WO2019053927A1 - 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム - Google Patents

車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム Download PDF

Info

Publication number
WO2019053927A1
WO2019053927A1 PCT/JP2018/011190 JP2018011190W WO2019053927A1 WO 2019053927 A1 WO2019053927 A1 WO 2019053927A1 JP 2018011190 W JP2018011190 W JP 2018011190W WO 2019053927 A1 WO2019053927 A1 WO 2019053927A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
virtual
image
moving body
host vehicle
Prior art date
Application number
PCT/JP2018/011190
Other languages
English (en)
French (fr)
Inventor
昭彦 末平
栗原 誠
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2019053927A1 publication Critical patent/WO2019053927A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages

Definitions

  • the present invention relates to a projection control device for a vehicle, a head-up display device, a projection control method for a vehicle, and a program.
  • a head-up display device which projects information provided to the driver, such as route guidance information or speed information, as a virtual image in front of the driver's line of sight.
  • An image of a leading virtual vehicle that travels a predetermined distance ahead of the host vehicle on the guide route is displayed on the windshield at a position that would be visible from the driver's point of view.
  • a technique to derive the see, for example, Patent Document 1.
  • a technique for displaying a virtual vehicle that teaches an action to be taken by a vehicle at a predetermined distance ahead of the vehicle (see, for example, Patent Document 2).
  • JP 2000-275057 A Japanese Patent Application Publication No. 2003-254764
  • the driver When the vehicle gets uphill, the driver operates the accelerator so as not to decelerate. However, the driver may not be aware that the vehicle will go uphill on a gentle uphill. In this way, on the uphill, the vehicle may decelerate unintentionally and become a starting point of traffic jam.
  • the present invention has been made in view of the above, and it is an object of the present invention to support keeping a vehicle speed constant by suppressing unintended deceleration based on gradient information.
  • a projection control apparatus for a vehicle includes a vehicle information acquisition unit for acquiring vehicle information including the vehicle speed of the host vehicle, and a road on which the host vehicle travels.
  • a gradient information acquisition unit for acquiring gradient information, and a virtual moving object image of a virtual moving object projected by the projection unit of the head-up display device and moving in front of the own vehicle in the same direction as the own vehicle
  • the virtual movement such that the virtual image of the virtual moving body image generated by the virtual moving body image generation unit is visually recognized in front of the host vehicle by the moving body image generation unit and the projection unit of the head-up display device
  • a projection control unit configured to control projection of a body image, wherein the projection control unit determines that the vehicle is moving uphill based on the gradient information acquired by the gradient information acquiring unit
  • the control of the projection of the virtual moving body image is performed so that the virtual image of the virtual moving body image generated by the virtual moving body image generation unit is visually recognized in front of the host vehicle when it is determined that it hang
  • a head-up display device includes the above-described projection control device for a vehicle and the projection unit.
  • the projection control method for a vehicle includes a vehicle information acquisition step of acquiring vehicle information including a vehicle speed of the host vehicle, a preceding vehicle information acquisition step of acquiring leading vehicle information indicating presence or absence of a leading vehicle, and the host vehicle
  • the virtual moving object image generating step for generating an image, and the projection unit of the head-up display device can visually recognize the virtual image of the virtual moving object image generated in the virtual moving object image generating step in front of the host vehicle
  • a virtual image of the virtual mobile object video generated in the virtual mobile object video generating step is generated in front of the host vehicle.
  • the projection of the virtual moving body image is controlled to be viewed.
  • the program according to the present invention comprises a vehicle information acquisition step of acquiring vehicle information including the speed of the host vehicle, a preceding vehicle information acquisition step of acquiring leading vehicle information indicating presence or absence of a leading vehicle, and a road on which the host vehicle travels.
  • the virtual moving body image generation step and the projection unit of the head-up display device cause the virtual image of the virtual moving body image generated in the virtual moving body image generation step to be visually recognized in front of the host vehicle
  • the virtual image of the virtual moving body image generated in the virtual moving body image generation step is visually recognized in front of the own vehicle when it is determined that the own vehicle approaches an upward slope based on the gradient information acquired by
  • the control of the projection of the virtual mobile object image is performed by a computer operating as a projection control device for a vehicle.
  • the present invention it is possible to suppress unintended deceleration based on the gradient information and to support that the vehicle speed is kept constant.
  • FIG. 1 is a block diagram showing a configuration example of a projection control apparatus for a vehicle according to the first embodiment.
  • FIG. 2 is a view showing an example of a projection unit of the head-up display device according to the first embodiment.
  • FIG. 3 is a diagram showing an example when the host vehicle is located immediately before the uphill.
  • FIG. 4 is a diagram showing an example when the host vehicle approaches an uphill.
  • FIG. 5 is a view showing an example of a virtual image of a virtual vehicle image visually recognized by the driver when the host vehicle approaches an uphill.
  • FIG. 6 is a flowchart showing the flow of processing in the projection control system for a vehicle according to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration example of a projection control apparatus for a vehicle according to a second embodiment.
  • FIG. 8 is a flowchart showing the flow of processing in the projection control system for a vehicle according to the second embodiment.
  • FIG. 9 is a diagram for explaining processing in the projection control apparatus for a vehicle according to the third embodiment, and shows an example when the host vehicle approaches an uphill.
  • HUD device head-up display device
  • a projection control method for a vehicle a projection control method for a vehicle
  • a program according to the present invention will be described in detail below. Note that the present invention is not limited by the following embodiments.
  • FIG. 1 is a block diagram showing a configuration example of a projection control apparatus for a vehicle according to the first embodiment.
  • the HUD device 10 controls the projection control device 30 for a vehicle to project a virtual moving object image so that a virtual image of the virtual moving object image is visually recognized according to the situation around the host vehicle V.
  • the HUD device 10 visually recognizes the virtual image 200 of the virtual vehicle image by the projection control device 30 for vehicle Control to project a virtual vehicle image as
  • the fact that the vehicle V is moving uphill includes the time when the vehicle V actually starts traveling uphill and the time when an uphill exists ahead of the traveling direction of the vehicle V.
  • the camera unit 100 has a camera for photographing the surroundings of the host vehicle V. A plurality of cameras may be arranged. In the present embodiment, the camera unit 100 has a front camera (not shown).
  • the front camera is a front video camera.
  • the front camera is disposed in front of the host vehicle V and captures an area around the front of the host vehicle V.
  • the forward video data is a moving image composed of, for example, 30 frames per second.
  • the front camera outputs the photographed front video data to the video data acquisition unit 31 of the vehicle projection control device 30.
  • the slope sensor 110 detects the slope of the road on which the host vehicle V travels.
  • the gradient sensor 110 is a sensor that detects the inclination of the host vehicle V.
  • the gradient sensor 110 is, for example, a three-axis gyro sensor that detects the angular velocity of the host vehicle V. More specifically, the three-axis gyro sensor includes a roll rate gyro, a pitch rate gyro, and a yaw rate gyro.
  • the roll rate gyro detects a roll angular velocity which is an angular velocity of rotation of the host vehicle V around the front-rear direction.
  • the pitch rate gyro detects a pitch angular velocity which is an angular velocity of rotation around the left and right direction of the host vehicle V.
  • the yaw rate gyro detects a yaw angular velocity which is an angular velocity of rotation about the vertical direction of the host vehicle V as an axis.
  • the three-axis gyro sensor uses the roll angular velocity detected by the roll rate gyro, the pitch angular velocity detected by the pitch rate gyro, and the yaw angular velocity detected by the yaw rate gyro as the angular velocity signal, and acquires the gradient information acquisition unit 34 of the vehicle projection control apparatus 30. Output to
  • the HUD device 10 When the host vehicle V approaches an uphill, the HUD device 10 creates a virtual image 200 of a virtual vehicle image of a virtual vehicle, which is a virtual leading vehicle, as a virtual moving object image of a virtual moving object in front of the driver's line of sight. Make the driver visually recognize as shown in FIG.
  • the HUD device 10 has a projection unit 20 and a projection control device 30 for a vehicle.
  • FIG. 2 is a view showing an example of a projection unit of the head-up display device according to the first embodiment.
  • the projection unit 20 has a projection unit 21 and a combiner 22.
  • the projection unit 20 reflects the display image projected on the projection unit 21 by the combiner 22 to make the driver visually recognize it as a virtual image.
  • the projection unit 21 is a display that includes, for example, a liquid crystal display (LCD) or an organic electro-luminescence (EL) display. In the present embodiment, the projection unit 21 is disposed below the dashboard D. The projection unit 21 displays a display image on the display surface based on the image signal from the projection control unit 39 of the vehicle projection control device 30. Video display light of a display video displayed on the display surface of the projection unit 21 is projected on the combiner 22.
  • LCD liquid crystal display
  • EL organic electro-luminescence
  • the combiner 22 reflects the video display light projected from the projection unit 21 and causes the driver to recognize it as a virtual image.
  • the combiner 22 is a plate-like member which is disposed to be curved in a convex shape forward in the traveling direction. In the present embodiment, the combiner 22 is disposed on the upper side of the dashboard D.
  • the combiner 22 has a front surface facing the windshield S of the host vehicle V and a rear surface facing the driver.
  • the vehicle projection control device 30 controls the projection unit 21 of the projection unit 20 to project a display image according to the situation around the host vehicle V. Furthermore, in the present embodiment, the vehicle projection control device 30 controls the projection unit 21 of the projection unit 20 to project a display image only while the host vehicle V is traveling on the expressway.
  • the vehicle projection control device 30 is, for example, an arithmetic processing device configured by a CPU (Central Processing Unit) or the like.
  • the vehicle projection control device 30 loads a program stored in a storage unit (not shown) into a memory and executes an instruction included in the program.
  • the vehicle projection control device 30 includes a video data acquisition unit 31, a vehicle information acquisition unit 32, a preceding vehicle information acquisition unit 33, a gradient information acquisition unit 34, and a virtual vehicle video generation unit (virtual moving object video generation unit). And a projection control unit 39.
  • the vehicle projection control device 30 includes an internal memory (not shown), and the internal memory is used for temporary storage of data in the vehicle projection control device 30 and the like.
  • the video data acquisition unit 31 acquires peripheral video data obtained by photographing the periphery of the host vehicle V. More specifically, the video data acquisition unit 31 acquires video data output by the camera unit 100. The video data acquisition unit 31 outputs the acquired video data to the preceding vehicle information acquisition unit 33.
  • the vehicle information acquisition unit 32 acquires vehicle information indicating the status of the host vehicle V from CAN or various sensors that sense the status of the host vehicle V.
  • the vehicle information acquisition unit 32 acquires, for example, vehicle speed information.
  • the vehicle information acquisition unit 32 outputs the acquired vehicle information to the virtual vehicle video generation unit 38.
  • the vehicle information acquisition unit 32 stores the acquired vehicle speed information in the internal memory.
  • the preceding vehicle information acquisition unit 33 acquires preceding vehicle information indicating the presence or absence of a preceding vehicle traveling in the forward direction where the host vehicle V travels.
  • the leading vehicle information acquisition unit 33 performs image processing on the video data acquired by the video data acquisition unit 31, and determines whether or not the preceding vehicle exists in the range of the first distance or less. The result is acquired as preceding vehicle information.
  • the first distance is preferably in the range of several tens of meters or more and 200 m or less.
  • the first distance may be set in accordance with the vehicle speed of the host vehicle V.
  • the first distance may be a safe inter-vehicle distance set according to the vehicle speed of the host vehicle V.
  • the first distance may be longer than the safe inter-vehicle distance set according to the vehicle speed of the host vehicle V.
  • the first distance may be 80 km, and when the vehicle speed is 100 km / h, the first distance may be 100 m.
  • the first distance may be 100 m, and when the vehicle speed is 100 km / h, the first distance may be 200 m.
  • the preceding vehicle information acquisition unit 33 may determine whether a preceding vehicle exists in a range equal to or less than the first distance by a sensor unit (not shown), and may acquire the determination result as preceding vehicle information.
  • the sensor unit can detect a preceding vehicle which is an obstacle ahead of the host vehicle V.
  • the sensor unit includes a plurality of sensors installed around the host vehicle V. Each sensor is disposed in front of the host vehicle V, and detects a vehicle in front of the host vehicle V.
  • the sensor is, for example, an infrared sensor or an ultrasonic sensor, a millimeter wave radar, or the like, and may be configured by a combination thereof.
  • the gradient information acquisition unit 34 acquires gradient information of the road on which the host vehicle V travels.
  • the gradient information acquisition unit 34 acquires the gradient information output from the gradient sensor 110.
  • the gradient sensor 110 calculates a roll angle, a pitch angle, and a yaw angle that indicate the inclination of the host vehicle V from the roll angular velocity, the pitch angular velocity, and the yaw angular velocity included in the gradient information.
  • the gradient information acquisition unit 34 outputs, to the virtual vehicle image generation unit 38, gradient information obtained by adding the calculated roll angle, pitch angle, and yaw angle.
  • the gradient information acquisition unit 34 is gradient information of the current position of the vehicle V based on the current position information of the vehicle V and the navigation information acquired from the navigation system including the information of the road on which the vehicle V travels. You may get
  • the virtual vehicle image generation unit 38 generates a virtual vehicle image of a virtual vehicle projected by the projection unit 20 of the HUD device 10 and moving in front of the host vehicle V in the same direction as the host vehicle V.
  • the virtual vehicle image generation unit 38 generates a virtual vehicle image when the host vehicle V approaches an upward slope.
  • the virtual vehicle image generation unit 38 generates a virtual vehicle image when the host vehicle V approaches an uphill only while the host vehicle V is traveling on the expressway.
  • the virtual vehicle image is an image of a virtual vehicle moving ahead of the host vehicle V by a first distance.
  • the virtual vehicle image is an image obtained by visually recognizing the host vehicle V from the rear.
  • the virtual vehicle image is generated by changing the viewpoint according to the shape of the road ahead of the host vehicle V by a first distance. For example, when the road ahead of the first distance of the host vehicle V is curved in the right direction, the virtual vehicle image is an image obtained by visually recognizing the host vehicle V from the rear right. For example, when the road ahead of the first distance of the host vehicle V is curved in the left direction, the virtual vehicle image is an image obtained by visually recognizing the host vehicle V from the left rear.
  • the virtual vehicle image is an image of a virtual vehicle moving at a first vehicle speed which is a vehicle speed immediately before the host vehicle V reaches an uphill.
  • the virtual vehicle image is generated by changing the size in accordance with the change in the vehicle speed of the host vehicle V while traveling uphill.
  • the virtual vehicle image is an image of a certain size when the host vehicle V is traveling while maintaining the first vehicle speed.
  • the virtual vehicle image is an image in which the size of the virtual vehicle is enlarged as if the inter-vehicle distance becomes short.
  • the virtual vehicle image is an image in which the size of the virtual vehicle is reduced as if the inter-vehicle distance is increased.
  • the projection control unit 39 projects the virtual vehicle image so that the virtual image 200 of the virtual vehicle image generated by the virtual vehicle image generating unit 38 is viewed by the projection unit 20 of the HUD device 10 in front of the host vehicle V. Control. More specifically, the projection control unit 39 causes the virtual image 200 of the virtual vehicle image to be visually recognized in front of the host vehicle V when the host vehicle V approaches an upward slope based on the gradient information acquired by the gradient information acquisition unit 34. Outputs a video signal for projecting a virtual vehicle video to the projection unit 20. Furthermore, in the present embodiment, the projection control unit 39 causes the virtual image 200 of the virtual vehicle image to be viewed when the host vehicle V approaches an uphill only while the host vehicle V is traveling on the expressway. Control to project virtual vehicle images.
  • the pitch angle in the state where the pitch angle is equal to or more than the threshold angle based on the acquired gradient information in the virtual vehicle image generation unit 38 and the projection control unit 39, or more than the threshold distance or more. It is determined that the host vehicle V approaches an uphill. If the pitch angle is not the threshold angle or more, or if the threshold time or more does not elapse even if the pitch angle is the threshold angle or more, and the vehicle is not traveling the threshold distance or more, the host vehicle V rises. It is determined that the slope has not been reached. By doing this, careless display of the virtual image 200 of the virtual vehicle image can be suppressed in a slight ups and downs of the road or a short uphill where the vehicle speed is not reduced to the starting point of the traffic jam.
  • the threshold angle is about 3%.
  • the threshold time is about 2 seconds.
  • the threshold distance is about 50 m.
  • FIG. 3 is a diagram showing an example when the host vehicle is located immediately before the uphill.
  • FIG. 4 is a diagram showing an example when the host vehicle approaches an uphill.
  • FIG. 5 is a view showing an example of a virtual image of a virtual vehicle image visually recognized by the driver when the host vehicle approaches an uphill.
  • the virtual vehicle image is projected so that the driver visually recognizes that the virtual vehicle is traveling ahead by the first distance.
  • the virtual image 200 of the virtual vehicle image is viewed so as to overlap the scene ahead of the first distance.
  • FIG. 6 is a flowchart showing the flow of processing in the projection control system for a vehicle according to the first embodiment.
  • the vehicle projection control device 30 acquires current position information of the host vehicle V (step S11). More specifically, the vehicle projection control device 30 causes the vehicle information acquisition unit 32 to acquire current position information of the host vehicle V from the navigation system. The vehicle projection control device 30 proceeds to step S12.
  • the vehicle projection control device 30 determines whether the host vehicle V is traveling on the expressway (step S12). More specifically, the vehicle projection control device 30 determines whether the current position of the host vehicle V is on a highway based on the information acquired from the navigation system. When the vehicle projection control device 30 determines that the current position of the host vehicle V is on the expressway (Yes in step S12), the process proceeds to step S13. If the vehicle projection control device 30 determines that the current position of the host vehicle V is not on the expressway (No at step S12), the process proceeds to step S20.
  • the vehicle projection control device 30 acquires gradient information (step S13). More specifically, the vehicle projection control device 30 acquires gradient information by the gradient information acquisition unit 34. The vehicle projection control device 30 proceeds to step S14.
  • the vehicle projection control device 30 determines whether or not the host vehicle V approaches an uphill (step S14).
  • the projection control device 30 for a vehicle sets the pitch angle of the host vehicle V equal to or greater than the threshold angle based on the gradient calculated by the gradient information acquisition unit 34 by the projection control unit 39.
  • it is determined that the host vehicle V approaches the uphill Yes in step S14).
  • the vehicle projection control device 30 travels the threshold distance or more with the pitch angle of the host vehicle V equal to or larger than the threshold angle based on the gradient calculated by the gradient information acquisition unit 34 by the projection control unit 39 It is determined that the host vehicle V approaches an uphill (Yes in step S14). Then, the vehicle projection control device 30 proceeds to step S15.
  • the vehicle projection control device 30 determines that the pitch angle is equal to or greater than the threshold angle. Even when there is no threshold time or more, and when the vehicle is not traveling more than the threshold distance, it is determined that the host vehicle V is not approaching the uphill (No in step S14). Then, the vehicle projection control device 30 proceeds to step S20.
  • the vehicle projection control device 30 acquires preceding vehicle information (step S15). More specifically, the leading vehicle information acquisition unit 33 performs image processing on the video data acquired by the video data acquisition unit 31, and detects a leading vehicle located at a distance equal to or less than a threshold from the host vehicle V as a photographed object. , The detection result is acquired as preceding vehicle information. The vehicle projection control device 30 proceeds to step S16.
  • the vehicle projection control device 30 determines whether a preceding vehicle exists at a distance equal to or less than the threshold (step S16). When the vehicle projection control device 30 does not detect the leading vehicle located at a distance equal to or less than the threshold from the host vehicle V based on the leading vehicle information acquired by the leading vehicle information acquisition unit 33, the leading vehicle is at a distance equal to or less than the threshold. It determines with not existing (it is Yes at step S16). Then, the vehicle projection control device 30 proceeds to step S17. When the vehicle projection control device 30 detects a leading vehicle located at a distance equal to or less than the threshold from the host vehicle V based on the leading vehicle information acquired by the leading vehicle information acquisition unit 33, the leading vehicle is at a distance equal to or less than the threshold. It determines that it exists (No in step S16). Then, the vehicle projection control device 30 proceeds to step S20.
  • the vehicle projection control device 30 acquires the vehicle speed of the immediately preceding vehicle V as the first vehicle speed (step S17). . More specifically, the projection control unit 30 for a vehicle is determined by the projection control unit 39 that the host vehicle V approaches an uphill on the basis of the vehicle information acquired by the vehicle information acquisition unit 32 and stored in the internal memory. Acquire the immediately preceding first vehicle speed. In other words, the first vehicle speed is the vehicle speed immediately before the host vehicle V reaches the uphill.
  • the vehicle projection control device 30 generates a virtual vehicle image (step S18). More specifically, the vehicle projection control device 30 runs the first distance ahead of the host vehicle V at the first speed of the host vehicle V based on the first vehicle speed of the host vehicle V in the virtual vehicle image generation unit 38. To generate a virtual vehicle image. The vehicle projection control device 30 proceeds to step S19.
  • the vehicle projection control device 30 outputs a control signal for projecting a virtual vehicle image (step S19). More specifically, the vehicle projection control device 30 causes the projection control unit 39 to output, to the projection unit 20, a control signal for projecting the virtual vehicle image generated by the virtual vehicle image generating unit 38. The vehicle projection control device 30 proceeds to step S21.
  • the vehicle projection control device 30 outputs a control signal for stopping the projection of the virtual vehicle image (step S20). More specifically, when the virtual vehicle image is being projected by the projection control unit 39, the vehicle projection control device 30 outputs, to the projection unit 20, a control signal for stopping the projection of the virtual vehicle image. When the virtual vehicle image is not projected by the projection control unit 39, the vehicle projection control device 30 continues the state in which the virtual vehicle image is not projected. The vehicle projection control device 30 proceeds to step S21.
  • the vehicle projection control device 30 determines whether or not there is an end trigger (step S21).
  • the end trigger is, for example, a case where a button for ending the display of the virtual vehicle image is pressed or the vehicle stops.
  • the vehicle projection control device 30 determines to end the projection of the virtual vehicle image (Yes in step S21), and ends the process.
  • the vehicle projection control device 30 determines that the projection of the virtual vehicle image is not ended (No in step S21), and executes the process of step S11 again.
  • the vehicle projection control device 30 projects the virtual vehicle image so that the virtual image 200 of the virtual vehicle image is visually recognized only when the host vehicle V approaches the uphill.
  • the vehicle projection control device 30 does not project the virtual vehicle image when the host vehicle V is not approaching the uphill.
  • the virtual vehicle image is projected such that the virtual image 200 of the virtual vehicle image can be viewed only when the host vehicle V reaches the uphill.
  • the virtual vehicle image is not projected when the host vehicle V is not approaching the uphill.
  • the driver can recognize that the host vehicle V approaches the uphill by visually recognizing the virtual image 200 of the virtual vehicle image.
  • the virtual vehicle image is projected so that the virtual image 200 of the virtual vehicle image can be viewed. According to the present embodiment, even when there is no preceding vehicle ahead of the host vehicle V, it is possible to travel so as to follow the virtual vehicle in the same manner as when there is a preceding vehicle.
  • the present embodiment projects a virtual vehicle image traveling at a first vehicle speed immediately before the host vehicle V reaches an uphill.
  • the driver can travel following the virtual vehicle traveling at the first vehicle speed by visually recognizing the virtual image 200 of the virtual vehicle image.
  • it when approaching an upward slope, it can be assisted that the driver travels while maintaining the vehicle speed of the host vehicle V at the first vehicle speed.
  • it is possible to prevent the host vehicle V from decelerating unintentionally when approaching an upward slope.
  • the present embodiment it is possible to prevent the vehicle V from becoming a starting point of the traffic congestion by unintentionally decelerating the host vehicle V on the uphill including the zug portion of the expressway.
  • the present embodiment can suppress the occurrence of traffic congestion.
  • the present embodiment projects a virtual vehicle image when no preceding vehicle exists at a distance equal to or less than the threshold. Further, in the present embodiment, when a virtual vehicle image is being projected, the projection of the virtual vehicle image is stopped when the preceding vehicle is present at a distance equal to or less than the threshold. Thus, the present embodiment can project a virtual vehicle image only when there is no preceding vehicle. According to the present embodiment, it is possible to avoid that the leading vehicle and the virtual image 200 of the virtual vehicle image overlap and the visibility is reduced.
  • FIG. 7 is a block diagram showing a configuration example of a projection control apparatus for a vehicle according to a second embodiment.
  • FIG. 8 is a flowchart showing the flow of processing in the projection control system for a vehicle according to the second embodiment.
  • the basic configuration of the HUD device 10A is the same as that of the HUD device 10 of the first embodiment.
  • symbol is attached
  • the vehicle projection control device 30A is a virtual vehicle image of a display mode in which it can be confirmed that the host vehicle V is performing the brake operation.
  • the virtual vehicle image is projected so that the virtual image 200 can be viewed.
  • the display mode capable of confirming that the brake operation is performed is the display mode of the virtual vehicle image in which the brake lamp is lit.
  • the vehicle projection control device 30A has a road information acquisition unit 35A.
  • the host vehicle V When the host vehicle V needs to operate the brake, the host vehicle V needs to decelerate. For example, when the front of the host vehicle V has a sharp curve. For example, when the vehicle speed of the host vehicle V is faster than the first vehicle speed by a threshold speed or more.
  • the road information acquisition unit 35A acquires road information indicating the shape of the road ahead of the host vehicle V based on the vehicle information acquired by the vehicle information acquisition unit 32 and the navigation information acquired from the navigation system. More specifically, the road information acquisition unit 35A acquires road information indicating the shape of the road ahead of the host vehicle V based on the current position information of the host vehicle V and the navigation information.
  • the virtual vehicle image generation unit 38A includes the gradient information acquired by the gradient information acquisition unit 34, the vehicle information acquired by the vehicle information acquisition unit 32, and the navigation information acquired from the navigation system including the information of the road on which the vehicle V travels.
  • the brake lamp is turned on as a display mode that can confirm that the brake operation is being performed. Generate a virtual vehicle image.
  • the projection control unit 39A performs at least one of the gradient information acquired by the gradient information acquiring unit 34, the vehicle information acquired by the vehicle information acquiring unit 32, and the navigation information acquired from the navigation system including the information of the road on which the host vehicle V travels.
  • a video signal for projecting a virtual vehicle video generated by the virtual vehicle video generation unit 38A is output to the projection unit 20 so that the virtual image 200 of the video is viewed.
  • steps S31 to S36, S38 and S42 to S45 in the flowchart shown in FIG. 8 are the same as the processes in steps S11 to S16 and S17 and steps S18 to S21 in the flowchart shown in FIG. I do.
  • the vehicle projection control device 30A acquires the shape of the road (step S37). More specifically, the vehicle projection control device 30A acquires the shape of the road ahead of the host vehicle V based on the road information acquired by the road information acquisition unit 35A. The vehicle projection control device 30A proceeds to step S38.
  • the vehicle projection control device 30A determines whether a brake operation is necessary (step S39). When the shape of the road ahead of the host vehicle V is a sharp curve based on the vehicle information acquired by the vehicle information acquisition unit 32 and the road information acquired by the road information acquisition unit 35A, the vehicle projection control device 30A It is determined that the brake operation is necessary (Yes in step S39). Alternatively, when the vehicle speed of the host vehicle V is faster than the first vehicle speed by the threshold speed or more based on the vehicle information, the vehicle projection control device 30A determines that the brake operation is necessary (Yes in step S39). Then, the vehicle projection control device 30A proceeds to step S40.
  • the vehicle projection control device 30A determines that the brake operation is not necessary ( No in step S39). Then, the vehicle projection control device 30A proceeds to step S42.
  • the vehicle projection control device 30A generates a virtual vehicle image in which the brake lamp is lit (step S40). More specifically, the vehicle projection control device 30A controls the first distance ahead of the host vehicle V at a lower speed than the host vehicle V at the first vehicle speed of the host vehicle V based on the first vehicle speed of the host vehicle V. Drive and generate a virtual vehicle image with the brake lamp turned on.
  • the vehicle projection control device 30A outputs a control signal for projecting a virtual vehicle image with the brake lamp turned on (step S41). More specifically, the vehicle projection control device 30A causes the projection control unit 39A to output, to the projection unit 20, a control signal for projecting a virtual vehicle image on which the brake lamp generated by the virtual vehicle image generation unit 38A is lit. The vehicle projection control device 30A proceeds to step S45.
  • the virtual vehicle image with the brake lamp lit is projected.
  • the driver can naturally perform the brake operation of the host vehicle V by lighting the brake lamp of the virtual vehicle image.
  • FIG. 9 is a diagram for explaining processing in the projection control apparatus for a vehicle according to the third embodiment, and shows an example when the host vehicle approaches an uphill.
  • the basic configuration of the HUD device 10 is the same as that of the HUD device 10 of the first embodiment.
  • the virtual vehicle image generation unit 38 generates a virtual vehicle image that is separated and separated from the host vehicle V from the vicinity of the host vehicle V to the front of the first distance.
  • the virtual vehicle image generation unit 38 generates a virtual vehicle image visually recognized by the driver so as to be separated from the host vehicle V and jump forward.
  • the projection control unit 39 generates a virtual vehicle image that is visually recognized as being separated and separated from the host vehicle V from the vicinity of the host vehicle V to the first distance ahead when the host vehicle V approaches an upward slope.
  • the virtual vehicle image generated by the unit 38 is projected.
  • the projection control unit 39 is a virtual vehicle image that is visually recognized so that the virtual image 200 of the virtual vehicle image separates from the host vehicle V and jumps forward when the host vehicle V approaches an upward slope.
  • a virtual image 200 of a virtual vehicle image to be projected when the host vehicle V approaches an uphill will be described with reference to FIG.
  • the virtual image 200 of the virtual vehicle image is visually recognized as traveling near the host vehicle V immediately after it is determined that the host vehicle V approaches an uphill.
  • the virtual image 200 of the virtual vehicle image is viewed so as to be away from the host vehicle V.
  • the virtual image 200 of the virtual vehicle image is visually recognized as traveling ahead by the first distance.
  • the virtual vehicle image is separated and separated from the host vehicle V from the vicinity of the host vehicle V to the first distance ahead.
  • the virtual vehicle image is projected so that the virtual image 200 can be viewed. According to the present embodiment, the driver can more easily recognize that the host vehicle V approaches the uphill.
  • the present embodiment by displaying the virtual image 200 of the virtual vehicle image so as to be separated from the host vehicle V, it is possible to cause the vehicle to travel following the virtual vehicle.
  • the HUD device 10A according to the present invention has been described above, but may be implemented in various different modes other than the above-described embodiment.
  • Each component of the illustrated HUD device 10A is functionally conceptual and may not necessarily be physically configured as illustrated. That is, the specific form of each device is not limited to the illustrated one, and all or a part thereof is functionally or physically dispersed or integrated in an arbitrary unit according to the processing load and use condition of each device, etc. May be
  • the configuration of the HUD device 10A is realized, for example, as software, a program loaded into a memory, or the like.
  • the above embodiment has been described as a functional block realized by cooperation of these hardware or software. That is, these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the gradient information acquisition unit 34 determines the current position of the host vehicle V based on, for example, the vehicle speed included in the vehicle information acquired by the vehicle information acquisition unit 32, the fuel injection amount, and the vehicle weight obtained by combining the occupant and the luggage.
  • the slope of may be calculated. For example, when the fuel injection amount increases while the vehicle speed is not increasing, the gradient information acquiring unit 34 may calculate the gradient on the assumption that the host vehicle V is approaching the upward gradient. Alternatively, data indicating the relationship between the vehicle speed, the fuel injection amount, and the gradient may be stored in advance in the storage unit.
  • the gradient information acquisition unit 34 may calculate the gradient of the current position of the host vehicle V by combining the gradients calculated by a plurality of methods. As a result, it is possible to more accurately determine whether or not the host vehicle V approaches the uphill.
  • the vehicle projection control device 30 may include a current position information acquisition unit that acquires current position information of a vehicle acquired by a GPS (Global Positioning System) receiver mounted on the vehicle.
  • GPS Global Positioning System
  • the HUD device 10A may project the virtual vehicle image as a virtual image 200 before the host vehicle V approaches an uphill. More specifically, in step S14 of the flowchart shown in FIG. 6, the vehicle projection control device 30 causes the projection control unit 39 to calculate the current position information of the vehicle V included in the vehicle information acquired by the vehicle information acquisition unit 32; It is determined that the host vehicle V is approaching the uphill when it is determined that there is an uphill ahead of the host vehicle V and below the first distance based on navigation information including road slope information (Step S14). Yes).
  • the vehicle speed is maintained at the first vehicle speed before the host vehicle V reaches the uphill.
  • Can help Thereby, it is possible to more reliably suppress the host vehicle V from decelerating.
  • the video generated by the virtual mobile body video generation unit may be a virtual mobile body moving in front of the host vehicle V at a first vehicle speed.
  • the virtual moving body may be an icon such as an arrow shape or a round shape moving in the movement direction of the host vehicle V.
  • the gradient information acquisition part 34 shall acquire gradient information based on the gradient sensor 110 or navigation information, it is not limited to this.
  • the gradient information acquisition unit 34 may perform image processing on the video data acquired by the video data acquisition unit 31 to determine whether it is an uphill. More specifically, the gradient information acquiring unit 34 may perform image processing on the video data, read a sign indicating that the image is an uphill, and determine that an uphill is reached. For example, the sign indicating that it is an uphill is the character of "uphill” or the character of "uphill lane".
  • the projection unit 20 may reflect the display image projected on the projection unit 21 by the windshield S and cause the driver to recognize the display image as the virtual image 200 without using the combiner.
  • the virtual image 200 of the virtual vehicle image in which the brake lamp is lit is visually recognized, but the present invention is not limited thereto.
  • the virtual vehicle image may be an image obtained by changing the body of the virtual vehicle to red.
  • the virtual vehicle video may generate a virtual vehicle video of a display mode in which the change in the speed of the host vehicle V can be confirmed when it is determined that the amount of change in the speed of the host vehicle V relative to the first vehicle speed is equal to or greater than the threshold .
  • the virtual vehicle image may be an image in which the vehicle body of the virtual vehicle blinks or the color of the vehicle body is reduced.
  • HUD device 20 projection unit 21 projection unit 22 combiner 30 projection control device for vehicle 31 image data acquisition unit 32 vehicle information acquisition unit 33 preceding vehicle information acquisition unit 34 gradient information acquisition unit 38 virtual vehicle image generation unit (virtual moving object image generation unit Department) 39 projection control unit 100 camera unit 110 slope sensor

Abstract

車速を含む車両情報を取得する車両情報取得部32と、走行する道路の勾配情報を取得する勾配情報取得部34と、自車両の前方を自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想車両映像生成部38と、投影ユニット20によって、自車両の前方に、仮想車両映像生成部38が生成した仮想移動体映像の虚像が視認されるように、仮想移動体映像の投影を制御する投影制御部39とを備え、投影制御部39は、勾配情報取得部34によって取得した勾配情報に基づいて、自車両が上り坂に差し掛かると判定されると、自車両の前方に、仮想移動体映像の虚像が視認されるように、仮想移動体映像の投影を制御する。

Description

車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム
 本発明は、車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラムに関する。
 運転者の視線の前方に、例えば、経路案内情報または速度情報のような運転者に提供する情報を虚像として投影するヘッドアップディスプレイ装置が知られている。案内経路上にて自車両より所定距離だけ先行して走行する先導用バーチャル車両の像を、フロントガラス上であって、運転者の視点からすればそこに見えるであろう位置に表示して車両を誘導する技術が知られている(例えば、特許文献1参照)。車両から所定距離前方の位置に、車両が取るべき動作を教示した仮想車両を表示する技術が知られている(例えば、特許文献2参照)。
特開2000-275057号公報 特開2003-254764号公報
 車両が上り坂に差し掛かると、運転者は減速しないようにアクセル操作をする。ところが、緩やかな上り坂では車両が上り坂に差し掛かることに運転者が気が付きにくいことがある。このようにして、上り坂においては、意図せずに車両が減速して渋滞の起点となることがある。
 本発明は、上記に鑑みてなされたものであって、勾配情報に基づいて、意図しない減速を抑制して、車速を一定に保つことを支援することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る車両用投影制御装置は、自車両の車速を含む車両情報を取得する車両情報取得部と、前記自車両が走行する道路の勾配情報を取得する勾配情報取得部と、ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成部と、ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御部と、を備え、前記投影制御部は、前記勾配情報取得部によって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定されると、前記自車両の前方に、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御することを特徴とする。
 本発明に係るヘッドアップディスプレイ装置は、上記の車両用投影制御装置と、前記投影ユニットとを備えることを特徴とする。
 本発明に係る車両用投影制御方法は、自車両の車速を含む車両情報を取得する車両情報取得ステップと、先行車両の有無を示す先行車両情報を取得する先行車両情報取得ステップと、前記自車両が走行する道路の勾配情報を取得する勾配情報取得ステップと、ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成ステップと、ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御ステップと、を含み、前記投影制御ステップは、前記勾配情報取得ステップによって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定されると、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する。
 本発明に係るプログラムは、自車両の車速を含む車両情報を取得する車両情報取得ステップと、先行車両の有無を示す先行車両情報を取得する先行車両情報取得ステップと、前記自車両が走行する道路の勾配情報を取得する勾配情報取得ステップと、ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成ステップと、ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御ステップと、を含み、前記投影制御ステップは、前記勾配情報取得ステップによって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定されると、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、ことを車両用投影制御装置として動作するコンピュータに実行させる。
 本発明によれば、勾配情報に基づいて、意図しない減速を抑制して、車速が一定に保たれることを支援することができるという効果を奏する。
図1は、第一実施形態に係る車両用投影制御装置の構成例を示すブロック図である。 図2は、第一実施形態に係るヘッドアップディスプレイ装置の投影ユニットの一例を示す図である。 図3は、自車両が上り坂の直前に位置するときの一例を示す図である。 図4は、自車両が上り坂に差し掛かるときの一例を示す図である。 図5は、自車両が上り坂に差し掛かるとき、運転者が視認する仮想車両映像の虚像の一例を示す図である。 図6は、第一実施形態に係る車両用投影制御装置における処理の流れを示すフローチャートである。 図7は、第二実施形態に係る車両用投影制御装置の構成例を示すブロック図である。 図8は、第二実施形態に係る車両用投影制御装置における処理の流れを示すフローチャートである。 図9は、第三実施形態に係る車両用投影制御装置における処理を説明するための図であり、自車両が上り坂に差し掛かるときの一例を示す。
 以下に添付図面を参照して、本発明に係る車両用投影制御装置、ヘッドアップディスプレイ装置(以下、「HUD装置」という。)、車両用投影制御方法およびプログラムの実施形態を詳細に説明する。なお、以下の実施形態により本発明が限定されるものではない。
[第一実施形態]
 図1は、第一実施形態に係る車両用投影制御装置の構成例を示すブロック図である。HUD装置10は、自車両Vの周囲の状況に応じて、車両用投影制御装置30によって仮想移動体映像の虚像が視認されるように仮想移動体映像を投影するように制御する。本実施形態では、HUD装置10は、自車両Vが上り坂に差し掛かるとき、言い換えると、自車両Vが上り坂を走行するとき、車両用投影制御装置30によって仮想車両映像の虚像200が視認されるように仮想車両映像を投影するように制御する。
 自車両Vが上り坂に差し掛かるとは、自車両Vが実際に上り坂を走行し始めたとき、および、自車両Vの進行方向の前方に上り坂が存在するときを含む。
 カメラユニット100は、自車両Vの周囲を撮影するカメラを有する。カメラは、複数配置されていてもよい。本実施形態では、カメラユニット100は、図示しない前方カメラを有する。
 前方カメラは、前方映像用カメラである。前方カメラは、自車両Vの前方に配置され、自車両Vの前方を中心とした周辺を撮影する。前方映像データは、例えば毎秒30フレームの画像から構成される動画像である。前方カメラは、撮影した前方映像データを車両用投影制御装置30の映像データ取得部31へ出力する。
 勾配センサ110は、自車両Vが走行する道路の勾配を検出する。勾配センサ110は、自車両Vの傾きを検出するセンサである。勾配センサ110は、例えば、自車両Vの角速度を検出する3軸ジャイロセンサである。より詳しくは、3軸ジャイロセンサは、ロールレートジャイロと、ピッチレートジャイロと、ヨーレートジャイロとを有する。ロールレートジャイロは、自車両Vの前後方向を軸とした回転の角速度であるロール角速度を検出する。ピッチレートジャイロは、自車両Vの左右方向を軸とした回転の角速度であるピッチ角速度を検出する。ヨーレートジャイロは、自車両Vの鉛直方向を軸とした回転の角速度であるヨー角速度を検出する。3軸ジャイロセンサは、ロールレートジャイロで検出したロール角速度と、ピッチレートジャイロで検出したピッチ角速度と、ヨーレートジャイロで検出したヨー角速度とを角速度信号として車両用投影制御装置30の勾配情報取得部34に出力する。
 HUD装置10は、自車両Vが上り坂に差し掛かるとき、運転者の視線の前方に、仮想移動体の仮想移動体映像として、仮想の先行車両である仮想車両の仮想車両映像を虚像200(図4参照)として運転者に視認させる。HUD装置10は、投影ユニット20と、車両用投影制御装置30とを有する。
 図2を参照して、投影ユニット20について説明する。図2は、第一実施形態に係るヘッドアップディスプレイ装置の投影ユニットの一例を示す図である。投影ユニット20は、投影部21と、コンバイナ22とを有する。投影ユニット20は、投影部21に投影された表示映像を、コンバイナ22で反射させ運転者に虚像として視認させる。
 投影部21は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)または有機EL(Organic Electro‐Luminescence)ディスプレイなどを含むディスプレイである。本実施形態では、投影部21は、ダッシュボードDの下側に配置されている。投影部21は、車両用投影制御装置30の投影制御部39からの映像信号に基づいて表示面に表示映像を表示する。投影部21の表示面に表示された表示映像の映像表示光は、コンバイナ22に投影される。
 コンバイナ22は、投影部21から投影された映像表示光を反射させ運転者に虚像として認識させる。コンバイナ22は、進行方向前方に凸状に湾曲して配置される板状材である。本実施形態では、コンバイナ22は、ダッシュボードDの上側に配置されている。コンバイナ22は、自車両VのウィンドシールドSに面した前面と、運転者に面した後面とを有する。
 車両用投影制御装置30は、自車両Vの周囲の状況に応じて、投影ユニット20の投影部21が表示映像を投影するように制御する。さらに、本実施形態では、車両用投影制御装置30は、自車両Vが高速道路を走行中に限って、投影ユニット20の投影部21が表示映像を投影するように制御する。車両用投影制御装置30は、例えば、CPU(Central Processing Unit)などで構成された演算処理装置である。車両用投影制御装置30は、図示しない記憶部に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。車両用投影制御装置30は、映像データ取得部31と、車両情報取得部32と、先行車両情報取得部33と、勾配情報取得部34と、仮想車両映像生成部(仮想移動体映像生成部)38と、投影制御部39とを有する。車両用投影制御装置30には図示しない内部メモリが含まれ、内部メモリは車両用投影制御装置30におけるデータの一時記憶などに用いられる。
 映像データ取得部31は、自車両Vの周辺を撮影した周辺映像データを取得する。より詳しくは、映像データ取得部31は、カメラユニット100が出力した映像データを取得する。映像データ取得部31は、取得した映像データを先行車両情報取得部33に出力する。
 車両情報取得部32は、自車両Vの状況を示す車両情報を、CANや自車両Vの状態をセンシングする各種センサなどから取得する。車両情報取得部32は、例えば、車速情報を取得する。車両情報取得部32は、取得した車両情報を仮想車両映像生成部38に出力する。車両情報取得部32は、取得した車速情報を内部メモリに記憶させる。
 先行車両情報取得部33は、自車両Vが走行する前方を走行する先行車両の有無を示す先行車両情報を取得する。本実施形態では、先行車両情報取得部33は、映像データ取得部31で取得した映像データに画像処理を行って、第一距離以下の範囲に先行車両が存在するか否かを判定し、判定結果を先行車両情報として取得する。
 第一距離は、数10m以上、200m以下程度の範囲とすることが好ましい。第一距離は、自車両Vの車速に応じて設定されてもよい。例えば、第一距離は、自車両Vの車速に応じて設定された安全な車間距離としてもよい。または、例えば、第一距離は、自車両Vの車速に応じて設定された安全な車間距離よりも長い距離としてもよい。例えば、高速道路において、自車両Vの車速が80km/hのとき、第一距離を80mとし、車速が100km/hのとき、第一距離を100mとしてもよい。例えば、高速道路において、自車両Vの車速が80km/hのとき、第一距離を100mとし、車速が100km/hのとき、第一距離を200mとしてもよい。
 または、先行車両情報取得部33は、図示しないセンサユニットによって、第一距離以下の範囲に先行車両が存在するか否かを判定し、判定結果を先行車両情報として取得してもよい。センサユニットは、自車両Vの前方の障害物である先行車両を検出可能である。センサユニットは、自車両Vの周囲に設置された複数のセンサを含む。各センサは、自車両Vの前方に配置され、自車両Vの前方における車両を検出する。センサは、例えば、赤外線センサまたは超音波センサ、ミリ波レーダなどであり、これらの組合せで構成されてもよい。
 勾配情報取得部34は、自車両Vが走行する道路の勾配情報を取得する。本実施形態では、勾配情報取得部34は、勾配センサ110から出力された勾配情報を取得する。勾配センサ110は、勾配情報に含まれるロール角速度とピッチ角速度とヨー角速度とから、自車両Vの傾きを示す、ロール角とピッチ角とヨー角とを算出する。勾配情報取得部34は、算出したロール角とピッチ角とヨー角とを付加した勾配情報を仮想車両映像生成部38に出力する。
 または、勾配情報取得部34は、自車両Vの現在位置情報と、自車両Vが走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報とに基づいて、自車両Vの現在位置の勾配情報を取得してもよい。
 仮想車両映像生成部38は、HUD装置10の投影ユニット20によって投影される、自車両Vの前方を自車両Vと同じ方向に移動する仮想車両の仮想車両映像を生成する。仮想車両映像生成部38は、自車両Vが上り坂に差し掛かると、仮想車両映像を生成する。さらに、本実施形態では、仮想車両映像生成部38は、自車両Vが高速道路を走行中に限って、自車両Vが上り坂に差し掛かると、仮想車両映像を生成する。
 本実施形態では、仮想車両映像は、自車両Vの第一距離前方を移動する仮想車両の映像である。本実施形態では、仮想車両映像は、自車両Vを後方から視認した映像である。仮想車両映像は、自車両Vの第一距離前方の道路の形状に合わせて視点を変化させて生成される。例えば、仮想車両映像は、自車両Vの第一距離前方の道路が右方向にカーブしているとき、自車両Vを右後方から視認した映像とする。例えば、仮想車両映像は、自車両Vの第一距離前方の道路が左方向にカーブしているとき、自車両Vを左後方から視認した映像とする。
 本実施形態では、仮想車両映像は、自車両Vが上り坂に差し掛かる直前の車速である第一車速で移動する仮想車両の映像である。仮想車両映像は、上り坂を走行しているときの自車両Vの車速の変化に合わせて大きさを変化させて生成される。例えば、仮想車両映像は、自車両Vが第一車速を保って走行しているとき、一定の大きさの映像である。例えば、仮想車両映像は、自車両Vが第一車速より速い車速であるとき、車間距離が短くなったように、仮想車両の大きさを拡大した映像である。例えば、仮想車両映像は、自車両Vが第一車速より遅い車速であるとき、車間距離が長くなったように、仮想車両の大きさを縮小した映像である。
 投影制御部39は、HUD装置10の投影ユニット20によって、自車両Vの前方に、仮想車両映像生成部38が生成した仮想車両映像の虚像200が視認されるように、仮想車両映像の投影を制御する。より詳しくは、投影制御部39は、勾配情報取得部34によって取得した勾配情報に基づいて、自車両Vが上り坂に差し掛かると、自車両Vの前方に仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する映像信号を投影ユニット20に出力する。さらに、本実施形態では、投影制御部39は、自車両Vが高速道路を走行中に限って、自車両Vが上り坂に差し掛かると、仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する制御をする。
 本実施形態では、仮想車両映像生成部38と投影制御部39において、取得した勾配情報に基づいて、ピッチ角が閾値角度以上である状態で、閾値時間以上が経過した場合、または、閾値距離以上を走行した場合、自車両Vが上り坂に差し掛かると判定する。ピッチ角が閾値角度以上ではない場合、または、ピッチ角が閾値角度以上であっても、閾値時間以上が経過しなかった場合、かつ、閾値距離以上を走行していない場合、自車両Vが上り坂に差し掛かっていないと判定する。このようにすることにより、道路のわずかな凹凸、または、渋滞の起点となるほど車速が低下しないような短い上り坂において、仮想車両映像の虚像200が不用意に表示されることを抑制する。
 例えば、閾値角度は、3%程度とする。例えば、閾値時間は、2秒程度とする。例えば、閾値距離は、50m程度とする。
 図3ないし図5を用いて、自車両Vが上り坂に差し掛かるときに、投影される仮想車両映像の虚像200について説明する。図3は、自車両が上り坂の直前に位置するときの一例を示す図である。図4は、自車両が上り坂に差し掛かるときの一例を示す図である。図5は、自車両が上り坂に差し掛かるとき、運転者が視認する仮想車両映像の虚像の一例を示す図である。
 図3に示すように、自車両Vが上り坂の直前に位置し、自車両Vが上り坂に差し掛かっていないとき、仮想車両映像の虚像200は表示されていない。
 図4、図5に示すように、自車両Vが上り坂に差し掛かると、仮想車両が第一距離前方を走行していると運転者が視認するように、仮想車両映像を投影する。言い換えると、仮想車両映像の虚像200は、第一距離前方の景色に重なるように視認される。
 次に、図6を用いて、車両用投影制御装置30における処理の流れについて説明する。図6は、第一実施形態に係る車両用投影制御装置における処理の流れを示すフローチャートである。
 車両用投影制御装置30は、自車両Vの現在位置情報を取得する(ステップS11)。より詳しくは、車両用投影制御装置30は、車両情報取得部32によって、自車両Vの現在位置情報をナビゲーションシステムから取得する。車両用投影制御装置30は、ステップS12に進む。
 車両用投影制御装置30は、自車両Vが高速道路を走行中であるか否かを判定する(ステップS12)。より詳しくは、車両用投影制御装置30は、ナビゲーションシステムから取得した情報に基づいて、自車両Vの現在位置が高速道路上であるか否かを判定する。車両用投影制御装置30は、自車両Vの現在位置が高速道路上であると判定した場合(ステップS12でYes)、ステップS13に進む。車両用投影制御装置30は、自車両Vの現在位置が高速道路上ではないと判定した場合(ステップS12でNo)、ステップS20に進む。
 車両用投影制御装置30は、勾配情報を取得する(ステップS13)。より詳しくは、車両用投影制御装置30は、勾配情報取得部34によって、勾配情報を取得する。車両用投影制御装置30は、ステップS14に進む。
 車両用投影制御装置30は、自車両Vが上り坂に差し掛かるか否かを判定する(ステップS14)。本実施形態では、車両用投影制御装置30は、投影制御部39によって、勾配情報取得部34で算出した勾配に基づいて、自車両Vのピッチ角が閾値角度以上である状態で、閾値時間以上が経過した場合、自車両Vが上り坂に差し掛かると判定する(ステップS14でYes)。または、車両用投影制御装置30は、投影制御部39によって、勾配情報取得部34で算出した勾配に基づいて、自車両Vのピッチ角が閾値角度以上の状態で、閾値距離以上を走行した場合、自車両Vが上り坂に差し掛かると判定する(ステップS14でYes)。そして、車両用投影制御装置30は、ステップS15に進む。車両用投影制御装置30は、投影制御部39によって、勾配情報取得部34で算出した勾配に基づいて、自車両Vのピッチ角が閾値角度以上ではない場合、または、ピッチ角が閾値角度以上であっても、閾値時間以上が経過しなかった場合、かつ、閾値距離以上を走行していない場合、自車両Vが上り坂に差し掛かっていないと判定する(ステップS14でNo)。そして、車両用投影制御装置30は、ステップS20に進む。
 車両用投影制御装置30は、自車両Vが上り坂に差し掛かると判定された場合(ステップS14でYes)、先行車両情報を取得する(ステップS15)。より詳しくは、先行車両情報取得部33によって、映像データ取得部31で取得した映像データに画像処理を行って、被撮影物として自車両Vから閾値以下の距離に位置する先行車両を検出して、検出結果を先行車両情報として取得する。車両用投影制御装置30は、ステップS16に進む。
 車両用投影制御装置30は、閾値以下の距離に先行車両が存在していないか否かを判定する(ステップS16)。車両用投影制御装置30は、先行車両情報取得部33によって取得した先行車両情報に基づいて、自車両Vから閾値以下の距離に位置する先行車両を検出しない場合、閾値以下の距離に先行車両が存在していないと判定する(ステップS16でYes)。そして、車両用投影制御装置30は、ステップS17に進む。車両用投影制御装置30は、先行車両情報取得部33によって取得した先行車両情報に基づいて、自車両Vから閾値以下の距離に位置する先行車両を検出した場合、閾値以下の距離に先行車両が存在していると判定する(ステップS16でNo)。そして、車両用投影制御装置30は、ステップS20に進む。
 閾値以下の距離に先行車両が存在していないと判定された場合(ステップS16でYes)、車両用投影制御装置30は、直前の自車両Vの車速を第一車速として取得する(ステップS17)。より詳しくは、車両用投影制御装置30は、投影制御部39によって、車両情報取得部32で取得し内部メモリに記憶した車両情報に基づいて、自車両Vが上り坂に差し掛かると判定される直前の第一車速を取得する。言い換えると、第一車速は、自車両Vが上り坂に差し掛かる直前の車速である。
 車両用投影制御装置30は、仮想車両映像を生成する(ステップS18)。より詳しくは、車両用投影制御装置30は、仮想車両映像生成部38で、自車両Vの第一車速に基づいて、自車両Vの第一距離前方を、自車両Vの第一車速で走行する仮想車両映像を生成する。車両用投影制御装置30は、ステップS19に進む。
 車両用投影制御装置30は、仮想車両映像を投影する制御信号を出力する(ステップS19)。より詳しくは、車両用投影制御装置30は、投影制御部39で、仮想車両映像生成部38が生成した仮想車両映像を投影する制御信号を投影ユニット20に出力する。車両用投影制御装置30は、ステップS21に進む。
 車両用投影制御装置30は、仮想車両映像の投影を停止する制御信号を出力する(ステップS20)。より詳しくは、車両用投影制御装置30は、投影制御部39によって仮想車両映像が投影されているとき、仮想車両映像の投影を停止する制御信号を投影ユニット20に出力する。車両用投影制御装置30は、投影制御部39によって仮想車両映像が投影されていないとき、仮想車両映像を投影しない状態を継続する。車両用投影制御装置30は、ステップS21に進む。
 車両用投影制御装置30は、終了トリガがあるか否かを判定する(ステップS21)。終了トリガとは、例えば、仮想車両映像の表示を終了するボタンが押下されたり、車両が停車した場合である。車両用投影制御装置30は、終了トリガがある場合、仮想車両映像の投影を終了すると判定し(ステップS21でYes)、処理を終了する。車両用投影制御装置30は、終了トリガがない場合、仮想車両映像の投影を終了しないと判定し(ステップS21でNo)、ステップS11の処理を再度実行する。
 このようにして、車両用投影制御装置30は、自車両Vが上り坂に差し掛かるときにだけ、仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する。車両用投影制御装置30は、自車両Vが上り坂に差し掛かっていないとき、仮想車両映像を投影しない。
 上述したように、本実施形態は、自車両Vが上り坂に差し掛かるときにだけ、仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する。本実施形態は、自車両Vが上り坂に差し掛かっていないとき、仮想車両映像を投影しない。このように、本実施形態によれば、仮想車両映像の虚像200を視認することによって、自車両Vが上り坂に差し掛かることを運転者が認識可能にすることができる。
 本実施形態は、仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する。本実施形態によれば、自車両Vの前方に先行車両が存在しない場合でも、先行車両が存在するときと同様に仮想車両に追従するように走行することができる。
 本実施形態は、自車両Vが上り坂に差し掛かる直前の第一車速で走行する仮想車両映像を投影する。運転者は、仮想車両映像の虚像200を視認することによって、第一車速で走行する仮想車両に追従して走行することができる。本実施形態によれば、上り坂に差し掛かるとき、運転者が自車両Vの車速を第一車速に保って走行することを支援することができる。このように、本実施形態によれば、上り坂に差し掛かって、意図せずに自車両Vが減速することを抑制することができる。
 本実施形態によれば、高速道路のザグ部を含む上り坂において、意図せずに自車両Vが減速することで、渋滞の起点となることを抑制することができる。このように、本実施形態は、渋滞の発生を抑制することができる。
 本実施形態は、閾値以下の距離に先行車両が存在していないときに、仮想車両映像を投影する。また、本実施形態は、仮想車両映像を投影しているとき、閾値以下の距離に先行車両が存在するようになると、仮想車両映像の投影を停止する。これにより、本実施形態は、先行車両が存在しないときに限って、仮想車両映像を投影することができる。本実施形態によれば、先行車両と仮想車両映像の虚像200とが重なって視認性が低下することを回避することができる。
[第二実施形態]
 図7、図8を参照しながら、本実施形態に係るHUD装置10Aについて説明する。図7は、第二実施形態に係る車両用投影制御装置の構成例を示すブロック図である。図8は、第二実施形態に係る車両用投影制御装置における処理の流れを示すフローチャートである。HUD装置10Aは、基本的な構成は第一実施形態のHUD装置10と同様である。以下の説明においては、HUD装置10と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。
 車両用投影制御装置30Aは、自車両Vが上り坂を走行中で、自車両Vがブレーキを操作する必要があるとき、ブレーキ操作を行っていることを確認可能な表示態様の仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する。本実施形態では、ブレーキ操作を行っていることを確認可能な表示態様とは、ブレーキランプを点灯した仮想車両映像の表示態様である。車両用投影制御装置30Aは、道路情報取得部35Aを有する。
 自車両Vがブレーキを操作する必要があるときとは、自車両Vが減速する必要があるときである。例えば、自車両Vの前方が急カーブであるときである。例えば、自車両Vの車速が第一車速より閾値速度以上速くなったときである。
 道路情報取得部35Aは、車両情報取得部32で取得した車両情報とナビゲーションシステムから取得したナビゲーション情報とに基づいて、自車両Vの前方の道路の形状を示す道路情報を取得する。より詳しくは、道路情報取得部35Aは、自車両Vの現在位置情報とナビゲーション情報とに基づいて、自車両Vの前方の道路の形状を示す道路情報を取得する。
 仮想車両映像生成部38Aは、勾配情報取得部34によって取得した勾配情報と車両情報取得部32が取得した車両情報と自車両Vが走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報との少なくともいずれかに基づいて、自車両Vが上り坂を走行中で、自車両Vがブレーキを操作する必要があるとき、ブレーキ操作を行っていることを確認可能な表示態様としてブレーキランプを点灯した仮想車両映像を生成する。
 投影制御部39Aは、勾配情報取得部34によって取得した勾配情報と車両情報取得部32が取得した車両情報と自車両Vが走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報との少なくともいずれかに基づいて、自車両Vが上り坂を走行中で、自車両Vがブレーキを操作する必要があるとき、ブレーキ操作を行っていることを確認可能な表示態様としてブレーキランプを点灯した仮想車両映像の虚像200が視認されるように、仮想車両映像生成部38Aによって生成した仮想車両映像を投影する映像信号を投影ユニット20に出力する。
 次に、図8を用いて、車両用投影制御装置30Aにおける処理の流れについて説明する。図8に示すフローチャートのステップS31ないしステップS36、ステップS38、ステップS42ないしステップS45の処理は、図6に示すフローチャートのステップS11ないしステップS16、ステップS17、ステップS18ないしステップS21の処理と同様の処理を行う。
 閾値以下の距離に先行車両が存在していないと判定された場合(ステップS36でYes)、車両用投影制御装置30Aは、道路の形状を取得する(ステップS37)。より詳しくは、車両用投影制御装置30Aは、道路情報取得部35Aで取得した道路情報に基づいて、自車両Vの前方の道路の形状を取得する。車両用投影制御装置30Aは、ステップS38に進む。
 車両用投影制御装置30Aは、ブレーキ操作が必要か否かを判定する(ステップS39)。車両用投影制御装置30Aは、車両情報取得部32で取得した車両情報と道路情報取得部35Aで取得した道路情報とに基づいて、自車両Vの前方の道路の形状が急カーブであるとき、ブレーキ操作が必要と判定する(ステップS39でYes)。または、車両用投影制御装置30Aは、車両情報に基づいて、自車両Vの車速が第一車速より閾値速度以上速くなったとき、ブレーキ操作が必要と判定する(ステップS39でYes)。そして、車両用投影制御装置30Aは、ステップS40に進む。車両用投影制御装置30Aは、自車両Vの前方の道路の形状が急カーブではなく、自車両Vの車速が第一車速より閾値速度以上速くないとき、ブレーキ操作が必要ではないと判定する(ステップS39でNo)。そして、車両用投影制御装置30Aは、ステップS42に進む。
 車両用投影制御装置30Aは、ブレーキランプを点灯した仮想車両映像を生成する(ステップS40)。より詳しくは、車両用投影制御装置30Aは、仮想車両映像生成部38Aで、自車両Vの第一車速に基づいて、自車両Vの第一距離前方を、自車両Vの第一車速より低速で走行し、ブレーキランプを点灯した仮想車両映像を生成する。
 車両用投影制御装置30Aは、ブレーキランプを点灯した仮想車両映像を投影する制御信号を出力する(ステップS41)。より詳しくは、車両用投影制御装置30Aは、投影制御部39Aで、仮想車両映像生成部38Aが生成したブレーキランプを点灯した仮想車両映像を投影する制御信号を投影ユニット20に出力する。車両用投影制御装置30Aは、ステップS45に進む。
 上述したように、本実施形態は、ブレーキ操作が必要なとき、ブレーキランプを点灯した仮想車両映像を投影する。本実施形態によれば、仮想車両映像のブレーキランプが点灯することで、運転者は自車両Vのブレーキ操作を自然に行うことができる。本実施形態によれば、運転者が適切なブレーキ操作を行うことを支援し、自車両Vが適切な車速で走行することを支援することができる。
[第三実施形態]
 図9を参照しながら、本実施形態に係るHUD装置10について説明する。図9は、第三実施形態に係る車両用投影制御装置における処理を説明するための図であり、自車両が上り坂に差し掛かるときの一例を示す。HUD装置10は、基本的な構成は第一実施形態のHUD装置10と同様である。
 仮想車両映像生成部38は、自車両Vの近傍から第一距離前方まで、自車両Vから分離して離間していくような仮想車両映像を生成する。本実施形態では、仮想車両映像生成部38は、自車両Vから分離して前方に飛び出していくように運転者に視認される仮想車両映像を生成する。
 投影制御部39は、自車両Vが上り坂に差し掛かるとき、自車両Vの近傍から第一距離前方まで、自車両Vから分離して離間していくように視認される、仮想車両映像生成部38で生成された仮想車両映像を投影する。本実施形態では、投影制御部39は、自車両Vが上り坂に差し掛かるとき、仮想車両映像の虚像200が、自車両Vから分離して前方に飛び出していくように視認される仮想車両映像を投影する。
 図9を用いて、自車両Vが上り坂に差し掛かるときに、投影される仮想車両映像の虚像200について説明する。仮想車両映像の虚像200は、自車両Vが上り坂に差し掛かると判定された直後は自車両Vの近くを走行しているように視認される。時間の経過とともに、言い換えると、自車両Vが進むにつれて、仮想車両映像の虚像200は、自車両Vから遠ざかるように視認される。仮想車両映像の投影から所定時間経過すると、仮想車両映像の虚像200は第一距離前方を走行しているように視認される。
 上述したように、本実施形態は、自車両Vが上り坂に差し掛かるとき、自車両Vの近傍から第一距離前方まで、自車両Vから分離して離間していくような仮想車両映像の虚像200が視認されるように、仮想車両映像を投影する。本実施形態によれば、自車両Vが上り坂に差し掛かることを、より運転者が認識しやすくすることができる。
 本実施形態によれば、仮想車両映像の虚像200が自車両Vから分離していくように表示することで、仮想車両に追従して走行するようにさせることができる。
 さて、これまで本発明に係るHUD装置10Aについて説明したが、上述した実施形態以外にも種々の異なる形態にて実施されてよいものである。
 図示したHUD装置10Aの各構成要素は、機能概念的なものであり、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の具体的形態は、図示のものに限られず、各装置の処理負担や使用状況などに応じて、その全部または一部を任意の単位で機能的または物理的に分散または統合してもよい。
 HUD装置10Aの構成は、例えば、ソフトウェアとして、メモリにロードされたプログラムなどによって実現される。上記実施形態では、これらのハードウェアまたはソフトウェアの連携によって実現される機能ブロックとして説明した。すなわち、これらの機能ブロックについては、ハードウェアのみ、ソフトウェアのみ、または、それらの組み合わせによって種々の形で実現できる。
 上記した構成要素には、当業者が容易に想定できるもの、実質的に同一のものを含む。さらに、上記した構成は適宜組み合わせが可能である。また、本発明の要旨を逸脱しない範囲において構成の種々の省略、置換または変更が可能である。
 勾配情報取得部34は、例えば、車両情報取得部32が取得した車両情報に含まれる車速と、燃料噴出量と、乗員と荷物などを合わせた車両重量とに基づいて、自車両Vの現在位置の勾配を算出してもよい。例えば、勾配情報取得部34は、車速が増加していないのに、燃料噴出量が増加した場合、自車両Vが上り勾配に差し掛かったものとして、勾配を算出してもよい。または、車速と燃料噴出量と勾配との関係を示すデータが、あらかじめ記憶部に記憶されているものとしてもよい。
 さらに、勾配情報取得部34は、複数の方法で算出した勾配を組み合わせて、自車両Vの現在位置の勾配を算出してもよい。これにより、より正確に、自車両Vが上り坂に差し掛かるか否かを判定することができる。
 車両用投影制御装置30は、車両の現在位置情報をナビゲーションシステムから取得するものとして説明したが、これに限定されない。車両用投影制御装置30は、車両に搭載されたGPS(Global Positioning System)受信機によって取得した車両の現在位置情報を取得する現在位置情報取得部を備えていてもよい。
 HUD装置10Aは、自車両Vが上り坂に差し掛かると判定されるとき、自車両Vが上り坂に差し掛かる前から、仮想車両映像を虚像200として投影するものとしてもよい。より詳しくは、図6に示すフローチャートのステップS14において、車両用投影制御装置30は、投影制御部39によって、車両情報取得部32で取得した車両情報に含まれる自車両Vの現在位置情報と、道路の勾配情報を含むナビゲーション情報とに基づいて、自車両Vの前方、第一距離以下に上り坂が存在すると判定される場合、自車両Vが上り坂に差し掛かると判定する(ステップS14でYes)。このようにして、自車両Vが上り坂に差し掛かる前から、仮想車両映像を虚像200として投影することにより、自車両Vが上り坂に差し掛かる前から、車速を第一車速に保って走行することを支援することができる。これにより、自車両Vが減速することをより確実に抑制することができる。
 仮想移動体映像生成部を仮想車両映像生成部38として説明したが、これに限定されない。仮想移動体映像生成部が生成した映像は、自車両Vの前方を第一車速で移動する仮想移動体であればよい。例えば、仮想移動体は、自車両Vの移動方向に移動する矢印形状または丸形状などのアイコンでもよい。
 勾配情報取得部34は、勾配センサ110またはナビゲーション情報に基づいて、勾配情報を取得するものとしたが、これに限定されない。勾配情報取得部34は、映像データ取得部31で取得した映像データに画像処理を行って、上り坂であるか否かを判定してもよい。より詳しくは、勾配情報取得部34は、映像データに画像処理を行って、上り坂であることを示す標示を読み取り、上り坂に差し掛かると判定してもよい。例えば、上り坂であることを示す標示とは、「上り坂」の文字、または、「登坂車線」の文字である。
 投影ユニット20は、コンバイナを用いずに、投影部21に投影された表示映像を、ウィンドシールドSで反射させ運転者に虚像200として認識させるものでもよい。
 第二実施形態において、自車両Vがブレーキを操作する必要があるとき、ブレーキランプを点灯した仮想車両映像の虚像200が視認されるものとしたが、これに限定されない。例えば、仮想車両映像は、仮想車両の車体を赤色に変えた映像としてもよい。
 仮想車両映像は、第一車速に対する自車両Vの速度の変化量が閾値以上であると判定したとき、自車両Vの速度の変化を確認可能な表示態様の仮想車両映像を生成してもよい。例えば、仮想車両映像は、自車両Vが第一車速より遅い車速であるとき、例えば、仮想車両の車体を点滅させたり、車体の色を薄くした映像としてもよい。これにより、自車両Vの車速をより適切に保てるように支援することができる。
 10   HUD装置
 20   投影ユニット
 21   投影部
 22   コンバイナ
 30   車両用投影制御装置
 31   映像データ取得部
 32   車両情報取得部
 33   先行車両情報取得部
 34   勾配情報取得部
 38   仮想車両映像生成部(仮想移動体映像生成部)
 39   投影制御部
 100  カメラユニット
 110  勾配センサ

Claims (10)

  1.  自車両の車速を含む車両情報を取得する車両情報取得部と、
     前記自車両が走行する道路の勾配情報を取得する勾配情報取得部と、
     ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成部と、
     ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御部と、
     を備え、
     前記投影制御部は、前記勾配情報取得部によって取得した勾配情報に基づいて、前記仮想移動体映像の投影を制御する、
     ことを特徴とする車両用投影制御装置。
  2.  前記仮想移動体の速度は、前記自車両が上り坂に差し掛かると判定される直前の前記自車両の速度とする、
     請求項1に記載の車両用投影制御装置。
  3.  前記勾配情報取得部は、前記自車両が走行する道路の勾配を検出する勾配センサから勾配情報を取得し、
     前記投影制御部は、前記勾配情報取得部によって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定すると、前記自車両の前方に、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     請求項1または2に記載の車両用投影制御装置。
  4.  前記勾配情報取得部は、前記自車両の現在地情報と、前記自車両が走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報とに基づいて、勾配情報を取得し、
     前記投影制御部は、前記勾配情報取得部によって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定すると、前記自車両の前方に、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     請求項1または2に記載の車両用投影制御装置。
  5.  前記仮想移動体映像生成部は、前記勾配情報取得部によって取得した勾配情報と前記車両情報取得部が取得した車両情報と前記自車両が走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報との少なくともいずれかに基づいて、前記自車両が上り坂を走行し、ブレーキ操作が必要であると判定したとき、仮想車両がブレーキ操作を行っていることを確認可能な表示態様の仮想車両映像を生成し、
     前記投影制御部は、前記勾配情報取得部によって取得した勾配情報と前記車両情報取得部が取得した車両情報と前記自車両が走行する道路の情報を含むナビゲーションシステムから取得したナビゲーション情報との少なくともいずれかに基づいて、前記自車両が上り坂を走行し、かつ、ブレーキ操作が必要なとき、前記自車両の前方に、ブレーキ操作を行っていることを確認可能な表示態様の、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     請求項1から4のいずれか一項に記載の車両用投影制御装置。
  6.  前記仮想移動体映像生成部は、前記自車両の近傍から所定距離前方まで、前記自車両から分離して離間していく前記仮想移動体の前記仮想移動体映像を生成し、
     前記投影制御部は、前記勾配情報取得部によって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かるとき、前記仮想移動体映像生成部が生成した仮想移動体映像の虚像が、前記自車両の近傍から所定距離前方まで、前記自車両から分離して離間していくように視認されるように、前記仮想移動体映像生成部が生成した前記仮想移動体映像の投影を制御する、
     請求項1から5のいずれか一項に記載の車両用投影制御装置。
  7.  前記仮想移動体映像生成部は、前記車両情報取得部が取得した車両情報に基づいて、前記自車両が上り坂に差し掛かると判定される直前の前記自車両の速度に対する前記自車両の速度の変化量が閾値以上であると判定したとき、前記自車両の速度の変化を確認可能な表示態様の仮想車両映像を生成し、
     前記投影制御部は、前記車両情報取得部が取得した車両情報に基づいて、前記自車両が上り坂に差し掛かると判定される直前の前記自車両の速度に対する前記自車両の速度の変化量が閾値以上であると判定したとき、前記自車両の前方に、前記自車両の速度の変化を確認可能な表示態様の、前記仮想移動体映像生成部が生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     請求項1から6のいずれか一項に記載の車両用投影制御装置。
  8.  請求項1から7のいずれか一項に記載の車両用投影制御装置と、
     前記投影ユニットと、
     を備えることを特徴とするヘッドアップディスプレイ装置。
  9.  自車両の車速を含む車両情報を取得する車両情報取得ステップと、
     先行車両の有無を示す先行車両情報を取得する先行車両情報取得ステップと、
     前記自車両が走行する道路の勾配情報を取得する勾配情報取得ステップと、
     ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成ステップと、
     ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御ステップと、
     を含み、
     前記投影制御ステップは、前記勾配情報取得ステップによって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定されると、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     車両用投影制御方法。
  10.  自車両の車速を含む車両情報を取得する車両情報取得ステップと、
     先行車両の有無を示す先行車両情報を取得する先行車両情報取得ステップと、
     前記自車両が走行する道路の勾配情報を取得する勾配情報取得ステップと、
     ヘッドアップディスプレイ装置の投影ユニットによって投影される、前記自車両の前方を前記自車両と同じ方向に移動する仮想移動体の仮想移動体映像を生成する仮想移動体映像生成ステップと、
     ヘッドアップディスプレイ装置の投影ユニットによって、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する投影制御ステップと、
     を含み、
     前記投影制御ステップは、前記勾配情報取得ステップによって取得した勾配情報に基づいて、前記自車両が上り坂に差し掛かると判定されると、前記自車両の前方に、前記仮想移動体映像生成ステップで生成した前記仮想移動体映像の虚像が視認されるように、前記仮想移動体映像の投影を制御する、
     ことを車両用投影制御装置として動作するコンピュータに実行させるためのプログラム。
PCT/JP2018/011190 2017-09-12 2018-03-20 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム WO2019053927A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175107A JP2019051734A (ja) 2017-09-12 2017-09-12 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム
JP2017-175107 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019053927A1 true WO2019053927A1 (ja) 2019-03-21

Family

ID=65722526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011190 WO2019053927A1 (ja) 2017-09-12 2018-03-20 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム

Country Status (2)

Country Link
JP (1) JP2019051734A (ja)
WO (1) WO2019053927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304281A (zh) * 2019-07-30 2021-02-02 厦门雅迅网络股份有限公司 一种道路坡度测量方法、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112962A (ja) * 2004-10-15 2006-04-27 Aisin Aw Co Ltd 運転支援方法及び運転支援装置
JP2006176027A (ja) * 2004-12-24 2006-07-06 Nippon Seiki Co Ltd 車両用表示装置
WO2015045112A1 (ja) * 2013-09-27 2015-04-02 パイオニア株式会社 運転支援装置、制御方法、プログラム、及び記憶媒体
JP2015134521A (ja) * 2014-01-16 2015-07-27 三菱電機株式会社 車両情報表示制御装置
JP2016057221A (ja) * 2014-09-11 2016-04-21 株式会社デンソー 走行支援装置
JP2017117050A (ja) * 2015-12-22 2017-06-29 パイオニア株式会社 情報表示装置、情報表示方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112962A (ja) * 2004-10-15 2006-04-27 Aisin Aw Co Ltd 運転支援方法及び運転支援装置
JP2006176027A (ja) * 2004-12-24 2006-07-06 Nippon Seiki Co Ltd 車両用表示装置
WO2015045112A1 (ja) * 2013-09-27 2015-04-02 パイオニア株式会社 運転支援装置、制御方法、プログラム、及び記憶媒体
JP2015134521A (ja) * 2014-01-16 2015-07-27 三菱電機株式会社 車両情報表示制御装置
JP2016057221A (ja) * 2014-09-11 2016-04-21 株式会社デンソー 走行支援装置
JP2017117050A (ja) * 2015-12-22 2017-06-29 パイオニア株式会社 情報表示装置、情報表示方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304281A (zh) * 2019-07-30 2021-02-02 厦门雅迅网络股份有限公司 一种道路坡度测量方法、终端设备及存储介质

Also Published As

Publication number Publication date
JP2019051734A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
US11194326B2 (en) Vehicle control system, vehicle control method, and storage medium storing vehicle control program
US10254539B2 (en) On-vehicle device, method of controlling on-vehicle device, and computer-readable storage medium
CN110450703B (zh) 图像投影装置和图像投影方法
US10981495B2 (en) Display control method and display control device
US11148683B2 (en) Vehicle control system, vehicle control method, and program
US11565713B2 (en) Vehicle control system, vehicle control method, and vehicle control program
US20210009117A1 (en) Driving assistance system, driving assistance device, and driving assistance method
US9881500B2 (en) Information processing device
JP7047824B2 (ja) 車両制御装置
US20210016793A1 (en) Control apparatus, display apparatus, movable body, and image display method
WO2018163471A1 (ja) 運転モード切替制御装置、システム、方法、およびプログラム
US11042154B2 (en) Transportation equipment and traveling control method therefor
US10946744B2 (en) Vehicular projection control device and head-up display device
WO2019189515A1 (en) Control apparatus, display apparatus, movable body, and image display method
JP2019174459A (ja) 制御装置、表示装置、移動体、制御方法、及びプログラム
JP2017202721A (ja) 表示システム
JP6777048B2 (ja) 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム
WO2019053927A1 (ja) 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム
JP2020006743A (ja) 車両用投影制御装置、ヘッドアップディスプレイ装置、車両用投影制御方法およびプログラム
KR20160062255A (ko) 차량 주행방향 기반 hud 시스템
JP2019172070A (ja) 情報処理装置、移動体、情報処理方法、及びプログラム
US20200302792A1 (en) Driving assistance device and driving assistance program product
US11981261B2 (en) Vehicle projection control device, head-up display device, vehicle projection control method, and program
CN111619562B (zh) 车辆控制装置、车辆和车辆控制方法
US20220390251A1 (en) Information processing apparatus and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856470

Country of ref document: EP

Kind code of ref document: A1