WO2019053795A1 - Solar cell module and manufacturing method for same - Google Patents

Solar cell module and manufacturing method for same Download PDF

Info

Publication number
WO2019053795A1
WO2019053795A1 PCT/JP2017/032952 JP2017032952W WO2019053795A1 WO 2019053795 A1 WO2019053795 A1 WO 2019053795A1 JP 2017032952 W JP2017032952 W JP 2017032952W WO 2019053795 A1 WO2019053795 A1 WO 2019053795A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
receiving element
receiving elements
solar cell
cell module
Prior art date
Application number
PCT/JP2017/032952
Other languages
French (fr)
Japanese (ja)
Inventor
大介 新延
邦彦 西村
時岡 秀忠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/032952 priority Critical patent/WO2019053795A1/en
Priority to TW107100181A priority patent/TWI643353B/en
Publication of WO2019053795A1 publication Critical patent/WO2019053795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module including a plurality of flat light receiving elements, and a method of manufacturing the same.
  • a solar cell module in which a plurality of solar cells having front electrodes on the front surface which is a light receiving surface and back electrodes on the back side are vertically and horizontally arranged, and solar cells adjacent to each other are connected by strip-shaped tab lines are known.
  • strip-like tab wires are generally provided extending between the front surface of one solar cell and the back surface of the other solar cell, and thus provided on the front surface.
  • the tab line to be covered will cover the light receiving surface of the solar cell.
  • the larger the cross-sectional area of this tab wire the smaller the resistance loss and the better the output efficiency. Therefore, if the width of the tab line is reduced and the thickness of the tab line is increased, incident light can be increased, and an increase in resistance loss can be suppressed.
  • the thickness of the tab wire is increased, the thermal stress generated due to the difference in linear expansion coefficient between the tab wire and the solar cell may increase at the time of solder connection, and cell breakage may occur.
  • the thickness of the tab wire is large, in the laminating step of sealing the solar cell using a resin or the like, there is a possibility that the tab wire portion becomes a starting point to cause a crack, warpage of the solar cell, or a crack of the cell The possibility of peeling of the electrode or the like increases. Since there is a limit to increasing the thickness of the tab line in this way, although there is a conflict between the resistance and the shadow area with respect to the width of the tab line, generally the tab line is It is formed to have an elongated strip shape.
  • Patent Document 1 filed by the same applicant as the present application discloses a solar cell module in which a tab wire is biased to both ends of the front surface and both ends of the back surface. According to such a configuration, since a part of the tab electrode can be extended outside the both ends of the solar cell element, even a thin tab electrode can expand the width and enlarge the cross-sectional area. It is possible to reduce the internal resistance of the
  • Patent Document 2 proposes a technique in which a plurality of rectangular solar cell elements are arranged in the longitudinal direction and connected in series by tab wires.
  • Patent Document 2 reduces the current by halving the size of the solar cell element, the conflicting relationship still exists between the tab wire resistance and the tab wire shadow area, so the tab wire There is room for improvement in the resistance and shadow area of the
  • this invention is made in view of the above problems, and it aims at providing the technique which can improve the characteristic of a solar cell module.
  • the first, second and third light-receiving elements in the form of a flat plate spaced apart from each other and arranged in a plane, and the first, second and third light-receiving elements are electrically And a strip-like first tab line connected to Each of the first, second and third light receiving elements is provided on a front surface electrode provided at an end of the front surface of the light receiving element, and on a back surface of the end of the light receiving element. And a back electrode.
  • the first tab line connects the front electrodes of the first and second light receiving elements or the back electrodes of the first and second light receiving elements in a state where the end portions of the first and second light receiving elements are opposed to each other.
  • the first tab line connects the first and second light receiving elements in parallel by connecting the front surface electrodes of the first and second light receiving elements, or connecting the back surface electrodes of the first and second light receiving elements.
  • the first or second light receiving element and the third light receiving element are connected in series by extending from the back surface electrode and connecting with the back surface electrode or the front surface electrode of the third light receiving element. According to such a configuration, the characteristics of the solar cell module can be enhanced.
  • FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1.
  • FIG. 2 is a plan view showing a configuration of a semiconductor substrate to be a plurality of light receiving elements according to Embodiment 1 viewed from the front surface side.
  • FIG. 5 is a plan view showing a configuration in which semiconductor substrates to be a plurality of light receiving elements according to Embodiment 1 are viewed from the back surface side.
  • It is sectional drawing which shows the structure of the parallel light reception element with which the solar cell module which concerns on the modification 1 is equipped. It is sectional drawing which shows another structure of the parallel light reception element with which the solar cell module which concerns on the modification 1 is equipped.
  • It is a top view which shows the structure which looked at the some light receiving element with which the solar cell module which concerns on the modification 2 is equipped from the back surface side.
  • FIG. 1 is a plan view of a part of two strings provided in the solar cell module according to the first embodiment as viewed from the front surface side which is a light receiving surface
  • FIG. 2 is a plan view of the two strings. It is the top view which looked at a part from the back side.
  • Each string 110 of the solar cell module includes parallel light receiving elements 100a to 100c.
  • the parallel light receiving elements 100a to 100c basically have the same structure. Therefore, hereinafter, when the parallel light receiving elements 100a, 100b, and 100c are not distinguished from one another, they may be described as the parallel light receiving element 100.
  • the number of parallel light receiving elements 100 can be arbitrarily changed.
  • Each parallel light receiving element 100 includes a plurality of light receiving elements to be described later and a plurality of strip-shaped tab lines 10 electrically connecting the plurality of light receiving elements.
  • the parallel light receiving element 100 is simplified and schematically shown in FIGS. 1 and 2.
  • the tab line 10 is a strip-like conductor having a length about twice that of the light receiving element 1 and extends in the Y direction in FIGS. 1 and 2.
  • the tab wire 10 has a front surface side tab wire portion 11 shown in FIG. 1 and a back surface side tab wire portion 13 shown in FIG.
  • the surface side tab wire part 11 and the back surface side tab wire part 13 may be comprised from one member which is not isolate
  • each string 110 the parallel light receiving element 100a and the parallel light receiving element 100b adjacent in the Y direction are connected in series by the tab line 10, and the parallel light receiving element 100b and the parallel light receiving element 100c adjacent in the Y direction are different tab lines 10 Are connected in series.
  • one string 110 including a plurality of parallel light receiving elements 100 in one row is configured.
  • a peripheral conductor such as a copper wire disposed along the side of the module is one end of the tab wire 10 of the adjacent string 110. Used for interconnection. Thereby, the plurality of strings 110 are connected in series to each other by the peripheral wires. Further, although not shown, one end of a lead wire, which is a lead wire for extracting power and current to the outside of the solar cell module, is connected to a peripheral wire which is an end in series connection of a plurality of strings 110 The other end of the line is taken out of the module. Furthermore, although not shown, in order to improve the weather resistance of the parallel light receiving element 100, the plurality of strings 110 may be covered by a sealing member such as an ethylene vinyl acetate resin sheet.
  • the back side of the plurality of strings 110 may be covered by a back sheet such as a weather resistant polyethylene terephthalate resin sheet or glass together with the sealing member, and the light receiving surface side of the plurality of strings 110 is sealed It may be covered by translucent members, such as glass, with a member, for example.
  • a frame, a junction box, and a module main surface material and the like used for the front and back surfaces of the solar cell module are disposed.
  • illustration is abbreviate
  • interposed by the surface side main surface material and the back surface side main surface material is supported by the flame
  • the solar cell module is configured by being drawn to the back surface from between the sealing material and the cut of the back surface side main surface material.
  • FIG. 3 is a plan view of the light receiving elements 1a to 1e included in the parallel light receiving element 100 according to the first embodiment viewed from the front surface side
  • FIG. 4 is a plan view of the light receiving elements 1a to 1e. It is the top view seen from the back side.
  • illustration of the tab line 10 is abbreviate
  • the light receiving elements 1a to 1e basically have the same structure. Therefore, hereinafter, when the light receiving elements 1a to 1e are not distinguished from one another, each may be described as the light receiving element 1.
  • the number of light receiving elements 1 can be arbitrarily changed.
  • the light receiving elements 1a to 1e included in the parallel light receiving element 100 correspond to solar cells or solar cell elements.
  • the solar cell module according to the first embodiment can also be called a light receiving element module.
  • light receiving elements formed from a semiconductor substrate such as a silicon substrate are assumed as the light receiving elements 1a to 1e, the present invention is of course not limited thereto.
  • the light receiving elements 1a to 1e on the flat plate which are the smallest units in the module, are arrayed in a plane, separated from each other.
  • the light receiving elements 1a to 1e extending in the Y direction are such that the long sides of two adjacent light receiving elements 1 are opposed to each other in the X direction different from the Y direction in the sealing member not shown.
  • the light receiving elements 1b to 1e are disposed with respect to the light receiving element 1a in the adjacent direction in which the light receiving element 1a and the light receiving element 1b are adjacent to each other.
  • the X direction in which the plurality of light receiving elements 1 included in one parallel light receiving element 100 are adjacent may or may not be orthogonal to the Y direction in which the tab line 10 in FIG. 1 extends. It is also good.
  • the first light receiving element according to the present invention can be referred to as light receiving element 1a
  • the plurality of second light receiving elements according to the present invention can be referred to as light receiving elements 1b to 1e.
  • the short width (W) of the light receiving elements 1a and 1e located at both ends is the short width (2 W) of the other light receiving elements 1b to 1d. It is half of the According to such a configuration, the effective current collection distances of the device electrodes of the respective light receiving devices 1 can be made the same.
  • Each light receiving element 1 is a surface electrode which is an element electrode disposed at the end of the front surface of the light receiving element 1 and an element electrode disposed at the back of the end of the light receiving element 1. And a back electrode.
  • the light receiving element 1 When sunlight is incident on the light receiving surface of the light receiving element 1 through the transparent glass, the light receiving element 1 performs photoelectric conversion for converting sunlight into electric power. Then, the power converted by the light receiving element 1 is taken out from the front surface electrode and the back surface electrode of the light receiving element 1. Next, the front and back electrodes will be described in detail.
  • the light receiving element 1 has a surface grid electrode 4 and a surface bus electrode 5 as surface electrodes.
  • the surface grid electrode 4 and the surface bus electrode 5 are formed, for example, by applying a silver paste containing Ag (silver) as a main component and performing heat treatment.
  • the surface bus electrode 5 is disposed along the end of the front surface of the light receiving element 1 and, in the first embodiment, extends along the edge of the solar cell parallel to the Y direction. ing.
  • the end of the front surface of the light receiving element 1 includes the end of the light receiving element 1 and an inner portion inside the end of the light receiving element 1, and the surface bus electrode 5 is the inner side. It is arranged in the part. That is, in the first embodiment, the surface bus electrode 5 is disposed slightly inside the X-direction end of the light receiving element 1. In the description of the first embodiment, the side closer to the center of the light receiving element 1 is referred to as the inside, and the far side is referred to as the outside.
  • the plurality of surface grid electrodes 4 are arranged on the front surface of the light receiving element 1 at appropriate intervals along the Y direction so that the portion covering the front surface is reduced.
  • the end portion of each surface grid electrode 4 in the X direction is connected to the surface bus electrode 5.
  • Such a surface grid electrode 4 is an electrode called a fine line electrode or a finger electrode, and is an electrode which collects a current generated in the plane of the light receiving element 1 which is a solar cell and leads it to the surface bus electrode 5. is there.
  • the surface bus electrode 5 connected to the surface grid electrode 4 functions as a current extraction electrode for extracting the current collected by the surface grid electrode 4 to the outside of the light receiving element 1 through the tab wire 10.
  • the surface grid electrode 4 in which thin lines are arranged in parallel as shown in FIG. 3 is not essential to the present invention, and instead of the surface grid electrode 4, for example, an electrode of dendritic pattern or a transparent electrode made of a transparent conductive film is used. Alternatively, an electrode in which the surface grid electrode 4 and the transparent electrode are combined may be used. In order to simplify the drawing, the number of the surface grid electrodes 4 is shown in FIG.
  • the light receiving element 1 has a back surface aluminum electrode 6 and a back surface silver electrode 7 as the back surface electrode.
  • the back surface aluminum electrode 6 is formed by applying a material containing Al (aluminum) as a main component or an aluminum paste, and the back surface silver electrode 7 by applying a silver paste and heat treating them.
  • the back surface silver electrodes 7 are disposed at the end of the back surface of the light receiving element 1, and in the first embodiment, a plurality of the back surface silver electrodes 7 are arranged along the edge of the solar cell parallel to the Y direction. More specifically, the back surface silver electrode 7 is disposed in contact with the end of the light receiving element 1 in the X direction.
  • the back surface silver electrode 7 functions as an electrode for extracting the current collected by the back surface aluminum electrode 6 to the outside of the light receiving element 1 through the tab wire 10. In order to simplify the drawing, the back surface silver electrodes 7 are illustrated in a smaller number in FIG.
  • the back surface aluminum electrode 6 is formed so as to cover the peripheral portion of the light receiving element 1 and substantially the entire back surface except the back surface silver electrode 7.
  • FIG. 5 is a plan view of parallel light receiving elements 100b and 100c adjacent in the Y direction from one string 110 of FIG. 1 and viewed from the front side.
  • the tab line 10 included in the parallel light receiving element 100b is illustrated in FIG. 5 for simplification of the drawing, the illustration of the other tab line 10 is omitted.
  • FIG. 6 is a plan view showing that the parallel light receiving element 100c of the parallel light receiving elements 100b and 100c of FIG. 5 is transmitted. That is, although the front surface electrodes of the parallel light receiving elements 100b and 100c are illustrated in FIG. 5, the front surface electrodes of the parallel light receiving elements 100b and the back surface electrodes of the parallel light receiving elements 100c are shown in FIG. Is illustrated. 5 and 6 show that the tab line 10 located on the front side of the parallel light receiving element 100b is transmitted.
  • the plurality of tab lines 10 may be described as tab lines 10a to 10d.
  • FIG. 7 is a cross-sectional view showing the configuration of the parallel light receiving element 100b, and more specifically, a cross-sectional view taken along line A-A 'of FIG.
  • the tab line 10a is provided with the end portion provided with the surface bus electrode 5 of the light receiving element 1a and the surface bus electrode 5 with the light receiving element 1b.
  • the light receiving element 1a and the light receiving element 1b are connected in parallel.
  • the tab line 10a is disposed across the gap between the end portions of the light receiving element 1a and the light receiving element 1b. Therefore, a part of the tab line 10a in the width direction is an end of the light receiving element 1 in the X direction. It protrudes outside from the side.
  • the tab line 10b opposes the end of the light receiving element 1b on which the surface bus electrode 5 is provided and the end of the light receiving element 1c on which the surface bus electrode 5 is provided.
  • the light receiving element 1b and the light receiving element 1c are connected in parallel by connecting the surface bus electrode 5 of the light receiving element 1b and the surface bus electrode 5 of the light receiving element 1c in the state where the light receiving element 1b is made.
  • the tab line 10b is disposed across the gap between the end portions of the light receiving element 1b and the light receiving element 1c. Therefore, a part of the tab line 10b in the width direction is an end of the light receiving element 1 in the X direction. It protrudes outside from the side.
  • the tab line 10c connects adjacent light receiving elements 1c and 1d in parallel
  • the tab line 10d connects adjacent light receiving elements 1d and 1e in parallel. Therefore, the first tab line according to the present invention can be called a tab line 10a, and the plurality of third tab lines according to the present invention can be called each tab line 10b to 10d.
  • a plurality of parallel light receiving elements 100 including the light receiving elements 1a to 1e and the tab lines 10a to 10d as described above are arranged in the Y direction in which the tab lines 10a to 10d extend. ing. Therefore, the unit structure according to the present invention can be called a parallel light receiving element 100.
  • FIG. 8 is a cross-sectional view showing the configuration of parallel light receiving elements 100b and 100c. Specifically, it passes through surface bus electrode 5, back aluminum electrode 6 and back silver electrode 7 without passing through surface grid electrode 4 of FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB ′.
  • FIG. 9 is a cross-sectional view showing the configuration of the parallel light receiving elements 100b and 100c, and more specifically, a cross-sectional view taken along line C-C 'of FIG. Note that FIG. 8 shows an example of the incident direction S of sunlight incident on the light receiving element 1.
  • the tab line 10a of the parallel light receiving element 100b connects the light receiving elements 1a and 1b in parallel by connecting the surface bus electrodes 5 of the light receiving elements 1a and 1b of the parallel light receiving element 100b.
  • the tab line 10a of the parallel light receiving element 100b extends from the front surface bus electrode 5 and is connected to the back surface silver electrode 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100c.
  • the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100b and the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100c are connected in series.
  • the first unit structure according to the present invention can be called a parallel light receiving element 100b
  • the second unit structure according to the present invention can be called a parallel light receiving element 100c.
  • the three light receiving elements can be called the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100c.
  • the tab line 10a of the parallel light receiving element 100b also connects the back surface silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100c in parallel.
  • the light receiving elements 1a and 1b of the parallel light receiving element 100b are connected in parallel with each other by the tab line 10a of the parallel light receiving element 100b, and the light receiving elements 1a and 1b of the parallel light receiving element 100c are connected in parallel with each other
  • the light receiving elements 1a and 1b of the parallel light receiving element 100b and the light receiving elements 1a and 1b of the parallel light receiving element 100c are connected in series.
  • the tab line 10b of the parallel light receiving element 100b is an adjacent light receiving element 1b by connecting the surface bus electrodes 5 of the adjacent light receiving elements 1b and 1c of the parallel light receiving element 100b. , 1c are connected in parallel.
  • the tab line 10b of the parallel light receiving element 100b extends from the front surface bus electrode 5 and is connected in parallel to the back surface silver electrode 7 of the adjacent light receiving elements 1b and 1c of the parallel light receiving element 100c.
  • the light receiving element 1b or the light receiving element 1c of the light receiving element 100b and the light receiving element 1b or the light receiving element 1c of the parallel light receiving element 100c are connected in series.
  • the tab lines 10c and 10d are also connected in series similar to the tab lines 10a and 10b.
  • the tab line 10a of the parallel light receiving element 100b that is, the front side tab line portion 11 of the upper tab line 10a in FIG. 7, connects the front surface bus electrodes 5 of the light receiving elements 1a and 1b of the parallel light receiving element 100b.
  • the tab line 10a of the parallel light receiving element 100a that is, the back side tab line portion 13 of the tab line 10a on the lower side of FIG. 7, connects the back silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100b.
  • the lower tab line 10a in FIG. 7 connects the back surface silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100b, and extends from the back surface silver electrode 7 to be a parallel light receiving element
  • the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100b and the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100a are connected in series by connecting with the surface bus electrodes 5 of the light receiving elements 1a and 1b 100a.
  • the lower tab wire 10a of FIG. 7 is also disposed across the gap between the light receiving element 1a and the end of the light receiving element 1b.
  • the light receiving elements 1a and 1b of the parallel light receiving element 100a are arranged on the opposite side of the light receiving elements 1a and 1b of the parallel light receiving element 100c with respect to the light receiving elements 1a and 1b of the parallel light receiving element 100b.
  • the fourth light receiving element according to the present invention can be called the light receiving elements 1a and 1b of the parallel light receiving element 100a.
  • the second tab line according to the present invention can be referred to as the tab line 10a of the parallel light receiving element 100a, that is, the tab line 10a on the lower side of FIG.
  • the surface bus electrode 5 of the parallel light receiving element 100b and the back surface of the parallel light receiving element 100c As shown in FIGS. 7 and 8, between the back surface side tab wire portion 13 of the tab wire 10 and the front surface side tab wire portion 11, the surface bus electrode 5 of the parallel light receiving element 100b and the back surface of the parallel light receiving element 100c. A height difference occurs in the thickness direction Z of the light receiving element 1 with the silver electrode 7. Since the front surface bus electrode 5 and the back surface silver electrode 7 are thinner than the thickness of the light receiving element 1, this height difference is mainly due to the thickness of the light receiving element 1.
  • a gap of the same degree as the difference that is, a gap of the same degree as the thickness of the light receiving element 1 is generated.
  • a gap of the same degree as the thickness of the light receiving element 1 is generated.
  • about 2 to 10 mm is assumed as the gap.
  • a sealing resin, an insulating material or the like of the module may be disposed in this gap, or may remain as a void.
  • the tab wire 10 connects the front surface electrodes of the adjacent light receiving elements 1 or the back surface electrodes in parallel, and the front surface electrode or the front electrode It extends from the back surface electrode and is connected to the other light receiving elements 1. That is, each tab line 10 is connected in parallel so as to bridge the front surface bus electrodes 5 of the light receiving surface of the light receiving element 1 adjacent to each other in the X direction or the back surface silver electrodes 7 of the rear surface. As a result, a part of the tab line 10 in the width direction protrudes outward from the edge of the light receiving element 1 extending in the Y direction.
  • the tab line 10 since the tab line 10 has a portion protruding from the light receiving element 1 when viewed from the light incident direction, the shadow area formed on the light receiving element 1 by the tab line 10 should be reduced by the protruding amount. Can.
  • the conductive resistance of the tab wire 10 can be reduced by enlarging the protruding portion of the tab wire 10 to a certain extent. As described above, the conversion efficiency of the solar cell can be enhanced, and the light receiving area of the light receiving element 1 can be increased, whereby the conductive resistance of the tab wire 10 can be reduced.
  • the resistance often becomes higher than the back surface silver electrode 7. Therefore, in the prior art, there is a problem that the current generated by the photovoltaic generation is significantly attenuated while flowing in the entire back surface. Further, not only the back surface aluminum electrode 6 but also a thin metal film, a transparent conductive film or the like as the back surface electrode causes the same problem. In particular, in the prior art, the front and back electrodes are disposed over a relatively long distance from the tab line at one end of the light receiving element to the tab line at the other end.
  • the plurality of tab lines 10 can be disposed at relatively short intervals on the light receiving surface or the back surface of the light receiving element 1. The distance from any position to the tab line 10 can be approximately reduced. For this reason, current collection resistance can be reduced.
  • the conductive resistance of the tab line 10 can be substantially reduced.
  • the surface electrode includes the surface bus electrode 5 disposed along the end of the light receiving element 1, and the tab wire 10 connects the surface bus electrodes 5 to each other. According to such a configuration, it is possible to increase the photoelectric conversion efficiency of the light receiving element 1 and the solar cell module. The reason for this will be described at the end of the first embodiment.
  • the light receiving element 1 holds the state in which the upper tab line 10 in FIG. 7 and the lower tab line 10 in FIG. 7 are separated. Therefore, when the upper tab line 10 in FIG. 7 and the lower tab line 10 in FIG. 7 are viewed from the light incident direction, even if the tab lines 10 are arranged to overlap with each other, these tab lines 10 It is possible to suppress short circuit between each other.
  • the plurality of tab lines 10 can be disposed at relatively short intervals, so the distance from any position on the light receiving surface and the back surface to the tab line 10 It can be roughly reduced. For this reason, current collection resistance can be reduced.
  • the surface bus electrode 5 is disposed inside the end of the light receiving element 1.
  • the distance between the surface bus electrode 5 and the back surface silver electrode 7 along the substrate surface of the light receiving element 1, that is, along the substrate surface of the light receiving element 1 between the surface bus electrode 5 and the back surface silver electrode 7 The distance can be increased. Therefore, a bonding member such as solder connecting the front surface side tab wire portion 11 and the front surface bus electrode 5 and a bonding member such as solder connecting the rear surface side tab wire portion 13 and the rear surface silver electrode 7 can be short circuited Can be reduced.
  • the back surface silver electrode 7 may be disposed inside the end of the light receiving element 1 as in the modification described later.
  • the magnitudes of the currents of the respective light receiving elements 1 do not have to be the same. Therefore, as shown in FIGS. 3 and 4, the light receiving area of at least one of the light receiving elements 1a to 1e may be different from the light receiving area of the other light receiving element. As a result, the design freedom of the parallel light receiving element 100 can be increased.
  • the light receiving elements 1a to 1e may be formed by dividing one semiconductor substrate.
  • FIG. 10 is a plan view of the semiconductor substrate 120 before cutting, which is the base of the light receiving elements 1a to 1e of the first embodiment, viewed from the front surface side, and FIG. It is the top view seen from the back side.
  • the light receiving elements 1a to 1e are formed by dividing one semiconductor substrate 120.
  • a single semiconductor substrate 120 a single crystal silicon solar substrate having a front electrode and a back electrode described above on a single crystal silicon substrate which is a semiconductor wafer obtained by slicing a cylindrical single crystal ingot having a diameter of about 200 mm.
  • a substrate provided with a battery can be used.
  • the semiconductor substrate 120 for example, a flat substrate having a thickness of 0.1 to 0.4 mm having corner crop with arcs at four corners and a pseudo-square having a size of 100 to 156 mm may be used. it can.
  • five light receiving elements 1 are formed by cutting such a semiconductor substrate 120 between the front surface bus electrodes 5 of FIG. 10 and the back surface silver electrode 7 of FIG. 11 using a laser or the like. Do.
  • the parallel light receiving element which is one unit in the extending direction of the string 110 is measured by measuring the power generation characteristics and the like of one light receiving device formed on one semiconductor substrate 120 before division. Power generation characteristics such as short circuit current density can be predicted for 100. For this reason, since it is not necessary to measure the power generation characteristics of the plurality of light receiving elements 1 after division one by one, it is possible to reduce the effort of the characteristic evaluation.
  • the string 110 in FIG. 1 is not necessarily formed by serially connecting a plurality of light receiving elements 1 connected in parallel, and for example, formed by connecting a plurality of light receiving elements 1 connected in series in parallel May be
  • the tab wire 10 shown in FIG. 1 is, for example, stamped out a strip-like copper foil having a thickness of 0.01 to 0.5 mm, preferably 0.08 to 0.5 mm, and a width of 0.5 to 20 mm. It forms by performing solder plating which consists of silver and tin on both surfaces of the copper foil concerned.
  • solder plating which consists of silver and tin on both surfaces of the copper foil concerned.
  • the light receiving element 1 is heated to a temperature close to 300 ° C. to melt the silver tin plating plated on the copper foil of the tab wire 10, thereby the tab wire 10 and the front and back electrodes And can be connected.
  • the dissolution of plating may be performed by spot heating.
  • the tab wire 10 is not necessarily a member plated with silver and tin, and may be, for example, a tin-plated copper wire that does not contain silver. Moreover, the tab wire 10 may use the member by which plating is not given to the surface. In this case, for example, the tab wire 10 may be connected to the front electrode and the back electrode by a solder, a conductive adhesive, a conductive polymer, a conductive tape, welding, pressure bonding, or the like having a composition other than the above composition. . When the tab wire 10 and the back surface silver electrode 7 are connected by solder, the back surface silver electrode 7 is preferably made of a metal material mainly containing Ag.
  • the solder is applied only to the portion where the tab wire 10 and the front surface bus electrode 5 and the back surface silver electrode 7 are connected.
  • the solder may be provided so as to cover the whole of the front and back surfaces of the tab wire 10.
  • the tab line 10 may be connected to the surface bus electrode 5 over the entire length of the surface bus electrode 5 or may be partially connected to the surface bus electrode 5.
  • the pair of symmetrical tab lines 10 is extended in the Y direction and disposed at both ends of the light receiving element 1.
  • the same effect can be obtained by providing only at one end.
  • the extending direction of the tab line 10 and the extending direction of the string 110 do not have to be parallel to each other, and are slightly adjusted in accordance with the shape of the light receiving element 1, that is, the solar cell and the arrangement interval between the light receiving elements 1 May be
  • the back surface side tab line portion 13 of the tab line 10 does not necessarily have to be parallel to the edge of the light receiving element 1 and may be inclined at 0 to 20 degrees with respect to the edge.
  • an electrode pattern having a width of about 0.05 to 0.2 mm and extending in a predetermined direction has a predetermined period of 0.5 to 2.5 mm and It is arranged in the orthogonal direction.
  • the surface bus electrode 5 and the tab line 10 are formed, for example, to extend on the light receiving element 1 in the direction orthogonal to the surface grid electrode 4.
  • the surface bus electrode 5 is connected to the tab wire 10, it is often thicker than the surface grid electrode 4 and often has a width of, for example, about 0.1 mm to several mm.
  • the tab wire 10 and all the surface grid electrodes 4 may be electrically connected, and the surface bus electrode 5 does not necessarily have to be provided. Even when the surface bus electrode 5 is provided, the surface bus electrode 5 does not necessarily have to be a continuous electrode, and furthermore, does not have to be a thicker electrode than the surface grid electrode 4.
  • the back surface aluminum electrode 6 containing Al as a main component covers substantially the entire back surface of the light receiving element 1.
  • the invention is not limited to this, and instead of the back surface aluminum electrode 6, a metal electrode containing Ag as a main component may be used.
  • the tab wire 10 can be directly connected to the back surface aluminum electrode 6, so the back surface silver electrode 7 need to be disposed. Absent.
  • an electrode made of a material other than silver may be used.
  • a metal electrode formed in a partial region of the back surface may be used similarly to the front surface grid electrode 4 and the front surface bus electrode 5, or transparent formed on substantially the entire surface of the metal electrode and the back surface.
  • An electrode combined with a conductive electrode may be used.
  • the back surface of the light receiving element 1 can also be used as the light receiving surface, the light receiving element 1 can be used as a double-sided light receiving element. In the configuration, it is desirable that the width and the separation of the back electrode be different from the width and the separation of the surface electrode.
  • the planar shapes of the light receiving surface as the front surface and the non-light receiving surface as the back surface are substantially rectangular, and the thickness is, for example, 0.1 to 0.
  • a semiconductor substrate having a thin plate-like pn junction of 0.5 mm is used.
  • the shape of the semiconductor substrate 120 shown in FIG. 10 and FIG. 11 is a shape in which a part of a square corner is cut off, it is not limited thereto, for example, a part of a rectangular corner is cut off It may be of any shape.
  • a crystalline silicon light receiving element having a pn junction, a gallium arsenide light receiving element, or the like can be used as the light receiving element 1 formed by dividing the semiconductor substrate 120 and the semiconductor substrate 120.
  • the pn junction may be formed by impurity diffusion or may be a heterojunction such as amorphous silicon.
  • the same manufacturing method as that disclosed in JP 2013-021172 A can be used.
  • the current extraction electrode is provided in the area on the back side of the surface bus electrode which is an area where power is not generated so much by blocking light by the surface bus electrode. Thereby, it is possible to reduce the efficiency loss by the current extraction electrode.
  • a configuration has been proposed in which two tab lines disposed at both ends of the light receiving element are disposed to protrude from both ends of the light receiving element.
  • the tab wire connecting the light receiving surface side and the back surface side is bent at the light receiving element between, so that the connection point between the light receiving element and the tab wire does not overlap on the light receiving surface side and the back surface side I have to.
  • the tab wire on the back side can only be connected to a local portion of the light receiving element. Therefore, the length of the back electrode whose resistance is larger than that of the tab wire, that is, the current collection distance through which the current generated by the light receiving element passes until it is collected by the tab wire, becomes relatively large.
  • the length of the back surface electrode is increased. As a result, the influence of the increase of the current collection distance in the X direction which is the width direction of the string 110 becomes apparent.
  • the current collecting distance at the element electrode that is, the distance between the tab line and the tab line in the X direction is about 38 mm. It becomes.
  • the current collection distance at the element electrode is 70 mm or more.
  • the increase of the current collection distance in such an element electrode and hence the increase of the current collection resistance is a result even if the gain is enhanced by the reduction of the shadowed area by arranging the tab wires at both ends of the light receiving element. It sometimes reduced the characteristics of the module.
  • Such an increase in current collection resistance occurs not only in the back surface electrode but also in the front surface electrode. In particular, the surface electrode is often formed to be thin, so that the deterioration in characteristics becomes more remarkable than in the back surface electrode.
  • the light receiving area of the light receiving element 1 is increased, the conductive resistance of the tab wire 10 is reduced, and the current collecting resistance is reduced. Can.
  • the tab wire extends in the direction of extension of the string 110 in order to reduce the current collection resistance in the plane of the light receiving element.
  • the light receiving element is disposed so as to be substantially longitudinally cut from one end to the other end.
  • the tab lines on the light receiving surface are disposed at both ends, and the both tab lines are both arranged to longitudinally cut the light receiving element in order to reduce current collection resistance in the surface of the light receiving element.
  • the tab line on the light receiving surface side and the tab line on the back surface side are disposed at different positions in plan view.
  • a light receiving element whose back surface is passivated there are a configuration in which the material of the current collection electrode and the material of the current extraction electrode are the same and the patterns are different, and a configuration in which the current collection electrode and the current extraction electrode are integrated.
  • the current collection electrode and the current extraction electrode are preferably provided below the bus electrode on the front surface side, which is an area where power is not generated very much.
  • the back surface silver electrode 7 which is a current extraction electrode is disposed in a portion to be shaded of the front surface bus electrode 5.
  • the resistance loss due to the back surface silver electrode 7 can be reduced, and the power generation efficiency of the light receiving element 1 and the solar cell module can be enhanced compared to the prior art.
  • FIG. 12 is a cross-sectional view showing the configuration of the parallel light receiving element 100b according to the first modification, and more specifically, a cross-sectional view taken along the line AA 'of FIG.
  • the insulating member 14 is added, and the insulating member 14 is disposed in at least a part of the gap between the upper tab wire 10 of FIG. 12 and the lower tab wire 10 of FIG. It is done.
  • the insulation between the upper and lower tab lines 10 can be enhanced.
  • the insulating member 14 may be disposed in the middle of the upper and lower tab wires 10 as shown in FIG. 12 or may be disposed in proximity to the upper tab wire 10 as shown in FIG. Although not shown, it may be disposed close to the lower tab wire 10.
  • FIG. 14 is a plan view of the light receiving elements 1a to 1e according to the second modification as viewed from the back side as in FIG. Unlike the configuration according to the first embodiment shown in FIG. 4, the back surface silver electrode 7 according to the present modification 2 is disposed at the inner side inside the end of the light receiving element 1 like the surface bus electrode 5. ing. According to such a configuration, the distance between the front surface bus electrode 5 and the rear surface silver electrode 7 along the substrate surface of the light receiving element 1 can be increased.
  • a bonding member such as solder connecting the front surface side tab wire portion 11 and the front surface bus electrode 5 and a bonding member such as solder connecting the rear surface side tab wire portion 13 and the rear surface silver electrode 7 can be short circuited
  • the conductivity can be reduced and the insulation can be enhanced.
  • FIG. 15 is a cross-sectional view showing the configuration of the parallel light receiving element 100b according to the third modification, and more specifically, a cross-sectional view taken along the line AA 'in FIG.
  • the insulating member 14 described in the first modification is also added, but the insulating member 14 may not be added.
  • the light guiding member 15 is added, and the light guiding member 15 is disposed on the surface of the portion of the tab wire 10 connected to the surface electrode opposite to the surface connected to the surface electrode. It is done.
  • the light guide member 15 includes, for example, a light reflector or a light scatterer. According to such a configuration, the light directed to the tab line 10 can be guided to the light receiving surface of the light receiving element 1 by the light guide member 15. This can further enhance the power generation efficiency.
  • ⁇ Modification 4> 16 and 17 are a plan view of the parallel light receiving elements 100b and 100c according to the fourth modification viewed from the front side and a plan view from the back side, and one string 110 to Y of FIG. It corresponds to the extraction of the parallel light receiving elements 100b and 100c adjacent in the direction.
  • the tab lines 10 included in the parallel light receiving element 100b are illustrated in FIG. 16 for simplification of the drawing, the other tab lines 10 are not illustrated.
  • the width W1 of the portion of the tab line 10 connected to the front surface electrode of the light receiving elements 1a to 1e is narrower than the width W2 of the portion connected to the back surface electrode of the light receiving elements 1a to 1e.
  • the portion of the tab wire 10 connected to the surface side blocks light incident on the light receiving element, so the narrower the width of the tab wire 10, the higher the power generation efficiency.
  • the width of the tab line 10 on the back side is narrowed as well as the width of the tab line 10 on the front side, the connection area of the tab line 10 and the silver electrode 7 on the back side narrows, and the light receiving elements 1a to 1e and the tab line 10 The connection strength with is reduced.
  • connection strength causes a reduction in the yield rate when producing strings and long-term reliability of the solar cell module. Therefore, in the fourth modification, the width W2 of the portion of the tab wire 10 connected to the back surface side is increased. As a result, the connection area between the tab wire 10 and the back surface silver electrode 7 can be increased, and the connection strength between the light receiving elements 1a to 1e and the tab wire 10 can be kept high.
  • the portion of the tab wire 10 connected to the back surface side does not block the light incident on the light receiving elements 1a to 1e, so that the power generation efficiency does not decrease, and the connection area between the tab wire 10 and the back surface silver electrode 7 is wide. Therefore, the contact resistance between the tab wire 10 and the back surface silver electrode 7 can be reduced.
  • the embodiment can be appropriately modified or omitted.

Abstract

The purpose of the present invention is to provide a technique that is capable of enhancing characteristics of a solar cell module. This solar cell module is provided with: first, second, and third light-receiving elements; and a belt-like first tab wire that electrically connects the first, second, and third light-receiving elements. The first tab wire connects, in parallel, the first and second light-receiving elements by connecting front surface electrodes or back surface electrodes of the first and second light-receiving elements to each other, and connects, in series, the first or second light-receiving element and the third light-receiving element by extending from the front surface electrodes or the back surface electrodes to be connected to a back surface electrode or a front surface electrode of the third light-receiving element.

Description

太陽電池モジュール及びその製造方法Solar cell module and method of manufacturing the same
 本発明は、平板状の複数の受光素子を備える太陽電池モジュール、及び、その製造方法に関する。 The present invention relates to a solar cell module including a plurality of flat light receiving elements, and a method of manufacturing the same.
 受光面であるおもて面に表面電極を有し、裏面に裏面電極を有する太陽電池が縦横に複数配列され、互いに隣接する太陽電池同士が、帯状のタブ線によって接続された太陽電池モジュールが知られている。 A solar cell module in which a plurality of solar cells having front electrodes on the front surface which is a light receiving surface and back electrodes on the back side are vertically and horizontally arranged, and solar cells adjacent to each other are connected by strip-shaped tab lines Are known.
 このような太陽電池モジュールにおいて、帯状のタブ線は、一般に1つの太陽電池のおもて面と、他の太陽電池の裏面との間に延びて配置されているので、おもて面に設けられるタブ線は、太陽電池の受光面を覆うことになる。しかしながら、タブ線の幅をある程度狭くすることにより、太陽光がタブ線に遮られる影面積を低減することができ、受光面に入射する入射光を増やすことができる。一方、このタブ線は、断面積が大きい程、抵抗ロスが小さくなり出力効率が改善する。そのため、タブ線の幅を小さくし、かつタブ線の厚さを大きくすれば、入射光を増やすことができ、かつ、抵抗ロスの増大を抑制することが可能である。 In such a solar cell module, strip-like tab wires are generally provided extending between the front surface of one solar cell and the back surface of the other solar cell, and thus provided on the front surface. The tab line to be covered will cover the light receiving surface of the solar cell. However, by narrowing the width of the tab line to a certain extent, it is possible to reduce the shadow area in which sunlight is blocked by the tab line, and it is possible to increase the incident light incident on the light receiving surface. On the other hand, the larger the cross-sectional area of this tab wire, the smaller the resistance loss and the better the output efficiency. Therefore, if the width of the tab line is reduced and the thickness of the tab line is increased, incident light can be increased, and an increase in resistance loss can be suppressed.
 しかしながら、タブ線の厚さを大きくすると、半田接続時に、タブ線と太陽電池との線膨張係数差によって発生する熱ストレスが大きくなってしまい、セル割れが発生する可能性がある。また、タブ線の厚みが厚い場合は、樹脂等を用いて太陽電池を封止するラミネート工程において、タブ線部分が起点となって割れが発生する可能性や、太陽電池の反り、セルの割れ、または電極の剥がれなどが発生する可能性が高くなる。このようにタブ線の厚さを大きくすることには限界があるので、タブ線の幅に関して抵抗と影面積との間には相克関係があるけれども、一般的に、タブ線は、一定の薄さで細長い帯状の形状を有するように形成されている。 However, if the thickness of the tab wire is increased, the thermal stress generated due to the difference in linear expansion coefficient between the tab wire and the solar cell may increase at the time of solder connection, and cell breakage may occur. Moreover, when the thickness of the tab wire is large, in the laminating step of sealing the solar cell using a resin or the like, there is a possibility that the tab wire portion becomes a starting point to cause a crack, warpage of the solar cell, or a crack of the cell The possibility of peeling of the electrode or the like increases. Since there is a limit to increasing the thickness of the tab line in this way, although there is a conflict between the resistance and the shadow area with respect to the width of the tab line, generally the tab line is It is formed to have an elongated strip shape.
 ところで、タブ線の影面積を低減するためには、タブ線を太陽電池素子の両端に偏らせて、太陽電池素子の中央部を広くすることも有効である。本願と同じ出願人によって出願された特許文献1には、タブ線をおもて面の両端及び裏面の両端に偏らせた太陽電池モジュールが開示されている。このような構成によれば、タブ電極の一部を太陽電池素子の両端よりも外側に張り出させることができるので、薄いタブ電極でも幅を広げて断面積を大きくすることができ、集電の内部抵抗を低減することが可能になる。 By the way, in order to reduce the shadow area of the tab line, it is also effective to bias the tab line to both ends of the solar cell element to widen the central portion of the solar cell element. Patent Document 1 filed by the same applicant as the present application discloses a solar cell module in which a tab wire is biased to both ends of the front surface and both ends of the back surface. According to such a configuration, since a part of the tab electrode can be extended outside the both ends of the solar cell element, even a thin tab electrode can expand the width and enlarge the cross-sectional area. It is possible to reduce the internal resistance of the
 また特許文献2には、複数の長方形の太陽電池素子を、その長手方向に並べた状態で、それらをタブ線によって直列接続するという技術が提案されている。 Patent Document 2 proposes a technique in which a plurality of rectangular solar cell elements are arranged in the longitudinal direction and connected in series by tab wires.
特開2009-260240号公報JP, 2009-260240, A 国際公開第2012/043770号International Publication No. 2012/043770
 特許文献1の太陽電池モジュールでは、おもて面のタブ線を両端に配置した場合に、裏面のタブ線も同様に両端に配置する。しかしながら、このような配置では、受光素子で生成した電流がタブ線に集電されるまでに通過する集電距離が比較的大きくなってしまい、集電抵抗が大きくなってしまうという課題があった。特に、半導体基板の面積が大きくなると、裏面電極の長さが大きくなり、その結果として、集電距離が大きくなってしまうことによる影響が顕在化する。 In the solar cell module of Patent Document 1, when the tab lines on the front surface are disposed at both ends, the tab lines on the back surface are similarly disposed at both ends. However, in such an arrangement, there is a problem that the current collection distance which passes by the time the current generated by the light receiving element is collected to the tab wire becomes relatively large, and the current collection resistance becomes large. . In particular, when the area of the semiconductor substrate is increased, the length of the back surface electrode is increased, and as a result, the influence due to the increase of the current collection distance becomes apparent.
 また、特許文献2の技術では、太陽電池素子のサイズを半分にして電流を減らしているが、依然として、タブ線の抵抗とタブ線の影面積との間に相克関係が存在するため、タブ線の抵抗及び影面積に改善の余地があった。 Further, although the technology of Patent Document 2 reduces the current by halving the size of the solar cell element, the conflicting relationship still exists between the tab wire resistance and the tab wire shadow area, so the tab wire There is room for improvement in the resistance and shadow area of the
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、太陽電池モジュールの特性を高めることが可能な技術を提供することを目的とする。 Then, this invention is made in view of the above problems, and it aims at providing the technique which can improve the characteristic of a solar cell module.
 本発明に係る太陽電池モジュールは、互いに離間して平面状に配列された平板状の第1、第2及び第3受光素子と、前記第1、前記第2及び前記第3受光素子を電気的に接続する帯状の第1タブ線とを備える。前記第1、前記第2及び前記第3受光素子のそれぞれは、当該受光素子のおもて面の端部に配設された表面電極と、当該受光素子の前記端部の裏面に配設された裏面電極とを有する。前記第1タブ線は、前記第1及び前記第2受光素子の前記端部を対向させた状態で、前記第1及び前記第2受光素子の前記表面電極同士、または、前記裏面電極同士を接続することにより前記第1及び前記第2受光素子を並列接続するとともに、当該表面電極または当該裏面電極から延在して前記第3受光素子の前記裏面電極または前記表面電極と接続することにより前記第1または前記第2受光素子と前記第3受光素子とを直列接続する。 In the solar cell module according to the present invention, the first, second and third light-receiving elements in the form of a flat plate spaced apart from each other and arranged in a plane, and the first, second and third light-receiving elements are electrically And a strip-like first tab line connected to Each of the first, second and third light receiving elements is provided on a front surface electrode provided at an end of the front surface of the light receiving element, and on a back surface of the end of the light receiving element. And a back electrode. The first tab line connects the front electrodes of the first and second light receiving elements or the back electrodes of the first and second light receiving elements in a state where the end portions of the first and second light receiving elements are opposed to each other. By connecting the first and second light receiving elements in parallel, and extending from the front surface electrode or the back surface electrode to connect to the back surface electrode or the front surface electrode of the third light receiving element. 1 or the second light receiving element and the third light receiving element are connected in series.
 本発明によれば、第1タブ線は、第1及び第2受光素子の表面電極同士、または、裏面電極同士を接続することにより第1及び第2受光素子を並列接続するとともに、当該表面電極または当該裏面電極から延在して第3受光素子の裏面電極または表面電極と接続することにより第1または第2受光素子と第3受光素子とを直列接続する。このような構成によれば、太陽電池モジュールの特性を高めることができる。 According to the present invention, the first tab line connects the first and second light receiving elements in parallel by connecting the front surface electrodes of the first and second light receiving elements, or connecting the back surface electrodes of the first and second light receiving elements. Alternatively, the first or second light receiving element and the third light receiving element are connected in series by extending from the back surface electrode and connecting with the back surface electrode or the front surface electrode of the third light receiving element. According to such a configuration, the characteristics of the solar cell module can be enhanced.
 本発明の目的、特徴、態様及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
実施の形態1に係る太陽電池モジュールが備えるストリングをおもて面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the string with which the solar cell module which concerns on Embodiment 1 is equipped from the front surface side. 実施の形態1に係る太陽電池モジュールが備えるストリングを裏面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the string with which the solar cell module which concerns on Embodiment 1 is equipped from the back surface side. 実施の形態1に係る太陽電池モジュールが備える複数の受光素子をおもて面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the several light receiving element with which the solar cell module which concerns on Embodiment 1 is equipped from the front surface side. 実施の形態1に係る太陽電池モジュールが備える複数の受光素子を裏面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the several light receiving element with which the solar cell module which concerns on Embodiment 1 is equipped from the back surface side. 実施の形態1に係る太陽電池モジュールが備える並列受光素子をおもて面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the parallel light receiving element with which the solar cell module which concerns on Embodiment 1 is equipped from the front surface side. 実施の形態1に係る太陽電池モジュールが備える並列受光素子をおもて面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the parallel light receiving element with which the solar cell module which concerns on Embodiment 1 is equipped from the front surface side. 実施の形態1に係る太陽電池モジュールが備える並列受光素子の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1. 実施の形態1に係る太陽電池モジュールが備える並列受光素子の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1. 実施の形態1に係る太陽電池モジュールが備える並列受光素子の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of a parallel light receiving element provided in the solar cell module according to Embodiment 1. 実施の形態1に係る複数の受光素子となる半導体基板をおもて面側から見た構成を示す平面図である。FIG. 2 is a plan view showing a configuration of a semiconductor substrate to be a plurality of light receiving elements according to Embodiment 1 viewed from the front surface side. 実施の形態1に係る複数の受光素子となる半導体基板を裏面側から見た構成を示す平面図である。FIG. 5 is a plan view showing a configuration in which semiconductor substrates to be a plurality of light receiving elements according to Embodiment 1 are viewed from the back surface side. 変形例1に係る太陽電池モジュールが備える並列受光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the parallel light reception element with which the solar cell module which concerns on the modification 1 is equipped. 変形例1に係る太陽電池モジュールが備える並列受光素子の別構成を示す断面図である。It is sectional drawing which shows another structure of the parallel light reception element with which the solar cell module which concerns on the modification 1 is equipped. 変形例2に係る太陽電池モジュールが備える複数の受光素子を裏面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the some light receiving element with which the solar cell module which concerns on the modification 2 is equipped from the back surface side. 変形例3に係る太陽電池モジュールが備える並列受光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the parallel light reception element with which the solar cell module which concerns on the modification 3 is equipped. 変形例4に係る太陽電池モジュールが備える複数の受光素子をおもて面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the several light receiving element with which the solar cell module which concerns on the modification 4 is equipped from the front surface side. 変形例4に係る太陽電池モジュールが備える複数の受光素子を裏面側から見た構成を示す平面図である。It is a top view which shows the structure which looked at the some light receiving element with which the solar cell module which concerns on the modification 4 is equipped from the back surface side.
 以下に、本発明にかかる太陽電池モジュールの実施の形態を、図面を用いて説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。さらに、実施の形態において同じ構成要素は同じ符号を付し、ある実施の形態において説明した構成要素については、別の実施の形態においてその詳細な説明を略すものとする。また、以下で示すサイズは一例である。 Below, embodiment of the solar cell module concerning this invention is described using drawing. In addition, this invention is not limited to the following description, It can change suitably in the range which does not deviate from the summary of this invention. Moreover, in the drawings, the scale of each member may be different from the actual one for easy understanding. The same applies to each drawing. Furthermore, in the embodiment, the same component will be denoted by the same reference numeral, and the component described in one embodiment will be omitted in the detailed description in another embodiment. Moreover, the sizes shown below are an example.
 <実施の形態1>
 図1は、本実施の形態1による太陽電池モジュールが備える2本のストリングの一部分を、受光面であるおもて面側から見た平面図であり、図2は、当該2本のストリングの一部分を、裏面側から見た平面図である。
Embodiment 1
FIG. 1 is a plan view of a part of two strings provided in the solar cell module according to the first embodiment as viewed from the front surface side which is a light receiving surface, and FIG. 2 is a plan view of the two strings. It is the top view which looked at a part from the back side.
 太陽電池モジュールの各ストリング110は、並列受光素子100a~100cを備える。並列受光素子100a~100cは、基本的に同じ構造を有している。このため、以下、並列受光素子100a,100b,100cを区別しない場合には、それぞれを並列受光素子100と記して説明することもある。なお、並列受光素子100の数は任意に変更可能である。 Each string 110 of the solar cell module includes parallel light receiving elements 100a to 100c. The parallel light receiving elements 100a to 100c basically have the same structure. Therefore, hereinafter, when the parallel light receiving elements 100a, 100b, and 100c are not distinguished from one another, they may be described as the parallel light receiving element 100. The number of parallel light receiving elements 100 can be arbitrarily changed.
 各並列受光素子100は、後述する複数の受光素子と、複数の受光素子を電気的に接続する複数の帯状のタブ線10とを含んでいる。なお、図1及び図2では並列受光素子100は簡素化されて模式的に示されている。 Each parallel light receiving element 100 includes a plurality of light receiving elements to be described later and a plurality of strip-shaped tab lines 10 electrically connecting the plurality of light receiving elements. The parallel light receiving element 100 is simplified and schematically shown in FIGS. 1 and 2.
 タブ線10は、受光素子1の倍程度の長さを有する帯状の導電体であり、図1及び図2のY方向に延在している。タブ線10は、図1に示されるおもて面側の表面側タブ線部11と、図2に示される裏面側の裏面側タブ線部13とを有している。表面側タブ線部11と裏面側タブ線部13とは、分離されていない一の部材から構成されてもよいし、分離された複数の部材を接続することによって構成されてもよい。 The tab line 10 is a strip-like conductor having a length about twice that of the light receiving element 1 and extends in the Y direction in FIGS. 1 and 2. The tab wire 10 has a front surface side tab wire portion 11 shown in FIG. 1 and a back surface side tab wire portion 13 shown in FIG. The surface side tab wire part 11 and the back surface side tab wire part 13 may be comprised from one member which is not isolate | separated, and may be comprised by connecting the some member isolate | separated.
 各ストリング110では、Y方向に隣り合う並列受光素子100aと並列受光素子100bとがタブ線10によって直列接続され、Y方向に隣り合う並列受光素子100bと並列受光素子100cとが別のタブ線10によって直列接続されている。このような直列接続が繰り返されることによって、1列の複数の並列受光素子100を備える1本のストリング110が構成されている。 In each string 110, the parallel light receiving element 100a and the parallel light receiving element 100b adjacent in the Y direction are connected in series by the tab line 10, and the parallel light receiving element 100b and the parallel light receiving element 100c adjacent in the Y direction are different tab lines 10 Are connected in series. By repeating such serial connection, one string 110 including a plurality of parallel light receiving elements 100 in one row is configured.
 なお、図示していないが、図1中の各ストリング110の終端部にはモジュールの辺に沿って配設された銅線などの周辺導線が、隣り合うストリング110のタブ線10の一端同士の相互接続に利用される。これにより、複数のストリング110が、周辺導線によって互いに直列接続されている。また、図示していないが、複数のストリング110の直列接続において端となる周辺導線には、太陽電池モジュールの外部に電力及び電流を取り出すための引き出し線であるリード線の一端が接続され、リード線の他端はモジュールの外に取り出される。さらに、図示していないが、並列受光素子100の耐候性を高めるために、複数のストリング110は、例えばエチレンビニルアセテート樹脂シートなどの封止部材によって覆わることもある。 Although not shown, at the end of each string 110 in FIG. 1, a peripheral conductor such as a copper wire disposed along the side of the module is one end of the tab wire 10 of the adjacent string 110. Used for interconnection. Thereby, the plurality of strings 110 are connected in series to each other by the peripheral wires. Further, although not shown, one end of a lead wire, which is a lead wire for extracting power and current to the outside of the solar cell module, is connected to a peripheral wire which is an end in series connection of a plurality of strings 110 The other end of the line is taken out of the module. Furthermore, although not shown, in order to improve the weather resistance of the parallel light receiving element 100, the plurality of strings 110 may be covered by a sealing member such as an ethylene vinyl acetate resin sheet.
 また、複数のストリング110の裏面側は、封止部材とともに例えば耐候性のポリエチレンテレフタラート樹脂シートなどのバックシートやガラスなどによって覆われることもあり、複数のストリング110の受光面側は、封止部材とともに例えばガラスなどの透光性の部材によって覆われることもある。また、図示していないが、ストリング110の周辺には、フレーム、ジャンクションボックス、及び、太陽電池モジュールのおもて面と裏面とに用いられるモジュール主面材等が配置される。なお、図1と図2では、図示を省略しているが、おもて面側主面材と裏面側主面材とで挟まれた構造がフレームによって支持されており、上述の引き出し線が、封止材と裏面側主面材の切れ目との間から裏面に引き出されることによって、太陽電池モジュールが構成されている。 In addition, the back side of the plurality of strings 110 may be covered by a back sheet such as a weather resistant polyethylene terephthalate resin sheet or glass together with the sealing member, and the light receiving surface side of the plurality of strings 110 is sealed It may be covered by translucent members, such as glass, with a member, for example. Although not shown, around the strings 110, a frame, a junction box, and a module main surface material and the like used for the front and back surfaces of the solar cell module are disposed. In addition, although illustration is abbreviate | omitted in FIG. 1 and FIG. 2, the structure pinched | interposed by the surface side main surface material and the back surface side main surface material is supported by the flame | frame, and the above-mentioned leader line is The solar cell module is configured by being drawn to the back surface from between the sealing material and the cut of the back surface side main surface material.
 次に、各並列受光素子100に含まれる複数の受光素子の構成について詳細に説明する。図3は、本実施の形態1に係る並列受光素子100に含まれる受光素子1a~1eを、おもて面側から見た平面図であり、図4は、当該受光素子1a~1eを、裏面側から見た平面図である。なお、便宜上、図3及び図4ではタブ線10の図示を省略している。 Next, the configuration of the plurality of light receiving elements included in each parallel light receiving element 100 will be described in detail. FIG. 3 is a plan view of the light receiving elements 1a to 1e included in the parallel light receiving element 100 according to the first embodiment viewed from the front surface side, and FIG. 4 is a plan view of the light receiving elements 1a to 1e. It is the top view seen from the back side. In addition, illustration of the tab line 10 is abbreviate | omitted in FIG.3 and FIG.4 for convenience.
 受光素子1a~1eは、基本的に同じ構造を有している。このため、以下、受光素子1a~1eを区別しない場合には、それぞれを受光素子1と記して説明することもある。なお、受光素子1の数は任意に変更可能である。 The light receiving elements 1a to 1e basically have the same structure. Therefore, hereinafter, when the light receiving elements 1a to 1e are not distinguished from one another, each may be described as the light receiving element 1. The number of light receiving elements 1 can be arbitrarily changed.
 並列受光素子100に含まれる受光素子1a~1eは、太陽電池または太陽電池素子に相当する。このため、本実施の形態1に係る太陽電池モジュールは、受光素子モジュールと呼ぶこともできる。ここでは、受光素子1a~1eとして、シリコン基板などの半導体基板から形成された受光素子を想定しているが、もちろんこれに限ったものではない。 The light receiving elements 1a to 1e included in the parallel light receiving element 100 correspond to solar cells or solar cell elements. For this reason, the solar cell module according to the first embodiment can also be called a light receiving element module. Here, although light receiving elements formed from a semiconductor substrate such as a silicon substrate are assumed as the light receiving elements 1a to 1e, the present invention is of course not limited thereto.
 平板上の受光素子1a~1eは、モジュール内の最小単位であり、互いに離間して平面状に配列されている。本実施の形態1では、Y方向に延在する受光素子1a~1eが、図示されない封止部材の中においてY方向と異なるX方向に、隣り合う2つの受光素子1の長辺同士を対向させた状態で配列されている。つまり、受光素子1aと受光素子1bとが隣り合う隣接方向に、受光素子1aに対して受光素子1b~1eが配設されている。なお、1つの並列受光素子100に含まれる複数の受光素子1が隣り合うX方向は、図1のタブ線10が延在するY方向とは直交していてもよいし、直交していなくてもよい。なお、本発明に係る第1受光素子は、受光素子1aと呼ぶことができ、本発明に係る複数の第2受光素子は、受光素子1b~1eと呼ぶことができる。 The light receiving elements 1a to 1e on the flat plate, which are the smallest units in the module, are arrayed in a plane, separated from each other. In the first embodiment, the light receiving elements 1a to 1e extending in the Y direction are such that the long sides of two adjacent light receiving elements 1 are opposed to each other in the X direction different from the Y direction in the sealing member not shown. Are arranged in the That is, the light receiving elements 1b to 1e are disposed with respect to the light receiving element 1a in the adjacent direction in which the light receiving element 1a and the light receiving element 1b are adjacent to each other. Note that the X direction in which the plurality of light receiving elements 1 included in one parallel light receiving element 100 are adjacent may or may not be orthogonal to the Y direction in which the tab line 10 in FIG. 1 extends. It is also good. The first light receiving element according to the present invention can be referred to as light receiving element 1a, and the plurality of second light receiving elements according to the present invention can be referred to as light receiving elements 1b to 1e.
 また本実施の形態1では、受光素子1a~1eのX方向の配列において、両端に位置する受光素子1a,1eの短い幅(W)が、他の受光素子1b~1dの短い幅(2W)の半分となっている。このような構成によれば、各受光素子1の素子電極の実効的な集電距離を同じにすることができる。 In the first embodiment, in the arrangement of the light receiving elements 1a to 1e in the X direction, the short width (W) of the light receiving elements 1a and 1e located at both ends is the short width (2 W) of the other light receiving elements 1b to 1d. It is half of the According to such a configuration, the effective current collection distances of the device electrodes of the respective light receiving devices 1 can be made the same.
 各受光素子1は、当該受光素子1のおもて面の端部に配設された素子電極である表面電極と、当該受光素子1の当該端部の裏面に配設された素子電極である裏面電極とを有している。太陽光が透明なガラスを介して受光素子1の受光面に入射されると、受光素子1は太陽光を電力に変換する光電変換を行う。そして、受光素子1で変換された電力は、受光素子1の表面電極及び裏面電極から取り出される。次に、表面電極及び裏面電極について詳細に説明する。 Each light receiving element 1 is a surface electrode which is an element electrode disposed at the end of the front surface of the light receiving element 1 and an element electrode disposed at the back of the end of the light receiving element 1. And a back electrode. When sunlight is incident on the light receiving surface of the light receiving element 1 through the transparent glass, the light receiving element 1 performs photoelectric conversion for converting sunlight into electric power. Then, the power converted by the light receiving element 1 is taken out from the front surface electrode and the back surface electrode of the light receiving element 1. Next, the front and back electrodes will be described in detail.
 図3に示すように、本実施の形態1に係る受光素子1は、表面電極として、表面グリッド電極4と、表面バス電極5とを有している。表面グリッド電極4及び表面バス電極5は、例えば、Ag(銀)を主成分とする銀ペーストを塗布して熱処理することで形成される。 As shown in FIG. 3, the light receiving element 1 according to the first embodiment has a surface grid electrode 4 and a surface bus electrode 5 as surface electrodes. The surface grid electrode 4 and the surface bus electrode 5 are formed, for example, by applying a silver paste containing Ag (silver) as a main component and performing heat treatment.
 表面バス電極5は、受光素子1のおもて面の端部に沿って配設されており、本実施の形態1ではY方向に平行な太陽電池の端辺に沿って延びて配設されている。ここで、受光素子1のおもて面の上記端部は、受光素子1の端と、受光素子1の当該端よりも内側の内側部分とを含んでおり、表面バス電極5は、当該内側部分に配設されている。つまり本実施の形態1では、表面バス電極5は、受光素子1のX方向の端よりも少し内側に配設されている。なお本実施の形態1の説明では、受光素子1の中心に近い側を内側、遠い側を外側と表現している。 The surface bus electrode 5 is disposed along the end of the front surface of the light receiving element 1 and, in the first embodiment, extends along the edge of the solar cell parallel to the Y direction. ing. Here, the end of the front surface of the light receiving element 1 includes the end of the light receiving element 1 and an inner portion inside the end of the light receiving element 1, and the surface bus electrode 5 is the inner side. It is arranged in the part. That is, in the first embodiment, the surface bus electrode 5 is disposed slightly inside the X-direction end of the light receiving element 1. In the description of the first embodiment, the side closer to the center of the light receiving element 1 is referred to as the inside, and the far side is referred to as the outside.
 複数の表面グリッド電極4は、受光素子1のおもて面上において、当該おもて面を覆う部分が少なくなるようにY方向に沿って適度の間隔をあけて配列されている。そして、各表面グリッド電極4のX方向の端部は、表面バス電極5と接続されている。このような表面グリッド電極4は、細線電極、または、フィンガー電極と呼ばれる電極であり、太陽電池である受光素子1の面内で発生した電流を集電して、表面バス電極5まで導く電極である。なお、表面グリッド電極4と接続された表面バス電極5は、表面グリッド電極4で集電した電流を、タブ線10を介して受光素子1の外部に取り出す電流取り出し電極として機能する。 The plurality of surface grid electrodes 4 are arranged on the front surface of the light receiving element 1 at appropriate intervals along the Y direction so that the portion covering the front surface is reduced. The end portion of each surface grid electrode 4 in the X direction is connected to the surface bus electrode 5. Such a surface grid electrode 4 is an electrode called a fine line electrode or a finger electrode, and is an electrode which collects a current generated in the plane of the light receiving element 1 which is a solar cell and leads it to the surface bus electrode 5. is there. The surface bus electrode 5 connected to the surface grid electrode 4 functions as a current extraction electrode for extracting the current collected by the surface grid electrode 4 to the outside of the light receiving element 1 through the tab wire 10.
 図3のような細線が平行に並んだ表面グリッド電極4は本発明に必須ではなく、表面グリッド電極4の代わりに、例えば、樹枝状パターンの電極を用いたり、透明導電膜からなる透明電極を用いたり、表面グリッド電極4と透明電極とを組み合わせた電極を用いたりしてもよい。なお、図面の簡素化のため、図3では表面グリッド電極4は数を少なくして図示されている。 The surface grid electrode 4 in which thin lines are arranged in parallel as shown in FIG. 3 is not essential to the present invention, and instead of the surface grid electrode 4, for example, an electrode of dendritic pattern or a transparent electrode made of a transparent conductive film is used. Alternatively, an electrode in which the surface grid electrode 4 and the transparent electrode are combined may be used. In order to simplify the drawing, the number of the surface grid electrodes 4 is shown in FIG.
 次に裏面電極について説明する。図4に示すように本実施の形態1に係る受光素子1は、裏面電極として、裏面アルミニウム電極6と、裏面銀電極7とを有している。裏面アルミニウム電極6はAl(アルミニウム)を主成分とする材料またはアルミニウムペーストを、裏面銀電極7は銀ペーストを、それぞれ塗布して熱処理することで形成される。 Next, the back electrode will be described. As shown in FIG. 4, the light receiving element 1 according to the first embodiment has a back surface aluminum electrode 6 and a back surface silver electrode 7 as the back surface electrode. The back surface aluminum electrode 6 is formed by applying a material containing Al (aluminum) as a main component or an aluminum paste, and the back surface silver electrode 7 by applying a silver paste and heat treating them.
 裏面銀電極7は、受光素子1の裏面の端部に配設されており、本実施の形態1ではY方向に平行な太陽電池の端辺に沿って複数配列されている。より具体的には、裏面銀電極7は、受光素子1のX方向の端に接して配設されている。裏面銀電極7は、裏面アルミニウム電極6で集電された電流を、タブ線10を介して受光素子1の外部に取り出す電極として機能する。図面の簡素化のため、図4では裏面銀電極7は数を少なくして図示されている。 The back surface silver electrodes 7 are disposed at the end of the back surface of the light receiving element 1, and in the first embodiment, a plurality of the back surface silver electrodes 7 are arranged along the edge of the solar cell parallel to the Y direction. More specifically, the back surface silver electrode 7 is disposed in contact with the end of the light receiving element 1 in the X direction. The back surface silver electrode 7 functions as an electrode for extracting the current collected by the back surface aluminum electrode 6 to the outside of the light receiving element 1 through the tab wire 10. In order to simplify the drawing, the back surface silver electrodes 7 are illustrated in a smaller number in FIG.
 裏面アルミニウム電極6は、受光素子1の周辺部及び裏面銀電極7を除く裏面のほぼ全面を覆うように形成されている。 The back surface aluminum electrode 6 is formed so as to cover the peripheral portion of the light receiving element 1 and substantially the entire back surface except the back surface silver electrode 7.
 図5は、図1の1本のストリング110からY方向に隣り合う並列受光素子100b,100cを抜き出して、おもて面側から見た平面図である。なお、図面の簡素化のため、図5では、並列受光素子100bに含まれるタブ線10は図示しているが、それ以外のタブ線10の図示は省略している。 FIG. 5 is a plan view of parallel light receiving elements 100b and 100c adjacent in the Y direction from one string 110 of FIG. 1 and viewed from the front side. Although the tab line 10 included in the parallel light receiving element 100b is illustrated in FIG. 5 for simplification of the drawing, the illustration of the other tab line 10 is omitted.
 図6は、図5の並列受光素子100b,100cのうち並列受光素子100cを透過させたように示す平面図である。つまり、図5では、並列受光素子100b,100cの表面電極が図示されているが、並列受光素子100cを透過させた図6では、並列受光素子100bの表面電極と並列受光素子100cの裏面電極とが図示されている。なお、図5及び図6のいずれも、並列受光素子100bのおもて側に位置するタブ線10を透過させたように示した。以下、複数のタブ線10を区別する場合には、タブ線10a~10dと記して説明することもある。 FIG. 6 is a plan view showing that the parallel light receiving element 100c of the parallel light receiving elements 100b and 100c of FIG. 5 is transmitted. That is, although the front surface electrodes of the parallel light receiving elements 100b and 100c are illustrated in FIG. 5, the front surface electrodes of the parallel light receiving elements 100b and the back surface electrodes of the parallel light receiving elements 100c are shown in FIG. Is illustrated. 5 and 6 show that the tab line 10 located on the front side of the parallel light receiving element 100b is transmitted. Hereinafter, in the case where the plurality of tab lines 10 are distinguished, they may be described as tab lines 10a to 10d.
 図7は、並列受光素子100bの構成を示す断面図であり、具体的には図6のA-A’に沿った断面図である。 FIG. 7 is a cross-sectional view showing the configuration of the parallel light receiving element 100b, and more specifically, a cross-sectional view taken along line A-A 'of FIG.
 図5~図7に示すように、1つの並列受光素子100において、タブ線10aは、受光素子1aの表面バス電極5が設けられた端部と、受光素子1bの表面バス電極5が設けられた端部とを互いに対向させた状態で、受光素子1aの表面バス電極5と、受光素子1bの表面バス電極5とを接続することにより、受光素子1aと受光素子1bとを並列接続している。なお、タブ線10aは、受光素子1a及び受光素子1bの上記端部同士の隙間を跨いで配設されているので、タブ線10aの幅方向の一部が、受光素子1のX方向の端辺から外側にはみ出している。 As shown in FIGS. 5 to 7, in one parallel light receiving element 100, the tab line 10a is provided with the end portion provided with the surface bus electrode 5 of the light receiving element 1a and the surface bus electrode 5 with the light receiving element 1b. By connecting the front surface bus electrode 5 of the light receiving element 1a and the front surface bus electrode 5 of the light receiving element 1b in a state where the end portions are opposed to each other, the light receiving element 1a and the light receiving element 1b are connected in parallel. There is. The tab line 10a is disposed across the gap between the end portions of the light receiving element 1a and the light receiving element 1b. Therefore, a part of the tab line 10a in the width direction is an end of the light receiving element 1 in the X direction. It protrudes outside from the side.
 同様に、1つの並列受光素子100において、タブ線10bは、受光素子1bの表面バス電極5が設けられた端部と、受光素子1cの表面バス電極5が設けられた端部とを互いに対向させた状態で、受光素子1bの表面バス電極5と、受光素子1cの表面バス電極5とを接続することにより、受光素子1bと受光素子1cとを並列接続している。なお、タブ線10bは、受光素子1b及び受光素子1cの上記端部同士の隙間を跨いで配設されているので、タブ線10bの幅方向の一部が、受光素子1のX方向の端辺から外側にはみ出している。 Similarly, in one parallel light receiving element 100, the tab line 10b opposes the end of the light receiving element 1b on which the surface bus electrode 5 is provided and the end of the light receiving element 1c on which the surface bus electrode 5 is provided. The light receiving element 1b and the light receiving element 1c are connected in parallel by connecting the surface bus electrode 5 of the light receiving element 1b and the surface bus electrode 5 of the light receiving element 1c in the state where the light receiving element 1b is made. The tab line 10b is disposed across the gap between the end portions of the light receiving element 1b and the light receiving element 1c. Therefore, a part of the tab line 10b in the width direction is an end of the light receiving element 1 in the X direction. It protrudes outside from the side.
 タブ線10a,10bと同様に、タブ線10cは、隣り合う受光素子1c、1dを並列接続し、タブ線10dは、隣り合う受光素子1d、1eを並列接続している。このため、本発明に係る第1タブ線は、タブ線10aと呼ぶことができ、本発明に係る複数の第3タブ線は、各タブ線10b~10dと呼ぶことができる。 Similar to the tab lines 10a and 10b, the tab line 10c connects adjacent light receiving elements 1c and 1d in parallel, and the tab line 10d connects adjacent light receiving elements 1d and 1e in parallel. Therefore, the first tab line according to the present invention can be called a tab line 10a, and the plurality of third tab lines according to the present invention can be called each tab line 10b to 10d.
 また、図5及び図6に示すように、以上のような受光素子1a~1e及びタブ線10a~10dを含む並列受光素子100が、タブ線10a~10dの延在するY方向に複数配列されている。このため、本発明に係る単位構造は、並列受光素子100と呼ぶことができる。 Further, as shown in FIGS. 5 and 6, a plurality of parallel light receiving elements 100 including the light receiving elements 1a to 1e and the tab lines 10a to 10d as described above are arranged in the Y direction in which the tab lines 10a to 10d extend. ing. Therefore, the unit structure according to the present invention can be called a parallel light receiving element 100.
 図8は、並列受光素子100b,100cの構成を示す断面図であり、具体的には図6の表面グリッド電極4を通らずに表面バス電極5、裏面アルミニウム電極6及び裏面銀電極7を通るB-B’に沿った断面図である。図9は、並列受光素子100b,100cの構成を示す断面図であり、具体的には図6のC-C’に沿った断面図である。なお、図8には、受光素子1に入射される太陽光の入射方向Sの一例が示されている。 FIG. 8 is a cross-sectional view showing the configuration of parallel light receiving elements 100b and 100c. Specifically, it passes through surface bus electrode 5, back aluminum electrode 6 and back silver electrode 7 without passing through surface grid electrode 4 of FIG. FIG. 5 is a cross-sectional view taken along the line BB ′. FIG. 9 is a cross-sectional view showing the configuration of the parallel light receiving elements 100b and 100c, and more specifically, a cross-sectional view taken along line C-C 'of FIG. Note that FIG. 8 shows an example of the incident direction S of sunlight incident on the light receiving element 1.
 図7を用いて説明したように、並列受光素子100bのタブ線10aは、並列受光素子100bの受光素子1a,1bの表面バス電極5同士を接続することにより受光素子1a,1bを並列接続する。この接続に加えて、図8に示すように、並列受光素子100bのタブ線10aは、当該表面バス電極5から延在して並列受光素子100cの受光素子1a,1bの裏面銀電極7と接続することにより、並列受光素子100bの受光素子1aまたは受光素子1bと、並列受光素子100cの受光素子1aまたは受光素子1bとを直列接続する。このため、本発明に係る第1の単位構造は、並列受光素子100bと呼ぶことができ、本発明に係る第2の単位構造は、並列受光素子100cと呼ぶことができ、本発明に係る第3受光素子は、並列受光素子100cの受光素子1aまたは受光素子1bと呼ぶことができる。 As described with reference to FIG. 7, the tab line 10a of the parallel light receiving element 100b connects the light receiving elements 1a and 1b in parallel by connecting the surface bus electrodes 5 of the light receiving elements 1a and 1b of the parallel light receiving element 100b. . In addition to this connection, as shown in FIG. 8, the tab line 10a of the parallel light receiving element 100b extends from the front surface bus electrode 5 and is connected to the back surface silver electrode 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100c. Thus, the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100b and the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100c are connected in series. Therefore, the first unit structure according to the present invention can be called a parallel light receiving element 100b, and the second unit structure according to the present invention can be called a parallel light receiving element 100c. The three light receiving elements can be called the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100c.
 さらに、本実施の形態1に係る並列受光素子100bのタブ線10aは、並列受光素子100cの受光素子1a,1bの裏面銀電極7同士も並列接続する。以上のような構成によれば、並列受光素子100bのタブ線10aによって、並列受光素子100bの受光素子1a,1bが互いに並列接続され、並列受光素子100cの受光素子1a,1bが互いに並列接続され、かつ、並列受光素子100bの受光素子1a,1bと、並列受光素子100cの受光素子1a,1bとが直列接続される。 Furthermore, the tab line 10a of the parallel light receiving element 100b according to the first embodiment also connects the back surface silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100c in parallel. According to the above configuration, the light receiving elements 1a and 1b of the parallel light receiving element 100b are connected in parallel with each other by the tab line 10a of the parallel light receiving element 100b, and the light receiving elements 1a and 1b of the parallel light receiving element 100c are connected in parallel with each other And, the light receiving elements 1a and 1b of the parallel light receiving element 100b and the light receiving elements 1a and 1b of the parallel light receiving element 100c are connected in series.
 並列受光素子100bのタブ線10aと同様に、並列受光素子100bのタブ線10bは、並列受光素子100bの隣り合う受光素子1b,1cの表面バス電極5同士を接続することにより隣り合う受光素子1b,1cを並列接続する。この接続に加えて、並列受光素子100bのタブ線10bは、当該表面バス電極5から延在して並列受光素子100cの隣り合う受光素子1b,1cの裏面銀電極7と接続することにより、並列受光素子100bの受光素子1bまたは受光素子1cと、並列受光素子100cの受光素子1bまたは受光素子1cとを直列接続する。タブ線10c,10dも、タブ線10a,10bと同様の直列接続を行う。 Similar to the tab line 10a of the parallel light receiving element 100b, the tab line 10b of the parallel light receiving element 100b is an adjacent light receiving element 1b by connecting the surface bus electrodes 5 of the adjacent light receiving elements 1b and 1c of the parallel light receiving element 100b. , 1c are connected in parallel. In addition to this connection, the tab line 10b of the parallel light receiving element 100b extends from the front surface bus electrode 5 and is connected in parallel to the back surface silver electrode 7 of the adjacent light receiving elements 1b and 1c of the parallel light receiving element 100c. The light receiving element 1b or the light receiving element 1c of the light receiving element 100b and the light receiving element 1b or the light receiving element 1c of the parallel light receiving element 100c are connected in series. The tab lines 10c and 10d are also connected in series similar to the tab lines 10a and 10b.
 ここでは、並列受光素子100bのタブ線10a~10dの接続について説明した。これと同様の接続が、図1の並列受光素子100aのタブ線10においても、図1の並列受光素子100cのタブ線10においても行われる。そして、このような接続が繰り返されることで、図1のストリング110が構成される。 Here, the connection of the tab lines 10a to 10d of the parallel light receiving element 100b has been described. Similar connections are made to the tab line 10 of the parallel light receiving element 100a of FIG. 1 and to the tab line 10 of the parallel light receiving element 100c of FIG. And, by repeating such connection, the string 110 of FIG. 1 is configured.
 この結果、並列受光素子100bのタブ線10a、つまり図7の上側のタブ線10aの表面側タブ線部11は、並列受光素子100bの受光素子1a,1bの表面バス電極5同士を接続する。一方、並列受光素子100aのタブ線10a、つまり図7の下側のタブ線10aの裏面側タブ線部13は、並列受光素子100bの受光素子1a,1bの裏面銀電極7同士を接続する。 As a result, the tab line 10a of the parallel light receiving element 100b, that is, the front side tab line portion 11 of the upper tab line 10a in FIG. 7, connects the front surface bus electrodes 5 of the light receiving elements 1a and 1b of the parallel light receiving element 100b. On the other hand, the tab line 10a of the parallel light receiving element 100a, that is, the back side tab line portion 13 of the tab line 10a on the lower side of FIG. 7, connects the back silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100b.
 具体的には、図7の下側のタブ線10aは、並列受光素子100bの受光素子1a,1bの裏面銀電極7同士を接続するとともに、当該裏面銀電極7から延在して並列受光素子100aの受光素子1a,1bの表面バス電極5と接続することにより、並列受光素子100bの受光素子1aまたは受光素子1bと並列受光素子100aの受光素子1aまたは受光素子1bとを直列接続する。なお、図7の上側のタブ線10aと同様に、図7の下側のタブ線10aも、受光素子1a及び受光素子1bの端部同士の隙間を跨いで配設されている。 Specifically, the lower tab line 10a in FIG. 7 connects the back surface silver electrodes 7 of the light receiving elements 1a and 1b of the parallel light receiving element 100b, and extends from the back surface silver electrode 7 to be a parallel light receiving element The light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100b and the light receiving element 1a or the light receiving element 1b of the parallel light receiving element 100a are connected in series by connecting with the surface bus electrodes 5 of the light receiving elements 1a and 1b 100a. Similar to the upper tab wire 10a of FIG. 7, the lower tab wire 10a of FIG. 7 is also disposed across the gap between the light receiving element 1a and the end of the light receiving element 1b.
 ここで、並列受光素子100aの受光素子1a,1bは、並列受光素子100bの受光素子1a,1bに対して並列受光素子100cの受光素子1a,1bと逆側に配列されている。このため、本発明に係る第4受光素子は、並列受光素子100aの各受光素子1a,1bと呼ぶことができる。また、本発明に係る第2タブ線は、並列受光素子100aのタブ線10a、つまり図7の下側のタブ線10aと呼ぶことができる。 Here, the light receiving elements 1a and 1b of the parallel light receiving element 100a are arranged on the opposite side of the light receiving elements 1a and 1b of the parallel light receiving element 100c with respect to the light receiving elements 1a and 1b of the parallel light receiving element 100b. For this reason, the fourth light receiving element according to the present invention can be called the light receiving elements 1a and 1b of the parallel light receiving element 100a. Further, the second tab line according to the present invention can be referred to as the tab line 10a of the parallel light receiving element 100a, that is, the tab line 10a on the lower side of FIG.
 なお、図7及び図8に示すように、タブ線10の裏面側タブ線部13と表面側タブ線部11との間、ひいては並列受光素子100bの表面バス電極5と並列受光素子100cの裏面銀電極7との間には、受光素子1の厚み方向Zに高低差が生じる。表面バス電極5及び裏面銀電極7は、受光素子1の厚みに比べて薄いので、この高低差は主として受光素子1の厚みによるものである。 As shown in FIGS. 7 and 8, between the back surface side tab wire portion 13 of the tab wire 10 and the front surface side tab wire portion 11, the surface bus electrode 5 of the parallel light receiving element 100b and the back surface of the parallel light receiving element 100c. A height difference occurs in the thickness direction Z of the light receiving element 1 with the silver electrode 7. Since the front surface bus electrode 5 and the back surface silver electrode 7 are thinner than the thickness of the light receiving element 1, this height difference is mainly due to the thickness of the light receiving element 1.
 また、図7及び図8に示すように、並列受光素子100bの受光素子1と、並列受光素子100cの受光素子1との間には、それらを接続するタブ線10が通るため、上述の高低差と同じ程度の隙間、つまり受光素子1の厚さと同じ程度の隙間が生じる。この隙間としては、例えば2~10mm程度が想定される。この隙間にはモジュールの封止樹脂や絶縁材等が配置されてもよいし、あるいは空隙のままであってもよい。 Further, as shown in FIGS. 7 and 8, since the tab line 10 connecting them is passed between the light receiving element 1 of the parallel light receiving element 100b and the light receiving element 1 of the parallel light receiving element 100c, A gap of the same degree as the difference, that is, a gap of the same degree as the thickness of the light receiving element 1 is generated. For example, about 2 to 10 mm is assumed as the gap. A sealing resin, an insulating material or the like of the module may be disposed in this gap, or may remain as a void.
 以上のような本実施の形態1に係る太陽電池モジュールによれば、タブ線10が、隣り合う受光素子1が有する表面電極同士、または、裏面電極同士を並列接続するとともに、当該表面電極または当該裏面電極から延在してそれら以外の受光素子1と接続する。つまり、各タブ線10は、X方向に隣り合う受光素子1の受光面の表面バス電極5同士、または、裏面の裏面銀電極7同士を、橋渡しするように並列接続する。これにより、タブ線10の幅方向の一部が、受光素子1のY方向に延在する端辺から外側にはみ出す。このように、光入射方向から見た場合にタブ線10は受光素子1上からはみ出した部分を有するので、タブ線10によって受光素子1に形成される影面積を、はみ出した分だけ小さくすることができる。一方、タブ線10のはみ出した部分をある程度大きくすることによってタブ線10の導電抵抗を低減することができる。このように、太陽電池の変換効率を高めることができるとともに、受光素子1の受光面積を大きくすることができることによってタブ線10の導電抵抗を低減することができる。 According to the solar cell module according to the first embodiment as described above, the tab wire 10 connects the front surface electrodes of the adjacent light receiving elements 1 or the back surface electrodes in parallel, and the front surface electrode or the front electrode It extends from the back surface electrode and is connected to the other light receiving elements 1. That is, each tab line 10 is connected in parallel so as to bridge the front surface bus electrodes 5 of the light receiving surface of the light receiving element 1 adjacent to each other in the X direction or the back surface silver electrodes 7 of the rear surface. As a result, a part of the tab line 10 in the width direction protrudes outward from the edge of the light receiving element 1 extending in the Y direction. As described above, since the tab line 10 has a portion protruding from the light receiving element 1 when viewed from the light incident direction, the shadow area formed on the light receiving element 1 by the tab line 10 should be reduced by the protruding amount. Can. On the other hand, the conductive resistance of the tab wire 10 can be reduced by enlarging the protruding portion of the tab wire 10 to a certain extent. As described above, the conversion efficiency of the solar cell can be enhanced, and the light receiving area of the light receiving element 1 can be increased, whereby the conductive resistance of the tab wire 10 can be reduced.
 ところで、裏面電極として大部分に配設された裏面アルミニウム電極6のアルミニウムが、受光素子1を構成する基板のシリコンと反応すると、裏面銀電極7に比べて抵抗が高くなる場合が多い。このため従来技術では、光発電で発生した電流が、裏面全面内を流れるうちに大幅に減衰してしまう問題が発生する。また、裏面アルミニウム電極6に限らず裏面電極として薄い金属膜や透明導電膜などを用いる場合も同様な問題が生じる。特に、従来技術では、表面電極及び裏面電極が、受光素子の一端のタブ線から他端のタブ線までの比較的長い距離にわたって配設されている。このため、受光素子の中心付近で発生した電流が、両端のタブ線に到達するまでの長い距離を流れるので集電抵抗が高くなっていた。これに対して、本実施の形態1の構成によれば、受光素子1の受光面または裏面において、複数のタブ線10を比較的短い間隔で配設することができるので、受光面または裏面の任意の位置からタブ線10までの距離を概ね小さくすることができる。このため、集電抵抗を低減することができる。 By the way, when the aluminum of the back surface aluminum electrode 6 disposed for the most part as the back surface electrode reacts with the silicon of the substrate constituting the light receiving element 1, the resistance often becomes higher than the back surface silver electrode 7. Therefore, in the prior art, there is a problem that the current generated by the photovoltaic generation is significantly attenuated while flowing in the entire back surface. Further, not only the back surface aluminum electrode 6 but also a thin metal film, a transparent conductive film or the like as the back surface electrode causes the same problem. In particular, in the prior art, the front and back electrodes are disposed over a relatively long distance from the tab line at one end of the light receiving element to the tab line at the other end. For this reason, the current generated in the vicinity of the center of the light receiving element flows through a long distance until reaching the tab line at both ends, so that the current collecting resistance is high. On the other hand, according to the configuration of the first embodiment, the plurality of tab lines 10 can be disposed at relatively short intervals on the light receiving surface or the back surface of the light receiving element 1. The distance from any position to the tab line 10 can be approximately reduced. For this reason, current collection resistance can be reduced.
 また本実施の形態1では、1つの並列受光素子100において、複数の受光素子1が複数のタブ線10によって接続されるので、タブ線10の導電抵抗を実質的に低減することができる。 Further, in the first embodiment, since the plurality of light receiving elements 1 are connected by the plurality of tab lines 10 in one parallel light receiving element 100, the conductive resistance of the tab line 10 can be substantially reduced.
 なお、タブ線10及び表面バス電極5の下は太陽電池が形成されていない領域、つまり太陽光発電ができない領域であることが多い。ここで本実施の形態1では、表面電極は、受光素子1の端部に沿って配設された表面バス電極5を含み、タブ線10は、表面バス電極5同士を接続する。このような構成によれば、受光素子1及び太陽電池モジュールの光電変換効率を高くすることができるという効果を有する。この理由については、本実施の形態1の最後に説明する。 In addition, the area under which the solar cell is not formed, that is, the area where solar power generation can not be performed is often provided under the tab wire 10 and the surface bus electrode 5. Here, in the first embodiment, the surface electrode includes the surface bus electrode 5 disposed along the end of the light receiving element 1, and the tab wire 10 connects the surface bus electrodes 5 to each other. According to such a configuration, it is possible to increase the photoelectric conversion efficiency of the light receiving element 1 and the solar cell module. The reason for this will be described at the end of the first embodiment.
 ところで、タブ線10のうち受光素子からはみ出した部分が、どの素子及び部材とも固定されていないと、図7の上側のタブ線10と、図7の下側のタブ線10とが接触して短絡する可能性がある。これに対して、本実施の形態1では、受光素子1によって、図7の上側のタブ線10と、図7の下側のタブ線10とが離間している状態が保持されている。このため、図7の上側のタブ線10と、図7の下側のタブ線10とを光入射方向からみた場合に、これらタブ線10同士が重なるように配置されても、これらタブ線10同士が短絡することを抑制することができる。また、受光素子1の受光面及び裏面のいずれにおいても、複数のタブ線10を比較的短い間隔で配設することができるので、受光面及び裏面の任意の位置からタブ線10までの距離を概ね小さくすることができる。このため、集電抵抗を低減することができる。 By the way, if a portion of the tab wire 10 protruding from the light receiving element is not fixed to any element or member, the upper tab wire 10 of FIG. 7 and the lower tab wire 10 of FIG. There is a possibility of short circuit. On the other hand, in the first embodiment, the light receiving element 1 holds the state in which the upper tab line 10 in FIG. 7 and the lower tab line 10 in FIG. 7 are separated. Therefore, when the upper tab line 10 in FIG. 7 and the lower tab line 10 in FIG. 7 are viewed from the light incident direction, even if the tab lines 10 are arranged to overlap with each other, these tab lines 10 It is possible to suppress short circuit between each other. In addition, on any of the light receiving surface and the back surface of the light receiving element 1, the plurality of tab lines 10 can be disposed at relatively short intervals, so the distance from any position on the light receiving surface and the back surface to the tab line 10 It can be roughly reduced. For this reason, current collection resistance can be reduced.
 また本実施の形態1では、図7などに示されるように表面バス電極5は、受光素子1の端よりも内側に配設されている。これにより、表面バス電極5と裏面銀電極7との間の、受光素子1の基板表面伝いの距離、つまり表面バス電極5と裏面銀電極7との間の受光素子1の基板表面に沿った距離を大きくすることができる。このため、表面側タブ線部11と表面バス電極5とを接続する半田等の接合部材と、裏面側タブ線部13と裏面銀電極7とを接続する半田等の接合部材とが短絡する可能性を低減することができる。なお、後述する変形例のように、裏面銀電極7も、表面バス電極5と同様に受光素子1の端よりも内側に配設されてもよい。 Further, in the first embodiment, as shown in FIG. 7 and the like, the surface bus electrode 5 is disposed inside the end of the light receiving element 1. Thus, the distance between the surface bus electrode 5 and the back surface silver electrode 7 along the substrate surface of the light receiving element 1, that is, along the substrate surface of the light receiving element 1 between the surface bus electrode 5 and the back surface silver electrode 7 The distance can be increased. Therefore, a bonding member such as solder connecting the front surface side tab wire portion 11 and the front surface bus electrode 5 and a bonding member such as solder connecting the rear surface side tab wire portion 13 and the rear surface silver electrode 7 can be short circuited Can be reduced. As in the case of the surface bus electrode 5, the back surface silver electrode 7 may be disposed inside the end of the light receiving element 1 as in the modification described later.
 また本実施の形態1では、1つの並列受光素子100における複数の受光素子1は、タブ線10によって並列接続されるので、各受光素子1の電流の大きさは一致しなくてもよい。このため、図3及び図4などに示されるように、受光素子1a~1eの少なくともいずれか1つの受光素子の受光面積が、他の受光素子の受光面積と異なってもよい。この結果、並列受光素子100の設計自由度を高めることができる。 Further, in the first embodiment, since the plurality of light receiving elements 1 in one parallel light receiving element 100 are connected in parallel by the tab line 10, the magnitudes of the currents of the respective light receiving elements 1 do not have to be the same. Therefore, as shown in FIGS. 3 and 4, the light receiving area of at least one of the light receiving elements 1a to 1e may be different from the light receiving area of the other light receiving element. As a result, the design freedom of the parallel light receiving element 100 can be increased.
 ところで、受光素子1a~1eは、1つの半導体基板を分割して形成されてもよい。図10は、本実施の形態1の受光素子1a~1eの元となる切断前の半導体基板120を、おもて面側から見た平面図であり、図11は、当該半導体基板120を、裏面側から見た平面図である。 The light receiving elements 1a to 1e may be formed by dividing one semiconductor substrate. FIG. 10 is a plan view of the semiconductor substrate 120 before cutting, which is the base of the light receiving elements 1a to 1e of the first embodiment, viewed from the front surface side, and FIG. It is the top view seen from the back side.
 受光素子1a~1eは、1つの半導体基板120を分割して形成される。この場合、例えば、1つの半導体基板120としては、直径が約200mmの円柱状の単結晶インゴットをスライスした半導体ウェハである単結晶シリコン基板に、上述の表面電極及び裏面電極を有する単結晶シリコン太陽電池が配設された基板を用いることができる。また、半導体基板120として、例えば、4隅に円弧によるコーナークロップを有し、100~156mm角の擬似的な角形を有する、厚さ0.1~0.4mmの平板状の基板を用いることができる。 The light receiving elements 1a to 1e are formed by dividing one semiconductor substrate 120. In this case, for example, as a single semiconductor substrate 120, a single crystal silicon solar substrate having a front electrode and a back electrode described above on a single crystal silicon substrate which is a semiconductor wafer obtained by slicing a cylindrical single crystal ingot having a diameter of about 200 mm. A substrate provided with a battery can be used. In addition, as the semiconductor substrate 120, for example, a flat substrate having a thickness of 0.1 to 0.4 mm having corner crop with arcs at four corners and a pseudo-square having a size of 100 to 156 mm may be used. it can.
 このような半導体基板120を、例えば、図10の表面バス電極5同士の間、及び、図11の裏面銀電極7を通るようにレーザー等を用いて切断することによって5つの受光素子1を形成する。 For example, five light receiving elements 1 are formed by cutting such a semiconductor substrate 120 between the front surface bus electrodes 5 of FIG. 10 and the back surface silver electrode 7 of FIG. 11 using a laser or the like. Do.
 以上のような製造方法によれば、分割前の1つの半導体基板120に形成された1つの受光装置の発電特性等を測定することによって、ストリング110の延在方向の一単位である並列受光素子100について短絡電流密度などの発電特性を予想することができる。このため、分割後の複数の受光素子1の発電特性を1つ1つ測定しなくて済むので、特性評価の手間を低減することができる。 According to the manufacturing method as described above, the parallel light receiving element which is one unit in the extending direction of the string 110 is measured by measuring the power generation characteristics and the like of one light receiving device formed on one semiconductor substrate 120 before division. Power generation characteristics such as short circuit current density can be predicted for 100. For this reason, since it is not necessary to measure the power generation characteristics of the plurality of light receiving elements 1 after division one by one, it is possible to reduce the effort of the characteristic evaluation.
 なお、図1のストリング110は、必ずしも並列接続された複数の受光素子1を直列接続することによって形成する必要はなく、例えば、直列接続された複数の受光素子1を並列接続することによって形成してもよい。 The string 110 in FIG. 1 is not necessarily formed by serially connecting a plurality of light receiving elements 1 connected in parallel, and for example, formed by connecting a plurality of light receiving elements 1 connected in series in parallel May be
 次に、以上に説明した太陽電池モジュールの構成要素の具体的な材料及びサイズの例について主に説明する。 Next, examples of specific materials and sizes of the components of the solar cell module described above will be mainly described.
 図1に示したタブ線10は、例えば厚さが0.01~0.5mm好ましくは0.08~0.5mmであり、幅が0.5~20mmである帯状の銅箔を、打ち抜き加工によって形成し、当該銅箔の両面に銀及びすずからなる半田めっきを施すことによって形成される。このようなタブ線10を用いる場合、受光素子1を300℃近くに加熱して、タブ線10の銅箔にめっきされた銀すずめっきを溶融させることで、タブ線10と表面電極及び裏面電極とを接続することができる。なお、めっきの溶解は、スポット的に加熱することによって行われてもよい。 The tab wire 10 shown in FIG. 1 is, for example, stamped out a strip-like copper foil having a thickness of 0.01 to 0.5 mm, preferably 0.08 to 0.5 mm, and a width of 0.5 to 20 mm. It forms by performing solder plating which consists of silver and tin on both surfaces of the copper foil concerned. When such a tab wire 10 is used, the light receiving element 1 is heated to a temperature close to 300 ° C. to melt the silver tin plating plated on the copper foil of the tab wire 10, thereby the tab wire 10 and the front and back electrodes And can be connected. The dissolution of plating may be performed by spot heating.
 ただし、タブ線10は、必ずしも銀及びすずのめっきを施した部材である必要はなく、例えば銀を含まないすずめっき銅線などであってもよい。また、タブ線10は、表面にめっきが施されていない部材を用いてもよい。この場合、例えば、上記組成以外の組成からなる半田、導電性接着剤、導電性高分子、導電性テープ、溶接または圧着等によって、タブ線10と表面電極及び裏面電極とを接続してもよい。なお、タブ線10と裏面銀電極7との間を半田で接続する場合には、裏面銀電極7は、Agを主に含んだ金属材料からなることが望ましい。また、タブ線10と表面バス電極5及び裏面銀電極7との間を半田で接続する場合には、タブ線10と、表面バス電極5及び裏面銀電極7とが接続される部分だけに半田を設けてもよいし、タブ線10の表面及び裏面の全体を覆うように半田を設けてもよい。なお、タブ線10は、表面バス電極5の全長にわたって表面バス電極5と接続されてもよいし、表面バス電極5と部分的に接続されてもよい。 However, the tab wire 10 is not necessarily a member plated with silver and tin, and may be, for example, a tin-plated copper wire that does not contain silver. Moreover, the tab wire 10 may use the member by which plating is not given to the surface. In this case, for example, the tab wire 10 may be connected to the front electrode and the back electrode by a solder, a conductive adhesive, a conductive polymer, a conductive tape, welding, pressure bonding, or the like having a composition other than the above composition. . When the tab wire 10 and the back surface silver electrode 7 are connected by solder, the back surface silver electrode 7 is preferably made of a metal material mainly containing Ag. When the tab wire 10 and the front surface bus electrode 5 and the back surface silver electrode 7 are connected by solder, the solder is applied only to the portion where the tab wire 10 and the front surface bus electrode 5 and the back surface silver electrode 7 are connected. The solder may be provided so as to cover the whole of the front and back surfaces of the tab wire 10. The tab line 10 may be connected to the surface bus electrode 5 over the entire length of the surface bus electrode 5 or may be partially connected to the surface bus electrode 5.
 以上の説明では、図1に示したように、1対の対称なタブ線10をY方向に延在させて受光素子1の両端部に配設したが、1つのタブ線10を何れか1方の端部にのみ設けるようにしても同様に効果が得られる。また、タブ線10の延在方向とストリング110の延在方向とは、互いに平行である必要はなく、受光素子1つまり太陽電池の形状や、受光素子1間の配列間隔に合わせて多少調節されてもよい。特にタブ線10の裏面側タブ線部13は、必ずしも受光素子1の端辺と平行である必要はなく、端辺に対して0~20度ほど傾斜していてもよい。 In the above description, as shown in FIG. 1, the pair of symmetrical tab lines 10 is extended in the Y direction and disposed at both ends of the light receiving element 1. The same effect can be obtained by providing only at one end. Further, the extending direction of the tab line 10 and the extending direction of the string 110 do not have to be parallel to each other, and are slightly adjusted in accordance with the shape of the light receiving element 1, that is, the solar cell and the arrangement interval between the light receiving elements 1 May be In particular, the back surface side tab line portion 13 of the tab line 10 does not necessarily have to be parallel to the edge of the light receiving element 1 and may be inclined at 0 to 20 degrees with respect to the edge.
 図3に示した表面グリッド電極4として、例えば幅0.05~0.2mm程度の幅を有し所定方向に延在する電極パターンが、0・5~2.5mmの周期で当該所定方向と直交する方向に配置される。表面バス電極5及びタブ線10は、例えば、表面グリッド電極4と直交する方向に受光素子1上に延在して形成される。なお、表面バス電極5は、タブ線10に接続されるため、表面グリッド電極4よりも太くなる場合が多く、例えば0.1mm~数mm程度の幅を有することが多い。 As the surface grid electrode 4 shown in FIG. 3, for example, an electrode pattern having a width of about 0.05 to 0.2 mm and extending in a predetermined direction has a predetermined period of 0.5 to 2.5 mm and It is arranged in the orthogonal direction. The surface bus electrode 5 and the tab line 10 are formed, for example, to extend on the light receiving element 1 in the direction orthogonal to the surface grid electrode 4. In addition, since the surface bus electrode 5 is connected to the tab wire 10, it is often thicker than the surface grid electrode 4 and often has a width of, for example, about 0.1 mm to several mm.
 また、タブ線10と、全ての表面グリッド電極4とが電気的に接続されればよく、必ずしも表面バス電極5を配設する必要はない。表面バス電極5を配設する場合でも、表面バス電極5は、必ずしもひとつながりの電極である必要はなく、さらに、必ずしも表面グリッド電極4より太い電極である必要もない。 Further, the tab wire 10 and all the surface grid electrodes 4 may be electrically connected, and the surface bus electrode 5 does not necessarily have to be provided. Even when the surface bus electrode 5 is provided, the surface bus electrode 5 does not necessarily have to be a continuous electrode, and furthermore, does not have to be a thicker electrode than the surface grid electrode 4.
 図4に示した裏面構成では、Alを主成分とする裏面アルミニウム電極6が、受光素子1の裏面の略全面を被覆していた。しかしこれに限ったものではなく、裏面アルミニウム電極6の代わりに、Agを主成分とする金属電極を用いてもよい。裏面アルミニウム電極6の代わりに、Agを主成分とする金属電極を用いる構成では、タブ線10を裏面アルミニウム電極6に直に接続することができるので、必ずしも裏面銀電極7を配設する必要はない。また、裏面銀電極7の代わりに、銀以外の材質からなる電極が用いられてもよい。 In the back surface configuration shown in FIG. 4, the back surface aluminum electrode 6 containing Al as a main component covers substantially the entire back surface of the light receiving element 1. However, the invention is not limited to this, and instead of the back surface aluminum electrode 6, a metal electrode containing Ag as a main component may be used. In the configuration using a metal electrode mainly composed of Ag instead of the back surface aluminum electrode 6, the tab wire 10 can be directly connected to the back surface aluminum electrode 6, so the back surface silver electrode 7 need to be disposed. Absent. Further, instead of the back surface silver electrode 7, an electrode made of a material other than silver may be used.
 さらに、裏面電極として、表面グリッド電極4及び表面バス電極5と同様に、裏面の一部領域に形成された金属電極を用いてもよいし、それら金属電極と裏面のほぼ全面に形成された透明導電電極とを組み合わせた電極を用いてもよい。このような構成によれば、受光素子1の裏面も受光面として用いることができるので、受光素子1を両面受光素子として用いることができる。なお、その構成において、裏面電極の幅及び離間間隔は、表面電極の幅及び離間間隔と異なることが望ましい。 Furthermore, as the back surface electrode, a metal electrode formed in a partial region of the back surface may be used similarly to the front surface grid electrode 4 and the front surface bus electrode 5, or transparent formed on substantially the entire surface of the metal electrode and the back surface. An electrode combined with a conductive electrode may be used. According to such a configuration, since the back surface of the light receiving element 1 can also be used as the light receiving surface, the light receiving element 1 can be used as a double-sided light receiving element. In the configuration, it is desirable that the width and the separation of the back electrode be different from the width and the separation of the surface electrode.
 図10及び図11などに示される半導体基板120には、例えば、おもて面たる受光面及び裏面たる非受光面のそれぞれの平面形状が略矩形であり、厚さが例えば0.1~0.5mmである薄板状のpn接合を有する半導体基板が用いられる。特に、単結晶を用いた半導体基板では、単結晶インゴットの円形から矩形に形成する際に切り落とされて無駄となる部分を減らすために、図10及び図11に示されるように、角の一部が切り落とされた形状に形成されることが多い。このため、上述の略矩形には、1組の平行な辺と、それらと直交する1組の平行な辺とを有する四角形形状、または、四角形状の角の一部が切り落とされた形状などが含まれる。 For example, in the semiconductor substrate 120 shown in FIGS. 10 and 11, the planar shapes of the light receiving surface as the front surface and the non-light receiving surface as the back surface are substantially rectangular, and the thickness is, for example, 0.1 to 0. A semiconductor substrate having a thin plate-like pn junction of 0.5 mm is used. In particular, in the case of a semiconductor substrate using a single crystal, as shown in FIGS. 10 and 11, in order to reduce a portion which is cut off and wasted when forming a circle from a circle to a rectangle of a single crystal ingot, Are often formed in a truncated shape. Therefore, in the above-described substantially rectangular shape, a rectangular shape having one set of parallel sides and a pair of parallel sides orthogonal to them, or a shape in which a part of a square corner is cut off, etc. included.
 なお、図10及び図11に示される半導体基板120の形状は、正方形の角の一部が切り落とされた形状であったが、これに限ったものではなく、例えば長方形の角の一部が切り落とされた形状であってもよい。 Although the shape of the semiconductor substrate 120 shown in FIG. 10 and FIG. 11 is a shape in which a part of a square corner is cut off, it is not limited thereto, for example, a part of a rectangular corner is cut off It may be of any shape.
 また、半導体基板120、及び半導体基板120を分割して形成される受光素子1として、pn接合を有する結晶シリコン受光素子やガリウムヒ素受光素子等を用いることもできる。pn接合は、不純物拡散によって形成されていてもよいし、アモルファスシリコン等のヘテロ接合であってもよい。 Further, as the light receiving element 1 formed by dividing the semiconductor substrate 120 and the semiconductor substrate 120, a crystalline silicon light receiving element having a pn junction, a gallium arsenide light receiving element, or the like can be used. The pn junction may be formed by impurity diffusion or may be a heterojunction such as amorphous silicon.
 本実施の形態1に係る太陽電池モジュールの製造方法としては、例えば特開2013-021172号などに開示された方法と同様の製造方法を用いることができる。 As a method of manufacturing the solar cell module according to the first embodiment, for example, the same manufacturing method as that disclosed in JP 2013-021172 A can be used.
 次に従来技術と比較する。従来の受光素子では、表面バス電極によって光が遮られることによって、あまり発電しない領域となる表面バス電極の裏側の領域に、電流取り出し電極を設けている。これにより、電流取り出し電極による効率損失を低下させることが可能となっている。この効果を高めるために、例えば、受光素子の両端部に配設された2つのタブ線が、当該受光素子の両端からはみ出して配設する構成が提案されている。 Next, it compares with a prior art. In the conventional light receiving element, the current extraction electrode is provided in the area on the back side of the surface bus electrode which is an area where power is not generated so much by blocking light by the surface bus electrode. Thereby, it is possible to reduce the efficiency loss by the current extraction electrode. In order to enhance this effect, for example, a configuration has been proposed in which two tab lines disposed at both ends of the light receiving element are disposed to protrude from both ends of the light receiving element.
 また、従来の太陽電池モジュールでは、受光面側と裏面側とを接続するタブ線を受光素子間部で折り曲げ、受光素子とタブ線との接続点が受光面側と裏面側とで重ならないようにしている。しかしながら、このような構成では、裏側のタブ線が受光素子の局所的な部分としか接続することができない。このため、タブ線よりも抵抗が大きい裏面電極の長さが、つまり受光素子で生成した電流がタブ線に集電されるまでに通過する集電距離が、比較的大きくなるので、集電抵抗が大きくなってしまうという課題があった。特に、半導体基板の面積が大きくなると、裏面電極の長さが大きくなり、その結果として、ストリング110の幅方向であるX方向における集電距離が大きくなってしまうことによる影響が顕在化する。 Further, in the conventional solar cell module, the tab wire connecting the light receiving surface side and the back surface side is bent at the light receiving element between, so that the connection point between the light receiving element and the tab wire does not overlap on the light receiving surface side and the back surface side I have to. However, in such a configuration, the tab wire on the back side can only be connected to a local portion of the light receiving element. Therefore, the length of the back electrode whose resistance is larger than that of the tab wire, that is, the current collection distance through which the current generated by the light receiving element passes until it is collected by the tab wire, becomes relatively large. Was a problem that In particular, when the area of the semiconductor substrate is increased, the length of the back surface electrode is increased. As a result, the influence of the increase of the current collection distance in the X direction which is the width direction of the string 110 becomes apparent.
 例えば、一般的な150mm程度の受光素子、つまり図10及び図11に示される1つの半導体基板120に対応する1つの受光素子に対して、2つのタブ線が配設される場合を想定する。この場合に、2つのタブ線が受光素子の幅に対して均等に配設されると、素子電極での集電距離、つまりX方向のタブ線とタブ線との間の距離は約38mm程度となる。一方、2つのタブ線が受光素子の両端部に配設された構成では、素子電極での集電距離は70mm以上になる。 For example, it is assumed that two tab lines are provided for a general light receiving element of about 150 mm, that is, one light receiving element corresponding to one semiconductor substrate 120 shown in FIGS. In this case, when the two tab lines are arranged equally to the width of the light receiving element, the current collecting distance at the element electrode, that is, the distance between the tab line and the tab line in the X direction is about 38 mm. It becomes. On the other hand, in the configuration in which two tab lines are disposed at both ends of the light receiving element, the current collection distance at the element electrode is 70 mm or more.
 このような素子電極における集電距離の増大、ひいては集電抵抗の増大は、タブ線を受光素子の両端部に配設したことによる影面積の低減によって利得が高められても、結果として太陽電池モジュールの特性を低下させることがあった。このような集電抵抗の増大は、裏面電極だけでなく表面電極においても同様に生じ、特に、表面電極は細く形成されることが多いので裏面電極よりも特性の低下が顕著となる。これに対して、本実施の形態1によれば、上述したように、受光素子1の受光面積を大きくすること、タブ線10の導電抵抗を低減すること、及び、集電抵抗を低減することができる。 The increase of the current collection distance in such an element electrode and hence the increase of the current collection resistance is a result even if the gain is enhanced by the reduction of the shadowed area by arranging the tab wires at both ends of the light receiving element. It sometimes reduced the characteristics of the module. Such an increase in current collection resistance occurs not only in the back surface electrode but also in the front surface electrode. In particular, the surface electrode is often formed to be thin, so that the deterioration in characteristics becomes more remarkable than in the back surface electrode. On the other hand, according to the first embodiment, as described above, the light receiving area of the light receiving element 1 is increased, the conductive resistance of the tab wire 10 is reduced, and the current collecting resistance is reduced. Can.
 なお、タブ線の幅及び厚さを大きくすればタブ線の抵抗を小さくできることを考慮すれば、受光素子の面内の集電抵抗を低減するために、タブ線が、ストリング110の延在方向に受光素子の一端から他端までほぼ縦断するように配設されることが好ましい。具体的には、受光面のタブ線を両端に配設した上で、さらに受光素子の面内の集電抵抗の低減のために両面のタブ線が両方とも受光素子を縦断するように配設されることが好ましい。しかしながら、このような構成では、受光面側のタブ線と裏面側のタブ線とが平面視において異なる位置に配設されることになる。この結果、太陽電池素子上にタブ線による非発電領域ができるため、タブ線面積の分だけ発電効率が低下するという問題があった。 Note that, in view of the fact that the resistance of the tab wire can be reduced by increasing the width and thickness of the tab wire, the tab wire extends in the direction of extension of the string 110 in order to reduce the current collection resistance in the plane of the light receiving element. It is preferable that the light receiving element is disposed so as to be substantially longitudinally cut from one end to the other end. Specifically, the tab lines on the light receiving surface are disposed at both ends, and the both tab lines are both arranged to longitudinally cut the light receiving element in order to reduce current collection resistance in the surface of the light receiving element. Preferably. However, in such a configuration, the tab line on the light receiving surface side and the tab line on the back surface side are disposed at different positions in plan view. As a result, since a non-power generation region can be formed by the tab wire on the solar cell element, there is a problem that the power generation efficiency is reduced by the area of the tab wire.
 このことは受光素子の裏面の一部、特に裏面の電極以外の領域がパッシベーションされた受光素子についても同様である。裏面がパッシベーションされた受光素子としては、集電電極の材質と電流取り出し電極の材質とが同じものでパターンが異なる構成や、集電電極と電流取り出し電極が一体化している構成などがある。しかしながら、いずれの構成においても、集電電極、電流取り出し電極、及び、受光素子基板の界面での再結合は、パッシベーション膜と受光素子基板との界面の再結合よりも悪影響が大きい。そのため、一般的に集電電極及び電流取り出し電極は、あまり発電しない領域となるおもて面側のバス電極の下側に設けられることが好ましい。 The same applies to a light receiving element in which a part of the back surface of the light receiving element, in particular, a region other than the electrode on the back surface is passivated. As a light receiving element whose back surface is passivated, there are a configuration in which the material of the current collection electrode and the material of the current extraction electrode are the same and the patterns are different, and a configuration in which the current collection electrode and the current extraction electrode are integrated. However, in any of the configurations, recombination at the interface between the current collection electrode, the current extraction electrode, and the light receiving element substrate is more adversely affected than recombination at the interface between the passivation film and the light receiving element substrate. Therefore, in general, the current collection electrode and the current extraction electrode are preferably provided below the bus electrode on the front surface side, which is an area where power is not generated very much.
 これに対し、本実施の形態1係る太陽電池モジュールは、表面バス電極5の影となる部分に電流取り出し電極である裏面銀電極7が配設されている。この結果、裏面銀電極7による抵抗損失を低下させることができ、従来技術よりも、受光素子1及び太陽電池モジュールの発電効率を高くすることができるという効果を有する。 On the other hand, in the solar cell module according to the first embodiment, the back surface silver electrode 7 which is a current extraction electrode is disposed in a portion to be shaded of the front surface bus electrode 5. As a result, the resistance loss due to the back surface silver electrode 7 can be reduced, and the power generation efficiency of the light receiving element 1 and the solar cell module can be enhanced compared to the prior art.
 <変形例1>
 図12は、変形例1に係る並列受光素子100bの構成を示す断面図であり、具体的には図6のA-A’に沿った断面図である。本変形例1では、絶縁部材14が追加されており、絶縁部材14は、図12の上側のタブ線10と図12の下側のタブ線10との間の隙間の少なくとも一部に配設されている。このような本変形例1の構成によれば、上下のタブ線10同士の絶縁性を高めることができる。なお、絶縁部材14は、図12に示すように上下のタブ線10の真ん中に配設されてもよいし、図13に示すように上側のタブ線10に近接させて配設されてもよいし、図示しないが下側のタブ線10に近接させて配設されてもよい。
<Modification 1>
FIG. 12 is a cross-sectional view showing the configuration of the parallel light receiving element 100b according to the first modification, and more specifically, a cross-sectional view taken along the line AA 'of FIG. In the first modification, the insulating member 14 is added, and the insulating member 14 is disposed in at least a part of the gap between the upper tab wire 10 of FIG. 12 and the lower tab wire 10 of FIG. It is done. According to the configuration of the first modification, the insulation between the upper and lower tab lines 10 can be enhanced. The insulating member 14 may be disposed in the middle of the upper and lower tab wires 10 as shown in FIG. 12 or may be disposed in proximity to the upper tab wire 10 as shown in FIG. Although not shown, it may be disposed close to the lower tab wire 10.
 <変形例2>
 図14は、本変形例2に係る受光素子1a~1eを、図4と同様に裏面側から見た平面図である。本変形例2に係る裏面銀電極7は、図4に示した実施の形態1に係る構成と異なり、表面バス電極5と同様に、受光素子1の端よりも内側の内側部分に配設されている。このような構成によれば、表面バス電極5と裏面銀電極7との間の、受光素子1の基板表面伝いの距離を大きくすることができる。このため、表面側タブ線部11と表面バス電極5とを接続する半田等の接合部材と、裏面側タブ線部13と裏面銀電極7とを接続する半田等の接合部材とが短絡する可能性を低減することができ、絶縁性を高めることができる。
<Modification 2>
FIG. 14 is a plan view of the light receiving elements 1a to 1e according to the second modification as viewed from the back side as in FIG. Unlike the configuration according to the first embodiment shown in FIG. 4, the back surface silver electrode 7 according to the present modification 2 is disposed at the inner side inside the end of the light receiving element 1 like the surface bus electrode 5. ing. According to such a configuration, the distance between the front surface bus electrode 5 and the rear surface silver electrode 7 along the substrate surface of the light receiving element 1 can be increased. Therefore, a bonding member such as solder connecting the front surface side tab wire portion 11 and the front surface bus electrode 5 and a bonding member such as solder connecting the rear surface side tab wire portion 13 and the rear surface silver electrode 7 can be short circuited The conductivity can be reduced and the insulation can be enhanced.
 <変形例3>
 図15は、変形例3に係る並列受光素子100bの構成を示す断面図であり、具体的には図6のA-A’に沿った断面図である。図15に示す例では、変形例1で説明した絶縁部材14も追加されているが、絶縁部材14は追加されていなくてもよい。
<Modification 3>
FIG. 15 is a cross-sectional view showing the configuration of the parallel light receiving element 100b according to the third modification, and more specifically, a cross-sectional view taken along the line AA 'in FIG. In the example shown in FIG. 15, the insulating member 14 described in the first modification is also added, but the insulating member 14 may not be added.
 本変形例3では、導光部材15が追加されており、導光部材15は、タブ線10の表面電極と接続された部分の、表面電極と接続された面と逆側の面に配設されている。導光部材15には、例えば光反射体または光散乱体などが含まれる。このような構成によれば、タブ線10に向かう光を、導光部材15によって受光素子1の受光面に導くことができる。これにより、発電効率をさらに高めることができる。 In the third modification, the light guiding member 15 is added, and the light guiding member 15 is disposed on the surface of the portion of the tab wire 10 connected to the surface electrode opposite to the surface connected to the surface electrode. It is done. The light guide member 15 includes, for example, a light reflector or a light scatterer. According to such a configuration, the light directed to the tab line 10 can be guided to the light receiving surface of the light receiving element 1 by the light guide member 15. This can further enhance the power generation efficiency.
 <変形例4>
 図16及び図17は、変形例4に係る並列受光素子100b,100cを、おもて面側から見た平面図及びうら面側から平面図であり、図1の1本のストリング110からY方向に隣り合う並列受光素子100b,100cを抜き出したものに相当する。なお、図面の簡素化のため、図16では、並列受光素子100bに含まれるタブ線10は図示しているが、それ以外のタブ線10の図示は省略している。
<Modification 4>
16 and 17 are a plan view of the parallel light receiving elements 100b and 100c according to the fourth modification viewed from the front side and a plan view from the back side, and one string 110 to Y of FIG. It corresponds to the extraction of the parallel light receiving elements 100b and 100c adjacent in the direction. Although the tab lines 10 included in the parallel light receiving element 100b are illustrated in FIG. 16 for simplification of the drawing, the other tab lines 10 are not illustrated.
 本変形例4では、タブ線10のうち受光素子1a~1eの表面電極に接続する部分の幅W1が、受光素子1a~1eの裏面電極に接続する部分の幅W2よりも狭い。タブ線10のうち表面側に接続する部分は、受光素子に入射する光をさえぎるため、タブ線10の幅は細いほうが発電効率が高くなる。しかしながら、表面側のタブ線10の幅だけでなく、裏面側のタブ線10の幅も狭くすると、タブ線10と裏面銀電極7の接続面積が狭くなり、受光素子1a~1eとタブ線10との接続強度が低下する。接続強度の低下は、ストリングを作製する際の良品率の低下や、太陽電池モジュールの長期信頼性を引き起こす。そこで本変形例4では、タブ線10のうち裏面側に接続する部分の幅W2を広くする。これにより、タブ線10と裏面銀電極7との接続面積を広くすることができ、受光素子1a~1eとタブ線10との接続強度を高く保つことができる。タブ線10のうち裏面側に接続する部分は受光素子1a~1eに入射する光をさえぎらないため、発電効率の低下は生じず、また、タブ線10と裏面銀電極7との接続面積が広くなるため、タブ線10と裏面銀電極7との接触抵抗を低くすることができる。 In the fourth modification, the width W1 of the portion of the tab line 10 connected to the front surface electrode of the light receiving elements 1a to 1e is narrower than the width W2 of the portion connected to the back surface electrode of the light receiving elements 1a to 1e. The portion of the tab wire 10 connected to the surface side blocks light incident on the light receiving element, so the narrower the width of the tab wire 10, the higher the power generation efficiency. However, if the width of the tab line 10 on the back side is narrowed as well as the width of the tab line 10 on the front side, the connection area of the tab line 10 and the silver electrode 7 on the back side narrows, and the light receiving elements 1a to 1e and the tab line 10 The connection strength with is reduced. The reduction in connection strength causes a reduction in the yield rate when producing strings and long-term reliability of the solar cell module. Therefore, in the fourth modification, the width W2 of the portion of the tab wire 10 connected to the back surface side is increased. As a result, the connection area between the tab wire 10 and the back surface silver electrode 7 can be increased, and the connection strength between the light receiving elements 1a to 1e and the tab wire 10 can be kept high. The portion of the tab wire 10 connected to the back surface side does not block the light incident on the light receiving elements 1a to 1e, so that the power generation efficiency does not decrease, and the connection area between the tab wire 10 and the back surface silver electrode 7 is wide. Therefore, the contact resistance between the tab wire 10 and the back surface silver electrode 7 can be reduced.
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 In the present invention, within the scope of the invention, the embodiment can be appropriately modified or omitted.
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention.
 1 受光素子、5 表面バス電極、7 裏面銀電極、10 タブ線、14 絶縁部材、15 導光部材、100 並列受光素子、120 半導体基板。 DESCRIPTION OF SYMBOLS 1 light receiving element, 5 surface bus electrode, 7 back surface silver electrode, 10 tab wire, 14 insulation members, 15 light guide members, 100 parallel light receiving elements, 120 semiconductor substrates.

Claims (13)

  1.  互いに離間して平面状に配列された平板状の第1、第2及び第3受光素子と、
     前記第1、前記第2及び前記第3受光素子を電気的に接続する帯状の第1タブ線と
    を備え、
     前記第1、前記第2及び前記第3受光素子のそれぞれは、
     当該受光素子のおもて面の端部に配設された表面電極と、当該受光素子の前記端部の裏面に配設された裏面電極とを有し、
     前記第1タブ線は、
     前記第1及び前記第2受光素子の前記端部を対向させた状態で、前記第1及び前記第2受光素子の前記表面電極同士、または、前記裏面電極同士を接続することにより前記第1及び前記第2受光素子を並列接続するとともに、当該表面電極または当該裏面電極から延在して前記第3受光素子の前記裏面電極または前記表面電極と接続することにより前記第1または前記第2受光素子と前記第3受光素子とを直列接続する、太陽電池モジュール。
    First, second, and third light receiving elements in the form of flat plates spaced apart from each other and arranged in a plane;
    And a strip-like first tab line electrically connecting the first, second and third light receiving elements;
    Each of the first, second and third light receiving elements is
    A front surface electrode disposed at an end portion of the front surface of the light receiving element; and a back surface electrode disposed on a back surface of the end portion of the light receiving element;
    The first tab line is
    In a state where the end portions of the first and second light receiving elements are opposed to each other, the first and second surface electrodes of the first and second light receiving elements are connected to each other, or the back surface electrodes are connected to each other. The first or second light receiving element is connected in parallel with the second light receiving element and extended from the front surface electrode or the back surface electrode to connect to the back surface electrode or the front surface electrode of the third light receiving element. And a third light receiving element connected in series.
  2.  請求項1に記載の太陽電池モジュールであって、
     前記第1タブ線は、
     前記第1及び前記第2受光素子の前記表面電極同士を接続するとともに、当該表面電極から延在して前記第3受光素子の前記裏面電極と接続する、太陽電池モジュール。
    The solar cell module according to claim 1,
    The first tab line is
    A solar cell module, which connects the front surface electrodes of the first and second light receiving elements, and extends from the front surface electrode to connect with the back surface electrode of the third light receiving element.
  3.  請求項2に記載の太陽電池モジュールであって、
     前記第1及び前記第2受光素子が有する前記表面電極のそれぞれは、
     前記端部に沿って配設された表面バス電極を含み、
     前記第1タブ線は、
     前記第1及び前記第2受光素子の前記表面バス電極同士を接続するとともに、当該表面バス電極から延在して前記第3受光素子の前記裏面電極と接続する、太陽電池モジュール。
    The solar cell module according to claim 2,
    Each of the surface electrodes of the first and second light receiving elements is
    Including surface bus electrodes disposed along the end,
    The first tab line is
    A solar cell module, which connects the surface bus electrodes of the first and second light receiving elements, and extends from the surface bus electrode to connect with the back surface electrode of the third light receiving element.
  4.  請求項1から請求項3のうちのいずれか1項に記載の太陽電池モジュールであって、
     前記第1タブ線は、
     前記第1及び前記第2受光素子の前記端部同士の隙間を跨いで配設されている、太陽電池モジュール。
    It is a solar cell module according to any one of claims 1 to 3,
    The first tab line is
    The solar cell module is disposed across the gap between the end portions of the first and second light receiving elements.
  5.  請求項1から請求項4のうちのいずれか1項に記載の太陽電池モジュールであって、
     前記第1及び前記第2受光素子に対して前記第3受光素子と逆側に配列された第4受光素子と、
     前記第1タブ線と離間して配設され、前記第1、前記第2及び前記第4受光素子を電気的に接続する帯状の第2タブ線と
    をさらに備え、
     前記第4受光素子は、
     当該受光素子のおもて面の端部に配設された表面電極と、当該受光素子の前記端部の裏面に配設された裏面電極とを有し、
     前記第1タブ線は、
     前記第1及び前記第2受光素子の前記表面電極同士を接続するとともに、当該表面電極から延在して前記第3受光素子の前記裏面電極と接続し、
     前記第2タブ線は、
     前記第1及び前記第2受光素子の前記裏面電極同士を接続するとともに、当該裏面電極から延在して前記第4受光素子の前記表面電極と接続することにより前記第1または前記第2受光素子と前記第4受光素子とを直列接続する、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 4, wherein
    A fourth light receiving element arranged on the side opposite to the third light receiving element with respect to the first and second light receiving elements;
    And a strip-like second tab line disposed apart from the first tab line and electrically connecting the first, second and fourth light receiving elements.
    The fourth light receiving element is
    A front surface electrode disposed at an end portion of the front surface of the light receiving element; and a back surface electrode disposed on a back surface of the end portion of the light receiving element;
    The first tab line is
    The front surface electrodes of the first and second light receiving elements are connected to each other, and are extended from the front surface electrode to be connected to the back surface electrode of the third light receiving element,
    The second tab line is
    The first and second light receiving elements are connected by connecting the back surface electrodes of the first and second light receiving elements and extending from the back surface electrode and connecting with the front surface electrode of the fourth light receiving element. And a fourth light receiving element connected in series.
  6.  請求項1に記載の太陽電池モジュールであって、
     前記第1及び前記第2受光素子が隣り合う隣接方向に、前記第1受光素子に対して複数の前記第2受光素子が配設され、
     隣り合う前記第2受光素子同士を電気的に接続する帯状の第3タブ線をさらに備え、
     前記第1受光素子、前記複数の第2受光素子、前記第1タブ線、及び、前記第3タブ線を含む単位構造が、前記第1タブ線及び前記第3タブ線の延在する延在方向に複数配設され、
     隣り合う第1及び第2の前記単位構造に関し、
     前記第1の単位構造の前記第1タブ線は、前記第1の単位構造の前記第1及び前記第2受光素子の前記表面電極同士を接続することにより、前記第1の単位構造の前記第1及び前記第2受光素子を並列接続するとともに、前記第3受光素子である前記第2の単位構造の前記第1または前記第2受光素子の前記裏面電極と接続することにより、前記第1の単位構造の前記第1または前記第2受光素子と前記第2の単位構造の前記第1または前記第2受光素子とを直列接続し、
     前記第1の単位構造の前記第3タブ線は、前記第1の単位構造の隣り合う前記第2受光素子の前記表面電極同士を接続することにより、前記第1の単位構造の隣り合う前記第2受光素子同士を並列接続するとともに、前記第2の単位構造の隣り合う前記第2受光素子の一方の前記裏面電極と接続することにより、前記第1の単位構造の隣り合う前記第2受光素子の一方と前記第2の単位構造の隣り合う前記第2受光素子の一方とを直列接続する、太陽電池モジュール。
    The solar cell module according to claim 1,
    A plurality of second light receiving elements are disposed relative to the first light receiving element in an adjacent direction in which the first and second light receiving elements are adjacent to each other.
    A band-like third tab wire electrically connecting the adjacent second light receiving elements to each other, further comprising:
    A unit structure including the first light receiving element, the plurality of second light receiving elements, the first tab line, and the third tab line is an extension of the first tab line and the third tab line Arranged in multiple directions,
    Regarding the adjacent first and second unit structures,
    The first tab line of the first unit structure connects the surface electrodes of the first and second light receiving elements of the first unit structure to each other to form the first unit line of the first unit structure. The first and second light receiving elements are connected in parallel and connected to the back surface electrode of the first and second light receiving elements of the second unit structure which is the third light receiving element. Connecting the first or second light receiving element having a unit structure and the first or second light receiving element having a second unit structure in series;
    The third tab line of the first unit structure is formed by connecting the front surface electrodes of the adjacent second light receiving elements of the first unit structure to each other. (2) The adjacent second light receiving elements of the first unit structure are connected by connecting the two light receiving elements in parallel and connecting to the back electrode of one of the adjacent second light receiving elements of the second unit structure. The solar cell module which connects in series one of the said 2nd light receiving elements of the said 2nd unit structure in series.
  7.  請求項1から請求項6のうちのいずれか1項に記載の太陽電池モジュールであって、
     前記第1タブ線の前記表面電極と接続された部分の、前記表面電極と接続された面と逆側の面に配設された導光部材をさらに備える、太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 6, wherein
    A solar cell module, further comprising a light guide member disposed on a surface of the portion of the first tab wire connected to the surface electrode, the surface being opposite to the surface connected to the surface electrode.
  8.  請求項6に記載の太陽電池モジュールであって、
     前記第1受光素子及び前記複数の第2受光素子の少なくともいずれか1つの受光素子の受光面積が、他の受光素子の受光面積と異なる、太陽電池モジュール。
    The solar cell module according to claim 6, wherein
    A solar cell module, wherein a light receiving area of at least one light receiving element of the first light receiving element and the plurality of second light receiving elements is different from a light receiving area of another light receiving element.
  9.  請求項6に記載の太陽電池モジュールであって、
     前記第1受光素子及び前記複数の第2受光素子の配列において、両端に位置する受光素子の前記隣接方向の幅が、他の受光素子の前記隣接方向の幅の半分である、太陽電池モジュール。
    The solar cell module according to claim 6, wherein
    The solar cell module, wherein in the arrangement of the first light receiving element and the plurality of second light receiving elements, the width in the adjacent direction of the light receiving elements located at both ends is half the width in the adjacent direction of the other light receiving elements.
  10.  請求項5に記載の太陽電池モジュールであって、
     前記第1タブ線と前記第2タブ線との間の隙間の少なくとも一部に配設された絶縁部材をさらに備える、太陽電池モジュール。
    The solar cell module according to claim 5, wherein
    A solar cell module, further comprising an insulating member disposed in at least a part of a gap between the first tab wire and the second tab wire.
  11.  請求項3に記載の太陽電池モジュールであって、
     前記受光素子の端部は、
     前記受光素子の端と、前記受光素子の当該端よりも内側部分とを含み、
     前記表面バス電極及び前記裏面電極の少なくともいずれか1つは、前記内側部分に配設されている、太陽電池モジュール。
    The solar cell module according to claim 3,
    The end of the light receiving element is
    Including an end of the light receiving element and a portion inside the end of the light receiving element;
    A solar cell module, wherein at least one of the front surface bus electrode and the back surface electrode is disposed in the inner portion.
  12.  請求項1に記載の太陽電池モジュールであって、
     前記第1タブ線の、前記第1及び前記第2受光素子の前記表面電極と接続された部分の幅が、前記第1タブ線の、前記第3受光素子の前記裏面電極と接続された部分の幅よりも狭い、または、
     前記第1タブ線の、前記第3受光素子の前記表面電極と接続された部分の幅が、前記第1タブ線の、前記第1及び前記第2受光素子の前記裏面電極と接続された部分の幅よりも狭い、太陽電池モジュール。
    The solar cell module according to claim 1,
    A portion of the portion of the first tab line connected to the front surface electrode of the first and second light receiving elements is a portion of the first tab line connected to the back surface electrode of the third light receiving element Less than the width of or
    The width of the portion of the first tab line connected to the front surface electrode of the third light receiving element is the width of the first tab line connected to the back surface electrode of the first and second light receiving elements Solar cell module narrower than the width of the.
  13.  請求項6に記載の太陽電池モジュールを製造する太陽電池モジュールの製造方法であって、
     前記第1受光素子及び前記複数の第2受光素子は、1つの半導体基板を分割して形成される、太陽電池モジュールの製造方法。
    A method of manufacturing a solar cell module for manufacturing a solar cell module according to claim 6,
    The method of manufacturing a solar cell module, wherein the first light receiving element and the plurality of second light receiving elements are formed by dividing one semiconductor substrate.
PCT/JP2017/032952 2017-09-13 2017-09-13 Solar cell module and manufacturing method for same WO2019053795A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/032952 WO2019053795A1 (en) 2017-09-13 2017-09-13 Solar cell module and manufacturing method for same
TW107100181A TWI643353B (en) 2017-09-13 2018-01-03 Solar cell module and manufacturing method of the solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032952 WO2019053795A1 (en) 2017-09-13 2017-09-13 Solar cell module and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2019053795A1 true WO2019053795A1 (en) 2019-03-21

Family

ID=65431938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032952 WO2019053795A1 (en) 2017-09-13 2017-09-13 Solar cell module and manufacturing method for same

Country Status (2)

Country Link
TW (1) TWI643353B (en)
WO (1) WO2019053795A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089705A (en) * 1976-07-28 1978-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hexagon solar power panel
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2006013406A (en) * 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell module
JP2012238884A (en) * 2005-09-30 2012-12-06 Sanyo Electric Co Ltd Manufacturing method of solar cell and manufacturing method of solar cell unit
JP2014007225A (en) * 2012-06-22 2014-01-16 Sharp Corp Solar cell with wiring, solar cell module, and solar cell array

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201015732A (en) * 2008-10-06 2010-04-16 Pegatron Corp Solar cell module
FR3024283B1 (en) * 2014-07-25 2016-08-12 Commissariat Energie Atomique PHOTOVOLTAIC MODULE COMPRISING A PLURALITY OF BIFACIAL CELLS AND METHOD OF MANUFACTURING SUCH A MODULE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089705A (en) * 1976-07-28 1978-05-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hexagon solar power panel
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2006013406A (en) * 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell module
JP2012238884A (en) * 2005-09-30 2012-12-06 Sanyo Electric Co Ltd Manufacturing method of solar cell and manufacturing method of solar cell unit
JP2014007225A (en) * 2012-06-22 2014-01-16 Sharp Corp Solar cell with wiring, solar cell module, and solar cell array

Also Published As

Publication number Publication date
TW201916395A (en) 2019-04-16
TWI643353B (en) 2018-12-01

Similar Documents

Publication Publication Date Title
US8440907B2 (en) Solar cell, solar cell string and solar cell module
JP4429306B2 (en) Solar cell and solar cell module
TWI603493B (en) Solar cell and module comprising the same
JP5410050B2 (en) Solar cell module
JP4684075B2 (en) Solar cell, solar cell string and solar cell module
KR102629257B1 (en) One-dimensional metallization for solar cells
JP2009043842A (en) Solar battery module
US20150007865A1 (en) Photovoltaic module
EP2738816B1 (en) Solar cell, solar cell module, and method for producing solar cell
JP5052154B2 (en) Manufacturing method of solar cell module
JP2014033240A (en) Solar cell module
US20100000595A1 (en) Solar cell module
JP2015207598A (en) Solar cell module, solar cell, and inter-element connection body
JP2010016246A (en) Solar cell module and method of manufacturing the same
KR101542003B1 (en) Solar cell module
JP5153279B2 (en) Solar cell module
JP2018006659A (en) Solar cell module and manufacturing method thereof
JP4519089B2 (en) Solar cell, solar cell string and solar cell module
JP2010251569A (en) Solar cell module
WO2019053795A1 (en) Solar cell module and manufacturing method for same
JP2007288113A (en) Solar cell, solar cell string, and solar cell module
JP5561251B2 (en) Solar cell module
KR20170124777A (en) Solar cell module
TWI680586B (en) Solar battery module
KR20120081417A (en) Solar cell and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP