WO2019053824A1 - Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant - Google Patents

Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant Download PDF

Info

Publication number
WO2019053824A1
WO2019053824A1 PCT/JP2017/033099 JP2017033099W WO2019053824A1 WO 2019053824 A1 WO2019053824 A1 WO 2019053824A1 JP 2017033099 W JP2017033099 W JP 2017033099W WO 2019053824 A1 WO2019053824 A1 WO 2019053824A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
conditioner
power generation
solar
Prior art date
Application number
PCT/JP2017/033099
Other languages
French (fr)
Japanese (ja)
Inventor
祐平 山本
輝 王
Original Assignee
祐平 山本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 祐平 山本 filed Critical 祐平 山本
Priority to PCT/JP2017/033099 priority Critical patent/WO2019053824A1/en
Priority to JP2019520914A priority patent/JPWO2019053824A1/en
Publication of WO2019053824A1 publication Critical patent/WO2019053824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present disclosure relates to a power conditioning device for a solar power plant, a power generation system, and a power conditioning method for a solar power plant.
  • the power transmission control device distributes the generated power of the solar power generation device to generate power corresponding to the specified power. Power is transmitted to the power company via the power transmission network, and at the same time, surplus power exceeding specified power is stored in the storage battery. Also, for example, in the power supply system described in Patent Document 1, when the generated power of the solar power generation device falls below the prescribed power, the power transmission control device combines the generated power of the solar power generation device and the power from the storage battery. Supply electricity to the power company through the transmission grid. As described above, in the power supply system described in Patent Document 1, since the power transmission control device performs distribution and combination of power, the configuration of the power transmission control device tends to be complicated.
  • At least one embodiment of the present invention provides a power conditioning device for a solar power plant, a power generation system, and a power conditioning method for a solar power plant, which can effectively use surplus power with a simple circuit configuration. With the goal.
  • a power conditioner for a solar power plant according to at least one embodiment of the present invention, A storage battery, An input terminal provided corresponding to the power conditioner and connected to each of a plurality of power generation units including one or more solar battery cells, a first output terminal connected to the power conditioner, and the storage battery
  • a switcher including a plurality of switch elements having a second output terminal connected to the The switcher is configured to be able to switch the connection destination of each of the power generation units to either the power conditioner or the storage battery by the operation of each of the switch elements.
  • connection destination of each power generation unit can be switched by the operation of the switch element of the switcher, switching of the power supply destination generated by each power generation unit or power generation by each power generation unit
  • the distributed power can be realized by a simple circuit configuration. Therefore, by operating the switch elements of the switcher, for example, part of the power generated by each power generation unit can be supplied to the power conditioner, and the surplus can be stored in the storage battery. As a result, since it is not necessary to use a circuit for performing distribution and combination of power which tends to have a complicated circuit configuration, surplus power can be effectively used with a simple circuit configuration.
  • An output circuit provided between the first output terminal and the power conditioner; A discharge circuit provided between the storage battery and the power conditioner; The discharge circuit is directly connected to the output circuit without passing through a combining circuit that combines the power from the plurality of power generation units and the power from the storage battery.
  • the power from the storage battery is directly output to the output circuit and supplied to the power conditioner without passing through a combining circuit that combines the power from the plurality of power generation units and the power from the storage battery. .
  • combines the electric power from a some electric power generation part and the electric power from a storage battery, the circuit structure in the power adjustment apparatus for solar power stations can be simplified.
  • the switcher operates the at least one switch element to switch the connection destination of the power generation unit to the power condition only when the output permission unit prohibits the output of power from the storage battery to the power conditioner. Configured to switch to the The output permission unit outputs the power from the storage battery to the power conditioner only when the connection destinations of all the power generation units are switched to the storage battery by the operation of the switch element in the switcher. Configured to allow.
  • the power from the plurality of power generation units and the power from the storage battery are alternatively input to the power conditioner by the switcher and the output permission unit.
  • the switcher is configured to operate each of the plurality of power generation units according to the generated power of the plurality of power generation units
  • the connection destination of the power generation unit is configured to be switched to either the power conditioner or the storage battery.
  • connection destinations of the respective power generation units are switched according to the generated power of the plurality of power generation units, so for example, when the power supplied from the power generation unit to the power conditioner becomes large It is also possible to switch the connection destination of the power generation unit to a storage battery and store it in the storage battery. Thereby, the surplus power can be effectively used with a simple circuit configuration.
  • the switcher in the configuration according to any one of the above (1) to (4), is configured such that the power supplied from the plurality of power generation units to the power conditioner has a first specified value. When it exceeds, by the operation of at least one said switch element, it is comprised so that the connecting point of the said electric power generation part may be switched to the said storage battery.
  • the connection destination of at least one power generation unit is switched to the storage battery when the power supplied from the plurality of power generation units to the power conditioner exceeds the first predetermined value, the first predetermined value is exceeded.
  • the surplus power can be effectively used by storing the surplus power in a storage battery.
  • the switcher in the configuration according to any one of the above (1) to (5), is configured such that the power supplied from the plurality of power generation units to the power conditioner has a first specified value.
  • the number of switch elements operated to switch the connection destination of the power generation unit to the storage battery is changed so as not to exceed the number.
  • the power conditioner can not output power beyond the first specified value, for example, if the first specified value is a value corresponding to the contracted power amount contracted with the power company, the power exceeding the first specified value is Even if power is supplied from the power generation unit to the power conditioner, surplus power exceeding the first specified value is released as heat by the power conditioner, and the surplus power can not be effectively used.
  • the configuration of (6) the number of power generation units whose storage destinations are storage batteries is changed so that the power supplied from the plurality of power generation units to the power conditioner does not exceed the first specified value. Therefore, the surplus power can be stored in the storage battery instead of being released as heat by the power conditioner. Thereby, surplus power can be used effectively.
  • the switcher in any one of the configurations (1) to (6), is configured to set the first prescribed value of the power supplied from the plurality of power generation units to the power conditioner. It is configured to change the number of switch elements operated to switch the connection destination of the power generation unit to the storage battery so as to be the largest within the range not exceeding.
  • the power supplied to the power conditioner is increased within the range not exceeding the first specified value, so that it is possible to suppress the reduction of the power output to the power system.
  • the switcher is configured to set the first prescribed value of the power supplied from the plurality of power generation units to the power conditioner.
  • the connection destination of the power generation unit is switched to the storage battery by the operation of at least one of the switch elements when exceeding, when the power supplied from the plurality of power generation units to the power conditioner falls below a second prescribed value
  • the connection destination of the power generation unit which is the storage battery, is switched to the power conditioner by the operation of at least one of the switch elements.
  • the connection destination is the storage battery whose power storage unit is a storage battery by the operation of at least one switch element. Since the power conditioner is switched to the power conditioner, the power supplied to the power conditioner can be increased. Thereby, the power to be output to the power system can be increased.
  • the switcher is configured to control the voltage of the power supplied from the plurality of power generation units to the power conditioner as the power conditioner.
  • the connection destination of all the power generation units is switched to the storage battery by the operation of the switch element.
  • the storage battery may be able to store electricity.
  • the configuration of (9) since the connection destinations of all the power generation units are switched to the storage battery, the storage battery can be stored with the power from the power generation unit. Thereby, the power generated by the power generation unit can be effectively used.
  • the switcher is configured such that the voltage of the power supplied from the plurality of power generation units to the power conditioner is the power conditioner. If the minimum starting voltage of the power supply is lower than the minimum starting voltage, the connection destination of all the power generation units is switched to the storage battery by the operation of the switch element, and then the voltage of the power supplied to the storage battery from the plurality of power generation units When the minimum starting voltage of the conditioner is exceeded, the connection destination of all the power generation units is switched to the power conditioner by the operation of the switch element.
  • the solar radiation amount decreases due to the deterioration of the weather and the voltage of the power supplied from the plurality of power generation units to the power conditioner falls below the minimum startup voltage of the power conditioner, the solar radiation amount is restored due to the weather recovery.
  • the voltage of the power supplied from the plurality of power generation units to the power conditioner again exceeds the minimum starting voltage of the power conditioner.
  • the configuration of (10) when the voltage of the power supplied from the plurality of power generation units to the storage battery exceeds the minimum startup voltage of the power conditioner, all the power generation is performed by the operation of the switch element The connection destination of the unit is switched from the storage battery to the power conditioner.
  • the amount of power supplied to the power conditioner can be increased, and the amount of power output to the power system can be increased.
  • the storage battery has a storage battery cell group in which a plurality of storage battery cells are connected, The output voltage of the storage battery cell group is within the range of applicable voltage on the input side of the power conditioner.
  • the output voltage of the storage battery cell group is within the range of the compatible voltage of the input side of the power conditioner, the output voltage of the storage battery cell group is the available voltage of the input side of the power conditioner. It is possible to eliminate the need for a DC-DC converter that changes within the range. Thereby, the device configuration can be simplified.
  • the number of the storage battery is one, and power can be supplied to a plurality of the power conditioners.
  • the number of storage batteries can be suppressed to suppress the cost increase.
  • a plurality of the storage batteries are provided corresponding to a plurality of the power conditioners.
  • a plurality of storage batteries are provided corresponding to a plurality of power conditioners, and as described in the above (1), switchers are provided corresponding to the power conditioner. Therefore, in the power conditioner for a solar power plant according to the configuration of (13), a plurality of power conditioners having a simple circuit configuration may be installed according to the number of installed power conditioners, so a plurality of power conditioners are installed. Even in this case, surplus power can be effectively used with a simple circuit configuration.
  • a power generation system according to at least one embodiment of the present invention, Power conditioner, A plurality of power generation units provided corresponding to the power conditioner, each including one or more solar cells; A power conditioner for a solar power plant according to any one of the above (1) to (13); Equipped with
  • the power conditioner for the solar power plant of the configuration of the above (1) since the power conditioner for the solar power plant of the configuration of the above (1) is included, as described in the above (1), for example, Since a part of the generated electric power can be supplied to the power conditioner and the surplus can be stored in the storage battery, the surplus electric power can be effectively used with a simple circuit configuration.
  • a power adjustment method for a solar power plant wherein each of a plurality of power generation units provided corresponding to the power conditioner and including one or more solar battery cells is connected
  • a switcher including a plurality of switch elements each having a first input terminal connected to the power conditioner, a first output terminal connected to the power conditioner, and a second output terminal connected to the storage battery; And a switching step of switching a connection destination of the power generation unit to either the power conditioner or the storage battery.
  • surplus power can be effectively used with a simple circuit configuration. Moreover, according to at least one embodiment of the present invention, surplus power can be effectively used by simple control contents.
  • FIG. 1 It is a figure showing the whole composition of the solar power plant concerning some embodiments. It is a figure explaining the case where multiple electric power generation systems shown in Drawing 1 are installed in a solar power station concerning one embodiment. It is a figure showing the state where the input terminal of one switch element in a switcher was connected with the 2nd output terminal. It is a figure showing the whole structure of the solar power station concerning other embodiment. It is a figure which shows the example of embodiment which comprised the 1st prescription
  • a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” is strictly Not only does it represent such an arrangement, but also represents a state of relative displacement with an angle or distance that allows the same function to be obtained.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained.
  • the shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a diagram showing the overall configuration of a solar power plant according to some embodiments.
  • a power generation system 1 of a solar power plant includes a power conditioner 10, a solar cell group 20, and a power adjustment device 100.
  • the power conditioner 10 is a device that converts DC power generated by the solar cell group 20 into AC power and outputs the AC power to the power system.
  • the solar cell group 20 includes a plurality of power generation units 22 to which a plurality of solar cell modules 21 including at least one solar battery cell are connected.
  • the power generation unit 22 is also referred to as a string 22.
  • the power conditioning apparatus 100 is a power conditioning apparatus for the power generation system 1, that is, a solar power plant, and includes a storage battery 110 and a switcher 120.
  • Power adjustment apparatus 100 includes an output circuit 131 provided between a first output terminal 121 of switcher 120 described later and power conditioner 10, and a discharge circuit 132 provided between storage battery 110 and power conditioner 10. And an output permission unit 133 provided in the discharge circuit 132.
  • the power adjustment device 100 includes a control circuit 141, a voltage sensor 142, and a current sensor 143.
  • Storage battery 110 includes storage battery cell group 112 to which a plurality of storage battery cells 111 are connected, charging device 113 for charging storage battery cell group 112, and output device 114 for outputting the power stored in storage battery cell group 112 to the outside. And. Storage battery 110 stores the power generated by each power generation unit 22 in storage battery cell group 112, and outputs the stored power to power conditioner 10.
  • Charging device 113 converts a voltage of the input power into a voltage suitable for charging storage battery cell group 112 (not shown), and a charge controller (not shown) controlling charging of storage battery cell group 112 And.
  • the charge controller controls each part of the charging device 113 to start and stop charging of the storage battery cell group 112 based on, for example, a control signal of the control circuit 141. Also, the charge controller monitors, for example, the remaining charge amount of the storage battery cell group 112 being charged, and stops the charging of the storage battery cell group 112 when it is determined that the storage battery cell group 112 is fully charged. Control each part.
  • Output device 114 includes a DC-DC converter (not shown) for converting the voltage of the power stored in storage battery cell group 112 into a voltage suitable for output to power conditioner 10, and the output of the power stored in storage battery cell group 112. And a discharge controller (not shown) to control.
  • the discharge controller controls each part of the output device 114 to start and stop the discharge of the power stored in the storage battery cell group 112 to the outside based on, for example, a control signal of the control circuit 141.
  • the discharge controller monitors, for example, the remaining charge of storage battery cell group 112 so that storage battery cell group 112 is not in the overdischarged state, and determines that the remaining charge capacity has decreased to a predetermined remaining charge amount.
  • Each part of the output device 114 is controlled to stop the discharge from the group 112. If the output voltage of storage battery cell group 112 is within the range of the compatible voltage at the input side of power conditioner 10, it is not necessary to provide a DC-DC converter in output device 114, so the device configuration can be simplified. , You can reduce the cost.
  • the switcher 120 is a device that switches the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110, and is a switch element 124 having a first output terminal 121, a second output terminal 122, and an input terminal 123. Contains more than one. Each switch element 124 individually switches whether to connect the input terminal 123 and the first output terminal 121 or to connect the input terminal 123 and the second output terminal 122 by a control signal from the control circuit 141 described later. It is configured to be possible. Each switch element 124 of the switcher 120 may be a mechanical switch or a relay having a mechanical contact, or may be a semiconductor switch. It is sufficient if it can be switched.
  • Each first output terminal 121 is connected to the input side of the power conditioner 10 via the output circuit 131, respectively.
  • the second output terminals 122 are each connected to the charging device 113 of the storage battery 110.
  • Each of the plurality of power generation units 22 is connected to each input terminal 123.
  • One end of the discharge circuit 132 is connected to the output device 114 of the storage battery 110, and the other end is connected to the output circuit 131. That is, some embodiments include an output circuit 131 provided between the first output terminal 121 and the power conditioner 10, and a discharge circuit 132 provided between the storage battery 110 and the power conditioner 10.
  • the discharge circuit 132 is directly connected to the output circuit 131 without passing through a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110. Therefore, the power from the storage battery 110 is directly output to the output circuit 131 and supplied to the power conditioner 10 without passing through a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110.
  • there is no need to provide a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110 so the circuit configuration in the power adjustment device 100 can be simplified.
  • the output permission unit 133 is, for example, a switch provided in the discharge circuit 132 to open or close the discharge circuit 132 or a disconnector, and opens or closes the discharge circuit 132 by a control signal from a control circuit 141 described later.
  • the output of power from storage battery 110 to power conditioner 10 is permitted or prohibited.
  • the control circuit 141 is a control circuit that controls each part of the power adjustment apparatus 100. The control contents of the control circuit 141 will be described later.
  • the voltage sensor 142 and the current sensor 143 are sensors that detect the voltage and current of the power supplied to the power conditioner 10, and are provided in the output circuit 131.
  • the power conditioner 10 when the power generated by the power generation unit 22 is supplied to the power conditioner 10 via the switcher 120, the power conditioner 10 outputs power to the power system.
  • the size of the power output from the solar power plant to the power grid is limited to the contract power contracted with the power company.
  • This contracted power is, for example, 49.5 kw, for example, in a solar power plant linked to the voltage system at low pressure.
  • the upper limit value W out -max of the power that can be output from the power conditioner 10 to the power system is the contract power Wcv. It becomes a value.
  • the upper limit value W out -max of the power that can be output from each power conditioner 10 to the power system Is a value (Wcv / n) obtained by dividing the contracted power Wcv by the number n of installed power generation systems 1.
  • the maximum value is referred to as a first predetermined value Sv1.
  • FIG. 2 is a figure explaining the case where multiple electric power generation systems 1 shown in FIG. 1 are installed in the solar power station which concerns on one Embodiment.
  • the configuration of the solar cell group 20, the storage battery 110 and the switcher 120 is omitted in FIG. 2, the configuration of the solar cell group 20, the storage battery 110 and the switcher 120 in FIG.
  • the configuration is the same as that of the storage battery 110 and the switcher 120.
  • the amount of electricity generated by solar cells depends on the amount of solar radiation, it decreases in the morning and evening and is susceptible to the weather. Therefore, in order to generate as much electric power as possible for a long time of day, a solar power plant is generally provided with a solar cell having a generation capacity exceeding the contracted amount of power.
  • the power generation capacity of the solar cell group 20 provided corresponding to the power conditioner 10 exceeds the above-described first specified value. Therefore, for example, in a sunny daytime, the power generated by the solar cell group 20 exceeds the first specified value Sv1.
  • the connection destination of the power generation unit 22 is a power conditioner by the operation of at least one switch element 124 of the switcher 120.
  • the storage battery 110 stores surplus power.
  • the power stored in the storage battery 110 is supplied to the power conditioner 10 to supply power to the power system.
  • the power adjustment method includes a switching step of switching the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110 by the operation of the switch element 124 of each of the switchers 120.
  • the details of this switching step are as follows.
  • control circuit 141 controls each part of power conditioner 100 as follows. Hereinafter, the control contents performed by the control circuit 141 will be described with time.
  • the control circuit 141 causes the storage battery 110 to be connected to all the power generation units 22 until a predetermined time t1 is reached based on the information on the time obtained from the built-in clock function. And outputs a control signal for operating the switch element 124 to the switcher 120.
  • the switcher 120 each of the input terminals 123 is connected to each of the second output terminals 122. Therefore, the connection destination of all the power generation units 22 is the storage battery 110.
  • time t1 is time when it can be expected to start the output to the electric power grid of the generated power by sunlight, for example.
  • the information of the time t1 is, for example, information of a time in which the latitude and longitude of the location of the solar power plant is considered, and is stored in a storage unit (not shown) of the control circuit 141.
  • the information of the time t1 includes information of a plurality of times set according to the season.
  • the control circuit 141 selects and acquires information of the suitable time t1 from among the information of the plurality of times t1 based on the information of the month and day obtained from the built-in calendar function.
  • the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10.
  • the switcher 120 each of the input terminals 123 is connected to each of the first output terminals 121. Therefore, the connection destination of all the power generation units 22 is used as the power conditioner 10.
  • control circuit 141 Before outputting the control signal to the switcher 120, the output permission unit 133 outputs the control signal for stopping the power supply from the storage battery 110 to the output device 114 of the storage battery 110 and opens the discharge circuit 132. Output control signal to Thus, the output device 114 stops the power supply from the storage battery 110 to the power conditioner 10, and the output permission unit 133 disconnects the storage battery 110 from the output circuit 131.
  • control circuit 141 operates the switch element 124 of the switcher 120 such that the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10,
  • the open / close state of the output permission unit 133 is controlled. That is, in some embodiments, the switcher 120 generates power by operating the at least one switch element 124 only when the output permission unit 133 prohibits the output of power from the storage battery 110 to the power conditioner 10.
  • the connection destination of the unit 22 is configured to be switched to the power conditioner 10.
  • time t0 is stored in a storage unit (not shown) of control circuit 141 as information of a plurality of times set according to the season, taking into account the latitude and longitude of the location of the solar power plant, as in the above time t1. It may be done.
  • the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110 is the minimum startup voltage of the power conditioner 10 by the detection function of the input voltage included in the charging device 113 of the storage battery 110. It is possible to detect that it has exceeded. That is, when the charging device 113 detects that the input voltage exceeds the minimum start-up voltage of the power conditioner 10, a signal notifying that the input voltage exceeds the minimum start-up voltage of the power conditioner 10 is sent to the control circuit 141. Output. Then, when the control circuit 141 receives the signal, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10.
  • a voltage sensor may be separately provided to detect that the voltage of the generated power in each power generation unit 22 has exceeded the minimum start-up voltage of power conditioner 10.
  • control circuit 141 outputs to the switcher 120 a control signal for operating the switch element 124 to switch the connection destination of all the power generation units 22 to the power conditioner 10. It explains as a premise.
  • the control circuit 141 performs the following control from time t1 to a predetermined time t2 after the evening.
  • time t2 is time when it becomes impossible to expect, for example, to output power generated by sunlight to the power system.
  • the time t2 is stored in a storage unit (not shown) of the control circuit 141 as information of a plurality of times set in accordance with the season after taking into consideration the latitude and longitude of the location of the solar power plant, for example. ing.
  • the control circuit 141 monitors the voltage and the magnitude of the power supplied from the solar cell group 20 to the power conditioner 10 based on the voltage and the current detected by the voltage sensor 142 and the current sensor 143.
  • the control circuit 141 causes the power conditioner 10 to be connected to all the power generation units 22 and The control signal for operating the switch element 124 is output to the switcher 120 as follows.
  • the control circuit 141 causes the connection of one power generation unit 22 to be connected
  • the control signal is output to the switcher 120 to operate the switch element 124 so as to switch the storage battery 110 to the storage battery 110.
  • the control circuit 141 also outputs a control signal to the charging device 113 to start charging the storage battery cell group 112.
  • FIG. 3 is a diagram showing a state in which the input terminal 123 of one switch element 124 in the switcher 120 is connected to the second output terminal 122.
  • the power supplied from the solar cell group 20 to the power conditioner 10 has the first specified value Sv1 in order to suppress excessive switching of the switch element 124 and repetition of excessive charging start and stop in the storage battery 110.
  • the control circuit 141 may output the control signal when the exceeded state continues beyond a predetermined time. Even in cases other than this, when outputting a control signal for switching the connection destination in the switch element 124, or when outputting a control signal for switching the start and stop of charging / discharging of the charging device 113 of the storage battery 110 or the output device 114. The same is true for
  • the switcher 120 operates the at least one switch element 124 when the power supplied from the plurality of power generation units 22 to the power conditioner 10 exceeds the first predetermined value Sv1.
  • the connection destination of the power generation unit 22 is configured to be switched to the storage battery 110. Thereby, it is possible to effectively utilize the surplus power for the amount exceeding the first specified value Sv1 in the storage battery.
  • the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of yet another power generation unit 22 to the storage battery 110.
  • the switcher 120 the input terminal 123 of yet another switch element 124 is connected to the second output terminal 122.
  • the control circuit 141 performs control of sequentially switching the connection destination of the power generation unit 22 to the storage battery 110 until the power supplied from the solar cell group 20 to the power conditioner 10 falls below the first specified value Sv1.
  • the connection destination of the power generation unit 22 is switched to the storage battery 110 such that the power supplied to the power conditioner 10 becomes the largest within the range not exceeding the first specified value Sv1.
  • the switcher 120 is connected to the power generation unit 22 such that the power supplied from the plurality of power generation units 22 to the power conditioner 10 does not exceed the first specified value Sv1. It is configured to change the number of switch elements 124 operated to switch to the storage battery 110. As a result, since the surplus power can be stored in the storage battery 110 instead of being released as heat by the power conditioner 10, the surplus power can be effectively used.
  • the switcher 120 is configured such that the power supplied from the plurality of power generation units 22 to the power conditioner 10 is the largest within a range not exceeding the first predetermined value Sv1.
  • the number of switch elements 124 operated to switch the connection destination to the storage battery 110 is changed.
  • the power supplied to the power conditioner 10 increases in the range not exceeding the first specified value Sv1, and therefore, it is possible to suppress a decrease in the power output to the power system.
  • the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of one power generation unit 22 to the power conditioner 10.
  • the switcher 120 one switch element 124 whose input terminal 123 is connected to the first output terminal 121 is added. Therefore, the number of power generation units 22 that supply generated power to the power conditioner 10 is increased by one.
  • the second prescribed value Sv2 is, for example, the power value W in-max described above, that is, the maximum value of DC power supplied to the power conditioner 10 divided by the number ⁇ of the power generation units 22 in the solar cell group 20
  • the value (W in -max / ⁇ ) is set to a value (Sv1- (W in -max / ⁇ )) obtained by subtracting the first specified value Sv1.
  • the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of yet another power generation unit 22 to the power conditioner 10.
  • the input terminal 123 of the further switch element 124 is connected to the first output terminal 121.
  • the control circuit 141 repeats control of sequentially switching the connection destination of the power generation unit 22 to the power conditioner 10 until the power supplied from the solar cell group 20 to the power conditioner 10 exceeds the second specified value Sv2.
  • the connection destination of the power generation unit 22 is switched to the power conditioner 10 so that the power supplied to the power conditioner 10 becomes the largest within the range not exceeding the first specified value Sv1.
  • the switcher 120 operates the at least one switch element 124 when the power supplied from the plurality of power generation units 22 to the power conditioner 10 exceeds the first predetermined value Sv1.
  • connection is performed by the operation of at least one switch element 124
  • the connection destination of the power generation unit 22 whose tip is the storage battery 110 is configured to be switched to the power conditioner 10.
  • the power generated by the solar cell group 20 can not be output from the power conditioner 10 to the power system. However, even in such a case, the storage battery 110 may be able to be charged by the power generated by the solar cell group 20.
  • the control circuit 141 determines the connection destination of all the power generation units 22.
  • the control signal is output to the switcher 120 to operate the switch element 124 so as to switch the storage battery 110 to the storage battery 110.
  • the control circuit 141 also outputs a control signal to the charging device 113 to start charging the storage battery cell group 112.
  • the input terminals 123 of all the switch elements 124 are connected to the second output terminal 122. Therefore, the power generated by all the power generation units 22 is supplied to storage battery 110.
  • storage battery 110 when storage battery cell group 112 can be charged by the power generated by power generation unit 22, charging of storage battery cell group 112 is started.
  • the switcher 120 operates the switch element 124 when the voltage of the power supplied to the power conditioner 10 from the plurality of power generation units 22 falls below the minimum start-up voltage of the power conditioner 10.
  • the connection destinations of all the power generation units 22 are configured to be switched to the storage battery 110. Thereby, even if the voltage of the power supplied from the plurality of power generation units 22 to the power conditioner 10 falls below the minimum start-up voltage of the power conditioner 10, the storage battery 110 can be stored with the power from the power generation unit 22 . Thereby, the electric power generated by the power generation unit 22 can be effectively used.
  • control circuit 141 A control signal for operating the switch element 124 is output to the switcher 120 so that the connection destination of all the power generation units 22 is switched to the power conditioner 10.
  • the control circuit 141 also outputs a control signal to the charging device 113 so as to stop the charging of the storage battery cell group 112.
  • the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110, that is, the solar cell group 20 is generated by the detection function of the input voltage of the charging device 113. It can be detected that the voltage of the power exceeds the minimum starting voltage of the power conditioner 10.
  • the charging device 113 detects that the input voltage exceeds the minimum start-up voltage of the power conditioner 10, it controls a signal notifying that the input voltage exceeds the minimum start-up voltage of the power conditioner 10. It outputs to the circuit 141.
  • the control circuit 141 receives the signal, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10.
  • the switcher 120 the input terminals 123 of all the switch elements 124 are connected to the first output terminal 121. Therefore, the power generated by all the power generation units 22 is supplied to the power conditioner 10. Moreover, in the storage battery 110, charging of the storage battery cell group 112 is stopped.
  • the switcher 120 operates the switch element 124 when the voltage of the power supplied to the power conditioner 10 from the plurality of power generation units 22 falls below the minimum start-up voltage of the power conditioner 10. Therefore, when the connection destination of all the power generation units 22 is switched to the storage battery 110 and thereafter the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110 exceeds the minimum startup voltage of the power conditioner 10, It is comprised so that the connection destination of all the electric power generation parts 22 may be switched to the power conditioner 10 by operation. As a result, the amount of power supplied to the power conditioner 10 can be increased, and the amount of power output to the power system can be increased.
  • the switcher 120 operates the switch element 124 to set the connection destination of each power generation unit 22 according to the generated power of the plurality of power generation units 22 as the power conditioner 10 or It is configured to switch to any one of the storage batteries 110.
  • the connection destinations of the respective power generation units 22 are switched according to the generated power of the plurality of power generation units 22. For example, when the power supplied from the power generation unit 22 to the power conditioner 10 becomes large It becomes possible to switch the connection destination of the unit 22 to the storage battery 110 and store the storage battery 110 in it. Thereby, the surplus power can be effectively used with a simple circuit configuration.
  • the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the storage battery 110.
  • the switcher 120 each of the input terminals 123 is connected to each of the second output terminals 122. Therefore, the connection destination of all the power generation units 22 is the storage battery 110.
  • the control circuit 141 outputs a control signal for starting the discharge from the storage battery 110 to the output device 114 of the storage battery 110, and outputs a control signal to the output permission unit 133 so as to close the discharge circuit 132.
  • the output device 114 starts the power supply from the storage battery 110 to the power conditioner 10, and the output permission unit 133 connects the storage battery 110 and the output circuit 131. Thereby, the power stored in storage battery 110 is supplied to power conditioner 10.
  • Power conditioner 10 converts DC power from storage battery 110 into AC power and outputs the AC power to a power system.
  • the control circuit 141 operates the switch element 124 of the switcher 120 such that the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10,
  • the open / close state of the output permission unit 133 is controlled. That is, in some embodiments, in the switcher 120, the output allowing unit 133 outputs power from the storage battery 110 only when the connection destinations of all the power generation units 22 are switched to the storage battery 110 by the operation of the switch element 124. It is configured to allow the output of power to the conditioner 10.
  • the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10 by the switcher 120 and the output permission unit 133.
  • the switcher 120 and the output permission unit 133 there is no need to provide a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110, so the circuit configuration in the power adjustment device 100 can be simplified.
  • Discharge from storage battery 110 is continued until the remaining charge of storage battery 110 (storage battery cell group 112) reaches a predetermined remaining charge, or until time t1 is reached. That is, the output device 114 of the storage battery 110 monitors the remaining charge amount of the storage battery cell group 112 during discharge from the storage battery cell group 112. Then, when it is determined that the remaining charge amount has decreased to a predetermined remaining charge amount, the output device 114 stops the discharge from the storage battery cell group 112. In addition, the output device 114 outputs, to the control circuit 141, a signal notifying that the discharge from the storage battery cell group 112 has been stopped.
  • control circuit 141 When the control circuit 141 receives the signal, the control circuit 141 outputs a control signal to the output permitting unit 133 so as to open the discharge circuit 132. Thereby, the output permission unit 133 disconnects the storage battery 110 from the output circuit 131. If time t1 is reached before the remaining charge amount of storage battery cell group 112 decreases to a predetermined remaining charge amount, control circuit 141 outputs a control signal for stopping discharge from storage battery 110 to output device 114 of storage battery 110 At the same time, a control signal is output to the output permission unit 133 so as to open the discharge circuit 132. Thus, the output device 114 stops the discharge from the storage battery cell group 112, and the output permission unit 133 disconnects the storage battery 110 from the output circuit 131.
  • the power adjustment device 100 includes the storage battery 110 and the switcher 120.
  • the switcher 120 is provided corresponding to the power conditioner 10 and has an input terminal 123 to which each of a plurality of power generation units 22 each including one or more solar battery cells is connected, and a first output connected to the power conditioner A plurality of switch elements 124 each having a terminal 121 and a second output terminal 122 connected to the storage battery 110 are included.
  • the switcher 120 is configured to be able to switch the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110 by the operation of each switch element 124.
  • the power generation system 1 according to some embodiments is provided corresponding to the power conditioner 10 and the power conditioner 10, and includes a plurality of power generation units 22 each including one or more solar cells, and power adjustment And an apparatus 100.
  • connection destination of each power generation unit 22 can be switched by the operation of the switch element 124 of the switcher 120, so switching of the power supply destination generated by each power generation unit 22 or power generation by each power generation unit 22
  • the distributed power can be realized by a simple circuit configuration. Therefore, by the operation of the switch element 124 of the switcher 120, for example, part of the electric power generated by each of the power generation units 22 can be supplied to the power conditioner 10 and the surplus can be stored in the storage battery 110. As a result, since it is not necessary to use a circuit for performing distribution and combination of power which tends to have a complicated circuit configuration, surplus power can be effectively used with a simple circuit configuration.
  • the power adjustment method includes an input terminal 123 provided corresponding to the power conditioner 10 and connected to each of the plurality of power generation units 22 each including one or more solar cells,
  • the switcher 120 including a plurality of switch elements 124 each having the first output terminal 121 connected to the conditioner 10 and the second output terminal 122 connected to the storage battery 110, each power generation is performed by operation of each switch element 124.
  • a switching step of switching the connection destination of the unit 22 to any one of the power conditioner 10 and the storage battery 110 is provided. Thereby, the surplus power can be effectively used by simple control contents such as switching control of the switch element 124.
  • a plurality of storage batteries 110 are provided corresponding to the plurality of power conditioners 10.
  • the switcher 120 is also provided corresponding to the power conditioner 10.
  • the power conditioner 100 can be applied retrofit to existing solar power plants.
  • the switcher 120 is interposed between the power conditioner 10 and the solar cell group 20 in the existing solar power plant. That is, each power generation unit 22 of the solar cell group 20 is connected to each of the input terminals 123 of the switcher 120. Then, the first output terminals 121 of the switcher 120 are connected to the input side of the power conditioner 10 via the output circuit 131, respectively. Further, the second output terminals 122 of the switcher 120 are connected to the charging device 113 of the storage battery 110 respectively.
  • one end of the discharge circuit 132 provided with the output permitting unit 133 is connected to the output device 114 of the storage battery 110, and the other end is connected to the output circuit 131.
  • the voltage sensor 142 and the current sensor 143 are installed in the output circuit 131. Note that instead of installing the voltage sensor 142 and the current sensor 143, information on the voltage and current of the input power to the power conditioner 10 may be acquired from the power conditioner 10.
  • the first prescribed value Sv1 and the second prescribed value Sv2 may be changed by an instruction from the outside of the solar power plant.
  • FIG. 5 is a diagram showing an example of an embodiment in which the first predetermined value Sv1 and the second predetermined value Sv2 can be changed by an instruction from the outside of the solar power plant.
  • a server 90 is installed outside the solar power plant.
  • the server 90 is configured to be able to output a change instruction for changing the first predetermined value Sv1 or the second predetermined value Sv2.
  • the change instruction includes at least information on values of the first predetermined value Sv1 and the second predetermined value Sv2 after the change.
  • the change instruction includes the date and time information for changing the values of the first predetermined value Sv1 and the second predetermined value Sv2, and the original values of the first predetermined value Sv1 and the second predetermined value Sv2 after the change. It may include date and time information etc.
  • Information transfer between the control circuit 141 of the power adjustment apparatus 100 and the server 90 is performed via, for example, a communication network 91 including a telephone line, the Internet, and the like.
  • the control circuit 141 is configured to be able to change the first predetermined value Sv1 and the second predetermined value Sv2 based on the received change instruction.
  • the control circuit 141 When the control circuit 141 receives the change command output from the server 90, the control circuit 141 changes the value of the first predetermined value Sv1 or the second predetermined value Sv2 included in the change command based on the received change command. The value is updated to the value of the specified value Sv1 or the second specified value Sv2. Information on the date and time when the values of the first prescribed value Sv1 and the second prescribed value Sv2 are changed to the change instruction, and the values of the first prescribed value Sv1 and the second prescribed value Sv2 are returned to the original values When the date and time information is included, the control circuit 141 changes the values of the first predetermined value Sv1 and the second predetermined value Sv2 or restores the original values based on the information.
  • the power output to the power system can be easily generated by configuring the first specified value Sv1 and the second specified value Sv2 to be able to be changed by an instruction from the outside of the solar power plant. Can be suppressed or released.
  • the power company managing the electric power system requests the suppression of the generated power from the solar power plant, it can be coped with by the remote control by the server 90.
  • the server 90 even if it is necessary to suppress the power output to the power system as described above, since the surplus power can be stored in the storage battery 110, the surplus power can be effectively used.
  • FIG. 4 is a diagram showing the overall configuration of a solar power plant according to another embodiment. That is, in the other embodiment shown in FIG. 4, one storage battery 110 is configured to be able to supply power to a plurality of power conditioners 10.
  • the number of storage batteries 110 can be suppressed to suppress cost increase.
  • the power generation system 1A of the solar power plant according to the other embodiment shown in FIG. 4 has some embodiments described above except that one storage battery 110 is installed for a plurality of power generation systems 1A. It has the same configuration as the power generation system 1 according to.
  • the number n of installed power generation systems 1A may be more than one, and the number of storage batteries 110 installed may be less than the number n installed of power generation systems 1A.
  • the power generation unit 22 includes a plurality of solar cell modules 21 connected in series.
  • the number of solar cell modules 21 included in the power generation unit 22 may be one.
  • voltage sensor 142 and current sensor 143 are provided in output circuit 131.
  • at least one of the voltage sensor 142 and the current sensor 143 may be a sensor (not shown) provided in the power conditioner 10 to detect the voltage or current of the power supplied to the power conditioner 10.

Abstract

A power adjusting apparatus for a solar power plant according to the present invention is provided with: a storage battery; and a switcher including a plurality of switch elements having input terminals to which are connected a plurality of respective power generation units, which are provided in correspondence to power conditioners and each of which includes one or more solar battery cells, first output terminals connected to the power conditioners, and second output terminals connected to the storage battery. By operating each of the switch elements, the switcher switches the connection destination of each of the power generation units to either the power conditioner or the storage battery.

Description

ソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法POWER REGULATOR FOR SOLAR POWER PLANT, POWER GENERATING SYSTEM, AND POWER CONTROL METHOD FOR SOLAR POWER PLANT
 本開示は、ソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法に関する。 The present disclosure relates to a power conditioning device for a solar power plant, a power generation system, and a power conditioning method for a solar power plant.
 近年、太陽光により太陽電池で発電を行うソーラ発電所が各地で稼働している。ソーラ発電所では、発電した電力を電力系統に供給するが、電力会社と契約した契約電力を超えて電力系統に電力を供給することができない。
 太陽電池による発電量は日射量に左右されるため、朝方や夕方に減少するほか、天候の影響を受けやすい。そのため、一日のうちで、できるだけ長時間、多くの電力を発電するため、ソーラ発電所では、一般的に、契約電力を超えた発電容量の太陽電池が設置される。
 そのため、例えば好天の昼間などには、太陽電池で発電する電力が契約電力を超えることとなる。そこで、契約電力を超えた余剰電力を蓄電池で蓄電し、蓄電した電力を夜間などに放電することで、余剰電力を有効に利用することが行われている(例えば特許文献1参照)。
In recent years, solar power plants that use solar cells to generate electric power by sunlight are operating in various places. Solar power plants supply generated power to the power system, but can not supply power to the power system beyond the contract power contracted with the power company.
Because the amount of electricity generated by solar cells depends on the amount of solar radiation, it decreases in the morning and evening and is susceptible to the weather. Therefore, in order to generate as much electric power as possible for as long as possible in a day, a solar power plant is generally provided with a solar cell having a generation capacity exceeding the contracted electric power.
Therefore, for example, in a sunny daytime, the power generated by the solar cell exceeds the contract power. Therefore, the surplus power is effectively used by storing the surplus power exceeding the contract power with a storage battery and discharging the stored power at night or the like (for example, see Patent Document 1).
特開2017-60375号公報JP, 2017-60375, A
 例えば特許文献1に記載の電力供給システムでは、太陽光発電装置の発電電力が規定電力を上回る場合、送電制御装置は、太陽光発電装置の発電電力を分配して、規定電力に相当する電力を送電網を介して電力会社向けに送電し、同時に規定電力を上回る余剰電力を蓄電池に蓄電する。
 また、例えば特許文献1に記載の電力供給システムでは、太陽光発電装置の発電電力が規定電力を下回る場合、送電制御装置は、太陽光発電装置の発電電力と蓄電池からの電力とを合成して送電網を介して電力会社向けに給電する。
 このように、特許文献1の記載の電力供給システムでは、送電制御装置が電力の分配や合成を行うため、送電制御装置の構成が複雑になりがちである。
For example, in the power supply system described in Patent Document 1, when the generated power of the solar power generation device exceeds the specified power, the power transmission control device distributes the generated power of the solar power generation device to generate power corresponding to the specified power. Power is transmitted to the power company via the power transmission network, and at the same time, surplus power exceeding specified power is stored in the storage battery.
Also, for example, in the power supply system described in Patent Document 1, when the generated power of the solar power generation device falls below the prescribed power, the power transmission control device combines the generated power of the solar power generation device and the power from the storage battery. Supply electricity to the power company through the transmission grid.
As described above, in the power supply system described in Patent Document 1, since the power transmission control device performs distribution and combination of power, the configuration of the power transmission control device tends to be complicated.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、簡単な回路構成で余剰電力を有効に利用できるソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法を提供することを目的とする。 In view of the above-described circumstances, at least one embodiment of the present invention provides a power conditioning device for a solar power plant, a power generation system, and a power conditioning method for a solar power plant, which can effectively use surplus power with a simple circuit configuration. With the goal.
(1)本発明の少なくとも一実施形態に係るソーラ発電所用の電力調整装置は、
 蓄電池と、
 パワーコンディショナに対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部の各々が接続される入力端子、前記パワーコンディショナに接続される第1出力端子、および、前記蓄電池に接続される第2出力端子を有するスイッチ要素を複数含むスイッチャーと、を備え、
 前記スイッチャーは、各々の前記スイッチ要素の操作により、各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替え可能に構成される。
(1) A power conditioner for a solar power plant according to at least one embodiment of the present invention,
A storage battery,
An input terminal provided corresponding to the power conditioner and connected to each of a plurality of power generation units including one or more solar battery cells, a first output terminal connected to the power conditioner, and the storage battery A switcher including a plurality of switch elements having a second output terminal connected to the
The switcher is configured to be able to switch the connection destination of each of the power generation units to either the power conditioner or the storage battery by the operation of each of the switch elements.
 上記(1)の構成では、スイッチャーのスイッチ要素の操作により各々の発電部の接続先を切り替えることができるので、各々の発電部で発電された電力の供給先の切り替えや各々の発電部で発電された電力の分配を簡単な回路構成によって実現できる。したがって、スイッチャーのスイッチ要素の操作により、例えば各々の発電部で発電された電力の一部をパワーコンディショナに供給し、余剰分を蓄電池に蓄電させることもできる。これにより、回路構成が複雑になりがちな電力の分配や合成を行うための回路を用いなくてもよいので、簡単な回路構成で余剰電力を有効に利用できる。 In the configuration of the above (1), since the connection destination of each power generation unit can be switched by the operation of the switch element of the switcher, switching of the power supply destination generated by each power generation unit or power generation by each power generation unit The distributed power can be realized by a simple circuit configuration. Therefore, by operating the switch elements of the switcher, for example, part of the power generated by each power generation unit can be supplied to the power conditioner, and the surplus can be stored in the storage battery. As a result, since it is not necessary to use a circuit for performing distribution and combination of power which tends to have a complicated circuit configuration, surplus power can be effectively used with a simple circuit configuration.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記第1出力端子と前記パワーコンディショナとの間に設けられる出力回路と、
 前記蓄電池と前記パワーコンディショナとの間に設けられる放電回路と、を備え、
 前記放電回路は、前記複数の発電部からの電力と前記蓄電池からの電力とを合成する合成回路を経ずに直接前記出力回路に接続される。
(2) In some embodiments, in the configuration of (1) above,
An output circuit provided between the first output terminal and the power conditioner;
A discharge circuit provided between the storage battery and the power conditioner;
The discharge circuit is directly connected to the output circuit without passing through a combining circuit that combines the power from the plurality of power generation units and the power from the storage battery.
 上記(2)の構成では、蓄電池からの電力は、複数の発電部からの電力と蓄電池からの電力とを合成する合成回路を経ずに直接出力回路に出力されてパワーコンディショナに供給される。これにより、複数の発電部からの電力と蓄電池からの電力とを合成する合成回路を設ける必要がないので、ソーラ発電所用の電力調整装置における回路構成を簡素化できる。 In the configuration of the above (2), the power from the storage battery is directly output to the output circuit and supplied to the power conditioner without passing through a combining circuit that combines the power from the plurality of power generation units and the power from the storage battery. . Thereby, since it is not necessary to provide the synthetic | combination circuit which synthesize | combines the electric power from a some electric power generation part and the electric power from a storage battery, the circuit structure in the power adjustment apparatus for solar power stations can be simplified.
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記蓄電池から前記パワーコンディショナへの電力の出力を許可又は禁止する出力許可部を備え、
 前記スイッチャーは、前記出力許可部が前記蓄電池から前記パワーコンディショナへの電力の出力を禁止している場合にのみ、少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記パワーコンディショナに切り替えるように構成され、
 前記出力許可部は、前記スイッチャーにおいて、前記スイッチ要素の操作により、全ての前記発電部の接続先が前記蓄電池に切り替えられている場合にのみ、前記蓄電池から前記パワーコンディショナへの電力の出力を許可するように構成される。
(3) In some embodiments, in the configuration of (1) or (2) above,
And an output permission unit that permits or prohibits the output of power from the storage battery to the power conditioner,
The switcher operates the at least one switch element to switch the connection destination of the power generation unit to the power condition only when the output permission unit prohibits the output of power from the storage battery to the power conditioner. Configured to switch to the
The output permission unit outputs the power from the storage battery to the power conditioner only when the connection destinations of all the power generation units are switched to the storage battery by the operation of the switch element in the switcher. Configured to allow.
 上記(3)の構成では、スイッチャーと出力許可部とによって、複数の発電部からの電力と蓄電池からの電力とが択一的にパワーコンディショナに入力される。これにより、複数の発電部からの電力と蓄電池からの電力とを合成する合成回路を設ける必要がないので、ソーラ発電所用の電力調整装置における回路構成を簡素化できる。 In the configuration of (3), the power from the plurality of power generation units and the power from the storage battery are alternatively input to the power conditioner by the switcher and the output permission unit. Thereby, since it is not necessary to provide the synthetic | combination circuit which synthesize | combines the electric power from a some electric power generation part and the electric power from a storage battery, the circuit structure in the power adjustment apparatus for solar power stations can be simplified.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記スイッチャーは、前記スイッチ要素の操作により、前記複数の発電部の発電電力に応じて各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替えるように構成される。 (4) In some embodiments, in the configuration according to any one of the above (1) to (3), the switcher is configured to operate each of the plurality of power generation units according to the generated power of the plurality of power generation units The connection destination of the power generation unit is configured to be switched to either the power conditioner or the storage battery.
 上記(4)の構成では、複数の発電部の発電電力に応じて各々の発電部の接続先が切り替えられるので、例えば発電部からパワーコンディショナに供給される電力が大きくなった時に一部の発電部の接続先を蓄電池に切り替えて蓄電池に蓄電させることも可能となる。これにより、簡単な回路構成で余剰電力を有効に利用できる。 In the configuration of the above (4), the connection destinations of the respective power generation units are switched according to the generated power of the plurality of power generation units, so for example, when the power supplied from the power generation unit to the power conditioner becomes large It is also possible to switch the connection destination of the power generation unit to a storage battery and store it in the storage battery. Thereby, the surplus power can be effectively used with a simple circuit configuration.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超える場合に少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記蓄電池に切り替えるように構成される。 (5) In some embodiments, in the configuration according to any one of the above (1) to (4), the switcher is configured such that the power supplied from the plurality of power generation units to the power conditioner has a first specified value. When it exceeds, by the operation of at least one said switch element, it is comprised so that the connecting point of the said electric power generation part may be switched to the said storage battery.
 上記(5)の構成では、複数の発電部からパワーコンディショナに供給される電力が第1規定値を超える場合に少なくとも1つの発電部の接続先が蓄電池に切り替わるので、第1規定値を超えた分の余剰電力を蓄電池に蓄電させるなどして、有効に利用できる。 In the configuration of (5), the connection destination of at least one power generation unit is switched to the storage battery when the power supplied from the plurality of power generation units to the power conditioner exceeds the first predetermined value, the first predetermined value is exceeded. The surplus power can be effectively used by storing the surplus power in a storage battery.
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超えないように、前記発電部の接続先を前記蓄電池に切り替えるように操作する前記スイッチ要素の数を変更するように構成される。 (6) In some embodiments, in the configuration according to any one of the above (1) to (5), the switcher is configured such that the power supplied from the plurality of power generation units to the power conditioner has a first specified value. The number of switch elements operated to switch the connection destination of the power generation unit to the storage battery is changed so as not to exceed the number.
 例えば第1規定値が電力会社と契約した契約電力量に相当する値である場合等、パワーコンディショナから第1規定値を超えて電力を出力できない場合には、第1規定値を超える電力が発電部からパワーコンディショナに供給されても、第1規定値を超えた分の余剰電力がパワーコンディショナで熱となって放出されることとなり、余剰電力を有効利用できない。
 これに対して、上記(6)の構成では、複数の発電部からパワーコンディショナに供給される電力が第1規定値を超えないように接続先が蓄電池となる発電部の数が変更されるので、余剰電力をパワーコンディショナで熱として放出するのではなく蓄電池に蓄電できる。これにより、余剰電力を有効利用できる。
For example, if the power conditioner can not output power beyond the first specified value, for example, if the first specified value is a value corresponding to the contracted power amount contracted with the power company, the power exceeding the first specified value is Even if power is supplied from the power generation unit to the power conditioner, surplus power exceeding the first specified value is released as heat by the power conditioner, and the surplus power can not be effectively used.
On the other hand, in the configuration of (6), the number of power generation units whose storage destinations are storage batteries is changed so that the power supplied from the plurality of power generation units to the power conditioner does not exceed the first specified value. Therefore, the surplus power can be stored in the storage battery instead of being released as heat by the power conditioner. Thereby, surplus power can be used effectively.
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超えない範囲内で最も多くなるように、前記発電部の接続先を前記蓄電池に切り替えるように操作する前記スイッチ要素の数を変更するように構成される。 (7) In some embodiments, in any one of the configurations (1) to (6), the switcher is configured to set the first prescribed value of the power supplied from the plurality of power generation units to the power conditioner. It is configured to change the number of switch elements operated to switch the connection destination of the power generation unit to the storage battery so as to be the largest within the range not exceeding.
 上記(7)の構成では、パワーコンディショナに供給される電力が第1規定値を超えない範囲内で多くなるので、電力系統へ出力する電力の低下を抑制できる。 In the configuration of the above (7), the power supplied to the power conditioner is increased within the range not exceeding the first specified value, so that it is possible to suppress the reduction of the power output to the power system.
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超える場合に少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記蓄電池に切り替えた後、前記複数の発電部から前記パワーコンディショナに供給される電力が第2規定値を下回ると、少なくとも1つの前記スイッチ要素の操作により、前記接続先が前記蓄電池である前記発電部の接続先を前記パワーコンディショナに切り替えるように構成される。 (8) In some embodiments, in any one of the configurations (1) to (7), the switcher is configured to set the first prescribed value of the power supplied from the plurality of power generation units to the power conditioner. When the connection destination of the power generation unit is switched to the storage battery by the operation of at least one of the switch elements when exceeding, when the power supplied from the plurality of power generation units to the power conditioner falls below a second prescribed value The connection destination of the power generation unit, which is the storage battery, is switched to the power conditioner by the operation of at least one of the switch elements.
 上記(8)の構成では、複数の発電部からパワーコンディショナに供給される電力が第2規定値を下回ると、少なくとも1つのスイッチ要素の操作により、接続先が蓄電池である発電部の接続先をパワーコンディショナに切り替えるので、パワーコンディショナに供給される電力を増やすことができる。これにより、電力系統へ出力する電力を増やすことができる。 In the configuration of (8), when the power supplied from the plurality of power generation units to the power conditioner falls below the second specified value, the connection destination is the storage battery whose power storage unit is a storage battery by the operation of at least one switch element. Since the power conditioner is switched to the power conditioner, the power supplied to the power conditioner can be increased. Thereby, the power to be output to the power system can be increased.
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力の電圧が前記パワーコンディショナの最低起動電圧を下回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記蓄電池に切り替えるように構成される。 (9) In some embodiments, in any one of the configurations (1) to (8), the switcher is configured to control the voltage of the power supplied from the plurality of power generation units to the power conditioner as the power conditioner. When the minimum starting voltage of the power supply is lower than the minimum starting voltage, the connection destination of all the power generation units is switched to the storage battery by the operation of the switch element.
 複数の発電部からパワーコンディショナに供給される電力の電圧がパワーコンディショナの最低起動電圧を下回った場合であっても、蓄電池に蓄電可能な場合がある。このような場合に、上記(9)の構成によれば、全ての発電部の接続先が蓄電池に切り替えられるので、発電部からの電力で蓄電池に蓄電できる。これにより、発電部で発電された電力を有効に利用できる。 Even if the voltage of the power supplied from the plurality of power generation units to the power conditioner falls below the minimum start-up voltage of the power conditioner, the storage battery may be able to store electricity. In such a case, according to the configuration of (9), since the connection destinations of all the power generation units are switched to the storage battery, the storage battery can be stored with the power from the power generation unit. Thereby, the power generated by the power generation unit can be effectively used.
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力の電圧が前記パワーコンディショナの最低起動電圧を下回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記蓄電池に切り替え、その後、前記複数の発電部から前記蓄電池に供給される電力の電圧が前記パワーコンディショナの最低起動電圧を上回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記パワーコンディショナに切り替えるように構成される。 (10) In some embodiments, in the configuration according to any one of the above (1) to (9), the switcher is configured such that the voltage of the power supplied from the plurality of power generation units to the power conditioner is the power conditioner. If the minimum starting voltage of the power supply is lower than the minimum starting voltage, the connection destination of all the power generation units is switched to the storage battery by the operation of the switch element, and then the voltage of the power supplied to the storage battery from the plurality of power generation units When the minimum starting voltage of the conditioner is exceeded, the connection destination of all the power generation units is switched to the power conditioner by the operation of the switch element.
 例えば天候の悪化などにより日射量が減少して、複数の発電部からパワーコンディショナに供給される電力の電圧がパワーコンディショナの最低起動電圧を下回った場合等では、天候の回復によって日射量が増加すると、複数の発電部からパワーコンディショナに供給される電力の電圧がパワーコンディショナの最低起動電圧を再び上回る。
 このような場合に、上記(10)の構成によれば、複数の発電部から蓄電池に供給される電力の電圧がパワーコンディショナの最低起動電圧を上回ると、スイッチ要素の操作により、全ての発電部の接続先が蓄電池からパワーコンディショナに切り替えられる。これにより、パワーコンディショナに供給される電力量を増やすことができ、電力系統へ出力する電力量を増やすことができる。
For example, when the solar radiation amount decreases due to the deterioration of the weather and the voltage of the power supplied from the plurality of power generation units to the power conditioner falls below the minimum startup voltage of the power conditioner, the solar radiation amount is restored due to the weather recovery. As the voltage increases, the voltage of the power supplied from the plurality of power generation units to the power conditioner again exceeds the minimum starting voltage of the power conditioner.
In such a case, according to the configuration of (10), when the voltage of the power supplied from the plurality of power generation units to the storage battery exceeds the minimum startup voltage of the power conditioner, all the power generation is performed by the operation of the switch element The connection destination of the unit is switched from the storage battery to the power conditioner. Thus, the amount of power supplied to the power conditioner can be increased, and the amount of power output to the power system can be increased.
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、
 前記蓄電池は、蓄電池セルが複数接続された蓄電池セル群を有し、
 前記蓄電池セル群の出力電圧は、前記パワーコンディショナの入力側の対応可能電圧の範囲内である。
(11) In some embodiments, in any of the configurations (1) to (10),
The storage battery has a storage battery cell group in which a plurality of storage battery cells are connected,
The output voltage of the storage battery cell group is within the range of applicable voltage on the input side of the power conditioner.
 上記(11)の構成では、蓄電池セル群の出力電圧がパワーコンディショナの入力側の対応可能電圧の範囲内であるので、蓄電池セル群の出力電圧をパワーコンディショナの入力側の対応可能電圧の範囲内に変更するDC-DCコンバータを不要とすることができる。これにより、装置構成を簡素化できる。 In the configuration of the above (11), since the output voltage of the storage battery cell group is within the range of the compatible voltage of the input side of the power conditioner, the output voltage of the storage battery cell group is the available voltage of the input side of the power conditioner. It is possible to eliminate the need for a DC-DC converter that changes within the range. Thereby, the device configuration can be simplified.
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの構成において、前記蓄電池は、1つであり、複数の前記パワーコンディショナに電力を供給可能に構成される。 (12) In some embodiments, in any one of the configurations (1) to (11), the number of the storage battery is one, and power can be supplied to a plurality of the power conditioners.
 上記(12)の構成では、蓄電池の数を抑制してコスト増を抑制できる。 In the configuration of the above (12), the number of storage batteries can be suppressed to suppress the cost increase.
(13)幾つかの実施形態では、上記(1)乃至(11)の何れかの構成において、前記蓄電池は、複数の前記パワーコンディショナに対応して複数設けられる。 (13) In some embodiments, in any one of the configurations (1) to (11), a plurality of the storage batteries are provided corresponding to a plurality of the power conditioners.
 上記(13)の構成では、複数のパワーコンディショナに対応して蓄電池が複数設けられるとともに、上記(1)で述べたように、スイッチャーがパワーコンディショナに対応して設けられる。したがって、上記(13)の構成によるソーラ発電所用の電力調整装置では、回路構成が単純な電力調整装置をパワーコンディショナの設置数に合わせて複数設置すればよいので、パワーコンディショナが複数設置される場合であっても、簡単な回路構成で余剰電力を有効に利用できる。 In the configuration of the above (13), a plurality of storage batteries are provided corresponding to a plurality of power conditioners, and as described in the above (1), switchers are provided corresponding to the power conditioner. Therefore, in the power conditioner for a solar power plant according to the configuration of (13), a plurality of power conditioners having a simple circuit configuration may be installed according to the number of installed power conditioners, so a plurality of power conditioners are installed. Even in this case, surplus power can be effectively used with a simple circuit configuration.
(14)本発明の少なくとも一実施形態に係る発電システムは、
 パワーコンディショナと、
 前記パワーコンディショナに対応して設けられ、1以上の太陽電池セルを各々が含む複数の発電部と、
 上記(1)乃至(13)の何れかのソーラ発電所用の電力調整装置と、
を備える。
(14) A power generation system according to at least one embodiment of the present invention,
Power conditioner,
A plurality of power generation units provided corresponding to the power conditioner, each including one or more solar cells;
A power conditioner for a solar power plant according to any one of the above (1) to (13);
Equipped with
 上記(14)の構成では、上記(1)の構成のソーラ発電所用の電力調整装置を含むので、上記(1)で述べたように、スイッチャーのスイッチ要素の操作により、例えば各々の発電部で発電された電力の一部をパワーコンディショナに供給し、余剰分を蓄電池に蓄電させることもできるので、簡単な回路構成で余剰電力を有効に利用できる。 In the configuration of the above (14), since the power conditioner for the solar power plant of the configuration of the above (1) is included, as described in the above (1), for example, Since a part of the generated electric power can be supplied to the power conditioner and the surplus can be stored in the storage battery, the surplus electric power can be effectively used with a simple circuit configuration.
(15)本発明の少なくとも一実施形態に係るソーラ発電所用の電力調整方法は、パワーコンディショナに対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部の各々が接続される入力端子、前記パワーコンディショナに接続される第1出力端子、および、蓄電池に接続される第2出力端子を有するスイッチ要素を複数含むスイッチャーについて、各々の前記スイッチ要素の操作により、各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替える切替ステップを備える。 (15) A power adjustment method for a solar power plant according to at least one embodiment of the present invention, wherein each of a plurality of power generation units provided corresponding to the power conditioner and including one or more solar battery cells is connected A switcher including a plurality of switch elements each having a first input terminal connected to the power conditioner, a first output terminal connected to the power conditioner, and a second output terminal connected to the storage battery; And a switching step of switching a connection destination of the power generation unit to either the power conditioner or the storage battery.
 上記(15)の方法では、各々のスイッチ要素の操作により、各々の発電部の接続先をパワーコンディショナ又は蓄電池の何れか一方に切り替える切替ステップを備えるので、スイッチ要素の切り替え制御といった簡単な制御内容によって余剰電力を有効に利用できる。 In the method of the above (15), there is provided a switching step of switching the connection destination of each power generation unit to either the power conditioner or the storage battery by the operation of each switch element, so simple control such as switch control of switch elements Depending on the content, surplus power can be used effectively.
 本発明の少なくとも一実施形態によれば、簡単な回路構成で余剰電力を有効に利用できる。また、本発明の少なくとも一実施形態によれば、簡単な制御内容によって余剰電力を有効に利用できる。 According to at least one embodiment of the present invention, surplus power can be effectively used with a simple circuit configuration. Moreover, according to at least one embodiment of the present invention, surplus power can be effectively used by simple control contents.
幾つかの実施形態に係るソーラ発電所の全体構成を表す図である。It is a figure showing the whole composition of the solar power plant concerning some embodiments. 一実施形態に係るソーラ発電所において、図1に示した発電システムが複数設置された場合について説明する図である。It is a figure explaining the case where multiple electric power generation systems shown in Drawing 1 are installed in a solar power station concerning one embodiment. スイッチャーにおける1つのスイッチ要素の入力端子が第2出力端子と接続された状態を示す図である。It is a figure showing the state where the input terminal of one switch element in a switcher was connected with the 2nd output terminal. 他の実施形態に係るソーラ発電所の全体構成を表す図である。It is a figure showing the whole structure of the solar power station concerning other embodiment. ソーラ発電所の外部からの指示によって第1規定値や第2規定値を変更可能に構成した実施形態の例を示す図である。It is a figure which shows the example of embodiment which comprised the 1st prescription | regulation value and the 2nd prescription | regulation value so that a change was possible by the instruction | indication from the exterior of a solar power station.
 以下、添付図面を参照して本発明によるソーラ発電所用の電力調整装置、発電システム及びソーラ発電所用の電力調整方法の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, several embodiments of a power conditioning device for a solar power plant, a power generation system, and a power conditioning method for a solar power plant according to the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely illustrative. Absent.
For example, a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” is strictly Not only does it represent such an arrangement, but also represents a state of relative displacement with an angle or distance that allows the same function to be obtained.
For example, expressions that indicate that things such as "identical", "equal" and "homogeneous" are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
For example, expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
On the other hand, the expressions "comprising", "having", "having", "including" or "having" one component are not exclusive expressions excluding the presence of other components.
 図1は、幾つかの実施形態に係るソーラ発電所の全体構成を表す図である。
 幾つかの実施形態に係るソーラ発電所の発電システム1は、パワーコンディショナ10と、太陽電池群20と、電力調整装置100とを備える。
 パワーコンディショナ10は、太陽電池群20で発電された直流電力を交流電力に変換して電力系統に出力する装置である。太陽電池群20は、少なくとも1つの太陽電池セルを含む複数の太陽電池モジュール21が接続された発電部22を複数有する。以下の説明では、発電部22をストリング22とも呼ぶ。
FIG. 1 is a diagram showing the overall configuration of a solar power plant according to some embodiments.
A power generation system 1 of a solar power plant according to some embodiments includes a power conditioner 10, a solar cell group 20, and a power adjustment device 100.
The power conditioner 10 is a device that converts DC power generated by the solar cell group 20 into AC power and outputs the AC power to the power system. The solar cell group 20 includes a plurality of power generation units 22 to which a plurality of solar cell modules 21 including at least one solar battery cell are connected. In the following description, the power generation unit 22 is also referred to as a string 22.
 電力調整装置100は、発電システム1、すなわちソーラ発電所用の電力調整装置であり、蓄電池110と、スイッチャー120と、を備える。電力調整装置100は、スイッチャー120の後述する第1出力端子121とパワーコンディショナ10との間に設けられる出力回路131と、蓄電池110とパワーコンディショナ10との間に設けられる放電回路132と、放電回路132に設けられる出力許可部133とを備える。電力調整装置100は、制御回路141と、電圧センサ142と、電流センサ143とを備える。 The power conditioning apparatus 100 is a power conditioning apparatus for the power generation system 1, that is, a solar power plant, and includes a storage battery 110 and a switcher 120. Power adjustment apparatus 100 includes an output circuit 131 provided between a first output terminal 121 of switcher 120 described later and power conditioner 10, and a discharge circuit 132 provided between storage battery 110 and power conditioner 10. And an output permission unit 133 provided in the discharge circuit 132. The power adjustment device 100 includes a control circuit 141, a voltage sensor 142, and a current sensor 143.
 蓄電池110は、蓄電池セル111が複数接続された蓄電池セル群112と、蓄電池セル群112を充電するための充電装置113と、蓄電池セル群112で蓄電した電力を外部に出力するための出力装置114とを有する。
 蓄電池110は、各発電部22で発電された電力を蓄電池セル群112で蓄電し、蓄電した電力をパワーコンディショナ10に出力する。
Storage battery 110 includes storage battery cell group 112 to which a plurality of storage battery cells 111 are connected, charging device 113 for charging storage battery cell group 112, and output device 114 for outputting the power stored in storage battery cell group 112 to the outside. And.
Storage battery 110 stores the power generated by each power generation unit 22 in storage battery cell group 112, and outputs the stored power to power conditioner 10.
 充電装置113は、入力された電力の電圧を蓄電池セル群112の充電に適した電圧に変換する不図示のDC-DCコンバータと、蓄電池セル群112への充電の制御を行う不図示の充電コントローラとを有する。充電コントローラは、例えば、制御回路141の制御信号に基づいて、蓄電池セル群112への充電を開始及び停止するよう充電装置113の各部を制御する。また、充電コントローラは、例えば、充電中の蓄電池セル群112の充電残量を監視し、蓄電池セル群112が満充電となったと判断すると蓄電池セル群112への充電を停止するよう充電装置113の各部を制御する。 Charging device 113 converts a voltage of the input power into a voltage suitable for charging storage battery cell group 112 (not shown), and a charge controller (not shown) controlling charging of storage battery cell group 112 And. The charge controller controls each part of the charging device 113 to start and stop charging of the storage battery cell group 112 based on, for example, a control signal of the control circuit 141. Also, the charge controller monitors, for example, the remaining charge amount of the storage battery cell group 112 being charged, and stops the charging of the storage battery cell group 112 when it is determined that the storage battery cell group 112 is fully charged. Control each part.
 出力装置114は、蓄電池セル群112で蓄電した電力の電圧をパワーコンディショナ10への出力に適した電圧に変換する不図示のDC-DCコンバータと、蓄電池セル群112で蓄電した電力の出力を制御する不図示の放電コントローラとを有する。放電コントローラは、例えば、制御回路141の制御信号に基づいて、蓄電池セル群112に蓄電された電力の外部への放電を開始及び停止するよう出力装置114の各部を制御する。また、放電コントローラは、例えば、蓄電池セル群112が過放電状態とならないように蓄電池セル群112の充電残量を監視し、充電残量が所定の充電残量まで低下したと判断すると、蓄電池セル群112からの放電を停止するよう出力装置114の各部を制御する。
 なお、蓄電池セル群112の出力電圧がパワーコンディショナ10の入力側の対応可能電圧の範囲内であれば、出力装置114にDC-DCコンバータを設けなくてもよいので、装置構成を簡素化でき、コストダウンを図れる。
Output device 114 includes a DC-DC converter (not shown) for converting the voltage of the power stored in storage battery cell group 112 into a voltage suitable for output to power conditioner 10, and the output of the power stored in storage battery cell group 112. And a discharge controller (not shown) to control. The discharge controller controls each part of the output device 114 to start and stop the discharge of the power stored in the storage battery cell group 112 to the outside based on, for example, a control signal of the control circuit 141. In addition, the discharge controller monitors, for example, the remaining charge of storage battery cell group 112 so that storage battery cell group 112 is not in the overdischarged state, and determines that the remaining charge capacity has decreased to a predetermined remaining charge amount. Each part of the output device 114 is controlled to stop the discharge from the group 112.
If the output voltage of storage battery cell group 112 is within the range of the compatible voltage at the input side of power conditioner 10, it is not necessary to provide a DC-DC converter in output device 114, so the device configuration can be simplified. , You can reduce the cost.
 スイッチャー120は、各発電部22の接続先をパワーコンディショナ10又は蓄電池110の何れか一方に切り替える装置であり、第1出力端子121、第2出力端子122、及び入力端子123を有するスイッチ要素124を複数含む。各スイッチ要素124は、後述する制御回路141からの制御信号によって、入力端子123と第1出力端子121とを接続するか、入力端子123と第2出力端子122とを接続するかを個別に切り替え可能に構成されている。なお、スイッチャー120の各スイッチ要素124は、機械的な接点を有する機械的なスイッチやリレーであってもよく、半導体スイッチであってもよく、正常動作時の負荷電流を開閉して接続先の切り替えができるものであればよい。 The switcher 120 is a device that switches the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110, and is a switch element 124 having a first output terminal 121, a second output terminal 122, and an input terminal 123. Contains more than one. Each switch element 124 individually switches whether to connect the input terminal 123 and the first output terminal 121 or to connect the input terminal 123 and the second output terminal 122 by a control signal from the control circuit 141 described later. It is configured to be possible. Each switch element 124 of the switcher 120 may be a mechanical switch or a relay having a mechanical contact, or may be a semiconductor switch. It is sufficient if it can be switched.
 各第1出力端子121は、それぞれ出力回路131を介してパワーコンディショナ10の入力側に接続される。第2出力端子122は、それぞれ蓄電池110の充電装置113に接続される。各入力端子123には、複数の発電部22の各々が接続される。 Each first output terminal 121 is connected to the input side of the power conditioner 10 via the output circuit 131, respectively. The second output terminals 122 are each connected to the charging device 113 of the storage battery 110. Each of the plurality of power generation units 22 is connected to each input terminal 123.
 放電回路132の一端は蓄電池110の出力装置114に接続され、他端は出力回路131に接続されている。
 すなわち、幾つかの実施形態では、第1出力端子121とパワーコンディショナ10との間に設けられる出力回路131と、蓄電池110とパワーコンディショナ10との間に設けられる放電回路132とを備える。放電回路132は、複数の発電部22からの電力と蓄電池110からの電力とを合成する合成回路を経ずに直接出力回路131に接続されている。
 したがって、蓄電池110からの電力は、複数の発電部22からの電力と蓄電池110からの電力とを合成する合成回路を経ずに直接出力回路131に出力されてパワーコンディショナ10に供給される。これにより、複数の発電部22からの電力と蓄電池110からの電力とを合成する合成回路を設ける必要がないので、電力調整装置100における回路構成を簡素化できる。
One end of the discharge circuit 132 is connected to the output device 114 of the storage battery 110, and the other end is connected to the output circuit 131.
That is, some embodiments include an output circuit 131 provided between the first output terminal 121 and the power conditioner 10, and a discharge circuit 132 provided between the storage battery 110 and the power conditioner 10. The discharge circuit 132 is directly connected to the output circuit 131 without passing through a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110.
Therefore, the power from the storage battery 110 is directly output to the output circuit 131 and supplied to the power conditioner 10 without passing through a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110. Thus, there is no need to provide a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110, so the circuit configuration in the power adjustment device 100 can be simplified.
 出力許可部133は、例えば、放電回路132に設けられて放電回路132を開閉する開閉器、又は断路器であり、後述する制御回路141からの制御信号によって、放電回路132を開閉することで、蓄電池110からパワーコンディショナ10への電力の出力を許可又は禁止する。 The output permission unit 133 is, for example, a switch provided in the discharge circuit 132 to open or close the discharge circuit 132 or a disconnector, and opens or closes the discharge circuit 132 by a control signal from a control circuit 141 described later. The output of power from storage battery 110 to power conditioner 10 is permitted or prohibited.
 制御回路141は、電力調整装置100の各部を制御する制御回路である。制御回路141の制御内容については、後で説明する。
 電圧センサ142及び電流センサ143は、パワーコンディショナ10へ供給される電力の電圧及び電流を検出するセンサであり、出力回路131に設けられている。
The control circuit 141 is a control circuit that controls each part of the power adjustment apparatus 100. The control contents of the control circuit 141 will be described later.
The voltage sensor 142 and the current sensor 143 are sensors that detect the voltage and current of the power supplied to the power conditioner 10, and are provided in the output circuit 131.
 このように構成される発電システム1では、発電部22で発電された電力がスイッチャー120を介してパワーコンディショナ10に供給されると、パワーコンディショナ10から電力系統に電力が出力される。 In the power generation system 1 configured as described above, when the power generated by the power generation unit 22 is supplied to the power conditioner 10 via the switcher 120, the power conditioner 10 outputs power to the power system.
 なお、幾つかの実施形態では、ソーラ発電所から電力系統に出力する電力の大きさは、電力会社と契約した契約電力が上限となる。この契約電力は、例えば、電圧系統と低圧連係されるソーラ発電所では、例えば49.5kwである。
 例えば、ソーラ発電所において、図1に示す発電システム1の設置数nが1である場合には、パワーコンディショナ10から電力系統に出力できる電力の上限値Wout-maxは、契約電力Wcvの値となる。また、例えば、ソーラ発電所において、図2に示すように、発電システム1の設置数nが複数である場合には、各パワーコンディショナ10から電力系統に出力できる電力の上限値Wout-maxは、契約電力Wcvを発電システム1の設置数nで除した値(Wcv/n)となる。
In some embodiments, the size of the power output from the solar power plant to the power grid is limited to the contract power contracted with the power company. This contracted power is, for example, 49.5 kw, for example, in a solar power plant linked to the voltage system at low pressure.
For example, in the solar power plant, when the installation number n of the power generation system 1 shown in FIG. 1 is 1, the upper limit value W out -max of the power that can be output from the power conditioner 10 to the power system is the contract power Wcv. It becomes a value. Further, for example, in the solar power plant, as shown in FIG. 2, when the number n of installed power generation systems 1 is more than one, the upper limit value W out -max of the power that can be output from each power conditioner 10 to the power system. Is a value (Wcv / n) obtained by dividing the contracted power Wcv by the number n of installed power generation systems 1.
 そこで、幾つかの実施形態では、上記上限値Wout-maxに対してパワーコンディショナ10における変換損失分を考慮した電力値Win-maxをパワーコンディショナ10に供給する直流電力の最大値とする。以下の説明では、当該最大値を第1規定値Sv1と呼ぶ。
 なお、図2は、一実施形態に係るソーラ発電所において、図1に示した発電システム1が複数設置された場合について説明する図である。図2では、太陽電池群20、蓄電池110及びスイッチャー120の構成の記載を省略しているが、図2における太陽電池群20、蓄電池110及びスイッチャー120の構成は、図1における太陽電池群20、蓄電池110及びスイッチャー120の構成と同じである。
Therefore, in some embodiments, the maximum value of DC power supplied to the power conditioner 10 with the power value W in-max taking into consideration the conversion loss in the power conditioner 10 with respect to the upper limit value W out -max Do. In the following description, the maximum value is referred to as a first predetermined value Sv1.
In addition, FIG. 2 is a figure explaining the case where multiple electric power generation systems 1 shown in FIG. 1 are installed in the solar power station which concerns on one Embodiment. Although the configuration of the solar cell group 20, the storage battery 110 and the switcher 120 is omitted in FIG. 2, the configuration of the solar cell group 20, the storage battery 110 and the switcher 120 in FIG. The configuration is the same as that of the storage battery 110 and the switcher 120.
 太陽電池による発電量は日射量に左右されるため、朝方や夕方に減少するほか、天候の影響を受けやすい。そのため、一日のうちで、できるだけ長時間、多くの電力を発電するため、一般的にソーラ発電所では、契約電力量を超えた発電容量の太陽電池が設置される。
 同様に、幾つかの実施形態に係る発電システム1においても、パワーコンディショナ10に対応して設けられた太陽電池群20における発電容量は、上述した第1規定値を超えている。そのため、例えば好天の昼間などには、太陽電池群20で発電する電力が第1規定値Sv1を超えることとなる。
Because the amount of electricity generated by solar cells depends on the amount of solar radiation, it decreases in the morning and evening and is susceptible to the weather. Therefore, in order to generate as much electric power as possible for a long time of day, a solar power plant is generally provided with a solar cell having a generation capacity exceeding the contracted amount of power.
Similarly, also in the power generation system 1 according to some embodiments, the power generation capacity of the solar cell group 20 provided corresponding to the power conditioner 10 exceeds the above-described first specified value. Therefore, for example, in a sunny daytime, the power generated by the solar cell group 20 exceeds the first specified value Sv1.
 そこで、幾つかの実施形態では、太陽電池群20で発電する電力が第1規定値Sv1を超える場合、スイッチャー120の少なくとも1つのスイッチ要素124の操作により、発電部22の接続先をパワーコンディショナ10から蓄電池110に切り替えることで、余剰電力を蓄電池110で蓄電する。また、幾つかの実施形態では、夜間など太陽光による発電が期待できない場合に、蓄電池110に蓄電された電力をパワーコンディショナ10に供することで、電力系統へ電力を供給する。 Therefore, in some embodiments, when the power generated by the solar cell group 20 exceeds the first predetermined value Sv1, the connection destination of the power generation unit 22 is a power conditioner by the operation of at least one switch element 124 of the switcher 120. By switching from 10 to the storage battery 110, the storage battery 110 stores surplus power. Moreover, in some embodiments, when it is not possible to expect power generation by sunlight, such as at night, the power stored in the storage battery 110 is supplied to the power conditioner 10 to supply power to the power system.
 以下、幾つかの実施形態における発電システム1での電力調整方法について説明する。なお、ソーラ発電所において、図1に示すように発電システム1が1つ設置されている場合であっても、図2に示すように発電システム1が複数設置されている場合であっても、それぞれの発電システム1における電力調整方法は同じである。そこで、以下の説明では、図1及び後述する図3を主に参照して説明する。 Hereinafter, the power adjustment method in the power generation system 1 according to some embodiments will be described. In the solar power plant, even if one power generation system 1 is installed as shown in FIG. 1, or even if a plurality of power generation systems 1 are installed as shown in FIG. The power adjustment method in each power generation system 1 is the same. Therefore, the following description will be made mainly with reference to FIG. 1 and FIG. 3 described later.
 幾つかの実施形態係る電力調整方法は、スイッチャー120の各々のスイッチ要素124の操作により、各々の発電部22の接続先をパワーコンディショナ10又は蓄電池110の何れか一方に切り替える切替ステップを備える。この切替ステップの詳細は、以下のとおりである。 The power adjustment method according to some embodiments includes a switching step of switching the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110 by the operation of the switch element 124 of each of the switchers 120. The details of this switching step are as follows.
 幾つかの実施形態では、制御回路141が電力調整装置100の各部を次のように制御する。以下、制御回路141が行う制御内容について、時間を追って説明する。 In some embodiments, control circuit 141 controls each part of power conditioner 100 as follows. Hereinafter, the control contents performed by the control circuit 141 will be described with time.
(夜明け前)
 夜明け前の時間帯では、日射量がゼロか、ゼロに近い状態であるため、各発電部22における発電電力の電圧はパワーコンディショナ10の最低起動電圧を下回っている。このような時間帯では、制御回路141は、内蔵する時計機能から得られる時刻の情報に基づいて、予め定められた時刻t1になるまで、全ての発電部22の接続先が蓄電池110となるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、入力端子123のそれぞれが第2出力端子122のそれぞれと接続される。したがって、全ての発電部22の接続先が蓄電池110とされる。
(Before dawn)
In the time zone before dawn, since the solar radiation amount is zero or almost zero, the voltage of the generated power in each power generation unit 22 is lower than the minimum startup voltage of the power conditioner 10. In such a time zone, the control circuit 141 causes the storage battery 110 to be connected to all the power generation units 22 until a predetermined time t1 is reached based on the information on the time obtained from the built-in clock function. And outputs a control signal for operating the switch element 124 to the switcher 120. Thus, in the switcher 120, each of the input terminals 123 is connected to each of the second output terminals 122. Therefore, the connection destination of all the power generation units 22 is the storage battery 110.
 なお、時刻t1は、例えば太陽光による発電電力の電力系統への出力を開始することが期待できる時刻である。
 上記時刻t1の情報は、例えば、ソーラ発電所の所在地の緯度経度が考慮された時刻の情報であり、制御回路141の不図示の記憶部に記憶されている。この時刻t1の情報は、季節に応じて設定された複数の時刻の情報を含む。制御回路141は、内蔵するカレンダー機能から得られる月日の情報に基づいて、複数の時刻t1の情報の中から適した時刻t1の情報を選択して取得する。
In addition, time t1 is time when it can be expected to start the output to the electric power grid of the generated power by sunlight, for example.
The information of the time t1 is, for example, information of a time in which the latitude and longitude of the location of the solar power plant is considered, and is stored in a storage unit (not shown) of the control circuit 141. The information of the time t1 includes information of a plurality of times set according to the season. The control circuit 141 selects and acquires information of the suitable time t1 from among the information of the plurality of times t1 based on the information of the month and day obtained from the built-in calendar function.
(時刻t1)
 上記時刻t1になると、制御回路141は、全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、入力端子123のそれぞれが第1出力端子121のそれぞれと接続される。したがって、全ての発電部22の接続先がパワーコンディショナ10とされる。
 なお、後述するように、夜間に蓄電池110からの電力がパワーコンディショナ10に供給されており、時刻t1の時点でも蓄電池110からの電力がパワーコンディショナ10に供給されていた場合、制御回路141は、当該制御信号をスイッチャー120に出力するのに先立って、蓄電池110からの電力供給を停止させる制御信号を蓄電池110の出力装置114に出力するとともに、放電回路132を開くように出力許可部133に制御信号を出力する。これにより、出力装置114は蓄電池110からパワーコンディショナ10への電力供給を停止させ、出力許可部133は、蓄電池110と出力回路131との接続を断つ。
(Time t1)
At time t1, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10. Thus, in the switcher 120, each of the input terminals 123 is connected to each of the first output terminals 121. Therefore, the connection destination of all the power generation units 22 is used as the power conditioner 10.
In addition, as described later, when the power from storage battery 110 is supplied to power conditioner 10 at night and the power from storage battery 110 is supplied to power conditioner 10 even at time t1, control circuit 141 Before outputting the control signal to the switcher 120, the output permission unit 133 outputs the control signal for stopping the power supply from the storage battery 110 to the output device 114 of the storage battery 110 and opens the discharge circuit 132. Output control signal to Thus, the output device 114 stops the power supply from the storage battery 110 to the power conditioner 10, and the output permission unit 133 disconnects the storage battery 110 from the output circuit 131.
 このように、制御回路141は、複数の発電部22からの電力と蓄電池110からの電力とが択一的にパワーコンディショナ10に入力されるように、スイッチャー120のスイッチ要素124の操作と、出力許可部133の開閉状態を制御する。
 すなわち、幾つかの実施形態では、スイッチャー120は、出力許可部133が蓄電池110からパワーコンディショナ10への電力の出力を禁止している場合にのみ、少なくとも1つのスイッチ要素124の操作により、発電部22の接続先をパワーコンディショナ10に切り替えるように構成されている。
Thus, the control circuit 141 operates the switch element 124 of the switcher 120 such that the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10, The open / close state of the output permission unit 133 is controlled.
That is, in some embodiments, the switcher 120 generates power by operating the at least one switch element 124 only when the output permission unit 133 prohibits the output of power from the storage battery 110 to the power conditioner 10. The connection destination of the unit 22 is configured to be switched to the power conditioner 10.
 なお、時刻t1になったか否かに関わらず、明け方のある時刻t0以降に各発電部22における発電電力の電圧がパワーコンディショナ10の最低起動電圧を上回ったことが検出されると、制御回路141が全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力するようにしてもよい。なお、時刻t0は、上記時刻t1と同様に、ソーラ発電所の所在地の緯度経度を考慮した上で季節に応じて設定された複数の時刻の情報として制御回路141の不図示の記憶部に記憶されていてもよい。
 ここで、幾つかの実施形態では、蓄電池110の充電装置113が備える入力電圧の検出機能により、複数の発電部22から蓄電池110に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を上回ったことを検出することができる。すなわち、充電装置113は、入力電圧がパワーコンディショナ10の最低起動電圧を上回ったことを検出すると、入力電圧がパワーコンディショナ10の最低起動電圧を上回ったことを報知する信号を制御回路141に出力する。そして、制御回路141は、当該信号を受信すると、全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。
 なお、各発電部22における発電電力の電圧がパワーコンディショナ10の最低起動電圧を上回ったことを検出するための電圧センサを別途設けてもよい。
Note that regardless of whether time t1 is reached or not, it is detected that the voltage of the generated power in each power generation unit 22 exceeds the minimum start-up voltage of power conditioner 10 after time t0 at dawn. A control signal for operating the switch element 124 may be output to the switcher 120 so that the switch 141 switches the connection destination of all the power generation units 22 to the power conditioner 10. Note that time t0 is stored in a storage unit (not shown) of control circuit 141 as information of a plurality of times set according to the season, taking into account the latitude and longitude of the location of the solar power plant, as in the above time t1. It may be done.
Here, in some embodiments, the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110 is the minimum startup voltage of the power conditioner 10 by the detection function of the input voltage included in the charging device 113 of the storage battery 110. It is possible to detect that it has exceeded. That is, when the charging device 113 detects that the input voltage exceeds the minimum start-up voltage of the power conditioner 10, a signal notifying that the input voltage exceeds the minimum start-up voltage of the power conditioner 10 is sent to the control circuit 141. Output. Then, when the control circuit 141 receives the signal, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10.
A voltage sensor may be separately provided to detect that the voltage of the generated power in each power generation unit 22 has exceeded the minimum start-up voltage of power conditioner 10.
 以下の説明では、時刻t1になったときに、制御回路141が全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力したことを前提として説明する。 In the following description, at time t1, the control circuit 141 outputs to the switcher 120 a control signal for operating the switch element 124 to switch the connection destination of all the power generation units 22 to the power conditioner 10. It explains as a premise.
(時刻t1から時刻t2まで)
 時刻t1から、夕方以降の予め定められた時刻t2までの間、制御回路141は、次のような制御を行う。なお、時刻t2は、例えば太陽光による発電電力を電力系統に出力することが期待できなくなる時刻である。時刻t2は、例えば上記時刻t1と同様に、ソーラ発電所の所在地の緯度経度を考慮した上で季節に応じて設定された複数の時刻の情報として制御回路141の不図示の記憶部に記憶されている。
 制御回路141は、電圧センサ142及び電流センサ143で検出した電圧及び電流に基づいて、太陽電池群20からパワーコンディショナ10へ供給される電力の電圧や電力の大きさを監視する。
(From time t1 to time t2)
The control circuit 141 performs the following control from time t1 to a predetermined time t2 after the evening. In addition, time t2 is time when it becomes impossible to expect, for example, to output power generated by sunlight to the power system. The time t2 is stored in a storage unit (not shown) of the control circuit 141 as information of a plurality of times set in accordance with the season after taking into consideration the latitude and longitude of the location of the solar power plant, for example. ing.
The control circuit 141 monitors the voltage and the magnitude of the power supplied from the solar cell group 20 to the power conditioner 10 based on the voltage and the current detected by the voltage sensor 142 and the current sensor 143.
(パワーコンディショナ10へ供給される電力が第1規定値Sv1を超えるまで)
 時刻t1から、太陽電池群20からパワーコンディショナ10へ供給される電力が上述した第1規定値Sv1を超えるまでは、制御回路141は、全ての発電部22の接続先がパワーコンディショナ10となるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。
(Until the power supplied to the power conditioner 10 exceeds the first specified value Sv1)
From time t1 until the power supplied from the solar cell group 20 to the power conditioner 10 exceeds the first specified value Sv1 described above, the control circuit 141 causes the power conditioner 10 to be connected to all the power generation units 22 and The control signal for operating the switch element 124 is output to the switcher 120 as follows.
(パワーコンディショナ10へ供給される電力が第1規定値Sv1を超える場合)
 日射量が増加して、太陽電池群20からパワーコンディショナ10へ供給される電力が上述した第1規定値Sv1を超えたと判断されると、制御回路141は、1つの発電部22の接続先を蓄電池110に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。また、制御回路141は、蓄電池セル群112への充電を開始するよう充電装置113に制御信号を出力する。
(When the power supplied to the power conditioner 10 exceeds the first specified value Sv1)
When it is determined that the amount of solar radiation increases and the power supplied from the solar cell group 20 to the power conditioner 10 exceeds the first prescribed value Sv1 described above, the control circuit 141 causes the connection of one power generation unit 22 to be connected The control signal is output to the switcher 120 to operate the switch element 124 so as to switch the storage battery 110 to the storage battery 110. The control circuit 141 also outputs a control signal to the charging device 113 to start charging the storage battery cell group 112.
 これにより、図3に示すように、スイッチャー120では、1つのスイッチ要素124の入力端子123が第2出力端子122と接続される。したがって、太陽電池群20の1つの発電部22で発電された電力が蓄電池110に供給され、残りの発電部22で発電された電力がパワーコンディショナ10に供給される。また、蓄電池110では、発電部22で発電された電力による蓄電池セル群112への充電が開始される。なお、図3は、スイッチャー120における1つのスイッチ要素124の入力端子123が第2出力端子122と接続された状態を示す図である。 Thereby, as shown in FIG. 3, in the switcher 120, the input terminal 123 of one switch element 124 is connected to the second output terminal 122. Therefore, the power generated by one power generation unit 22 of the solar cell group 20 is supplied to the storage battery 110, and the power generated by the remaining power generation units 22 is supplied to the power conditioner 10. In storage battery 110, charging of storage battery cell group 112 with the power generated by power generation unit 22 is started. FIG. 3 is a diagram showing a state in which the input terminal 123 of one switch element 124 in the switcher 120 is connected to the second output terminal 122.
 なお、スイッチ要素124の過剰な切り替えや、蓄電池110において過剰な充電開始と充電停止との繰り返しを抑制するため、太陽電池群20からパワーコンディショナ10へ供給される電力が第1規定値Sv1を超えた状態が予め定めた規定時間を超えて継続した場合に、制御回路141が上記の制御信号を出力するようにしてもよい。これ以外の場合であっても、スイッチ要素124における接続先を切り替える制御信号を出力する場合や、蓄電池110の充電装置113や出力装置114に対する充放電の開始と停止を切り替える制御信号を出力する場合についても、同様である。 Note that the power supplied from the solar cell group 20 to the power conditioner 10 has the first specified value Sv1 in order to suppress excessive switching of the switch element 124 and repetition of excessive charging start and stop in the storage battery 110. The control circuit 141 may output the control signal when the exceeded state continues beyond a predetermined time. Even in cases other than this, when outputting a control signal for switching the connection destination in the switch element 124, or when outputting a control signal for switching the start and stop of charging / discharging of the charging device 113 of the storage battery 110 or the output device 114. The same is true for
 このように、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力が第1規定値Sv1を超える場合に少なくとも1つのスイッチ要素124の操作により、発電部22の接続先を蓄電池110に切り替えるように構成されている。これにより、第1規定値Sv1を超えた分の余剰電力を蓄電池に蓄電させることで有効に利用できる。 Thus, in some embodiments, the switcher 120 operates the at least one switch element 124 when the power supplied from the plurality of power generation units 22 to the power conditioner 10 exceeds the first predetermined value Sv1. The connection destination of the power generation unit 22 is configured to be switched to the storage battery 110. Thereby, it is possible to effectively utilize the surplus power for the amount exceeding the first specified value Sv1 in the storage battery.
 上述したように、1つの発電部22の接続先を蓄電池110に切り替えた後、再び、太陽電池群20からパワーコンディショナ10へ供給される電力が第1規定値Sv1を超えていると判断されると、制御回路141は、さらにもう1つの発電部22の接続先を蓄電池110に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、さらにもう1つのスイッチ要素124の入力端子123が第2出力端子122と接続される。 As described above, after switching the connection destination of one power generation unit 22 to storage battery 110, it is determined that the power supplied from solar cell group 20 to power conditioner 10 exceeds the first prescribed value Sv1 again. Then, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of yet another power generation unit 22 to the storage battery 110. As a result, in the switcher 120, the input terminal 123 of yet another switch element 124 is connected to the second output terminal 122.
 制御回路141は、太陽電池群20からパワーコンディショナ10へ供給される電力が第1規定値Sv1を下回るまで、発電部22の接続先を順次蓄電池110に切り替える制御を実施する。このような制御回路141の制御によって、パワーコンディショナ10に供給される電力が第1規定値Sv1を超えない範囲内で最も多くなるように、発電部22の接続先が蓄電池110に切り替えられる。 The control circuit 141 performs control of sequentially switching the connection destination of the power generation unit 22 to the storage battery 110 until the power supplied from the solar cell group 20 to the power conditioner 10 falls below the first specified value Sv1. By such control of the control circuit 141, the connection destination of the power generation unit 22 is switched to the storage battery 110 such that the power supplied to the power conditioner 10 becomes the largest within the range not exceeding the first specified value Sv1.
 仮に、第1規定値Sv1を超える電力が発電部22からパワーコンディショナ10に供給されても、第1規定値Sv1を超えた分の余剰電力がパワーコンディショナ10で熱となって放出されることとなり、余剰電力を有効利用できない。
 これに対して、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力が第1規定値Sv1を超えないように、発電部22の接続先を蓄電池110に切り替えるように操作するスイッチ要素124の数を変更するように構成されている。これにより、余剰電力をパワーコンディショナ10で熱として放出するのではなく蓄電池110に蓄電できるので、余剰電力を有効利用できる。
Even if power exceeding the first specified value Sv1 is supplied from the power generation unit 22 to the power conditioner 10, surplus power for the amount exceeding the first specified value Sv1 is released as heat by the power conditioner 10 As a result, surplus power can not be used effectively.
On the other hand, in some embodiments, the switcher 120 is connected to the power generation unit 22 such that the power supplied from the plurality of power generation units 22 to the power conditioner 10 does not exceed the first specified value Sv1. It is configured to change the number of switch elements 124 operated to switch to the storage battery 110. As a result, since the surplus power can be stored in the storage battery 110 instead of being released as heat by the power conditioner 10, the surplus power can be effectively used.
 また、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力が第1規定値Sv1を超えない範囲内で最も多くなるように、発電部22の接続先を蓄電池110に切り替えるように操作するスイッチ要素124の数を変更するように構成されている。
 これにより、パワーコンディショナ10に供給される電力が第1規定値Sv1を超えない範囲内で多くなるので、電力系統へ出力する電力の低下を抑制できる。
Further, in some embodiments, the switcher 120 is configured such that the power supplied from the plurality of power generation units 22 to the power conditioner 10 is the largest within a range not exceeding the first predetermined value Sv1. The number of switch elements 124 operated to switch the connection destination to the storage battery 110 is changed.
As a result, the power supplied to the power conditioner 10 increases in the range not exceeding the first specified value Sv1, and therefore, it is possible to suppress a decrease in the power output to the power system.
(太陽電池群20の発電電力が低下した場合)
 上述したように、少なくとも1つの発電部22の接続先が蓄電池110に切り替えられた後、日射量が低下して、パワーコンディショナ10へ供給される電力が第2規定値Sv2を下回ると判断されると、制御回路141は、1つの発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、入力端子123が第1出力端子121と接続されるスイッチ要素124が1つ増える。したがって、パワーコンディショナ10に発電電力を供給する発電部22が1つ増える。
 なお、上記第2規定値Sv2は、例えば、上述した電力値Win-max、すなわちパワーコンディショナ10に供給する直流電力の最大値を太陽電池群20における発電部22の設置数αで除した値(Win-max/α)を第1規定値Sv1から減じた値(Sv1-(Win-max/α))とする。
(When the generated power of the solar cell group 20 decreases)
As described above, after the connection destination of at least one power generation unit 22 is switched to the storage battery 110, the amount of solar radiation decreases, and it is determined that the power supplied to the power conditioner 10 falls below the second prescribed value Sv2. Then, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of one power generation unit 22 to the power conditioner 10. Thereby, in the switcher 120, one switch element 124 whose input terminal 123 is connected to the first output terminal 121 is added. Therefore, the number of power generation units 22 that supply generated power to the power conditioner 10 is increased by one.
The second prescribed value Sv2 is, for example, the power value W in-max described above, that is, the maximum value of DC power supplied to the power conditioner 10 divided by the number α of the power generation units 22 in the solar cell group 20 The value (W in -max / α) is set to a value (Sv1- (W in -max / α)) obtained by subtracting the first specified value Sv1.
 上述したように、1つの発電部22の接続先をパワーコンディショナ10に切り替えた後、再び、太陽電池群20からパワーコンディショナ10へ供給される電力が第2規定値Sv2を下回ると判断されると、制御回路141は、さらにもう1つの発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、さらにもう1つのスイッチ要素124の入力端子123が第1出力端子121と接続される。 As described above, after switching the connection destination of one power generation unit 22 to the power conditioner 10, it is determined again that the power supplied from the solar cell group 20 to the power conditioner 10 falls below the second prescribed value Sv2. Then, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of yet another power generation unit 22 to the power conditioner 10. Thereby, in the switcher 120, the input terminal 123 of the further switch element 124 is connected to the first output terminal 121.
 制御回路141は、太陽電池群20からパワーコンディショナ10へ供給される電力が第2規定値Sv2を上回るまで、発電部22の接続先を順次パワーコンディショナ10に切り替える制御を繰り返す。このような制御回路141の制御によって、パワーコンディショナ10に供給される電力が第1規定値Sv1を超えない範囲内で最も多くなるように、発電部22の接続先がパワーコンディショナ10に切り替えられる。 The control circuit 141 repeats control of sequentially switching the connection destination of the power generation unit 22 to the power conditioner 10 until the power supplied from the solar cell group 20 to the power conditioner 10 exceeds the second specified value Sv2. By such control of the control circuit 141, the connection destination of the power generation unit 22 is switched to the power conditioner 10 so that the power supplied to the power conditioner 10 becomes the largest within the range not exceeding the first specified value Sv1. Be
 このように、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力が第1規定値Sv1を超える場合に少なくとも1つのスイッチ要素124の操作により、発電部22の接続先を蓄電池110に切り替えた後、複数の発電部22からパワーコンディショナ10に供給される電力が第2規定値Sv2を下回ると、少なくとも1つのスイッチ要素124の操作により、接続先が蓄電池110である発電部22の接続先をパワーコンディショナ10に切り替えるように構成されている。
 これにより、パワーコンディショナ10に供給される電力を増やすことができるので、電力系統へ出力する電力を増やすことができる。
Thus, in some embodiments, the switcher 120 operates the at least one switch element 124 when the power supplied from the plurality of power generation units 22 to the power conditioner 10 exceeds the first predetermined value Sv1. After switching the connection destination of the power generation unit 22 to the storage battery 110, when the power supplied from the plurality of power generation units 22 to the power conditioner 10 falls below the second prescribed value Sv2, connection is performed by the operation of at least one switch element 124 The connection destination of the power generation unit 22 whose tip is the storage battery 110 is configured to be switched to the power conditioner 10.
Thereby, since the power supplied to the power conditioner 10 can be increased, the power to be output to the power system can be increased.
(パワーコンディショナ10の最低起動電圧を下回る場合)
 日射量がさらに低下して、太陽電池群20で発電された電力の電圧がパワーコンディショナ10の最低起動電圧を下回る場合も考えられる。ここで、太陽電池群20で発電された電力の電圧がパワーコンディショナ10の最低起動電圧を下回る場合としては、例えば天候の悪化や太陽高度の低下により日射量が低下する場合を挙げることができる。
(When it falls below the minimum starting voltage of the power conditioner 10)
It is also conceivable that the amount of solar radiation decreases further, and the voltage of the power generated by the solar cell group 20 falls below the minimum startup voltage of the power conditioner 10. Here, as a case where the voltage of the electric power generated by the solar cell group 20 is lower than the minimum starting voltage of the power conditioner 10, for example, the case where the amount of solar radiation decreases due to the deterioration of the weather or the decrease of the solar altitude can be mentioned. .
 太陽電池群20で発電された電力の電圧がパワーコンディショナ10の最低起動電圧を下回る場合には、太陽電池群20で発電された電力をパワーコンディショナ10から電力系統へ出力できない。しかし、このような場合であっても、太陽電池群20で発電された電力によって蓄電池110を充電することができる場合もある。 If the voltage of the power generated by the solar cell group 20 is lower than the minimum start-up voltage of the power conditioner 10, the power generated by the solar cell group 20 can not be output from the power conditioner 10 to the power system. However, even in such a case, the storage battery 110 may be able to be charged by the power generated by the solar cell group 20.
 そこで、幾つかの実施形態では、太陽電池群20で発電された電力の電圧がパワーコンディショナ10の最低起動電圧を下回ると判断される場合、制御回路141は、全ての発電部22の接続先を蓄電池110に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。また、制御回路141は、蓄電池セル群112への充電を開始するよう充電装置113に制御信号を出力する。 Therefore, in some embodiments, when it is determined that the voltage of the power generated by the solar cell group 20 falls below the minimum start-up voltage of the power conditioner 10, the control circuit 141 determines the connection destination of all the power generation units 22. The control signal is output to the switcher 120 to operate the switch element 124 so as to switch the storage battery 110 to the storage battery 110. The control circuit 141 also outputs a control signal to the charging device 113 to start charging the storage battery cell group 112.
 これにより、スイッチャー120では、全てのスイッチ要素124の入力端子123が第2出力端子122と接続される。したがって、全ての発電部22で発電された電力が蓄電池110に供給される。また、蓄電池110では、発電部22で発電された電力によって蓄電池セル群112への充電が可能な場合、蓄電池セル群112への充電が開始される。 Thus, in the switcher 120, the input terminals 123 of all the switch elements 124 are connected to the second output terminal 122. Therefore, the power generated by all the power generation units 22 is supplied to storage battery 110. In storage battery 110, when storage battery cell group 112 can be charged by the power generated by power generation unit 22, charging of storage battery cell group 112 is started.
 このように、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を下回ると、スイッチ要素124の操作により、全ての発電部22の接続先を蓄電池110に切り替えるように構成されている。
 これにより、複数の発電部22からパワーコンディショナ10に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を下回った場合であっても、発電部22からの電力で蓄電池110に蓄電できる。これにより、発電部22で発電された電力を有効に利用できる。
Thus, in some embodiments, the switcher 120 operates the switch element 124 when the voltage of the power supplied to the power conditioner 10 from the plurality of power generation units 22 falls below the minimum start-up voltage of the power conditioner 10. Thus, the connection destinations of all the power generation units 22 are configured to be switched to the storage battery 110.
Thereby, even if the voltage of the power supplied from the plurality of power generation units 22 to the power conditioner 10 falls below the minimum start-up voltage of the power conditioner 10, the storage battery 110 can be stored with the power from the power generation unit 22 . Thereby, the electric power generated by the power generation unit 22 can be effectively used.
 なお、その後、例えば天候が回復するなどして日射量が増加し、複数の発電部22から蓄電池110に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を上回ると、制御回路141は、全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。また、制御回路141は、蓄電池セル群112への充電を停止するよう充電装置113に制御信号を出力する。 After that, if, for example, the weather recovers and the amount of solar radiation increases and the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110 exceeds the minimum startup voltage of the power conditioner 10, the control circuit 141 A control signal for operating the switch element 124 is output to the switcher 120 so that the connection destination of all the power generation units 22 is switched to the power conditioner 10. The control circuit 141 also outputs a control signal to the charging device 113 so as to stop the charging of the storage battery cell group 112.
 なお、幾つかの実施形態では、上述したように、充電装置113が備える入力電圧の検出機能により、複数の発電部22から蓄電池110に供給される電力の電圧、すなわち太陽電池群20で発電された電力の電圧がパワーコンディショナ10の最低起動電圧を上回ったことを検出することができる。
 上述したように、充電装置113は、入力電圧がパワーコンディショナ10の最低起動電圧を上回ったことを検出すると、入力電圧がパワーコンディショナ10の最低起動電圧を上回ったことを報知する信号を制御回路141に出力する。そして、制御回路141は、当該信号を受信すると、全ての発電部22の接続先をパワーコンディショナ10に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。
In some embodiments, as described above, the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110, that is, the solar cell group 20 is generated by the detection function of the input voltage of the charging device 113. It can be detected that the voltage of the power exceeds the minimum starting voltage of the power conditioner 10.
As described above, when the charging device 113 detects that the input voltage exceeds the minimum start-up voltage of the power conditioner 10, it controls a signal notifying that the input voltage exceeds the minimum start-up voltage of the power conditioner 10. It outputs to the circuit 141. Then, when the control circuit 141 receives the signal, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the power conditioner 10.
 これにより、スイッチャー120では、全てのスイッチ要素124の入力端子123が第1出力端子121と接続される。したがって、全ての発電部22で発電された電力がパワーコンディショナ10に供給される。また、蓄電池110では、蓄電池セル群112への充電が停止される。 Thereby, in the switcher 120, the input terminals 123 of all the switch elements 124 are connected to the first output terminal 121. Therefore, the power generated by all the power generation units 22 is supplied to the power conditioner 10. Moreover, in the storage battery 110, charging of the storage battery cell group 112 is stopped.
 このように、幾つかの実施形態では、スイッチャー120は、複数の発電部22からパワーコンディショナ10に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を下回ると、スイッチ要素124の操作により、全ての発電部22の接続先を蓄電池110に切り替え、その後、複数の発電部22から蓄電池110に供給される電力の電圧がパワーコンディショナ10の最低起動電圧を上回ると、スイッチ要素124の操作により、全ての発電部22の接続先をパワーコンディショナ10に切り替えるように構成されている。
 これにより、パワーコンディショナ10に供給される電力量を増やすことができ、電力系統へ出力する電力量を増やすことができる。
Thus, in some embodiments, the switcher 120 operates the switch element 124 when the voltage of the power supplied to the power conditioner 10 from the plurality of power generation units 22 falls below the minimum start-up voltage of the power conditioner 10. Therefore, when the connection destination of all the power generation units 22 is switched to the storage battery 110 and thereafter the voltage of the power supplied from the plurality of power generation units 22 to the storage battery 110 exceeds the minimum startup voltage of the power conditioner 10, It is comprised so that the connection destination of all the electric power generation parts 22 may be switched to the power conditioner 10 by operation.
As a result, the amount of power supplied to the power conditioner 10 can be increased, and the amount of power output to the power system can be increased.
 また、幾つかの実施形態では、上述したように、スイッチャー120は、スイッチ要素124の操作により、複数の発電部22の発電電力に応じて各々の発電部22の接続先をパワーコンディショナ10又は蓄電池110の何れか一方に切り替えるように構成されている。
 これにより、複数の発電部22の発電電力に応じて各々の発電部22の接続先が切り替えられるので、例えば発電部22からパワーコンディショナ10に供給される電力が大きくなった時に一部の発電部22の接続先を蓄電池110に切り替えて蓄電池110に蓄電させることが可能となる。これにより、簡単な回路構成で余剰電力を有効に利用できる。
Further, in some embodiments, as described above, the switcher 120 operates the switch element 124 to set the connection destination of each power generation unit 22 according to the generated power of the plurality of power generation units 22 as the power conditioner 10 or It is configured to switch to any one of the storage batteries 110.
Thus, the connection destinations of the respective power generation units 22 are switched according to the generated power of the plurality of power generation units 22. For example, when the power supplied from the power generation unit 22 to the power conditioner 10 becomes large It becomes possible to switch the connection destination of the unit 22 to the storage battery 110 and store the storage battery 110 in it. Thereby, the surplus power can be effectively used with a simple circuit configuration.
(時刻t2以降、翌日の時刻t1まで)
 時刻t2になると、制御回路141は、全ての発電部22の接続先を蓄電池110に切り替えるようにスイッチ要素124を操作する制御信号をスイッチャー120に出力する。これにより、スイッチャー120では、入力端子123のそれぞれが第2出力端子122のそれぞれと接続される。したがって、全ての発電部22の接続先が蓄電池110とされる。
 また、制御回路141は、蓄電池110からの放電を開始させる制御信号を蓄電池110の出力装置114に出力するとともに、放電回路132を閉じるように出力許可部133に制御信号を出力する。これにより、出力装置114は蓄電池110からパワーコンディショナ10への電力供給を開始させ、出力許可部133は、蓄電池110と出力回路131とを接続する。これにより、蓄電池110で蓄電された電力がパワーコンディショナ10に供給される。パワーコンディショナ10は、蓄電池110からの直流電力を交流電力に変換して電力系統に出力する。
(After time t2, until the next day t1)
At time t2, the control circuit 141 outputs, to the switcher 120, a control signal for operating the switch element 124 so as to switch the connection destination of all the power generation units 22 to the storage battery 110. Thus, in the switcher 120, each of the input terminals 123 is connected to each of the second output terminals 122. Therefore, the connection destination of all the power generation units 22 is the storage battery 110.
Further, the control circuit 141 outputs a control signal for starting the discharge from the storage battery 110 to the output device 114 of the storage battery 110, and outputs a control signal to the output permission unit 133 so as to close the discharge circuit 132. Thereby, the output device 114 starts the power supply from the storage battery 110 to the power conditioner 10, and the output permission unit 133 connects the storage battery 110 and the output circuit 131. Thereby, the power stored in storage battery 110 is supplied to power conditioner 10. Power conditioner 10 converts DC power from storage battery 110 into AC power and outputs the AC power to a power system.
 このように、制御回路141は、複数の発電部22からの電力と蓄電池110からの電力とが択一的にパワーコンディショナ10に入力されるように、スイッチャー120のスイッチ要素124の操作と、出力許可部133の開閉状態を制御する。
 すなわち、幾つかの実施形態では、出力許可部133は、スイッチャー120において、スイッチ要素124の操作により、全ての発電部22の接続先が蓄電池110に切り替えられている場合にのみ、蓄電池110からパワーコンディショナ10への電力の出力を許可するように構成される。
Thus, the control circuit 141 operates the switch element 124 of the switcher 120 such that the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10, The open / close state of the output permission unit 133 is controlled.
That is, in some embodiments, in the switcher 120, the output allowing unit 133 outputs power from the storage battery 110 only when the connection destinations of all the power generation units 22 are switched to the storage battery 110 by the operation of the switch element 124. It is configured to allow the output of power to the conditioner 10.
 このように幾つかの実施形態では、スイッチャー120と出力許可部133とによって、複数の発電部22からの電力と蓄電池110からの電力とが択一的にパワーコンディショナ10に入力される。これにより、複数の発電部22からの電力と蓄電池110からの電力とを合成する合成回路を設ける必要がないので、電力調整装置100における回路構成を簡素化できる。 Thus, in some embodiments, the power from the plurality of power generation units 22 and the power from the storage battery 110 are alternatively input to the power conditioner 10 by the switcher 120 and the output permission unit 133. Thus, there is no need to provide a combining circuit that combines the power from the plurality of power generation units 22 and the power from the storage battery 110, so the circuit configuration in the power adjustment device 100 can be simplified.
 蓄電池110からの放電は、蓄電池110(蓄電池セル群112)の充電残量が所定の充電残量に到達するまで、又は、時刻t1になるまで継続される。
 すなわち、蓄電池110の出力装置114は、蓄電池セル群112からの放電中、蓄電池セル群112の充電残量を監視する。そして、充電残量が所定の充電残量まで低下したと判断すると、出力装置114は、蓄電池セル群112からの放電を停止させる。また、出力装置114は、蓄電池セル群112からの放電を停止させたことを報知する信号を制御回路141へ出力する。制御回路141は、当該信号を受信すると、放電回路132を開くように出力許可部133に制御信号を出力する。これにより、出力許可部133は、蓄電池110と出力回路131との接続を断つ。
 蓄電池セル群112の充電残量が所定の充電残量まで低下する前に時刻t1になった場合、制御回路141は、蓄電池110からの放電を停止させる制御信号を蓄電池110の出力装置114に出力するとともに、放電回路132を開くように出力許可部133に制御信号を出力する。これにより、出力装置114は、蓄電池セル群112からの放電を停止させ、出力許可部133は、蓄電池110と出力回路131との接続を断つ。
Discharge from storage battery 110 is continued until the remaining charge of storage battery 110 (storage battery cell group 112) reaches a predetermined remaining charge, or until time t1 is reached.
That is, the output device 114 of the storage battery 110 monitors the remaining charge amount of the storage battery cell group 112 during discharge from the storage battery cell group 112. Then, when it is determined that the remaining charge amount has decreased to a predetermined remaining charge amount, the output device 114 stops the discharge from the storage battery cell group 112. In addition, the output device 114 outputs, to the control circuit 141, a signal notifying that the discharge from the storage battery cell group 112 has been stopped. When the control circuit 141 receives the signal, the control circuit 141 outputs a control signal to the output permitting unit 133 so as to open the discharge circuit 132. Thereby, the output permission unit 133 disconnects the storage battery 110 from the output circuit 131.
If time t1 is reached before the remaining charge amount of storage battery cell group 112 decreases to a predetermined remaining charge amount, control circuit 141 outputs a control signal for stopping discharge from storage battery 110 to output device 114 of storage battery 110 At the same time, a control signal is output to the output permission unit 133 so as to open the discharge circuit 132. Thus, the output device 114 stops the discharge from the storage battery cell group 112, and the output permission unit 133 disconnects the storage battery 110 from the output circuit 131.
 以上に述べたように、幾つかの実施形態係る電力調整装置100は、蓄電池110と、スイッチャー120とを備える。スイッチャー120は、パワーコンディショナ10に対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部22の各々が接続される入力端子123、パワーコンディショナに接続される第1出力端子121、および、蓄電池110に接続される第2出力端子122を有するスイッチ要素124を複数含む。
 スイッチャー120は、各々のスイッチ要素124の操作により、各々の発電部22の接続先をパワーコンディショナ10又は蓄電池110の何れか一方に切り替え可能に構成される。
 また、幾つかの実施形態に係る発電システム1は、パワーコンディショナ10と、パワーコンディショナ10に対応して設けられ、1以上の太陽電池セルを各々が含む複数の発電部22と、電力調整装置100とを備える。
As described above, the power adjustment device 100 according to some embodiments includes the storage battery 110 and the switcher 120. The switcher 120 is provided corresponding to the power conditioner 10 and has an input terminal 123 to which each of a plurality of power generation units 22 each including one or more solar battery cells is connected, and a first output connected to the power conditioner A plurality of switch elements 124 each having a terminal 121 and a second output terminal 122 connected to the storage battery 110 are included.
The switcher 120 is configured to be able to switch the connection destination of each power generation unit 22 to either the power conditioner 10 or the storage battery 110 by the operation of each switch element 124.
The power generation system 1 according to some embodiments is provided corresponding to the power conditioner 10 and the power conditioner 10, and includes a plurality of power generation units 22 each including one or more solar cells, and power adjustment And an apparatus 100.
 これにより、スイッチャー120のスイッチ要素124の操作により各々の発電部22の接続先を切り替えることができるので、各々の発電部22で発電された電力の供給先の切り替えや各々の発電部22で発電された電力の分配を簡単な回路構成によって実現できる。したがって、スイッチャー120のスイッチ要素124の操作により、例えば各々の発電部22で発電された電力の一部をパワーコンディショナ10に供給し、余剰分を蓄電池110に蓄電させることもできる。これにより、回路構成が複雑になりがちな電力の分配や合成を行うための回路を用いなくてもよいので、簡単な回路構成で余剰電力を有効に利用できる。 Thus, the connection destination of each power generation unit 22 can be switched by the operation of the switch element 124 of the switcher 120, so switching of the power supply destination generated by each power generation unit 22 or power generation by each power generation unit 22 The distributed power can be realized by a simple circuit configuration. Therefore, by the operation of the switch element 124 of the switcher 120, for example, part of the electric power generated by each of the power generation units 22 can be supplied to the power conditioner 10 and the surplus can be stored in the storage battery 110. As a result, since it is not necessary to use a circuit for performing distribution and combination of power which tends to have a complicated circuit configuration, surplus power can be effectively used with a simple circuit configuration.
 また、幾つかの実施形態係る電力調整方法は、パワーコンディショナ10に対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部22の各々が接続される入力端子123、パワーコンディショナ10に接続される第1出力端子121、および、蓄電池110に接続される第2出力端子122を有するスイッチ要素124を複数含むスイッチャー120について、各々のスイッチ要素124の操作により、各々の発電部22の接続先をパワーコンディショナ10又は蓄電池110の何れか一方に切り替える切替ステップを備える。
 これにより、スイッチ要素124の切り替え制御といった簡単な制御内容によって余剰電力を有効に利用できる。
Moreover, the power adjustment method according to some embodiments includes an input terminal 123 provided corresponding to the power conditioner 10 and connected to each of the plurality of power generation units 22 each including one or more solar cells, With respect to the switcher 120 including a plurality of switch elements 124 each having the first output terminal 121 connected to the conditioner 10 and the second output terminal 122 connected to the storage battery 110, each power generation is performed by operation of each switch element 124. A switching step of switching the connection destination of the unit 22 to any one of the power conditioner 10 and the storage battery 110 is provided.
Thereby, the surplus power can be effectively used by simple control contents such as switching control of the switch element 124.
 なお、図2に示すように、ソーラ発電所において、パワーコンディショナ10が複数設置されている場合には、蓄電池110は、複数のパワーコンディショナ10に対応して複数設けられる。そして、スイッチャー120もパワーコンディショナ10に対応して設けられる。このように、ソーラ発電所において、パワーコンディショナ10が複数設置される場合には、回路構成が単純な電力調整装置100をパワーコンディショナ10の設置数に合わせて複数設置すればよいので、パワーコンディショナ10が複数設置される場合であっても、簡単な回路構成で余剰電力を有効に利用できる。 As shown in FIG. 2, in the solar power plant, when a plurality of power conditioners 10 are installed, a plurality of storage batteries 110 are provided corresponding to the plurality of power conditioners 10. The switcher 120 is also provided corresponding to the power conditioner 10. As described above, when a plurality of power conditioners 10 are installed in a solar power plant, a plurality of power adjustment devices 100 having a simple circuit configuration may be installed according to the number of installed power conditioners 10. Even when a plurality of conditioners 10 are installed, surplus power can be effectively used with a simple circuit configuration.
 上述した幾つかの実施形態に係る電力調整装置100は、既存のソーラ発電所用に対して後付けによって適用することができる。具体的には、例えば、既存のソーラ発電所用におけるパワーコンディショナ10と太陽電池群20との間にスイッチャー120を介在させる。すなわち、太陽電池群20の各発電部22をスイッチャー120の入力端子123のそれぞれと接続する。そして、スイッチャー120の各第1出力端子121を、それぞれ出力回路131を介してパワーコンディショナ10の入力側に接続する。
 また、スイッチャー120の第2出力端子122を、それぞれ蓄電池110の充電装置113に接続する。そして、出力許可部133が設けられた放電回路132の一端を蓄電池110の出力装置114に接続し、他端を出力回路131に接続する。電圧センサ142及び電流センサ143は、出力回路131に設置する。なお、電圧センサ142及び電流センサ143を設置する代わりに、パワーコンディショナ10への入力電力の電圧と電流の情報をパワーコンディショナ10から取得するようにしてもよい。
The power conditioner 100 according to some embodiments described above can be applied retrofit to existing solar power plants. Specifically, for example, the switcher 120 is interposed between the power conditioner 10 and the solar cell group 20 in the existing solar power plant. That is, each power generation unit 22 of the solar cell group 20 is connected to each of the input terminals 123 of the switcher 120. Then, the first output terminals 121 of the switcher 120 are connected to the input side of the power conditioner 10 via the output circuit 131, respectively.
Further, the second output terminals 122 of the switcher 120 are connected to the charging device 113 of the storage battery 110 respectively. Then, one end of the discharge circuit 132 provided with the output permitting unit 133 is connected to the output device 114 of the storage battery 110, and the other end is connected to the output circuit 131. The voltage sensor 142 and the current sensor 143 are installed in the output circuit 131. Note that instead of installing the voltage sensor 142 and the current sensor 143, information on the voltage and current of the input power to the power conditioner 10 may be acquired from the power conditioner 10.
 なお、幾つかの実施形態において、ソーラ発電所の外部からの指示により、第1規定値Sv1や第2規定値Sv2を変更できるように構成してもよい。図5は、ソーラ発電所の外部からの指示によって第1規定値Sv1や第2規定値Sv2を変更可能に構成した実施形態の例を示す図である。
 図5において、ソーラ発電所の外部には、サーバ90が設置されている。サーバ90は、第1規定値Sv1や第2規定値Sv2を変更する変更命令を出力可能に構成されている。当該変更命令は、少なくとも、変更後の第1規定値Sv1や第2規定値Sv2の値の情報を含む。なお、当該変更命令は、第1規定値Sv1や第2規定値Sv2の値を変更する月日及び時刻の情報や、変更後に第1規定値Sv1や第2規定値Sv2の値を元の値に戻す月日及び時刻の情報等を含んでいてもよい。
In some embodiments, the first prescribed value Sv1 and the second prescribed value Sv2 may be changed by an instruction from the outside of the solar power plant. FIG. 5 is a diagram showing an example of an embodiment in which the first predetermined value Sv1 and the second predetermined value Sv2 can be changed by an instruction from the outside of the solar power plant.
In FIG. 5, a server 90 is installed outside the solar power plant. The server 90 is configured to be able to output a change instruction for changing the first predetermined value Sv1 or the second predetermined value Sv2. The change instruction includes at least information on values of the first predetermined value Sv1 and the second predetermined value Sv2 after the change. Note that the change instruction includes the date and time information for changing the values of the first predetermined value Sv1 and the second predetermined value Sv2, and the original values of the first predetermined value Sv1 and the second predetermined value Sv2 after the change. It may include date and time information etc.
 電力調整装置100の制御回路141とサーバ90との間の情報転送は、例えば電話回線やインターネット等からなる通信ネットワーク91等を介して行われる。
 制御回路141は、受信した変更命令に基づいて第1規定値Sv1や第2規定値Sv2を変更可能に構成されている。
Information transfer between the control circuit 141 of the power adjustment apparatus 100 and the server 90 is performed via, for example, a communication network 91 including a telephone line, the Internet, and the like.
The control circuit 141 is configured to be able to change the first predetermined value Sv1 and the second predetermined value Sv2 based on the received change instruction.
 制御回路141は、サーバ90が出力した変更命令を受信すると、受信した変更命令に基づいて、第1規定値Sv1や第2規定値Sv2の値を変更命令に含まれている変更後の第1規定値Sv1や第2規定値Sv2の値に更新する。なお、変更命令に第1規定値Sv1や第2規定値Sv2の値を変更する月日及び時刻の情報や、変更後に第1規定値Sv1や第2規定値Sv2の値を元の値に戻す月日及び時刻の情報を含んでいる場合、制御回路141は、それらの情報に基づいて、第1規定値Sv1や第2規定値Sv2の値を変更したり、元の値に戻したりする。 When the control circuit 141 receives the change command output from the server 90, the control circuit 141 changes the value of the first predetermined value Sv1 or the second predetermined value Sv2 included in the change command based on the received change command. The value is updated to the value of the specified value Sv1 or the second specified value Sv2. Information on the date and time when the values of the first prescribed value Sv1 and the second prescribed value Sv2 are changed to the change instruction, and the values of the first prescribed value Sv1 and the second prescribed value Sv2 are returned to the original values When the date and time information is included, the control circuit 141 changes the values of the first predetermined value Sv1 and the second predetermined value Sv2 or restores the original values based on the information.
 幾つかの実施形態では、上述したようにソーラ発電所の外部からの指示により、第1規定値Sv1や第2規定値Sv2を変更できるように構成することで、容易に電力系統に出力する電力を抑制したり、抑制を解除したりすることができる。
 これにより、例えば、電力系統を管理する電力会社から、ソーラ発電所からの発電電力の抑制を依頼されるようなことがあっても、サーバ90による遠隔操作によって対応可能である。そして、このように電力系統に出力する電力を抑制せざるを得ない場合であっても、余剰電力を蓄電池110に蓄電できるので、余剰電力を有効に利用できる。
In some embodiments, as described above, the power output to the power system can be easily generated by configuring the first specified value Sv1 and the second specified value Sv2 to be able to be changed by an instruction from the outside of the solar power plant. Can be suppressed or released.
Thus, for example, even if the power company managing the electric power system requests the suppression of the generated power from the solar power plant, it can be coped with by the remote control by the server 90. And, even if it is necessary to suppress the power output to the power system as described above, since the surplus power can be stored in the storage battery 110, the surplus power can be effectively used.
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、図2に示した一実施形態に係るソーラ発電所では、発電システム1の設置数nが複数であり、それぞれの発電システム1に蓄電池110がそれぞれ設けられている。しかし、図4に示した他の実施形態に係るソーラ発電所のように、発電システム1Aの設置数nが複数であるが、蓄電池110の設置数が1つであってもよい。図4は、他の実施形態に係るソーラ発電所の全体構成を表す図である。
 すなわち、図4に示した他の実施形態では、蓄電池110は、1つであり、複数のパワーコンディショナ10に電力を供給可能に構成されている。図4に示した他の実施形態の構成では、蓄電池110の数を抑制してコスト増を抑制できる。
 なお、図4に示した他の実施形態に係るソーラ発電所の発電システム1Aは、複数の発電システム1Aに対して1つの蓄電池110が設置されていることを除き、上述した幾つかの実施形態に係る発電システム1と同様の構成を有する。
 図示はしないが、発電システム1Aの設置数nが複数であり、蓄電池110の設置数が発電システム1Aの設置数n未満の複数であってもよい。
The present invention is not limited to the above-described embodiments, and includes the embodiments in which the above-described embodiments are modified, and the embodiments in which these embodiments are appropriately combined.
For example, in the solar power plant according to the embodiment shown in FIG. 2, the number n of installed power generation systems 1 is plural, and the storage batteries 110 are respectively provided in the respective power generation systems 1. However, as in the solar power plant according to the other embodiment shown in FIG. 4, although the number n of power generation systems 1A installed is plural, the number of storage batteries 110 installed may be one. FIG. 4 is a diagram showing the overall configuration of a solar power plant according to another embodiment.
That is, in the other embodiment shown in FIG. 4, one storage battery 110 is configured to be able to supply power to a plurality of power conditioners 10. In the configuration of the other embodiment shown in FIG. 4, the number of storage batteries 110 can be suppressed to suppress cost increase.
Note that the power generation system 1A of the solar power plant according to the other embodiment shown in FIG. 4 has some embodiments described above except that one storage battery 110 is installed for a plurality of power generation systems 1A. It has the same configuration as the power generation system 1 according to.
Although not shown, the number n of installed power generation systems 1A may be more than one, and the number of storage batteries 110 installed may be less than the number n installed of power generation systems 1A.
 上述した幾つかの実施形態では、発電部22は直列に接続された複数の太陽電池モジュール21を含んでいる。しかし、発電部22に含まれる太陽電池モジュール21は、1つであってもよい。 In some embodiments described above, the power generation unit 22 includes a plurality of solar cell modules 21 connected in series. However, the number of solar cell modules 21 included in the power generation unit 22 may be one.
 上述した幾つかの実施形態では、電圧センサ142及び電流センサ143は、出力回路131に設けられている。しかし、電圧センサ142及び電流センサ143の少なくとも一方は、パワーコンディショナ10に設けられていてパワーコンディショナ10へ供給される電力の電圧や電流を検出する不図示のセンサであってもよい。 In some embodiments described above, voltage sensor 142 and current sensor 143 are provided in output circuit 131. However, at least one of the voltage sensor 142 and the current sensor 143 may be a sensor (not shown) provided in the power conditioner 10 to detect the voltage or current of the power supplied to the power conditioner 10.
1 発電システム
10 パワーコンディショナ
20 太陽電池群
22 発電部(ストリング)
100 電力調整装置
110 蓄電池
111 蓄電池セル
112 蓄電池セル群
120 スイッチャー
121 第1出力端子
122 第2出力端子
123 入力端子
124 スイッチ要素
131 出力回路
132 放電回路
133 出力許可部
141 制御回路
142 電圧センサ
143 電流センサ
DESCRIPTION OF SYMBOLS 1 Power generation system 10 Power conditioner 20 Solar cell group 22 Power generation part (string)
DESCRIPTION OF SYMBOLS 100 Power conditioning apparatus 110 Storage battery 111 Storage battery cell 112 Storage battery cell group 120 Switcher 121 1st output terminal 122 2nd output terminal 123 Input terminal 124 Switch element 131 Output circuit 132 Discharge circuit 133 Output permission part 141 Control circuit 142 Voltage sensor 143 Current sensor

Claims (15)

  1.  蓄電池と、
     パワーコンディショナに対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部の各々が接続される入力端子、前記パワーコンディショナに接続される第1出力端子、および、前記蓄電池に接続される第2出力端子を有するスイッチ要素を複数含むスイッチャーと、を備え、
     前記スイッチャーは、各々の前記スイッチ要素の操作により、各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替え可能に構成された
    ソーラ発電所用の電力調整装置。
    A storage battery,
    An input terminal provided corresponding to the power conditioner and connected to each of a plurality of power generation units including one or more solar battery cells, a first output terminal connected to the power conditioner, and the storage battery A switcher including a plurality of switch elements having a second output terminal connected to the
    The power conditioner for a solar power station, wherein the switcher is configured to be able to switch the connection destination of each of the power generation units to either the power conditioner or the storage battery by operating each of the switch elements.
  2.  前記第1出力端子と前記パワーコンディショナとの間に設けられる出力回路と、
     前記蓄電池と前記パワーコンディショナとの間に設けられる放電回路と、を備え、
     前記放電回路は、前記複数の発電部からの電力と前記蓄電池からの電力とを合成する合成回路を経ずに直接前記出力回路に接続された、請求項1に記載のソーラ発電所用の電力調整装置。
    An output circuit provided between the first output terminal and the power conditioner;
    A discharge circuit provided between the storage battery and the power conditioner;
    The power adjustment for a solar power plant according to claim 1, wherein the discharge circuit is directly connected to the output circuit without passing through a combination circuit that combines the power from the plurality of power generation units and the power from the storage battery. apparatus.
  3.  前記蓄電池から前記パワーコンディショナへの電力の出力を許可又は禁止する出力許可部を備え、
     前記スイッチャーは、前記出力許可部が前記蓄電池から前記パワーコンディショナへの電力の出力を禁止している場合にのみ、少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記パワーコンディショナに切り替えるように構成され、
     前記出力許可部は、前記スイッチャーにおいて、前記スイッチ要素の操作により、全ての前記発電部の接続先が前記蓄電池に切り替えられている場合にのみ、前記蓄電池から前記パワーコンディショナへの電力の出力を許可するように構成された、請求項1又は2に記載のソーラ発電所用の電力調整装置。
    And an output permission unit that permits or prohibits the output of power from the storage battery to the power conditioner,
    The switcher operates the at least one switch element to switch the connection destination of the power generation unit to the power condition only when the output permission unit prohibits the output of power from the storage battery to the power conditioner. Configured to switch to the
    The output permission unit outputs the power from the storage battery to the power conditioner only when the connection destinations of all the power generation units are switched to the storage battery by the operation of the switch element in the switcher. A power conditioner for a solar power plant according to claim 1 or 2, configured to allow.
  4.  前記スイッチャーは、前記スイッチ要素の操作により、前記複数の発電部の発電電力に応じて各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替えるように構成された、請求項1乃至3の何れか一項に記載のソーラ発電所用の電力調整装置。 The switcher is configured to switch the connection destination of each power generation unit to either the power conditioner or the storage battery according to the generated power of the plurality of power generation units by the operation of the switch element. A power conditioner for a solar power plant according to any of the preceding claims.
  5.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超える場合に少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記蓄電池に切り替えるように構成された、請求項1乃至4の何れか一項に記載のソーラ発電所用の電力調整装置。 The switcher switches the connection destination of the power generation unit to the storage battery by operation of at least one of the switch elements when the power supplied from the plurality of power generation units to the power conditioner exceeds a first specified value. A power conditioning device for a solar power plant according to any of the preceding claims, configured in
  6.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超えないように、前記発電部の接続先を前記蓄電池に切り替えるように操作する前記スイッチ要素の数を変更するように構成された、請求項1乃至5の何れか一項に記載のソーラ発電所用の電力調整装置。 The switcher operates the number of switch elements to switch the connection destination of the power generation unit to the storage battery such that the power supplied from the plurality of power generation units to the power conditioner does not exceed a first specified value. 6. A power conditioning unit for a solar power plant according to any of the preceding claims, configured to change.
  7.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超えない範囲内で最も多くなるように、前記発電部の接続先を前記蓄電池に切り替えるように操作する前記スイッチ要素の数を変更するように構成された、請求項1乃至6の何れか一項に記載のソーラ発電所用の電力調整装置。 The switcher operates to switch the connection destination of the power generation unit to the storage battery such that the power supplied from the plurality of power generation units to the power conditioner is the largest within the range not exceeding the first specified value. 7. A power conditioner for a solar power plant according to any one of the preceding claims, configured to change the number of said switching elements.
  8.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力が第1規定値を超える場合に少なくとも1つの前記スイッチ要素の操作により、前記発電部の接続先を前記蓄電池に切り替えた後、前記複数の発電部から前記パワーコンディショナに供給される電力が第2規定値を下回ると、少なくとも1つの前記スイッチ要素の操作により、前記接続先が前記蓄電池である前記発電部の接続先を前記パワーコンディショナに切り替えるように構成された、請求項1乃至7の何れか一項に記載のソーラ発電所用の電力調整装置。 The switcher switches the connection destination of the power generation unit to the storage battery by operation of at least one of the switch elements when the power supplied from the plurality of power generation units to the power conditioner exceeds a first specified value. After that, when the power supplied from the plurality of power generation units to the power conditioner falls below the second specified value, the connection destination is the storage battery whose connection destination is the storage battery by the operation of at least one of the switch elements. A power conditioner for a solar power plant according to any of the preceding claims, configured to switch the power conditioner to the power conditioner.
  9.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力の電圧が前記パワーコンディショナの最低起動電圧を下回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記蓄電池に切り替えるように構成された、請求項1乃至8の何れか一項に記載のソーラ発電所用の電力調整装置。 When the voltage of the power supplied from the plurality of power generation units to the power conditioner falls below the minimum start-up voltage of the power conditioner, the switcher operates the switch element to connect the connection destinations of all the power generation units. A power conditioner for a solar power plant according to any of the preceding claims, configured to switch to the storage battery.
  10.  前記スイッチャーは、前記複数の発電部から前記パワーコンディショナに供給される電力の電圧が前記パワーコンディショナの最低起動電圧を下回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記蓄電池に切り替え、その後、前記複数の発電部から前記蓄電池に供給される電力の電圧が前記パワーコンディショナの最低起動電圧を上回ると、前記スイッチ要素の操作により、全ての前記発電部の接続先を前記パワーコンディショナに切り替えるように構成された、請求項1乃至9の何れか一項に記載のソーラ発電所用の電力調整装置。 When the voltage of the power supplied from the plurality of power generation units to the power conditioner falls below the minimum start-up voltage of the power conditioner, the switcher operates the switch element to connect the connection destinations of all the power generation units. When the voltage of the power supplied from the plurality of power generation units to the storage battery exceeds the minimum starting voltage of the power conditioner, the switch element is operated to switch the connection destination of all the power generation units. 10. A power conditioner for a solar power plant according to any of the preceding claims, configured to switch the power conditioner to the power conditioner.
  11.  前記蓄電池は、蓄電池セルが複数接続された蓄電池セル群を有し、
     前記蓄電池セル群の出力電圧は、前記パワーコンディショナの入力側の対応可能電圧の範囲内である、請求項1乃至10の何れか一項に記載のソーラ発電所用の電力調整装置。
    The storage battery has a storage battery cell group in which a plurality of storage battery cells are connected,
    The power conditioning device for a solar power plant according to any one of claims 1 to 10, wherein an output voltage of the storage battery cell group is within a range of applicable voltages on the input side of the power conditioner.
  12.  前記蓄電池は、1つであり、複数の前記パワーコンディショナに電力を供給可能に構成された、請求項1乃至11の何れか一項に記載のソーラ発電所用の電力調整装置。 The power conditioning device for a solar power plant according to any one of claims 1 to 11, wherein the number of the storage battery is one, and power can be supplied to a plurality of the power conditioners.
  13.  前記蓄電池は、複数の前記パワーコンディショナに対応して複数設けられる、請求項1乃至11の何れか一項に記載のソーラ発電所用の電力調整装置。 The power conditioning device for a solar power plant according to any one of claims 1 to 11, wherein a plurality of the storage batteries are provided corresponding to a plurality of the power conditioners.
  14.  パワーコンディショナと、
     前記パワーコンディショナに対応して設けられ、1以上の太陽電池セルを各々が含む複数の発電部と、
     請求項1乃至13の何れか一項に記載のソーラ発電所用の電力調整装置と、
    を備える発電システム。
    Power conditioner,
    A plurality of power generation units provided corresponding to the power conditioner, each including one or more solar cells;
    A power conditioner for a solar power plant according to any one of the preceding claims.
    Power generation system equipped with
  15.  パワーコンディショナに対応して設けられて1以上の太陽電池セルを各々が含む複数の発電部の各々が接続される入力端子、前記パワーコンディショナに接続される第1出力端子、および、蓄電池に接続される第2出力端子を有するスイッチ要素を複数含むスイッチャーについて、各々の前記スイッチ要素の操作により、各々の前記発電部の接続先を前記パワーコンディショナ又は前記蓄電池の何れか一方に切り替える切替ステップを備える
    ソーラ発電所用の電力調整方法。
    An input terminal connected to each of a plurality of power generation units provided corresponding to the power conditioner and including one or more solar battery cells, a first output terminal connected to the power conditioner, and a storage battery Switching step of switching the connection destination of each power generation unit to either the power conditioner or the storage battery by operating each of the switch elements for a switcher including a plurality of switch elements having the second output terminal to be connected Power adjustment method for a solar power plant comprising:
PCT/JP2017/033099 2017-09-13 2017-09-13 Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant WO2019053824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/033099 WO2019053824A1 (en) 2017-09-13 2017-09-13 Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant
JP2019520914A JPWO2019053824A1 (en) 2017-09-13 2017-09-13 Power adjustment device for solar power plant, power generation system, and power adjustment method for solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033099 WO2019053824A1 (en) 2017-09-13 2017-09-13 Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant

Publications (1)

Publication Number Publication Date
WO2019053824A1 true WO2019053824A1 (en) 2019-03-21

Family

ID=65722602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033099 WO2019053824A1 (en) 2017-09-13 2017-09-13 Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant

Country Status (2)

Country Link
JP (1) JPWO2019053824A1 (en)
WO (1) WO2019053824A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251326A1 (en) * 2020-06-08 2021-12-16 AURA-Green Energy株式会社 System for using surplus power from renewable energy
CN116031955A (en) * 2023-03-31 2023-04-28 赫里欧新能源有限公司 Micro-grid type wind-solar-diesel-thermal storage intelligent complementary power supply method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023879A (en) * 2002-06-14 2004-01-22 Mitsubishi Heavy Ind Ltd Power feeding system and its control method
JP2013183488A (en) * 2012-02-29 2013-09-12 Sharp Corp Power control unit and electric power system
JP2017051083A (en) * 2015-09-02 2017-03-09 清水建設株式会社 Power generation system, power generation method and program
JP2017060375A (en) * 2015-09-14 2017-03-23 株式会社福元技研 Power supply method and system for generated electric power by renewable energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023879A (en) * 2002-06-14 2004-01-22 Mitsubishi Heavy Ind Ltd Power feeding system and its control method
JP2013183488A (en) * 2012-02-29 2013-09-12 Sharp Corp Power control unit and electric power system
JP2017051083A (en) * 2015-09-02 2017-03-09 清水建設株式会社 Power generation system, power generation method and program
JP2017060375A (en) * 2015-09-14 2017-03-23 株式会社福元技研 Power supply method and system for generated electric power by renewable energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251326A1 (en) * 2020-06-08 2021-12-16 AURA-Green Energy株式会社 System for using surplus power from renewable energy
JP2021193869A (en) * 2020-06-08 2021-12-23 AURA−Green Energy株式会社 Natural energy surplus power utilizing system
JP7096555B2 (en) 2020-06-08 2022-07-06 AURA-Green Energy株式会社 Renewable energy surplus electricity utilization system
CN116031955A (en) * 2023-03-31 2023-04-28 赫里欧新能源有限公司 Micro-grid type wind-solar-diesel-thermal storage intelligent complementary power supply method and system
CN116031955B (en) * 2023-03-31 2023-06-27 赫里欧新能源有限公司 Micro-grid type wind-solar-diesel-thermal storage intelligent complementary power supply method and system

Also Published As

Publication number Publication date
JPWO2019053824A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
EP2763265B1 (en) Power conditioner system and storage battery power conditioner
US11050260B2 (en) Smart main electrical panel for energy generation systems
US20180358839A1 (en) Multi-Function Energy Station
US8269374B2 (en) Solar panel power management system and method
US10424933B2 (en) Automatic smart transfer switch for energy generation systems
US9866022B2 (en) Power supply system
EP2487770A1 (en) Power supply system
JP5475387B2 (en) Power supply optimization device for power supply system
JP2015015855A (en) System linkage power supply device
US6541940B1 (en) Load follower using batteries exhibiting memory
WO2011152512A1 (en) Power supply control device
EP2306610A1 (en) System to store and to transmit electrical power
US9608449B2 (en) Power system and control method of the power system
WO2019053824A1 (en) Power adjusting apparatus for solar power plant, power generation system, and power adjusting method for solar power plant
JP5480343B2 (en) DC power supply system
WO2015111144A1 (en) Power supply system and energy management system used in same
WO2016084400A1 (en) Storage battery system and electricity storage method
US11456618B2 (en) Micro-grid system with un-interruptible power supply
JP2011062067A (en) Dc power distribution system
JP2022163738A (en) Power supply system
US11205911B2 (en) Energy storage system
KR20140138425A (en) Convergence power generation system using the small engine power generation
US20230198266A1 (en) Installation and Method For Supplying Power To A Subordinate Network Area
JP2022095563A (en) Power supply system
JP6247142B2 (en) Power control apparatus and power control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019520914

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924771

Country of ref document: EP

Kind code of ref document: A1