WO2019053964A1 - Ink composition and printed matter - Google Patents

Ink composition and printed matter Download PDF

Info

Publication number
WO2019053964A1
WO2019053964A1 PCT/JP2018/021245 JP2018021245W WO2019053964A1 WO 2019053964 A1 WO2019053964 A1 WO 2019053964A1 JP 2018021245 W JP2018021245 W JP 2018021245W WO 2019053964 A1 WO2019053964 A1 WO 2019053964A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rare earth
ink composition
general formula
ligand
Prior art date
Application number
PCT/JP2018/021245
Other languages
French (fr)
Japanese (ja)
Inventor
祐子 青山
佐藤 潤
史泰 村上
政人 岡田
吉原 俊夫
長谷川 靖哉
中西 貴之
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019541649A priority Critical patent/JP7156289B2/en
Publication of WO2019053964A1 publication Critical patent/WO2019053964A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • Embodiments of the present disclosure relate to an ink composition and a printed material using the same.
  • a printed matter requiring security such as a lottery ticket, a gift certificate, a passing ticket, a ticket or other securities, on which an information pattern composed of numbers, characters, figures, symbols, patterns, etc. is printed.
  • Patent Document 1 discloses a forgery-preventing printed matter using a hologram as a forgery-preventing measure for such a printed matter, but the technique using the hologram has a high manufacturing cost, so a printed matter with a low unit price is used. It is unsuitable for use.
  • Patent Document 2 discloses a forgery-proof certificate on which printing of a fluorescent ink that emits fluorescence with light of a certain wavelength other than visible light is invisible in the visible light region.
  • So-called security markings in which such specific light emitters are compounded, are always colorless and transparent, but emit light by being irradiated with light of a specific wavelength such as ultraviolet light, which makes it possible to determine authenticity. Yes, it is possible to prevent forgery without impairing the appearance and design of the printed matter.
  • Patent Document 3 the afterglow color after stopping the excitation light of the afterglow light emitting composition composed of the light emitting body X which is a phosphor and the light emitting body Y which is a phosphor is at the time of exciting light irradiation.
  • Patent Document 1 discloses a technology for discriminating by visual observation that the light emission color is different from that in the above.
  • One embodiment of the present disclosure is selected from the group consisting of Eu3 + , Tb3 + , Sm3 + , Yb3 + , Nd3 + , Er3 + , Pr3 + , Ho3 + , Tm3 + , Dy3 + , Ce3 + , and Gd3 +.
  • One trivalent rare earth ion, and at least one organic ligand selected from ⁇ -diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands
  • a long afterglow light emitting material whose afterglow time after excitation light irradiation is stopped is 1 second or more.
  • an ink composition wherein the long afterglow light emitting material contains an alkaline earth metal aluminate.
  • the rare earth complex provides an ink composition including, as the organic ligand, a phosphine oxide ligand represented by the following general formula (1).
  • Ar 1 and Ar 2 are each independently a monovalent aromatic group which may have a substituent.
  • Ar 3 is a divalent group represented by the following General Formula (2a), (2b) or (2c), and n is 1 or 2.
  • R 1 is each independently a monovalent substituent
  • X is a sulfur atom or an oxygen atom
  • R 2 is a hydrogen atom or a hydrocarbon group
  • m is an integer from 0 to a substitutable site in the ring to which R 1 is attached
  • R is an integer of 2 or more
  • R 1 may be identical to or different from each other.
  • E is a hydrogen atom or a phosphine oxide group represented by the following general formula (3).
  • Ar 4 and Ar 5 are each independently a monovalent aromatic group which may have a substituent.
  • the rare earth complex includes a phosphine oxide bidentate ligand, and the phosphine oxide bidentate ligand forms a crosslinked structure formed by coordinating to the two rare earth ions. And providing an ink composition.
  • the rare earth complex provides an ink composition including, as the organic ligand, a ⁇ -diketone ligand represented by the following general formula (4).
  • Q 1 and Q 2 are each independently a hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Z is a hydrogen atom or a deuterium atom)
  • the long decay light emitting material is selected from the group consisting of SrAl 2 O 4 : Eu, Dy, Sr 4 Al 14 O 25 : Eu, Dy, and CaAl 2 O 4 : Eu, Nd.
  • an ink composition containing at least one selected.
  • One embodiment of the present disclosure provides a print having an ink layer containing a solidified product of the above-described ink composition.
  • An embodiment of the present disclosure can provide an ink composition excellent in emission intensity, having a large color change during or after irradiation with excitation light, and excellent in discrimination, and a printed material formed using the ink composition.
  • FIG. 1 is a schematic cross-sectional view showing an example of a printed matter according to an embodiment of the present disclosure. It is a figure which shows the emission spectrum immediately after UV irradiation of the ink layer which concerns on Example 2.
  • FIG. It is a figure which shows the emission spectrum after 5 seconds of UV irradiation of the ink layer which concerns on Example 2.
  • FIG. It is a figure which shows the emission spectrum after UV irradiation stop of the ink layer which concerns on Example 2.
  • FIG. It is a figure which shows the emission spectrum of the ink layer which concerns on the comparative example 3 immediately after UV irradiation. It is a figure which shows the emission spectrum after 5 seconds of UV irradiation of the ink layer which concerns on the comparative example 3.
  • FIG. It is a figure which shows the emission spectrum after UV irradiation stop of the ink layer which concerns on the comparative example 3.
  • FIG. It is a figure which shows the emission spectrum after UV irradiation stop of the ink layer
  • the ink composition according to one embodiment of the present disclosure is composed of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+.
  • An ink composition comprising: a rare earth complex containing a ligand; and a long afterglow light emitting material having an afterglow time after the termination of excitation light irradiation of 1 second or more.
  • the afterglow material refers to a material that is excited by light stimulation by irradiation with excitation light, converts energy and emits light, and continues to emit light for a predetermined time after the excitation light irradiation is stopped.
  • those having an afterglow time of less than 1 second after stopping excitation light irradiation are referred to as short afterglow light emitting materials, and those after 1 second or longer after stopping the excitation light irradiation.
  • a material having a light time is referred to as a long persistence light emitting material.
  • afterglow time refers to an excitation light irradiation stop time point as 0 second, and refers to an elapsed time from this time point until light emission is not detected.
  • the above-mentioned elapsed time measured by the following means is defined as afterglow time.
  • the excitation light with a wavelength of 365 nm is irradiated for a predetermined time using a spectrofluorimeter (for example, FP-6600 manufactured by Nippon Bunko), and the maximum emission peak wavelength of the obtained emission spectrum is used as a detection wavelength.
  • the point at which the shutter is closed is taken as 0 second, and the time until the emission intensity of the detection wavelength becomes 0.01% or less of the intensity value at the excitation light stop point from this point is taken as the afterglow time.
  • excitation light electromagnetic waves other than visible light
  • ultraviolet rays, infrared rays and the like can be mentioned.
  • the ink composition according to the present disclosure uses a combination of a rare earth complex containing a trivalent rare earth ion and the above-described organic ligand and a long afterglow light emitting material to achieve high emission intensity by irradiation with excitation light. In addition, during or after the irradiation with the excitation light, the color change is large and the discrimination is excellent.
  • the long afterglow light-emitting material contained in the ink composition according to the present disclosure requires a certain period of time until the emission intensity is saturated due to its characteristics. For this reason, the difference in intensity between the emission intensity of the specific rare earth complex that emits light in a predetermined wavelength range and the emission intensity of the long afterglow light emitting material that emits light in a different wavelength range is It changes with the elapse of a fixed time after light irradiation. In addition, the long afterglow light emitting material contained in the ink composition according to the present disclosure has an afterglow time of 1 second or more after the excitation light irradiation is stopped.
  • the ink composition according to the present disclosure has a large color change and is excellent in discrimination.
  • the color change during or after the irradiation of the excitation light may change the intensity difference of light emission observed in a plurality of wavelength regions during or after the irradiation of the excitation light.
  • the wavelength of the luminescent color may not necessarily be the wavelength of the visible light region, and may be the wavelength corresponding to the near infrared region or the near ultraviolet region.
  • a detector capable of detecting light in the wavelength region can be used as appropriate.
  • the luminous body using the specific rare earth complex has a high absorption efficiency of excitation light by the organic ligand, and can efficiently utilize the excitation light, and therefore has a high emission intensity as compared with the inorganic luminous body. Therefore, the ink composition of the present disclosure has a large color change during and after excitation light irradiation, and is excellent in discrimination. Furthermore, the light emitter using the specific rare earth complex is excellent in solubility in an organic solvent or dispersibility in a medium, and compatibility with a resin, so that it is easy to prepare a desired ink composition, which is desirable. There is also an advantage that it is easy to form an ink layer and easy to apply to various security markings.
  • the inventors of the present invention can also change the color during excitation light irradiation by rubbing the ink layer containing the solidified product of the ink composition of the present disclosure with the excitation light to generate frictional heat. It turned out that it became large and it was excellent in distinction.
  • carriers such as electrons and holes generated by irradiation with excitation light are temporarily trapped in capture centers, and gradually released by thermal energy at room temperature to emit light. The light emission is shown by moving to the center. Therefore, when the room temperature is instantaneously changed from room temperature by friction etc.
  • the trapped carriers are rapidly released and move to the light emission center to emit light strongly for a moment, and energy is released at this time.
  • the light emission of the long decay light emitting material disappears. Therefore, when the ink layer containing the solidified product of the ink composition of the present disclosure is rubbed while being irradiated with excitation light to generate frictional heat, the luminescence intensity of luminescence due to the rare earth complex and the long afterglow luminescence The difference in intensity between the light emission and the light emission from the material changes.
  • the ink composition of the present disclosure uses the long afterglow light emitting material in combination with the above-described rare earth complex having high light emission intensity, the long afterglow light emitting material temporarily emits strong light and is then quenched by heating by friction or the like. In this case, a large difference in emission intensity can be obtained between the emission due to the rare earth complex and the emission due to the long afterglow light emitting material, and excellent discrimination can be obtained.
  • the ink composition of the present disclosure uses the long afterglow light emitting material in combination with the above-described rare earth complex having high light emission intensity, the light emission due to the rare earth complex and the light emission due to the long afterglow light emitting material Are all in the visible region, and when changes in the intensity difference of the light emission intensity can be visually confirmed as a color change, when the long decay light emitting material emits light and then is quenched by heating by friction etc.
  • high intensity light emission due to the rare earth complex can be easily confirmed visually, and excellent discrimination can be obtained.
  • the ink composition of the present disclosure contains the above-mentioned specific rare earth complex and a long afterglow light emitting material, and may contain other components as needed, as long as the effects are not impaired. is there.
  • each component of such an ink composition is demonstrated in detail in order.
  • ⁇ Rare earth complex> (Rare earth ion)
  • Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+ are selected from the group consisting of Among these, from the viewpoint of obtaining high emission intensity, the rare earth complex is preferably a kind selected from the group consisting of Eu 3+ , Tb 3+ and Sm 3+ .
  • Organic ligand As a ligand coordinated to a trivalent rare earth ion, at least one selected from ⁇ -diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands Containing organic ligands.
  • excitation light absorbed by the rare earth complex is transferred from the ligand to the rare earth ion and converted to energy of light to be emitted.
  • the rare earth complex contains the above-mentioned organic ligand
  • the light energy of the excitation light absorbed by the rare earth complex can be efficiently supplied to the rare earth ion, and the energy of the supplied light in the rare earth ion Can be converted to the energy of light to be emitted with high efficiency.
  • the ligand to be coordinated to the trivalent rare earth ion a ⁇ -diketone ligand, a carboxylic acid ligand, a phosphine oxide ligand, and a nitrogen-containing aromatic, as long as the effects of the present disclosure are not impaired.
  • At least one organic ligand selected from heterocyclic ligands may contain a different ligand.
  • the organic ligand preferably contains an anionic ligand in view of the stability of the complex, and preferably contains at least one of a ⁇ -diketone ligand and a carboxylic acid ligand.
  • the ⁇ -diketone ligand is preferable because the energy of the excitation light can be efficiently supplied to the coordinated rare earth ion and the emission intensity becomes high because the absorption coefficient is high.
  • the organic ligand preferably contains at least one of a nitrogen-containing aromatic heterocyclic ligand and a phosphine oxide ligand, which are neutral ligands, from the viewpoint of enhancing the emission intensity.
  • the nitrogen-containing aromatic heterocyclic ligand has a high absorption coefficient, it can efficiently supply the energy of excitation light to the coordinated rare earth ion, and the emission intensity is improved.
  • a carbon atom substituted with a halogen atom such as a C—X (X is a halogen atom: F, Cl, Br and I) bond has a low vibration skeleton (C—X bond)
  • X is a halogen atom: F, Cl, Br and I
  • the light emission efficiency is improved, and the light emission intensity is improved.
  • a perhalogenated alkyl group can be mentioned, and a trifluoromethyl group can be mentioned as a specific example.
  • the organic ligand at least one anionic ligand of ⁇ -diketone ligand and carboxylic acid ligand, phosphine oxide ligand and nitrogen-containing aromatic heterocyclic ring coordination It is preferable to include at least one kind of at least one kind of at least one anionic ligand of a ⁇ -diketone ligand, at least one of a phosphine oxide ligand and a nitrogen-containing aromatic heterocyclic ligand, among others. It is preferable to include a species, and it is preferable to further include a carbon atom substituted with a halogen atom in the organic ligand of these combinations.
  • Examples of the ⁇ -diketone ligand include ⁇ -diketone ligands represented by the following general formula (4).
  • Q 1 and Q 2 are each independently a hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Z is a hydrogen atom or a deuterium atom)
  • the hydrocarbon group includes an aromatic hydrocarbon group, an aliphatic hydrocarbon group, and a combination thereof, and the aliphatic hydrocarbon group is saturated, And unsaturated, linear, branched or cyclic aliphatic hydrocarbon groups.
  • the aromatic hydrocarbon group includes an aromatic hydrocarbon group having 6 to 22 carbon atoms, and further includes an aromatic hydrocarbon group having 6 to 14 carbon atoms, and examples thereof include a phenyl group and a naphthyl group, Examples include biphenyl group, phenanthryl group, dibenzo [c, g] phenanthryl group and the like.
  • aliphatic hydrocarbon groups as a saturated linear, branched or cyclic aliphatic hydrocarbon group, a saturated linear, branched or cyclic aliphatic hydrocarbon having 1 to 20 carbon atoms And a saturated linear, branched or cyclic aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • a saturated linear, branched or cyclic aliphatic hydrocarbon group for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, isopropyl group, tert-butyl group
  • alkyl groups such as 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group and cycloalkyl groups.
  • the unsaturated linear, branched or cyclic aliphatic hydrocarbon group is an unsaturated linear, branched or cyclic aliphatic group having 2 to 20 carbon atoms.
  • a hydrocarbon group is mentioned, C2-C10 unsaturated linear, branched or cyclic aliphatic hydrocarbon group is mentioned.
  • Examples of such unsaturated linear, branched or cyclic aliphatic hydrocarbon groups include vinyl, allyl, butenyl, pentenyl, hexenyl, octenyl, decenyl and isopropenyl groups.
  • Examples thereof include isobutenyl group, isopentenyl group, 2-ethylhexenyl group, cyclopentenyl group, cyclohexenyl group, ethynyl group, propynyl group, alkenyl group such as butynyl group, cycloalkenyl group, and alkynyl group.
  • Examples of combinations of aromatic hydrocarbon groups and aliphatic hydrocarbon groups include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and biphenylmethyl group.
  • the aromatic heterocyclic group includes at least one hetero atom selected from O (oxygen atom), S (sulfur atom), N (nitrogen atom), and the number of ring carbon atoms 2 or more and 20 or less aromatic heterocyclic groups are mentioned, and further, an aromatic heterocyclic group having 2 to 10 ring carbon atoms is mentioned, and further 4 to 7 membered aromatic heterocyclic groups are mentioned.
  • a pyridyl group, a thienyl group, a furyl group, a pyrazolyl group, an imidazolyl group, a benzofuranyl group, a quinolyl group etc. are mentioned, for example.
  • the said hydrocarbon group and the said aromatic heterocyclic group are a deuterium atom, a halogen atom (F, Cl, Br and I) as needed, a hydroxyl group, a nitro group, an amino group, a sulfonyl group, a cyano group, a silyl group It may have a substituent such as a phosphonic acid group, a diazo group and a mercapto group.
  • the hydrocarbon group and the aromatic heterocyclic group are, for example, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, an alkylcarbonyl group having 1 to 10 carbon atoms, and the like. May have a substituent of Furthermore, the aromatic hydrocarbon group and the aromatic heterocyclic group may be substituted by an alkyl group having 10 to 10 carbon atoms or a halogenated alkyl group having 1 to 10 carbon atoms.
  • the compound when it has a halogen atom as a substituent and has a C—X (X is a halogen atom: F, Cl, Br, and I) bond, it has a low vibration skeleton, and thus includes the structure It is preferable from the viewpoint of functioning so as not to cause vibrational deactivation of the energy received by the rare earth metal, improving the luminous efficiency and improving the luminous intensity.
  • X is a halogen atom: F, Cl, Br, and I
  • Q 1 and Q 2 each independently, among others, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a perhalogenated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 6 to 22 carbon atoms
  • Z in the general formula (4) may be a hydrogen atom H or a deuterium atom D, but is preferably a hydrogen atom H.
  • a deuterated agent is allowed to act on a rare earth metal complex in which Z is H, thereby performing a deuterium substitution reaction to obtain a deuterated complex (a complex in which Z is a deuterium atom D).
  • deuterating agents include, for example, protic compounds containing deuterium, specifically deuterated water; deuterated alcohols such as deuterated methanol and deuterated ethanol; Including alkali and so on.
  • Basic agents and additives such as trimethylamine and triethylamine may be added to accelerate the deuterium substitution reaction.
  • Examples of the ⁇ -diketone ligand include hexafluoroacetylacetone, dibenzoylmethane, 2,2,6,6-tetramethyl-3,5-heptanedione, 4,4,4-trifluoro-1- (2 -Thienyl) -1,3-butanedione, 4,4,4-trifluoro-1- (2-furanyl) -1,3-butanedione, 4,4,4-trifluoro-1- (3-pyridyl)- 1,3-butanedione, 4,4,4-trifluoro-1-phenyl-1,3-butanedione, 4,4,4-trifluoro-1- ⁇ 5- (2-methylthienyl) ⁇ -1,3 -Butanedione, 4,4,4-trifluoro-1- (2-naphthyl) -1,3-butanedione, and 2,2-dimethyl-6,6,7,7,8,8,8-hept
  • carboxylic acid ligands include ligands having a carboxylate group (—COO ⁇ ), and examples thereof include a formic acid (formato) ligand, an acetic acid (acetato) ligand, and a propionic acid (propionato) coordination.
  • Citric acid ligand Citric acid ligand, salicylic acid ligand, terephthalic acid ligand, isophthalic acid ligand, 2-hydroxyterephthalic acid ligand, 1,4-naphthalenedicarboxylic acid ligand, trimesic acid ligand And 1,3,5-tris (4-carboxyphenyl) benzene ligand, and biphenyl-3,3 ', 5,5'-tetracarboxylic acid ligand.
  • the phosphine oxide ligand represented by following General formula (1) is preferable.
  • Ar 1 and Ar 2 are each independently a monovalent aromatic group which may have a substituent.
  • Ar 3 is a divalent group represented by the following General Formula (2a), (2b) or (2c), and n is 1 or 2.
  • R 1 is each independently a monovalent substituent
  • X is a sulfur atom or an oxygen atom
  • R 2 is a hydrogen atom or a hydrocarbon group
  • m is from 0, if .R 1 R 1 is an integer from possible sites substitution in ring linked there are multiple, may be R 1 is each the same or different.
  • E is a hydrogen atom or a phosphine oxide group represented by the following general formula (3).
  • Ar 4 and Ar 5 are each independently a monovalent aromatic group which may have a substituent.
  • Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3) are each independently a monovalent aromatic group which may have a substituent .
  • the aromatic group includes an aromatic hydrocarbon group and an aromatic heterocyclic group.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group here are the same as the aromatic hydrocarbon group and the aromatic heterocyclic group in Q 1 and Q 2 represented by the general formula (4), and good.
  • Specific examples of the aromatic group of Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3) include a phenyl group, a naphthyl group, a biphenyl group and a phenanthryl group.
  • dibenzo [c, g] phenanthryl group, pyridyl group, thienyl group and the like Among the aromatic groups of Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3), among them, a phenyl group, a pyridyl group or a thienyl group is preferable, and particularly phenyl Groups are mentioned as being preferred.
  • Ar 1 and Ar 2 in the general formula (1), and a substituent which Ar 4 and Ar 5 in the general formula (3) may have, and a monovalent substituent as R 1 are Examples thereof include a hydrocarbon group having 1 to 20 carbon atoms, a hydroxyl group, a nitro group, an amino group, a sulfonyl group, a cyano group, a silyl group, a phosphonic acid group, a diazo group, a mercapto group and the like.
  • R 2 in the general formula (2c) is a hydrogen atom or a hydrocarbon group, and examples of the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and these hydrocarbon groups are It may be the same as the hydrocarbon group in Q 1 and Q 2 represented by the general formula (4).
  • the hydrocarbon group of R 2 in the general formula (2c) is preferably at least one selected from the group consisting of a phenyl group and an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • m is an integer from 0 to a substitutable site in the ring to which R 1 is bonded, and is an integer of 0 or more and 2 or less, among others Is preferable, and 0 is more preferable.
  • n is preferably 1 or 2, and when Ar 3 is a divalent group represented by the general formula (2c), n is preferably 1.
  • E is a hydrogen atom or a phosphine oxide group represented by the general formula (3).
  • the phosphine oxide ligand represented by the general formula (1) is a bidentate ligand.
  • the phosphine oxide ligand may form a rare earth complex including a crosslinked structure formed by coordinating to the two rare earth ions.
  • the rare earth complex containing the crosslinked structure may be hereinafter referred to as a complex polymer.
  • a nitrogen-containing aromatic heterocyclic compound which comprises a nitrogen-containing aromatic heterocyclic ligand, a ring assembly compound and a condensed ring compound other than a single ring compound are also contained.
  • the number of atoms constituting the aromatic ring is usually 5 or more and 30 or less, preferably 5 or more and 18 or less, and particularly preferably 6 or more and 10 or less from the viewpoint of easy availability and excellent performance.
  • nitrogen-containing aromatic heterocyclic compound examples include pyridine, 2-methylpyridine, 2,4,6-trimethylpyridine, 4-dimethylaminopyridine, 2,6-lutidine, pyrimidine, pyridazine, pyrazine, oxazole, and the like.
  • nitrogen-containing aromatic heterocyclic compounds for example, 1,10-phenanthroline, 2-2′-bipyridyl, 2-2′-6,2 ”-terpyridyl, 2,7-dimethyl-1,10 -Phenanthrolines and pyridines to be bidentate ligands such as -phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline and 2- (2-pyridyl) benzimidazole Is preferably used.
  • the rare earth complex includes a phosphine oxide bidentate ligand, and the phosphine oxide bidentate ligand includes a cross-linked structure formed by coordinating to two rare earth ions; It is preferable from the point that the strength is improved.
  • E in the general formula (1) is a phosphine oxide group represented by the general formula (3)
  • a rare earth complex containing a phosphine oxide bidentate ligand which is a phosphine oxide group represented by the general formula (1) and E in the general formula (1) is represented by the general formula (3) is methanol
  • an ink composition containing a rare earth complex containing the bidentate phosphine oxide ligand because it is insoluble in an alcohol such as ethanol, or an organic solvent such as acetone, ethyl acetate, hexane, or dichloromethane;
  • the solvent resistance is high, and it can be used for security application used in the field using an organic solvent, and furthermore, it is possible to prevent the falsification using the solvent.
  • rare earth complexes having a repeating unit represented by the following general formula (5) and rare earth complexes represented by the following general formula (6) there is at least one type.
  • the rare earth complex having a repeating unit represented by the following general formula (5) is contained, a printed matter excellent in heat resistance, light resistance and solvent resistance can be produced.
  • Ln 3+ is a group consisting of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+
  • Ar 1 , Ar 2 and Ar 3 are the same as in the above general formula (1), and Ar 4 and Ar 5 are the same as the above general formula (3), Q 1 , Q 2 and Z are the same as in the above general formula (4).
  • Ln 3+ is a group consisting of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+
  • Ar 1 , Ar 2 and Ar 3 are the same as in the above general formula (1), and Q 1 , Q 2 and Z are the same as those in the above general formula (4)
  • N1 is an integer of 1 or more and 5 or less
  • n2 is an integer of 1 or more and 4 or less.
  • n1 is preferably 1 or 2
  • n2 is preferably 2, 3 or 4
  • n1 is 2 and n2 is 3 from the viewpoint of improving the emission intensity.
  • preferred is one.
  • the rare earth complex is prepared, for example, by a method of stirring a rare earth metal compound which is a raw material of a rare earth ion and a compound to be a ligand in a solvent which can dissolve or disperse them, if necessary, in the presence of a catalyst. It can be synthesized.
  • a solvent a solvent suitable for the compound to be the rare earth metal compound and the ligand may be mixed and used, and for example, a mixed solvent of dichloromethane and methanol can be applied.
  • a catalyst for example, trimethylamine, lithium hydroxide and the like can be added, if necessary.
  • long-lasting light emitting material for example, SrAl 2 O 4 : Eu, Dy (yellowish green), Sr 4 Al 14 O 25 : Eu, Dy (blue-green), and CaAl 2 O 4 : Eu, Nd (purple-blue) ), ZnS: Cu, Mn, Co (yellow orange), ZnS: Cu (yellow green), Y 2 O 2 S: Eu, Mg, Ti (red), Sr 2 MgSi 2 O 8 : Eu, Dy (blue) , Sr 2 MgSiO 7 : Eu, Dy (blue), SrAl 3 O 5 (OH): Eu, Dy (blue-green), ZnGa 2 O 4 : Mn (green), Y 2 O 2 S: Eu, Mg, Ti (Red), GdO 2 S: Eu, Mg, Ti (red) and the like.
  • those containing an alkaline earth metal aluminate are preferable from the viewpoint of easy availability and high light resistance and afterglow luminance.
  • one obtained by adding two or more kinds of rare earth metals to an alkaline earth metal aluminate is a trapping center of one of the rare earth metals, and after trapping electrons or holes generated by light irradiation, Can move to the emission center of different rare earth metal ions to emit light, so it is easy to secure a predetermined time until the emission intensity saturates, and also ensure a long decay time even after the excitation light irradiation is stopped. It is preferable because it is easy to do.
  • the rare earth complex and the long afterglow light emitting material be blended in a combination in which the emission color when irradiated with a predetermined excitation light is different. More preferably, the absolute value of the difference between the wavelength ( ⁇ 1) at which the emission intensity of the rare earth complex is maximum and the wavelength ( ⁇ 2) at which the emission intensity of the long afterglow material is maximum is preferably 30 nm or more, more preferably Is preferably 50 nm or more.
  • SrAl 2 O 4 Eu, Dy (yellowish green), Sr 4 Al 14 O 25 : Eu, Dy (blue-green), CaAl 2 O 4 : Eu, Nd (purple) as a long decay light emitting material Blue), Sr 2 MgSi 2 O 8 : Eu, Dy (blue), Sr 2 MgSiO 7 : Eu, Dy (blue), SrAl 3 O 5 (OH): Eu, Dy (blue-green), and ZnGa 2 O 4 When one or more selected from the group consisting of Mn (green) is used, one or more rare earth ions selected from the group consisting of Eu 3+ , Sm 3+ , Pr 3+ , and Ho 3 are used as the rare earth complex Is preferred.
  • a rare earth complex is selected from the group consisting of Tb 3+ , Er 3+ , Tm 3+ , Dy 3+ , Yb 3+ , Nd 3+ , Ce 3+ , and Gd 3+ It is preferable to use the above.
  • the ink composition may further contain other components as needed, as long as the effects of the present disclosure are not impaired.
  • other components for example, known adjuvants used in inks other than vehicles, such as dispersants, crosslinking agents, drying accelerators, polymerization inhibitors, waxes, extender pigments, coloring agents, drying inhibitors And antioxidants, surface-adjusting agents, anti-set-off agents, antifoaming agents, surfactants, and the like.
  • the vehicle is a medium having a film forming ability when the rare earth complex is dispersed and applied or printed.
  • the vehicles used in the present disclosure may include known vehicle components used in the ink, such as resins, solvents, photocurable components, and the like.
  • known resins can be appropriately selected and used.
  • known resins used in ink may be used, and resins contained in oil-based ink or resins contained in UV ink may be used.
  • the resin may be a natural or synthetic resin and may be a homopolymer or copolymer. In order to ensure the viscosity of the oil-based ink, the resin is preferably solid. Examples of natural resins include rosin, agate, shellac, and gylsonite.
  • the synthetic resin for example, rosin, phenol resin, modified alkyd resin, polyester resin, petroleum resin, maleic acid resin such as rosin modified maleic resin, cyclized rubber, acrylic resin, one-component urethane resin, two-component urethane And resins and other synthetic resins.
  • an aqueous ink it may contain, for example, a water-soluble resin, a colloidal dispersion resin, an emulsion resin, and the like.
  • the resins listed above can be used alone or in combination of two or more.
  • solvent contained in the vehicle known solvents can be appropriately selected and used.
  • the solvent include organic solvents, drying oils, semi-drying oils, mineral oils, water and the like.
  • a photocurable component contained in a vehicle a well-known photocurable component can be selected suitably and can be used.
  • the photocurable component includes a monomer, an oligomer, a photopolymerization initiator and the like.
  • a monomer the compound which has the ethylenically unsaturated bond conventionally used for photopolymerization is mentioned.
  • an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
  • the compound having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane compounds, epoxy compounds, polyester compounds, polyol compounds, vegetable oil compounds, etc. The compound etc.
  • the photopolymerization initiator is, for example, a compound which generates a radical such as active oxygen by ultraviolet irradiation.
  • known photopolymerization initiators used for printing may be appropriately selected and contained.
  • the content ratio of the total of the specific rare earth complex and the long afterglow light emitting material to the total solid content of the ink composition is preferably 1% by mass or more from the viewpoint of emission intensity And 5 mass% or more is more preferable.
  • solid content means components other than a solvent.
  • the ratio of the rare earth complex to the total 100 parts by mass of the rare earth complex and the long afterglow light emitting material contained in the ink composition of the present disclosure is appropriately selected according to the combination of the rare earth complex and the long afterglow light emitting material Although it is not particularly limited, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 90 parts by mass or less, from the viewpoint that the color change tends to be large. It is more preferable that it is less than 1 part.
  • the ratio of the solid content derived from the above-mentioned other components to the total solid content of the ink composition is 99% by mass or less Is preferable, and 95% by mass or less is more preferable.
  • the ink composition of the present disclosure contains a solvent
  • the ratio of the solid content to the total amount of the ink composition containing the solvent is appropriately adjusted according to the printing method, and is not particularly limited. Therefore, the content is preferably 5% by mass to 80% by mass, and more preferably 10% by mass to 60% by mass.
  • the method for producing the ink composition of the present disclosure is not particularly limited as long as the ink composition of the present disclosure described above can be obtained, and the other components such as the rare earth complex, the long afterglow light emitting material and the vehicle It can be produced by mixing and dispersing in any order.
  • the mixing and dispersion of the respective components can be carried out by a mixer such as a single-screw mixer and a twin-screw mixer, or an ink mill such as a three-roller mill, a bead mill, a ball mill, a sand grinder and an attritor.
  • the ink composition of the present disclosure described above by using the above-described rare earth complex in combination with the above-described long decay light emitting material, high emission intensity can be obtained by irradiation with excitation light.
  • a large color change can be obtained during or after irradiation with excitation light, it is suitably used for authenticity determination applications, forgery prevention applications, and various security applications.
  • the printed matter according to the embodiment of the present disclosure is a printed matter having an ink layer containing a solidified product of the ink composition according to the embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a printed matter according to the present disclosure.
  • the printed matter 1 has the ink layer 11 on one side of the substrate 10.
  • the ink layer 11 is a layer containing a solidified product of the ink composition of the embodiment of the present disclosure, and is formed using the ink composition of the embodiment of the present disclosure.
  • the printed matter 1 according to the present disclosure may have one or more ink layers 11.
  • the composition or the like of the ink composition forming each ink layer may be the same or different.
  • the ink layer 11 can have an arbitrary pattern.
  • the printed matter of the present disclosure has at least the ink layer 11 and, if necessary, a substrate for supporting the ink layer 11 and other layers as long as the effects of the present disclosure are not impaired. It may be done.
  • the ink layer 11 of the printed matter 1 of the present disclosure is an ink layer containing a solidified product of the ink composition of the present disclosure, that is, an ink layer formed using the ink composition of the present disclosure.
  • the ink composition of the present disclosure is as described above, and thus the description thereof is omitted.
  • the solidified material refers to a material solidified with or without a chemical reaction. Examples of the solidified product include a cured product cured by a curing reaction, a product solidified by drying, and a product solidified by cooling of a thermoplastic resin.
  • the ink layer can be formed, for example, by applying the ink composition of the present disclosure to a substrate serving as a support and solidifying the ink composition.
  • the coating method may be a known coating method, and is not particularly limited. For example, flexographic printing, letterpress printing, offset printing, intaglio printing, gravure printing, screen printing, or inkjet printing, or the like can be used. Coating methods such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, etc. Among these printing methods, silk screen printing, gravure printing, intaglio printing, or offset printing is preferable in order to prevent forgery of printed matter.
  • the method for solidifying the ink composition is appropriately selected according to the components contained in the ink composition, and is not particularly limited.
  • the solvent is removed by drying.
  • a method of removing, a method of curing the photocurable component by light irradiation when the ink composition contains a photocurable component, a heating method when the ink composition contains a thermosetting component The method of hardening a thermosetting component, the method of solidifying a molten resin by cooling when the said ink composition contains a thermoplastic resin, the method which combined these methods, etc. are mentioned.
  • the ink layer may be formed on the entire surface of one side or both sides of the substrate, or may be formed in a pattern.
  • the ink layer contains a solidified product of the ink composition of the present disclosure can be confirmed by collecting and analyzing the material from the ink layer.
  • mass spectrometry such as ESI-Mass, NMR, IR, ICP emission analysis, atomic absorption analysis, X-ray fluorescence analysis, X-ray absorption fine structure analysis (XAFS), and a combination method thereof are applied.
  • XAFS X-ray absorption fine structure analysis
  • the analysis of the rare earth metal can be performed, for example, using a multi-type ICP emission analyzer ICPE-9000 manufactured by Shimadzu Corporation.
  • the substrate examples include high quality paper, art paper, coated paper, cast coated paper, synthetic resin or emulsion impregnated paper, synthetic rubber latex impregnated paper, synthetic resin internally added paper, cellulose fiber paper, etc., polyolefin ( Plastic sheets of various synthetic resins such as polyethylene, polypropylene, etc., polystyrene, polycarbonate, polyethylene terephthalate, polyvinyl chloride and polymethacrylate, and white opaque films formed by adding white pigments and fillers to these synthetic resins, Or the film (what is called synthetic paper) etc. which have a micro space
  • the substrate may not necessarily be in the form of a film or sheet, and may be a resin molded product having a three-dimensional shape or the like.
  • the printed matter 1 according to the present disclosure can obtain high emission intensity by the irradiation of the excitation light in the ink layer 11, and during and during the irradiation of the excitation light. Since a large color change can be obtained later, various information management can be performed by reading the change in emission color visually or by a detector or the like.
  • the printed matter 1 according to the present disclosure is high in authenticity judgment and forgery prevention because of the peculiarity of light emission of the ink layer.
  • Printed materials include, for example, bills, checks, stock certificates, company bonds, securities such as various securities, banknotes, gift certificates, tickets for transportation, tickets for paid facilities and events, tickets for lottery tickets, and public competition tickets.
  • a ticket, a stamp, a card such as a credit card, a passport, an identification card, various commercial printed matter, a poster, etc. may be mentioned.
  • the authenticity determination for the printed material 1 according to the present disclosure can be performed as follows. After the excitation light irradiation by the excitation light source is performed for a predetermined time on the ink layer 11 containing the solidified material of the ink composition of one embodiment of the present disclosure, the irradiation of the excitation light is stopped, and the irradiation of the excitation light is performed The intensity difference between the emission intensity of the emission due to the rare earth complex and the emission intensity of the emission due to the long afterglow light emitting material after the irradiation stop is measured by a detector such as a fiber optical spectrometer, for example, and the measured value However, it can be judged whether or not it is within the range of the prescribed value.
  • the color change during the excitation light irradiation and after the irradiation stop is visually observed. Whether or not the color change matches the predetermined color change can be used to determine the authenticity.
  • the authenticity determination on the printed matter 1 according to the present disclosure can also be performed as follows. That is, the method for determining authenticity according to one embodiment of the present disclosure rubs the ink layer containing the solidified product of the ink composition according to one embodiment of the present disclosure, and the emission color is changed by the frictional heat generated at that time. Is used to determine the authenticity.
  • the frictional heat generated upon friction changes the difference between the light emission intensity of the light emission due to the rare earth complex and the light emission intensity of the light emission due to the long afterglow light emitting material.
  • the intensity difference of the light emission intensity controlled by such heat is measured by the above-mentioned detector, and the authenticity can be determined depending on whether the measured value is within the range of the prescribed value.
  • the change in the difference in the light emission intensity is visually observed as the color change of the light emission color You can check it with
  • the ink composition contains a solid of an ink composition containing a red light emitter as a rare earth complex and a green long decay light emitting material as a long decay light emitting material, and is yellow at room temperature when irradiated with excitation light (UV light)
  • excitation light UV light
  • the surface of the ink layer which shows the above, is rubbed while being irradiated with excitation light, the frictional heat is instantaneously heated by the frictional heat, and carriers such as electrons and holes trapped in the capture center of the long afterglow light emitting material rapidly The light is released to the center of light emission.
  • the ink layer has a green color, and then the ink layer has a red color when the green light of the long afterglow light emitting material disappears due to the energy release accompanying light emission. If this ink layer is further irradiated with excitation light, energy is gradually supplied to the long afterglow light emitting material, so that the long afterglow light emitting material emits light again, and the ink layer exhibits a yellow color. Then, when the excitation light irradiation is stopped, the ink layer exhibits a green afterglow. By visually confirming the color change of the luminescent color described above, the authenticity determination can be performed.
  • the rare earth complex of the ink composition used in such a method of authenticity determination By using the above-described rare earth complex with high emission intensity as the rare earth complex of the ink composition used in such a method of authenticity determination, when the long afterglow light emitting material emits light and then is quenched by heating by friction etc. Light emission from the complex can be obtained at high intensity. For this reason, it is excellent in visibility and has excellent authenticity judgment.
  • a friction tool having a friction portion that generates frictional heat by rubbing may be used.
  • the friction portion for example, one made of an elastic material having low abrasion resistance can be mentioned.
  • a friction portion such as a rubber portion of a commercially available thermochromic writing instrument may be used.
  • high emission intensity can be obtained by the irradiation of the excitation light, and the change in intensity difference of the emission intensity is large during and after the irradiation with the excitation light. You can get it.
  • the time for confirmation of the light emission intensity can be sufficiently secured. Therefore, the authenticity determination can be performed with high accuracy, and forgery prevention can be improved.
  • the following IR measurement was performed using FT / IR-4600 manufactured by Nippon Optical Co., Ltd.
  • the following 1 H-NMR measurement was performed using ESC 400 (400 MHz) manufactured by JEOL Ltd., and chemical shifts were determined using tetramethylsilane (TMS) as an internal standard.
  • TMS tetramethylsilane
  • the following ESI-Mass measurement was performed using Thermo Scientific Scientific's Thermo Scientific Exactive.
  • organic trace elemental analysis was performed using CE440 manufactured by Schwarz Analytical.
  • Synthesis Example 1 Synthesis of 1,4-bis (diphenylphosphoryl) biphenyl (dpbp) A 100 mL three necked flask was flame dried and the inside was replaced with argon gas. The three-necked flask was charged with 1.9 g (6.0 mmol) of 4,4′-dibromobiphenyl and 30 mL of tetrahydrofuran (THF) and cooled to about ⁇ 80 ° C. with liquid nitrogen / ethanol. To this solution was slowly added, via syringe, 9.3 mL (15 mmol) of a 1.6 M n-butyllithium hexane solution. The addition took about 15 minutes, during which a yellow precipitate formed.
  • THF tetrahydrofuran
  • the solution was stirred at ⁇ 10 ° C. for 3 hours. Next, the solution was cooled again to ⁇ 80 ° C., 2.7 mL (15 mmol) of dichlorophenyl phosphide was added dropwise, and gradually returned to room temperature while stirring for 14 hours. After that, the reaction was stopped and extraction was performed with ethyl acetate. The resulting solution was washed three times with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated by an evaporator. The resulting crude product was purified by washing with acetone and ethanol several times to obtain a white powder.
  • Synthesis Example 2 Synthesis of Eu Complex Polymer (Compound 1) Tris (hexafluoroacetylacetonato (hfa)) europium is prepared by mixing europium acetate, which is a raw material of Eu (III) ion, and 1,1,1,5,5-hexafluoro-2,4-pentanedione (III) Dihydrate was synthesized. Then, 1 equivalent of this tris (hexafluoroacetylacetonato) europium (III) dihydrate and 1 equivalent of 1,4-bis (diphenylphosphoryl) biphenyl obtained in the above-mentioned Synthesis Example 1 are added to methanol (20 mL). It dissolved.
  • Synthesis Example 3 Synthesis of Eu Complex (Compound 2) A methanol solution containing tris (hexafluoroacetylacetonato (hfa)) europium (III) and triphenylphosphine oxide (TPPO) synthesized by the same method as in Synthesis Example 2 is prepared, and the solution is refluxed while refluxing. Stir for 12 hours. Thereafter, methanol was removed by evaporation under reduced pressure to obtain a white powder. The powder was washed with toluene and unreacted tris (hexafluoroacetylacetonato) europium (III) was removed by suction filtration, and then the toluene was evaporated under reduced pressure.
  • TPPO triphenylphosphine oxide
  • Example 1 (1) Production of Ink Composition As a red light emitter, 10 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and a long decay light emitting material 1 (GLL-300FF, Nemoto) as an afterglow material Luminescent powder mixture 1 was obtained by mixing 90 parts by weight of Lumimaleial, SrAl 2 O 4 : Eu, Dy). In addition, when the afterglow time after excitation light stop was measured with the following evaluation method, the said long-afterglow light-emitting material 1 had an afterglow time of 5 seconds or more, and was a thing of 1 second or more.
  • the specific rare earth complex Compound 1 of Synthesis Example 1
  • GLL-300FF long decay light emitting material 1
  • the ink composition is prepared by kneading 30 parts by weight of the luminous powder mixture 1 and 70 parts by weight of a UV-curable vehicle (trade name: UV BF SGA medium, manufactured by DIC Graphics) as a vehicle with a three-roll mill. I got one.
  • a UV-curable vehicle trade name: UV BF SGA medium, manufactured by DIC Graphics
  • the obtained ink composition 1 is coated on a printing paper with a bar coater and then photocured by ultraviolet irradiation to have an ink layer containing a solidified product of the ink composition.
  • Example 2 A mixture of 30 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) as a red light emitter and 70 parts by weight of a long decay light emitting material 1 as an afterglow material to obtain a light emitting powder mixture 2 I got An ink composition 2 was obtained in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 2. Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 2.
  • Example 3 A light emitting powder mixture 3 was obtained by mixing 50 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and 50 parts by weight of the long decay light emitting material 1 as a red light emitting body.
  • An ink composition 3 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 3.
  • Printed matter was obtained using the obtained ink composition 3 in the same manner as Example 1.
  • Example 4 A light emitting powder mixture 4 was obtained by mixing 70 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and 30 parts by weight of the long decay light emitting material 1 as a red light emitter. An ink composition 4 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 4. Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 4.
  • Example 5 A light emitting powder is prepared in the same manner as in Example 1 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced by the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 5 was obtained. An ink composition 5 was obtained in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 5. Printed matter was obtained using the obtained ink composition 5 in the same manner as in Example 1.
  • Example 6 A light emitting powder is prepared in the same manner as in Example 2 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 6 was obtained. An ink composition 6 was obtained in the same manner as in Example 2, except that the luminous powder mixture 2 was replaced with the luminous powder mixture 6. Printed matter was obtained using the obtained ink composition 6 in the same manner as in Example 1.
  • Example 7 A light emitting powder is prepared in the same manner as in Example 3 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 7 was obtained. An ink composition 7 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 7. Printed matter was obtained using the obtained ink composition 7 in the same manner as in Example 1.
  • Example 8 A light emitting powder is prepared in the same manner as in Example 4 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 8 was obtained. An ink composition 8 was obtained in the same manner as in Example 4, except that the luminous powder mixture 4 was replaced with the luminous powder mixture 8. Printed matter was obtained using the obtained ink composition 8 in the same manner as in Example 1.
  • Example 9 As a red light emitter, 1 part by weight of a red light emitting rare earth complex (compound 3 represented by the following chemical formula, Eu (TTA) Phen, manufactured by Tokyo Chemical Industry Co., Ltd.) and 99 parts by weight of long decay light emitting material 1 are mixed A light emitting powder mixture 9 was obtained. An ink composition 9 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 9. Printed matter was obtained using the obtained ink composition 9 in the same manner as in Example 1.
  • a red light emitting rare earth complex compound 3 represented by the following chemical formula, Eu (TTA) Phen, manufactured by Tokyo Chemical Industry Co., Ltd.
  • a light emitting powder is prepared in the same manner as in Example 2 except that the compound 1 is replaced by a red light emitting inorganic oxide (compound 4, D1124, manufactured by NEMOTRUMI MATERIALS, Y 2 O 2 S: Eu) as a red light emitter.
  • Mixture 10 was obtained.
  • An ink composition 10 was obtained in the same manner as Example 2, except that the luminous powder mixture 2 was replaced with the luminous powder mixture 10.
  • Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 10.
  • Example 2 A light emitting powder mixture 11 was obtained in the same manner as in Example 3, except that the compound 1 was replaced with a red light emitting inorganic oxide (compound 4) as a red light emitting body.
  • An ink composition 11 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 11.
  • Printed matter was obtained in the same manner as in Example 1 using the obtained ink composition 11.
  • Example 3 A light emitting powder mixture 12 was obtained in the same manner as in Example 4 except that the compound 1 was replaced with a red light emitting inorganic oxide (compound 4) as a red light emitting material.
  • An ink composition 12 was obtained in the same manner as Example 4, except that the luminous powder mixture 4 was replaced with the luminous powder mixture 12.
  • Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 12.
  • Example 3 is the same as Example 3 except that the long decay light emitting material 1 is replaced by the short decay light emitting material 1 (D1164, manufactured by NEMOTOMI MATERIALS, BaMg 2 Al 16 O 27 : Eu, Mn) as a long decay material.
  • a luminescent powder mixture 13 was obtained.
  • the said short afterglow light emitting material 1 measured the afterglow time after excitation light stop by the following evaluation method, it was 40 milliseconds or less.
  • An ink composition 13 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 13.
  • the obtained ink composition 13 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, thereby obtaining a printed matter.
  • a light emitting powder mixture 14 was obtained in the same manner as in Example 4, except that the long afterglow light emitting material 1 was replaced by the short afterglow light emitting material 1 as the afterglow material.
  • An ink composition 14 was obtained in the same manner as in Example 4 except that the luminous powder mixture 4 was replaced with the luminous powder mixture 14.
  • the obtained ink composition 14 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, thereby obtaining a printed matter.
  • An ink composition 15 was prepared in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced by a luminous powder mixture 15 consisting of 100 parts by weight of a red light emitting inorganic oxide (trade name D1124 made by Nemoto Lumimaterial). Obtained. The obtained ink composition 15 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, whereby a red light emitting printed matter (reference sample of light emission intensity) was obtained.
  • a red light emitting inorganic oxide trade name D1124 made by Nemoto Lumimaterial
  • Example 2 strong red light emission (613 nm) and very weak green light emission (520 nm) are observed immediately after UV irradiation (FIG. 2), and 5 seconds after UV irradiation (FIG. 3) strong red light emission (613 nm) And strong green emission (520 nm) was observed, and after stopping UV irradiation (FIG. 4), only weak green emission (520 nm) was observed.
  • the emission spectrum of Comparative Example 3 is compared with the emission spectrum of Example 2 immediately after UV irradiation (FIG. 5) and after 5 seconds of UV irradiation (FIG. 6) after stopping UV irradiation (FIG. 7). It was confirmed that the strength was reduced.
  • A The emission peak area is 200% or more with respect to the emission peak area of the reference sample (red light emission printed matter of reference example)
  • C the emission peak area with respect to the emission peak area of the reference sample (red light emission printed matter of reference example) Less than 200%
  • Examples 1 to 9 it is possible to combine the compound 1, the compound 2 or the compound 3 which is a specific rare earth complex of the present disclosure and the long decay light emitting material 1 which is a long decay light emitting material as a red light emitter.
  • the light emission intensity was high, and a color change which can be sufficiently recognized visually was obtained during and after UV irradiation, and an ink layer having excellent visibility could be obtained.
  • the long afterglow light emitting material requires a certain period of time to saturate the light emission intensity, and also has an afterglow time of 1 second or more, and thus the high light emission intensity compound 1, compound as described above
  • the high light emission intensity compound 1, compound as described above By combining with 2 or the compound 3, a large difference in emission intensity can be obtained between a plurality of wavelength regions immediately after UV irradiation, during UV irradiation and after UV irradiation stop, and this emission intensity difference can be obtained during UV irradiation and This is because it becomes possible to visually recognize as a color change after stopping the UV irradiation.
  • Compound 4 which is a red light emitting inorganic oxide used in Comparative Examples 1 to 3 has a small emission intensity, so that the compounding ratio with the long afterglow light emitting material is such that the light emission color is the same as in Examples 2 to 4 In the case of combination with the above, the light emission intensity was lowered, resulting in poor visibility. Moreover, in Comparative Example 5 and Comparative Example 6, since the afterglow time of the short afterglow light emitting material 1 is as short as less than 1 second, color change of the ink layer may be visually confirmed during and after UV irradiation. It was difficult.
  • the ink layer of the printed matter of the example becomes dark green immediately after rubbing, then changes to red, and changes to colors immediately after UV irradiation and 5 seconds after UV irradiation when UV irradiation is continued. It was revealed that The ink layers of the prints of Comparative Examples 1 to 3 also show a color change in which the green color momentarily darkens immediately after rubbing and then changes to red, but compared to the color change when the ink layer of Example is rubbed. And the visibility was low. Incidentally, it has not been known conventionally that color change can be confirmed by rubbing an ink layer containing an afterglow material and a light emitter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is an ink composition containing: a rare earth complex containing one trivalent rare earth ion selected from the group consisting of Eu3+, Tb3+, Sm3+, Yb3+, Nd3+, Er3+, Pr3+, Ho3+, Tm3+, Dy3+, Ce3+, and Gd3+ and at least one organic ligand selected from a β-diketone ligand, a carboxylic acid ligand, a phosphine oxide ligand, and a nitrogen-containing aromatic heterocyclic ligand; and a long-afterglow luminescent material having an afterglow time of 1 second or more after excitation light irradiation is stopped.

Description

インキ組成物及び印刷物Ink composition and printed matter
 本開示の実施形態は、インキ組成物及びそれを用いた印刷物に関する。 Embodiments of the present disclosure relate to an ink composition and a printed material using the same.
 番号、文字、図形、記号、絵柄などで構成された情報パターンが印刷された抽選くじ、商品券、通行券、チケットその他の有価証券などのセキュリティが必要とされる印刷物が知られている。 There is known a printed matter requiring security, such as a lottery ticket, a gift certificate, a passing ticket, a ticket or other securities, on which an information pattern composed of numbers, characters, figures, symbols, patterns, etc. is printed.
 このような印刷物においては、盗難や、印刷物を複写機(コピー機)等で複写する詐欺行為による被害が社会問題化しており、高度な真贋判定が可能な偽造防止技術の開発が急務となっている。 With such printed matter, the damage caused by theft or fraudulent act of copying the printed matter with a copying machine (copier) has become a social problem, and the development of a forgery prevention technology capable of high-level authenticity judgment is urgently needed. There is.
 このような印刷物の偽造防止対策として、例えば特許文献1には、ホログラムを使用した偽造防止印刷物が開示されているが、ホログラムを使用する技術は製造コストが高くなるため、単価の低い印刷物への使用には不向きである。 For example, Patent Document 1 discloses a forgery-preventing printed matter using a hologram as a forgery-preventing measure for such a printed matter, but the technique using the hologram has a high manufacturing cost, so a printed matter with a low unit price is used. It is unsuitable for use.
 また、特許文献2には、可視光領域では目視不可能で、可視光以外の一定波長の光で蛍光を発する蛍光インキの印刷がされた偽造防止証書が開示されている。このような特定の発光体を配合した、所謂セキュリティマーキングは、常時は無色透明であるが、紫外光等の特定の波長の光が照射されることで発光し、真贋判定を可能とするものであり、印刷物の美観や意匠性を損ねることなく、偽造防止することが可能である。 In addition, Patent Document 2 discloses a forgery-proof certificate on which printing of a fluorescent ink that emits fluorescence with light of a certain wavelength other than visible light is invisible in the visible light region. So-called security markings, in which such specific light emitters are compounded, are always colorless and transparent, but emit light by being irradiated with light of a specific wavelength such as ultraviolet light, which makes it possible to determine authenticity. Yes, it is possible to prevent forgery without impairing the appearance and design of the printed matter.
 しかしながら、特許文献2に記載の技術では、偽造技術の進歩に伴い、偽造防止効果を十分に得られなくなっている。このため、より高い偽造防止効果を得られる技術の開発が求められている。 However, with the technology described in Patent Document 2, the forgery preventing effect can not be sufficiently obtained as the forgery technology advances. Therefore, there is a need for the development of a technology that can obtain a higher forgery prevention effect.
 また、特許文献3には、りん光体である発光体Xと、蛍光体である発光体Yとからなる残光性発光組成物の、励起光停止後における残光色が、励起光照射時における発光色と異なることを、視認により判別する技術が開示されている。 Further, in Patent Document 3, the afterglow color after stopping the excitation light of the afterglow light emitting composition composed of the light emitting body X which is a phosphor and the light emitting body Y which is a phosphor is at the time of exciting light irradiation. Patent Document 1 discloses a technology for discriminating by visual observation that the light emission color is different from that in the above.
特開平6-278396号公報Japanese Patent Laid-Open No. 6-278396 特開平06-297888号公報Japanese Patent Application Publication No. 06-297888 特許第5610121号公報Patent 5610121 gazette
 しかしながら、特許文献3に開示の残光性発光組成物では、りん光体の残光時間が1秒未満と小さいため、励起光照射中及び励起光照射後の色変化を判別することは、実際には困難であった。
 本開示の実施形態は上記問題点に鑑みてなされたものであり、発光強度に優れ、励起光照射中や照射後の色変化が大きく、判別性に優れるインキ組成物及びこれを用いて形成された印刷物を提供することを目的とする。
However, in the afterglow light emitting composition disclosed in Patent Document 3, since the afterglow time of the phosphor is as short as less than 1 second, it is practically possible to discriminate the color change during the excitation light irradiation and after the excitation light irradiation. It was difficult to
An embodiment of the present disclosure is made in view of the above problems, and is formed using an ink composition which is excellent in emission intensity, has a large color change during and after excitation light irradiation, and is excellent in discrimination. To provide printed materials.
 本開示の1実施形態は、Eu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種の三価の希土類イオンと、β-ジケトン配位子、カルボン酸配位子、ホスフィンオキシド配位子、及び含窒素芳香族複素環配位子から選ばれる少なくとも1種の有機配位子と、を含む希土類錯体と、励起光照射停止後の残光時間が1秒以上である長残光発光材料と、を含むインキ組成物を提供する。 One embodiment of the present disclosure is selected from the group consisting of Eu3 + , Tb3 + , Sm3 + , Yb3 + , Nd3 + , Er3 + , Pr3 + , Ho3 + , Tm3 + , Dy3 + , Ce3 + , and Gd3 +. One trivalent rare earth ion, and at least one organic ligand selected from β-diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands And a long afterglow light emitting material whose afterglow time after excitation light irradiation is stopped is 1 second or more.
 本開示の1実施形態においては、前記長残光発光材料が、アルカリ土類金属アルミン酸塩を含有する、インキ組成物を提供する。 In one embodiment of the present disclosure, there is provided an ink composition, wherein the long afterglow light emitting material contains an alkaline earth metal aluminate.
 本開示の1実施形態においては、前記希土類錯体は、前記有機配位子として、下記一般式(1)で表されるホスフィンオキシド配位子を含む、インキ組成物を提供する。 In one embodiment of the present disclosure, the rare earth complex provides an ink composition including, as the organic ligand, a phosphine oxide ligand represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
[一般式(1)中、Ar及びArは、それぞれ独立に、置換基を有していてもよい一価の芳香族基である。一般式(1)中、Arは、下記一般式(2a)、(2b)又は(2c)で表される二価の基であり、nは1又は2である。
Figure JPOXMLDOC01-appb-C000005
[In general formula (1), Ar 1 and Ar 2 are each independently a monovalent aromatic group which may have a substituent. In General Formula (1), Ar 3 is a divalent group represented by the following General Formula (2a), (2b) or (2c), and n is 1 or 2.
Figure JPOXMLDOC01-appb-C000006
 (前記一般式(2a)~(2c)中、Rはそれぞれ独立に一価の置換基であり、Xは硫黄原子又は酸素原子であり、Rは、水素原子又は炭化水素基であり、mは、0から、Rが結合する環における置換可能な部位までの整数である。mが2以上の整数である場合、Rはそれぞれ同一であってもよく、異なっていてもよい。)
 一般式(1)中、Eは、水素原子又は下記一般式(3)で表されるホスフィンオキシド基である。
Figure JPOXMLDOC01-appb-C000006
(In the general formulas (2a) to (2c), R 1 is each independently a monovalent substituent, X is a sulfur atom or an oxygen atom, and R 2 is a hydrogen atom or a hydrocarbon group, m is an integer from 0 to a substitutable site in the ring to which R 1 is attached When R is an integer of 2 or more, R 1 may be identical to or different from each other. )
In the general formula (1), E is a hydrogen atom or a phosphine oxide group represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000007
 (一般式(3)中、Ar及びArはそれぞれ独立に、置換基を有していてもよい一価の芳香族基である。)]
Figure JPOXMLDOC01-appb-C000007
(In General Formula (3), Ar 4 and Ar 5 are each independently a monovalent aromatic group which may have a substituent.)]
 本開示の1実施形態においては、前記希土類錯体は、ホスフィンオキシド二座配位子を含み、当該ホスフィンオキシド二座配位子が、二つの前記希土類イオンに配位して形成された架橋構造を含む、インキ組成物を提供する。 In one embodiment of the present disclosure, the rare earth complex includes a phosphine oxide bidentate ligand, and the phosphine oxide bidentate ligand forms a crosslinked structure formed by coordinating to the two rare earth ions. And providing an ink composition.
 本開示の1実施形態においては、前記希土類錯体は、前記有機配位子として、下記一般式(4)で表されるβ-ジケトン配位子を含む、インキ組成物を提供する。 In one embodiment of the present disclosure, the rare earth complex provides an ink composition including, as the organic ligand, a β-diketone ligand represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000008
(一般式(4)中、Q及びQは、それぞれ独立に、置換基を有していても良い炭化水素基、又は置換基を有していてもよい芳香族複素環基であり、Zは、水素原子又は重水素原子である。)
Figure JPOXMLDOC01-appb-C000008
(In General Formula (4), Q 1 and Q 2 are each independently a hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Z is a hydrogen atom or a deuterium atom)
 本開示の1実施形態においては、前記長残光発光材料は、SrAl:Eu,Dy、SrAl1425:Eu,Dy、及びCaAl:Eu,Ndからなる群から選ばれる少なくとも一種を含有する、インキ組成物を提供する。 In one embodiment of the present disclosure, the long decay light emitting material is selected from the group consisting of SrAl 2 O 4 : Eu, Dy, Sr 4 Al 14 O 25 : Eu, Dy, and CaAl 2 O 4 : Eu, Nd. Provided is an ink composition containing at least one selected.
 本開示の1実施形態は、前述したインキ組成物の固化物を含有するインキ層を有する、印刷物を提供する。 One embodiment of the present disclosure provides a print having an ink layer containing a solidified product of the above-described ink composition.
 本開示の実施形態は、発光強度に優れ、励起光照射中や照射後の色変化が大きく、判別性に優れるインキ組成物及びこれを用いて形成された印刷物を提供することができる。 An embodiment of the present disclosure can provide an ink composition excellent in emission intensity, having a large color change during or after irradiation with excitation light, and excellent in discrimination, and a printed material formed using the ink composition.
本開示の1実施形態に係る印刷物の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a printed matter according to an embodiment of the present disclosure. 実施例2に係るインキ層の、UV照射直後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum immediately after UV irradiation of the ink layer which concerns on Example 2. FIG. 実施例2に係るインキ層の、UV照射5秒後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum after 5 seconds of UV irradiation of the ink layer which concerns on Example 2. FIG. 実施例2に係るインキ層の、UV照射停止後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum after UV irradiation stop of the ink layer which concerns on Example 2. FIG. 比較例3に係るインキ層の、UV照射直後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the ink layer which concerns on the comparative example 3 immediately after UV irradiation. 比較例3に係るインキ層の、UV照射5秒後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum after 5 seconds of UV irradiation of the ink layer which concerns on the comparative example 3. FIG. 比較例3に係るインキ層の、UV照射停止後の発光スペクトルを示す図である。It is a figure which shows the emission spectrum after UV irradiation stop of the ink layer which concerns on the comparative example 3. FIG.
 以下、本開示の実施の形態や実施例などを、図面等を参照しながら説明する。但し、本開示は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態や実施例等の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方又は下方という語句を用いて説明する場合があるが、上下方向が逆転してもよい。
 本明細書において、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に(又は下に)」あるとする場合、特段の限定が無い限り、これは他の構成の直上(又は直下)にある場合のみでなく、他の構成の上方(又は下方)にある場合を含み、すなわち、他の構成の上方(又は下方)において間に別の構成要素が含まれている場合も含む。
 以下、本開示に係るインキ組成物及び印刷物について順に説明する。
Hereinafter, embodiments of the present disclosure, examples, and the like will be described with reference to the drawings and the like. However, the present disclosure can be implemented in many different modes, and is not interpreted as being limited to the description contents of the embodiments and the examples illustrated below. In addition, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each portion in comparison with the actual embodiment in order to clarify the description, but this is merely an example, and the interpretation of the present disclosure It is not limited. In the specification and the drawings, the same elements as those described above with reference to the drawings already described may be denoted by the same reference numerals, and the detailed description may be appropriately omitted. Moreover, although it may be demonstrated using the words "upper" or "lower" for convenience of explanation, the vertical direction may be reversed.
In the present specification, when there is a certain configuration such as a certain member or a certain region “above (or below)” another configuration such as another member or another region, unless there is a particular limitation, This includes not only directly above (or just below) other configurations, but also above (or below) other configurations, ie, other configurations between (or below) other configurations. Also includes the case where the element is included.
Hereinafter, the ink composition and printed matter according to the present disclosure will be described in order.
[インキ組成物]
 本開示の1実施形態のインキ組成物は、Eu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種の三価の希土類イオンと、β-ジケトン配位子、カルボン酸配位子、ホスフィンオキシド配位子、及び含窒素芳香族複素環配位子から選ばれる少なくとも1種の有機配位子と、を含む希土類錯体と、励起光照射停止後の残光時間が1秒以上である長残光発光材料と、を含む、インキ組成物である。
[Ink composition]
The ink composition according to one embodiment of the present disclosure is composed of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+. And at least one organic group selected from β-diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands An ink composition comprising: a rare earth complex containing a ligand; and a long afterglow light emitting material having an afterglow time after the termination of excitation light irradiation of 1 second or more.
 なお、本開示において残光性材料とは、励起光照射による光刺激で励起し、エネルギー変換して光を放出し、励起光照射停止後も所定の時間発光し続ける材料をいう。また、本明細書において、残光性材料のうち、励起光照射停止後、1秒未満の残光時間を有するものを短残光発光材料といい、励起光照射停止後、1秒以上の残光時間を有するものを長残光発光材料という。 In the present disclosure, the afterglow material refers to a material that is excited by light stimulation by irradiation with excitation light, converts energy and emits light, and continues to emit light for a predetermined time after the excitation light irradiation is stopped. In the present specification, among the afterglow materials, those having an afterglow time of less than 1 second after stopping excitation light irradiation are referred to as short afterglow light emitting materials, and those after 1 second or longer after stopping the excitation light irradiation. A material having a light time is referred to as a long persistence light emitting material.
 本開示において、残光時間とは、励起光照射停止時点を0秒とし、この時点から発光が検出されなくなるまでの経過時間をいう。本開示においては、下記手段により測定した上記経過時間を、残光時間として定義する。分光蛍光光度計(例えば、日本分光製、FP-6600)を用いて、波長365nmの励起光を所定時間照射し、得られた発光スペクトルの極大発光ピーク波長を検出波長とし、励起光照射側のシャッタを閉じた時点を0秒とし、この時点から、検出波長の発光強度が励起光停止時点の強度値の0.01%以下になるまでの時間を残光時間とする。 In the present disclosure, afterglow time refers to an excitation light irradiation stop time point as 0 second, and refers to an elapsed time from this time point until light emission is not detected. In the present disclosure, the above-mentioned elapsed time measured by the following means is defined as afterglow time. The excitation light with a wavelength of 365 nm is irradiated for a predetermined time using a spectrofluorimeter (for example, FP-6600 manufactured by Nippon Bunko), and the maximum emission peak wavelength of the obtained emission spectrum is used as a detection wavelength. The point at which the shutter is closed is taken as 0 second, and the time until the emission intensity of the detection wavelength becomes 0.01% or less of the intensity value at the excitation light stop point from this point is taken as the afterglow time.
 本開示において励起光としては、可視光線以外の電磁波が挙げられ、例えば、紫外線、赤外線等が挙げられる。 In the present disclosure, as excitation light, electromagnetic waves other than visible light can be mentioned, and for example, ultraviolet rays, infrared rays and the like can be mentioned.
 本開示に係るインキ組成物は、三価の希土類イオンと上記した有機配位子とを含む希土類錯体と、長残光発光材料とを組み合わせて用いることで、励起光の照射により高い発光強度を得ることができ、また、励起光照射中や照射後において、色変化が大きく、判別性に優れる。 The ink composition according to the present disclosure uses a combination of a rare earth complex containing a trivalent rare earth ion and the above-described organic ligand and a long afterglow light emitting material to achieve high emission intensity by irradiation with excitation light. In addition, during or after the irradiation with the excitation light, the color change is large and the discrimination is excellent.
 本開示に係るインキ組成物が、上記のような効果を発揮する作用としては、以下のように推定される。
 本開示に係るインキ組成物に含まれる長残光発光材料は、その特性から発光強度が飽和するまでに、一定時間の猶予を要する。このため、所定の波長領域で発光する上記特定の希土類錯体の発光強度と、これとは異なる波長領域で発光する長残光発光材料の発光強度との強度差が、励起光照射直後と、励起光照射後一定時間経過後とで変化する。また、本開示に係るインキ組成物に含まれる長残光発光材料は、励起光照射停止後、1秒以上の残光時間を有する。このため、励起光照射停止後は、所定の波長領域で発光する希土類錯体の発光強度と、これとは異なる波長領域で発光する長残光発光材料の発光強度との強度差が、更に拡大する。また、長残光発光材料が、励起光照射停止後、1秒以上の残光時間を有するため、励起光照射停止後においても、発光強度の強度差の確認の時間を十分に確保することができる。以上のことから、本開示に係るインキ組成物は、色変化が大きく、判別性に優れる。
 なお、本開示において、励起光照射中や照射後の色変化とは、励起光照射中や照射後に、複数の波長領域にみられる発光の強度差が変化すればよい。発光色の波長は必ずしも可視光領域の波長でなくても良く、近赤外領域や近紫外領域に該当する波長であってもよい。例えば、強くなる発光色の波長に、近赤外領域や近紫外領域に該当する波長を含む場合、適宜、当該波長領域の光を検出できる検出器を用いることができる。複数の波長領域における発光が、いずれも可視領域にある場合には、発光強度の強度差の変化を、励起光照射中や照射停止後の色変化として目視で確認することが可能となる。
It is estimated as follows as an effect | action in which the ink composition which concerns on this indication exhibits the above effects.
The long afterglow light-emitting material contained in the ink composition according to the present disclosure requires a certain period of time until the emission intensity is saturated due to its characteristics. For this reason, the difference in intensity between the emission intensity of the specific rare earth complex that emits light in a predetermined wavelength range and the emission intensity of the long afterglow light emitting material that emits light in a different wavelength range is It changes with the elapse of a fixed time after light irradiation. In addition, the long afterglow light emitting material contained in the ink composition according to the present disclosure has an afterglow time of 1 second or more after the excitation light irradiation is stopped. Therefore, after the excitation light irradiation is stopped, the difference between the emission intensity of the rare earth complex emitting in a predetermined wavelength range and the emission intensity of the long afterglow emitting material emitting in a wavelength range different from this is further expanded. . In addition, since the long decay light emitting material has an afterglow time of 1 second or more after the excitation light irradiation is stopped, the time for confirming the difference in emission intensity can be sufficiently secured even after the excitation light irradiation is stopped. it can. From the above, the ink composition according to the present disclosure has a large color change and is excellent in discrimination.
In the present disclosure, the color change during or after the irradiation of the excitation light may change the intensity difference of light emission observed in a plurality of wavelength regions during or after the irradiation of the excitation light. The wavelength of the luminescent color may not necessarily be the wavelength of the visible light region, and may be the wavelength corresponding to the near infrared region or the near ultraviolet region. For example, when the wavelength of the emission color to be intensified includes a wavelength corresponding to the near infrared region or the near ultraviolet region, a detector capable of detecting light in the wavelength region can be used as appropriate. When light emission in a plurality of wavelength regions is in the visible region, it is possible to visually check the change in the difference in light emission intensity as a color change during excitation light irradiation or after irradiation is stopped.
 また、前記特定の希土類錯体を用いた発光体は、前記有機配位子によって励起光の吸収効率が高く、励起光を効率的に利用できるため、無機発光体に比べて、発光強度が高い。そのため、本開示のインキ組成物は励起光照射中や照射後の色変化が大きくなり、判別性に優れる。さらに、前記特定の希土類錯体を用いた発光体は、有機溶剤への溶解性又は媒体への分散性、及び樹脂との相溶性に優れることから、所望のインキ組成物を調製し易く、所望のインキ層を形成し易く、各種セキュリティーマーキングに適用し易いというメリットもある。 In addition, the luminous body using the specific rare earth complex has a high absorption efficiency of excitation light by the organic ligand, and can efficiently utilize the excitation light, and therefore has a high emission intensity as compared with the inorganic luminous body. Therefore, the ink composition of the present disclosure has a large color change during and after excitation light irradiation, and is excellent in discrimination. Furthermore, the light emitter using the specific rare earth complex is excellent in solubility in an organic solvent or dispersibility in a medium, and compatibility with a resin, so that it is easy to prepare a desired ink composition, which is desirable. There is also an advantage that it is easy to form an ink layer and easy to apply to various security markings.
 更に、本発明者らは、本開示のインキ組成物の固化物を含有するインキ層を、励起光を照射しながら、摩擦して摩擦熱を生じさせることでも、励起光照射中の色変化が大きくなり判別性に優れることを見出した。
 本開示のインキ組成物に含まれる長残光発光材料は、励起光照射により生じた、電子や正孔といったキャリアが捕獲中心に一時的にトラップされ、室温の熱エネルギーにより除々に解放されて発光中心へ移動することで発光を示す。そのため、励起光を照射しながら、摩擦等により室温から瞬間的に高温状態にすると、トラップされたキャリアが急速に解放されて発光中心へ移動することで一瞬強く発光し、このときのエネルギー放出により、長残光発光材料の発光が消失する。そのため、本開示のインキ組成物の固化物を含有するインキ層を、励起光を照射しながら、摩擦して摩擦熱を生じさせると、希土類錯体に起因する発光の発光強度と、長残光発光材料に起因する発光の発光強度との強度差が変化する。
 本開示のインキ組成物は、長残光発光材料を、上記した発光強度の高い希土類錯体と併せて用いているため、摩擦等による加熱により、長残光発光材料が一旦強く発光し次いで消光した際に、希土類錯体に起因する発光と、長残光発光材料に起因する発光との間で、大きい発光強度差を得ることができ、優れた判別性を得ることができる。
 また、本開示のインキ組成物は、長残光発光材料を、上記した発光強度の高い希土類錯体と併せて用いているため、希土類錯体に起因する発光と、長残光発光材料に起因する発光とが、いずれも可視領域にあり、これらの発光強度の強度差の変化を色変化として目視で確認できる場合には、摩擦等による加熱により、長残光発光材料が一旦発光し次いで消光した際に、前記希土類錯体による高強度の発光を目視で確認し易く、優れた判別性を得ることができる。
Furthermore, the inventors of the present invention can also change the color during excitation light irradiation by rubbing the ink layer containing the solidified product of the ink composition of the present disclosure with the excitation light to generate frictional heat. It turned out that it became large and it was excellent in distinction.
In the long afterglow light emitting material contained in the ink composition of the present disclosure, carriers such as electrons and holes generated by irradiation with excitation light are temporarily trapped in capture centers, and gradually released by thermal energy at room temperature to emit light. The light emission is shown by moving to the center. Therefore, when the room temperature is instantaneously changed from room temperature by friction etc. while irradiating the excitation light, the trapped carriers are rapidly released and move to the light emission center to emit light strongly for a moment, and energy is released at this time. The light emission of the long decay light emitting material disappears. Therefore, when the ink layer containing the solidified product of the ink composition of the present disclosure is rubbed while being irradiated with excitation light to generate frictional heat, the luminescence intensity of luminescence due to the rare earth complex and the long afterglow luminescence The difference in intensity between the light emission and the light emission from the material changes.
Since the ink composition of the present disclosure uses the long afterglow light emitting material in combination with the above-described rare earth complex having high light emission intensity, the long afterglow light emitting material temporarily emits strong light and is then quenched by heating by friction or the like. In this case, a large difference in emission intensity can be obtained between the emission due to the rare earth complex and the emission due to the long afterglow light emitting material, and excellent discrimination can be obtained.
Further, since the ink composition of the present disclosure uses the long afterglow light emitting material in combination with the above-described rare earth complex having high light emission intensity, the light emission due to the rare earth complex and the light emission due to the long afterglow light emitting material Are all in the visible region, and when changes in the intensity difference of the light emission intensity can be visually confirmed as a color change, when the long decay light emitting material emits light and then is quenched by heating by friction etc. In addition, high intensity light emission due to the rare earth complex can be easily confirmed visually, and excellent discrimination can be obtained.
 本開示のインキ組成物は、前記特定の希土類錯体と、長残光発光材料とを含有するものであり、効果を損なわない範囲で、必要に応じて他の成分を含有してもよいものである。
 以下、このようなインキ組成物の各成分について順に詳細に説明する。
The ink composition of the present disclosure contains the above-mentioned specific rare earth complex and a long afterglow light emitting material, and may contain other components as needed, as long as the effects are not impaired. is there.
Hereinafter, each component of such an ink composition is demonstrated in detail in order.
<希土類錯体>
(希土類イオン)
 希土類錯体に含まれる三価の希土類イオンとしては、Eu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種が挙げられる。これらの中でも、高い発光強度を得る観点から、希土類錯体は、Eu3+、Tb3+及びSm3+からなる群から選ばれる一種であることが好ましい。
<Rare earth complex>
(Rare earth ion)
As trivalent rare earth ions contained in the rare earth complex, Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+ Are selected from the group consisting of Among these, from the viewpoint of obtaining high emission intensity, the rare earth complex is preferably a kind selected from the group consisting of Eu 3+ , Tb 3+ and Sm 3+ .
(有機配位子)
 三価の希土類イオンに配位する配位子としては、β-ジケトン配位子、カルボン酸配位子、ホスフィンオキシド配位子、及び含窒素芳香族複素環配位子から選ばれる少なくとも1種の有機配位子を含む。
(Organic ligand)
As a ligand coordinated to a trivalent rare earth ion, at least one selected from β-diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands Containing organic ligands.
 一般に、希土類錯体に吸収された励起光は、配位子から希土類イオンに受け渡され、発光する光のエネルギーに変換される。希土類錯体が、上記した有機配位子を含むことで、希土類錯体が吸収した励起光の光エネルギーを、希土類イオンに効率よく供給することができ、また、希土類イオンにおいて、供給された光のエネルギーを高効率で、発光する光のエネルギーに変換することができる。
 前記三価の希土類イオンに配位する配位子としては、本開示の効果が損なわれない限り、β-ジケトン配位子、カルボン酸配位子、ホスフィンオキシド配位子、及び含窒素芳香族複素環配位子から選ばれる少なくとも1種の有機配位子とは異なる配位子を含んでいてもよい。
In general, excitation light absorbed by the rare earth complex is transferred from the ligand to the rare earth ion and converted to energy of light to be emitted. When the rare earth complex contains the above-mentioned organic ligand, the light energy of the excitation light absorbed by the rare earth complex can be efficiently supplied to the rare earth ion, and the energy of the supplied light in the rare earth ion Can be converted to the energy of light to be emitted with high efficiency.
As the ligand to be coordinated to the trivalent rare earth ion, a β-diketone ligand, a carboxylic acid ligand, a phosphine oxide ligand, and a nitrogen-containing aromatic, as long as the effects of the present disclosure are not impaired. At least one organic ligand selected from heterocyclic ligands may contain a different ligand.
 有機配位子は、錯体の安定性の点から、アニオン性配位子を含むことが好ましく、β-ジケトン配位子及びカルボン酸配位子の少なくとも1種を含むことが好ましい。中でも、β-ジケトン配位子は、吸光係数が高いため、励起光のエネルギーを、配位した希土類イオンへ効率よく供給することができ、発光強度が高くなる点から好ましい。 The organic ligand preferably contains an anionic ligand in view of the stability of the complex, and preferably contains at least one of a β-diketone ligand and a carboxylic acid ligand. Among them, the β-diketone ligand is preferable because the energy of the excitation light can be efficiently supplied to the coordinated rare earth ion and the emission intensity becomes high because the absorption coefficient is high.
 また、有機配位子は、発光強度を高くする点から、中性配位子である含窒素芳香族複素環配位子及びホスフィンオキシド配位子の少なくとも一種を含むことが好ましい。含窒素芳香族複素環配位子は、吸光係数が高いため、励起光のエネルギーを配位した希土類イオンへ効率よく供給することができ、発光強度を向上する。また、ホスフィンオキシド配位子は、低振動なP=O骨格を含むため、配位した希土類イオンが受け取ったエネルギーを振動失活させないように機能する。低振動な骨格を含むと、光エネルギーの変換時における熱失活が抑制されるため、発光効率が高められ、発光強度が向上する。 The organic ligand preferably contains at least one of a nitrogen-containing aromatic heterocyclic ligand and a phosphine oxide ligand, which are neutral ligands, from the viewpoint of enhancing the emission intensity. Since the nitrogen-containing aromatic heterocyclic ligand has a high absorption coefficient, it can efficiently supply the energy of excitation light to the coordinated rare earth ion, and the emission intensity is improved. In addition, since the phosphine oxide ligand contains a low vibration P = O skeleton, it functions so as not to cause vibrational deactivation of the energy received by the coordinated rare earth ion. When the low vibration frame is included, heat inactivation at the time of conversion of light energy is suppressed, so that the light emission efficiency is enhanced and the light emission intensity is improved.
 また、C-X(Xはハロゲン原子:F、Cl、Br及びI)結合のようにハロゲン原子が置換されている炭素原子は、低振動な骨格(C-X結合)を含むため、上記と同様に発光効率を向上し、発光強度を向上する。低振動な骨格としては、例えば、パーハロゲン化アルキル基が挙げられ、具体例としてトリフルオロメチル基が挙げられる。 In addition, since a carbon atom substituted with a halogen atom such as a C—X (X is a halogen atom: F, Cl, Br and I) bond has a low vibration skeleton (C—X bond), Similarly, the light emission efficiency is improved, and the light emission intensity is improved. As a low vibration frame, for example, a perhalogenated alkyl group can be mentioned, and a trifluoromethyl group can be mentioned as a specific example.
 以上のことから、有機配位子としては、β-ジケトン配位子及びカルボン酸配位子の少なくとも1種のアニオン性配位子と、ホスフィンオキシド配位子及び含窒素芳香族複素環配位子の少なくとも1種とを含むことが好ましく、中でも、β-ジケトン配位子の少なくとも1種のアニオン性配位子と、ホスフィンオキシド配位子及び含窒素芳香族複素環配位子の少なくとも1種とを含むことが好ましく、これらの組み合わせの有機配位子中に、更に、ハロゲン原子が置換されている炭素原子を含むことが好ましい。 From the above, as the organic ligand, at least one anionic ligand of β-diketone ligand and carboxylic acid ligand, phosphine oxide ligand and nitrogen-containing aromatic heterocyclic ring coordination It is preferable to include at least one kind of at least one kind of at least one anionic ligand of a β-diketone ligand, at least one of a phosphine oxide ligand and a nitrogen-containing aromatic heterocyclic ligand, among others. It is preferable to include a species, and it is preferable to further include a carbon atom substituted with a halogen atom in the organic ligand of these combinations.
 β-ジケトン配位子としては、下記一般式(4)で表されるβ-ジケトン配位子が挙げられる。 Examples of the β-diketone ligand include β-diketone ligands represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009
(一般式(4)中、Q及びQは、それぞれ独立に、置換基を有していても良い炭化水素基、又は置換基を有していてもよい芳香族複素環基であり、Zは、水素原子又は重水素原子である。)
Figure JPOXMLDOC01-appb-C000009
(In General Formula (4), Q 1 and Q 2 are each independently a hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Z is a hydrogen atom or a deuterium atom)
 一般式(4)中Q及びQにおいて、炭化水素基とは、芳香族炭化水素基、脂肪族炭化水素基、及びこれらの組合せが挙げられ、前記脂肪族炭化水素基としては、飽和、若しくは不飽和の、直鎖、分岐、又は環状の脂肪族炭化水素基が挙げられる。
 前記芳香族炭化水素基としては、炭素数6以上22以下の芳香族炭化水素基が挙げられ、炭素数6以上14以下の芳香族炭化水素基が更に挙げられ、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ジベンゾ[c,g]フェナントリル基等が挙げられる。
 また、前記脂肪族炭化水素基のうち、飽和の直鎖、分岐、又は環状の脂肪族炭化水素基としては、炭素数1以上20以下の飽和の直鎖、分岐、又は環状の脂肪族炭化水素基が挙げられ、炭素数1以上10以下の飽和の直鎖、分岐、又は環状の脂肪族炭化水素基が更に挙げられる。このような飽和の直鎖、分岐、又は環状の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等のアルキル基やシクロアルキル基が挙げられる。
 また、前記脂肪族炭化水素基のうち、不飽和の直鎖、分岐、又は環状の脂肪族炭化水素基としては、炭素数2以上20以下の不飽和の直鎖、分岐、又は環状の脂肪族炭化水素基が挙げられ、炭素数2以上10以下の不飽和の直鎖、分岐、又は環状の脂肪族炭化水素基が挙げられる。このような不飽和の直鎖、分岐、又は環状の脂肪族炭化水素基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基、デセニル基、イソプロぺニル基、イソブテニル基、イソペンテニル基、2-エチルヘキセニル基、シクロペンテニル基、シクロヘキセニシル基、エチニル基、プロピニル基、ブチニル基等のアルケニル基、シクロアルケニル基、及びアルキニル基等が挙げられる。
 芳香族炭化水素基及び脂肪族炭化水素基の組合せとしては、ベンジル基、フェネチル基、ナフチルメチル基、ビフェニルメチル基等のアラルキル基が挙げられる。
In Q 1 and Q 2 in the general formula (4), the hydrocarbon group includes an aromatic hydrocarbon group, an aliphatic hydrocarbon group, and a combination thereof, and the aliphatic hydrocarbon group is saturated, And unsaturated, linear, branched or cyclic aliphatic hydrocarbon groups.
The aromatic hydrocarbon group includes an aromatic hydrocarbon group having 6 to 22 carbon atoms, and further includes an aromatic hydrocarbon group having 6 to 14 carbon atoms, and examples thereof include a phenyl group and a naphthyl group, Examples include biphenyl group, phenanthryl group, dibenzo [c, g] phenanthryl group and the like.
Further, among the aliphatic hydrocarbon groups, as a saturated linear, branched or cyclic aliphatic hydrocarbon group, a saturated linear, branched or cyclic aliphatic hydrocarbon having 1 to 20 carbon atoms And a saturated linear, branched or cyclic aliphatic hydrocarbon group having 1 to 10 carbon atoms. As such a saturated linear, branched or cyclic aliphatic hydrocarbon group, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, isopropyl group, tert-butyl group And alkyl groups such as 2-ethylhexyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group and cycloalkyl groups.
Among the aliphatic hydrocarbon groups, the unsaturated linear, branched or cyclic aliphatic hydrocarbon group is an unsaturated linear, branched or cyclic aliphatic group having 2 to 20 carbon atoms. A hydrocarbon group is mentioned, C2-C10 unsaturated linear, branched or cyclic aliphatic hydrocarbon group is mentioned. Examples of such unsaturated linear, branched or cyclic aliphatic hydrocarbon groups include vinyl, allyl, butenyl, pentenyl, hexenyl, octenyl, decenyl and isopropenyl groups. Examples thereof include isobutenyl group, isopentenyl group, 2-ethylhexenyl group, cyclopentenyl group, cyclohexenyl group, ethynyl group, propynyl group, alkenyl group such as butynyl group, cycloalkenyl group, and alkynyl group.
Examples of combinations of aromatic hydrocarbon groups and aliphatic hydrocarbon groups include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and biphenylmethyl group.
 Q及びQにおいて、芳香族複素環基としては、O(酸素原子)、S(硫黄原子)、N(窒素原子)から選択される少なくとも1種のヘテロ原子を含み、且つ環形成炭素数2以上20以下の芳香族複素環基が挙げられ、更に環形成炭素数2以上10以下の芳香族複素環基が挙げられ、より更に4員環から7員環の芳香族複素環基が挙げられる。このような芳香族複素環基としては、例えば、ピリジル基、チエニル基、フリル基、ピラゾリル基、イミダゾリル基、ベンゾフラニル基、キノリル基等が挙げられる。 In Q 1 and Q 2 , the aromatic heterocyclic group includes at least one hetero atom selected from O (oxygen atom), S (sulfur atom), N (nitrogen atom), and the number of ring carbon atoms 2 or more and 20 or less aromatic heterocyclic groups are mentioned, and further, an aromatic heterocyclic group having 2 to 10 ring carbon atoms is mentioned, and further 4 to 7 membered aromatic heterocyclic groups are mentioned. Be As such an aromatic heterocyclic group, a pyridyl group, a thienyl group, a furyl group, a pyrazolyl group, an imidazolyl group, a benzofuranyl group, a quinolyl group etc. are mentioned, for example.
 前記炭化水素基、及び前記芳香族複素環基は、必要に応じて重水素原子、ハロゲン原子(F、Cl、Br及びI)、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基及びメルカプト基などの置換基を有していてもよい。また、前記炭化水素基、及び前記芳香族複素環基は、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基、炭素数1~10のアルキルカルボニル基、アルキルカルボニルオキシ基などの置換基を有していてもよい。
 更に、前記芳香族炭化水素基、及び前記芳香族複素環基は、炭素数~10のアルキル基、炭素数1~10のハロゲン化アルキル基で置換されていても良い。
The said hydrocarbon group and the said aromatic heterocyclic group are a deuterium atom, a halogen atom (F, Cl, Br and I) as needed, a hydroxyl group, a nitro group, an amino group, a sulfonyl group, a cyano group, a silyl group It may have a substituent such as a phosphonic acid group, a diazo group and a mercapto group. The hydrocarbon group and the aromatic heterocyclic group are, for example, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, an alkylcarbonyl group having 1 to 10 carbon atoms, and the like. May have a substituent of
Furthermore, the aromatic hydrocarbon group and the aromatic heterocyclic group may be substituted by an alkyl group having 10 to 10 carbon atoms or a halogenated alkyl group having 1 to 10 carbon atoms.
 中でも、置換基として、ハロゲン原子を有し、C-X(Xはハロゲン原子:F、Cl、Br及びI)結合を有する場合には、低振動の骨格になることから、当該構造を含むと、希土類金属が受け取ったエネルギーを振動失活させないように機能し、発光効率を向上し、発光強度を向上する点から好ましい。 Among them, when the compound has a halogen atom as a substituent and has a C—X (X is a halogen atom: F, Cl, Br, and I) bond, it has a low vibration skeleton, and thus includes the structure It is preferable from the viewpoint of functioning so as not to cause vibrational deactivation of the energy received by the rare earth metal, improving the luminous efficiency and improving the luminous intensity.
 Q及びQとしては、それぞれ独立に、中でも、炭素数1以上20以下の脂肪族炭化水素基、炭素数1以上20以下のパーハロゲン化脂肪族炭化水素基、炭素数6以上22以下の芳香族炭化水素基、炭素数6以上22以下のパーハロゲン化芳香族炭化水素基、環形成炭素数2以上10以下の芳香族複素環基、及び、環形成炭素数2以上10以下のパーハロゲン化芳香族複素環基からなる群から選択される1種以上であることが好ましく、炭素数3以上6以下の脂肪族炭化水素基、炭素数1以上20以下のパーハロゲン化脂肪族炭化水素基、炭素数6以上22以下の芳香族炭化水素基、及び環形成炭素数2以上10以下の芳香族複素環基からなる群から選択される1種以上であることが好ましい。 As Q 1 and Q 2 , each independently, among others, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a perhalogenated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 6 to 22 carbon atoms Aromatic hydrocarbon group, perhalogenated aromatic hydrocarbon group having 6 to 22 carbon atoms, aromatic heterocyclic group having 2 to 10 ring carbon atoms, and per halogen having 2 to 10 ring carbon atoms Or less selected from the group consisting of halogenated aromatic heterocyclic groups, preferably having 3 to 6 carbon atoms and an aliphatic hydrocarbon group, and having 1 to 20 carbon atoms a perhalogenated aliphatic hydrocarbon group It is preferably at least one selected from the group consisting of an aromatic hydrocarbon group having 6 to 22 carbon atoms and an aromatic heterocyclic group having 2 to 10 ring carbon atoms.
 前記一般式(4)中のZは、水素原子Hであっても重水素原子Dであってもよいが、水素原子Hであることが好ましい。ZがHである希土類金属錯体に、重水素化剤を作用させて、重水素置換反応することにより、重水素化錯体(Zが重水素原子Dである錯体)を得られる。
 そのような重水素化剤は、例えば、重水素を含むプロトン性化合物、具体的には、重水;重水素化メタノール及び重水素化エタノールなどの重水素化アルコール;重塩化水素;及び重水素化アルカリなどを含む。重水素置換反応を促進するために、トリメチルアミン及びトリエチルアミンなどの塩基剤及び添加剤を加えてもよい。
Z in the general formula (4) may be a hydrogen atom H or a deuterium atom D, but is preferably a hydrogen atom H. A deuterated agent is allowed to act on a rare earth metal complex in which Z is H, thereby performing a deuterium substitution reaction to obtain a deuterated complex (a complex in which Z is a deuterium atom D).
Such deuterating agents include, for example, protic compounds containing deuterium, specifically deuterated water; deuterated alcohols such as deuterated methanol and deuterated ethanol; Including alkali and so on. Basic agents and additives such as trimethylamine and triethylamine may be added to accelerate the deuterium substitution reaction.
 β-ジケトン配位子としては、例えば、ヘキサフルオロアセチルアセトン、ジベンゾイルメタン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオン、4,4,4-トリフルオロ-1-(2-フラニル)-1,3-ブタンジオン、4,4,4-トリフルオロ-1-(3-ピリジル)-1,3-ブタンジオン、4,4,4-トリフルオロ-1-フェニル-1,3-ブタンジオン、4,4,4-トリフルオロ-1-{5-(2-メチルチエニル)}-1,3-ブタンジオン、4,4,4-トリフルオロ-1-(2-ナフチル)-1,3-ブタンジオン、及び2,2-ジメチル-6,6,7,7,8,8,8-ヘプタフルオロ-3,5-オクタンジオン等のβ-ジケトンから誘導される配位子等が挙げられる。 Examples of the β-diketone ligand include hexafluoroacetylacetone, dibenzoylmethane, 2,2,6,6-tetramethyl-3,5-heptanedione, 4,4,4-trifluoro-1- (2 -Thienyl) -1,3-butanedione, 4,4,4-trifluoro-1- (2-furanyl) -1,3-butanedione, 4,4,4-trifluoro-1- (3-pyridyl)- 1,3-butanedione, 4,4,4-trifluoro-1-phenyl-1,3-butanedione, 4,4,4-trifluoro-1- {5- (2-methylthienyl)}-1,3 -Butanedione, 4,4,4-trifluoro-1- (2-naphthyl) -1,3-butanedione, and 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro- Β-di such as 3,5-octanedione The ligand etc. which are derived from a ketone are mentioned.
 カルボン酸配位子としては、カルボキシラート基(-COO)を有する配位子が挙げられ、例えば、ギ酸(ホルマト)配位子、酢酸(アセタト)配位子、プロピオン酸(プロピオナト)配位子、クエン酸配位子、サリチル酸配位子、テレフタル酸配位子、イソフタル酸配位子、2-ヒドロキシテレフタル酸配位子、1,4-ナフタレンジカルボン酸配位子、トリメシン酸配位子、1,3,5-トリス(4-カルボキシフェニル)ベンゼン配位子、及びビフェニル-3,3’,5,5’-テトラカルボン酸配位子等が挙げられる。 Examples of carboxylic acid ligands include ligands having a carboxylate group (—COO ), and examples thereof include a formic acid (formato) ligand, an acetic acid (acetato) ligand, and a propionic acid (propionato) coordination. , Citric acid ligand, salicylic acid ligand, terephthalic acid ligand, isophthalic acid ligand, 2-hydroxyterephthalic acid ligand, 1,4-naphthalenedicarboxylic acid ligand, trimesic acid ligand And 1,3,5-tris (4-carboxyphenyl) benzene ligand, and biphenyl-3,3 ', 5,5'-tetracarboxylic acid ligand.
 ホスフィンオキシド配位子としては、下記一般式(1)で表されるホスフィンオキシド配位子が好ましい。 As a phosphine oxide ligand, the phosphine oxide ligand represented by following General formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000010
[一般式(1)中、Ar及びArは、それぞれ独立に、置換基を有していてもよい一価の芳香族基である。一般式(1)中、Arは、下記一般式(2a)、(2b)又は(2c)で表される二価の基であり、nは1又は2である。
Figure JPOXMLDOC01-appb-C000010
[In general formula (1), Ar 1 and Ar 2 are each independently a monovalent aromatic group which may have a substituent. In General Formula (1), Ar 3 is a divalent group represented by the following General Formula (2a), (2b) or (2c), and n is 1 or 2.
Figure JPOXMLDOC01-appb-C000011
 (前記一般式(2a)~(2c)中、Rはそれぞれ独立に一価の置換基であり、Xは硫黄原子又は酸素原子であり、Rは、水素原子又は炭化水素基であり、mは、0から、Rが結合する環における置換可能な部位までの整数である。Rが複数ある場合、Rはそれぞれ同一であってもよく、異なっていてもよい。)
 一般式(1)中、Eは、水素原子又は下記一般式(3)で表されるホスフィンオキシド基である。
Figure JPOXMLDOC01-appb-C000011
(In the general formulas (2a) to (2c), R 1 is each independently a monovalent substituent, X is a sulfur atom or an oxygen atom, and R 2 is a hydrogen atom or a hydrocarbon group, m is from 0, if .R 1 R 1 is an integer from possible sites substitution in ring linked there are multiple, may be R 1 is each the same or different.)
In the general formula (1), E is a hydrogen atom or a phosphine oxide group represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000012
 (一般式(3)中、Ar及びArはそれぞれ独立に、置換基を有していてもよい一価の芳香族基である。)]
Figure JPOXMLDOC01-appb-C000012
(In General Formula (3), Ar 4 and Ar 5 are each independently a monovalent aromatic group which may have a substituent.)]
 一般式(1)中のAr及びAr、並びに、一般式(3)中のAr及びArは、それぞれ独立に、置換基を有していてもよい一価の芳香族基である。
 当該芳香族基としては、芳香族炭化水素基及び芳香族複素環基が挙げられる。ここでの芳香族炭化水素基及び芳香族複素環基としては、前記一般式(4)で表されるQ及びQにおける、芳香族炭化水素基及び芳香族複素環基と同様であって良い。
 一般式(1)中のAr及びAr、並びに、一般式(3)中のAr及びArの芳香族基としては、具体的には、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ジベンゾ[c,g]フェナントリル基、ピリジル基、チエニル基等が挙げられる。
一般式(1)中のAr及びAr、並びに、一般式(3)中のAr及びArの芳香族基としては、中でも、フェニル基、ピリジル基、又はチエニル基が好ましく、特にフェニル基が好ましいものとして挙げられる。
Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3) are each independently a monovalent aromatic group which may have a substituent .
The aromatic group includes an aromatic hydrocarbon group and an aromatic heterocyclic group. The aromatic hydrocarbon group and the aromatic heterocyclic group here are the same as the aromatic hydrocarbon group and the aromatic heterocyclic group in Q 1 and Q 2 represented by the general formula (4), and good.
Specific examples of the aromatic group of Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3) include a phenyl group, a naphthyl group, a biphenyl group and a phenanthryl group. And dibenzo [c, g] phenanthryl group, pyridyl group, thienyl group and the like.
Among the aromatic groups of Ar 1 and Ar 2 in the general formula (1) and Ar 4 and Ar 5 in the general formula (3), among them, a phenyl group, a pyridyl group or a thienyl group is preferable, and particularly phenyl Groups are mentioned as being preferred.
 一般式(1)中のAr及びAr、並びに、一般式(3)中のAr及びArが有していても良い置換基、及び、Rとしての一価の置換基は、それぞれ、炭素数1以上20以下の炭化水素基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基等が挙げられる。 Ar 1 and Ar 2 in the general formula (1), and a substituent which Ar 4 and Ar 5 in the general formula (3) may have, and a monovalent substituent as R 1 are Examples thereof include a hydrocarbon group having 1 to 20 carbon atoms, a hydroxyl group, a nitro group, an amino group, a sulfonyl group, a cyano group, a silyl group, a phosphonic acid group, a diazo group, a mercapto group and the like.
 一般式(2c)中のRは、水素原子又は炭化水素基であり、当該炭化水素基としては、脂肪族炭化水素基及び芳香族炭化水素基が挙げられ、これらの炭化水素基は、前記一般式(4)で表されるQ及びQにおける、炭化水素基と同様であって良い。一般式(2c)中のRの炭化水素基としては、中でも、フェニル基、及び炭素数1以上10以下の脂肪族炭化水素基からなる群から選択される少なくとも1種であることが好ましい。 R 2 in the general formula (2c) is a hydrogen atom or a hydrocarbon group, and examples of the hydrocarbon group include an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and these hydrocarbon groups are It may be the same as the hydrocarbon group in Q 1 and Q 2 represented by the general formula (4). Among them, the hydrocarbon group of R 2 in the general formula (2c) is preferably at least one selected from the group consisting of a phenyl group and an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
 前記一般式(2a)、(2b)及び(2c)中、mは、0から、Rが結合する環における置換可能な部位までの整数であり、中でも、0以上2以下の整数であることが好ましく、0であることがより好ましい。 In the general formulas (2a), (2b) and (2c), m is an integer from 0 to a substitutable site in the ring to which R 1 is bonded, and is an integer of 0 or more and 2 or less, among others Is preferable, and 0 is more preferable.
 前記一般式(1)中、nは1又は2であり、Arが前記一般式(2c)で表される二価の基である場合、nは1であることが好ましい。
 前記一般式(1)中、Eは、水素原子又は前記一般式(3)で表されるホスフィンオキシド基である。前記一般式(1)中、Eが前記一般式(3)で表されるホスフィンオキシド基であると、前記一般式(1)で表される前記ホスフィンオキシド配位子が二座配位子となり、該ホスフィンオキシド配位子が二つの前記希土類イオンに配位して形成された架橋構造を含む希土類錯体を形成することができる。当該架橋構造を含む希土類錯体について、以下、錯体ポリマーという場合がある。
In the general formula (1), n is preferably 1 or 2, and when Ar 3 is a divalent group represented by the general formula (2c), n is preferably 1.
In the general formula (1), E is a hydrogen atom or a phosphine oxide group represented by the general formula (3). In the general formula (1), when E is a phosphine oxide group represented by the general formula (3), the phosphine oxide ligand represented by the general formula (1) is a bidentate ligand. The phosphine oxide ligand may form a rare earth complex including a crosslinked structure formed by coordinating to the two rare earth ions. The rare earth complex containing the crosslinked structure may be hereinafter referred to as a complex polymer.
 含窒素芳香族複素環配位子を構成する含窒素芳香族複素環式化合物としては、単環化合物の他に、環集合化合物、縮合環化合物も含まれる。芳香環を構成する原子数は、通常5以上30以下であり、5以上18以下が好ましく、入手が容易で性能も優れることから原子数が6以上10以下のものが特に好ましい。 As a nitrogen-containing aromatic heterocyclic compound which comprises a nitrogen-containing aromatic heterocyclic ligand, a ring assembly compound and a condensed ring compound other than a single ring compound are also contained. The number of atoms constituting the aromatic ring is usually 5 or more and 30 or less, preferably 5 or more and 18 or less, and particularly preferably 6 or more and 10 or less from the viewpoint of easy availability and excellent performance.
 前記含窒素芳香族複素環式化合物としては、例えば、ピリジン、2-メチルピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、2,6-ルチジン、ピリミジン、ピリダジン、ピラジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、1,2-ジメチルイミダゾール、3-(ジメチルアミノ)プロピルイミダゾール、ピラゾール,フラザン、ピラジン、キノリン、イソキノリン、プリン、1H-インダゾール、キナゾリン、シンノリン、キノキサリン、フタラジン、プテリジン、フェナントリジン、2,6-ジ-t-ブチルピリジン、2,2'-ビピリジン、4,4'-ジメチル-2,2'-ビピリジル、4,4'-ジメチル-2,2'-ビピリジル、5,5'-ジメチル-2,2'-ビピリジル、6,6'-t-ブチル-2,2'-ジピリジル、4,4'-ジフェニル-2,2'-ビピリジル、1,10-フェナントロリン、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン等が挙げられる。前記含窒素芳香族複素環式化合物としては、中でも、例えば、1,10-フェナントロリン、2-2’-ビピリジル、2-2’-6,2”-ターピリジル、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、2-(2-ピリジル)ベンズイミダゾール等の二座配位子となるフェナントロリン類、ピリジン類が好ましく用いられる。 Examples of the nitrogen-containing aromatic heterocyclic compound include pyridine, 2-methylpyridine, 2,4,6-trimethylpyridine, 4-dimethylaminopyridine, 2,6-lutidine, pyrimidine, pyridazine, pyrazine, oxazole, and the like. Isoxazole, thiazole, isothiazole, imidazole, 1,2-dimethylimidazole, 3- (dimethylamino) propylimidazole, pyrazole, furazan, pyrazine, quinoline, isoquinoline, purine, 1H-indazole, quinazoline, cinnoline, quinoxaline, phthalazine, Pteridine, phenanthridine, 2,6-di-t-butylpyridine, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridyl, 4,4'-dimethyl-2,2'- Bipyridyl, 5,5'-dimethyl-2,2'-bipi Lysyl, 6,6'-t-butyl-2,2'-dipyridyl, 4,4'-diphenyl-2,2'-bipyridyl, 1,10-phenanthroline, 2,7-dimethyl-1,10-phenanthroline, Examples include 5,6-dimethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline and the like. Among the above-mentioned nitrogen-containing aromatic heterocyclic compounds, for example, 1,10-phenanthroline, 2-2′-bipyridyl, 2-2′-6,2 ”-terpyridyl, 2,7-dimethyl-1,10 -Phenanthrolines and pyridines to be bidentate ligands such as -phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline and 2- (2-pyridyl) benzimidazole Is preferably used.
 前記希土類錯体は、ホスフィンオキシド二座配位子を含み、当該ホスフィンオキシド二座配位子が、二つの希土類イオンに配位して形成された、架橋構造を含むことが、各種耐性、及び発光強度が向上する点から、好ましい。
 中でも、当該ホスフィンオキシド二座配位子が、一般式(1)で表され、一般式(1)中のEが一般式(3)で表されるホスフィンオキシド基であるホスフィンオキシド二座配位子の場合には、中でも耐光性に優れ、且つ耐溶剤性にも優れる点から、更に好ましい。従来の発光強度の高い希土類錯体は溶剤に溶けやすいため、インキ組成物や印刷物にしたときの耐溶剤性が悪く、医療現場のようなアルコールや有機溶剤を使用する現場において使用される医療用管理ラベル等へのセキュリティ性付与には不向きであるという課題があった。更に、セキュリティ印刷物は、溶剤を用いた改ざんを防止することが求められており、改ざん防止の観点からも従来の希土類錯体は適していないという課題があった。それに対して、一般式(1)で表され、一般式(1)中のEが一般式(3)で表されるホスフィンオキシド基であるホスフィンオキシド二座配位子を含む希土類錯体は、メタノール、エタノールなどのアルコール類や、アセトン、酢酸エチル、ヘキサン、ジクロロメタンなどの有機溶媒に不溶であるため、当該二座ホスフィンオキシド配位子を含む希土類錯体を含むインキ組成物は、印刷物にしたときの耐溶剤性が高く、有機溶剤を用いる現場で使用されるセキュリティ性付与においても利用可能であり、更に、溶剤を用いた改ざんを防止できる。
The rare earth complex includes a phosphine oxide bidentate ligand, and the phosphine oxide bidentate ligand includes a cross-linked structure formed by coordinating to two rare earth ions; It is preferable from the point that the strength is improved.
Above all, a phosphine oxide bidentate coordination in which the phosphine oxide bidentate ligand is represented by the general formula (1) and E in the general formula (1) is a phosphine oxide group represented by the general formula (3) In the case of a child, it is more preferable from the viewpoint of being excellent in light resistance and also in solvent resistance. Conventional rare earth complexes with high luminescence intensity are easily soluble in solvents, so they have poor solvent resistance when made into ink compositions and printed matter, and medical management used in sites using alcohol and organic solvents such as medical sites There is a problem that it is not suitable for providing security to labels and the like. Furthermore, security printed matter is required to prevent falsification using a solvent, and there is a problem that the conventional rare earth complex is not suitable also from the viewpoint of falsification prevention. On the other hand, a rare earth complex containing a phosphine oxide bidentate ligand which is a phosphine oxide group represented by the general formula (1) and E in the general formula (1) is represented by the general formula (3) is methanol And an ink composition containing a rare earth complex containing the bidentate phosphine oxide ligand because it is insoluble in an alcohol such as ethanol, or an organic solvent such as acetone, ethyl acetate, hexane, or dichloromethane; The solvent resistance is high, and it can be used for security application used in the field using an organic solvent, and furthermore, it is possible to prevent the falsification using the solvent.
 発光強度に優れる点から、好ましい前記希土類錯体の少なくとも1種としては、例えば、下記一般式(5)で表される繰り返し単位を有する希土類錯体及び下記一般式(6)で表される希土類錯体の少なくとも1種が挙げられる。中でも、下記一般式(5)で表される繰り返し単位を有する希土類錯体を含むと、耐熱性、耐光性、及び耐溶剤性に優れた印刷物を作成することができる。 As at least one of the preferred rare earth complexes from the viewpoint of excellent emission intensity, for example, rare earth complexes having a repeating unit represented by the following general formula (5) and rare earth complexes represented by the following general formula (6) There is at least one type. Above all, when the rare earth complex having a repeating unit represented by the following general formula (5) is contained, a printed matter excellent in heat resistance, light resistance and solvent resistance can be produced.
Figure JPOXMLDOC01-appb-C000013
(一般式(5)中、Ln3+はEu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種の三価の希土類イオンを表し、Ar、Ar及びArは前記一般式(1)と同様であり、Ar及びArは前記一般式(3)と同様であり、Q、Q及びZは前記一般式(4)と同様である。)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (5), Ln 3+ is a group consisting of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+ Ar 1 , Ar 2 and Ar 3 are the same as in the above general formula (1), and Ar 4 and Ar 5 are the same as the above general formula (3), Q 1 , Q 2 and Z are the same as in the above general formula (4).)
Figure JPOXMLDOC01-appb-C000014
(一般式(6)中、Ln3+はEu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種の三価の希土類イオンを表し、Ar、Ar及びArは前記一般式(1)と同様であり、Q、Q及びZは前記一般式(4)と同様である。n1は1以上5以下の整数であり、n2は1以上4以下の整数である。)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (6), Ln 3+ is a group consisting of Eu 3+ , Tb 3+ , Sm 3+ , Yb 3+ , Nd 3+ , Nd 3+ , Er 3+ , Pr 3+ , Ho 3+ , Tm 3+ , Dy 3+ , Ce 3+ , and Gd 3+ Ar 1 , Ar 2 and Ar 3 are the same as in the above general formula (1), and Q 1 , Q 2 and Z are the same as those in the above general formula (4) N1 is an integer of 1 or more and 5 or less, and n2 is an integer of 1 or more and 4 or less.)
 前記一般式(6)において、発光強度が向上する点から、n1は1又は2であることが好ましく、n2は2、3又は4であることが好ましく、n1が2であり且つn2が3であることが中でも好ましい。 In the above general formula (6), n1 is preferably 1 or 2, n2 is preferably 2, 3 or 4, and n1 is 2 and n2 is 3 from the viewpoint of improving the emission intensity. Among them, preferred is one.
 前記希土類錯体は、例えば、希土類イオンの原料である希土類金属化合物と配位子となる化合物とを、必要に応じて触媒の存在下で、これらを溶解又は分散できる溶媒中にて撹拌する方法によって合成することができる。溶媒としては、希土類金属化合物及び配位子となる化合物に対して好適なものを混合して用いてもよく、例えば、ジクロロメタンとメタノールの混合溶媒を適用することができる。触媒としては、例えば、必要に応じて、トリメチルアミンや水酸化リチウム等を添加することができる。 The rare earth complex is prepared, for example, by a method of stirring a rare earth metal compound which is a raw material of a rare earth ion and a compound to be a ligand in a solvent which can dissolve or disperse them, if necessary, in the presence of a catalyst. It can be synthesized. As the solvent, a solvent suitable for the compound to be the rare earth metal compound and the ligand may be mixed and used, and for example, a mixed solvent of dichloromethane and methanol can be applied. As a catalyst, for example, trimethylamine, lithium hydroxide and the like can be added, if necessary.
<長残光発光材料>
 長残光発光材料としては、例えば、SrAl:Eu,Dy(黄緑)、SrAl1425:Eu,Dy(青緑)、及びCaAl:Eu,Nd(紫青)、ZnS:Cu,Mn,Co(黄橙)、ZnS:Cu(黄緑)、Y2 O2 S:Eu,Mg,Ti(赤)、Sr2 MgSi2 O8 :Eu,Dy(青)、Sr2 MgSiO7 :Eu,Dy(青)、SrAl3 O5 (OH):Eu,Dy(青緑)、ZnGa2 O4 :Mn(緑)、Y2 O2 S:Eu,Mg,Ti(赤)、GdO2 S:Eu,Mg,Ti(赤)等が挙げられる。
<Long-lasting light emitting material>
As long-lasting light emitting materials, for example, SrAl 2 O 4 : Eu, Dy (yellowish green), Sr 4 Al 14 O 25 : Eu, Dy (blue-green), and CaAl 2 O 4 : Eu, Nd (purple-blue) ), ZnS: Cu, Mn, Co (yellow orange), ZnS: Cu (yellow green), Y 2 O 2 S: Eu, Mg, Ti (red), Sr 2 MgSi 2 O 8 : Eu, Dy (blue) , Sr 2 MgSiO 7 : Eu, Dy (blue), SrAl 3 O 5 (OH): Eu, Dy (blue-green), ZnGa 2 O 4 : Mn (green), Y 2 O 2 S: Eu, Mg, Ti (Red), GdO 2 S: Eu, Mg, Ti (red) and the like.
 上記した材料の中でも、アルカリ土類金属アルミン酸塩を含むものが、入手のし易さと、耐光性及び残光輝度が高い点から好ましい。 Among the above-mentioned materials, those containing an alkaline earth metal aluminate are preferable from the viewpoint of easy availability and high light resistance and afterglow luminance.
 中でも、アルカリ土類金属アルミン酸塩に、二種以上の希土類金属を添加したものは、一方の希土類金属イオンが捕獲中心となり、光照射により生成した電子または正孔をトラップさせてから、これとは異なる希土類金属イオンの発光中心に移動して発光させることができるため、発光強度が飽和するまでに所定の時間を確保し易く、また、励起光照射停止後においても、残光時間を長く確保し易いため好ましい。 Among them, one obtained by adding two or more kinds of rare earth metals to an alkaline earth metal aluminate is a trapping center of one of the rare earth metals, and after trapping electrons or holes generated by light irradiation, Can move to the emission center of different rare earth metal ions to emit light, so it is easy to secure a predetermined time until the emission intensity saturates, and also ensure a long decay time even after the excitation light irradiation is stopped. It is preferable because it is easy to do.
 希土類錯体と長残光発光材料とは、所定の励起光を照射したときの発光色が異なる組み合わせで配合することが好ましい。より好ましくは、希土類錯体の発光強度が最大となる波長(λ1)と、長残光発光材料の発光強度が最大となる波長(λ2)との差の絶対値が、好ましくは30nm以上、より好ましくは50nm以上であることがよい。 It is preferable that the rare earth complex and the long afterglow light emitting material be blended in a combination in which the emission color when irradiated with a predetermined excitation light is different. More preferably, the absolute value of the difference between the wavelength (λ1) at which the emission intensity of the rare earth complex is maximum and the wavelength (λ2) at which the emission intensity of the long afterglow material is maximum is preferably 30 nm or more, more preferably Is preferably 50 nm or more.
 具体的には、長残光発光材料として、SrAl:Eu,Dy(黄緑)、SrAl1425:Eu,Dy(青緑)、CaAl:Eu,Nd(紫青)、Sr2 MgSi2 O8 :Eu,Dy(青)、Sr2 MgSiO7 :Eu,Dy(青)、SrAl3 O5 (OH):Eu,Dy(青緑)、及びZnGa2 O4 :Mn(緑)からなる群から選択される一種以上を用いた場合には、希土類錯体としてはEu3+、Sm3+、Pr3+、及びHoからなる群から選択される希土類イオン一種以上を用いることが好ましい。
 また、長残光発光材料として、ZnS:Cu,Mn,Co(黄橙)、Y2 O2 S:Eu,Mg,Ti(赤)及びGdO2 S:Eu,Mg,Ti(赤)からなる群から選択される一種以上を用いた場合には、希土類錯体としてはTb3+、Er3+、Tm3+、Dy3+、Yb3+、Nd3+、Ce3+、及びGd3+からなる群から選択される一種以上を用いることが好ましい。
Specifically, SrAl 2 O 4 : Eu, Dy (yellowish green), Sr 4 Al 14 O 25 : Eu, Dy (blue-green), CaAl 2 O 4 : Eu, Nd (purple) as a long decay light emitting material Blue), Sr 2 MgSi 2 O 8 : Eu, Dy (blue), Sr 2 MgSiO 7 : Eu, Dy (blue), SrAl 3 O 5 (OH): Eu, Dy (blue-green), and ZnGa 2 O 4 When one or more selected from the group consisting of Mn (green) is used, one or more rare earth ions selected from the group consisting of Eu 3+ , Sm 3+ , Pr 3+ , and Ho 3 are used as the rare earth complex Is preferred.
In addition, as a long decay light emitting material, ZnS: Cu, Mn, Co (yellow orange), Y 2 O 2 S: Eu, Mg, Ti (red) and GdO 2 S: Eu, Mg, Ti (red) When one or more selected from the group is used, a rare earth complex is selected from the group consisting of Tb 3+ , Er 3+ , Tm 3+ , Dy 3+ , Yb 3+ , Nd 3+ , Ce 3+ , and Gd 3+ It is preferable to use the above.
<その他の成分>
 インキ組成物には、本開示の効果を損なわない範囲で、必要に応じて更にその他の成分を含有していてもよい。
 その他の成分としては、例えば、ビヒクルの他、インキに使用されている既知の補助剤、例えば、分散剤、架橋剤、乾燥促進剤、重合禁止剤、ワックス、体質顔料、着色剤、乾燥抑制剤、酸化防止剤、整面助剤、裏移り防止剤、消泡剤、又は界面活性剤等が挙げられる。
<Other ingredients>
The ink composition may further contain other components as needed, as long as the effects of the present disclosure are not impaired.
As other components, for example, known adjuvants used in inks other than vehicles, such as dispersants, crosslinking agents, drying accelerators, polymerization inhibitors, waxes, extender pigments, coloring agents, drying inhibitors And antioxidants, surface-adjusting agents, anti-set-off agents, antifoaming agents, surfactants, and the like.
(ビヒクル)
 ビヒクルは、前記希土類錯体を分散させ、塗布乃至印刷した場合に塗膜形成能力をもつ媒体である。本開示に用いられるビヒクルは、インキに使用されている既知のビヒクル成分、例えば、樹脂、溶剤、光硬化性成分等を含んでよい。
(Vehicle)
The vehicle is a medium having a film forming ability when the rare earth complex is dispersed and applied or printed. The vehicles used in the present disclosure may include known vehicle components used in the ink, such as resins, solvents, photocurable components, and the like.
  ビヒクルに含まれる樹脂としては、既知の樹脂を適宜選択して用いることができる。例えば、インキに使用されている既知の樹脂を使用してよく、油性インキに含まれる樹脂、又はUVインキに含まれる樹脂を使用してよい。
  樹脂は、天然樹脂又は合成樹脂でよく、かつホモポリマー又はコポリマーでよい。油性インキの粘性を確保するためには、樹脂が固形であることが好ましい。天然樹脂としては、例えば、松脂、琥珀、シェラック、ギルソナイト等が挙げられる。
  合成樹脂としては、例えば、ロジン、フェノール樹脂、変性アルキド樹脂、ポリエステル樹脂、石油樹脂、ロジン変性マレイン酸樹脂等のマレイン酸樹脂、環化ゴム、アクリル樹脂、1液型ウレタン樹脂、2液型ウレタン樹脂、及びその他の合成樹脂が挙げられる。
  また、水性インキとする場合には、例えば、水溶性樹脂、コロイダルディスパージョン樹脂、エマルジョン樹脂等を含んでよい。
  上記で列挙した樹脂は、それぞれ単独で又は2種以上を組み合わせて使用されることができる。
As the resin contained in the vehicle, known resins can be appropriately selected and used. For example, known resins used in ink may be used, and resins contained in oil-based ink or resins contained in UV ink may be used.
The resin may be a natural or synthetic resin and may be a homopolymer or copolymer. In order to ensure the viscosity of the oil-based ink, the resin is preferably solid. Examples of natural resins include rosin, agate, shellac, and gylsonite.
As the synthetic resin, for example, rosin, phenol resin, modified alkyd resin, polyester resin, petroleum resin, maleic acid resin such as rosin modified maleic resin, cyclized rubber, acrylic resin, one-component urethane resin, two-component urethane And resins and other synthetic resins.
In the case of using an aqueous ink, it may contain, for example, a water-soluble resin, a colloidal dispersion resin, an emulsion resin, and the like.
The resins listed above can be used alone or in combination of two or more.
  ビヒクルに含まれる溶剤としては、既知の溶剤を適宜選択して用いることができる。溶剤としては、有機溶剤、乾性油、半乾性油、鉱物油、水等が挙げられる。 As the solvent contained in the vehicle, known solvents can be appropriately selected and used. Examples of the solvent include organic solvents, drying oils, semi-drying oils, mineral oils, water and the like.
  ビヒクルに含まれる光硬化性成分としては、既知の光硬化性成分を適宜選択して用いることができる。光硬化性成分は、モノマー、オリゴマー、光重合開始剤等を含む。
  モノマーとしては、従来から光重合に使用されていたエチレン性不飽和結合を有する化合物が挙げられる。また、オリゴマーは、エチレン性不飽和結合を有する化合物を、オリゴマー化することにより得られる。
  エチレン性不飽和結合を有する化合物としては、例えば、(メタ)アクリル酸系化合物;マレイン酸系化合物;ウレタン系、エポキシ系、ポリエステル系、ポリオール系、植物油系化合物等で変性したエチレン性不飽和二重結合を有する化合物等が挙げられる。
  光重合開始剤は、例えば紫外線照射によって活性酸素等のラジカルを発生する化合物である。光重合開始剤としては、印刷に使用されている既知の光重合開始剤を適宜選択して含有させればよい。
As a photocurable component contained in a vehicle, a well-known photocurable component can be selected suitably and can be used. The photocurable component includes a monomer, an oligomer, a photopolymerization initiator and the like.
As a monomer, the compound which has the ethylenically unsaturated bond conventionally used for photopolymerization is mentioned. Moreover, an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
Examples of the compound having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane compounds, epoxy compounds, polyester compounds, polyol compounds, vegetable oil compounds, etc. The compound etc. which have a heavy bond are mentioned.
The photopolymerization initiator is, for example, a compound which generates a radical such as active oxygen by ultraviolet irradiation. As the photopolymerization initiator, known photopolymerization initiators used for printing may be appropriately selected and contained.
<インキ組成物における各成分の配合割合>
 本開示のインキ組成物は、インキ組成物の固形分全量に対する前記特定の希土類錯体及び前記長残光発光材料の合計の含有割合が、発光強度の点から、1質量%以上であることが好ましく、5質量%以上であることがより好ましい。なお、本開示において固形分とは、溶剤以外の成分をいう。
 また、本開示のインキ組成物が含有する前記希土類錯体及び前記長残光発光材料の合計100質量部に対する前記希土類錯体の割合は、希土類錯体と長残光発光材料との組み合わせにより適宜選択されればよく、特に限定されないが、色変化が大きくなり易い点から、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、90質量部以下であることが好ましく、70質量部以下であることがより好ましい。
 本開示のインキ組成物が前記その他の成分を含有する場合は、インキ組成物の固形分全量に対する前記その他の成分に由来する固形分の割合が、発光強度の点から、99質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 また、本開示のインキ組成物が溶剤を含有する場合、溶剤を含むインキ組成物全量に対する固形分の割合は、印刷方法に応じて適宜調節され、特に限定はされないが、印刷乃至塗布適性の点から、5質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましい。
<Composition ratio of each component in the ink composition>
In the ink composition of the present disclosure, the content ratio of the total of the specific rare earth complex and the long afterglow light emitting material to the total solid content of the ink composition is preferably 1% by mass or more from the viewpoint of emission intensity And 5 mass% or more is more preferable. In addition, in this indication, solid content means components other than a solvent.
Further, the ratio of the rare earth complex to the total 100 parts by mass of the rare earth complex and the long afterglow light emitting material contained in the ink composition of the present disclosure is appropriately selected according to the combination of the rare earth complex and the long afterglow light emitting material Although it is not particularly limited, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and preferably 90 parts by mass or less, from the viewpoint that the color change tends to be large. It is more preferable that it is less than 1 part.
When the ink composition of the present disclosure contains the above-mentioned other components, the ratio of the solid content derived from the above-mentioned other components to the total solid content of the ink composition is 99% by mass or less Is preferable, and 95% by mass or less is more preferable.
When the ink composition of the present disclosure contains a solvent, the ratio of the solid content to the total amount of the ink composition containing the solvent is appropriately adjusted according to the printing method, and is not particularly limited. Therefore, the content is preferably 5% by mass to 80% by mass, and more preferably 10% by mass to 60% by mass.
 本開示のインキ組成物の製造方法としては、前述した本開示のインキ組成物が得られる方法であれば特に限定はされず、前記希土類錯体、長残光発光材料及びビヒクル等のその他の成分を、任意の順序で混合及び分散することにより、製造することができる。各成分の混合及び分散は、例えば一軸ミキサー及び二軸ミキサー等のミキサーや、例えば3本ローラーミル、ビーズミル、ボールミル、サンドグラインダー及びアトライター等の練肉機(ink  mill)により行なうことができる。 The method for producing the ink composition of the present disclosure is not particularly limited as long as the ink composition of the present disclosure described above can be obtained, and the other components such as the rare earth complex, the long afterglow light emitting material and the vehicle It can be produced by mixing and dispersing in any order. The mixing and dispersion of the respective components can be carried out by a mixer such as a single-screw mixer and a twin-screw mixer, or an ink mill such as a three-roller mill, a bead mill, a ball mill, a sand grinder and an attritor.
 以上説明した、本開示のインキ組成物によれば、上記した希土類錯体と、上記した長残光発光材料とを組み合わせて用いることで、励起光の照射により、高い発光強度を得ることができ、また、励起光照射中や照射後において、大きい色変化を得られるため、真贋判定用途、偽造防止用途、各種セキュリティ用途に好適に用いられる。 According to the ink composition of the present disclosure described above, by using the above-described rare earth complex in combination with the above-described long decay light emitting material, high emission intensity can be obtained by irradiation with excitation light. In addition, since a large color change can be obtained during or after irradiation with excitation light, it is suitably used for authenticity determination applications, forgery prevention applications, and various security applications.
[印刷物]
  本開示の1実施形態の印刷物は、前記本開示の1実施形態のインキ組成物の固化物を含有するインキ層を有する、印刷物である。
 図1は、本開示に係る印刷物の一例を示す概略断面図である。印刷物1は、基材10の一方の面にインキ層11を有している。インキ層11は、前記本開示の1実施形態のインキ組成物の固化物を含有する層であり、前記本開示の1実施形態のインキ組成物を用いて形成されている。
[Printed matter]
The printed matter according to the embodiment of the present disclosure is a printed matter having an ink layer containing a solidified product of the ink composition according to the embodiment of the present disclosure.
FIG. 1 is a schematic cross-sectional view showing an example of a printed matter according to the present disclosure. The printed matter 1 has the ink layer 11 on one side of the substrate 10. The ink layer 11 is a layer containing a solidified product of the ink composition of the embodiment of the present disclosure, and is formed using the ink composition of the embodiment of the present disclosure.
 本開示に係る印刷物1は、単数又は複数のインキ層11を有していてよい。基材10上に複数のインキ層11が設けられている場合には、各インキ層を形成するインキ組成物の組成等は、同じであっても異なっていてもよい。インキ層11としては、任意のパターンを有することができる。 The printed matter 1 according to the present disclosure may have one or more ink layers 11. When a plurality of ink layers 11 are provided on the substrate 10, the composition or the like of the ink composition forming each ink layer may be the same or different. The ink layer 11 can have an arbitrary pattern.
 また、本開示の印刷物は、少なくともインキ層11を有し、本開示の効果を損なわない範囲において、必要に応じて更に、前記インキ層11を支持するための基材、及びその他の層を有していてもよい。 In addition, the printed matter of the present disclosure has at least the ink layer 11 and, if necessary, a substrate for supporting the ink layer 11 and other layers as long as the effects of the present disclosure are not impaired. It may be done.
<インキ層>
 本開示の印刷物1が有するインキ層11は、前記本開示のインキ組成物の固化物を含有するインキ層であり、すなわち、前記本開示のインキ組成物を用いて形成されたインキ層である。
 前記本開示のインキ組成物については、前述した通りなので、ここでの説明を省略する。
 本開示において、固化物とは、化学反応を経て又は経ないで固化した物をいう。前記固化物としては、例えば、硬化反応により硬化した硬化物、乾燥により固化した物、熱可塑性樹脂の冷却により固化した物等が挙げられる。
<Ink layer>
The ink layer 11 of the printed matter 1 of the present disclosure is an ink layer containing a solidified product of the ink composition of the present disclosure, that is, an ink layer formed using the ink composition of the present disclosure.
The ink composition of the present disclosure is as described above, and thus the description thereof is omitted.
In the present disclosure, the solidified material refers to a material solidified with or without a chemical reaction. Examples of the solidified product include a cured product cured by a curing reaction, a product solidified by drying, and a product solidified by cooling of a thermoplastic resin.
 前記インキ層は、例えば、支持体となる基材上に、前記本開示のインキ組成物を塗布し、固化することにより形成することができる。
 前記塗布の方法としては、公知の塗布方法を用いることができ、特に限定はされないが、例えば、フレキソ印刷、活版印刷、オフセット印刷、凹版印刷、グラビア印刷、スクリーン印刷、又はインクジェット印刷や、一般的な塗布方式、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法 、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法等により、得ることができる。
  これらの印刷方式の中でも、印刷物の偽造を防止するためには、シルクスクリーン印刷、グラビア印刷、凹版印刷又はオフセット印刷が好ましい。
The ink layer can be formed, for example, by applying the ink composition of the present disclosure to a substrate serving as a support and solidifying the ink composition.
The coating method may be a known coating method, and is not particularly limited. For example, flexographic printing, letterpress printing, offset printing, intaglio printing, gravure printing, screen printing, or inkjet printing, or the like can be used. Coating methods such as spin coating, casting, microgravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, etc.
Among these printing methods, silk screen printing, gravure printing, intaglio printing, or offset printing is preferable in order to prevent forgery of printed matter.
 前記インキ組成物を固化する方法は、前記インキ組成物が含有する成分に応じて適宜選択され、特に限定はされないが、例えば、前記インキ組成物が溶剤を含有する場合は、乾燥により当該溶剤を除去する方法、前記インキ組成物が光硬化性成分を含有する場合は、光照射により当該光硬化性成分を硬化させる方法、前記インキ組成物が熱硬化性成分を含有する場合は、加熱により当該熱硬化性成分を硬化させる方法、前記インキ組成物が熱可塑性樹脂を含有する場合は、溶融樹脂を冷却により固化させる方法、及びこれらの方法を組み合わせた方法等が挙げられる。
 前記インキ層は、基材の片面又は両面の全体に形成されたものであってもよいし、パターン状に形成されたものであってもよい。
The method for solidifying the ink composition is appropriately selected according to the components contained in the ink composition, and is not particularly limited. For example, when the ink composition contains a solvent, the solvent is removed by drying. A method of removing, a method of curing the photocurable component by light irradiation when the ink composition contains a photocurable component, a heating method when the ink composition contains a thermosetting component The method of hardening a thermosetting component, the method of solidifying a molten resin by cooling when the said ink composition contains a thermoplastic resin, the method which combined these methods, etc. are mentioned.
The ink layer may be formed on the entire surface of one side or both sides of the substrate, or may be formed in a pattern.
 インキ層が、前記本開示のインキ組成物の固化物を含有することは、インキ層から材料を採取し分析することで確認することができる。分析方法としては、例えば、ESI-Mass等の質量分析、NMR、IR、ICP発光分析、原子吸光分析、蛍光X線分析、X線吸収微細構造解析(XAFS)、およびこれらの組み合わせた方法を適用することができる。希土類金属の分析は、例えば島津製作所製、マルチ型ICP発光分析装置 ICPE-9000を用いて行うことができる。 The fact that the ink layer contains a solidified product of the ink composition of the present disclosure can be confirmed by collecting and analyzing the material from the ink layer. As an analysis method, for example, mass spectrometry such as ESI-Mass, NMR, IR, ICP emission analysis, atomic absorption analysis, X-ray fluorescence analysis, X-ray absorption fine structure analysis (XAFS), and a combination method thereof are applied. can do. The analysis of the rare earth metal can be performed, for example, using a multi-type ICP emission analyzer ICPE-9000 manufactured by Shimadzu Corporation.
 <基材>
 前記基材としては、例えば、上質紙、アート紙、コート紙、キャストコート紙、合成樹脂又はエマルジョン含浸紙、合成ゴムラテックス含浸紙、合成樹脂内添紙、セルロース繊維紙等の紙類、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリメタクリレート等の各種合成樹脂のプラスチックシート、また、これらの合成樹脂に白色顔料や充填剤を加えて成膜した白色不透明フィルム、あるいは基材内部に微細空隙(ミクロボイド)を有するフィルム(いわゆる合成紙)等が挙げられる。前記基材は、必ずしもフィルム乃至シート状でなくてもよく、立体的な形状を持つ樹脂成形体等であってもよい。
<Base material>
Examples of the substrate include high quality paper, art paper, coated paper, cast coated paper, synthetic resin or emulsion impregnated paper, synthetic rubber latex impregnated paper, synthetic resin internally added paper, cellulose fiber paper, etc., polyolefin ( Plastic sheets of various synthetic resins such as polyethylene, polypropylene, etc., polystyrene, polycarbonate, polyethylene terephthalate, polyvinyl chloride and polymethacrylate, and white opaque films formed by adding white pigments and fillers to these synthetic resins, Or the film (what is called synthetic paper) etc. which have a micro space | gap (micro void) inside a base material etc. are mentioned. The substrate may not necessarily be in the form of a film or sheet, and may be a resin molded product having a three-dimensional shape or the like.
<印刷物の用途>
 本開示の印刷物の用途は、特に限定はされないが、本開示に係る印刷物1は、インキ層11において、励起光の照射により、高い発光強度を得ることができ、また、励起光照射中及び照射後において大きい色変化を得られるため、発光色の変化を目視又は検知器等で読み取ることにより、各種の情報管理をすることができる。また、本開示に係る印刷物1は、インキ層の発光の特殊性から、真贋判定性、偽造防止性が高いものである。
<Use of printed matter>
Although the application of the printed matter of the present disclosure is not particularly limited, the printed matter 1 according to the present disclosure can obtain high emission intensity by the irradiation of the excitation light in the ink layer 11, and during and during the irradiation of the excitation light. Since a large color change can be obtained later, various information management can be performed by reading the change in emission color visually or by a detector or the like. In addition, the printed matter 1 according to the present disclosure is high in authenticity judgment and forgery prevention because of the peculiarity of light emission of the ink layer.
 印刷物としては、例えば、手形、小切手、株券、社債券、各種証券等の有価証券、銀行券、商品券、交通機関の乗車券、有料施設やイベントの入場券、宝くじ、公営競技の投票券の当たり券、印紙類、クレジットカード等のカード、パスポート、身分証明書、各種商業印刷物、ポスター、等が挙げられる。 Printed materials include, for example, bills, checks, stock certificates, company bonds, securities such as various securities, banknotes, gift certificates, tickets for transportation, tickets for paid facilities and events, tickets for lottery tickets, and public competition tickets. A ticket, a stamp, a card such as a credit card, a passport, an identification card, various commercial printed matter, a poster, etc. may be mentioned.
(真贋判定方法)
 本開示に係る印刷物1についての真贋判定は、以下のようにして行うことができる。
 前記本開示の1実施形態のインキ組成物の固化物を含有するインキ層11に励起光源による励起光照射を所定時間行った後、励起光の照射を停止し、励起光の照射中及び励起光照射停止後の、希土類錯体に起因する発光の発光強度と、長残光発光材料に起因する発光の発光強度との強度差を、例えばファイバ光学分光器等の検知器により測定し、その測定値が、規定の値の範囲に入っているか否かで、真贋判定することができる。
(Authentication method)
The authenticity determination for the printed material 1 according to the present disclosure can be performed as follows.
After the excitation light irradiation by the excitation light source is performed for a predetermined time on the ink layer 11 containing the solidified material of the ink composition of one embodiment of the present disclosure, the irradiation of the excitation light is stopped, and the irradiation of the excitation light is performed The intensity difference between the emission intensity of the emission due to the rare earth complex and the emission intensity of the emission due to the long afterglow light emitting material after the irradiation stop is measured by a detector such as a fiber optical spectrometer, for example, and the measured value However, it can be judged whether or not it is within the range of the prescribed value.
 また、希土類錯体に起因する発光と、長残光発光材料に起因する発光とが、いずれも可視光領域にある場合には、励起光照射中及び照射停止後の色変化を目視で観察し、その色変化が、既定の色変化と合致するか否かで、真贋判定を行うことができる。 In addition, when the light emission due to the rare earth complex and the light emission due to the long afterglow light emitting material are both in the visible light region, the color change during the excitation light irradiation and after the irradiation stop is visually observed. Whether or not the color change matches the predetermined color change can be used to determine the authenticity.
 本開示に係る印刷物1についての真贋判定は、以下のようにして行うこともできる。すなわち、本開示の1実施形態の真贋判定方法は、前記本開示の1実施形態のインキ組成物の固化物を含有するインキ層を摩擦し、その際に生じる摩擦熱によって発光色が変化することにより、真贋判定を行うものである。
 前記本開示の1実施形態のインキ組成物の固化物を含有するインキ層11に励起光源による励起光照射を行いながら、インキ層11を、例えば、摩擦部を有する摩擦具によって摩擦すると、摩擦した部位のみは、摩擦する際に生じる摩擦熱によって、希土類錯体に起因する発光の発光強度と、長残光発光材料に起因する発光の発光強度との強度差が変化する。このような熱により制御される発光強度の強度差を、上記した検知器により測定し、その測定値が、規定の値の範囲に入っているか否かで、真贋判定することができる。
 また、希土類錯体に起因する発光と、長残光発光材料に起因する発光とが、いずれも可視領域にある場合には、これらの発光強度の強度差の変化を、発光色の色変化として目視で確認することができる。
The authenticity determination on the printed matter 1 according to the present disclosure can also be performed as follows. That is, the method for determining authenticity according to one embodiment of the present disclosure rubs the ink layer containing the solidified product of the ink composition according to one embodiment of the present disclosure, and the emission color is changed by the frictional heat generated at that time. Is used to determine the authenticity.
For example, when the ink layer 11 is rubbed with, for example, a friction tool having a friction portion while the ink layer 11 containing the solidified material of the ink composition according to one embodiment of the present disclosure is irradiated with excitation light by an excitation light source At the site alone, the frictional heat generated upon friction changes the difference between the light emission intensity of the light emission due to the rare earth complex and the light emission intensity of the light emission due to the long afterglow light emitting material. The intensity difference of the light emission intensity controlled by such heat is measured by the above-mentioned detector, and the authenticity can be determined depending on whether the measured value is within the range of the prescribed value.
Moreover, when the light emission due to the rare earth complex and the light emission due to the long afterglow light emitting material are both in the visible region, the change in the difference in the light emission intensity is visually observed as the color change of the light emission color You can check it with
 例えば、希土類錯体として赤色発光体を含有し、長残光発光材料として緑色の長残光発光材料を含有するインキ組成物の固化物を含有し、励起光(UV光)を照射すると室温で黄色を示すインキ層の表面を、励起光を照射しながら摩擦すると、摩擦熱によって摩擦部位が瞬間的に加熱され、長残光発光材料の捕獲中心にトラップされていた電子や正孔といったキャリアが急速に解放され、発光中心に移動し発光する。これにより、インキ層は緑色を呈し、次いで発光に伴うエネルギー放出により長残光発光材料の緑色光が消失すると、インキ層は赤色を呈する。このインキ層に対してさらに励起光の照射を継続すると、長残光発光材料にエネルギーが徐々に供給されることで、長残光発光材料が再び発光し、インキ層は黄色を呈する。次いで、励起光照射を停止すると、インキ層は緑色の残光を呈する。上記した発光色の色変化を目視で確認することで、真贋判定を行うことができる。
 なお、長残光発光材料による緑色光が消失し、インキ層が赤色を呈した時点で励起光の照射を停止した場合には、長残光発光材料に発光を引き起こすキャリアが捕獲中心にトラップされていないため、励起光照射停止後の残光は得られない。
For example, it contains a solid of an ink composition containing a red light emitter as a rare earth complex and a green long decay light emitting material as a long decay light emitting material, and is yellow at room temperature when irradiated with excitation light (UV light) The surface of the ink layer, which shows the above, is rubbed while being irradiated with excitation light, the frictional heat is instantaneously heated by the frictional heat, and carriers such as electrons and holes trapped in the capture center of the long afterglow light emitting material rapidly The light is released to the center of light emission. Thereby, the ink layer has a green color, and then the ink layer has a red color when the green light of the long afterglow light emitting material disappears due to the energy release accompanying light emission. If this ink layer is further irradiated with excitation light, energy is gradually supplied to the long afterglow light emitting material, so that the long afterglow light emitting material emits light again, and the ink layer exhibits a yellow color. Then, when the excitation light irradiation is stopped, the ink layer exhibits a green afterglow. By visually confirming the color change of the luminescent color described above, the authenticity determination can be performed.
In addition, when the green light by the long afterglow light emitting material disappears and the irradiation of the excitation light is stopped when the ink layer turns red, carriers causing the long afterglow light emitting material to emit light are trapped at capture centers. However, the afterglow after the termination of the excitation light irradiation can not be obtained.
 このような真贋判定方法に用いるインキ組成物の希土類錯体として、上記した発光強度の高い希土類錯体を用いることで、摩擦等による加熱により長残光発光材料が一旦発光し次いで消光した際に、希土類錯体による発光を高強度で得ることができる。このため、視認性に優れており、優れた真贋判定性を有する。 By using the above-described rare earth complex with high emission intensity as the rare earth complex of the ink composition used in such a method of authenticity determination, when the long afterglow light emitting material emits light and then is quenched by heating by friction etc. Light emission from the complex can be obtained at high intensity. For this reason, it is excellent in visibility and has excellent authenticity judgment.
 インキ層を摩擦するための用具としては、摩擦することによって、摩擦熱が生じる摩擦部を有する摩擦具を用いればよい。例えば、摩擦部としては、例えば、低摩耗性の弾性材料からなるものが挙げられ、例えば市販の熱変色性筆記具のラバー部分などの摩擦部を用いてもよい。 As a tool for rubbing the ink layer, a friction tool having a friction portion that generates frictional heat by rubbing may be used. For example, as the friction portion, for example, one made of an elastic material having low abrasion resistance can be mentioned. For example, a friction portion such as a rubber portion of a commercially available thermochromic writing instrument may be used.
 以上説明した本開示の印刷物によれば、インキ層において、励起光の照射により、高い発光強度を得ることができ、また、励起光照射中及び照射後において、発光強度の強度差の変化を大きく得ることができる。また、本開示の印刷物によれば、励起光照射停止後においても、発光強度の確認の時間を十分に確保することができる。このため、真贋判定を、高い精度で行うことができ、偽造防止性を向上させることができる。 According to the printed matter of the present disclosure described above, in the ink layer, high emission intensity can be obtained by the irradiation of the excitation light, and the change in intensity difference of the emission intensity is large during and after the irradiation with the excitation light. You can get it. Moreover, according to the printed matter of the present disclosure, even after the excitation light irradiation is stopped, the time for confirmation of the light emission intensity can be sufficiently secured. Therefore, the authenticity determination can be performed with high accuracy, and forgery prevention can be improved.
 下記IR測定は、日本光学社製、FT/IR-4600を用いて行った。
 下記H-NMR測定は、日本電子社製、ESC400(400MHz)を用いて行い、テトラメチルシラン(TMS)を内部標準として化学シフトを決定した。
 下記ESI-Mass測定は、サーモフィッシャーサイエンティフィック社製、Thermo  Scientic Exactiveを用いて行った。
 下記元素分析において、有機微量元素分析は、エグゼター・アナリティカル社製、CE440を用いて行った。
The following IR measurement was performed using FT / IR-4600 manufactured by Nippon Optical Co., Ltd.
The following 1 H-NMR measurement was performed using ESC 400 (400 MHz) manufactured by JEOL Ltd., and chemical shifts were determined using tetramethylsilane (TMS) as an internal standard.
The following ESI-Mass measurement was performed using Thermo Scientific Scientific's Thermo Scientific Exactive.
In the following elemental analysis, organic trace elemental analysis was performed using CE440 manufactured by Exeter Analytical.
(合成例1:1,4-ビス(ジフェニルホスホリル)ビフェニル(dpbp)の合成)
 100mLの三口フラスコをフレームドライして、内部をアルゴンガスで置換した。この三口フラスコに、1.9g(6.0mmol)の4,4’-ジブロモビフェニル及び30mLのテトラヒドロフラン(THF)を入れ、液体窒素/エタノールで約―80℃に冷却した。この溶液に、9.3mL(15mmol)の1.6Mのn-ブチルリチウムヘキサン溶液をシリンジでゆっくり添加した。この添加は、約15分かけて行い、この間、黄色の析出物が生成した。この溶液を-10℃で3時間攪拌した。次に、溶液を再び-80℃に冷却した後、2.7mL(15mmol)のジクロロフェニルホスファイドを滴下し、14時間攪拌させながら徐々に室温に戻した。その後、反応を止め、酢酸エチルで抽出を行った。得られた溶液を飽和食塩水で3回洗浄し、無水硫酸マグネシウムで乾燥し、エバポレータで溶媒を留去した。得られた粗生成物を、アセトン及びエタノールで複数回洗浄することにより精製し、白色の粉末を得た。
 次に、上記で得られた白色の粉末及び約40mLのジクロロメタンをフラスコに入れ、この溶液を0℃に冷却し、そこに30%の過酸化水素水(約5mL)を加えた。この混合物を、2時間攪拌した。生成物をジクロロメタンで抽出した後、抽出液を飽和食塩水で3回洗浄し、無水硫酸マグネシウムで乾燥した。その後、エバポレータで溶媒を留去して、白色の粉末を得た。この白色の粉末をジクロロメタンで再結晶して、1,4-ビス(ジフェニルホスホリル)ビフェニルの白色の結晶を得た。白色の結晶の分析結果は以下の通りであった。
Synthesis Example 1: Synthesis of 1,4-bis (diphenylphosphoryl) biphenyl (dpbp)
A 100 mL three necked flask was flame dried and the inside was replaced with argon gas. The three-necked flask was charged with 1.9 g (6.0 mmol) of 4,4′-dibromobiphenyl and 30 mL of tetrahydrofuran (THF) and cooled to about −80 ° C. with liquid nitrogen / ethanol. To this solution was slowly added, via syringe, 9.3 mL (15 mmol) of a 1.6 M n-butyllithium hexane solution. The addition took about 15 minutes, during which a yellow precipitate formed. The solution was stirred at −10 ° C. for 3 hours. Next, the solution was cooled again to −80 ° C., 2.7 mL (15 mmol) of dichlorophenyl phosphide was added dropwise, and gradually returned to room temperature while stirring for 14 hours. After that, the reaction was stopped and extraction was performed with ethyl acetate. The resulting solution was washed three times with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated by an evaporator. The resulting crude product was purified by washing with acetone and ethanol several times to obtain a white powder.
Next, the white powder obtained above and about 40 mL of dichloromethane were placed in a flask, this solution was cooled to 0 ° C., and 30% aqueous hydrogen peroxide (about 5 mL) was added thereto. The mixture was stirred for 2 hours. The product was extracted with dichloromethane, and the extract was washed three times with saturated brine and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off with an evaporator to obtain a white powder. The white powder was recrystallized with dichloromethane to give white crystals of 1,4-bis (diphenylphosphoryl) biphenyl. The analytical results of the white crystals are as follows.
IR(ATR):1119(st、P=O)cm-1
H-NMR(400MHz,CDCl,25℃)δ7.65-7.80(m、16H;P-C,C),7.43-7.60(m、12H;P-C,C)ppm.
ESI-Mass(m/z)=555.2[M+H]
元素分析:(C3628の計算値):C,77.97;H,5.09%、(実測値):C,77.49;H,5.20%
IR (ATR): 1119 (st, P = O) cm -1 .
1 H-NMR (400 MHz, CDCl 3 , 25 ° C.) δ 7.65-7.80 (m, 16 H; P-C 6 H 5 , C 6 H 4 ), 7.43-7. 60 (m, 12 H; P-C 6 H 5, C 6 H 4) ppm.
ESI-Mass (m / z) = 555.2 [M + H] < +>.
Elemental analysis: (Calculated for C 36 H 28 O 2 P 2 ): C, 77.97; H, 5.09%, ( Found): C, 77.49; H, 5.20%
(合成例2:Eu錯体ポリマー(化合物1)の合成)
 Eu(III)イオンの原料である酢酸ユーロピウムと、1,1,1,5,5-ヘキサフルオロ-2,4-ペンタンジオンとを混合して、トリス(ヘキサフルオロアセチルアセトナト(hfa))ユーロピウム(III)2水和物を合成した。
 次いで、このトリス(ヘキサフルオロアセチルアセトナト)ユーロピウム(III)2水和物1当量と、前記合成例1で得た1,4-ビス(ジフェニルホスホリル)ビフェニル1当量とを、メタノール(20mL)に溶解した。この溶液を8時間攪拌しながら還流した。その後、反応溶液中に析出した白色紛体をろ別し、メタノールで複数回洗浄した後、減圧乾燥することで、下記化学式で表されるEu錯体ポリマー[Eu(hfa)(dpbp)](化合物1)を得た。
 なお、得られた生成物が、下記化学式で表されるEu錯体ポリマー(化合物1)であることは、IRと元素分析により確認した。分析結果を以下に示す。
Synthesis Example 2: Synthesis of Eu Complex Polymer (Compound 1)
Tris (hexafluoroacetylacetonato (hfa)) europium is prepared by mixing europium acetate, which is a raw material of Eu (III) ion, and 1,1,1,5,5-hexafluoro-2,4-pentanedione (III) Dihydrate was synthesized.
Then, 1 equivalent of this tris (hexafluoroacetylacetonato) europium (III) dihydrate and 1 equivalent of 1,4-bis (diphenylphosphoryl) biphenyl obtained in the above-mentioned Synthesis Example 1 are added to methanol (20 mL). It dissolved. The solution was refluxed with stirring for 8 hours. Thereafter, the white powder precipitated in the reaction solution is separated by filtration, washed with methanol multiple times, and then dried under reduced pressure to obtain an Eu complex polymer represented by the following chemical formula [Eu (hfa) 3 (dpbp)] n ( Compound 1) was obtained.
In addition, it was confirmed by IR and elemental analysis that the obtained product is an Eu complex polymer (compound 1) represented by the following chemical formula. The analysis results are shown below.
IR(ATR):1652(st,C=O)、1250(st,C-F)、1122(st,P=O)cm-1
ESI-Mass(m/z)=1675.2 [Eu(hfa)(dpbp)、1905.2 [[Eu(hfa)(dpbp)]+ Na ]
元素分析:([C5131EuF18の計算値)、C,46.14;H,2.35%、(実測値)、C,46.10;H,2.17%
IR (ATR): 1652 (st, C = O), 1250 (st, C-F), 1122 (st, P = O) cm -1 ,
ESI-Mass (m / z) = 1675.2 [Eu (hfa) 2 (dpbp) 2 ] + , 1905.2 [[Eu (hfa) 3 (dpbp) 2 ] + Na] +
Elemental analysis: (Calculated value of [C 51 H 31 EuF 18 O 8 P 2 ] n ), C, 46.14; H, 2.35% (actual value), C, 46. 10; H, 2. 17%
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(合成例3:Eu錯体(化合物2)の合成)
 前記合成例2と同様の方法により合成したトリス(ヘキサフルオロアセチルアセトナト(hfa))ユーロピウム(III)、及び、トリフェニルホスフィンオキサイド(TPPO)を含むメタノール溶液を準備し、この溶液を還流しながら12時間攪拌した。その後、メタノールを減圧留去により取り除き、白色粉体を得た。この粉体をトルエンで洗浄し、未反応のトリス(ヘキサフルオロアセチルアセトナト)ユーロピウム(III)を吸引ろ過により取り除いた後、トルエンを減圧留去した。得られた生成物をヘキサンで洗浄し、粉体を得た後、さらにトルエン、ヘキサンの混合溶媒により再結晶を行うことにより精製して、下記化学式で表されるEu錯体(化合物2)を得た。
 なお、得られた生成物が、下記化学式で表されるEu錯体[Eu(hfa)3(TPPO)2](化合物2)であることは、IRと元素分析により確認した。分析結果を以下に示す。
Synthesis Example 3 Synthesis of Eu Complex (Compound 2)
A methanol solution containing tris (hexafluoroacetylacetonato (hfa)) europium (III) and triphenylphosphine oxide (TPPO) synthesized by the same method as in Synthesis Example 2 is prepared, and the solution is refluxed while refluxing. Stir for 12 hours. Thereafter, methanol was removed by evaporation under reduced pressure to obtain a white powder. The powder was washed with toluene and unreacted tris (hexafluoroacetylacetonato) europium (III) was removed by suction filtration, and then the toluene was evaporated under reduced pressure. The resulting product is washed with hexane to obtain a powder, which is further purified by recrystallization with a mixed solvent of toluene and hexane to obtain an Eu complex (compound 2) represented by the following chemical formula The
In addition, it was confirmed by IR and elemental analysis that the obtained product is an Eu complex [Eu (hfa) 3 (TPPO) 2 ] (compound 2) represented by the following chemical formula. The analysis results are shown below.
IR(ATR):1652(st,C=O)、1251(st,C-F)、1121(st,P=O)cm-1
ESI-Mass(m/z)=1123.1[Eu(hfa)2(TPPO)2]、1353.1[[Eu(hfa)3(TPPO)2]+Na] 
元素分析:([C5133EuF18の計算値)、C,46.07;H,2.50%、(実測値)、C,46.10;H,2.34%
IR (ATR): 1652 (st, C = O), 1251 (st, C-F), 1121 (st, P = O) cm -1 ,
ESI-Mass (m / z) = 1123.1 [Eu (hfa) 2 (TPPO) 2 ] + , 1353.1 [[Eu (hfa) 3 (TPPO) 2 ] + Na] +
Elemental analysis: ([C 51 H 33 EuF 18 O 8 P 2 calculated value), C, 46.07; H, 2.50%, (found value), C, 46. 10; H, 2.34%
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(実施例1)
(1)インキ組成物の製造
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を10重量部と、残光性材料として、長残光発光材料1(GLL-300FF、ネモトルミマレリアル製、SrAl:Eu,Dy)を90重量部とを、混合して、発光粉末混合物1を得た。なお、当該長残光発光材料1は、下記の評価方法で励起光停止後の残光時間を測定したところ5秒以上の残光時間を有し、1秒以上のものであった。
 発光粉末混合物1を30重量部と、ビヒクルとして、紫外線硬化型ビヒクル(商品名 UV BF SG A メジウム、DICグラフィックス製)を70重量部とを、3本ロールにて混練することでインキ組成物1を得た。
(2)印刷物の製造
 得られたインキ組成物1をバーコーターで印刷紙に塗布した後、紫外線照射により光硬化することで、インキ組成物の固化物を含有するインキ層を有する、実施例1の印刷物を得た。
Example 1
(1) Production of Ink Composition As a red light emitter, 10 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and a long decay light emitting material 1 (GLL-300FF, Nemoto) as an afterglow material Luminescent powder mixture 1 was obtained by mixing 90 parts by weight of Lumimaleial, SrAl 2 O 4 : Eu, Dy). In addition, when the afterglow time after excitation light stop was measured with the following evaluation method, the said long-afterglow light-emitting material 1 had an afterglow time of 5 seconds or more, and was a thing of 1 second or more.
The ink composition is prepared by kneading 30 parts by weight of the luminous powder mixture 1 and 70 parts by weight of a UV-curable vehicle (trade name: UV BF SGA medium, manufactured by DIC Graphics) as a vehicle with a three-roll mill. I got one.
(2) Production of Printed Matter The obtained ink composition 1 is coated on a printing paper with a bar coater and then photocured by ultraviolet irradiation to have an ink layer containing a solidified product of the ink composition. Example 1 I got the printed matter of.
(実施例2)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を30重量部と、残光性材料として、長残光発光材料1を70重量部とを混合して、発光粉末混合物2を得た。発光粉末混合物1を、発光粉末混合物2に代えたこと以外は、実施例1と同様にして、インキ組成物2を得た。
 得られたインキ組成物2を用いて、実施例1と同様にして、印刷物を得た。
(Example 2)
A mixture of 30 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) as a red light emitter and 70 parts by weight of a long decay light emitting material 1 as an afterglow material to obtain a light emitting powder mixture 2 I got An ink composition 2 was obtained in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 2.
Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 2.
(実施例3)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を50重量部と、長残光発光材料1を50重量部とを混合して、発光粉末混合物3を得た。発光粉末混合物1を、発光粉末混合物3に代えたこと以外は、実施例1と同様にして、インキ組成物3を得た。
 得られたインキ組成物3を用いて、実施例1と同様にして、印刷物を得た。
(Example 3)
A light emitting powder mixture 3 was obtained by mixing 50 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and 50 parts by weight of the long decay light emitting material 1 as a red light emitting body. An ink composition 3 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 3.
Printed matter was obtained using the obtained ink composition 3 in the same manner as Example 1.
(実施例4)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を70重量部と、長残光発光材料1を30重量部とを混合して、発光粉末混合物4を得た。発光粉末混合物1を、発光粉末混合物4に代えたこと以外は、実施例1と同様にして、インキ組成物4を得た。
 得られたインキ組成物4を用いて、実施例1と同様にして、印刷物を得た。
(Example 4)
A light emitting powder mixture 4 was obtained by mixing 70 parts by weight of the specific rare earth complex (Compound 1 of Synthesis Example 1) and 30 parts by weight of the long decay light emitting material 1 as a red light emitter. An ink composition 4 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 4.
Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 4.
(実施例5)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を、前記特定の希土類錯体(合成例2の化合物2)に代えたこと以外は、実施例1と同様にして、発光粉末混合物5を得た。発光粉末混合物1を発光粉末混合物5に代えたこと以外は、実施例1と同様にして、インキ組成物5を得た。
 得られたインキ組成物5を用いて、実施例1と同様にして、印刷物を得た。
(Example 5)
A light emitting powder is prepared in the same manner as in Example 1 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced by the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 5 was obtained. An ink composition 5 was obtained in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 5.
Printed matter was obtained using the obtained ink composition 5 in the same manner as in Example 1.
(実施例6)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を、前記特定の希土類錯体(合成例2の化合物2)に代えたこと以外は、実施例2と同様にして、発光粉末混合物6を得た。発光粉末混合物2を、発光粉末混合物6に代えたこと以外は、実施例2と同様にして、インキ組成物6を得た。
 得られたインキ組成物6を用いて、実施例1と同様にして、印刷物を得た。
(Example 6)
A light emitting powder is prepared in the same manner as in Example 2 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 6 was obtained. An ink composition 6 was obtained in the same manner as in Example 2, except that the luminous powder mixture 2 was replaced with the luminous powder mixture 6.
Printed matter was obtained using the obtained ink composition 6 in the same manner as in Example 1.
(実施例7)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を、前記特定の希土類錯体(合成例2の化合物2)に代えたこと以外は、実施例3と同様にして、発光粉末混合物7を得た。発光粉末混合物3を、発光粉末混合物7に代えたこと以外は、実施例3と同様にして、インキ組成物7を得た。
 得られたインキ組成物7を用いて、実施例1と同様にして、印刷物を得た。
(Example 7)
A light emitting powder is prepared in the same manner as in Example 3 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 7 was obtained. An ink composition 7 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 7.
Printed matter was obtained using the obtained ink composition 7 in the same manner as in Example 1.
(実施例8)
 赤色発光体として、前記特定の希土類錯体(合成例1の化合物1)を、前記特定の希土類錯体(合成例2の化合物2)に代えたこと以外は、実施例4と同様にして、発光粉末混合物8を得た。発光粉末混合物4を、発光粉末混合物8に代えたこと以外は、実施例4と同様にして、インキ組成物8を得た。
 得られたインキ組成物8を用いて、実施例1と同様にして、印刷物を得た。
(Example 8)
A light emitting powder is prepared in the same manner as in Example 4 except that the specific rare earth complex (Compound 1 of Synthesis Example 1) is replaced with the specific rare earth complex (Compound 2 of Synthesis Example 2) as a red light emitter. Mixture 8 was obtained. An ink composition 8 was obtained in the same manner as in Example 4, except that the luminous powder mixture 4 was replaced with the luminous powder mixture 8.
Printed matter was obtained using the obtained ink composition 8 in the same manner as in Example 1.
(実施例9)
 赤色発光体として、赤色発光希土類錯体(下記化学式で表される化合物3、Eu(TTA)Phen、東京化成製)を1重量部と、長残光発光材料1を99重量部とを、混合して、発光粉末混合物9を得た。発光粉末混合物1を、発光粉末混合物9に代えたこと以外は、実施例1と同様にして、インキ組成物9を得た。
 得られたインキ組成物9を用いて、実施例1と同様にして、印刷物を得た。
(Example 9)
As a red light emitter, 1 part by weight of a red light emitting rare earth complex (compound 3 represented by the following chemical formula, Eu (TTA) Phen, manufactured by Tokyo Chemical Industry Co., Ltd.) and 99 parts by weight of long decay light emitting material 1 are mixed A light emitting powder mixture 9 was obtained. An ink composition 9 was obtained in the same manner as Example 1, except that the luminous powder mixture 1 was replaced with the luminous powder mixture 9.
Printed matter was obtained using the obtained ink composition 9 in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(比較例1)
 赤色発光体として、化合物1を、赤色発光無機酸化物(化合物4、D1124、ネモトルミマテリアル製、YS:Eu)に代えたこと以外は、実施例2と同様にして、発光粉末混合物10を得た。発光粉末混合物2を、発光粉末混合物10に代えたこと以外は、実施例2と同様にして、インキ組成物10を得た。
 得られたインキ組成物10を用いて、実施例1と同様にして印刷物を得た。
(Comparative example 1)
A light emitting powder is prepared in the same manner as in Example 2 except that the compound 1 is replaced by a red light emitting inorganic oxide (compound 4, D1124, manufactured by NEMOTRUMI MATERIALS, Y 2 O 2 S: Eu) as a red light emitter. Mixture 10 was obtained. An ink composition 10 was obtained in the same manner as Example 2, except that the luminous powder mixture 2 was replaced with the luminous powder mixture 10.
Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 10.
(比較例2)
 赤色発光体として、化合物1を、赤色発光無機酸化物(化合物4)に代えたこと以外は、実施例3と同様にして、発光粉末混合物11を得た。発光粉末混合物3を、発光粉末混合物11に代えたこと以外は、実施例3と同様にして、インキ組成物11を得た。
 得られたインキ組成物11を用いて、実施例1と同様にして印刷物を得た。
(Comparative example 2)
A light emitting powder mixture 11 was obtained in the same manner as in Example 3, except that the compound 1 was replaced with a red light emitting inorganic oxide (compound 4) as a red light emitting body. An ink composition 11 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 11.
Printed matter was obtained in the same manner as in Example 1 using the obtained ink composition 11.
(比較例3)
 赤色発光体として、化合物1を、赤色発光無機酸化物(化合物4)に代えたこと以外は、実施例4と同様にして、発光粉末混合物12を得た。発光粉末混合物4を、発光粉末混合物12に代えたこと以外は、実施例4と同様にして、インキ組成物12を得た。
 得られたインキ組成物12を用いて、実施例1と同様にして印刷物を得た。
(Comparative example 3)
A light emitting powder mixture 12 was obtained in the same manner as in Example 4 except that the compound 1 was replaced with a red light emitting inorganic oxide (compound 4) as a red light emitting material. An ink composition 12 was obtained in the same manner as Example 4, except that the luminous powder mixture 4 was replaced with the luminous powder mixture 12.
Printed matter was obtained in the same manner as Example 1 using the obtained ink composition 12.
(比較例4)
 残光性材料として、長残光発光材料1を、短残光発光材料1(D1164、ネモトルミマテリアル製、BaMgAl1627:Eu,Mn)に代えたこと以外は、実施例3と同様にして、発光粉末混合物13を得た。なお、当該短残光発光材料1は、下記の評価方法で励起光停止後の残光時間を測定したところ40ミリ秒以下であった。
 発光粉末混合物3を、発光粉末混合物13に代えたこと以外は、実施例3と同様にして、インキ組成物13を得た。得られたインキ組成物13をバーコーターで印刷紙に塗布した後、紫外線照射により光硬化することでインキ層を形成し、印刷物を得た。
(Comparative example 4)
Example 3 is the same as Example 3 except that the long decay light emitting material 1 is replaced by the short decay light emitting material 1 (D1164, manufactured by NEMOTOMI MATERIALS, BaMg 2 Al 16 O 27 : Eu, Mn) as a long decay material. In the same manner, a luminescent powder mixture 13 was obtained. In addition, when the said short afterglow light emitting material 1 measured the afterglow time after excitation light stop by the following evaluation method, it was 40 milliseconds or less.
An ink composition 13 was obtained in the same manner as in Example 3, except that the luminous powder mixture 3 was replaced with the luminous powder mixture 13. The obtained ink composition 13 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, thereby obtaining a printed matter.
(比較例5)
 残光性材料として、長残光発光材料1を、短残光発光材料1に代えたこと以外は、実施例4と同様にして、発光粉末混合物14を得た。発光粉末混合物4を、発光粉末混合物14に代えたこと以外は、実施例4と同様にして、インキ組成物14を得た。得られたインキ組成物14をバーコーターで印刷紙に塗布した後、紫外線照射により光硬化することでインキ層を形成し、印刷物を得た。
(Comparative example 5)
A light emitting powder mixture 14 was obtained in the same manner as in Example 4, except that the long afterglow light emitting material 1 was replaced by the short afterglow light emitting material 1 as the afterglow material. An ink composition 14 was obtained in the same manner as in Example 4 except that the luminous powder mixture 4 was replaced with the luminous powder mixture 14. The obtained ink composition 14 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, thereby obtaining a printed matter.
(参考例:赤色発光印刷物(発光強度の基準サンプル))
 発光粉末混合物1を、赤色発光無機酸化物(ネモト・ルミマテリアル製の品名D1124)100重量部からなる発光粉末混合物15に代えたこと以外は、実施例1と同様にして、インキ組成物15を得た。得られたインキ組成物15をバーコーターで印刷紙に塗布した後、紫外線照射により光硬化することでインキ層を形成し、赤色発光印刷物(発光強度の基準試料)を得た。
(Reference example: Red light emission printed matter (reference sample of emission intensity))
An ink composition 15 was prepared in the same manner as in Example 1, except that the luminous powder mixture 1 was replaced by a luminous powder mixture 15 consisting of 100 parts by weight of a red light emitting inorganic oxide (trade name D1124 made by Nemoto Lumimaterial). Obtained. The obtained ink composition 15 was coated on a printing paper with a bar coater, and then photocured by ultraviolet irradiation to form an ink layer, whereby a red light emitting printed matter (reference sample of light emission intensity) was obtained.
(評価)
<発光スペクトル測定>
 実施例1~9及び比較例1~5の各印刷物に形成されたインキ層について、小型ファイバ光学分光器(USB2000+、オーシャンオプティクス製)を用いて、ハンディーUVランプ(SLUV―6、アズワン製)にて波長365nmの励起光(UV光)を照射して励起させた状態での発光スペクトルを測定した。
 このうち、実施例2及び比較例3で得られた各インキ層について、UV照射直後、UV照射5秒後及びUV照射停止後の発光スペクトルを、それぞれ図2~7に示す。なお、図2~図7に示すグラフは、いずれも、横軸は波長(nm)であり、縦軸は相対強度である。
(Evaluation)
<Emission spectrum measurement>
About the ink layer formed in each printed matter of Examples 1 to 9 and Comparative Examples 1 to 5, using a small fiber optical spectroscope (USB 2000+, manufactured by Ocean Optics), a handy UV lamp (SLUV-6, manufactured by As One) The emission spectrum in the state excited by irradiating the excitation light (UV light) of wavelength 365nm was measured.
Among them, the emission spectra of each ink layer obtained in Example 2 and Comparative Example 3 are shown in FIGS. 2 to 7 immediately after UV irradiation, 5 seconds after UV irradiation and after UV irradiation is stopped. In each of the graphs shown in FIGS. 2 to 7, the horizontal axis is wavelength (nm) and the vertical axis is relative intensity.
 実施例2について、UV照射直後(図2)では、強い赤色発光(613nm)と非常に弱い緑色発光(520nm)が確認され、UV照射5秒後(図3)では、強い赤色発光(613nm)と強い緑色発光(520nm)が確認され、UV照射停止後(図4)では、弱い緑色発光(520nm)のみが確認された。
 一方、比較例3の発光スペクトルは、UV照射直後(図5)、UV照射5秒後(図6)UV照射停止後(図7)のいずれも、実施例2の発光スペクトルと比較して、強度が低下していることが確認された。
In Example 2, strong red light emission (613 nm) and very weak green light emission (520 nm) are observed immediately after UV irradiation (FIG. 2), and 5 seconds after UV irradiation (FIG. 3) strong red light emission (613 nm) And strong green emission (520 nm) was observed, and after stopping UV irradiation (FIG. 4), only weak green emission (520 nm) was observed.
On the other hand, the emission spectrum of Comparative Example 3 is compared with the emission spectrum of Example 2 immediately after UV irradiation (FIG. 5) and after 5 seconds of UV irradiation (FIG. 6) after stopping UV irradiation (FIG. 7). It was confirmed that the strength was reduced.
<色変化>
 実施例1~9及び比較例1~5の各印刷物に形成されたインキ層について、ハンディーUVランプSLUV―6(アズワン製)用いて、365nmの励起光を照射し、5秒間維持した後、UV照射を停止した。UV照射直後、UV照射後5秒後、UV照射停止後の、各インキ層の色変化を目視で観察した。また、UV照射後5秒後の時点での各インキ層の発光強度を、目視で確認した。評価結果を表1に示す。
<Color change>
The ink layer formed on each of the printed materials of Examples 1 to 9 and Comparative Examples 1 to 5 was irradiated with excitation light of 365 nm using a handy UV lamp SLUV-6 (manufactured by As One), and maintained for 5 seconds, Irradiation was stopped. Immediately after the UV irradiation and 5 seconds after the UV irradiation, the color change of each ink layer after the UV irradiation was stopped was visually observed. In addition, the emission intensity of each ink layer at a point 5 seconds after UV irradiation was visually confirmed. The evaluation results are shown in Table 1.
<発光強度>
 参考例で得られた赤色発光印刷物(発光強度の基準サンプル)のインキ層並びに実施例1~9及び比較例1~5で得られた印刷物のインキ層について、分光蛍光光度計RF-6000(島津製作所製)を用い、波長365nmで励起して発光スペクトルを測定した。得られた発光スペクトルの390~720nmにおける発光ピーク面積から、下記評価基準により発光強度を評価した。評価結果を表1に示す。
[発光強度の評価基準]
 A:基準サンプル(参考例の赤色発光印刷物)の発光ピーク面積に対して、発光ピーク面積が200%以上
 C:基準サンプル(参考例の赤色発光印刷物)の発光ピーク面積に対して、発光ピーク面積が200%未満
<Emission intensity>
About the ink layer of the red light emission printed matter (reference sample of luminescence intensity) obtained by the reference example and the ink layer of the printed matter obtained in Examples 1 to 9 and Comparative Examples 1 to 5, a spectrofluorimeter RF-6000 (Shimadzu The emission spectrum was measured by excitation at a wavelength of 365 nm using a manufactured product. From the emission peak area at 390 to 720 nm of the obtained emission spectrum, the emission intensity was evaluated according to the following evaluation criteria. The evaluation results are shown in Table 1.
[Evaluation standard of luminescence intensity]
A: The emission peak area is 200% or more with respect to the emission peak area of the reference sample (red light emission printed matter of reference example) C: the emission peak area with respect to the emission peak area of the reference sample (red light emission printed matter of reference example) Less than 200%
<残光時間測定>
 長残光発光材料1(GLL-300FF、ネモトルミマテリアル製)及び短残光発光材料1(D1164、ネモトルミマテリアル製)の粉末について、分光蛍光光度計(日本分光製、FP-6600)の「燐光寿命測定プログラム」を用いて残光時間を測定した。励起波長を365nmとし、励起側のシャッタを閉じて励起光照射を停止すると同時に測定を開始し、発光強度値が測定開直後における最大発光強度値の0.01%以下になるまでの時間を残光時間とした。検出波長は各サンプルの発光スペクトルの極大発光ピーク波長とした。
<Afterglow time measurement>
Regarding the powder of long afterglow light emitting material 1 (GLL-300FF, manufactured by NEMOTRUMI MATERIALS) and short afterglow light emitting material 1 (D1164, manufactured by NEMOTRUMI MATERIALS), as shown in “FP-6600, manufactured by JASCO Corporation” Afterglow time was measured using the “phosphorescence lifetime measurement program”. The excitation wavelength is 365 nm, the shutter on the excitation side is closed and excitation light irradiation is stopped at the same time measurement is started, and the time until the emission intensity value becomes 0.01% or less of the maximum emission intensity value immediately after the measurement opening remains It was light time. The detection wavelength was the maximum emission peak wavelength of the emission spectrum of each sample.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<発光強度が最大となる波長>
 化合物1:613nm
 化合物2:617nm
 化合物3:612nm
 化合物4:626nm
 長残光発光材料1:521nm
 短残光発光材料1:513nm
<Wavelength at which emission intensity is maximum>
Compound 1: 613 nm
Compound 2: 617 nm
Compound 3: 612 nm
Compound 4: 626 nm
Long decay light emitting material 1: 521 nm
Short afterglow light emitting material 1: 513 nm
 実施例1~9では、赤色発光体として、本開示の特定の希土類錯体である化合物1、化合物2、又は化合物3と、長残光発光材料である長残光発光材料1とを組み合わせることで、発光強度が高く、かつUV照射中及びUV照射後に、目視で十分に認識可能な色変化を得ることができ、視認性に優れたインキ層を得ることができた。これは、長残光発光材料が、発光強度が飽和するまでに一定時間の猶予を要し、また、1秒以上の残光時間を有するため、これを上記した高発光強度の化合物1、化合物2又は化合物3と組み合わせることで、UV照射直後、UV照射中及びUV照射停止後において、複数の波長領域間で、大きい発光強度差を得ることができ、この発光強度差を、UV照射中及びUV照射停止後の色変化として目視で認識することが可能となるためである。
 比較例1~3で用いた、赤色発光無機酸化物である化合物4は、発光強度が小さいため、長残光発光材料との配合比率を、実施例2~4と同様の発光色となるように組み合わせると、発光強度が低下し、視認性に劣る結果となった。また、比較例5及び比較例6では、短残光発光材料1の残光時間が1秒未満と短いため、UV照射中及びUV照射後において、インキ層の色変化を目視で確認することが困難であった。
In Examples 1 to 9, it is possible to combine the compound 1, the compound 2 or the compound 3 which is a specific rare earth complex of the present disclosure and the long decay light emitting material 1 which is a long decay light emitting material as a red light emitter. The light emission intensity was high, and a color change which can be sufficiently recognized visually was obtained during and after UV irradiation, and an ink layer having excellent visibility could be obtained. This is because the long afterglow light emitting material requires a certain period of time to saturate the light emission intensity, and also has an afterglow time of 1 second or more, and thus the high light emission intensity compound 1, compound as described above By combining with 2 or the compound 3, a large difference in emission intensity can be obtained between a plurality of wavelength regions immediately after UV irradiation, during UV irradiation and after UV irradiation stop, and this emission intensity difference can be obtained during UV irradiation and This is because it becomes possible to visually recognize as a color change after stopping the UV irradiation.
Compound 4 which is a red light emitting inorganic oxide used in Comparative Examples 1 to 3 has a small emission intensity, so that the compounding ratio with the long afterglow light emitting material is such that the light emission color is the same as in Examples 2 to 4 In the case of combination with the above, the light emission intensity was lowered, resulting in poor visibility. Moreover, in Comparative Example 5 and Comparative Example 6, since the afterglow time of the short afterglow light emitting material 1 is as short as less than 1 second, color change of the ink layer may be visually confirmed during and after UV irradiation. It was difficult.
 <発光色の摩擦熱による色変化の確認>
 得られた実施例および比較例の印刷物のインキ層について、ハンディーUVランプ(SLUV―6、アズワン製)を用い365nmで励起した発光状態における摩擦熱による色変化を観察した。摩擦熱はインキ層表面を、FRIXION BALL(登録商標、パイロット社製)のラバー部分で擦ることにより生じさせた。一般に前記ラバー部分で擦ることによって生じる摩擦熱は60~80℃と言われている。
 その結果、実施例の印刷物のインキ層は、摩擦直後に一瞬緑色が濃くなり、その後赤色に変化し、更にUVを照射し続けると、UV照射直後及びUV照射5秒後の色に変化していくことが明らかにされた。
 比較例1~3の印刷物のインキ層も、摩擦直後に一瞬緑色が濃くなり、その後赤色に変化するという色変化が確認できたものの、実施例のインキ層を摩擦した場合の色変化に比べて、視認性が低いものであった。なお、残光性材料と発光体とを含むインキ層を摩擦することによって色変化を確認できることは、従来知られていなかった。
<Confirmation of color change due to frictional heat of luminescent color>
About the ink layer of the printed matter of the obtained Example and comparative example, the color change by the frictional heat in the luminescence state excited by 365 nm was observed using the handy UV lamp (SLUV-6, product made from As One). The frictional heat was generated by rubbing the surface of the ink layer with the rubber part of FRIXION BALL (registered trademark, made by Pilot). Generally, the frictional heat generated by rubbing at the rubber portion is said to be 60 to 80.degree.
As a result, the ink layer of the printed matter of the example becomes dark green immediately after rubbing, then changes to red, and changes to colors immediately after UV irradiation and 5 seconds after UV irradiation when UV irradiation is continued. It was revealed that
The ink layers of the prints of Comparative Examples 1 to 3 also show a color change in which the green color momentarily darkens immediately after rubbing and then changes to red, but compared to the color change when the ink layer of Example is rubbed. And the visibility was low. Incidentally, it has not been known conventionally that color change can be confirmed by rubbing an ink layer containing an afterglow material and a light emitter.
 1 印刷物
 10 基材
 11 インキ層
1 printed matter 10 base material 11 ink layer

Claims (7)

  1.  Eu3+、Tb3+、Sm3+、Yb3+、Nd3+、Er3+、Pr3+、Ho3+、Tm3+、Dy3+、Ce3+、及びGd3+からなる群から選ばれる一種の三価の希土類イオンと、β-ジケトン配位子、カルボン酸配位子、ホスフィンオキシド配位子、及び含窒素芳香族複素環配位子から選ばれる少なくとも1種の有機配位子と、を含む希土類錯体と、
     励起光照射停止後の残光時間が1秒以上である長残光発光材料と、を含むインキ組成物。
    A kind of trivalent rare earth ion selected from the group consisting of Eu3 + , Tb3 + , Sm3 + , Yb3 + , Nd3 + , Er3 + , Pr3 + , Ho3 + , Tm3 + , Dy3 + , Ce3 + , and Gd3 + A rare earth complex comprising at least one organic ligand selected from β-diketone ligands, carboxylic acid ligands, phosphine oxide ligands, and nitrogen-containing aromatic heterocyclic ligands;
    An ink composition comprising a long afterglow light emitting material having an afterglow time after the termination of excitation light irradiation which is 1 second or more.
  2.  前記長残光発光材料が、アルカリ土類金属アルミン酸塩を含有する、請求項1に記載のインキ組成物。 The ink composition according to claim 1, wherein the long afterglow light emitting material contains an alkaline earth metal aluminate.
  3.  前記希土類錯体は、前記有機配位子として、下記一般式(1)で表されるホスフィンオキシド配位子を含む、請求項1又は2に記載のインキ組成物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Ar及びArは、それぞれ独立に、置換基を有していてもよい一価の芳香族基である。一般式(1)中、Arは、下記一般式(2a)、(2b)又は(2c)で表される二価の基であり、nは1又は2である。
    Figure JPOXMLDOC01-appb-C000002
     (前記一般式(2a)~(2c)中、Rはそれぞれ独立に一価の置換基であり、Xは硫黄原子又は酸素原子であり、Rは、水素原子又は炭化水素基であり、mは、0から、Rが結合する環における置換可能な部位までの整数である。Rが複数ある場合、Rはそれぞれ同一であってもよく、異なっていてもよい。)
     一般式(1)中、Eは、水素原子又は下記一般式(3)で表されるホスフィンオキシド基である。
    Figure JPOXMLDOC01-appb-C000003
     (一般式(3)中、Ar及びArはそれぞれ独立に、置換基を有していてもよい一価の芳香族基である。)]
    The ink composition according to claim 1, wherein the rare earth complex contains a phosphine oxide ligand represented by the following general formula (1) as the organic ligand.
    Figure JPOXMLDOC01-appb-C000001
    [In general formula (1), Ar 1 and Ar 2 are each independently a monovalent aromatic group which may have a substituent. In General Formula (1), Ar 3 is a divalent group represented by the following General Formula (2a), (2b) or (2c), and n is 1 or 2.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2a) to (2c), R 1 is each independently a monovalent substituent, X is a sulfur atom or an oxygen atom, and R 2 is a hydrogen atom or a hydrocarbon group, m is from 0, if .R 1 R 1 is an integer from possible sites substitution in ring linked there are multiple, may be R 1 is each the same or different.)
    In the general formula (1), E is a hydrogen atom or a phosphine oxide group represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In General Formula (3), Ar 4 and Ar 5 are each independently a monovalent aromatic group which may have a substituent.)]
  4.  前記希土類錯体は、ホスフィンオキシド二座配位子を含み、当該ホスフィンオキシド二座配位子が、二つの前記希土類イオンに配位して形成された架橋構造を含む、請求項1乃至3のいずれか1項に記載のインキ組成物。 The rare earth complex according to any one of claims 1 to 3, wherein the rare earth complex comprises a phosphine oxide bidentate ligand, and the phosphine oxide bidentate ligand comprises a crosslinked structure formed by coordinating to the two rare earth ions. The ink composition according to any one of the preceding claims.
  5.  前記希土類錯体は、前記有機配位子として、下記一般式(4)で表されるβ-ジケトン配位子を含む、請求項1乃至4のいずれか1項に記載のインキ組成物。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)中、Q及びQは、それぞれ独立に、置換基を有していても良い炭化水素基、又は置換基を有していてもよい芳香族複素環基であり、Zは、水素原子又は重水素原子である。)
    The ink composition according to any one of claims 1 to 4, wherein the rare earth complex contains a β-diketone ligand represented by the following general formula (4) as the organic ligand.
    Figure JPOXMLDOC01-appb-C000004
    (In General Formula (4), Q 1 and Q 2 are each independently a hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Z is a hydrogen atom or a deuterium atom)
  6.  前記長残光発光材料は、SrAl:Eu,Dy、SrAl1425:Eu,Dy、及びCaAl:Eu,Ndからなる群から選ばれる少なくとも一種を含有する、請求項1乃至5のいずれか1項に記載のインキ組成物。 The long decay light emitting material contains at least one selected from the group consisting of SrAl 2 O 4 : Eu, Dy, Sr 4 Al 14 O 25 : Eu, Dy, and CaAl 2 O 4 : Eu, Nd. The ink composition according to any one of Items 1 to 5.
  7.  請求項1乃至6のいずれか1項に記載のインキ組成物の固化物を含有するインキ層を有する印刷物。 A printed matter having an ink layer containing the solidified product of the ink composition according to any one of claims 1 to 6.
PCT/JP2018/021245 2017-09-15 2018-06-01 Ink composition and printed matter WO2019053964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541649A JP7156289B2 (en) 2017-09-15 2018-06-01 Ink composition and printed matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017178262 2017-09-15
JP2017-178262 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019053964A1 true WO2019053964A1 (en) 2019-03-21

Family

ID=65723576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021245 WO2019053964A1 (en) 2017-09-15 2018-06-01 Ink composition and printed matter

Country Status (2)

Country Link
JP (1) JP7156289B2 (en)
WO (1) WO2019053964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727850A (en) * 2019-04-26 2021-11-30 国立大学法人北海道大学 Rare earth complex, rare earth complex solution, luminescent molded body, method for producing luminescent article, luminescent sheet, and agricultural vinyl house

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109902A (en) * 1998-10-02 2000-04-18 Nittetsu Mining Co Ltd Phosphorescent multilayer film coated powder
JP2006117789A (en) * 2004-10-21 2006-05-11 Sakura Color Prod Corp Luminous solid image-drawing tool
JP2008115225A (en) * 2006-11-01 2008-05-22 Toshiba Corp Luminescent ink and use of the same
JP2009280766A (en) * 2008-05-26 2009-12-03 Sharp Corp Ink composition
JP2010077058A (en) * 2008-09-25 2010-04-08 Toshiba Corp Terbium complex and light-emitting device using the same
WO2015002282A1 (en) * 2013-07-05 2015-01-08 国立大学法人北海道大学 Ligand, and rare earth complex
WO2015002295A1 (en) * 2013-07-05 2015-01-08 国立大学法人北海道大学 Sheet laminate-type rare earth complex, and use thereof
WO2015119268A1 (en) * 2014-02-10 2015-08-13 国立大学法人北海道大学 Ligand, macromolecular complex, and production method for macromolecular complex

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109902A (en) 2004-10-12 2006-04-27 Chemiprokasei Kaisha Ltd Deodorant and article with the deodorant at least on the surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109902A (en) * 1998-10-02 2000-04-18 Nittetsu Mining Co Ltd Phosphorescent multilayer film coated powder
JP2006117789A (en) * 2004-10-21 2006-05-11 Sakura Color Prod Corp Luminous solid image-drawing tool
JP2008115225A (en) * 2006-11-01 2008-05-22 Toshiba Corp Luminescent ink and use of the same
JP2009280766A (en) * 2008-05-26 2009-12-03 Sharp Corp Ink composition
JP2010077058A (en) * 2008-09-25 2010-04-08 Toshiba Corp Terbium complex and light-emitting device using the same
WO2015002282A1 (en) * 2013-07-05 2015-01-08 国立大学法人北海道大学 Ligand, and rare earth complex
WO2015002295A1 (en) * 2013-07-05 2015-01-08 国立大学法人北海道大学 Sheet laminate-type rare earth complex, and use thereof
WO2015119268A1 (en) * 2014-02-10 2015-08-13 国立大学法人北海道大学 Ligand, macromolecular complex, and production method for macromolecular complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727850A (en) * 2019-04-26 2021-11-30 国立大学法人北海道大学 Rare earth complex, rare earth complex solution, luminescent molded body, method for producing luminescent article, luminescent sheet, and agricultural vinyl house
CN113727850B (en) * 2019-04-26 2023-09-12 国立大学法人北海道大学 Rare earth complex, rare earth complex solution, luminescent molded article, method for producing luminescent article, luminescent sheet, and agricultural greenhouse

Also Published As

Publication number Publication date
JPWO2019053964A1 (en) 2020-10-15
JP7156289B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP7081603B2 (en) Ink composition, printed matter, and authenticity determination method
CN102105543B (en) Ink composition
JP7081602B2 (en) Ink composition and printed matter
JP2010531876A (en) Rare earth metal complexes excited in the long UV wavelength range
JP4185032B2 (en) Fluorescent image formed product and fluorescent light emitting ink
JP2015516899A (en) Multi-layer flake with high level coding
TW201502257A (en) Marking comprising a printable code and a chiral liquid crystal polymer layer
JP4589626B2 (en) Rare earth metal compounds and mixtures thereof
TW201501961A (en) Security laminate
JP4702887B2 (en) Luminescent rare earth nine-nuclear complex
JP2005507330A (en) Document appraisal
JP7156289B2 (en) Ink composition and printed matter
JP6367192B2 (en) Ligands and rare earth complexes
JP6296398B2 (en) Ink set, printed matter, and printing method
JP2013053285A (en) Luminous ink including rare earth complex
Moudam et al. Potential end-use of a europium binary photoluminescent ink for anti-counterfeiting security documents
KR101096238B1 (en) A method for preparing functional securing thread
WO2017191795A1 (en) Rare-earth complex polymer
JP7147596B2 (en) Ink composition, printed matter, and authentication method
JP2010126566A (en) Printed matter exhibiting mixed-color fluorescence emission
JPWO2016143561A1 (en) Polymer complex and method for producing the same
JP2010215686A (en) Rare earth metal complex, method for producing the same, and rare earth metal complex composition using the same
RU2581882C1 (en) Marking composition and method of marking and identifying valuable document
EP4032959A1 (en) Dispersion, ink composition, and printed article
JP2019183138A (en) Water-based liquid composition, and water-based ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855205

Country of ref document: EP

Kind code of ref document: A1