化学強化ガラスであるのが好ましい。化学強化処理はガラス板表面に圧縮応力を生じさせガラス板の強度を高めるものであり、前述したように、ガラス板の厚みが薄くなることに伴って低下する強度を補うことが可能である。 The infrared absorbing glass plate of the present invention is preferably a chemically strengthened glass. The chemical strengthening treatment generates a compressive stress on the surface of the glass plate to increase the strength of the glass plate, and as described above, it is possible to compensate for the strength which decreases as the thickness of the glass plate becomes thinner.
 本発明の赤外線吸収ガラス板は、平板でも、曲面を有する曲げガラス板でもよい。一般的に、車両用の窓材は曲げガラス板が用いられることが多いことから、前記赤外線吸収ガ
ラス板が、曲面形状を有するものであることが好ましい。
The infrared absorbing glass plate of the present invention may be a flat plate or a bent glass plate having a curved surface. Generally, since a bent glass plate is often used as a window material for vehicles, it is preferable that the infrared absorbing glass plate has a curved shape.
 また、ガラス板を曲げ加工すると、該ガラス板の凸面の表面近傍には引っ張り応力が生じることになる。引っ張り応力が大きいほどガラス板の表面の強度は低下する。ここで、前述したように本発明の赤外線吸収ガラス板の組成系では、Ti酸化物の含有量を増やすとCSが高くなる傾向にあることがわかった。化学強化処理されたガラス板の表面には圧縮応力が生じ、圧縮応力が強いほどCSが高くなる。上記のように曲げ加工されたガラス板に圧縮応力を生じさせると、曲げ加工によって生じた凸面の引っ張り応力を緩和する方向に圧縮応力が働くと考えられる。よって、本発明の赤外線吸収ガラス板は、曲面形状を有する化学強化ガラスであるのが好ましい。さらに、当該ガラス板は、着色成分としてTiOを0.01~2.0質量%含有するのが好ましい。 In addition, when a glass sheet is bent, a tensile stress is generated in the vicinity of the convex surface of the glass sheet. The greater the tensile stress, the lower the strength of the surface of the glass sheet. Here, as described above, it was found that in the composition system of the infrared absorbing glass plate of the present invention, CS tends to become higher as the content of Ti oxide is increased. A compressive stress is generated on the surface of the chemically strengthened glass plate, and the stronger the compressive stress, the higher the CS. When a compressive stress is generated in the glass sheet bent as described above, it is considered that the compressive stress acts in the direction to relieve the tensile stress of the convex surface generated by the bending. Therefore, the infrared absorbing glass plate of the present invention is preferably a chemically strengthened glass having a curved shape. Furthermore, the glass plate preferably contains 0.01 to 2.0% by mass of TiO 2 as a coloring component.
(合わせガラス)
 また、本発明の赤外線吸収ガラス板を用いて、赤外線吸収ガラス板と、1枚以上のガラス板とを有する合わせガラスとするのが好ましい。当該ガラス板は目的に応じて適宜選択されればよく、赤外線吸収ガラス板や着色ガラス板でも、一般的なソーダライムガラスのガラス板でもよく、板厚が同じでも異なっていてもよい。例えば、軽量化と適度な強度を維持するという観点から1mm以上のソーダライムガラスを用いるのが好ましい。また、強度と適度な視認性を確保するという観点から、上限値を4mm以下、より好ましくは3mm以下としてもよい。
(Laminated glass)
Moreover, it is preferable to set it as the laminated glass which has an infrared rays absorption glass plate and one or more glass plates using the infrared rays absorption glass plate of this invention. The said glass plate should just be suitably selected according to the objective, and an infrared rays absorption glass plate, a colored glass plate, and a general soda lime glass glass plate may be sufficient, and plate thickness may be same or different. For example, it is preferable to use soda lime glass of 1 mm or more from the viewpoint of weight reduction and maintaining appropriate strength. In addition, in view of securing strength and appropriate visibility, the upper limit value may be 4 mm or less, more preferably 3 mm or less.
 また、上記の合わせガラスは、赤外線吸収ガラス板と、任意のガラス板とを、中間樹脂膜を介して一体化させる。当該中間樹脂膜は接着性の熱可塑性樹脂であり、一般的にオートクレーブ等を用いて加熱・加圧処理を行うことで合わせガラスを一体化させる。当該中間樹脂膜としては、常温でフィルム形状をとるものが広く用いられており、例えばポリビニルブチラール樹脂(PVB樹脂)やEVA樹脂を含むホットメルトタイプの接着材等が挙げられる。また、中間樹脂膜は、その一部が着色したもの、遮音機能を有する層をサンドイッチしたもの、厚さに傾斜があるもの、表面にエンボス加工が処理されたものなども使用できる。また、当該中間樹脂膜に紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、着色剤、接着調整剤を適宜添加配合したものでも良い。 Moreover, said laminated glass integrates an infrared rays absorption glass plate and arbitrary glass plates through an intermediate | middle resin film. The intermediate resin film is an adhesive thermoplastic resin, and generally, the laminated glass is integrated by performing heating and pressure treatment using an autoclave or the like. As the intermediate resin film, one taking a film shape at normal temperature is widely used, and examples thereof include a hot melt type adhesive containing polyvinyl butyral resin (PVB resin) and EVA resin. In addition, as the intermediate resin film, it is possible to use one in which a part thereof is colored, one in which a layer having a sound insulation function is sandwiched, one in which the thickness is inclined, and one in which the surface is embossed. In addition, an ultraviolet absorber, an antioxidant, an antistatic agent, a heat stabilizer, a colorant, and an adhesion regulator may be appropriately added and blended to the intermediate resin film.
4:赤外線吸収ガラス板の製造方法
 本発明は、フロート法を用いて製造する事が可能である。フロート法は、ガラス板を製造する際に一般的に用いられる方法である。当該方法では、まず原料バッチ、又は原料バッチとガラスカレットを、原料を溶融する溶融窯へ投入して溶融ガラスとし、次に該溶融ガラスを溶融スズ上に流し込む事によって板状に成型し、次に成型されたガラスを冷却してガラス板を得る。また、溶融時に組成に含まれない還元剤等を加えて、ガラスの還元状態を調整してもよい。また、フロート法の他にも、フュージョン法(オーバーフローダウンドロー法を含む)、ダウンドロー法、リドロー法、ロールアウト法、プレス法等の様々な製造方法で得ることが可能である。
4: Method for Producing Infrared Absorbing Glass Plate The present invention can be produced using a float method. The float method is a method generally used in producing a glass sheet. In this method, first, the raw material batch, or the raw material batch and the glass cullet are charged into a melting furnace for melting the raw material to form molten glass, and then the molten glass is cast into molten tin on molten tin to form a plate The molded glass is cooled to obtain a glass plate. Moreover, a reducing agent etc. which are not contained in a composition at the time of melting may be added, and the reduction state of glass may be adjusted. In addition to the float method, various production methods such as a fusion method (including an overflow downdraw method), a downdraw method, a redraw method, a rollout method, and a press method can be used.
 上記のようにして得たガラス板は所望形状に切断、加工される。車両用に用いる場合は、切断された後に加熱を行って強化処理を施すことがある。特に板厚が0.4~1.1mmの時は、前述したように化学強化処理を行うのが好ましい。 The glass plate obtained as described above is cut and processed into a desired shape. When it is used for vehicles, it may be heated after being cut to apply strengthening treatment. In particular, when the plate thickness is 0.4 to 1.1 mm, it is preferable to carry out the chemical strengthening treatment as described above.
(化学強化処理)
 化学強化処理は、ガラス板中に最も多く含まれるアルカリ金属イオンAを、上記アルカリ金属イオンAよりもイオン半径の大きいアルカリ金属イオンBに置換するイオン交換によって、ガラス板表面に圧縮応力を生じさせる処理である。例えば、アルカリ金属イオンAがNaイオンである場合には、アルカリ金属イオンBとして、Kイオン、Rbイオン及
びCsイオンからなる群から選ばれる少なくとも1つを用いることができる。アルカリ金属イオンAがNaイオンである場合、アルカリ金属イオンBとして、Kイオンを用いることが好ましい。
(Chemical strengthening treatment)
The chemical strengthening treatment generates compressive stress on the surface of the glass plate by ion exchange in which the alkali metal ion A contained most in the glass plate is replaced with the alkali metal ion B having a larger ion radius than the alkali metal ion A. It is a process. For example, when the alkali metal ion A is a Na ion, at least one selected from the group consisting of a K ion, an Rb ion, and a Cs ion can be used as the alkali metal ion B. When the alkali metal ion A is a Na ion, it is preferable to use a K ion as the alkali metal ion B.
 化学強化処理は、上記のアルカリ金属イオンAを含むガラス板の表面を、アルカリ金属Bイオンを含む塩に所定時間接触させることによって行う。また、この時イオン交換の促進させる為に上記の塩やガラス板を加熱するのが望ましい。上記の塩としては、アルカリ金属イオンBを含む硝酸塩、硫酸塩、炭酸塩、水酸化物塩及びリン酸塩からなる群から選ばれる少なくとも1つを用いることができる。また、上記のイオン交換時の塩の温度は、塩の種類に応じて適宜決定されればよいが、該塩の融点以上~該ガラス板の歪点温度以下であることが好ましい。温度が低過ぎるとイオン交換が促進されず、高過ぎると応力緩和が生じて所望の強度が出ない場合がある。例えば、接触させる塩の原料に硝酸カリウムを用いる場合、硝酸カリウムの融点が333℃であるため、該塩の温度を333℃以上、化学強化処理するガラス板の歪点温度以下の範囲内として、当該塩にガラス板を接触させる。塩に接触させる時間は特に限定されないが、例えばガラス板を溶融塩に浸漬させる場合は、0.5~8時間であることが好ましい。 The chemical strengthening treatment is performed by bringing the surface of the glass plate containing the alkali metal ion A into contact with a salt containing an alkali metal B ion for a predetermined time. At this time, in order to promote ion exchange, it is desirable to heat the above-mentioned salt or glass plate. As the above-mentioned salt, at least one selected from the group consisting of nitrate, sulfate, carbonate, hydroxide and phosphate containing an alkali metal ion B can be used. Further, the temperature of the salt at the time of the above ion exchange may be appropriately determined according to the type of the salt, but is preferably not less than the melting point of the salt and not more than the strain point temperature of the glass plate. When the temperature is too low, ion exchange is not promoted, and when it is too high, stress relaxation may occur and the desired strength may not be obtained. For example, when using potassium nitrate as a raw material of the salt to be contacted, since the melting point of potassium nitrate is 333 ° C., the temperature of the salt is 333 ° C. or more and the strain point temperature of the glass plate to be subjected to chemical strengthening treatment. Bring the glass plate into contact with the The time of contact with the salt is not particularly limited, but preferably 0.5 to 8 hours, for example, in the case of immersing the glass plate in the molten salt.
 前記アルカリ金属イオンBを含む塩にガラス板を接触させる工程により、化学強化ガラスが製造される。「塩にガラス板を接触させる」とは、ガラス板を塩浴に接触又は浸漬させることをいう。このように、本明細書において、「接触」とは「浸漬」も含む概念とする。また、塩の接触形態としては、ペースト状の塩を直接接触させるような形態、又は、融点以上に加熱した溶融塩に浸漬させるような形態なども可能であるが、これらの中では、溶融塩に浸漬させるのが望ましい。 Chemically strengthened glass is manufactured by the step of contacting the glass plate with the salt containing the alkali metal ion B. "Contacting the glass plate with the salt" refers to bringing the glass plate into contact or immersion in a salt bath. Thus, in the present specification, "contact" is a concept including "immersion". In addition, as a contact form of the salt, a form in which a paste-like salt is brought into direct contact, or a form in which the salt is immersed in a molten salt heated to the melting point or more, etc. are also possible. It is desirable to immerse in
(曲げ加工)
 ガラス板の曲げ加工は、例えば、2枚のガラス板を重ねた状態でリング型上に載置して加熱炉に通し、各ガラス板を加熱して軟化させ、重力によって所定の形状に曲げ成形する自重曲げ成形法が用いられる。ガラスの厚みが異なる場合、一般的には、厚いガラス板を下方に設置して行う。また、自重曲げによって各ガラス板を予備成形し、次いでリング型とプレス型との間に各ガラス板を挟んで加圧して成形するプレス成形法が用いられても良い。 これらとは別に、加熱炉内に設けられる複数のロール上を水平に搬送されながら所定の温度に加熱されたガラス板を、リング型で持ち上げて、曲げ型に近づけ、曲げ型に沿った形状に成形する方法が用いられても良い。各ガラス板は、離型剤を介して重ねられることが好ましい。この離型剤としては、ガラス板の軟化点付近の加熱時に溶融することのないセラミックス粉末などが好適に用いられる。
(Bending process)
The bending process of the glass plate is, for example, placing two glass plates in a stacked state, placing it on a ring mold and passing it through a heating furnace, heating and softening each glass plate, and bending forming into a predetermined shape by gravity. Self-weight bending method is used. In the case where the thickness of the glass is different, in general, a thick glass plate is placed below. Alternatively, a press forming method may be used in which each glass plate is preformed by self-weight bending, and then each glass plate is sandwiched and pressed between a ring mold and a press mold. Apart from these, while being conveyed horizontally on a plurality of rolls provided in the heating furnace, the glass plate heated to a predetermined temperature is lifted with a ring mold and brought close to a bending mold so that it has a shape along a bending mold. A molding method may be used. It is preferable that the glass plates be stacked via a release agent. As this mold release agent, ceramic powder etc. which are not melted at the time of heating near the softening point of a glass plate are used suitably.
 本発明の実施例、比較例、及び参考例を以下に示す。 Examples, comparative examples, and reference examples of the present invention are shown below.
 ガラス原料として、ガラス母組成の原料には、珪石、酸化アルミニウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム及び酸化マグネシウムを用い、着色剤の原料には、酸化第2鉄、酸化チタン、酸化セリウムを用いた。また、清澄剤としては硫酸ナトリウムを、還元剤として炭素系還元剤(具体的にはカーボン粉末)を用いた。ガラス母組成の母成分は、質量%で、SiOを72.0、NaOを13.0、KOを1.0、CaOを8.5、MgOを3.5、及びAlを2.0になるように原料を調整し、そこに着色剤、清澄剤、還元剤をガラス原料に対して所定の範囲内となるように外割りで加えて混合しガラス原料とした。この原料を電気炉中で1500℃に加熱、溶融させた。次に、1460℃で6時間溶融状態を維持した後、1400℃まで1時間で降温してさらに1時間保持することにより清澄なガラス融液とした。 As a glass raw material, silica stone, aluminum oxide, sodium carbonate, potassium carbonate, calcium carbonate and magnesium oxide are used as the raw material of the glass matrix composition, and ferric oxide, titanium oxide and cerium oxide are used as the raw material of the colorant. It was. In addition, sodium sulfate was used as a fining agent, and a carbon-based reducing agent (specifically, carbon powder) was used as a reducing agent. Mother components of the glass base composition, in mass%, SiO 2 of 72.0, 13.0 and Na 2 O, K 2 O of 1.0, 8.5 CaO, 3.5 to MgO, and Al 2 The raw material was adjusted so that O 3 was 2.0, and the coloring agent, the fining agent, and the reducing agent were separately added to the glass raw material so as to be within a predetermined range, and mixed to obtain a glass raw material . The raw material was heated and melted at 1500 ° C. in an electric furnace. Next, the molten state was maintained at 1460 ° C. for 6 hours, then the temperature was lowered to 1400 ° C. for 1 hour, and the temperature was further held for 1 hour to obtain a clear glass melt.
 得られたガラス融液をグラファイト製型枠上に流し出した後、別の電気炉内で室温まで充分徐冷してガラスブロックを得た。次いで、このガラスブロックを厚み1.0mmの板状になるまで光学研磨して、大きさ50mm×50mmのガラス成分組成分析および各種光学特性等の測定用サンプルとした。ただし、参考例1については2.0mmの板状とした。 The obtained glass melt was poured out on a graphite mold, and then sufficiently slowly cooled to room temperature in another electric furnace to obtain a glass block. Then, the glass block was optically polished until it became a plate having a thickness of 1.0 mm, to obtain samples of measurement of a glass component composition analysis of 50 mm × 50 mm, various optical characteristics, and the like. However, about the reference example 1, it was set as the plate shape of 2.0 mm.
 得られた各サンプルのガラス組成分析は、蛍光X線分析装置を用いて、Fe、Ti、Ceについてそれぞれ行った。ガラス中で複数の酸化状態を取る成分については、明細書中に記載した通り所定の酸化状態に換算し、各成分の含有量の全量をそれぞれFe、TiO、及びCeOを用いて示した。また、FeOは波長約1100nmでの透過率から含有量を算出した。得られた結果を表1、2へ示した。 The glass composition analysis of each of the obtained samples was performed on Fe, Ti, and Ce using a fluorescent X-ray analyzer. The components which take a plurality of oxidation states in glass are converted to predetermined oxidation states as described in the specification, and the total content of each component is Fe 2 O 3 , TiO 2 and CeO 2 respectively. Shown. Moreover, FeO calculated content from the transmittance | permeability in wavelength about 1100 nm. The obtained results are shown in Tables 1 and 2.
(光学特性)
 光学特性は、いずれも分光光度計U-4000(日立製作所製)を用いて測定した値から、波長1500nmにおける赤外線の透過率(T1500)と、可視光透過率(YA)とを測定した。なお、YAはJIS Z8722:2009により供試体の分光透過率を求め、標準の光Aに対する刺激値Yの値を百分率で表した値を用いた。得られた各値を表1、2へ示した。
(optical properties)
The optical characteristics were measured for the transmittance of infrared light at a wavelength of 1500 nm (T 1500 ) and the visible light transmittance (YA) from values measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.). In addition, YA calculated | required the spectral transmission factor of the specimen by JISZ8722: 2009, and used the value which represented the value of the stimulation value Y with respect to the light A of the standard in percentage. The obtained values are shown in Tables 1 and 2.
(表面圧縮応力)
 まず、実施例1~13、及び比較例1、3の各測定用サンプルに化学強化処理を施した。化学強化処理は、465℃に保持した硝酸カリウム溶融塩浴を準備し、該溶融塩浴と同じ温度に予熱した測定用サンプルを、該溶融塩浴へ2時間浸漬させることによって行った。また、浸漬後に各サンプルを取り出し、冷却後に洗浄して化学強化された各測定用サンプルを得た。
(Surface compressive stress)
First, the chemical strengthening treatment was applied to the measurement samples of Examples 1 to 13 and Comparative Examples 1 and 3. The chemical strengthening treatment was performed by preparing a potassium nitrate molten salt bath maintained at 465 ° C., and immersing a measurement sample preheated to the same temperature as the molten salt bath in the molten salt bath for 2 hours. In addition, after immersion, each sample was taken out, cooled and washed to obtain chemically strengthened samples for measurement.
 次に、得られた各測定用サンプルについて、表面応力計(折原製作所製、FSM-6000LE)用いて表面圧縮応力を測定した。当該測定において、屈折率は1.52、光弾性定数は26.0((nm/cm)/MPa)をそれぞれ用いた。得られた各値を表1、2へ示した。 Next, the surface compressive stress of each of the obtained measurement samples was measured using a surface stress meter (FSM-6000LE, manufactured by Orihara Mfg. Co., Ltd.). In the measurement, the refractive index is 1.52, and the photoelastic constant is 26.0 ((nm / cm) / MPa). The obtained values are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より、実施例1~15はいずれもT1500が72%以下、YAが80%以上となることがわかった。また、FeOが0.25%以上である実施例1~8、14はT1500が69%以下であり、より赤外線吸収性能が高いものであることがわかった。 From the above, it was found that in each of Examples 1 to 15, T 1500 was 72% or less and YA was 80% or more. In Examples 1 to 8 and 14 in which FeO is 0.25% or more, T 1500 is 69% or less, and it was found that the infrared absorption performance is higher.
 一方で、比較例1、3、6は鉄酸化物の全量は実施例程度であるものの、FeOの含有量が少なく、赤外線吸収性能が未達となるものとなった。また、比較例5はFeOの含有量が実施例程度であるものの、鉄酸化物の全量が少なく、赤外線吸収性能が未達となるものとなった。また、比較例2、7~9は鉄酸化物の全量及びFeOの含有量が実施例よりも少ないものであり、赤外線吸収性能が未達となった。また、比較例4は着色成分等を入れない一般的なソーダライムガラスであり、YA、T1500ともに高いものとなった。 On the other hand, in Comparative Examples 1, 3 and 6, although the total amount of iron oxide is similar to that of the example, the content of FeO is small, and the infrared absorption performance is not achieved. Moreover, although the content of FeO of Comparative Example 5 is similar to that of the example, the total amount of iron oxide is small, and the infrared absorption performance is not achieved. Further, in Comparative Examples 2 and 7 to 9, the total amount of iron oxide and the content of FeO were smaller than those in Examples, and the infrared absorption performance was not achieved. Further, Comparative Example 4 is a general soda lime glass containing no coloring component and the like, and both YA and T 1500 were high.
 また、TiOの含有量が0.02wt%程度である実施例1、6、7、9、及び比較例1よりも、含有量が0.8wt%以上である実施例2~5、8、10~13、及び比較例3の方がCSの値が高くなることが示された。 In addition, as compared with Examples 1, 6, 7, 9 and Comparative Example 1 in which the content of TiO 2 is about 0.02 wt%, Examples 2 to 5, 8 in which the content is 0.8 wt% or more, It was shown that the value of CS was higher in 10 to 13 and in Comparative Example 3.
 また、参考例1、2は公知の赤外線を吸収する機能を有する着色ガラスを模して作成したサンプルである。当該サンプルは、板厚2mm(参考例1)、板厚1mm(参考例2)として、各種光学特性を測定した。参考例1のT1500は67.4%、参考例2のT1500は78.8%であり、10%以上の差があることがわかった。以上より、板厚を薄くすると赤外線の透過率が著しく上昇してしまうことが示された。 Moreover, the reference examples 1 and 2 are the samples made in imitation of the colored glass which has the function to absorb a well-known infrared ray. The said sample measured various optical characteristics as board thickness 2 mm (reference example 1) and board thickness 1 mm (reference example 2). The T 1500 of Reference Example 1 was 67.4%, and the T 1500 of Reference Example 2 was 78.8%, and it was found that there was a difference of 10% or more. From the above, it was shown that when the plate thickness is reduced, the transmittance of infrared rays is significantly increased.

Claims (5)

  1. ガラス組成中に着色成分を含有する車両用の赤外線吸収ガラス板において、該着色成分は、質量%で、
    鉄酸化物の全量がFe換算で0.75~1.5%、及び
    FeOが0.20~0.40%、であり、
    板厚が0.4~1.1mmであり、
    該赤外線吸収ガラス板の厚みが1mmのとき、波長1500nmにおける透過率が72%以下であることを特徴とする赤外線吸収ガラス板。
    The infrared absorbing glass plate for vehicles containing a coloring component in a glass composition, wherein the coloring component is, by mass%,
    The total amount of iron oxide is 0.75 to 1.5% in terms of Fe 2 O 3 and 0.20 to 0.40% of FeO,
    The board thickness is 0.4 to 1.1 mm,
    What is claimed is: 1. An infrared absorbing glass plate having a transmittance of 72% or less at a wavelength of 1500 nm when the thickness of the infrared absorbing glass plate is 1 mm.
  2. ガラス組成中に着色成分を含有する車両用の赤外線吸収ガラス板において、該着色成分は、質量%で、
    鉄酸化物の全量がFe換算で0.8~1.5%、及び
    FeOが0.20~0.40%、であり、
    板厚が0.4~1.1mmであり、
    該赤外線吸収ガラス板の厚みが1mmのとき、波長1500nmにおける透過率が72%以下であることを特徴とする請求項1記載の赤外線吸収ガラス板。
    The infrared absorbing glass plate for vehicles containing a coloring component in a glass composition, wherein the coloring component is, by mass%,
    The total amount of iron oxide is 0.8 to 1.5% in terms of Fe 2 O 3 and 0.20 to 0.40% of FeO,
    The board thickness is 0.4 to 1.1 mm,
    The infrared absorbing glass plate according to claim 1, wherein when the thickness of the infrared absorbing glass plate is 1 mm, the transmittance at a wavelength of 1500 nm is 72% or less.
  3. 前記着色成分に加えて、着色成分としてTiOを0.01~2.0質量%含有することを特徴とする請求項1又は請求項2に記載の赤外線吸収ガラス板。 The infrared absorbing glass plate according to claim 1 or 2, further comprising 0.01 to 2.0% by mass of TiO 2 as a coloring component in addition to the coloring component.
  4. 前記赤外線吸収ガラス板が、曲面形状を有する化学強化ガラスであることを特徴とする請求項1乃至請求項3のいずれかに記載の赤外線吸収ガラス板。 The said infrared rays absorption glass plate is a chemically strengthened glass which has curved-surface shape, The infrared rays absorption glass plate in any one of the Claims 1 thru | or 3 characterized by the above-mentioned.
  5. 請求項1乃至請求項4のいずれかに記載の赤外線吸収ガラス板と、1枚以上のガラス板とを有する合わせガラス。 A laminated glass comprising the infrared absorbing glass plate according to any one of claims 1 to 4 and one or more glass plates.
PCT/JP2018/026430 2017-09-15 2018-07-13 Infrared absorbing glass sheet WO2019054032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541924A JPWO2019054032A1 (en) 2017-09-15 2018-07-13 Infrared absorbing glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-178186 2017-09-15
JP2017178186 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054032A1 true WO2019054032A1 (en) 2019-03-21

Family

ID=65723641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026430 WO2019054032A1 (en) 2017-09-15 2018-07-13 Infrared absorbing glass sheet

Country Status (2)

Country Link
JP (1) JPWO2019054032A1 (en)
WO (1) WO2019054032A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208254A (en) * 1995-11-30 1997-08-12 Central Glass Co Ltd Ultraviolet rays and infrared rays absorbing green glass
JPH10101367A (en) * 1996-07-27 1998-04-21 Pilkington Plc Blue glass composition and laminated glass
JPH10203844A (en) * 1996-09-20 1998-08-04 Saint Gobain Vitrage Glass plate for producing grazing panel
JP2003119048A (en) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd Glass composition
JP2003535805A (en) * 2000-06-19 2003-12-02 グラヴルベル Colored soda lime glass
JP2004123495A (en) * 2002-10-07 2004-04-22 Nippon Sheet Glass Co Ltd Ultraviolet and infrared absorption colored glass plate
JP2005529044A (en) * 2001-12-14 2005-09-29 グラヴルベル Colored soda lime glass
JP2006264994A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Infrared light absorbing green glass composition
JP2013209224A (en) * 2012-03-30 2013-10-10 Central Glass Co Ltd Ultraviolet and infrared ray absorbing glass
WO2015033562A1 (en) * 2013-09-09 2015-03-12 日本板硝子株式会社 Glass composition and strengthened glass sheet
WO2016088374A1 (en) * 2014-12-03 2016-06-09 日本板硝子株式会社 Glass composition, glass plate, and vehicle glass window using glass plate
JP2016530190A (en) * 2013-07-09 2016-09-29 コーニング インコーポレイテッド Lightweight composite laminated glass

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208254A (en) * 1995-11-30 1997-08-12 Central Glass Co Ltd Ultraviolet rays and infrared rays absorbing green glass
JPH10101367A (en) * 1996-07-27 1998-04-21 Pilkington Plc Blue glass composition and laminated glass
JPH10203844A (en) * 1996-09-20 1998-08-04 Saint Gobain Vitrage Glass plate for producing grazing panel
JP2003535805A (en) * 2000-06-19 2003-12-02 グラヴルベル Colored soda lime glass
JP2003119048A (en) * 2000-10-03 2003-04-23 Nippon Sheet Glass Co Ltd Glass composition
JP2005529044A (en) * 2001-12-14 2005-09-29 グラヴルベル Colored soda lime glass
JP2004123495A (en) * 2002-10-07 2004-04-22 Nippon Sheet Glass Co Ltd Ultraviolet and infrared absorption colored glass plate
JP2006264994A (en) * 2005-03-22 2006-10-05 Nippon Sheet Glass Co Ltd Infrared light absorbing green glass composition
JP2013209224A (en) * 2012-03-30 2013-10-10 Central Glass Co Ltd Ultraviolet and infrared ray absorbing glass
JP2016530190A (en) * 2013-07-09 2016-09-29 コーニング インコーポレイテッド Lightweight composite laminated glass
WO2015033562A1 (en) * 2013-09-09 2015-03-12 日本板硝子株式会社 Glass composition and strengthened glass sheet
WO2016088374A1 (en) * 2014-12-03 2016-06-09 日本板硝子株式会社 Glass composition, glass plate, and vehicle glass window using glass plate

Also Published As

Publication number Publication date
JPWO2019054032A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
EP3286150B1 (en) Chemically temperable glass sheet
EP3475234B1 (en) Chemically temperable glass sheet
EP3230222B1 (en) Chemically temperable glass sheet
EP3126302B1 (en) Chemically temperable glass sheet
JP5935445B2 (en) UV infrared absorbing glass
JP6677650B2 (en) Glass composition, glass plate, and glass window for vehicle using the glass plate
US20180370194A1 (en) Asymmetric laminated glass
CN111670172A (en) Glass for chemical strengthening
KR20180095582A (en) Chemically reinforced colored thin glass
CN109311729B (en) Ultraviolet-shielding glass plate and vehicle glazing using same
WO2017183382A1 (en) Laminated glass for vehicles
JP2024001033A (en) window assembly
JP7261237B2 (en) laminated glazing
WO2019077981A1 (en) Curved laminated glass for vehicle window glass
WO2019054032A1 (en) Infrared absorbing glass sheet
WO2018030094A1 (en) Laminated glass for vehicles
CN110981190B (en) Colored thin glass and laminated glass
US11230088B2 (en) Laminated glazing
US20210039984A1 (en) Chemically-strengthenable glasses for laminates
JPH05270855A (en) Heat ray absorbing glass having neutral gray tone
JP7127654B2 (en) glass plate
JPWO2020080162A1 (en) Glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855217

Country of ref document: EP

Kind code of ref document: A1